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Abstract

General aggregation diffusion equations have been used in a variety of different set-
tings, including the modelling of chemotaxis and the biological aggregation of insects
and herding of animals. We consider a non-local aggregation diffusion equation, where
the repulsion is modelled by nonlinear diffusion (Laplace operator applied to mth power
of the spatial density) and attraction modelled by non-local interaction. The compe-
tition between these forces gives rise to characteristic time-independent morphologies.
When the attractive interaction kernel is radially symmetric and strictly increasing
with respect to the norm in the n-dimensional linear space of the space variable, it is
previously known that all stationary solutions are radially symmetric and decreasing
up to a translation. We extend this result to attractive kernels with compact sup-
port, where a wider variety of time-independent patterns occur. We prove that for
compactly supported attractive kernels and for power in the diffusion term m > 1, all
stationary states are radially symmetric and decreasing up to a translation on each
connected component of their support. Furthermore, for m > 2, we prove analytically
that stationary states have an upper-bound independent of the initial data, confirming
previous numerical results given in the literature. This result is valid for both attractive
kernels with compact support and unbounded support. Finally, we investigate a model
that incorporates both non-local attraction and non-local repulsion. We show that
this model may be considered as a generalization of the aggregation diffusion equation
and we present numerical results showing that m = 2 is a threshold value such that,
for m > 2, stationary states of the fully non-local model possess a mass-independent
upper-bound.
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1

Introduction

1.1 General overview

The formation of aggregations in nature, such as insect swarms, fish schools, animal
herds, and bacteria colonies often arise as a result of the self-organization of the
individual members of the population. This self-organization is driven by social or
sensory mechanisms of the individuals, including sight or smell. The individuals of
the group self-organize through forces such as attraction and repulsion. Attractive
forces allow for individuals to aggregate together, which pose certain benefits. Firstly,
large aggregations allow for protection against predators. In particular, more
individuals will be positioned in the interior of the group, which decreases their
likelihood of being targeted by a predator, see [38] and references therein. Secondly,
larger aggregations increase an individual’s probability of finding a mate. On the
other hand, repulsive forces play an important role in the well-being of each
individual, as it inhibits crowding and thus decreases the potential to spread a
disease. In addition, repulsive effects reduce predation, as densely populated
aggregations are known to attract predators [45].

Additionally, formation of aggregations can occur as a result of exogenous forces such
as wind, gravity, food or light sources; however, in this dissertation we will focus
mainly on endogenous forces given by attraction and repulsion. We note that at low
densities, attraction should dominate over repulsion to allow for a group to form,
while at high densities, repulsion should dominate to prevent over-crowding. Hence,
both attraction and repulsion should be density dependent with repulsion possessing
a more non-linear density dependence compared to attraction.

It has been observed that physical and biological aggregations possess certain key
characteristics, such as sharp edges and a constant internal density that does not
change as the population size increases, see [37, 38, 39] and references therein. Hence,
a requirement for a realistic model of an aggregation is that the resulting population
density should have an upper-bound that is independent of the size of the swarm,
which represents the preferred maximum density. In addition, when the swarm is
large enough, the internal density should be constant with the height equivalent to
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1.2. MODELLING OF COLLECTIVE BEHAVIOUR

the preferred maximum density. Furthermore, as the population grows, the height
should remain constant and the spatial extent of the swarm should increase.

1.2 Modelling of collective behaviour

General aggregation diffusion equations have been used in a variety of different
settings, including the modelling of chemotaxis and the biological aggregation of
insects and herding animals, see [7, 36, 37, 42, 1]. Additionally, use of these equations
can be seen in the modelling of opinion dynamics, see [15] and references therein. The
behaviour in these settings are typically driven by long-range attraction and
short-range repulsion. The competition between these forces gives rise to
characteristic time-independent morphologies. These resulting equilibria are the focus
of this dissertation. In particular, we consider a continuum description of collective
behaviour where we analyze the evolution of the population density ρ(x, t) at some
location x ∈ Rd and at time t ≥ 0.

We consider the initial value problem given by the following non-local
integro-differential equation

∂tρ = ε∆ρm +∇ · (ρ∇(W ∗ ρ)) x ∈ Rd, t > 0 (1.1)

with initial condition ρ0 ∈ L1
+(Rd) ∩ Lm(Rd). The local repulsion is modelled using

nonlinear diffusion with m > 1 and where ε is the diffusion coefficient. The non-local
attraction arises from the second term on the right, where
W ∗ ρ =

∫
RdW (x− y)ρ(y) dy. In essence, the presence of individuals at position

y ∈ Rd creates a force, proportional to −∇W (x− y), that acts on the individuals
positioned at x ∈ Rd. The interaction kernel W : Rd → R is given and is assumed to
be radially symmetric and non-decreasing from its centre. That is, there is a function
ω : [0,∞)→ R such that W (x) = ω(||x||) for all x ∈ Rd and ω′(x) ≥ 0, x ∈ R+.
Thus, the interaction kernel only takes into account attractive effects.

1.3 Research questions

In this dissertation, we address the following questions:

1. For which combination of attractive and repulsive terms do we obtain
stationary solutions of Equation (1.1) with characteristics that are physically
and biologically realistic?

2. What effect does the range of interaction of the attractive force have on the
properties of the stationary solutions?

3. What mechanisms allow for the formation of patterns over time?

4. Is there a benefit in replacing non-linear diffusion with a non-local term to
model repulsion?

3
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CHAPTER 1. INTRODUCTION

1.4 Aims and objectives

In this dissertation, we aim to present a mathematical model of collective behaviour
based on interactions between group members, which results in pattern formation
that is realistic to aggregations in nature. Furthermore, we extend this model to
incorporate terms modelling the group’s interaction with its environment as well as to
incorporate interaction kernels that are dependent on both time and space.

Our first main result in this work is that, for m > 1 and the case where ω′ has
bounded support, a stationary solution of (1.1) is radially symmetric and decreasing
up to a translation on each connected component of its support.

Our second main result is that for m > 2 the stationary states have an upper-bound
independent of the initial data for both cases of ω′ with bounded and unbounded
support. This is a notable characteristic of the model as it is a natural property of
physical and biological aggregations, where individuals will aggregate together up to
a maximum density and no further. The value of the diffusion coefficient m plays a
key role in the emergence of this boundedness, where m = 2 is a threshold. More
precisely, we prove analytically that for m > 2 we obtain boundedness of stationary
states independent of the initial data, while for m ≤ 2 the maximal density grows
with the total mass

∫
Rd ρ0(x) dx. This boundedness property for the special case of

m = 3 is shown numerically in [42].

1.5 Organization of the dissertation

This dissertation is made up of seven chapters. In Chapter 2, we provide some
mathematical preliminaries from measure and integration theory, functional analysis
and the theory of decreasing rearrangements, which will be used for analysis and
proving the results in later chapters. In Chapters 3, 4, and 5, we provide a theoretical
analysis of Equation (1.1), which incorporates non-local aggregation and diffusion.
We first provide a summary of the results obtained in the existing literature in
Chapter 3, which includes existence and basic properties of solutions and stationary
states of (1.1).

In Chapter 4, we present our first main result of this dissertation, namely, the radial
symmetry property of stationary solutions to (1.1) for a compactly supported
attractive kernel. In Chapter 5, we prove the existence of a mass-independent
upper-bound for m > 2, where there is no restriction on the support of the attractive
kernel. Furthermore, we present numerical simulations which support these
theoretical results and illustrate how patterns can be formed by considering a
compactly supported interaction kernel as well as an interaction kernel that is
dependent on both space and time.

In Chapter 6, we present a model incorporating both non-local attraction and
non-local repulsion, where the range of interaction of the repulsive kernel is less than

4
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1.5. ORGANIZATION OF THE DISSERTATION

that of the attractive kernel. We first provide a summary of results of the model
obtained in the existing literature. We then present numerical simulations of
stationary solutions and compare our numerical results with the results obtained for
stationary states of Equation (1.1). In addition, we show that for m > 2 we are able
to derive a mass-independent upper-bound for stationary solutions of the fully
non-local model using its corresponding energy functional. We conclude the
dissertation in Chapter 7 and outline possibilities for future work that build upon the
results presented here.

5
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2

Mathematical Preliminaries

In this chapter we provide the mathematical background needed to prove the results
given in the chapters that follow. In Section 2.1, we provide some mathematical
preliminaries on measure and integration theory, which follows mostly from the book
[2]. In Section 2.2, we introduce some concepts from functional analysis, based
mainly on the book [11], and in Section 2.3, we provide some basic properties of the
convolution function from [32].

Furthermore, in Section 2.4, we give an introduction on decreasing rearrangements
and their basic properties. We then use the theory introduced in Section 2.4 to define
the Steiner symmetrization of a set or function in Section 2.5. Finally, in Section 2.6,
we use the concept of Steiner Symmetrization to define the continous Steiner
symmetrization of a set or function, which is a necessary tool in proving the results
given in the subsequent chapters. The last three sections of the chapter follow mostly
from the books [30] and [35].

2.1 Measure and Integration

We now provide some relevant definitions and theorems from measure and integration
theory. We begin by introducing the basic notion of a measure space and then
introduce some useful results on integration with respect to a measure. This
background allows us to give an appropriate introduction to integration with respect
to the Dirac measure and the Lebesgue measure on Rd, which plays a role in the
development of the theory in Sections 2.4, 2.5, and 2.6. This theory is necessary to
obtain the properties of solutions to Equation (1.1), including the radial symmetry
property and the compactness of the support for stationary solutions.

2.1.1 Abstract measure spaces

Definition 2.1 (σ-Algebra). A class Σ of subsets of a set X is called a σ-algebra if
X ∈ Σ and the class is closed under the formation of countable unions and of
complements.

6
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2.1. MEASURE AND INTEGRATION

Remark 2.1. If we consider the class to be closed under the formation of finite
unions, the class is known as an algebra.

Theorem 2.2. [2] Let A be a class of subsets of a set X. Then there exists a smallest
σ-algebra S, containing A, such that S is called the σ-algebra generated by A.

Definition 2.2 (Borel σ-Algebra). The σ-algebra, denoted B, generated by the class
of intervals of the form [a, b) is known as the Borel σ-algebra. Its members are called
the Borel sets of R.

Definition 2.3 (Measurable space). Let X be a set and let Σ be a σ-algebra over X.
Then the pair (X,Σ) is a measurable space. If E ∈ Σ, then E is called a measurable
set.

Definition 2.4 (Measure). A measure µ : Σ→ [0,∞] is a function defined on a
σ-algebra Σ with the following properties:

1. µ(∅) = 0.

2. If {En}∞n=1 is any sequence of disjoint measurable sets, that is Ei ∩ Ej = ∅ for
any Ei 6= Ej, we have that

µ(
∞⋃
n=1

En) =
∞∑
n=1

µ(En).

Example 2.1. Some examples of measures defined on Rd include:

1. The Lebesgue measure, (see Subsection 2.1.3).

2. The Dirac delta-measure, (see Subsection 2.1.4).

Definition 2.5 (Measure space). If X is a set, Σ is a σ-algebra over X, and
µ : Σ→ [0,∞] is a measure on Σ, then the triple (X,Σ, µ) is called a measure space.

Definition 2.6 (Almost everywhere). If a property holds except on a set of measure
zero, then it holds almost everywhere, abbreviated a.e.

2.1.2 Integration with respect to a measure

Let (X,S, µ) be a measure space. For the development of the theory, we first define
the integral of a non-negative simple function, where a simple function is defined as
follows:

Definition 2.7 (Simple function). A function g : X → [0,∞) is a simple function if
it takes only finitely many distinct values a1, ..., an and is defined by

g(x) =
n∑
i=1

aiχAi(x),

where the sets Ai = {x ∈ X : g(x) = ai} are measurable.

7
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

Definition 2.8 (Integral of a simple function). Let g : X → [0,∞) be a non-negative
simple function. Then the integral of g with respect to µ is defined by∫

g dµ =
n∑
i=1

aiµ(Ai).

We now define what it means for a non-negative function to be measurable, in order
to obtain the definition of its integral.

Definition 2.9 (Measurable function). Let f be a real-valued function defined on a
measurable set E. Then f is a measurable function if, for each α ∈ R, the set
{x ∈ E : f(x) > α} is measurable.

We note that measurable functions are closed under addition and multiplication, as
proved in [2].

Definition 2.10 (Integral of a non-negative function). Let f : X → [0,∞] be a
non-negative measurable function. Then the integral of f with respect to µ is defined
by ∫

f dµ = sup{
∫
g dµ : g is a non-negative simple function, g ≤ f}.

Now, that we have defined the integral of a non-negative function with respect to a
measure µ, we can define what it means for a non-negative function to be integrable
with respect to µ.

Definition 2.11. A function f : X → [0,∞] is integrable if it is measurable and∫
f dµ <∞.

In the theorems that follow, we provide some of the basic properties of the integral of
a non-negative function, relevant for the results given in later chapters.

Theorem 2.3. [2] Let f and g be non-negative measurable functions.

(a) If f ≤ g, then
∫
f dµ ≤

∫
g dµ.

(b) If A is a measurable set and f ≤ g on A, then
∫
A
f dµ ≤

∫
A
g dµ.

(c) If a ≥ 0, then
∫
af dµ = a

∫
fdµ.

(d) If A and B are measurable sets and A ⊆ B, then
∫
A
f dµ ≤

∫
B
fdµ.

Theorem 2.4. If f : X → [0,∞] is measurable, then

µ({x ∈ X : f(x) ≥ a}) ≤ 1

a

∫
f dµ, for all a > 0.

Proof. Fix a > 0. Then, since aχ{f≥a}(x) ≤ f(x) for all x ∈ X,

aµ({x ∈ X : f(x) ≥ a}) = a

∫
χ{f≥a} dµ ≤

∫
f dµ,

by Theorem 2.3.

8
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2.1. MEASURE AND INTEGRATION

Corollary 2.5. Suppose f : X → [0,∞] is measurable. If
∫
f dµ = 0, then f = 0 a.e.

Proof. Assume
∫
f dµ = 0. By Theorem 2.4, we have that

µ({x ∈ X : f(x) ≥ a}) ≤ 1

a

∫
f dµ = 0, for all a > 0.

Hence, since µ(E) ≥ 0 for any E ∈ S, by definition, it follows that

µ({x ∈ X : f(x) ≥ a}) = 0, for all a > 0.

Therefore, f = 0 a.e.

Theorem 2.6. [2] Let fn : X → [0,∞] be a sequence of non-negative measurable
functions. Then, ∫ ∞∑

n=1

fn dµ =
∞∑
n=1

∫
fn dµ.

Theorem 2.7. [2] Let f : X → [0,∞] be a non-negative measurable function. Then,
there exists an increasing sequence of simple functions gn such that gn ↑ f pointwise
as n→∞ and ∫

f dµ = lim
n→∞

∫
gn dµ.

We have now given the definition of the integral of a non-negative measurable
function and have outlined some of its relevant properties. However, it is still
necessary to extend the definition of integrability to any measurable function.

In order to do this, we consider a real-valued function f defined on X and define
f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0). It is easy to see that f = f+ − f−
and |f | = f+ + f−. Furthermore, by the definition of a measurable function, we have
that f is measurable if and only if f+ and f− are measurable. Hence, we are able to
define an integrable function on X as follows:

Definition 2.12. Let f : X → R be any measurable function. If
∫
f+ dµ <∞ and∫

f− dµ <∞, then f is integrable and∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

Definition 2.13. If E is a measurable set, f is a measurable function, and χEf is
integrable, then f is integrable over E and

∫
E
f dµ =

∫
fχE dµ.

Remark 2.8. We note that, since |f | = f+ + f−, we have that f is integrable if and
only if |f | is. We denote the class of functions integrable with respect to µ by
L1(X,µ). If X = R and µ is the Lebesgue measure, then we write L1(R).
Furthermore, we denote the set of non-negative integrable functions with respect to
the Lebesgue measure on R by L1

+(R).

Definition 2.14. For p > 0, we define Lp(X,µ) to be the class of measurable
functions {f :

∫
|f |p dµ <∞}.

