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Abstract

Background: Prostate cancer (PCa) is the most common malignant neoplasm among men in many countries.
Since most precancerous and cancerous tissues show signs of inflammation, chronic bacterial prostatitis has been
hypothesized to be a possible etiology. However, establishing a causal relationship between microbial inflammation
and PCa requires a comprehensive analysis of the prostate microbiome. The aim of this study was to characterize
the microbiome in prostate tissue of PCa patients and investigate its association with tumour clinical characteristics
as well as host expression profiles.

Results: The metagenome and metatranscriptome of tumour and the adjacent benign tissues were assessed in 65
Chinese radical prostatectomy specimens. Escherichia, Propionibacterium, Acinetobacter and Pseudomonas were
abundant in both metagenome and metatranscriptome, thus constituting the core of the prostate microbiome. The
biodiversity of the microbiomes could not be differentiated between the matched tumour/benign specimens or
between the tumour specimens of low and high Gleason Scores. The expression profile of ten Pseudomonas genes
was strongly correlated with that of eight host small RNA genes; three of the RNA genes may negatively associate
with metastasis. Few viruses could be identified from the prostate microbiomes.

Conclusions: This is the first study of the human prostate microbiome employing an integrated metagenomics
and metatranscriptomics approach. In this Chinese cohort, both metagenome and metatranscriptome analyses
showed a non-sterile microenvironment in the prostate of PCa patients, but we did not find links between the
microbiome and local progression of PCa. However, the correlated expression of Pseudomonas genes and human
small RNA genes may provide tantalizing preliminary evidence that Pseudomonas infection may impede metastasis.
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Background
Prostate cancer (PCa) is the most common malignant
neoplasm among men in Western industrialized countries
and its incidence is rapidly increasing in China. Globally
there are 800,000 diagnoses and 300,000 deaths annually
[1]. The aetiologies of the disease remain largely unknown.
Since most precancerous and cancerous tissues show signs
of inflammation, chronic bacterial prostatitis has been hy-
pothesized to be a possible etiology [2–4]. In vitro cellular

experiments have demonstrated that inflammation in-
duced by Escherichia coli and Propionibacterium acnes
can alter normal prostate epithelial cell differentiation and
through this process inflammation accelerates the initi-
ation of PCa with a basal cell origin [5–8]. Evidence also
comes from epidemiological studies as up to 87% PCa pa-
tients have microbial DNA in their prostates. In particular,
P. acnes, JC polyomavirus (JCV) and BK polyomavirus
(BKV) have been more commonly detected in PCa pa-
tients than in controls [9–11].
Most of the above findings were obtained by performing

traditional nucleic acid amplification tests, such as quantita-
tive real-time PCR and amplification of 16S rRNA in
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concert with plasmid cloning and Sanger sequencing. The
advent of next generation sequencing has revolutionized
the study of human microbiomes. The body sites that have
been intensely studied include gut, skin, oral cavity, vagina,
but prostate has been largely overlooked. To date, only two
studies have applied massively parallel 16S rRNA sequen-
cing for investigating the prostate microbiome [12, 13].
While these two studies confirmed that the prostate was a
non-sterile environment and discovered numerous bacterial
organisms that had not been reported in prostate tissue,
their limited sample size (< 20 patients) made it difficult to
establish a reproducible link between microbial pathogens
and PCa. Meanwhile, the innate flaws of the 16 s
rRNA-based technologies, such as the amplification bias
that may distort the bacterial composition, an inability to
quantify the actual microbial load, as well as an inability to
capture viruses that lack 16S rRNA, also preclude an accur-
ate and complete characterization of prostate microbiome.
To address these limitations, we applied a

shotgun-based integrated metagenomic and metatran-
scriptomic analysis to a cohort of 65 Chinese PCa patients.
Moreover, the availability of host transcriptome offers the
possibility to explore the interaction between the host
cancerous tissue and its microbiome.

Methods
Patient selection and specimen processing
The information of patients and specimens is summarized
in Additional file 1 [14]. Briefly, 65 PCa patients were re-
cruited in this study, with an average age of 68.4 ± 7.3
years old. Treatment-naive prostate tumour and matched
benign tissues were collected from the radical prostatec-
tomy series at Shanghai Changhai Hospital and Fudan
University Shanghai Cancer Center. The intact prostate
glands were delivered to the pathology laboratory under
sterile conditions. H&E slides of frozen human tumour
tissues and their matched benign tissues were examined
by a pathologist and a urology pathologist to confirm
histological diagnosis and Gleason Score. The frozen sec-
tions were then used for DNA/RNA isolation.

