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Abstract: A parabolic solar dish concentrator, as the heat source of an organic Rankine cycle (ORC),
can be used for power generation. Different types of tubular cavity receivers with different nanofluids
can be considered for use in the solar dish collector to improve its efficiency. In the current research,
an ORC with three different cavity receivers including hemispherical, cubical, and cylindrical
are investigated using three nanofluids: Al2O3/oil, CuO/oil, and SiO2/oil. A numerical model is
validated using experimental data. The ORC analysis is done for a constant evaporator pressure of
2.5 MPa, and condenser temperature of 38 ◦C. Methanol is employed as the ORC’s working fluid
and a non-regenerative, ideal ORC system with different turbine inlet temperatures is considered.
Furthermore, a fixed solar heat transfer fluid flow rate of 60 mL/s and dish diameter of 1.9 m is
investigated. Results show that, compared to pure oil, the thermal efficiency of the cavity receivers
increases slightly, and the pressure drop increases with the application of nanofluids. Furthermore,
results show that the cubical cavity receiver, using oil/Al2O3 nanofluid, is the most efficient choice for
application as the investigated solar ORC’s heat source.

Keywords: thermal comparison; nanofluid; cavity receivers; solar dish concentrator

1. Introduction

The importance of renewable energy increases as the world’s energy demand increases together
with increasing environmental pollution and reduction of fossil fuel resources. Alternative and
renewable energy resources should, therefore, be investigated. Solar energy is regarded as a favorable
and clean renewable energy resource. The sun’s surface temperature is estimated as 5800 K. Solar
collectors can be considered as an efficient way to absorb solar energy. A solar collector, such as a dish
collector, can be considered as a heat exchanger for converting solar irradiance to thermal power. The
sun’s rays can be absorbed very efficiently using concentrating solar collectors.

There are many research works which have numerically and experimentally investigated dish
concentrators using cavity receivers. Kumar and Reddy [1] evaluated the heat losses from a modified
cavity receiver due to natural convection theoretically. They presented a model to determine the Nusselt
number due to natural convection heat loss. Jilte et al. [2] considered various cavity geometries using
numerical methods. Their results presented models for the Nusselt number of the investigated cavity
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receivers under windy weather conditions. Various cavity receiver geometries for a dish concentrator
were also investigated by Harris and Lenz [3]. Daabo et al. [4] determined the thermal and optical
properties of a parabolic dish concentrator numerically using cylindrical, spherical and conical cavity
shapes. The highest optical and thermal performance was found for the conical cavity receiver, and the
highest optical efficiency was found for the conical cavity receiver. The first and second law efficiencies
of a solar dish collector were numerically and experimentally investigated in Ref. [5] with water as
working fluid. The cylindrical cavity receiver had the highest first and second law efficiencies.

A comprehensive review was presented by Wu et al. [6] on convection heat loss from cavity
receivers. Mao et al. [7] investigated the effects of various parameters of a solar dish concentrator, such
as incident solar irradiance, concentration ratio and optical error, on the solar heat flux distribution.
It was concluded that the aspect ratio (receiver height vs. receiver diameter) and optical error has
significant impact on the solar flux distribution. Le Roux et al. [8] numerically investigated and
simulated a rectangular cavity receiver as a dish collector absorber. They used air as the heat transfer
fluid in the solar receiver and found that the thermal efficiency of the investigated solar system
increased as the tube diameter of the cavity receiver decreased. Also, Zhang et al. [9] modeled a power
system using dish concentrators and parabolic trough collectors for a cascade system. They concluded
that higher efficiencies can be achieved with higher solar irradiance. Loni et al. [10] investigated a dish
concentrator, using a hemispherical cavity receiver, under windy conditions, both numerically and
experimentally. An experimental model for the cavity heat losses due to wind was proposed.

The thermal properties of a fluid can be improved by the addition of suspended ultra-fine solid
particles. A suspension with added nano-sized (1–100 nm) particles in a pure conventional fluid is
known as a nanofluid. Some of the advantages of nanofluid usage are increased thermal conductivity
and minimal clogging of flow passages [11]. Mahian et al. [12] performed a first and second law
analysis of a minichannel-based solar collector with different water-based nanofluids (Cu/water,
Al2O3/water, TiO2/water and SiO2/water). Their results showed that the Cu/water nanofluid had the
lowest entropy generation rate and the highest outlet temperature. Mahian et al. [13] reviewed the
application of nanofluids in various types of solar systems including solar collectors. Loni et al. [14]
considered a dish concentrator using different nanofluids (Cu/oil, Al2O3/oil, TiO2/oil and SiO2/oil).
They also concluded that the Cu/oil nanofluid had the best thermal performance. Furthermore, Loni
et al. [15] experimentally investigated a solar dish concentrator with multi-walled carbon nanotubes
(MWCNT/oil) as the solar working fluid. It was found that the application of the nanofluid improved
the thermal performance of the investigated dish system. Aramesh et al. [16] numerically investigated
the effect of different nanofluids in a solar pond. They concluded that single-walled carbon nanotubes
(SWCNT/water) showed the best performance among the investigated nanofluids.

Finally, the organic Rankine cycle (ORC) system is a good candidate for converting thermal energy
into electricity or mechanical power. The ORC heat source can be solar, geothermal, biomass, and
waste heat energy sources. The application of solar energy as the ORC’s heat source has attracted
much attention for efficient power generation. The studies on ORC firstly started in the 1970s, and
advanced research works are still ongoing. A cavity receiver was optimized by Loni et al. [17,18].
It was concluded that the investigated system’s thermal performance can be improved by decreasing
the inlet temperature and increasing the mass flow rate of the working fluid. Chang et al. [19] modeled
a combined cooling, heat and power (CCHP) system, using solar energy and an ORC. They concluded
that the environmental conditions, including solar irradiance and ambient temperature, had significant
effects on the performance. Shaaban [20] investigated an integrated solar combined cycle (ISCC) using
two bottoming cycles, including a steam Rankine cycle and an organic Rankine cycle. The cycle
with R1234ze (Z) revealed an increase in the output power of the investigated cycle. Furthermore,
Baccioli et al. [21] considered the dynamic behavior of a solar ORC with a compound parabolic collector
(CPC) as heat source.