9

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.1.3 Lebesgue measure on Rd

In this subsection, we provide an introduction to the Lebesgue measure on Rd. We
first give a definition of the Lebesgue measure on the real line and then extend this
definition to define the Lebesgue measure on Rd.

The Lebesgue measure on R

Definition 2.15 (Lebesgue outer measure). Let `(I) denote the length of the interval
I. Then, the Lebesgue outer measure of a set is given by

m∗(E) = inf
{ ∞∑
n=1

`(In) : E ⊆
∞⋃
n=1

In and In = (an, bn), n ≥ 1
}
.

Definition 2.16 (Lebesgue measurable set). The set E is Lebesgue measurable if, for
each set A, we have

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

We denote by M the class of Lebesgue measurable sets, which is a σ-algebra, as
proved in [2]. We recall the notation of the Borel σ-algebra given by B. We see that,
by properties of a σ-algebra, B is generated by the class of open intervals and open
sets. Additionally, we have the following useful theorem:

Theorem 2.9. [2] Every Borel set is measurable. That is, B ⊂M.

We now outline some properties of the Lebesgue outer measure on the real line.

Theorem 2.10. [2] Given sets A,B ⊆ R, the Lebesgue outer measure has the
following properties:

1. m∗(A) ≥ 0 and m∗(A) ≤ m∗(B) if A ⊆ B,

2. m∗(∅) = 0 and m∗({x}) = 0 for any x ∈ R,

3. For any sequence of sets {En}∞n=1,

m∗(
∞⋃
n=1

En) ≤
∞∑
n=1

m∗(En).

Theorem 2.11. [2] If {En}∞n=1 is any sequence of disjoint measurable sets, that is
Ei ∩ Ej = ∅ for any Ei 6= Ej, we have that

m∗(
∞⋃
n=1

En) =
∞∑
n=1

m∗(En).

Remark 2.12. If E is a Lebesgue measurable set we write m(E) := m∗(E), where m
denotes the Lebesgue measure and is defined on the σ-algebra M of Lebesgue
measurable sets.

10
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2.1. MEASURE AND INTEGRATION

Example 2.2. (R,M,m) is a measure space, where M denotes the class of all
Lebesgue measurable sets and m denotes the Lebesgue measure, defined for all sets
E ∈M.

Definition 2.17. For any sequence of sets {En}∞n=1,

lim
n→∞

inf En =
∞⋃
n=1

∞⋂
m=n

Em

and

lim
n→∞

supEn =
∞⋂
n=1

∞⋃
m=n

Em.

By Definition 2.17, we have that limn→∞ inf En ⊆ limn→∞ supEn. If equality holds,
then the set is denoted by limn→∞En. Furthermore, it is easy to see that if
E1 ⊆ E2 ⊆ ..., then limn→∞En = ∪∞n=1En and if E1 ⊇ E2 ⊇ ..., then
limn→∞En = ∩∞n=1En.

Theorem 2.13. [2] Let {En}∞n=1 be a sequence of measurable sets. Then,

a) If E1 ⊆ E2 ⊆ ..., we have that m(limn→∞En) = limn→∞m(En).

b) If E1 ⊇ E2 ⊇ ... and m(En) <∞ for each n ∈ N, we have that
m(limn→∞En) = limn→∞m(En).

Lastly, we state the following theorem regarding a Lebesgue measurable function
defined on R, which will be used in the development of the theory in Section 2.4.

Theorem 2.14. [41] A monotone increasing function is Lebesgue measurable.

The Lebesgue measure on Rd

We now use the definition of the Lebesgue measure on the real line to construct the
Lebesgue measure on Rd. In order to do this, we first need to define what it means
for a measure to be σ - finite and complete.

Definition 2.18 (σ - finite measure). Let (X,S, µ) be a measure space. If there
exists countably many sets E1, E2, ... ∈ S such that µ(Ek) <∞ for each k and
X = ∪∞k=1Ek, then µ is a σ-finite measure and (X,S, µ) is a σ-finite measure space.

Definition 2.19 (Complete measure). If, for E ∈ S, F ⊆ E and µ(E) = 0, we have
that F ∈ S, then µ is a complete measure and (X,S, µ) is a complete measure space.

Example 2.3. [2] The measure space (R,M,m) is σ-finite and complete.

Suppose µ is a measure, defined on a σ-algebra S, that is not complete. This measure
may be extended to a complete measure by adjoining to S the subsets of the sets
E ∈ S where µ(E) = 0. This is outlined in Theorem 2.15, which is used to construct
the Lebesgue measure on Rd. We denote the symmetric difference of two sets A,B by
A∆B, where A∆B = (A−B) ∪ (B − A).

11
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

Theorem 2.15. [2] Let µ be a measure on a σ-algebra S. Let E and N be any sets
such that E ∈ S and N is contained in some set in S of zero measure. Then the class
S̄ of sets of the form E∆N is a σ-algebra and µ̄, defined by µ̄(E∆N) = µ(E), is a
complete measure on S̄.

In order to construct the Lebesgue measure on Rd, we must give the definition of a
product measure. We first introduce some necessary preliminaries.

Definition 2.20. If X and Y are spaces, then the product space X × Y is the space
of ordered pairs {(x, y) : x ∈ X, y ∈ Y }.

To define measures on X × Y we assume that (X,S) and (Y,A) are measurable
spaces.

Definition 2.21. A space Ω ⊂ X × Y is called a rectangle if there exists A ⊂ X and
B ⊂ Y such that Ω = A×B. Furthermore, we say that a space A×B in X × Y is a
measurable rectangle if A ∈ S and B ∈ A.

We denote S ×A to be the σ-algebra generated by the class of measurable rectangles.
Furthermore, we denote (X × Y,S ×A) to be the product of the measurable spaces
(X,S) and (Y,A).

Now, if E ⊆ X × Y , we define the sets Ex := {y : (x, y) ∈ E} and
Ey := {x : (x, y) ∈ E}, known as the x-section and y-section of the set E,
respectively. The following theorem states that if the set E is measurable then the
x-section and y-section of E are also measurable.

Theorem 2.16. [2] If E ∈ S ×A, then for each x ∈ X and y ∈ Y , Ex ∈ A and
Ey ∈ S.

Similarly, for a function f defined on X × Y , we define the x-section of f by
fx(y) = f(x, y), for a fixed x ∈ X and the y-section of f by fy(x) = f(x, y), for a
fixed y ∈ Y . We say that a function f : X → Y is S-measurable if the set
{x ∈ X : f(x) ∈ E} ∈ S for all E ∈ A. As a result of Theorem 2.16, we have the
following theorem, given a measurable function f on X × Y :

Theorem 2.17. [2] Let f be an S ×A-measurable function on X × Y . Then, for
each x ∈ X and y ∈ Y , we have that fx is A-measurable and fy is S-measurable.

We now introduce the main theorem that is used to define the product measure on
the σ-algebra S ×A.

Theorem 2.18. [2] Let (X,S, µ) and (Y,A, ν) be σ-finite measure spaces. For
V ∈ S ×A, let φ(x) = ν(Vx), and ψ(y) = µ(V y), for each x ∈ X, y ∈ Y . Then φ is
S-measurable, ψ is A-measurable, and∫

X

φ dµ =

∫
Y

ψ dν.

12
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2.1. MEASURE AND INTEGRATION

As a result of Theorem 2.18, we can define the product measure µ× ν on S ×A as
follows:

Definition 2.22. Let (X,S, µ) and (Y,A, ν) be σ-finite measure spaces. Then, the
product measure µ× ν on S ×A is given by

(µ× ν)(V ) =

∫
X

ν(Vx) dµ =

∫
Y

µ(V y) dν,

for each V ∈ S ×A.

We now have all the tools necessary to construct the Lebesgue measure on Rd.
Indeed, since (R,M,m) is a σ-finite measure space, we can apply Theorem 2.18 to
define the product measure m×m on M×M in terms of Definition 2.22.
Furthermore, using Theorem 2.15, we can form the completion of the product
measure m×m, which we define to be the Lebesgue measure on R2.

Definition 2.23 (Lebesgue measure on R2). The completion of the product measure
m×m on M×M is the Lebesgue measure m2 on R2. Furthermore, M2 denotes the
class of Lebesgue measurable sets that are measurable with respect to m2.

Now, using induction, we are able to define the Lebesgue measure on Rd as follows:

Definition 2.24 (Lebesgue measure on Rd). For d > 1, define m(d) = m(d−1) ×m
and M(d) =M(d−1) ×M. We define the Lebesgue measure md on Md to be the
completion of m(d) on M(d).

In order to be consistent with the notation used in the relevant literature on
aggregation diffusion equations, for the remainder of the dissertation we denote the
Lebesgue measure on Rd by |E|d, where E is any Lebesgue measurable set in Rd.
Furthermore, we denote |E|1 = |E|.

2.1.4 The Dirac measure

In this subsection we give the definition of the Dirac measure, an example of a
measure defined on Rd. The Dirac measure is used in the development of the theory
on decreasing rearrangements, provided in Section 2.4.

Definition 2.25 (The Dirac measure). Fix a ∈ Rd. The Dirac measure on Rd,
located at a, is defined for any set A ∈Md by

δa(A) :=

{
1, if a ∈ A
0 if a /∈ A.

We see that the Dirac measure is a probability measure, that is, δa(Rd) = 1, and thus
is finite. A notable property of the Dirac measure is the following:

Let f be any measurable function. Then,∫
f dδa = f(a).

13
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

We can prove this property as follows:

From the definition of the Dirac measure we have that∫
χA dδa =

{
1, if a ∈ A
0 if a /∈ A.

Hence, considering a simple function

g(x) =
n∑
i=1

aiχAi(x),

we have that, for a ∈ Ak,∫
g(x) dδa(x) =

n∑
i=1

ai

∫
χAi(x) dδa(x) = ak.

Here, we have used Theorem 2.6 and the fact that each Ai ∩ Aj = ∅ for any i 6= j.
Now, since a ∈ Ak, we have that

g(a) =
n∑
i=1

aiχAi(a) = ak,

and so ∫
g(x) dδa(x) = g(a).

Hence, the property holds for any measurable simple function. Now, by Theorem 2.7,
for any non-negative measurable function f , there exists an increasing sequence of
simple functions gn such that gn ↑ f pointwise as n→∞ and∫

f dδa = lim
n→∞

∫
gn dδa.

Hence, since gn(a) ↑ f(a) and gn(a) =
∫
gn(x) dδa(x) for each n, we have that∫

f(x) dδa(x) = lim
n→∞

∫
gn(x) dδa(x) = lim

n→∞
gn(a) = f(a).

Finally, since f = f+ − f−, where f+(x) = max(f(x), 0) ≥ 0 and
f−(x) = max(−f(x), 0) ≥ 0, it follows that

∫
f(x) dδa(x) =

∫
f+(x) dδa(x)−

∫
f−(x) dδa(x)

= f+(a)− f−(a) = f(a).

Hence, the property holds for any measurable function f .

14
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2.2. SOME RESULTS FROM FUNCTIONAL ANALYSIS

2.2 Some results from functional analysis

In this section, we provide some definitions and mathematical theories from
functional analysis used in the results that follow. A major part of this section is to
define the notion of a Sobolev space, which plays an important role in the theory of
partial differential equations, as they usually contain the weak solutions of PDEs,
that is, solutions that may not necessarily have classical derivatives.

The function space, given in Definition 2.27, is important in deriving the weak
formulation of a partial differential equation, which is solved to obtain the weak
solutions of the PDE.

Definition 2.26. C∞(Rd)
Let Cm(Rd) be the class of functions with continuous derivatives up to order m in Rd.
Then C∞(Rd) is the class of functions in Cm(Rd) for each m.

Definition 2.27. C∞0 (Rd)
A function f is in C∞0 (Rd) if it is in C∞(Rd) and it has compact support.

In order to give the definition of a Sobolev space, the notion of a weak derivative
must first be defined.

Definition 2.28. A function f ∈ L1(Rd) has a weak derivative ∂αf ∈ L1(Rd) if∫
Rd
∂αfφ dx = (−1)|α|

∫
Rd
f∂αφ dx, for all φ ∈ C∞0 (Rd). (2.1)

Here, we have set ∂α = (∂x1)
α1 ...(∂xd)

αd where |α| =
∑d

i=1 αi. Note that we denote
the weak gradient of f by ∇f where ∇f = (∂x1f, ..., ∂xdf).

Now that we have the definition of a weak derivative, we can introduce the notion of
a Sobolev space.

Definition 2.29. Suppose k ∈ N and 1 ≤ p ≤ ∞. Then, we define the Sobolev space
Wk,p(Rd) to be the space of functions f ∈ Lp(Rd) such that

∂αf ∈ Lp(Rd), for |α| ≤ k.

Furthermore, we write Wk,2(Rd) = Hk(Rd).

We note that the space Wk,p(Rd) is a Banach space equipped with the norm

||f ||Wk,p(Rd) =
∑
|α|≤k

(∫
Rd
|∂αf |p dx

)1/p

for 1 ≤ p <∞ and
||f ||Wk,∞(Rd) = max

|α|≤k

(
ess sup

Rd
|∂αf |

)
,

where
ess sup

X
f = inf{a ∈ R : |{x ∈ X : f(x) > a}|d = 0} (2.2)

15
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

is the essential supremum of a Lebesgue measurable function f : X → R.

In particular, Hk(Rd) is a Hilbert space with inner product defined as

(f, g) =
∑
|α|≤k

∫
Rd

(∂αf)(∂αg) dx.

Theorem 2.19 (Hölder’s inequality ). [35] Suppose E is a Lebesgue measurable set.
Let 1

p
+ 1

q
= 1 with 1 ≤ p ≤ ∞ and let f ∈ Lp(E) and g ∈ Lq(E). Then fg ∈ L1(E)

and ∫
E

|fg| dx ≤ ||f ||Lp||g||Lq .

Theorem 2.20. Let E be a Lebesgue measurable set with finite measure. If
0 < p < q ≤ ∞, then Lq(E) ⊂ Lp(E).

Proof. Let f ∈ Lq(E). Then fp ∈ Lq/p(E) and so by Hölder’s inequality,∫
E

|f |p dx =

∫
E

1 · |f |p dx

≤
(∫

E

|f |pq/p dx
)p/q(∫

E

dx
)1−p/q

= |E|1−p/qd ||f ||pLq <∞.

2.3 Definition and basic properties of convolution

In this section, we will give a formal definition of the convolution function defined on
Rd and state some basic properties that will be used in the analysis of Equation (1.1).

Definition 2.30 (Convolution). Let f ∈ L1(Rd) and let g ∈ Lp(Rd), where
1 ≤ p ≤ ∞. Then the convolution function is defined by

(f ∗ g)(x) =

∫
Rd
f(x− y)g(y) dy, x ∈ Rd.

Theorem 2.21 (Young’s convolution inequality). [35] Let f, g ∈ L1(Rd) so that the
convolution of f and g exists. Furthermore, let f ∈ Lp(Rd), g ∈ Lq(Rd), and
1
p

+ 1
q

= 1 + 1
r
, where 1 ≤ p, q ≤ r ≤ ∞. Then,

||f ∗ g||r ≤ ||f ||p||g||q.

We now introduce an important theorem regarding the gradient of the convolution
function.

Theorem 2.22. Suppose f ∈ W1,1(Rd) and g ∈ L1(Rd). Then,

∇(f ∗ g) = (∇f) ∗ g.

16
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2.3. DEFINITION AND BASIC PROPERTIES OF CONVOLUTION

In order to prove Theorem 2.22, we need to introduce some preliminary results. It is
first necessary to define the Fourier transform of a function f ∈ L1(Rd).

Definition 2.31. If f ∈ L1(Rd), then the Fourier transform of f is the bounded
continuous function in Rd defined by

F{f}(ξ) =

∫
Rd
e−i〈x,ξ〉f(x) dx, ξ ∈ Rd.

If the Fourier transform of f is integrable, we can express f in terms of its Fourier
transform, as follows:

f(x) =
1

(2π)d

∫
Rd
ei〈x,ξ〉F{f}(ξ) dξ. (2.3)

We now provide the following theorem which states that the Fourier transform of the
convolution of two integrable functions is equal to the product of their Fourier
transforms.