DNA and RNA sequencing
DNA and RNA preparation and library construction has
been described [14]. In detail, for DNA library construc-
tion, DNA was extracted by phenol-chloroform and puri-
fied by the ethanol precipitation method. Then 2 μg of
genomic DNA from each sample was fragmented using a
Covaris Ultrasonicator®(Covaris, USA) to mean sizes of ~
500 bp. After fragmentation, the purified, randomly frag-
mented DNA was treated with a mix of T4 DNA polymer-
ase, Klenow fragments, T4 polynucleotide kinase and
dNTPs for repairing the ends by blunting and phosphoryl-
ation. The blunted DNA fragments were subsequently
3′-adenylated using the Klenow (3′-5’exo) and ligated by

T4 DNA ligase (Rapid) (Enzymatics, USA) to PE Index
Adapters. After each step, the DNA was purified using the
QIAquick PCR Purification Kit (Qiagen, Germany).
For RNA library construction, RNA was extracted using

TRIzol reagent and then treated with DNase I, RNase-free
(Thermo Fisher Scientific, USA). Ribosomal RNA was re-
moved from total RNA by using Ribo-Zero® rRNA Removal
Kit (Epicentre, USA). Then RNA was fragmented on Cov-
aris Ultrasonicator® to mean sizes of ~ 200 bp, and the first
cDNA strand was synthesized from fragmented RNA using
PrimeScript® RT reagent Kit (Takara Bio, Japan). After puri-
fication with the Ampure XP Beads to remove dNTPs,
second-strand synthesis was performed by incubation with
RNase H, DNA polymerase, and dNTPs that contain dUTP
in place of dTTP. A single 3′ ‘A’ base was added using Kle-
now (3′-5′ exo-) (Enzymatics, USA) and dATP to the
end-repaired cDNA. Upon ligation with the PE Index
Adaptors, the products were gel-recovered and subse-
quently digested with Uracil-N-Glycosylase (UNG) for re-
moving the second-strand cDNA. Samples were then
amplified by 15 cycles of PCR with Platinum Pfx DNA
polymerase (Invitrogen, Thermo Fisher Scientific, USA).
All the constructed libraries were finally sequenced on

HiSeq 2000 platform, producing 2 × 90-bp paired-end
reads.

Filtering human DNA and mapping to microbial genomes
Raw reads that contained adaptor sequences, too many Ns
(> 10%) and/or low quality base (> 50% bases with quality
< 5) were removed. Clean reads were aligned to human ref-
erence genome hg19 using the Burrows-Wheeler Aligner
(BWA-MEM v0.7.5, http://bio-bwa.sourceforge.net/). PCR
or sequencing optical duplicates were marked by Picard
(v1.54, http://broadinstitute.github.io/picard).
The aligned reads were removed, and the unmapped

reads were then mapped by BWA to National Center for
Biotechnology Information (NCBI) full set of microbial ref-
erence genomes (Bacteria: https://www.ncbi.nlm.nih.gov/
genome/microbes//; virus: https://www.ncbi.nlm.nih.gov/
genomes/GenomesGroup.cgi?taxid=10239&host=human).
RepeatMasker (v4.0, http://www.repeatmasker.org)

was used to identify repeat and low complexity reads.
Any reads with three or more masked nucleotides were
discarded for the next step. In order to further avoid
false identification of bacterial reads which is mostly
manifested as a large number of mapped reads being re-
stricted to a few short genomic regions, the coverage
uniformity of the bacterial genomes was assessed as de-
scribed previously [15].