Considering the aforementioned literature review, nanofluid utilization in a dish collector is a
growing research field. In the current research, the performance of an ORC cycle with three cavity
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receivers are considered and compared together, as a novel research. The three investigated cavity
receivers include the cubical, cylindrical and hemispherical cavity receivers. As a novel idea in the current
study, the thermodynamic analysis of the investigated solar ORC is examined using different types of
nanofluids: Al2O3/oil, CuO/oil, and SiO2/oil. The ORC cycle analysis is performed at the evaporator
pressure of 2.5 MPa and condenser temperature of 38 ◦C; also, methanol is employed as the working fluid.

2. Materials and Methods

In this research, a solar ORC system is investigated for power generation using nanofluid
application as the solar working fluid. A dish concentrator is investigated as the ORC’s heat source
with different cavity receiver shapes (hemispherical, cylindrical and cubical). Various oil-based
nanofluids are considered (CuO/oil, SiO2/oil and Al2O3/oil). A schematic of the investigated solar
ORC system is presented in Figure 1. It should be mentioned that methanol is used as the ORC
working fluid. The ORC system is investigated at constant evaporator pressure of 2.5 MPa and constant
condenser temperature of 38 ◦C. In the current research, a numerical study is performed to determine
the influence of nanofluids, and different nanofluid concentrations, on the ORC’s performance. The
solar and ORC systems are presented in detail in the subsequent sections.
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2.1. Solar System

The solar dish concentrator is optically and thermally investigated using SolTrace and Maple
software. References [10,17,18], presented the numerical methodology for the hemispherical, cubical,
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and cylindrical cavity receivers using pure thermal oil. In the current paper, the optimized hemispherical,
cubical and cylindrical cavity receivers are considered as the ORC’s heat source using different
nanofluids. Three different cavity receiver shapes, each with good thermal performance, are therefore
compared. As the cavity aperture area and depth decreases, the optical efficiency of the cavity receiver
decreases, while the thermal efficiency of the cavity receiver increases. Consequently, the investigated
cavity receivers have optimal dimensions. The main features and dimensions of these cavity receivers
are shown in Table 1. All the structural characteristics were selected based on the real built cavities
from Refs. [10,22].

Table 1. Receiver specifications [23].

Cubical Cylindrical Hemispherical

Concentrator diameter (m) 1.9 1.9 1.9
Focal length (m) 1.351 1.351 1.351

Rim angle of paraboloid 36.84◦ 36.84◦ 36.84◦

Collector aperture area (m2) 2.545 2.545 2.545
Receiver tube outer diameter (mm) 10 10 10
Receiver tube inner diameter (mm) 9 9 9

Number of tube coils 12 14 10
Cavity inner diameter, Din (m) - 0.140 0.140

Cavity outer diameter, Douter (m) - 0.160 0.160
Outer aperture length of cubical cavity, aouter (m) 0.145 - -

Inner aperture length of cubical cavity, ain (m) 0.125 - -
Cavity depth, hrec (m) 0.125 0.14 0.07

For the optical simulation of the cavity receivers a ray-tracing software, SolTrace [8], is used.
A pillbox sun-shape is considered. Furthermore, the tracking error and optical error of the solar dish
are assumed as 1◦ and 10 mrad, respectively [24]. The receiver tube absorptivity and the reflectivity of
the solar dish are accounted for in SolTrace. Each coil of the hemispherical cavity receiver is defined
separately in the optical analysis (see Table 1). Figure 2 shows that the one side of the hemispherical
cavity receiver has a higher heat flux distribution due to the 1◦ tracking error assumption. It should be
mentioned that the optical analyses of the hemispherical cavity receiver were presented in Ref. [23] in
detail. For the cubical and cylindrical cavity receivers similar distributions have been found [17].
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The thermal simulation of the hemispherical cavity receiver is discussed in this section, where the
basic heat losses are due to conduction, convection and radiation. The net heat transfer rate is therefore
calculated as: .

Qnet =
.

Q
∗

−

.
Qloss,cond −

.
Qloss,rad −

.
Qloss, conv (1)

.
Q
∗

= ηopticalηre f l
.

Q solar (2)
.

Q solar = IsunπD2
conc/4 (3)

The reflectivity (ηre f l) of the dish concentrator is assumed as 0.84 [24]. Finally, the receiver’s
thermal efficiency (ηth) can be defined as:

ηth =
.

Qnet/
.

Q solar (4)

• Conduction and external convection heat losses

Equation (5) can be used for the determination of the conduction and external convection heat
losses of the receiver. It should be mentioned that a thermal resistance approach was used for estimating
the receiver heat loss due to the conduction and external convection. This approach was selected
because of a specified cavity wall temperature and ambient temperature. The ambient temperature
was assumed equal to 20.2 ◦C, and the cavity wall temperatures were determined as a variable based
on the presented method as shown below. In this simulation, 2 cm-thick mineral wool was applied [25].