Theorem 2.23 (Convolution theorem). Let f and g be two integrable functions with
convolution f ∗ g. Then

F{f ∗ g} = F{f} · F{g}.
Proof.

F{f ∗ g} =

∫
Rd
e−i〈x,ξ〉

∫
Rd
f(x− y)g(y) dy dx

=

∫
Rd
g(y)

∫
Rd
e−i〈x,ξ〉f(x− y) dx dy

Setting τ = x− y, we have that

F{f ∗ g}(ξ) =

∫
Rd
g(y)

∫
Rd
e−i〈τ+y,ξ〉f(τ) dτ dy

= F{f}(ξ)
∫
Rd
g(y)e−i〈y,ξ〉 dy

= F{f}(ξ) · F{g}(ξ).

The last result needed for the proof of Theorem 2.22 is as follows:

Theorem 2.24. [32] Suppose f ∈ W1,1(Rd). Then,

F{∇f}(ξ) = 2iπξF{f}(ξ).

Proof of Theorem 2.22.
The proof follows directly by applying Theorems 2.23 and 2.24. Indeed, we have that

F{∇(f ∗ g)} = 2iπξF{f ∗ g} = 2iπξF{f} · F{g} = F{∇f} · F{g} = F{∇f ∗ g}.

Hence, applying the inverse Fourier transform, we obtain

∇(f ∗ g) = ∇f ∗ g.

17
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

2.4 Decreasing rearrangements

In this section, the definition and basic properties of decreasing rearrangements for
non-negative functions are introduced, which are used to define the continuous
Steiner symmetrization of a non-negative function.

Definition 2.32 (Vanishing at infinity). A non-negative measurable function f on
Rd is said to vanish at infinity if |{x ∈ Rd : f(x) > t}|d is finite for all t > 0.

The functions that are appropriate for the definition of rearrangements are Lebesgue
measurable functions that vanish at infinity. By Theorem 2.4, we have that functions
in L1

+(Rd) vanish at infinity. Hence, we restrict our attention to the definition of
decreasing rearrangements for any f ∈ L1

+(Rd).

We are now able to introduce the following definitions:

Definition 2.33. A non-negative function f on Rd is radially symmetric if there is a
function f̃ defined on [0,∞) such that f(x) = f̃(||x||) for all x ∈ Rd.

Definition 2.34. A non-negative function f on Rd is radially decreasing up to a
translation if there exists some x0 ∈ Rd such that f(· − x0) is radially symmetric and
f̃(||x− x0||) is non-increasing in ||x− x0||.

Here, || · || denotes the Euclidean norm.

Definition 2.35 (Rearranged function). A non-negative function f is rearranged if it
is radially symmetric and f̃ is a non-negative, right-continuous, non-increasing
function on (0,∞).

Definition 2.36 (Connected component). The connected components of a topological
space X are closed, disjoint, non-empty subsets of X such that their union is the
whole space X.

Definition 2.37. Denote the level set of a function f by
{f > τ} := {x ∈ Rd : f(x) > τ}. Then the distribution function of f ∈ L1

+(Rd) is
given by

ζf (τ) := |{f > τ}|d for all τ > 0.

Note that the distribution function ζf (τ) of f is a monotonically decreasing function
of τ . We use this fact to define the Hardy-Littlewood one-dimensional decreasing
rearrangement of f , as follows:

Definition 2.38. The Hardy-Littlewood one-dimensional decreasing rearrangement of
f is the function f ∗ : [0,∞)→ [0,∞] such that

f ∗(s) = sup {τ > 0 : ζf (τ) > s} for all s ∈ [0,∞).

18
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2.4. DECREASING REARRANGEMENTS

Proposition 2.25. [30] The functions f and f ∗ are equimeasurable. That is, they
have the same distribution function.

Corollary 2.26. [30] If f ∈ Lp(Rd) for 1 ≤ p ≤ ∞, then f ∗ ∈ Lp(0,∞) and

||f ||Lp(Rd) = ||f ∗||Lp(0,∞).

Making use of the definition of the Hardy-Littlewood one-dimensional decreasing
rearrangement, we can define the following symmetric decreasing rearrangement on
Rd.

Definition 2.39. The Schwarz spherical decreasing rearrangement of f is the
function

f#(x) = f ∗(Sd−1||x||d), x ∈ Rd,

where Sd−1 is the surface area of the unit sphere in Rd.

By definition of f# and by the properties of f ∗ outlined above, we can easily see that
f# is radially symmetric and decreasing, f , f ∗, and f# are equimeasurable, and if
f ∈ Lp(Rd), we obtain the invariance property of the Lp norms for f , f ∗, and f#.

Furthermore, let E# be the ball centred at the origin with |E#|d = |E|d, for any
measurable set E. Since f# is radially symmetric and decreasing with the same
distribution function as f , we have that, for Ωf = {x ∈ Rd : f(x) > 0}, f# is

supported in the ball Ω#
f .

Theorem 2.27 (Layer cake representation). [35] Let ν be a measure on the Borel
sets of [0,∞) such that φ(t) := ν([0, t)) is finite for every t > 0. Let (Ω,Σ, µ) be a
measure space and f any non-negative measurable function on Ω. Then∫

Ω

φ(f(x))dµ(x) =

∫ ∞
0

µ({x : f(x) > t})dν(t).

In particular, if ν is chosen to be the Lebesgue measure, then, by Theorem 2.9 and
the definition of φ, φ(0) = 0 and φ is monotone increasing. Hence, φ is a non-negative
measurable function by Theorem 2.14 and∫

Ω

φ(f(x))dµ(x) =

∫
Ω

ν([0, f(x)))dµ(x) =

∫
Ω

f(x)dµ(x).

Now, choosing µ to be the Dirac measure at some point y ∈ Ω, we have that∫
Ω

f(x)dµ(x) =

∫
Ω

f(x)dδy(x) = f(y)

and ∫ ∞
0

µ({x : f(x) > t})dν(t) =

∫ ∞
0

δy({x : f(x) > t})dt =

∫ ∞
0

χ{f>t}(y)dt.
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

Hence, from the layer-cake representation theorem, we obtain

f(y) =

∫ ∞
0

χ{f>t}(y)dt. (2.4)

Equation (2.4) is known as the layer-cake representation formula of f . Notably, using
(2.4), we are able to obtain the following representation of the Schwarz decreasing
rearrangement of f :

f#(x) =

∫ ∞
0

χ{f>τ}# dτ,

where we have used the fact that {f# > τ} = {f > τ}#, proved in [30].

We conclude this section by giving an example of the Schwarz decreasing
rearrangement of a non-negative integrable function on R.

Example 2.4. Consider

f(x) =

{
−|x− 1|+ 1, 0 ≤ x ≤ 2

0, otherwise

From the definition of f ∗, we see that

f ∗(s) =

−
s

2
+ 1, 0 ≤ s ≤ 2

0, otherwise

and therefore,

f#(x) = f ∗(2|x|) =

{
−|x|+ 1, |x| ≤ 1

0, otherwise.

Indeed, we see that f# is symmetric about 0 and decreasing for x > 0. Furthermore,
we have that |Ωf | = |Ω#

f | = 2 and it can be easily seen that the invariance property of
the Lp norms is satisfied.

2.5 Steiner Symmetrization

We now use the theory on decreasing rearrangements given in the previous section to
introduce the Steiner symmetrization of both a measurable set E ⊂ Rd and of a
non-negative function f on Rd. The concept of Steiner symmetrization can then be
used to define the continuous Steiner symmetrization, which is necessary for the
results given in Section 4.2. We first introduce some notation.

Denote x ∈ Rd by x = (x1, x
′) where x′ = (x2, ..., xd) ∈ Rd−1. Additionally, for any

measurable set E ⊂ Rd, denote

Ex′ = {x1 ∈ R : (x1, x
′) ∈ E}.

We first define the Steiner symmetrization of a set E ⊂ R.

20
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2.5. STEINER SYMMETRIZATION

Definition 2.40. The Steiner symmetrization of a measurable set E ⊂ R is the
symmetric interval

S(E) =

{
x ∈ R : |x| < |E|

2

}
.

We can extend this definition such that

Sx̃(E) =

{
x ∈ R : |x− x̃| < |E|

2

}
is an open interval, symmetric about some x̃ ∈ R.

Now, consider d ≥ 2. We define the Steiner symmetrization of a measurable set
E ⊂ Rd in the direction corresponding to the unit vector e1 = (1, 0, ..., 0). We note
that the definition can be modified to consider any other direction in Rd.

Definition 2.41. The Steiner symmetrization of a measurable set E ⊂ Rd in the
direction x1 is the set S(E) which is symmetric about the hyperplane {x1 = 0} and
defined by

S(E) = {(x1, x
′) ∈ Rd : x1 ∈ S(Ex′)}.

We can extend this definition by defining Sx̃(E) to be the set which is symmetric
about the hyperplane {x1 = x̃} and defined by

Sx̃(E) = {(x1, x
′) ∈ Rd : x1 ∈ Sx̃(Ex′)}.

In particular, we see that |E|d = |S(E)|d and thus, |E|d = |Sx̃(E)|d.

Now, consider a non-negative function f ∈ L1
+(Rd). For the special case of d = 1, we

define the distribution function of f by

ζf (h) = |Uh|, h > 0,

where
Uh = {α ∈ R : f(α) > h}.

Similarly, for f defined on Rd, d ≥ 2, we have that the distribution function of f(·, x′)
is

ζf (h, x
′) = |Uh

x′ |, h > 0, x′ ∈ Rd−1,

where
Uh
x′ = {x1 ∈ R : f(x1, x

′) > h}.

We first give the definition of the Steiner symmetrization of a non-negative function
on R.

Definition 2.42. The Steiner symmetrization of a non-negative function f on R is
given by

Sf(α) = sup {h > 0 : ζf (h) > 2|α|}, α ∈ R.
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Now, we consider the Steiner symmetrization of a non-negative function on Rd in a
particular direction.

Definition 2.43. The Steiner symmetrization of a non-negative function f on Rd in
the direction x1 is given by

Sf(x1, x
′) = sup {h > 0 : ζf (h, x

′) > 2|x1|}.

From the above definition, it can be seen that the Steiner symmetrization of f(·, x′) is
equal to the Schwarz rearrangement of f(·, x′). Since this is the case, the Steiner
symmetrization of f(·, x′) has the same properties as the Schwarz rearrangement of
f(·, x′). In particular, we have that Sf and f have the same distribution function,
yielding the invariance of the Lp norms. That is,

||Sf ||Lp(Rd) = ||f ||Lp(Rd) for all 1 ≤ p ≤ ∞.

Furthermore, by the layer-cake representation formula, we have that, for d = 1,

Sf(α) =

∫ ∞
0

χS(Uh)(α) dh

and for d ≥ 2,

Sf(x1, x
′) =

∫ ∞
0

χS(Uh
x′ )

(x1) dh.

Now, consider the following definition of a function that is symmetric decreasing
about a hyperplane:

Definition 2.44. A function f ∈ L1
+(Rd) is symmetric decreasing about a hyperplane

H ⊂ Rd, with normal vector e, if for any x ∈ H, the function g(t) = f(x+ te) is
rearranged. That is, g = g#.

From Definitions 2.43 and 2.44, we see that the Steiner symmetrization Sf(x1, x
′) is a

function that is symmetric decreasing about the hyperplane {x1 = 0}.

Similar to the case of a measurable set E in Rd, we can extend the definition of the
Steiner symmetrization of a non-negative function f on Rd in such a way that we
obtain a function that is symmetric about the hyperplane {x1 = x̃}, for x̃ ∈ R
arbitrary. To do this, we fix x̃ ∈ R and define Sx̃f in the direction x1 as

Sx̃f(x1, x
′) = Sf(x̃− x1, x

′) = sup {h > 0 : ζf (h, x
′) > 2|x1|}.

Hence, |{Sx̃f > h}|d = |{Sf > h}|d = |{f > h}|d and so

||Sx̃f ||Lp(Rd) = ||f ||Lp(Rd) for all 1 ≤ p ≤ ∞.

Furthermore, by the layer-cake representation formula,

Sx̃f(x1, x
′) = f#(x̃− x1, x

′)

=

∫ ∞
0

χ{f>τ}#(x̃− x1) dh

=

∫ ∞
0

χSx̃(Uh
x′ )

(x1) dh.

22

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



2.6. CONTINUOUS STEINER SYMMETRIZATION

The reasoning behind extending the definition of the Steiner symmetrization to that
of the function Sx̃ is so that it can be used in the arguments given in Section 4.2.
Indeed, in Section 4.2, we investigate the radial symmetry of stationary solutions of
Equation (1.1) for compactly supported attractive kernels. In this case, the support
of the of stationary solutions may consist of multiple connected components. In
particular, we investigate whether the stationary states are radially symmetric and
decreasing on each connected component of their support. Hence, it is necessary to
extend the definition of Steiner symmetrization to that of Sx̃ in order to consider a
function Sx̃f(x1, x

′) that is symmetric about the hyperplane {x1 = x̃}, where x̃ may
not necessarily be zero.

Lastly, we introduce Riesz’s Rearrangement Inequality, which is used in Section 4.2

Theorem 2.28 (Riesz’s Rearrangement Inequality). [35] Let f, g, and h be
non-negative Lebesgue measurable functions defined on Rd that vanish at infinity.
Then, ∫

Rd

∫
Rd
f(x)g(x− y)h(y) dxdy ≤

∫
Rd

∫
Rd
f#(x)g#(x− y)h#(y) dxdy.

2.6 Continuous Steiner symmetrization

In this section, we introduce the concept of continuous Steiner symmetrization.
Recall that, for W with compact support, the stationary states of (1.1) may have a
support with multiple connected components. In Section 4.2, we are interested in
investigating the radial symmetry of stationary states restricted to a single connected
component of the support. This made it necessary in the previous section to extend
the definition of the Steiner symmetrization of a set to be symmetric about an
arbitrary point x̃ ∈ R. Similarly, we extended the definition of the Steiner
symmetrization of a function on Rd in the direction x1 to be symmetric about the
hyperplane {x1 = x̃}, for some arbitrary x̃ ∈ R.

In this section, we define the continuous Steiner symmetrization of a set U ⊂ R such
that it represents an interpolation between the set U and Sx̃(U). Similarly, for a
function f on Rd, we define its continuous Steiner symmetrization in a particular
direction, say x1, as an interpolation between f(·, x′) and Sx̃f(·, x′). We use this
concept in our proof of the radial symmetry of stationary states of Equation (1.1),
given in Section 4.2, for the special case where the attractive kernel W has compact
support.

Note that, for simplicity, we henceforth denote Sx̃ by S.

Definition 2.45. The continuous Steiner symmetrization of any open set U ⊂ R,
denoted M τ (U), τ ≥ 0, is defined as below. We denote
I(x̃+ c, r) := (x̃+ c− r, x̃+ c+ r), where x̃, c, r ∈ R.

1. If U = I(x̃+ c, r), then
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CHAPTER 2. MATHEMATICAL PRELIMINARIES

M τ (I(x̃+ c, r)) :=

{
I(x̃+ c− τ sgn c, r), if 0 ≤ τ < |c|
I(x̃, r), if τ ≥ |c|.

2. If U = ∪Ni=1I(x̃+ ci, ri), where all I(x̃+ ci, ri) are disjoint from each other, then
M τ (U) := ∪Ni=1M

τ (I(x̃+ ci, ri)) for 0 ≤ τ < τ1, where τ1 is the first time two
intervals M τ (I(x̃+ ci, ri)) share a common endpoint. Once this occurs, we
merge the two intervals sharing a common endpoint into one open interval and
then define M τ (U) in the same way, starting from τ = τ1.

3. If U = ∪∞i=1I(x̃+ ci, ri), let UN = ∪Ni=1I(x̃+ ci, ri), for each N ≥ 1, and define
M τ (U) := ∪∞N=1M

τ (UN).

