Supplementary Table S1. Studies investigating the association of BMI and Horvath's DNA methylation aging markers.

Study	Population	Sample Size	Aging Biomarker	Tissue	Type of Estimate	Effect Size	Test Statistics
$\begin{gathered} \text { Simpkin AJ, } \\ 2017 \end{gathered}$	British women	790	Δ Age	buccal	β coefficient	0.085 years per $\mathrm{kg} / \mathrm{m} 2$	$\begin{gathered} \text { 95\% CI: }(0.014, \\ 0.156) \end{gathered}$
$\begin{gathered} \text { Simpkin AJ, } \\ 2017 \end{gathered}$	British women	152	Δ Age	blood	β coefficient	0.044 years per $\mathrm{kg} / \mathrm{m} 2$	$\begin{gathered} 95 \% \text { CI: }(-0.065, \\ 0.15) \end{gathered}$
$\begin{gathered} \text { Horvath S, } \\ 2014 \end{gathered}$	German	141	Chronological age-adjusted DNAm Age	liver	β coefficient	0.168 year per $\mathrm{kg} / \mathrm{m} 2$	$\mathrm{SE}=0.046$
Quach A, 2017	African American postmenopausal women	1058	DNAm AA (EEAA)	blood	β coefficient	$\begin{gathered} 0.11 \text { years per } \\ \mathrm{kg} / \mathrm{m} 2 \end{gathered}$	$\mathrm{p}=0.003$
Quach A, 2017	African American postmenopausal women	1058	DNAm AA (IEAA)	blood	β coefficient	$\begin{gathered} 0.04 \text { years per } \\ \mathrm{kg} / \mathrm{m} 2 \end{gathered}$	$\mathrm{p}=0.17$
$\begin{gathered} \text { Dugue PA, } \\ 2018 \end{gathered}$	Overweight Australian adults vs. Lean adults	1384	DNAm AA	blood	β coefficient	0.40 years	$\mathrm{SE}=0.31$
$\begin{gathered} \text { Dugue PA, } \\ 2018 \end{gathered}$	Obese I Australian adults vs. Lean adults	451	DNAm AA	blood	β coefficient	0.15 years	$\mathrm{SE}=0.42$
$\begin{gathered} \text { Dugue PA, } \\ 2018 \end{gathered}$	Obese II Australian adults vs. Lean adults	105	DNAm AA	blood	β coefficient	2.38 years	$\mathrm{SE}=0.73$
$\begin{gathered} \text { Nevalainen T, } \\ 2017 \end{gathered}$	young adults	183	DNAm Age	blood	correlation coefficient	0.11	$\mathrm{p}=0.138$
$\begin{aligned} & \text { Nevalainen T, } \\ & 2017 \end{aligned}$	middle-aged adults	183	DNAm Age	blood	correlation coefficient	0.218	$\mathrm{p}=0.0001$
$\begin{gathered} \text { Nevalainen T, } \\ 2017 \\ \hline \end{gathered}$	nonagenarian individuals	119	DNAm Age	blood	correlation coefficient	-0.115	$\mathrm{p}=0.211$

Abbreviations: CI, confidence interval; BMI, body mass index; \triangle Age, the discrepancy between DNA methylation age and chronological age; DNAm AA, DNA methylation age acceleration, the residual resulting from regression DNA methylation age on chronological age in a linear model; β, regression coefficient from investigating the relationship between BMI and Horvath's DNA methylation aging markers; r, Spearman's rank correlation coefficient from investigating the relationship between BMI and Horvath's DNA methylation aging markers.