.
Qloss,cond = Arec(Ts,ave − T∞)/Rtotal = (Ts,ave − T∞)/(1/houterArec + tins/kinsArec) (5)

The Nusselt number is used to calculate the external convection heat transfer coefficient. Both
forced and natural convection are taken into account. The Nusselt number for forced convection on
the outside of the receiver insulation is [26]:

Nu f orced = 2 +
[
0.4 Re1/2 + 0.06 Re2/3

]
Pr0.4

(
µ∞
µs

)1/4

(6)

where

Re =
ρVwindDrec, outer

µ
(7)

Drec, outer = Drec,ap + 2(dtube + tins) (8)

Also, the natural convection of the investigated hemispherical cavity receiver is calculated as [26]:

Nunatural = 2 +
0.589 Ra1/4

D[
1 + (0.469/Pr)9/16

]4/9
(9)

The combined Nusselt number (taking both forced and natural convection into consideration) is
calculated as [26]:

Nucombined =
(
Nu3.5

f orced + Nu3.5
natural

) 1
3.5

(10)

Finally, the overall convection heat transfer coefficient is expressed as:

houter =
kaNucombined

Drec, outer
(11)

• Radiation heat loss
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The radiation heat loss of the hemispherical cavity receiver is calculated based on the Nusselt number.
The Nusselt number of radiation (Nurad) for a hemispherical cavity receiver is expressed as [27]:

Nurad = 9.650 Gr0.068
D (1 + cos θ)0.001(ε)0.546(Nrc)

0.478
×

[
1− (TR)

4
]8.768

(
Drec,ap

Drec, outer

)0.493

(12)

where

Nrc =
σT4

s

(Drec, outer
2

)
(Ts − T∞)ka

(13)

TR =
T∞
Ts

(14)

GrD =
gβ́(Ts − T∞)Drec, outer

3

ϑ2 (15)

The cavity receiver is coated with black chrome with emissivity of 0.1. The total heat loss rate
from the receiver‘s aperture due to radiation can be determined as:

hrad =
Nurad × ka

Drec, outer
(16)

.
Qloss, rad = hradArec(Ts − T∞) (17)

• Convection heat loss

The total heat transfer coefficient for convection heat loss from the cavity is determined by using
forced and natural convection equations [28]:

h f orced = 4.22
(
Vwind

0.805
)

(18)

hnatural = 1.45(Ts − T∞)
0.333 (19)

htotal = h f orced + hnatural (20)

For the hemispherical cavity receiver surface, the convection heat loss rate is presented by
Equation (21):

.
Qloss,conv = htotal Arec(Ts − T∞) (21)

Numerical methods are used to calculate the net heat transfer rate along the tube length according
to Ref. [8]. Note that the fluid enters at the bottom of the investigated cavity receiver. The cavity
receivers were divided into smaller elements along the tube length. A view of the location of the
elements is presented in Figure 3.Appl. Sci. 2019, 9, x FOR PEER REVIEW 7 of 24 
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The useful heat is calculated as:

.
Qnet,n =

(
Ts,n −

∑n−1
i=1

( .
Qnet,i

.
mn f cp, n f

)
− Tinlet,0

)
(

1
hinnerAn

+ 1
2

.
mn f cp, n f

) (22)

The Nusselt number is determined with Equation (23):

Nuinner =

(
fr
8

)
·Re·Pr

1 + 12.8·
√

fr
8 ·(Pr0.68 − 1)

(23)

The friction factor ( fr) is found using following equation:

fr = (0.79 ln Re− 1.64)−2 (24)

Furthermore, the heat transfer coefficient is determined with Equation (25):

hinner =
Nuinnerkn f

dtube
(25)

Therefore, based on Equation (1) and using SolTrace to get
.

Q
∗

n, the net heat gain can be found
using Equations (22) and (26):

.
Qnet,n =

.
Q
∗

n −
.

Qloss,rad,n −
.

Qloss, internal conv,n −
.

Qloss,external conv,n (26)

.
Qnet,n =

.
Q
∗

n −Anεnσ
(
Ts,n

4
)
+ An

N∑
j=1

Fn− jε jσ
(
Ts,n

4
)
−AnεnσFn−∞T4

∞

−An(m2Ts,n + c2) −
An

Rcond
(Ts,n − T∞)

(27)

The analysis is performed using real meteorological data from a typical day (20 October 2016) in
Tehran, Iran at 12:00 p.m. (see Table 2). It should be emphasized that the receiver tube of the cavity
receiver is divided into a number of shorter sections, where each round of cavity tube is assumed as
one element. Furthermore, the thermal modeling was developed using Maple software [18].

Table 2. Solar irradiance, ambient temperature, and wind velocity on 20 October (2016) at 12:00.

Wind speed (m/s) 2.1
Solar beam irradiance (W/m2) 632.97

Ambient temperature (◦C) 20.2

Oxide nanoparticles including Al2O3, CuO, and SiO2 (30–50 nm), were examined in the solar
system. Table 3 shows the thermal properties of the nanoparticles at ambient temperature of 25 ◦C.
It should be mentioned that the nanofluids were investigated based on volume fraction of 3%. Note
that these nanoparticles have a low specific heat, high thermal conductivity and high density.

Table 3. Properties of nanoparticles [12].