We see that, for all three cases of U outlined above, as τ tends to infinity, M τ (U)
ultimately becomes a single open interval that is symmetric about x̃. Furthermore,
case 3 can be considered as a limit of case 2. Indeed, suppose that
U = ∪∞i=1I(x̃+ ci, ri). For N1 < N2, we have that UN1 ⊂ UN2 and so

M τ (UN1) = M τ
(
∪N1
i=1 I(x̃+ ci, ri)

)
⊂ M τ

(
(∪N1

i=1I(x̃+ ci, ri)) ∪ (∪N2
i=N1

I(x̃+ ci, ri))
)

= M τ (UN2),

for all τ ≥ 0. It then follows directly from Definition 2.17 that

M τ (U) = ∪∞N=1M
τ (UN) = lim

n→∞
M τ (UN).

We now state some properties of the continuous Steiner symmetrization of an open
set in R.

Lemma 2.29. [21] Let U ⊂ R be any open set with M τ (U) as defined in Definition
2.45. Then,

1. M0(U) = U and M∞(U) = S(U).

2. |M τ (U)| = |U | for all τ ≥ 0.

3. If U1 ⊂ U2 then M τ (U1) ⊂M τ (U2) for all τ ≥ 0.

4. M τ has the semigroup property. That is, M τ+s(U) = M τ (M s(U)) for any
τ, s ≥ 0.

Using the definition of the continuous Steiner symmetrization of an open set in R
given in Definition 2.45, we are now able to define the continuous Steiner
symmetrization of a non-negative function f defined on R.

Definition 2.46. Let f ∈ L1
+(R). The continuous Steiner symmetrization for f is

given by

Sτf(α) :=

∫ ∞
0

χMτ (Uh)(α) dh.
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2.6. CONTINUOUS STEINER SYMMETRIZATION

Similarly, we may define the continuous Steiner symmetrization of a non-negative
function f defined on Rd, with respect to a specific direction, as follows:

Definition 2.47. Fix x1 ∈ R, x′ ∈ Rd−1, and h > 0. Let f ∈ L1
+(Rd). The

continuous Steiner symmetrization for f in the direction x1 is given by

Sτf(x1, x
′) :=

∫ ∞
0

χMτ (Uh
x′ )

(x1) dh.

We can now introduce some properties of the continuous Steiner symmetrization of a
function, as defined in Definition 2.47.

Lemma 2.30. [21] Let f ∈ L1
+(Rd). Then the continuous Steiner symmetrization of

f , with respect to a specific direction, has the following properties:

1. S0f = f and S∞f = Sf .

2. For any h > 0, |{Sτf > h}| = |{f > h}|, and ||Sτf ||Lp(Rd) = ||f ||Lp(Rd) for all
p ∈ [1,∞].

3. Sτ has the semigroup property. That is, Sτ+sf = Sτ (Ssf) for any τ, s ≥ 0.

Lastly, we give a theorem that is used in Section 4.2 for the proof regarding the radial
symmetry of stationary states of (1.1).

Theorem 2.31. [27] Let f ∈ C(Rd). Suppose that for every unit vector e, there
exists a hyperplane H ⊂ Rd with normal vector e such that f is symmetric decreasing
about H. Then, f is radially decreasing up to a translation.
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3

Model of non-local aggregation and local

repulsion

As previously stated, our main interest is the long-time behaviour of solutions to the
aggregation-diffusion equation (1.1). In particular, our aim is to investigate what
conditions should be placed on the aggregation and diffusion terms that are
biologically reasonable and produce spatial patterns over time. The model for physical
and biological aggregations, given by (1.1), incorporates long-range attraction and
short-range repulsion. It is interesting to note that in absence of any attractive
effects, Equation (1.1) reduces to the well-known porous medium equation, given by

∂tρ = ε∆(ρm), x ∈ Rd, t > 0, m > 1.

A notable feature of the porous medium equation is that for a compactly supported
initial condition, the solutions remain compactly supported for positive time. This is
a contrast to the case when m = 1, the heat equation, where for any t > 0 the
support of the solution is Rd.
Furthermore, it is proved in [44] that weak solutions of the porous medium equation,
with initial condition ρ0 ∈ L1

+(Rd), converge uniformly in time to the self-similar
Barenblatt solution, given by

U(x, t;C) = t−α(C − κ||x||2t−2β)
1

m−1

+ ,

where (s)+ = max(s, 0) and

α =
d

d(m− 1) + 2
, β =

α

d
, κ =

β(m− 1)

2m
.

The constant C can be changed to adjust the mass M of the solution, which is
independent of time. More precisely, we have

M =

∫
Rd
U(x, t;C) dx =

∫
Rd
ρ(x, t) dx =

∫
Rd
ρ0(x) dx > 0.

From the definition of the Barenblatt solution, we see that the solutions of the porous
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3.1. BASIC PROPERTIES OF THE MODEL

medium equation converge uniformly to zero as t→∞, resulting in the absence of
patterns for large enough time.

In contrast, setting ε = 0, Equation (1.1) takes into account only attractive effects. It
is proved that, depending on the initial condition and the strength of the attractive
kernel, solutions may blow up in finite or infinite time. Considering weak measure
solutions, the solution will aggregate to Dirac measures in either finite or infinite
time, resulting in a scenario that is biologically unrealistic [23].

Hence, a natural next step would be to investigate the existence and long-term
behaviour of solutions to Equation (1.1), which combines both attractive and
repulsive effects. We note that, in the existing literature, significant work has been
done on the aggregation diffusion equation where the interaction kernel is the
attractive power-law kernel of the form

Wk(x) =

{
|x|k
k
, k 6= 0

ln |x|, k = 0,

for 2− d ≤ k ≤ 2 [21, 6, 5, 3, 10, 17] . A special case of a power-law kernel where
k = 2− d is the Newtonian kernel. In fact, if the convolution operator W∗ acting on
ρ in Equation (1.1) is the Newtonian potential then we obtain the nonlinear parabolic
elliptic Keller-Segel model of Chemotaxis, see [9, 13]. This follows from the fact that
the Newtonian potential is the inverse of the negative Laplacian.

3.1 Basic properties of the model

To begin our analysis of Equation (1.1), in this section we outline results on the
existence of solutions to Equation (1.1) as well as some basic properties of the model.

3.1.1 Existence

Mathematically, the first question regarding Equation (1.1) is the existence of
solutions. In [6], the local and global existence of solutions to (1.1) are investigated
for the case of bounded domains for dimension d ≥ 2 and for the whole space Rd for
d ≥ 3. In particular, the authors show global existence of weak solutions to Equation
(1.1) with initial data ρ0 ∈ L∞(Rd) ∩ L1

+(Rd) for m > 2− 2
d

and for W no more
singular at the origin than the Newtonian kernel.

In what follows we derive the weak formulation of Equation (1.1), which allows us to
give a formal definition of the weak solutions of Equation (1.1).

Let H1
0 (Rd) denote the completion of C∞0 (Rd) with respect to the inner product

(f, g)H :=

∫
Rd
∇f(x) · ∇g(x) dx.
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REPULSION

Furthermore, define ΩT = Rd × [0, T ] and fix φ ∈ H1
0 (ΩT ) such that

φ(·, 0) = φ(·, T ) = 0. Then, multiply Equation (1.1) by φ and integrate to obtain∫
Rd
ρtφ dx =

∫
Rd

[
ε∆ρm +∇ · (ρ∇W ∗ ρ)

]
φ dx.

Assume ρm, ∇ρm ∈ L2((0, T );L2(Rd)), ρ ∈ L∞(ΩT ) ∩ L∞((0, T );L1(Rd)), and
ρ∇W ∗ ρ ∈ L2((0, T );L2(Rd)). Under these assumptions, we have that∫

Rd
ρtφ dx =

∫
Rd
∇ ·
[
ε∇ρm + ρ∇W ∗ ρ

]
φ dx

= −
∫
Rd

[
ε∇ρm + ρ∇W ∗ ρ

]
∇φ dx.

Now, integrating with respect to t, we obtain∫ T

0

∫
Rd
ρtφ dxdt = −

∫ T

0

∫
Rd

[
ε∇ρm + ρ∇W ∗ ρ

]
∇φ dxdt.

In order to swap the integrals so that∫ T

0

∫
Rd
ρtφ dxdt =

∫
Rd

∫ T

0

ρtφ dtdx,

we must have that ∫ T

0

|ρtφ| dt <∞.

Consequently, applying integration by parts,∫
Rd

∫ T

0

ρtφ dtdx = −
∫
Rd

∫ T

0

ρφt dtdx,

yielding ∫ T

0

∫
Rd
ρφt dxdt =

∫ T

0

∫
Rd
ε∇ρm∇φ+ ρ∇W ∗ ρ∇φ dxdt.

We can now define weak solutions to Equation (1.1) as follows:

Definition 3.1. Let ρ0 ∈ L∞(Rd) ∩ L1
+(Rd) and suppose W is no more singular at

the origin than the Newtonian kernel. Then, ρ : Rd × [0, T ]→ [0,∞) is a weak
solution of (1.1) if ρ ∈ L∞(ΩT ) ∩ L∞((0, T );L1(Rd)), ∇ρm ∈ L2((0, T );L2(Rd)),
ρt ∈ L2((0, T );H−1

0 (Rd)), and∫ T

0

∫
Rd
ρφt dxdt =

∫ T

0

∫
Rd
ε∇ρm∇φ+ ρ∇W ∗ ρ∇φ dxdt,

for all φ ∈ H1
0 (ΩT ). Furthermore, it is required that
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3.1. BASIC PROPERTIES OF THE MODEL

ρ(·, t)→ ρ0 in H1
0 (Rd) as t→ 0.

Note that we have denoted the dual space of H1
0 (Rd) by H−1

0 (Rd).

The existence result given in [6] is extended in [5] to obtain global existence of weak
solutions in Rd for d ≥ 2, where a slightly stronger restriction is placed on the initial
data, namely that ρ0 ∈ L∞(Rd) ∩ L1

+(Rd) has finite second moment, that is,∫
Rd
||x||2ρ0 dx <∞.

In [25], a further extension of the existence is given for solutions to Equation (1.1)
with initial data ρ0 ∈ P2(Rd) ∩ Lm(Rd), where P2(Rd) is the space of probability
densities with finite second moment. We note that the assumption that ρ0 is a
probability density is not restrictive.

Indeed, for ρ a probability density that satisfies equation (1.1), we consider ρ̃ = Mρ
such that

∫
Rd ρ̃ dx = M . Then,

ρ̃t = Mρt, ∆(ρ̃m) = Mm∆(ρm), and ∇ · (ρ̃∇W ∗ ρ̃) = M2∇ · (ρ∇W ∗ ρ).

Hence,

M−1ρ̃t = ρt

= ε∆(ρm) +∇ · (ρ∇W ∗ ρ)

= εM−m∆(ρ̃m) +M−2∇ · (ρ̃∇W ∗ ρ̃).

This then yields
ρ̃t = ε̃∆(ρ̃m) +∇ · (ρ̃∇W̃ ∗ ρ̃),

where ε̃ = εM1−m and W̃ = M−1W . Since ε̃ > 0 and W̃ satisfies the same
assumptions placed on W , we can conclude that the existence result given in [25]
holds for solutions with any positive mass.

In the sequel, we assume the conditions that allow for the existence of solutions to
Equation (1.1) hold. The assumptions on W made so far can be given as follows:

W1 W (x) ∈ C1(Rd \ {0}) is radially symmetric and non-decreasing. That is, there
exists a function ω : (0,∞)→ R such that W (x) = ω(||x||) = ω(r) and
ω′(r) ≥ 0 for all r > 0.

W2 There exists some Cω > 0 such that ω′(r) ≤ Cωr
1−d for r ≤ 1.

It is easy to see that Assumption (W2) restricts the kernel to be no more singular at
the origin than the Newtonian kernel. We can now formulate the existence of
solutions to Equation (1.1) as follows:

Theorem 3.1. Let m > 2− 2
d
, and let ρ0 ∈ L1

+(Rd) ∩ Lm(Rd) have finite second
moment. Furthermore, suppose W satisfies assumptions (W1) and (W2). Then,
Equation (1.1) has a weak solution ρ ∈ L∞((0,∞);L1

+(Rd) ∩ Lm(Rd)).
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3.1.2 Conservation properties

Now that we have confirmed the existence of solutions to Equation (1.1), we can state
some of the equation’s conservation properties, where the solution is defined on the
whole space Rd. The proofs of these properties may be found in [14].

Theorem 3.2 (Preservation of positivity). If ρ0 ∈ L∞(Rd) is non-negative, then
ρ(x, t) ≥ 0 for all t > 0.

Theorem 3.3 (Conservation of mass). Let ρ be a weak solution of (1.1). If∫
Rd ρ(x, 0) dx = M then

∫
Rd ρ(x, t) = M for all t ∈ [0, T ].

Theorem 3.4 (Conservation of the centre of mass). Let ρ be a weak solution of
(1.1). Then, ∫

Rd
xρ(x, 0) dx =

∫
Rd
xρ(x, t) dx for all t ∈ [0, T ].

The preservation of positivity is expected as ρ represents the population density. The
conservation of mass is also physically relevant, as the equation does not incorporate
terms modelling growth or decay of the total population. In addition, since the centre
of mass is conserved, Equation (1.1) cannot be used to model travelling swarms or a
change in swarm behaviour due to exogenous forces. Some results regarding such
behaviour may be found in [8] and [36]. Further, in the numerical simulations
presented in Section 5.3, we investigate the interplay between a time dependent
attractive kernel and exogenous forces.

3.1.3 Energy

A further property, which is particularly useful in determining stable stationary
solutions of (1.1), is that there is a Lyapunov functional for the evolution of Equation
(1.1) given by the energy functional,

E [ρ] =
ε

m− 1

∫
Rd
ρm dx+

1

2

∫
Rd
ρ(W ∗ ρ) dx =: S[ρ] + I[ρ]. (3.1)

The first term of (3.1) arises from repulsion and the second from aggregation. We see
that the energy dissipates under the dynamics of (1.1) by considering the time
derivative of E . Indeed, if we assume that ρ is a classical solution of (1.1), we have
that

∂tE [ρ] =

∫
Rd

ε

m− 1
∂t(ρ

m) +
1

2
(W ∗ ρ)∂tρ+

1

2
ρW ∗ (∂tρ) dx

=

∫
Rd

mε

m− 1
ρm−1∂tρ+

1

2
(W ∗ ρ)∂tρ dx+

1

2

∫
Rd

∫
Rd
ρ(x, t)W (x− y)∂tρ(y, t) dydx
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Now, since W is symmetric it follows that∫
Rd
ρ(x, t)W ∗ (∂tρ)(x, t) dx =

∫
Rd

∫
Rd
ρ(x, t)W (x− y)∂tρ(y, t) dydx

=

∫
Rd

∫
Rd
∂tρ(y, t)W (y − x)ρ(x, t) dxdy

=

∫
Rd
∂tρ(y, t)W ∗ ρ(y, t) dy.

Hence,

∂tE [ρ] =

∫
Rd

mε

m− 1
ρm−1∂tρ+ (W ∗ ρ)∂tρ dx.

Since ρ is a solution of Equation (1.1), we have that

∂tE [ρ] =

∫
Rd
∇ ·
(
ε∇ρm + ρ∇(W ∗ ρ)

)( mε

m− 1
ρm−1 +W ∗ ρ

)
dx

=

∫
Rd
∇ ·
(

mε

m− 1
ρ∇ρm−1 + ρ∇(W ∗ ρ)

)(
mε

m− 1
ρm−1 +W ∗ ρ

)
dx

= −
∫
Rd
ρ

(
mε

m− 1
∇ρm−1 +∇(W ∗ ρ)

)2

dx ≤ 0,

where we have applied the divergence theorem and used the fact that, by Theorem
2.4, ρ ∈ L1

+(Rd) vanishes at infinity, as defined in Definition 2.32.

This is extended in [6], where it is proved that weak solutions of (1.1), as defined in
Definition 3.1, satisfy the energy dissipation inequality, for almost all t ∈ (0, T ), given
by

E [ρ(t)] +

∫ t

0

∫
Rd
ρ

(
mε

m− 1
∇ρm−1 +∇(W ∗ ρ)

)2

dxdt ≤ E [ρ0].

