
GEOMETRY VIEWER FOR PGADMIN4: A PROCESS GUIDED BY THE GOOGLE
SUMMER OF CODE

X. Gong1, F. Erwee2, V. Rautenbach3, *

1 Institute of Remote Sensing and Geographic Information Systems, School of Earth and Space Sciences, Peking University -
xurigoong@gmail.com

2 Verge Technologies, Pretoria, South Africa - ferwee@gmail.com
3 Centre for Geoinformation Science, Department of Geography, Geoinformatics and Meteorology, University of Pretoria, South

Africa - victoria.rautenbach@up.ac.za

Commission IV, WG IV/4

KEY WORDS: PostGIS, pgAdmin, geometry viewer, Leaflet JS

ABSTRACT:

The latest version of pgAdmin4 was released in mid-2016 and moved to a web-based application that was written in Python and jQuery
with Bootstrap, using the Flask framework. This new architecture of pgAdmin4 provided an excellent opportunity to integrate a
geometry viewer into the application. This progress started as the geometry viewer was selected as a project for the 2018 Google
Summer of Code (GSoC). The requirements for the geometry viewer was elicited through conversations with the mentors and emails
to the discussion list of PostGIS and pgAdmin. Once the formal design was finalized the development started. The spatial technology
stack implemented to expand pgAdmin4 with a geometry viewer was the JavaScript mapping library Leaflet JS and WKX -
parser/serializer library that supports several spatial vector formats. Both these fulfilled the requirements of the coding standard of
pgAdmin that all client-side code must be developed in JavaScript using jQuery and other plugins. Leaflet JS is well known for its ease
of use and compatibility. WKX is lesser known but well supported and concise to the need to parse the spatial data before rendering
on the Leaflet map. The decision on both of these libraries was motivated by their minimal size and possibilities for expansion for
future extensions of the viewer. The first version of the geometry viewer was well-received and is currently integrated into the latest
versions of pgAdmin4.

1. INTRODUCTION

PostgreSQL (https://www.postgresql.org) is a popular open
source object-relational database that focuses on extensibility.
One of these extensions is PostGIS (https://postgis.net) which
adds support for geographic objects (i.e. vector and raster data)
and geospatial functions (e.g. intersects and buffers).
PostgreSQL with PostGIS is the most popular database system
and is used in various geospatial applications. This can be
attributed to the fact that PostgreSQL is open source and the
maturity of the support for both vector and raster geographic
objects available in PostGIS.

pgAdmin (https://www.pgadmin.org/) is generally used as the
graphic user interface (GUI) management tool for PostgreSQL
and installed by default with new installations. Prior to 2018, if a
user executed a query on geographic objects, the user would need
to use an external application, such as QGIS or OpenJump to
view the resulting geometries. pgAdmin4 was released in mid-
2016 as a web-based application written in Python and jQuery
with Bootstrap, using the Flask framework. This new architecture
of pgAdmin4 provided an excellent opportunity to integrate a
geometry viewer into the application. After the launch of
pgAdmin4, an enhancement ticket for a geometry viewer was
created, however, there was no progress on this ticket until the
2018 GSoC programme. In 2018, a geometry viewer for
pgAdmin4 was developed as part of the 2018 Google Summer of
Code (GSoC).

* Corresponding author

In this paper, we present an overview of the requirements for the
pgAdmin geometry viewer and the process followed to
implement the viewer during the 2018 GSoC programme. The
remainder of the paper is structured as follows: Section 2
provides an overview of the Google Summer of Code
programme; in Section 3 we present the requirements of the
geometry viewer; the design and implementation are discussed in
Section 4; and conclusion are offered in Section 5.

2. GOOGLE SUMMER OF CODE

Google has two programmes to introduce pre-university and
university students to open source, namely Google Code-in
(GCI) and Google Summer of Code (GSoC)
(https://summerofcode.withgoogle.com/), respectively. GSoC
was first established by Google in 2005 and has grown ever since.
GSoC is an online, international program targeted to university
students, that aims at fostering their participation in open source
software communities (Rautenbach et al, 2018; Brookes et al,
2015). Mentoring organizations select students that will be
developing software applications for 12 weeks and receiving
support and feedback from mentors within the software
community. Successful students are paid stipends by Google.
OSGeo is a veteran organization having participated in GSoC and
having graduated 190 (at 2018) students from all over the world
every year since 2007.

In 2018, a total of 1 072 students from 59 countries completed
the GSoC program (Google, 2018). Students worked with 212
open source organizations with over 2 100 international mentors.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-79-2019 | © Authors 2019. CC BY 4.0 License.

79

The aim of GSoC is to bring new developers into open source
software communities, as well as exposing students to real world
software development. For the open source communities, GSoC
is a great opportunity for the students to implement fixed, updates
or nice-to-have features that the developers do not always get to.