Property Al2O3 SiO2 CuO

Specific heat (J/kg K) 765 745 532
Thermal conductivity (W/m K) 40 1.4 77

Density (kg/m3) 3970 2220 6320
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The thermal properties of the nanofluids are determined using Equations (28)–(31), according
to the properties of the nanofluid (nf ), the nanoparticle (np) and the base fluid (bf ). The thermal
conductivity is calculated as shown below [29], where β (assumed to be 0.1 [30]) is the ratio of the
nanolayer thickness to the diameter of the nanoparticles.

kn f = kb f ·
knp + 2·kb f + 2·

(
knp − kb f

)
·(1 + β)3

·φ

knp + 2·kb f −
(
knp − kb f

)
·(1 + β)3

·φ
(28)

The nanofluid density and specific heat capacity is calculated as: ([31,32]),

ρn f = ρb f ·(1−φ) + ρnp·φ (29)

cp,n f =
ρb f ·(1−φ)

ρn f
·cp,n f +

ρnp·φ

ρn f
·cp,np (30)

The dynamic viscosity is determined using the Batchelor model [33]:

µn f = µb f ·
(
1 + 2.5·φ+ 6.5·φ2

)
(31)

2.2. Organic Rankine Cycle (ORC) System

In this section, the investigated ORC system is presented in detail. A schematic, and T-s diagram
of the ORC system are presented in Figure 4a,b, respectively. The ORC system consists of an evaporator,
a condenser, a pump and a turbine. A heat exchanger is used as the ORC evaporator. The heat absorbed
by the solar dish collector is transferred to the ORC working fluid by the heat exchanger at constant
pressure of 2.5 MPa (during process 2–3 in Figure 4). The ORC working fluid phase changes to a
saturated or superheated fluid in the heat exchanger. The saturated or superheated fluid enters the
turbine for power generation at isentropic conditions (during process 3–4 in Figure 4). Afterwards, the
ORC working fluid is cooled by the condenser at constant pressure (during process 4–1 in Figure 4).
It should be mentioned that the condenser operates at a constant temperature of 38 ◦C. Finally, the
cooled organic fluid is pressurized by the pump at isentropic conditions (during process 4–1 in Figure 4).
It should be noted that methanol is used as the ORC’s working fluid.

REFPROP.8 software [34] is used to determine the working fluid’s thermodynamic properties.
It should be mentioned that thermodynamic analyses were conducted using the Maple and REFPROP.8
software [14]. For simplicity, the internal irreversibility, the heat exchanger and pipeline pressure drop
and the heat loss from the pipelines are neglected. Furthermore, it is assumed that each component of
the ORC operates as a steady-flow system.

Irreversibility acts as a barrier for conversion of thermal energy into work in a real system.
Therefore, irreversibility affects the efficiency of a cycle and can be used to determine the efficiency.
The total irreversibility rate can be approximated with [35]:

.
Itotal =

∑
j

.
I j �

.
mORCT∞

[
−

h∗3 − h∗2
TH

+
h∗4 − h∗1

TL

]
(32)

In the following, a list of the equations is presented for performing the thermodynamic analysis [36].
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Evaporator:
.

Qevp =
.

mORC(h∗3 − h∗2) (33)

The mass flow rate of the ORC working fluid is evaluated as shown in Equation (34):

.
mORC =

.
Qevp

(h∗3 − h∗2)
(34)

in which .
Qevp =

.
Qnet (35)

Turbine:
.

WT =
.

mORC(h∗3 − h∗4) (36)

Condenser: .
Qc =

.
mORC(h∗4 − h∗1) (37)

Pump:
.

WP =
.

mORC(h∗2 − h∗1) (38)
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The net power generation can be calculated as shown below:

.
Wnet =

.
WT −

.
WP (39)

The overall efficiency of the solar ORC system is defined in Equation (40):

ηoverall =
( .
WT −

.
WP

)
/

.
Q solar (40)

Table 4 shows the input data of the solar ORC system. Input data were selected based on the
reported optimal data by Ref. [37]. The aim of this study is to consider the effects of turbine inlet
temperature (TIT) of the ORC working fluid, different shapes of the cavity receiver and different
nanofluids as the solar working fluid of the ideal solar ORC system. The efficiency of the pump and
heat exchanger is therefore assumed equal to 100%.

Table 4. Input parameters for the thermodynamic investigation of the solar ORC.

Evaporating pressure Pevp 2.5 MPa
Condensing temperature Tcon 38 ◦C
Thermal oil mass flow rate

.
moil 60 mL/s

Thermal oil inlet
temperature Tinlet 40 ◦C

Turbine mechanical
efficiency ηmt 100%

Turbine isentropic
efficiency ηst 100%

Pump efficiency ηP 100%
Heat exchanger efficiency ηexch 100%

The ORC working fluids can be categorized as dry fluids, wet fluids, and isentropic fluids.
Selection of the appropriate working fluid is needed to achieve maximum efficiency. Note that
methanol was selected for this study, because of its high thermodynamic performance as reported
in Ref. [36]. As concluded in Ref. [36], methanol resulted highest thermodynamic performance with
lowest irreversibility as the ORC working fluid among some examined organic fluids including R113,
R601, R11, R141b, ethanol, and methanol. Also, methanol is presented as an appropriate working fluid
for medium to high-temperature systems such as the examined solar system in the current research.
Regarding the environmental properties of methanol, it is investigated as an environmentally friendly
fluid with low global warming potential of 2.8 at 100 years (GWP 100), health hazard (H) of 1, and
flammability (F) of 3 [38]. The thermo-physical properties of methanol are shown in Table 5.

Table 5. Thermo-physical properties of the working fluid [35].