3.2 Stationary states of the aggregation diffusion

equation

Once existence of solutions is known, an important next step is to consider the
long-time asymptotics of the model. We recall that one of our objectives is to
investigate what choice of diffusion coefficient m and attractive kernel W allows for
the emergence of non-trivial patterns which exhibit characteristics of physical and
biological aggregations. In order to do this, one must first consider the existence of
stationary states to Equation (1.1).
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3.2.1 Stationary state equation

Assuming that the density ρ does not depend on time, we obtain the stationary
problem of (1.1), given by

ε∆ρm +∇ · (ρ∇(W ∗ ρ)) = 0, x ∈ Rd. (3.2)

We first derive the variational form of Equation (1.1). We consider test functions
φ ∈ C∞0 (Rd). As before, we multiply (3.2) by φ and integrate to obtain∫

Rd
ε∆ρmφ+∇ · (ρ∇W ∗ ρ)φ dx = 0.

Now, by the divergence theorem and using the fact that φ vanishes at infinity, we
have that ∫

Rd
ε∇ρm∇φ+ (ρ∇W ∗ ρ)∇φ dx = 0.

Hence, considering weak solutions of Problem (1.1), we have that
ρs ∈ L1

+(Rd) ∩ L∞(Rd) is a stationary state of Equation (1.1) if ρms ∈ H1(Rd),
∇W ∗ ρs ∈ L1(Rd), and it satisfies

ε∇ρms = −ρs(∇W ∗ ρs) in supp ρs, (3.3)

in the sense of distributions in Rd.

3.2.2 Stationary states for kernels with infinite support

A general method to prove existence of stationary states of (1.1) is by showing that
the global minimizer of (3.1) corresponds to a stationary state of (1.1). It is proved in
[21] that a global minimizer of (3.1) exists for W with infinite support.

Indeed, under assumptions (W1) and (W2), as well as the following additional
assumption on the interaction kernel W , given by (W3), it is proved in [21] that in
the diffusion dominated regime, that is m > max{2− 2

d
, 1}, a global minimizer exists

for any given mass, and this global minimizer is uniformly bounded and corresponds
to a stationary solution of (1.1) in the weak sense. We state the additional
assumption as follows:

W3 ω′(r) > 0 for all r > 0 and there exists some Cω > 0 such that ω′(r) ≤ Cω for
r > 1. Moreover, limr→∞ ω(r) = 0 and there exists an α ∈ (0, d) for which
m > 1 + α

d
and ω(τr) ≤ τ−αω(r) for all τ ≥ 1 and r > 0.

Assumption (W3) combines assumptions (K3), (K4), and (K6) given in [21], allowing
us to refer to the results obtained therein. Note that in [21] it is assumed that
limr→∞ ω(r) = ` ∈ (0,∞). However, it is not restrictive to assume that ` = 0 since
adding a constant to the potential W does not change Equation (1.1).
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3.2. STATIONARY STATES OF THE AGGREGATION DIFFUSION EQUATION

Note that the threshold value r = 1 in (W2) and (W3) can be replaced by any
positive value since, in essence, (W2) places restriction on ω′ when r is small, while
(W3) places a restriction on ω′ when r is large.

Furthermore, under assumptions (W1), (W2) and (W3), it is proved in [21] that
stationary states of (1.1) are radially symmetric and decreasing up to a translation,
as defined in Definition 2.34. We note that this result cannot be applied to kernels
with compact support, as Assumption (W3) requires that ω(r) is strictly increasing
in r for all r > 0. In terms of the notations adopted here, the results in [21, Theorem
2.2, Theorem 3.1, Theorem 3.7, Lemma 3.8, Lemma 3.9] can be formulated as follows:

Theorem 3.5. [21] For m > max{2− 2
d
, 1}, assume that conditions (W1), (W2),

and (W3) hold. Then, for any positive mass M , there exists a stationary state
ρs ∈ L1

+(Rd) ∩ L∞(Rd) of (1.1). Furthermore, any stationary state in
L1

+(Rd) ∩ L∞(Rd) is radially symmetric and decreasing up to a translation and
compactly supported.

As a result of the radial symmetry of stationary solutions, in [26] it is proved that
stationary states are unique up to a translation, for a fixed mass. The proof relies on
the fact that all stationary solutions of (1.1), where (W1), (W2), and (W3) are
satisfied, are radially symmetric and decreasing. Thus, we are not able to extend this
uniqueness result given in [26] to the case where W has compact support.

It is therefore an important question to ask whether stationary solutions of Equation
(1.1), for W compactly supported, are also radially symmetric and decreasing, as it
may allow for the extension of the uniqueness result to a wider class of interaction
kernels. In fact, to our knowledge, radial symmetry of stationary solutions for the
case when W has compact support is an open question.
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4

Stationary states for compactly supported kernels

In this chapter, we consider stationary solutions of Equation (1.1) where the
attractive kernel W has compact support. We prove, for this case of attractive kernel,
that continuous, compactly supported stationary solutions of (1.1) exist. Our main
result of this chapter is that, for m > 1, stationary states are radially decreasing up
to a translation on each connected component of their support, where the definition
of a connected component is given by Definition 2.36. Furthermore, we prove that if
the support of a stationary state has more than one connected component then the
distance between any two components is at least the radius of suppW .

4.1 General setting and basic properties

Throughout this chapter, we assume that W satisfies assumptions (W1) and (W2) as
well as the following assumption given below.

Ŵ4 There exists q > 0 such that ω′(r) > 0 for all 0 < r < q and ω′(r) = 0 for all
r ≥ q.

The threshold value r = q in (Ŵ4) can be assumed to be 1, as proven in the following
theorem.

Theorem 4.1. Consider Equation (1.1) with initial condition ρ0 and suppose the
assumptions (W1), (W2), and (Ŵ4) hold. Then we may assume, without loss of
generality, that q = 1.

Proof. Let z = x
q

and θ(z, t) = ρ(x, t). Then we have, by the chain rule, that

∂tθ(z, t) = ∂tρ(x, t), ∇2
zθ
m(z, t) = q2∇2

xρ
m(x, t),

∇z · (θ(z, t)∇z(W ∗ θ(z, t))) = q2∇x · (ρ(x, t)∇x(W ∗ ρ(x, t))).
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4.1. GENERAL SETTING AND BASIC PROPERTIES

Hence,

∂tθ = ε∆ρm +∇ · (ρ∇(W ∗ ρ))

=
ε

q2
∆θm +

1

q2
∇ · (θ∇(W ∗ θ))

= ε̃∆θm +∇ · (θ∇(W̃ ∗ θ))

where W̃ (z) = 1
q2
W (x) and ε̃ =

ε

q2
. Now, letting r̃ = ||z|| and W̃ (z) = ω̃(r̃) we have

that

∇zW̃ (z) =
1

q
∇xW (x) =

x

q||x||
ω′(||x||)

and
∇zW̃ (z) =

z

||z||
ω̃′(||z||).

Therefore, using the fact that r = q||z|| = qr̃, we obtain

ω̃′(r̃) =
1

q
ω′(r).

Hence, it follows that

ω′(r) > 0 for all 0 < r < q implies ω̃′(r̃) > 0 for all 0 < r̃ < 1 and
ω′(r) = 0 for all r > q implies ω̃′(r̃) = 0 for all r̃ > 1.

Since ε̃ ∈ R, ε̃ > 0, and W̃ satisfies (W1), (W2), and (Ŵ4) with q = 1, we may
assume that q = 1 without loss of generality.

Therefore, for simplicity, we reformulate (Ŵ4) as follows:

W4 ω′(r) > 0 for all 0 < r < 1 and ω′(r) = ω(r) = 0 for all r ≥ 1.

Assumption (W4) implies that W is integrable. This property will be used in the
sequel. Hence, we prove it in the theorem below.

Theorem 4.2. If W satisfies assumptions (W1), (W2) and (W4), then W ∈ L1(Rd).

Proof. Firstly, using assumption (W2) we see that, for 0 < r < 1,∣∣∣∣∫ 1

r

ω′(s) ds

∣∣∣∣ ≤ Cω

∣∣∣∣∫ 1

r

s1−d ds

∣∣∣∣,
which implies that

|ω(r)| ≤ Cω

∣∣∣∣∫ 1

r

s1−d ds

∣∣∣∣,
by the fundamental theorem of calculus. Computing the integral on the right we see
that there exists some C1 > 0 such that |ω(r)| ≤ C1φ(r) for all 0 < r < 1 where
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CHAPTER 4. STATIONARY STATES FOR COMPACTLY SUPPORTED
KERNELS

φ(r) :=


r2−d − 1 if d ≥ 3

− log(r) if d = 2

1− r if d = 1.

Now, consider the case d = 1. Following from (W1), (W2) and (W4), we have that∫
R
|W (x)| dx =

∫ ∞
0

|ω(|x|)| dx

=

∫ 1

0

|ω(r)| dr

≤ C1

∫ 1

0

(1− r) dr <∞.

Similarly, for d ≥ 2 we obtain∫
Rd
|W (x)| dx =

∫
B1(0)

|ω(||x||)| dx

= Sd−1

∫ 1

0

rd−1|ω(r)| dr

≤ C1Sd−1

∫ 1

0

rd−1φ(r) dr. (4.1)

Applying integration by parts, we see that for any d ≥ 2, the integral (4.1) is finite.
Note that for d = 2 we applied L’Hospital’s rule to obtain the limit
limr→0+ log(r)r2 = 0. Hence, for any d ≥ 1, it follows that∫

Rd
|W (x)| dx <∞,

as required.

We summarize our main results of this chapter in the following theorem.

Theorem 4.3. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4).
Then there exists a stationary solution ρs ∈ L1

+(Rd) ∩ L∞(Rd) of (1.1). Furthermore,
ρs ∈ C(Rd), and is radially symmetric, decreasing, and compactly supported on each
connected component of supp ρs. Additionally, if supp ρs has more than one connected
component then the distance between any two components is at least the radius of
suppW .

As previously mentioned, global minimizers of the energy functional can be used to
determine existence of stationary states of (1.1). Hence, we start by stating a
previous result on the existence of radially decreasing global minimizers of (3.1).
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4.1. GENERAL SETTING AND BASIC PROPERTIES

Theorem 4.4. [4] For m > 2, W ∈ L1(Rd) radially symmetric and non-decreasing,
and for any M > 0, there exists a radially symmetric and decreasing global minimizer
of the energy functional (3.1) defined in

YM := {ρ ∈ L1
+(Rd) ∩ Lm(Rd) : ||ρ||L1(Rd) = M}.

Since W ∈ L1(Rd) under assumptions (W1), (W2), and (W4) by Theorem 4.2, we
have existence of a radially symmetric and decreasing global minimizer of (3.1). We
further show, under these assumptions on the interaction kernel, that all global
minimizers of (3.1) defined in YM , whose support consists of a single connected
component, are radially symmetric and decreasing, compactly supported, uniformly
bounded, and correspond to stationary states of (1.1) in the weak sense.

Theorem 4.5. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4). If
ρ̄ is a global minimizer of (3.1) in YM whose support consists of a single connected
component, then ρ̄ is radially symmetric and decreasing up to a translation.

Proof. Suppose for a contradiction that ρ̄ is not radially symmetric and decreasing
under any translation. We show that the energy decreases strictly when ρ̄ is replaced
with its Schwarz decreasing rearrangement

ρ̄#(x) = sup {τ > 0 : |{ρ̄ > τ}|d > Sd−1||x||d}, x ∈ Rd,

as defined in Definition 2.39. By Corollary 2.26, we have the invariance property of
the Lp norms for ρ̄ and ρ̄#, that is, for every m > 1,∫

Rd
(ρ̄#)m dx =

∫
Rd

(ρ̄)m dx. (4.2)

Furthermore, by Riesz’s rearrangement inequality, it follows that∫
Rd

∫
Rd
f(x)g(x− y)h(y) dydx ≤

∫
Rd

∫
Rd
f#(x)g#(x− y)h#(y) dydx,

for all f, g, h ∈ L1
+(Rd). Now, suppose g(x) = g̃(||x||) is radially symmetric and

non-increasing on ||x|| > 0. Also, suppose f and h are radially decreasing up to the
same translation, as defined in Definition 2.34, such that there exists an x0 ∈ Rd

where f#(x) = f(x+ x0) and h#(x) = h(x+ x0). Hence, we obtain

∫
Rd

∫
Rd
f(x)g(x− y)h(y) dydx =

∫
Rd

∫
Rd
f(x+ x0)g(x− y)h(y + x0) dydx

=

∫
Rd

∫
Rd
f#(x)g#(x− y)h#(y) dydx.

Now, since −W (x) = −ω(||x||) is non-negative, radially symmetric, and
non-increasing on ||x|| > 0, then∫

Rd

∫
Rd
ρ̄(x)W (x− y)ρ̄(y) dydx ≥

∫
Rd

∫
Rd
ρ̄#(x)W (x− y)ρ̄#(y) dydx. (4.3)
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If ρ̄ were radially decreasing up to a translation we would have equality in (4.3), but
by assumption ρ̄ is not radially decreasing under any translation. Hence, it must be
that ∫

Rd

∫
Rd
ρ̄(x)W (x− y)ρ̄(y) dydx >

∫
Rd

∫
Rd
ρ̄#(x)W (x− y)ρ̄#(y) dydx. (4.4)

Combining (4.2) and (4.4) yields E[ρ̄#] < E[ρ̄], contradicting the assumption that ρ̄ is
a global minimizer. Hence, ρ̄ is radially symmetric and decreasing up to a translation.

The proof of Theorem 4.6 below follows similarly to the proof of [22, Theorem 3.1],
which considers global minimizers of the energy functional corresponding to the 2D
Keller-Segel equation, that is, where W is the Newtonian kernel. Theorem 4.6 is used
to show that global minimizers of the energy functional are in fact stationary states
of (1.1).

Theorem 4.6. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4). If
ρ̄ is a global minimizer of (3.1) in YM whose support consists of a single connected
component, then there exists a constant D[ρ̄] such that

mε

m− 1
ρ̄m−1(x) + (W ∗ ρ̄)(x) = D[ρ̄], a.e in supp ρ̄ (4.5)

and
mε

m− 1
ρ̄m−1(x) + (W ∗ ρ̄)(x) ≥ D[ρ̄], a.e outside supp ρ̄ (4.6)

where

D[ρ̄] =
2

M
E [ρ̄] +

m− 2

M(m− 1)
||ρ̄||mm.

That is,
mε

m− 1
ρ̄m−1(x) =

(
(−W ∗ ρ̄)(x) +D[ρ̄]

)
+

for all x ∈ Rd where (a)+ = max{a, 0}.

Proof. To prove (4.5), consider δ > 0 and a test function ψ ∈ C∞0 (Rd) such that
ψ(x) = ψ(−x) and define

ϕ(x) =

(
ψ(x)− 1

M

∫
Rd
ψ(z)ρ̄(z) dz

)
ρ̄(x).

It is easy to see that ϕ ∈ L1(Rd) since∫
Rd
|ϕ(x)| dx ≤

∫
Rd
|ψ(x)|ρ̄(x) dx+

1

M

∫
Rd
ρ̄(x)

∫
Rd
|ψ(z)|ρ̄(z) dzdx

≤ ||ψ||L∞||ρ̄||L1 +
1

M
||ψ||L∞ ||ρ̄||2L1 <∞.

Similarly, it can be shown that ϕ ∈ Lm(Rd). Furthermore,∫
Rd
ϕ(x) dx = 0
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4.1. GENERAL SETTING AND BASIC PROPERTIES

and suppϕ ⊆ supp ρ̄. Moreover, for δ < δ0 :=
1

2m||ψ||L∞
,

ρ̄+mδϕ ≥ ρ̄
[
1 +mδ(ψ − ||ψ||L∞)

]
≥ ρ̄

[
1− 2mδ||ψ||L∞)

]
≥ 0.

For the same choice of δ, it also follows that ρ̄+ δϕ ≥ 0, since m > 1. Hence,
ρ̄+ δϕ ∈ YM , allowing us to calculate the first variation of E defined by

δE
δϕ

[ρ̄] = lim
δ→0

E [ρ̄+ δϕ]− E [ρ̄]

δ
.