3. REQUIREMENTS OF A GEOMETRY VIEWER FOR

PGADMIN4

After the student projects for the 2018 GSoC programme was
announced, there was a three week period known as Community
Bonding. During this time, the students would get to know the
community, the project and also research their project more. For
the geometry viewer, the mentors collected some basic
requirements from the PostGIS community, but during this
period, the students, communicated more with both the PostGIS
and pgAdmin communities to gain a better understanding on their
needs. The requirements elicitation did not stop after the bonding
period, and updates were regularly sent to the communities
asking for input.

The following main requirements for the geometry viewer was
established:

• Allow the user to view: an entire table, only selected

rows, or the results from a query
The geometry viewer in pgAdmin4 will allow users to view
the geometries in a spatial database and the results of queries
executed. Users can directly view the geometries on a map
within the pgAdmin4 GUI. It should also allow selection of
geometry row on the map and show the associated column
value for that row.

• Support 2d for both the Geometry and Geography

datatypes
PostGIS has built-in supports both Geometry and
Geography data type (i.e. "geographic" coordinates)
(PostGIS 2019). The Geometry data type in PostGIS is
based on the ISO 19125-2:2004, Geographic information -
Simple feature access -- Part 2: SQL option and extends it
with support for 3dm, 3dz, 4d and SQL-MM format. The
geometry viewer should support the 2d data in both types
(see Table 1).

Table 1: Data type that the geometry viewer should support

Data Type Subtype Should Support

Geometry

2d

Yes 3dm, 3dz, 4d
SQL-MM*

Geography 2d Yes

* The geometry viewer does not support 3dm, 3dz, 4d, and SQL-MM.

• Support different SRIDs

PostGIS supports different kinds of geographic and
projection coordinate system with over 3000 predefined
European Petroleum Survey Group (EPSG) and the related
Spatial Reference Identifiers (SRIDs) available in
spatial_ref_sys table. An SRID is a unique identifier
associated with a specific coordinate system, tolerance, and
resolution.

It’s possible that there are geometries with different SRIDs
in the same table and the viewer should support different
coordinate systems. However, the viewer should avoid
drawing geometries with mixed SRID in the same map.

• Handle results with multiple columns containing
geospatial objects
It’s possible that there are two or more columns in the query
results with geospatial objects. The viewer should render
one column in one map and offer the user the options to
select another column to view on the map rather.

• Performance – ability to handle large datasets
The viewer should be efficient enough to show tens of
thousands of geometries on a map and it should also set a
proper limit for the data it will render to avoid crashing with
too much data.

• Should consist of open source technology exclusively

The spatial technology stack implemented to expand
pgAdmin4 with a geometry viewer was the JavaScript
mapping library Leaflet JS and WKX - parser/serializer
library that supports several spatial vector formats. Both
these fulfilled the requirements of the coding standard of
pgAdmin that all client-side code must be developed in
JavaScript using jQuery and other plugins.

Leaflet JS is well known for its ease of use and
compatibility. WKX is lesser known but well supported and
concise to the need to parse the spatial data before rendering
on the Leaflet map. The decision on both of these libraries
was motivated by their minimal size and possibilities for
expansion for future extensions of the viewer.

4. DESIGN AND IMPLEMENTATION OF THE

GEOMETRY VIEWER FOR PGADMIN4

Once the formal design was complete, the development started.
The GSoC programme allows for 12 weeks of development that
would also include the testing of the solution developed. The
students had to report weekly on his/her progress and plans for
the upcoming week.

pgAdmin4 is a web-based application with a server written in
Python and front-end pages. Each time the user submits a query
using the pgAdmin interface, the web browser sends the query to
the web server and then the server passes the query to the
PostgreSQL database. Once the database completes the query,
the web server wraps the result and pass it to the browser. If the
result contains geometry data the geometry viewer will parse the
data and show the geometries in a map (see the flow chart in
Figure 1). Therefore, the viewer will not run the query
automatically and it will just parse and render the output data
queried by the origin query tool. By default, the geometries are
output in Extended Well-Known Binary (EWKB) format that is
not directly supported by most web map libraries so the program
will parse and convert EWKB data before rendering geometries.

Figure 1. The flow chart of geometry viewer

pgAdmin4 web interface uses several panels to display the result
of queries. The geometry viewer will be set as an additional panel

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-79-2019 | © Authors 2019. CC BY 4.0 License.

80

to display the map within. The browser will render both the grid
panel to show table and the viewer panel to show map after each
query. Then users can browse the geometries by zooming and
panning in the map. In order to reduce the complexity of use and
offer the connection between the already existed data gird and the
viewer, we add a “view” button in each geometry column header
and the map panel will show up after users clicking the button

(see Figure 2). In this way, users can choose which column to
show in the map even with multi geometry columns. Users would
also be able to choose the rows they want to view by selecting
the rows in data grid (if no row is select, it will load the entire
result and render all the rows).