Working Fluid Type Molecular Mass (kg/kmol) Tbp (◦C) Tcr (◦C) Pcr (MPa)

Methanol wet 32.04 64.48 239.45 8.104

2.3. Validation with Experimental Results

The calculated results by the developed numerical model were validated based on experimental
tests. A schematic of the investigated experimental setup is shown in Figure 5. It should be mentioned
that the validation section was presented based on the reported experimental results in Ref. [39]
by the authors. A summary of the experimental tests is presented here. As shown in Figure 5, the
experimental setup consisted of a dish concentrator system with aperture diameter of 1.9 m, cavity
receiver with aperture diameter of 12.5 cm and cavity tube diameter of 10 mm, an oil pump, an inlet
tank and a heat exchanger. The dimensions and properties of the experimental dish and cavity receiver
are shown in Table 6. Experimental tests were conducted at the Renewable Energy Research Center of
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Tarbiat Modares University, Tehran, Iran (35.68◦ N latitude and 51.42◦ E longitude). Solar working
fluid was pumped to the cavity receiver with the oil pump. The concentrated solar energy from the
dish concentrator was absorbed by the solar working fluid in the cavity receiver. The absorbed heat
by the working fluid is then cooled by the heat exchanger. Finally, the working fluid is depleted in
the inlet tank for re-circulation in the solar system. It should be mentioned that the outlet and inlet
temperatures of the solar working fluid at the cavity receiver were found using K-type thermocouples
(Chromel-Alumel). The volume flow rate of the working fluid was determined with a volume flow
meter (FLUIDWELL model: F016-P). Also, ambient conditions such as wind speed and solar radiation
were measured using an anemometer (CT model: AM-4220) and Hukseflux pyranometer (model:
SR12), respectively. The average uncertainty of the thermal efficiency was found to be about 1.06%
using Equation (41). The uncertainty and ranges of the measuring instruments are given in Table 7.

δηth

ηth
=

√√√δ .
Qsolar
.

Qsolar

2

+
(
δ∆T
∆T

)2
+

(
δ

.
m
.

m

)2

(41)
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Table 6. Dimensions and properties of the experimental dish and cavity receiver [36].

Parameter Value

Concentrator diameter 1.9 m
Focal distance 1 m

Rim angle 50.82◦

Collector aperture area 2.835 m2

Cavity tube outer diameter 10 mm
Cavity tube inner diameter 9 mm

Number of cavity coils 10
Cavity inner diameter 0.141 m
Cavity outer diameter 0.161 m

Absorber emittance 0.1
Mirror reflectance 0.84

Depth of the cavity receiver 0.07 m
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Table 7. Accuracies and ranges of the measuring instruments [36].

Instrument Accuracy Range % Uncertainty

K-type thermocouples ±0.55 ◦C 0–800 ◦C 0.25
Solar power meter ±0.1 W/m2 0–2000 W/m2 0.25

Anemometer ±0.2 m/s 0.9 to 35.0 m/s 10
Volume flow meter ±0.05 mA 0–20 mA 1

The cavity receiver was constructed during three stages: coiling the copper tube, coating the
receiver tubes with a black chrome (Cr-Cr2O3) as selective coating for increasing absorption, and
insulating the cavity receiver with mineral wool for reducing heat losses. The specifics of the materials
used in the construction of the cavity receiver are given in Table 8.

Table 8. The materials used in the construction of the cavity receiver [36].

Used Instrument Properties Reason

Stage 1

Copper tube Thermal conductivity of 386 W/m.K High conductivity
High melting point of 1000 ◦C

Stage 2

Black chrome coating

Emittance of 0.1

High absorptivityAbsorbance of 0.84

Stability up to 400 ◦C

Stage 3

Mineral wool insulation
Mineral wool thickness of 0.02 m

High thermal resistance
Average insulation conductivity of

0.062 W/m·K

A comparison between measured experiment data and calculated numerical results are presented
in Table 9. It should be mentioned that actual ambient conditions were inputted into the numerical
model and used to obtain numerical results. As shown, the mean thermal efficiency deviation is 3.34%
which is acceptable for the accuracy model. Also, the deviation variation during the day is presented
in Figure 6. As concluded from Table 9, there are acceptable values at noon when the cavity receiver is
in the steady-state condition.

Table 9. Validation of thermal model with experimental results.

Time
(hh:mm)

Tinlet
(◦C)

Tout
(◦C)

Isun
(W/m2)

Ts, top
(◦C)

Ts, side
(◦C)

Tamb
(◦C)

Vwind
(m/s)

V
(mL/s)

ExperimentalNumerical Deviation

ηth ηth

9:30 41.10 118.10 752.82 150.00 101.00 26.90 1.20 10.00 0.6259 0.6793 7.87%
10:00 40.00 120.40 774.27 151.00 124.00 27.80 0.50 10.00 0.6357 0.6802 6.54%
10:30 51.23 135.89 790.79 160.00 127.00 28.00 1.30 10.00 0.6600 0.6764 2.43%
11:00 46.38 133.82 805.02 160.00 106.00 29.00 0.80 10.00 0.6707 0.6779 1.05%
11:15 47.35 137.06 824.22 170.00 112.00 29.00 1.20 10.00 0.6708 0.6768 0.89%
11:45 43.77 137.26 849.04 199.00 131.00 31.30 1.00 10.00 0.6807 0.6774 0.48%
12:30 42.27 137.75 859.22 226.00 123.00 31.60 1.60 10.00 0.6801 0.6770 0.47%
13:00 43.20 135.43 841.63 273.00 160.00 31.50 1.40 10.00 0.6773 0.6773 0.01%
13:30 46.10 136.73 833.46 283.00 177.00 31.00 0.50 10.00 0.6738 0.6779 0.61%
13:45 47.86 135.65 810.56 276.00 202.00 31.00 2.10 10.00 0.6714 0.6764 0.74%
14:00 56.00 134.30 774.60 292.00 220.90 30.00 0.60 10.00 0.6267 0.6766 7.38%
14:30 46.80 118.00 728.86 278.00 199.00 30.00 2.20 10.00 0.5992 0.6778 11.60%
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cavity receiver.