We find that

E [ρ̄+ δϕ]− E [ρ̄]

δ
=

∫
supp ρ̄

ε

δ(m− 1)

[
(ρ̄+ δϕ)m − ρ̄m

]
dx+

∫
Rd
ϕW ∗ ρ̄ dx+ δW [ϕ],

where

W [ϕ] =
1

2

∫
Rd
ϕ(W ∗ ϕ) dx.

Now, it must be shown that limδ→0
E [ρ̄+ δϕ]− E [ρ̄]

δ
exists. We see that

1

δ

∫
supp ρ̄

[
(ρ̄+ δϕ)m − ρ̄m

]
dx = m

∫ 1

0

∫
supp ρ̄

(ρ̄+ δtϕ)m−1ϕ dxdt.

By Hölder’s inequality, we find that, for all t ∈ [0, 1] and δ < δ0,∫
supp ρ̄

(ρ̄+ δtϕ)m−1ϕ dx ≤
(∫

supp ρ̄

(
(ρ̄+ δtϕ)m−1

)m/(m−1)

dx

)(m−1)/m(∫
supp ρ̄

ϕm dx

)1/m

≤
(
||ρ̄||Lm(Rd) + δ0||ϕ||Lm(Rd)

)m−1||ϕ||Lm(Rd).

Using the fact that
(
||ρ̄||Lm(Rd) + δ0||ϕ||Lm(Rd)

)m−1||ϕ||Lm(Rd) is Lebesgue integrable
with respect to t on [0, 1] and that the first order Taylor expansion of (ρ̄+ δϕ)m at
δ = 0 is given by ρ̄m +mδρ̄m−1ϕ, it follows by Lebesgue’s dominated convergence
theorem that

lim
δ→0

1

δ

∫
Rd

((ρ̄+ δϕ)m − ρ̄m) dx =

∫
Rd
mρ̄m−1ϕ dx.

Now, if W ∈ L
m
m−1 (Rd) then, by Young’s convolution inequality,

|(W ∗ ϕ)(x)| ≤ ||W ||
L

m
m−1 (Rd)

||ϕ||Lm(Rd),

for all x ∈ Rd. Hence, we need to show that W ∈ L
m
m−1 (Rd). But, this follows from

Hölder’s inequality, since∫
Rd
|W (x)|

m
m−1 dx ≤

(∫
B1(0)

(
|W (x)|

m
m−1

)m−1
m

dx

) m
m−1
(∫

B1(0)

1 dx

) 1
1−m

=
(Sd−1

d

) 1
1−m ||W ||

m
m−1

L1(Rd)
<∞.
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Consequently, we have that∫
Rd
ϕ(x)(W ∗ ϕ)(x) dx ≤ ||W ∗ ϕ||L∞(Rd)||ϕ||L1(Rd),

and so limδ→0 δW [ϕ] = 0. As a result,

lim
δ→0

E [ρ̄+ δϕ]− E [ρ̄]

δ
=

∫
Rd

(
mε

m− 1
ρ̄m−1 +W ∗ ρ̄

)
ϕ dx ≥ 0,

where the non-negativity follows from the fact that ρ̄ is a global minimizer of E and
so E [ρ̄+ δϕ] ≥ E [ρ̄].

Now, by performing the same argument using −ψ instead of ψ, we obtain∫
Rd

(
mε

m− 1
ρ̄m−1 +W ∗ ρ̄

)
ϕ dx = 0,

which gives us ∫
Rd

(
mε

m− 1
ρ̄m−1 +W ∗ ρ̄−D[ρ̄]

)
ρ̄ψ dx = 0,

for all even functions ψ ∈ C∞0 (Rd). Hence, using Theorem 4.5, we have that

mε

m− 1
ρ̄m−1(x) + (W ∗ ρ̄)(x) = D[ρ̄], a.e in supp ρ̄.

To show (4.6), we consider an even function ψ ∈ C∞0 (Rd) with ψ ≥ 0 such that
ψ(x) ∈ [0, 1]. Define

ϕ = ψ − ρ̄

M

∫
Rd
ψ(x) dx.

Then ϕ ∈ L1(Rd) ∩ Lm(Rd) and
∫
Rd ϕ dx = 0. Furthermore,

ρ̄+mδϕ ≥ ρ̄

(
1− mδ

M

∫
suppψ

ψ(x) dx

)
≥ ρ̄

(
1− mδ

M
| suppψ|d

)
.

Choose δ < δ0 := M
m| suppψ|d

. Then ρ̄+mδϕ ≥ 0. Similarly, for the same choice of δ,

ρ̄+ δϕ ≥ 0. Hence ρ̄+ δϕ ∈ YM . Using the same argument as for the proof of (4.5),
we find that ∫

Rd

[
mε

m− 1
ρ̄m−1 + (W ∗ ρ̄)−D[ρ̄]

]
ψ dx ≥ 0,

for all ψ as defined above. Again, by Theorem 4.5, we have that

mε

m− 1
ρ̄m−1(x) + (W ∗ ρ̄)(x)−D[ρ̄] ≥ 0,

for a.e. x ∈ Rd, yielding (4.6).
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Using Theorem 4.5 and 4.6, we are able to obtain the following result:

Theorem 4.7. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4). If
ρ̄ is a global minimizer of (3.1) in YM whose support consists of a single connected
component, then ρ̄ is compactly supported.

Proof. Suppose for a contradiction that supp ρ̄ is not compact. Then supp ρ̄ = Rd

since, by Theorem 4.5, ρ̄ is radially decreasing from some x0 ∈ Rd acting as a centre.
Hence, from (4.5), we have that there exists a constant C such that

mε

m− 1
ρ̄m−1(x) + (W ∗ ρ̄)(x) = C, (4.7)

for a.e. x ∈ Rd. Since ρ̄ is radially decreasing and in L1(Rd), there is a function ρ̄∗
where ρ̄(x) = ρ̄∗(||x||) and where lim||x||→∞ ρ̄∗(||x||) = 0.

In addition, we claim that lim||x||→∞(W ∗ ρ̄)(x) = 0. To show this, let
A = {y ∈ Rd : ||x− y|| < 1} and fix ||x|| > ||x0||+ 1. Then, since ||x− y|| < 1 implies
||x0|| < ||x|| − 1 < ||y||, we have that ρ̄∗(||x0||) ≥ ρ̄∗(||x|| − 1) ≥ ρ̄∗(||y||). Therefore,
for ||x|| > ||x0||+ 1,

∫
Rd
W (x− y)ρ̄(y) dy =

∫
A

W (x− y)ρ̄∗(||y||) dy

≤ ρ̄∗(||x|| − 1)

∫
A

W (x− y) dy

≤ ρ̄∗(||x|| − 1)||W ||L1(Rd).

Taking the limit as ||x|| → ∞ yields our claim.

Now, taking the limit as ||x|| → ∞ in (4.7), we obtain

mε

m− 1
ρ̄m−1(x) = (−W ∗ ρ̄)(x),

for a.e. x ∈ Rd. Fix x ∈ Rd and define B = {y ∈ A : ||x|| > ||y||}. Since
W (x) = ω(||x||) ≤ 0 for all ||x|| > 0, we have that |W (x)| = −W (x) for all x ∈ Rd

and so there exists C > 0 such that

∫
Rd
−W (x− y)ρ̄(y) dy ≥

∫
B
|W (x− y)|ρ̄∗(||y||) dy

≥ ρ̄∗(||x||)
∫
B
|W (x− y)| dy

= Cρ̄∗(||x||) > 0.

Thus, it follows that

mε

m− 1
ρ̄m−1(x) ≥ Cρ̄(x) > 0,
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and so

ρ̄(x) ≥
(
C(m− 1)

mε

) 1
m−2

> 0,

for a.e x ∈ Rd. Hence,∫
Rd
ρ̄(x) dx ≥

∫
Rd

(
C(m− 1)

mε

) 1
m−2

dx =∞,

This contradicts the fact that ρ̄ ∈ L1(Rd). Hence, supp ρ̄ is compact.

Theorem 4.8. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4)
and let ρ̄ ∈ YM be a global minimizer of (3.1) whose support consists of a single
connected component. Then ρ̄ ∈ L∞(Rd).

Theorems 4.5, 4.6, and 4.7 are applied to obtain the above result. The method of
proof for Theorem 4.8 follows similarly to that of [21, Lemma 3.9], where it is proved
that the boundedness property of ρ̄ holds under the assumptions (W1)-(W3). Indeed,
if (W4) holds, then limr→∞ ω(r) = 0 and there exists Cω > 0 such that ω′(r) ≤ Cω for
all r > 1, as given in (W3). Furthermore, the proof of [21, Lemma 3.9] does not rely
on the assumptions made in (W3) that ω′(r) > 0 for all r > 0 and that there exists
an α ∈ (0, d) for which m > 1 + α

d
and ω(τr) ≤ τ−αω(r) for all τ ≥ 1 and r > 0.

Theorem 4.9. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4)
and let ρ̄ ∈ YM be a global minimizer of (3.1) whose support consists of a single
connected component. Then W ∗ ρ̄ ∈ W1,∞(Rd).

Proof. We show first that ∇W ∗ ρ̄ is globally bounded. Fix x ∈ Rd and let
A = {y ∈ Rd : ||x− y|| < 1}. Then,

|(∇W ∗ ρ̄)(x)| ≤
∫
Rd
ω′(||x− y||)ρ̄(y) dy

≤ Cω

∫
A

1

||x− y||d−1
ρ̄(y) dy

≤ Cω||ρ̄||L∞(Rd)

∫
A

1

||x− y||d−1
dy

= C := Const.

Furthermore, we see that W ∗ ρ̄ is globally bounded since

|(W ∗ ρ̄)(x)| ≤
∫
Rd
|W (x− y)|ρ̄(y) dy

≤ ||ρ̄||L∞(Rd)||W ||L1(Rd), for all x ∈ Rd.
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The following theorem relates global minimizers of the energy functional to stationary
solutions of Equation (1.1).

Theorem 4.10. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4)
and let ρ̄ ∈ YM be a global minimizer of (3.1) whose support consists of a single
connected component. Then ρ̄ is a stationary solution of (1.1) in the weak sense.

Proof. From Theorem 4.6 we have that

mε

m− 1
ρ̄m−1 + (W ∗ ρ̄) = D[ρ̄], a.e in supp ρ̄. (4.8)

Furthermore, from Theorem 4.9 it follows that W ∗ ρ̄ ∈ W1,∞(Rd). Hence, we can
take gradients on both sides of (4.8) and multiply by ρ̄ to obtain

mε

m− 1
ρ̄∇ρ̄m−1 = −ρ̄∇(W ∗ ρ̄), a.e in supp ρ̄.

Using the fact that ρ̄∇ρ̄m−1 = m−1
m
∇ρ̄m, we have that

ε∇ρ̄m = −ρ̄∇(W ∗ ρ̄), a.e in supp ρ̄,

yielding (3.3), as required.

From Theorem 4.10 we have the existence of a stationary solution ρs of (1.1) in
L1

+(Rd) ∩ L∞(Rd). We now show that, for any stationary state of (1.1) in
L1

+(Rd) ∩ L∞(Rd) with support possibly made up of more than one connected
component (as defined in Definition 2.36), we have that on each connected
component of supp ρs, ρs is radially symmetric and decreasing up to a translation and
compactly supported. Additionally, the distance between any two components is at
least the radius of suppW .

From this point onwards we restrict our attention to the case where m > 2, where we
have existence of stationary states of (1.1) for any W satisfying assumptions (W1),
(W2) and (W4).

In order to prove our result on radial symmetry of stationary solutions for compactly
supported W , given in the next section, we need Lemma 4.11 given below. A similar
result, for the case when (W1)− (W3) are satisfied, is given in [21, Lemma 2.3]. Note
that in [21, Lemma 2.3] an extra assumption is made, that is, ω(1 + ||x||)ρs ∈ L1(Rd).

This assumption need not be made for the case of ω satisfying (W1), (W2), and
(W4) . This is because ω(r) = 0 for all r ≥ 1, by assumption (W4), which yields
ω(1 + ||x||)ρs ∈ L1(Rd), as required.

Lemma 4.11. Let ρs ∈ L1
+(Rd) ∩ L∞(Rd) be a non-negative stationary state of (1.1)

where m > 2 and where W satisfies assumptions (W1), (W2), and (W4). Then
ρs ∈ C(Rd) and

mε

m− 1
ρm−1
s (x) + (W ∗ ρs)(x) = Cj, for x ∈ Dj, (4.9)
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where Cj may be different on each connected component Dj of supp ρs.

Furthermore, there exists some C = C(||ρs||L1 , ||ρs||L∞ , Cω, d) > 0 such that

mε

m− 1
|∇(ρm−1

s )| ≤ C in supp ρs.

Proof. The proof follows the same approach as that of [21, Lemma 2.3]. It is only
necessary to prove, under the assumptions (W1), (W2), and (W4) , that ∇W ∗ ρs
and W ∗ ρs are globally bounded. This is proved by using the same argument as in
the proof of Theorem 4.9.

From Theorem 4.10, we have that global minimizers of the energy, whose supports
are connected, are stationary states of Equation (1.1). The converse is not necessarily
true; however, it is the case that a stationary state of (1.1) is a stationary point of the
energy, as stated in the following theorem.

Theorem 4.12. If ρs is a stationary state of Equation (1.1), then ρs is a stationary
point of the energy functional (3.1).

Proof. Consider δ > 0 and a test function ψ ∈ C∞0 (Rd). Similarly to the proof of
Theorem 4.6, we define

ϕ(x) =

(
ψ(x)− 1

M

∫
Rd
ψ(z)ρs(z) dz

)
ρs(x).

In order to prove the result we must show that the first variation of E vanishes. That
is,

lim
δ→0

1

δ
(E [ρs + δϕ]− E [ρs]) = 0.

From the proof of Theorem 4.6, we know that ϕ ∈ L1(Rd) ∩ Lm(Rd) and∫
Rd
ϕ(x) dx = 0.

Furthermore, for δ < δ0 :=
1

2m||ψ||L∞
, we have that ρs +mδϕ ≥ 0 and ρs + δϕ ≥ 0,

since m > 1. Calculating the first variation, we obtain

E [ρs + δϕ]− E [ρs]

δ
=

∫
supp ρs

ε

δ(m− 1)

[
(ρs + δϕ)m− ρms

]
dx+

∫
Rd
ϕW ∗ ρs dx+ δW [ϕ],

where

W [ϕ] :=
1

2

∫
Rd
ϕ(W ∗ ϕ) dx.
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Using the same arguments as in the proof of Theorem 4.6, we find that

lim
δ→0

E [ρs + δϕ]− E [ρs]

δ
=

∫
Rd

(
mε

m− 1
ρm−1
s +W ∗ ρs

)
ϕ dx.

Now, since
∫
Rd ϕ(x) dx = 0, for the first variation to vanish it must be that

mε

m− 1
ρm−1
s (x) +W ∗ ρs(x) = Cj for x ∈ supp ρs,

where Cj is a constant that may be different on each connected component of supp ρs.
Hence, since ρs satisfies (4.9) by Lemma 4.11, we have that ρs is a stationary point of
E .

4.2 Radial symmetry property of stationary states

In this section, we prove our main result of this chapter. Namely that, for m > 2 and
W satisfying assumptions (W1), (W2), and (W4), all stationary solutions of (1.1) are
radially symmetric and decreasing when restricted to a single connected component
of their support. Furthermore, we show that, for any stationary state whose support
has more than one connected component, the distance between any two components
is at least the radius of the support of W . These results are summarized in the
theorem below.

Theorem 4.13. Let m > 2 and let W satisfy assumptions (W1), (W2), and (W4).
Let ρs ∈ L1

+(Rd) ∩ L∞(Rd) be a stationary state of (1.1) and let D ⊂ Rd be a
connected component of supp ρs, as given in Definition 2.36. That is,
D ∩ closure (supp ρs \D) = ∅. Then the following holds:

1. There exists an x0 ∈ D such that ρs|D is radially symmetric and decreasing from
x0 as a centre.

2. For all x ∈ interior (D) and for any y ∈ interior(supp ρs \D), we have ||x− y|| ≥ 1.

Proof outline for Theorem 4.13.1

We prove Theorem 4.13.1 by contradiction, assuming ρs is not radially symmetric and
decreasing under any translation.