Microbiome analyses
The taxonomic abundance was measured by the number
of reads assigned to each microbial genus. We
hypothesize that each human cell in the specimens have
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equal amount of human DNA/RNA. Accordingly, the
purpose of normalization in this study was to minimize
the bias caused by differences in sequencing coverage
across samples and to make the human DNA/RNA com-
parable between specimens. In detail, for the metagen-
ome analysis, a scaling normalization was done by
multiplying the read counts by a constant so that each
specimen has 1 × 109 reads that were mapped to the hu-
man genome hg19. For the metatranscriptome analysis,
a scaling normalization was done by multiplying the
read counts by a constant so that each specimen has 1 ×
104 reads that were mapped to the housekeeping gene
GAPDH (ENSG00000111640). The numbers of raw and
normalized reads are listed in Additional file 2.
The indices of alpha- and beta- diversity were calculated

using the QIIME package (v1.9, http://qiime.org/). Com-
parison of these indices between groups was conducted
using Student’s t-test. The Non-Metric Multi-Dimensional
Scaling (NMDS) analysis was performed using the vegan
package in R software v3.3.
Paired comparisons of the read counts between tumour

and benign specimens were conducted using Wilcoxon
matched-pairs signed rank test. The p-values were cor-
rected for false discovery using the Benjamini & Hochberg
(BH) method. Only the genera with BH-adjusted p-value
< 0.05 and fold-change > 2 were considered as significantly
different between specimen groups.

Correlation analysis of bacterial and host expression
Nonparametric Spearman correlation was calculated be-
tween the bacterial genes, genera and the host genes as
well as the clinical parameters, including Gleason Score
and prostate-specific antigen (PSA) level, in terms of
their values among the 130 specimens. The returned
p-values were corrected for false discovery using BH
method. A Spearman correlation coefficient > 0.7 as well
as a BH-adjusted p-value < 0.05 was taken as the thresh-
old for a significantly strong relationship.
The sequences of the bacterial genes were obtained by

de novo assembly using Trinity software (v2.4, https://
github.com/trinityrnaseq/trinityrnaseq/wiki). Annotation
of these transcripts was performed by BLAST search of
the assembled nucleotide sequences against NCBI
non-redundant protein library. The read counts of these
bacterial genes were normalized with the same method
as the metatranscriptome analysis.

Kaplan-Meier (KM) survival analysis
The Cleveland Clinic Foundation (CCF) cohort [16] and
the JHMI cohort [17] were used for the KM analysis.
The patients in the cohorts were split into two sub-
groups by the mean expression value of the three small
RNA genes, respectively, and then the Kaplan-Meier sur-
vival analysis was performed using R package “survival”

(http://cran.r-project.org/web/packages/survival/index.
html). Weighted Cox regression models (survival 2.38–3)
were used to generate KM curve p-values.

Results
Microorganisms identified in prostate
The cohort in this study is comprised of 65 matched PCa
tumours and adjacent benign tissue from Chinese patients
who underwent radical prostatectomy. Whole genome se-
quencing yielded 176–330 Gb between specimens, and
whole transcriptome sequencing ranged from 5 to 22 Gb.
After filtering human RNA and mapping against microbial
genomes, the abundance of bacterial reads derived from
metagenome varied from 69 to 101,542 reads per 109 hu-
man reads; accordingly, the multiplicity of infection
(MOI) varied from 6.8 × 10− 5 to 0.1 bacterial cells per hu-
man cell when assuming an average size of bacterial ge-
nomes to be 3Mb. Similarly, most reads derived from
metatranscriptome were also of human origin (> 97%),
with the bacterial abundance ranging from 3.9 × 103 to
3.0 × 106 reads per 104 host GAPDH reads.
A total of 47 and 116 bacterial genera were identified

in the metagenome and metatranscriptome, respectively,
with 43 genera being present in both (Additional file 3).
The most abundant genera identified from both meta-
genome and metatranscriptome included Escherichia,
Propionibacterium, Acinetobacter and Pseudomonas
(Fig. 1), although the exact quantitative compositions
varied (Fig. 1 and Additional file 3).
Four viruses were identified in the metagenome and

metatranscriptome, all of which belong to dsDNA vi-
ruses. However, for majority of specimens, the viral read
counts were close to zero and therefore uninformative
(Additional file 4).