3. Results

Figure 7 depicts the variation of the cavity surface temperature along the cavity tube for the three
investigated cavity receivers using thermal oil and a dish diameter of 1.9 m (see Table 1). Results
show that the surface temperature of the hemispherical cavity receiver is the highest compared to the
other cavity receivers. This is because of the higher heat flux intensity on the hemispherical cavity
receiver (see Figure 8 as generated with SolTrace when Isun is set to 1000 W/m2). Note that the surface
temperature data for all of the investigated cavity receivers in Figure 7 compares well with the cavity
heat flux data in Figure 8. The presented results in Figure 7 can be compared with the reported results
by Refs. [17,18] for rectangular and cylindrical cavity receiver as solar dish absorber, respectively.
In this research, variation of cavity surface temperature was presented and compared for three shapes
of cavity receivers including hemispherical, cubical, and cylindrical cavities as a new achievement.Appl. Sci. 2019, 9, x FOR PEER REVIEW 14 of 24 
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Figure 7. Variation of the cavity surface temperature along the cavity tube length with pure thermal oil
for weather conditions of 20 October 2016, Tehran, Iran.

The heat flux (Figure 8) in the hemispherical cavity receiver is highest in the central element of the
cavity tube where most of the solar rays intersect with the receiver. Note that, for the cylindrical cavity
receiver, there is a sudden increase in heat flux at the 15th element. This is due to high amounts of
concentrated solar irradiance at the top surface of the cylindrical cavity receiver where the 15th to 21st
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elements are located. This sudden increase is also observed in the 53rd to 64th elements of the cubical
cavity receiver. These elements, located at the top wall of the cubical cavity, absorb higher amounts of
solar heat flux compared to the cavity elements located at the side walls of the cubical cavity receiver.
Smaller heat flux spikes are also observed on the side wall elements. This is due to the tracking error of
1◦ for the investigated solar dish concentrator. The intensity of the solar heat flux is, therefore, higher at
two cavity side walls of the cubical cavity receiver compared to the other two side walls. Consequently,
this causes a sudden increase or decrease in heat flux from the 1st to the 52nd element. Similar results
were presented by Refs. [17,18] for the rectangular and cylindrical cavity receivers. In the current study,
a comparison of heat flux distribution was presented for three investigated cavity receiver including
hemispherical, cubical, and cylindrical cavities as a new achievement. A similar pattern is observed for
the cavity surface temperatures in Figure 7. The net heat transfer rate along the length of the three
investigated cavity receivers is displayed in Figure 9. Note that the net heat transfer rate per element
is the highest for the hemispherical cavity receiver. This is because of the high heat flux rate on the
hemispherical cavity receiver, as discussed in the previous paragraph.
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Figure 8. Variation of heat flux rate along the cavity tube in the cavity receivers with pure thermal oil,
when the solar beam irradiance is 1000 W/m2 (for ηrefl = 100%).
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Figure 9 depicts variation of the net heat transfer rate along the cavity receivers using weather
conditions of 20th October 2016, Tehran, Iran. As observed from Figure 10, the maximum solar power
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is at the 7th element in the hemispherical cavity receiver. Furthermore, variation of available solar
power along the cavity tubes for different investigated cavity receives is presented in Figure 10 based
on the calculated results by the SolTrace software. Note that the net heat transfer rate shows a similar
pattern when compared to the available solar power (

.
Q
∗

) in Figure 10 (as generated with SolTrace when
Isun is set to 1000 W/m2). Finally, Figure 11 shows the working fluid outlet temperature per element
along the lengths of the cavity receivers. It should be mentioned that pure thermal oil was investigated
as heat transfer fluid in this section of analyses. It is concluded that the outlet temperature of the
hemispherical cavity receiver is the highest. According to Figure 11, the elemental outlet temperatures
always increase along the cavity tube, since the heated working fluid from a previous element enters
the next element. The outlet temperature increases more rapidly at the top wall elements of the cubical
and cylindrical cavity receivers. This is because of higher solar heat flux at the cavity top wall as
stated previously. Similar achievements are reported by other papers including [17,18] for a solar dish
concentrator with rectangular and cylindrical cavity receiver. A comparison study was presented in
this research for different thermal performance parameters such as solar heat flux, absorbed heat, and
outlet temperature for three investigated cavity receivers including the hemispherical, cubical, and
cylindrical cavities as a new result.Appl. Sci. 2019, 9, x FOR PEER REVIEW 16 of 24 
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In this section, performance of a solar ORC system with different shapes of the cavity receivers
is considered including the hemispherical, cylindrical, and cubical cavity receivers. Thermal oil and
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methanol were used as the solar working fluid, and ORC working fluid. Inlet temperature of the
solar heat transfer fluid was assumed to be equal to 40 ◦C, and 632.97 W/m2, respectively. Figure 12
shows variation of the total irreversibility versus turbine inlet temperature (TIT) for different shapes
of the cavity receivers as the ORC heat source. Note that the total irreversibility rate of the cubical
cavity receiver is the highest. This is because of a higher ORC mass flow rate required, for a specific
inlet temperature, when using the cubical cavity receiver (Figure 13). The ORC mass flow rate for
the cubical cavity receiver is the highest because it gains the most heat, based on Table 10. It is also
concluded from Table 10 that the thermal efficiency and the pressure drop of the cubical cavity receiver
is the highest. Furthermore, Figure 12 shows that the total irreversibility rate of the three investigated
cavity receivers increases with increasing TIT of the ORC system. For all three cavity receivers, the
mass flow rate of the investigated solar ORC decreases with increasing TIT of the ORC system. Similar
results were concluded by Ref. [36] for a cubical cavity receiver as heat source of an ORC system. In the
current study a performance comparison of different shapes of cavity receiver including hemispherical,
cylindrical, and cubical cavity receivers is presented as heat source of the ORC system for selecting the
best system for power generation.Appl. Sci. 2019, 9, x FOR PEER REVIEW 17 of 24 
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Table 10. The thermal parameters and pressure drop for the cavity receivers with pure thermal oil
using the weather conditions of 20 October 2016, Tehran, Iran.