Similarly to the proof of [21, Theorem 2.2], we use continuous Steiner symmetrization
to construct a family of densities µ(τ, ·) with ρs|D = µ(0, ·) =: µ0 such that
E [µ(τ)]− E [µ0] < −C1τ , for some C1 > 0 and any sufficiently small τ > 0.

However; since µ0 is a stationary state of E , it can be shown that
|E [µ(τ)]− E [µ0]| ≤ C2τ

2 for some C2 > 0 and for all τ small enough. Combining these
two inequalities results in a contradiction for τ sufficiently small.
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In order to prove Theorem 4.13.1, we must prove the preliminary results, Lemma 4.14
and 4.15, given below, where we investigate how the interaction energy, denoted by I
in (3.1), between two densities µ1, µ2 ∈ C(R) changes under their continuous Steiner
symmetrizations. That is, we consider how

IK [µ1, µ2](τ) :=

∫
R×R

Sτµ1(α)Sτµ2(β)K(α− β) dαdβ, (4.10)

changes with respect to τ , given some K ∈ C1(R) to be defined later.

Lemma 4.14. Assume K ∈ C1(R) is an even function with K ′(z) < 0 for all
0 < z < R and K ′(z) = 0 for all |z| ≥ R. Let µi := χI(x̃+ci,ri) for i = 1, 2. Then, for
I(τ) := IK [µ1, µ2](τ),

1. d+

dτ
I(0) ≥ 0.

2. In addition, if sgn c1 6= sgn c2,

|c2 − c1| < r2 + r1 +R, and |r2 − r1| < |c2 − c1|+R, (4.11)

then

d+

dτ
I(0) ≥ 1

6
ϕ(c1, r1, c2, r2, R) minr∈[ R

3
√
2
, R√

2
] K
′(r) =: c > 0,

where

ϕ(c1, r1, c2, r2, R) = min{−|r1− r2|+ |c2− c1|+R,−|c2− c1|+ r1 + r2 +R,R} (4.12)

Proof. Without loss of generality, assume c2 ≥ c1. For the case where c2 < c1 the
roles of x and y in the proof are reversed.

For x ∈ R, we have that Sτµi =
∫∞

0
χMτ (Uh(µi))(x) dh = χMτ (I(x̃+ci,ri)) for i = 1, 2.

Then for any τ ≥ 0 it follows that

I(τ) = IK [χI(x̃+c1,r1), χI(x̃+c2,r2)](τ)

=

∫ r1+x̃+c1−τ sgn c1

−r1+x̃+c1−τ sgn c1

∫ r2+x̃+c2−τ sgn c2

−r2+x̃+c2−τ sgn c2

K(x− y) dydx

=

∫ r1

−r1

∫ r2

−r2
K(x− y + (c1 − c2) + τ(sgn c2 − sgn c1)) dydx

If sgn c1 = sgn c2, then

d+

dτ
I(0) = (sgn c2 − sgn c1)

∫ r1

−r1

∫ r2

−r2
K ′(x− y + (c1 − c2)) dydx

= 0.

If sgn c1 6= sgn c2 we have that sgn c2 − sgn c1 is either 2 or 1. Hence,
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Figure 4.1: Illustration of the rectangle Q given in the proof of Lemma 4.14.

d+

dτ
I(0) = (sgn c2 − sgn c1)

∫ r1

−r1

∫ r2

−r2
K ′(x− y + (c1 − c2)) dydx

= (sgn c2 − sgn c1)

∫
Q

K ′(x− y) dydx (4.13)

where Q is the rectangle [c1 − r1, c1 + r1]× [c2 − r2, c2 + r2]. Define
Q− := Q ∩ {0 < x− y < R} and Q+ := Q ∩ {−R < x− y < 0}. Note that
K ′(x− y) < 0 in Q− and K ′(x− y) > 0 in Q+. Since K ′(x− y) = 0 for |x− y| ≥ R,
we have that

d+

dτ
I(0) ≥

∫
Q+

K ′(x− y) dydx+

∫
Q−

K ′(x− y) dydx.

Regardless of the choice of r1 and r2, since sgn c1 6= sgn c2 and c2 > c1, Q forms a
rectangle with its centre, given by (c1, c2), lying above the line y = x. Hence, for any
h > 0, the length of the line segment Q+ ∩ {x− y = −h} will be greater or equal to
the length of Q− ∩ {x− y = h}. This implies that |Q+| ≥ |Q−| and so

d+

dτ
I(0) ≥ 0,

which proves 1.

Now, assume that sgn c1 6= sgn c2 and (4.11) holds. Furthermore, assume that r2 ≥ r1.
Under these assumptions we obtain three possibilities, given in Figure 4.1 and 4.2 (a).

We see in Figure 4.1 (a) that, since r2 − r1 < |c2 − c1|+R, the bottom left-hand
corner of the rectangle must be above the line y = x−R. Similarly, in Figure 4.1 (b),
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since |c2 − c1| < r2 + r1 +R, we see that the bottom right-hand corner of the
rectangle must be below the line y = x+R.

Under our assumptions we will always have that the area of Q+ will be strictly
greater than that of Q−, regardless of the choice of r1 and r2, where r2 ≥ r1.
Furthermore, in all cases the difference in area will be at least the size of the triangle
denoted D in Figure 4.2 (b) (outlined red in Figure 4.1 (a), (b), and Figure 4.2 (a)).

The vertices of D are given by (c1 + r1, c1 + r1 +R), (c1 + r1, z) and (z −R, z), where
z := max {2c1 − c2 + r2, c1 + r1, c2 − r2}. Now, consider the trapezium Ω ⊂ D where
the bases of Ω lie parallel to the hypotenuse of D and the longer base intersects the
medicentre of D, as illustrated in Figure 4.2 (b). Since K ′(x− y) > 0 for all x, y ∈ Ω,
we have that

d+

dτ
I(0) ≥

∫
D

K ′(x− y) dydx

≥
∫

Ω

K ′(x− y) dydx

≥ |Ω| min
(x,y)∈Ω

K ′(x− y).

Now, substituting (c1 + r1, z) and the medicentre of D, given by
1
3
(2c1 + 2r1 + z −R, c1 + r1 +R + 2z), into the equation of the unit normal to y = x,

given by 1√
2
(y − x) = 0, we find that

min
(x,y)∈Ω

K ′(x− y) = min
r∈[z1,z2]

K ′(r),

where

z1 = 1√
2
(z − c1 − r1) ≥ R

3
√

2

and

z2 = 1
3
√

2
(z − c1 − r1 + 2R) ≤ 1

3
√

2
(c1 + r1 +R− c1 − r1 + 2R) = R√

2
.

Hence,

min
r∈[z1,z2]

K ′(r) ≥ min
r∈[ R

3
√
2
, R√

2
]
K ′(r) > 0.

Furthermore, by the properties of the medicentre, the longer base of Ω divides both
the base and the height of D in a ratio 1 : 2 as illustrated in Figure 4.2 (b).
Therefore, by the definition of Ω, we find that |Ω| = 1

6
(c1 + r1 − z +R)2.

Now, denoting

ϕ∗(c1, r1, c2, r2, R) := c1 + r1 − z +R

= min {r1 − r2 + c2 − c1 +R, c1 − c2 + r1 + r2 +R,R},

by our assumptions we have that ϕ∗(c1, r1, c2, r2, R) > 0. Hence, we may conclude
that
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Figure 4.2: a) Illustration of the rectangle Q. b) Illustration of the trapezium Ω
contained in D.

d+

dτ
I(0) >

1

6
ϕ∗(c1, r1, c2, r2, R) min

r∈[ R
3
√
2
, R√

2
]
K ′(r) > 0. (4.14)

For r1 > r2, one can obtain in a similar way the inequality (4.14), where r1 and r2 are
swapped. Accommodating also the case of c1 > c2 the inequality (4.14) holds with

ϕ∗(c1, r1, c2, r2, R) = ϕ(c1, r1, c2, r2, R),

as defined in (4.12)

Lemma 4.15. Assume K ∈ C1(R) is as defined in Lemma 1. For any open sets U1,
U2 ⊂ R, let µi := χUi for i = 1, 2 and I(τ) = IK [µ1, µ2](τ). Then

d

dτ
I(τ) ≥ 0 for all τ ≥ 0.

Proof. Suppose first that U1 and U2 consist of a finite union of disjoint open intervals.
Fix τ0 ≥ 0. Define M τ0(U1) =:

⋃N1

k=1 I(x̃+ c1
k, r

1
k) and M τ0(U2) =:

⋃N2

k=1 I(x̃+ c2
k, r

2
k)

where I(x̃+ c1
k, r

1
k) and I(x̃+ c2

k, r
2
k) are disjoint for all k ∈ {1, ..., N1} and

k ∈ {1, ..., N2}, respectively.

Now, Sτ has the semigroup property. That is, Sτ+sµi = Sτ (Ssµi) for i = 1, 2 and any
τ, s ≥ 0. Hence, for s ≥ 0 small enough, where we set τ = τ0 + s, we have that
M τ (U1) =

⋃N1

k=1 M
s(I(x̃+ c1

k, r
1
k)) and M τ (U2) =

⋃N2

k=1M
s(I(x̃+ c2

k, r
2
k)). Assume

without loss of generality that c1
k ≤ c2

` for all k ∈ {1, ..., N1} and ` ∈ {1, ..., N2}.
Denote I(k,`)(s) = IK [χ(x̃+c1k,r

1
k), χI(x̃+c2` ,r

2
` )](s). Then,
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I(τ) = IK [χMτ0 (U1), χMτ0 (U2)](s)

=

∫
R×R

χMτ (U1)χMτ (U2)K(x− y) dydx

=

N1∑
k=1

N2∑
`=1

∫
Ms(I(x̃+c1k,r

1
k))

∫
Ms(I(x̃+c2` ,r

2
` ))

K(x− y) dydx

=

N1∑
k=1

N2∑
`=1

IK [χ(x̃+c1k,r
1
k), χI(x̃+c2` ,r

2
` )](s)

=

N1∑
k=1

N2∑
`=1

I(k,`)(s)

Hence,

d

dτ
I(τ) =

N1∑
k=1

N2∑
`=1

d

ds
I(k,`)(s)

Taking s = 0, we obtain

d

dτ
I(τ0) =

N1∑
k=1

N2∑
`=1

d

ds
I(k,`)(0) ≥ 0, (4.15)

by Lemma 4.14. Therefore, since τ0 ≥ 0 is arbitrary, the result holds.

Now, if U1, U2 each consist of an infinite union of disjoint open intervals then, for
τ = τ0 + s, we have that

I(τ) =

∫
Mτ (U1)

∫
Mτ (U2)

K(x− y) dxdy

= IK [χMτ0 (U1), χMτ0 (U2)](s), (4.16)

where

M τ0(U1) = ∪∞N=1M
τ0(UN) = ∪∞N=1

⋃N
k=1 I(x̃+ c1

k, r
1
k)

and

M τ0(U2) = ∪∞M=1M
τ0(UM) = ∪∞M=1

⋃M
k=1 I(x̃+ c2

k, r
2
k).

Now, if N1 < N2 then M τ0(UN1) ⊂M τ0(UN2) for all τ0 ≥ 0 and so
limN→∞M

τ0(UN) = ∪∞N=1M
τ0(UN) and limM→∞M

τ0(UM) = ∪∞M=1M
τ0(UM), for any

τ0 ≥ 0. Hence, for s sufficiently small, we have that

I(τ) = lim
N→∞

lim
M→∞

∫
Ms(Mτ0 (UN ))

∫
Ms(Mτ0 (UM ))

K(x− y) dxdy

= lim
N→∞

lim
M→∞

IK [χMτ0 (UN ), χMτ0 (UM )](s). (4.17)
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Therefore, combining (4.16) and (4.17), we see that

lim
N→∞

lim
M→∞

IK [χMτ0 (UN ), χMτ0 (UM )](s)|s=0 = IK [χMτ0 (U1), χMτ0 (U2)](s)|s=0.

Furthermore, IK [χMτ0 (UN ), χMτ0 (UM )](s) is differentiable and

d

ds
IK [χMτ0 (UN ), χMτ0 (UM )](s)|s=0

=
N∑
k=1

M∑
`=1

(sgn c2
` − sgn c1

k)

∫ c1k+r1k

c1k−r
1
k

∫ c2`+r
2
`

c2`−r
2
`

K ′(x− y) dydx

≤ 2
N∑
k=1

M∑
`=1

∫ c1k+r1k

c1k−r
1
k

∫ c2`+r
2
`

c2`−r
2
`

K ′(x− y) dydx

= 2

∫
Mτ0 (UN )

∫
Mτ0 (UM )

K ′(x− y) dydx.

That is, d
ds
IK [χMτ0 (UN ), χMτ0 (UM )](s)|s=0 is bounded above and is increasing as

N,M →∞, implying that limN→∞ limM→∞
d
ds
IK [χMτ0 (UN ), χMτ0 (UM )](s)|s=0 exists.

Hence,

d

ds
IK [χMτ0 (U1), χMτ0 (U2)](s)|s=0 = lim

N→∞
lim
M→∞

d

ds
IK [χMτ0 (UN ), χMτ0 (UM )](s)|s=0 ≥ 0,

by (4.15), yielding

d

dτ
I(τ0) =

d

ds
IK [χMτ0 (U1), χMτ0 (U2)](s)|s=0 ≥ 0,

as required.

Proof of Theorem 4.13.1.
Assume, for a contradiction, that µ0|D is not radially decreasing with respect to any
x0 ∈ D considered as a centre. Then by [21, Lemma 2.18] there exists a unit vector e
such that µ0 is not symmetric decreasing about any hyperplane with normal vector e.
We set e = (1, 0, ..., 0) without loss of generality.

Recall Definition 2.47, where we define the continuous Steiner symmetrization of a
non-negative function on Rd with respect to a specific direction. In order to prove
Theorem 4.13.1, we modify Sτµ0 in such a way that Uh

x′ travels at the speed v(h)
instead of a constant speed 1, where

v(h) :=

{
1, if h ≥ h0(
h
h0

)m−1
, if 0 < h < h0.

for some h0 sufficiently small, defined later. We let µ(τ, ·) = S̃τµ0 where

51

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



CHAPTER 4. STATIONARY STATES FOR COMPACTLY SUPPORTED
KERNELS

S̃τµ0 :=

∫ ∞
0

χMv(h)τ (Uh
x′ )

(x1) dh.

Now, in [21, Proposition 2.8] it is shown that there exists some δ1 > 0 and C > 0,
depending on m, µ0, and W , such that, for any τ ∈ [0, δ1],

|µ(τ, x)− µ0(x)| ≤ Cµ0(x)τ for all x ∈ Rd, (4.18)∫
Di

(µ(τ, x)− µ0(x)) dx = 0, (4.19)

for any connected component Di of suppµ0.

The proof of [21, Proposition 2.8] does not rely on the infinite support of ω′ assumed
in [21]. As a result, we see that (4.18) and (4.19) hold for W satisfying assumptions
(W1), (W2), and (W4).

Since (4.18) and (4.19) hold, we can use the same argument as in the proof of [21,
Theorem 2.2] to obtain that there exists some C2 > 0 and δ0 > 0 with δ0 ≤ δ1 such
that

|E [µ(τ, ·)]− E [µ0]| ≤ C2τ
2 for all τ ∈ [0, δ0]. (4.20)

It remains to be shown that there exists a C1 > 0 and some τ1, τ2 with
0 ≤ τ1 < τ2 ≤ δ0 such that

E [µ(τ, ·)]− E [µ0] ≤ −C1τ for all τ ∈ [τ1, τ2]. (4.21)

This will allow us to conclude that (4.20) and (4.21) hold for all τ ∈ [τ1, τ2].
Combining (4.20) and (4.21) will then lead to a contradiction of τ1.