Figure 2. The “view” button in the geometry column header

After the header button is clicked, the program will parse the
EWKB data in the column using the WKX library. Geometries in
the same column may have different SRIDs and this makes it a
bit difficult to handle. We proposed two basic solutions for this
situation:

1. Transform the geometries with different coordinate
systems into the same. In this way, the viewer needs to
look up the spatial_ref_sys table for the SRID info to
do the transformation.

2. Group the geometries by SRID and render the group
with the largest number of geometries. Also, remind
users that there are geometries with different SRIDs not
rendered.

After discussing in the community, we chose the second solution
as coordinate transformation is not an easy task in front-end and
will create issues if it fails.

The Leaflet JS is used to create an interactive map and render
geometries for its simplicity and high performance. It supports
geometry collections as well as columns with mixed geometry
types. If the query result would contain too much data that may
crash the viewer. To avoid that, we limit both the amount and the
total size of the geometry data because in some extreme cases
some geometries may have very complex shapes with many
vertices.

As shown in Figure 3, at first, we placed the map in a dialog, and
it would pop up after the user clicking the “view” button. After
discussing this design in PostGIS and pgAdmin mailing list, we
decided to create a new tab alongside the data grid tab to display
the map. This avoids the occlusion of the data grid and users can

adjust the layout or close the tab as they like. When users click a
feature in the map, a small pop-up will show up with its property
table. If the SRID is 4326 (WGS84) the viewer will transform the
coordinates to Web Mercator and add background tile layer.
Figure 4 shows the result of the geometry viewer.

Figure 3. Geometry viewer in a dialog

After GSoC, the geometry viewer was integrated into the latest
version of pgAdmin4 and very well received by the community.
However, not all the community requirements have yet been
addressed in the first iterations and another project on improving
the geometry viewer was proposed for the 2019 GSoC. The focus
would have been on fixing minor bugs and adding new features
for overlaying queries and basic styling. Unfortunately, no
student was found for this.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-79-2019 | © Authors 2019. CC BY 4.0 License.

81

(a) Multipolygon

(b) Point geometry with background tile layer

Figure 4: The result of geometry viewer

5. CONCLUSION

In this paper, we presented the pgAdmin geometry viewer that
was developed as part of the 2018 GSoC programme. The
geometry viewer added the ability to view geometries within
pgAdmin whereas user previous had to rely on external
applications, for example, QGIS or OpenJump, to view query
results.

The requirements elicitation relied greatly on the feedback and
suggestions of the PostGIS and pgAdmin communities and can
directly be translated to the success of the viewer. This aspect of

communication with the community and understanding their
needs is invaluable for the students. GSoC provides a very
structured environment where students can as for assistance and
their progress is also monitored. This allows students to be
introduced gently to the open source community and would
hopefully encourage future participation.

The Google GSoC and Code-in programme are great
opportunities for the open source community to promote
themselves and attract new developers to their projects.
Additionally, the students that participate in these programmes
have reported that the opportunity to work on a real-life project

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-79-2019 | © Authors 2019. CC BY 4.0 License.

82

full-time for 12 weeks is a great work experience and have
significantly improved their development skills. The students
also learn how open source communities work and how to
contribute. The students would strongly recommend that their
peers participate, if possible.

ACKNOWLEDGEMENTS

The authors would like to thank all the PostGIS and pgAdmin
communities for their guidance and support. We would also like
to thank Google and the Google Summer of Code administrators
for hosting and coordinating this programme.

REFERENCES

Brookes, E.H., Kapoor, A., Patra, P., Marru, S., Singh, R., Pierce,
M., 2015. GSoC 2015 student contributions to GenApp and
Airavata, Concurrency and Computation: Practice and
Experience, 23(7), pp. 1960-1970.

Google, 2018, That’s a wrap for Google Summer of Code 2018,
https://opensource.googleblog.com/2018/08/thats-a-wrap-gsoc-
2018.html (6 June 2019)

ISO 19125-2: 2004 (2004). Geographic information - Simple
feature access -- Part 2: SQL option, International Organization
for Standardisation (ISO), Geneva, Switzerland.

PostGIS, 2019. PostGIS documentation,
https://postgis.net/docs/using_postgis_dbmanagement.html (21
May 2019)

Rautenbach, V., Di Leo, M., Andreo, V., Delucchi, L.,
Kudrnovsky, H., McKenna, J., Acosta y Lara, S., 2018. Fostering
pre-university student participation in OSGeo through the
Google Code-in competition, The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Volume XLII-4/W8, 2018 FOSS4G 2018, 29–31
August 2018, Dar es Salaam, Tanzania.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W14, 2019
FOSS4G 2019 – Academic Track, 26–30 August 2019, Bucharest, Romania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W14-79-2019 | © Authors 2019. CC BY 4.0 License.

83