Comparison of biodiversity indices between specimen
groups
At both metagenomic and metatranscriptomic level, the
tumour and benign specimens did not differ from each
other in terms of the alpha-diversity of their microbiomes
(paired t test, p > 0.05; Fig. 2a, d). The beta-diversity
showed that the paired specimens from the same patients
had a more similar bacterial composition to each other
than between different patients (paired t test, p < 0.05; Fig.
2b, e); the NMDS analysis could not separate tumour and
benign specimens (Fig. 2c, f ).
Neither the total bacterial load nor any specific genus

showed significant differential distribution between the
tumour and benign specimens at the metagenomic level
(Wilcoxon signed-rank test, p > 0.05). The situation at
the metatranscriptomic level was the same.
We further divided the patients into lower and higher

grade groups based on Gleason Score: the low-grade
group included 6 and 3 + 4; the higher-grade group

Feng et al. BMC Genomics          (2019) 20:146 Page 3 of 8

http://qiime.org
https://github.com/trinityrnaseq/trinityrnaseq/wiki
https://github.com/trinityrnaseq/trinityrnaseq/wiki
http://cran.r-project.org/web/packages/survival/index.html
http://cran.r-project.org/web/packages/survival/index.html


included 8, 9, 10 and 4 + 3. The alpha-diversity did not
differ significantly between these two groups (paired t
test, p > 0.05; Fig. 2g, i), and the NMDS analysis could
not separate them (Fig. 2h, j).

Correlation of microbiome with host expression profile
At either metagenomic or metatranscriptomic level, no
significant correlation could be found between the
bacterial load (either total or of any specific genus) and
any clinical parameters such as Gleason Score and
prostate-specific antigen (PSA) level (Spearman correl-
ation test, r < 0.7). Correlations between microbial and
host genes in terms of their expression profile were also
investigated. Interestingly, we identified 191 pairs of
host-pathogen genes that have a significantly similar ex-
pression profile (Spearman correlation test, r > 0.7),
nearly half of which involved ten Pseudomonas genes
and eight host genes (Fig. 3). All eight host genes encode
small RNA and share remarkably similar structures.
Moreover, differential expression of SNORA28,
RNU2-48P and SNORA40B stratified patients in terms
of metastatic recurrence in another two well-studied co-
horts [16, 17], suggesting that the infections caused by

Pseudomonas spp. and the associated expression of these
small RNAs are negatively related with metastasis.

Discussion
This is the first study employing an integrated metage-
nomic and metatranscriptomic approach to investigate
human prostate microbiome. Escherichia, Propionibac-
terium, Acinetobacter, and Pseudomonas were found to
be abundant in both the metagenome and metatran-
scriptome and thus constitute the core of the prostate
microbiome in this Chinese population. Escherichia and
Propionibacterium have previously been shown to stimu-
late progression of PCa in in vitro experiments [6, 8, 9],
but the biological significance for the other bacteria
identified in this study remains unclear. As expected,
many of the organisms identified in the prostate tissue
have also been detected in urine, semen, and expressed
prostatic secretions [18–21]. This similar microbial com-
position provides evidence for the theory of ascending
transmitted infection in the male urogenital tract to the
seminal vesicles and prostate.
Several previous studies have associated a history of

sexually transmitted infections with the risk of prostate

A

B

Fig. 1 Bacterial composition of prostate microbiome revealed by metagenomic (a) and metatranscripotomic sequencing (b). The upper UPGMA
tree was constructed based on the weighted_UniFrac distance between specimens. The heatmap below represents the normalized read counts
for the top 10 abundant genera. The lines below connect the matched tumour/benign specimens
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cancer [22–24]. Nevertheless, we did not detect sexually
transmitted disease-related organisms in this study, such
as Neisseria gonorrhoeae, Chlamydia trachomatis, Myco-
plasma hominis or Ureaplasma urealyticum. Further, we
did not detect viruses reported to be present in prostate
tissues such as JCV, BKV, human papillomavirus (HPV)
or human cytomegalovirus (HCMV) [11, 25–27]. Thus
untreated sexually transmitted infections or viral infec-
tions are not expected to account for a significant pro-
portion of PCa risk in the general male population, or at
least in the investigated cohort.