Hemispherical Cubical Cylindrical
.

Q net (W) 1095 1118 1044
ηth,rec 0.68 0.69 0.65

Tout,rec (◦C) 50.77 51.00 50.42
Tinlet,rec (◦C) 40 40 40

.
m (mL/s) 60 60 60
∆P (Pa) 1562 10633 7547

Ts,ave (◦C) 286.70 106.41 116.08

In this part, the results for the different nanofluid applications in the investigated solar ORC are
also presented. The influence of the application of different cavity receiver as the ORC’s heat source
is studied using application of different nanofluid as the solar working fluid. The hemispherical,
cylindrical, and cubical cavity receivers were used as the ORC heat source. Different nanofluids
including oil/Al2O3, oil/CuO, and oil/SiO2 nanofluids were considered as the solar working fluid with
nanofluid concentration of 3% volume fraction. The solar system was investigated at solar radiation of
632.97 W/m2, working fluid inlet temperature of 40 ◦C, and working fluid flow rate of 60 mL/s. The
ORC system was considered at constant turbine inlet temperature of 229 ◦C, and turbine inlet pressure
(TIP) of 2.5 MPa. Table 11 displays the variation of the thermal parameters of the hemispherical cavity
receiver using different nanofluids (oil/Al2O3, oil/CuO, and oil/SiO2) (also see Tables 12 and 13 for the
cubical and cylindrical receiver, respectively). Note that the thermal performance, in terms of cavity
heat gain, thermal efficiency, and outlet temperature of the solar working fluid, has been increased
slightly by the application of nanofluids. Also, note that the pressure drop of the solar system is
increased by the application of nanofluids, when compared to pure oil. As seen, the cubical cavity
receiver has the highest thermal performance using oil/Al2O3 nanofluid as the solar working fluid.
Similar studies were conducted (see Refs. [40,41]) where the influence of nanofluid application, as solar
working fluid of a dish concentrator with a spiral cavity receiver, was investigated using energy and
exergy analyses. Similar results were reported by Refs. [40,41]. In the current study, application of
different oil-based nanofluids as heat source of an ORC system with different shapes of cavity receivers
as the ORC heat source is presented as a new subject for study.

Table 11. Variation of the thermal parameters and pressure drop for hemispherical receiver using
nanofluids with volume fraction of 3% for weather conditions of 20 October 2016, Tehran, Iran.

Oil Oil/Al2O3 Oil/CuO Oil/SiO2
.

Q net (W) 1094.80 1100.11 1100.21 1098.75
ηth, rec 0.680 0.683 0.683 0.683

Tout,rec (◦C) 50.77 50.01 49.25 50.50
∆P (Pa) 1561.62 1717.93 1864.63 1637.66

Table 12. Variation of the thermal parameters and pressure drop for cubical receiver using nanofluids
with volume fraction of 3% for weather conditions of 20 October 2016, Tehran, Iran.

Oil Oil/Al2O3 Oil/CuO Oil/SiO2
.

Q net (W) 1117.69 1139.16 1135.96 1130.57
ηth, rec 0.694 0.708 0.706 0.702

Tout,rec (◦C) 51.00 44.72 49.56 50.81
∆P (Pa) 10632.68 25277.24 12695.80 11150.45
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Table 13. Variation of the thermal parameters and pressure drop for cylindrical receiver using nanofluids
with volume fraction of 3% for weather conditions of 20 October 2016, Tehran, Iran.

Oil Oil/Al2O3 Oil/CuO Oil/SiO2
.

Q net (W) 1044.25 1061.53 1066.08 1058.35
ηth, rec 0.649 0.659 0.662 0.657

Tout,rec (◦C) 50.42 50.29 49.11 49.69
∆P (Pa) 7546.83 7914.33 9011.18 8382.50

A comparison of the percentage improvement of the ORC net power output, and overall efficiency
between three cavity receivers, is presented in Tables 14 and 15, respectively. It is shown that the
different types of nanofluids did not have a significant effect on improving the ORC overall efficiency.
This is due to the short length of the cavity tube and the short amount of time in which the nanofluid
has to absorb the solar thermal energy. It should be noted that the result is therefore based on the
specific mass flow rate which was investigated in this work. Furthermore, the application of SiO2/oil
nanofluid had the smallest effect on improving the ORC performance, while for the cubical cavity
receiver, using Al2O3/oil, had the largest effect on improving the ORC performance. The cubical cavity
receiver, using Al2O3/oil is, therefore, recommended as the heat source for the investigated solar ORC
with the specific solar heat transfer fluid mass flow rate which was investigated in this work. The
calculated results related to enhancement of the solar system performance can be compared with
reported results by Ref. [42]. Bellos and Tzivanidis [42] investigated performance of a solar concentrator
system using different nanofluids including 3% Al2O3/Oil, 3% TiO2/Oil, and 1.5% Al2O3/Oil and 1.5%
TiO2/Oil. They reported improvement lower than 1% for the investigated solar system using different
nanofluids. The cavity receivers have very small thermal losses and so there is not such a high thermal
enhancement margin. Therefore, the use of nanofluids as a thermal enhancement method can enhance
the performance up to 2%–3% maximum. The calculated results can be compared with the results
reported in Ref. [43], where the effect of alumina/oil nanofluid, with different size and volume fractions,
was investigated as solar working fluid for a solar ORC. In the current research, performance of the
solar ORC system using different nanofluids including oil/Al2O3, oil/CuO, and oil/SiO2 nanofluid of
the solar working fluid is a new subject for assessment.

Table 14. Percentage improvement of the ORC net power output for the different shapes of the cavity
receivers with volume fraction of 3% for weather conditions of 20 October 2016, Tehran, Iran.