The most urgent question in this field is whether the
microbiomes from the tumour and benign tissues differ
from each other and whether this difference has a causal re-
lationship with carcinogenesis. In this study, we did not find
any bacterial species that showed significantly differential
distribution between tumours and their matched benign
specimens at either DNA or RNA level. Also we did not
find a significant difference between the tumour specimens
of low and high Gleason Scores. These findings suggest that
the identified microbiota may comprise the normal flora of
the prostate. Due to the close proximity of the regions

Fig. 2 Comparison of biodiversity indices between different groups of specimens. Panel a-f show comparisons between tumour and benign
specimens; panel g-j show comparisons between specimens of high and low Gleason Scores. Panel a-c and g-h are derived from metagenomic
data; panel d-f and i-j are derived from metatranscriptomic data. Panel a, d, g and i show comparison of alpha-diversity indices; ns (not
significant), p > 0.05 by unpaired Student’s t-test. Panel b and e show comparisons of beta-diversity indices. Distances between specimens were
divided into four groups: ‘paired’, distance between the matched tumour/benign specimens from the same patients; ‘intra-tumour’, distance
between tumour specimens from different patients; ‘intra-benign’, distance between benign specimens from different patients; ‘Tumour vs
Benign’, distance between tumour and benign specimens from different patients. ***, p < 0.001 by unpaired Student’s t-test. Panel c, f, h and j are
NMDS plots
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compared and the field effect, we still cannot entirely ex-
clude a causal role for bacterial infection and local PCa pro-
gression. To fully address this question, non-diseased
prostate specimens are required to determine whether a
healthy prostate is normally sterile or has a specific micro-
bial flora.
The availability of the host transcriptome allowed us to

detect a correlation between expression of human small
RNA genes and Pseudomonas genes. Functional annota-
tion has assigned these small RNAs to pseudouridylation,
which is a major form of post-transcriptional RNA modifi-
cation. Through pseudouridylation these small RNAs par-
ticipate in the regulation of gene expression and therefore
affect pre-mRNA splicing, translation fidelity and possibly
mRNA stability and decay [28, 29]. It has been established
that pseudouridylation can be induced as a response to ex-
ternal stress, such as heat shock or nutrient deprivation
[30]. High expression of these small RNAs in a subset of
patients with low rates of metastasis suggests a negative
association between Pseudomonas infection and metasta-
sis. If this association is validated in larger cohorts then
the expression profile of the bacterial and small RNA
genes may be used as biomarker for active surveillance.

Conclusion
In this study we employed an integrated metagenomic
and metatranscriptomic approach to investigate the pros-
tate microbiome of PCa patients. Bacteria were detected
in all specimens but the composition was not significantly
different between the matched tumour and adjacent be-
nign tissues or between different tumour grades. We also
identified a strongly correlated expression profile between
Pseudomonas genes and human small RNAs that may be
related to metastasis. The exact mechanism of this
host-pathogen interaction awaits future research.

Additional files

Additional file 1: Clinical pathological information of study cohort.
(XLSX 14 kb)

Additional file 2: The number of raw and normalized reads for
each taxonomic unit for both metagenome and metatranscriptome.
(XLSX 337 kb)

Additional file 3: Comparison of bacterial composition between
metagenome and metatranscriptome. (A) Venn diagram of bacterial
genera identified by metagenome, metatranscriptome and the study by
Yow et al. [13]. (B) The NMDS plot shows that the metagenomic and

Fig. 3 Correlation between bacterial metatranscriptome and host gene expression. Panel a shows the Spearman correlation values between ten
Pseudomonas genes (listed below) and eight host genes (listed right). The predicted secondary structures for these host genes are displayed. The
detailed annotation and nucleotide sequences of these bacterial genes are listed in Additional file 5. The Kaplan-Meier (KM) plots in panel b
categorize the patients into the low and high group based on a median split of expression of the three small RNA genes. The higher the
probability on the y-axis, the higher the chance of these patients NOT having metastatic recurrence (MET). The p-value of KM curve was
generated by Weighted Cox regression models. The analysis for RNU2-48P and SNORA28 used the Cleveland Clinic Foundation (CCF) cohort [16],
and the analysis for SNORA40 used the JHMI cohort [17]
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metatranscriptomic data could be clearly separated in terms of bacterial
composition. Each dot represented a specimen. (TIF 217 kb)

Additional file 4: Prostatic virome. The heatmap represents the
normalized read counts for the identified viruses. (TIF 236 kb)

Additional file 5: Detailed annotation and nucleotide sequences of the
10 bacterial genes that have the correlated expression profile with the
eight small RNA genes. (XLSX 25 kb)
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