Oil/Al2O3 Oil/CuO Oil/SiO2

Hemispherical 0.49% 0.49% 0.36%
Cubical 1.92% 1.63% 1.15%

Cylindrical 1.66% 2.09% 1.35%

Table 15. Percentage improvement of the overall efficiency of the different cavity receivers with volume
fraction of 3% for weather conditions of 20 October 2016, Tehran, Iran.

Oil/Al2O3 Oil/CuO Oil/SiO2

Hemispherical 0.49% 0.49% 0.36%
Cubical 1.92% 1.63% 1.15%

Cylindrical 1.66% 2.09% 1.35%

Finally, Figure 14 shows the variation of overall efficiency improvement of the solar ORC system
with the variation of nanofluid concentration. The cubical cavity receiver was used as the dish absorber.
Different nanofluids including oil/Al2O3, oil/CuO, and oil/SiO2 were considered as the solar working
fluid. The solar system was investigated at working fluid inlet temperature of 40 ◦C, and solar radiation
of 632.97 W/m2. The ORC system was considered at constant turbine inlet temperature of 229 ◦C,
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and turbine inlet pressure of 2.5 MPa. Methanol was used as the ORC working fluid. As shown in
Figure 14, the thermal efficiency resulted higher improvement using application of Al2O3/oil nanofluid
with higher nanofluid concentration. Generally, thermal performance improvement was calculated to
be between 1% and 2%, as was reported in results by Ref. [42].
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4. Conclusions

In the current paper, an ORC system with a dish collector heat source was considered. Three
types of tubular cavity receivers including cubical, cylindrical and hemispherical were examined in
the current study. Also, four types of nanofluids including Al2O3/oil, CuO/oil, and SiO2/oil were
considered as the solar heat transfer fluid. Experimental results of the hemispherical cavity receiver
operating with thermal oil were used to validate a numerical model. The solar ORC analysis was under
superheated conditions, with a constant evaporator pressure of 2.5 MPa, and a condenser temperature
of 38 ◦C. Methanol was considered as the ORC working fluid. A fixed solar heat transfer fluid mass
flow rate of 60 mL/s and dish diameter of 1.9 m was investigated. Results showed that the working fluid
outlet temperature, and thermal efficiency is the highest for the cubical cavity receiver. Also, the total
irreversibility rate of the ORC, the ORC mass flow rate, and the ORC overall efficiency are the highest
for the cubical cavity receiver. Furthermore, it was shown that the total irreversibility rate of the three
cavity receivers investigated is increased by increasing the TIT of the ORC system. Results showed that
the pressure drop through the cavity receivers was increased by the application of nanofluids. For all
three cavity receivers, different thermal parameters were insignificantly increased with the application
of nanofluids. Further improvements are recommended based on the optimization of variables, such
as the mass flow rate, fixed in this work. The application of the SiO2/oil nanofluid had the lowest effect
on improving the ORC performance. The cubical cavity receiver, using oil/Al2O3, was found to be the
most efficient choice for application as the investigated solar ORC’s heat source. Finally, the thermal
efficiency improved with about 2%–3% using the application of Al2O3/oil or CuO/oil nanofluid with
higher nanofluid concentration as the solar ORC system’s working fluid.
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Nomenclature

a receiver aperture side length, m
A surface area, m2

c2 constant used in linear equation
cp constant pressure specific heat, J/kgK
d receiver tube diameter, m
D diameter, m
Fn-j view factor between surface n and surface j
fr friction factor
g gravitational constant, m/s2

Gr Grashof number
h convection heat transfer coefficient, W/m2K
hrec cavity depth, m
h* enthalpy, kJ/kg
Isun solar irradiance, W/m2
.
I irreversibility rate, W
k thermal conductivity, W/mK
m2 slope of linear equation
.

m system mass flow rate, mL/s
N number of tube sections
NRC radiation-conduction number
Nu Nusselt number
ORC organic Rankine cycle
P pressure, Pa
Pr Prandtl number
.

Q heat transfer rate, W
.

Qnet net heat transfer rate, W
.

Q
∗

rate of available solar heat at receiver cavity, W
.

Qloss heat loss rate from the cavity receiver, W
.

Qsolar rate of available solar heat at dish concentrator, W
R thermal resistance, K/W
Ra Raleigh number
Re Reynolds number
t thickness, m
T temperature, K
TR temperature ratio
TIT turbine inlet temperature, K
V volumetric flow rate (mL/s)
Vwind wind speed, m/s

.
W power, W
∆T temperature difference
Greek symbols
φ volume fraction
β́ volume expansion coefficient, 1/K
β nanolayer-thickness to nanoparticle-diameter ratio
δ error
ϑ kinematic viscosity of the fluid, m2/s
σ Stefan–Boltzmann constant, W/m2K4

ε emissivity
η efficiency
θ cavity inclination angle, o

µ dynamic viscosity, Pa.s
ρ density, kg/m3
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Subscripts
0 initial inlet to receiver
a air
amb ambient
ap cavity aperture
ave average
bf base fluid
bp boiling point
c condenser
con condenser
conc concentrator
cond due to conduction
conv due to convection
cr critical
D diameter
evp evaporator
Ex experimental
exch heat exchanger
f fluid
forced due to forced convection
H heat source of the organic Rankine cycle
in inner
inlet at the inlet
inner on the inside of the tube
ins insulation
L cold heat sink of the organic Rankine cycle
mt turbine mechanical
n tube section number
N total number of tube elements
natural due to natural convection
net net
nf nanofluid
np nanoparticle
Num numerical
oil thermal oil
out at the outlet
outer outside of the cavity
ORC organic Rankine cycle
P pump
rad due to radiation
rec receiver
refl reflection
s surface
st turbine isentropic
T turbine
th thermal
∞ environment
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