In the proof of [21, Proposition 2.8], it is shown that S[µ(τ, ·)] ≤ S[µ0] for all τ > 0.
Hence, it is sufficient to show that

I[µ(τ, ·)]− I[µ0] ≤ −C1τ for all τ ∈ [τ1, τ2].

We prove this result as follows:

Fix τ ∈ [τ1, τ2], where τ1, τ2 are to be defined later. Fix x′ ∈ Dx1 , where
Dx1 = {z ∈ Rd−1 : (x1, z) ∈ D}. Consider the interval [a, b], where

a := max {x1 ∈ R : µ0(x1, x
′) = maxx∈R µ0(x, x′)}

and

b := min {x1 ∈ [a, a+ R
2

] : µ0(x1, x
′) = minx∈[a,a+R

2
] µ0(x, x′)}.
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From the definition of a and b, we have that 0 < b− a ≤ R
2

and
µ0(a, x′) > µ0(x, x′) > µ0(b, x′) for all x ∈ (a, b).

For α > 0, define Hα := {(x′, h) ∈ Dx1 × (0,∞) : |Uh
x′ ∩ [a, b]| > α}. By continuity of

µ0, we can choose α sufficiently small so that Hα has positive measure.

By [21, Proposition 2.8], for any h0 > 0, µ(τ, ·) satisfies (4.18) and (4.19) for all
τ ∈ [τ1, τ2], since τ1, τ2 ≤ δ1. Hence, we may choose h0 := µ0(a+b

2
, x′) and define

B1 = {(x′, h) ∈ Hα : h ≥ h0}

and

B2 = {(x′, h) ∈ Hα : h < h0}.

By our choice of h0 and continuity of µ0 we have that B1 and B2 have positive
measure.

Now, consider (x′, h1) ∈ B1 and (y′, h2) ∈ B2 where 0 < ||x′ − y′|| < 1. Let Uh1
x′ and

Uh2
y′ consist of either a finite or infinite union of disjoint open intervals. Then, there

exist intervals I(c1
k∗, r

1
k∗) and I(c2

`∗, r
2
`∗) in Uh1

x′ and Uh2
y′ , respectively, such that

|I(c1
k∗, r

1
k∗) ∩ [a, b]| > β and |I(c2

`∗, r
2
`∗) ∩ [a, b]| > β for some β ∈ (0, α].

We show that there exists some τ1, τ2 with 0 ≤ τ1 < τ2 ≤ δ0 such that
µ1 := χMv(h1)τ0 (I(c1k∗,r

1
k∗))

and µ2 := χMv(h2)τ0 (I(c2`∗,r
2
`∗))

satisfy the assumptions of Lemma

4.14.2 for all τ0 ∈ [τ1, τ2].

We choose H = {x1 = x̃} for some x̃ ∈ Dx′ = {x1 ∈ R : (x1, x
′) ∈ D} and let

I(c1
k∗, r

1
k∗) =: I(x̃+ c1, r1) and I(c2

k∗, r
2
k∗) =: I(x̃+ c2, r2). We consider the following

two cases: c1 = c2 and c1 6= c2.

Case 1: c1 = c2

We choose x̃ such that |c1| = |x̃− c1
k∗| = 1

4
min {R, δ0, τ

∗, C1

C2
} where τ ∗ is the value at

which M v(h2)τ∗(I(c2
k∗, r

2
k∗)) shares a common endpoint with a neighbouring interval (if

one exists). Since µ0 is not symmetric decreasing about any hyperplane with normal
vector e, we have that µ0 is not symmetric decreasing about H = {x1 = x̃}.

Now, let τ1 = |c1|. We claim that the assumptions of Lemma 4.14.2 hold at τ = τ1.
Indeed, we have that

M v(h1)τ1(I(x̃+ c1, r1)) = I(x̃+ c1 − v(h1)τ1 sgn c1, r1)

and

M v(h2)τ1(I(x̃+ c2, r2)) = I(x̃+ c2 − v(h2)τ1 sgn c2, r2).
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Figure 4.3: Illustration of case 1 where c1 = c2 > 0 and x′ is fixed. On the left, τ = 0
and on the right, τ = τ1.

Set ĉ1 := c1 − v(h1)τ1 sgn c1 and ĉ2 := c2 − v(h2)τ1 sgn c2. Then, ĉ1 = 0, since
v(h1) = 1. If c2 > 0, then ĉ2 = |c2| − v(h2)|c2| > 0 and if c2 < 0, then
ĉ2 = −|c2|+ v(h2)|c2| < 0. This follows from the fact that v(h2) = (h2

h0
)m−1 < 1.

Hence, sgn ĉ1 6= sgn ĉ2.

Furthermore, since h1 > h2 implies r1 < r2, by continuity of µ0, and since |c1| ≤ R
4

, we
have that

|ĉ2−ĉ1| = |ĉ2| = |c2−v(h2)τ1 sgn c2| ≤ |c2|+v(h2)|c1| < 2|c1| ≤
R

2
< r1+r2+R. (4.22)

Also, since [x̃+ c1 + r1, x̃+ c2 + r2] ⊆ [a, b] and b− a ≤ R
2

, it follows that

r2 − r1 = (x̃+ c2 + r2)− (x̃+ c1 + r1) ≤ R
2
< |ĉ2 − ĉ1|+R,

as required.

It remains to be shown that the assumptions of Lemma 4.14.2 continue to hold for all
τ ∈ [τ1, τ2], where τ2 := min {τ1 + |ĉ2|, τ

∗

2
, δ0}.

Now, we have that

M v(h1)τ2(I(x̃+ c1, r1)) = I(x̃, r1)

and

M v(h2)τ2(I(x̃+ c2, r2)) = I(x̃+ c2 − v(h2)τ2 sgn c2, r2).

Set c̃1 := c1 − v(h1)τ2 sgn c1 and c̃2 := c2 − v(h2)τ2 sgn c2. Then c̃1 = 0. Furthermore,
if ĉ2 > 0 then c2 > 0 and so c̃2 = c2 − v(h2)τ2 ≥ |ĉ2| − v(h2)|ĉ2| > 0 and if ĉ2 < 0 then
c2 < 0 and so c̃2 = c2 + v(h2)τ2 ≤ −|ĉ2|+ v(h2)|ĉ2| < 0. Hence, sgn c̃1 6= sgn c̃2.

Additionally, since |ĉ2| ≤ R
2

by (4.22), we have that

|c̃2 − c̃1| = |c̃2| ≤ |c2|+ v(h2)τ2 ≤ |c2|+ v(h2)(|c2|+ |ĉ2|) < r2 + r1 +R
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and

|r2 − r1| ≤ R
2
< |c̃2 − c̃1|+R,

as required.

Case 2: c1 6= c2

Suppose c1 6= c2. We choose x̃ = c1
k∗ such that c1 = 0 and sgn c1 6= sgn c2. Now, let

τ1 = 0 and τ2 = 1
2

min{|c2|, τ ∗, δ0, R} > 0. Then we have that
M v(h1)τ2(I(x̃+ c1, r1)) = I(x̃+ c̃1, r1) and M v(h2)τ2(I(x̃+ c2, r2)) = I(x̃+ c̃2, r2) where
c̃1 = 0 and c̃2 = c2 − v(h2)τ2 sgn c2.

If c2 > 0, then c̃2 = c2 − v(h2)τ2 ≥ |c2| − v(h2)|c2| > 0.
If c2 < 0, then c̃2 = c2 + v(h2)τ2 ≤ −|c2|+ v(h2)|c2| < 0.

Hence, sgn c̃1 6= sgn c̃2. Furthermore, by continuity of µ0, we have that
a ≤ x̃+ c1 + r1 = x̃+ c̃1 + r1 < x̃+ c2 + r2 ≤ b.

Now, if c2 > 0, then a ≤ x̃+ c̃1 + r1 = x̃+ r1 < x̃+ c̃2 + r1 < x̃+ c̃2 + r2 < b. Hence,
since b− a ≤ R

2
, we have that x̃+ c̃2 + r2 − (x̃+ c̃1 + r1) ≤ R

2
and so

c̃2 − c̃1 ≤ r1 − r2 + R
2
< r1 + r2 +R.

If c2 < 0, then a ≤ x̃+ c̃1 + r1 = x̃+ r1 < x̃+ c̃2 + r2 = x̃+ c2 + v(h2)τ2 + r2 ≤
x̃+ c2 + v(h2)R

2
+ r2 ≤ b+ v(h2)R

2
. Hence, b+ v(h2)R

2
− a ≤ R

2
+ v(h2)R

2
< R and so

x̃+ c̃2 + r2 − (x̃+ c̃1 + r1) < R, which yields

c̃2 − c̃1 < r1 + r2 +R.

Furthermore, for both c2 > 0 and c2 < 0, we see that

r2 − r1 < c̃1 − c̃2 +R ≤ |c̃2 − c̃1|+R,

as required.

Hence, for both cases 1 and 2 it follows that χMv(h1)τ0 (I(c1
k∗ ,r

1
k∗ )) and χMv(h2)τ0 (I(c2

k∗ ,r
2
k∗ ))

satisfy the asumptions of Lemma 4.14.2 for all τ0 ∈ [τ1, τ2].

Thus, for s sufficiently small and τ = v(h)τ0 + s, we have that

d+

dτ
I(v(h)τ0) =

d+

ds
IK [χ

Mv(h1)τ0 (U
h1
x′ )
, χ

Mv(h2)τ0 (U
h2
y′ )

](s)|s=0

≥ d+

ds
IK [χMv(h1)τ0 (I(c1

k∗ ,r
1
k∗ )), χMv(h2)τ0 (I(c2

k∗ ,r
2
k∗ ))](s)|s=0

≥ c > 0, (4.23)

for all τ0 ∈ [τ1, τ2], by Lemma 4.14 and 4.15.
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Now, define a 1-D kernel Kl(z) = −1
2
ω(
√
z2 + l2). For any l > 0, Kl ∈ C1(R) is even

with Kl(z) < 0 for all 0 < z < R, where R :=
√

1− l2, l2 < 1, and Kl(z) = 0 for all
z ≥ R. Then,

I[S̃τµ0] =
1

2

∫
D

∫
D

S̃τµ0(x)S̃τµ0(y)W (x− y) dydx

=
1

2

∫
D2

∫
(R+)2

χ
Mv(h1)τ (U

h1
x′ )

(x1)χ
Mv(h2)τ (U

h2
y′ )

(y1)W (x− y) dh1dh2dydx

= −
∫
D2

∫
(R+)2

χ
Mv(h1)τ (U

h1
x′ )

(x1)χ
Mv(h2)τ (U

h2
y′ )

(y1)K||x′−y′||(|x1 − y1|) dh1dh2dydx.

This follows from the definition of S̃τµ0 and since W (x− y) = ω(||x− y||) =
ω(((x1 − y1)2 + ...+ (xd − yd)2)1/2) = −2K||x′−y′||(|x1 − y1|), where 0 < ||x′ − y′|| < 1.

Now, using the definition given in (4.10), we have that

I[S̃τµ0] = −
∫
Dx1

∫
Dy1

∫
(R+)2

IK||x′−y′|| [χUh1
x′
, χ

U
h2
y′

](v(h)τ) dh1dh2dy
′dx′.

Taking the right derivative, we obtain

−d
+

dτ
I[S̃τµ0] =

∫
Dx1

∫
Dy1

∫
(R+)2

d+

dτ
IK||x′−y′|| [χUh1

x′
, χ

U
h2
y′

](v(h)τ) dh1dh2dy
′dx′

≥
∫
B1

∫
B2

d+

dτ
IK||x′−y′|| [χUh1

x′
, χ

U
h2
y′

](v(h)τ) dy′dh2dx
′dh1,

by Lemma 4.15. Now, for any (x′, h1) ∈ B1 and (y′, h2) ∈ B2, by (4.23), we have that

−d
+

dτ
I[S̃τµ0] ≥ |B1||B2|c =: C1 > 0,

for all τ ∈ [τ1, τ2]. Hence, by the fundamental theorem of calculus and using the fact
that S̃0µ0 = µ0, it follows that

I[S̃τµ0]− I[µ0] ≤ −C1τ,

for all τ ∈ [τ1, τ2]. Hence, we have that

E [µ(τ, ·)]− E [µ0] ≤ −C1τ and |E [µ(τ, ·)]− E [µ0]| ≤ C2τ
2

for all τ ∈ [τ1, τ2] (since τ2 ≤ δ0). Now, by definition, τ1 <
C1

2C2

. But, since

−C2τ
2
1 ≤ E [µ(τ, ·)]− E [µ0] ≤ −C1τ1,

it must be that τ1 ≥
C1

C2

, a contradiction.
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We show in Theorem 4.16 below that the compactness of each connected component
of supp ρs follows from Theorem 4.13.1.

Theorem 4.16. Let m > 2. Assume (W1), (W2), and (W4) hold. If ρs is a
stationary state of (1.1), then each connected component of supp ρs is compact.

Proof. We consider an arbitrary connected component D of supp ρs. We assume, for
a contradiction, that D is not compact. Since D is closed, it must be that D is
unbounded. Therefore, since ρs is radially symmetric we have that D = Rd. The
proof then follows exactly the same as that of Theorem 4.7.

Since each connected component D of the support of ρs is compact by Theorem 4.16,
we have that ρs|∂D = 0. Hence, as in the statement of Theorem 4.13.2, we consider
x ∈ interior (D) and y ∈ interior (supp ρs \D). Note that, since D and
closure(supp ρs \D) are disjoint by assumption and are compact, we have that
min{||x− y|| : x ∈ D, y ∈ closure(supp ρs \D)} > 0.

Proof of Theorem 4.13.2. Set ρs = µ0 = µ(0, ·). We consider suppµ0 made up of two
connected components, D1 and D2. Suppose for a contradiction that there exists
some x∗ = (x∗1, x

′∗) ∈ interiorD1 and y∗ = (y∗1, y
′∗) ∈ interiorD2 such that

||x∗ − y∗|| < 1. Then, |x∗1 − y∗1| <
√

1− ||x′∗ − y′∗||2 = R, where ||x′∗ − y′∗||2 < 1.

Set x∗1 = x̃+ c1 + r1 and y∗1 = x̃+ c2 − r2 where x̃ is chosen such that c1 < 0 and
c2 > 0. We claim that χI(x̃+c1,r1) and χI(x̃+c2,r2) satisfy the assumptions of Lemma
4.14.2. This can be seen from the fact that |x∗1 − y∗1| < R implies
|c2 − r2 − c1 − r1| < R, which gives ||c2 − c1| − |r2 + r1|| < R, yielding
|c2 − c1| < r1 + r2 +R and |r2 − r1| < |c2 − c1|+R.

Furthemore, taking τm := 1
2

min{|c1|, |c2|, |x∗1 − y∗1|, δ0} > 0, with δ0 as defined in [21,
Theorem 2.2], we have that M τm(I(x̃+ c1, r1)) = I(x̃+ c̃1, r1) and
M τm(I(x̃+ c2, r2)) = I(x̃+ c̃2, r2) where

c̃1 = c1 − τm sgn c1 = c1 + τm < −|c1|+ |c1| = 0,

and

c̃2 = c2 − τm sgn c2 = c2 − τm > |c2| − |c2| = 0.

Hence, sgn c̃1 6= sgn c̃2.

Also, since [x̃+ c̃1 + r1, x̃+ c̃2 − r2] ⊂ [x̃+ c1 + r1, x̃+ c2 − r2], we have that
|c̃2 − c̃1 − r2 − r1| < |c2 − c1 − r2 − r1| < R, yielding |c̃2 − c̃1| < r1 + r2 +R and
|r2 − r1| < |c̃2 − c̃1|+R, as required.

Furthermore, setting h0 = maxµ0, we have that χMv(h)τm (I(x̃+c1,r1)) and
χMv(h)τm (I(x̃+c2,r2)) satisfy the assumptions of Lemma 4.14.2. for all τ ∈ [0, τm], since
v(h) < 1 for h < h0.
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Now, fix (x′, h1) ∈ Dx1
1 × (0,∞) and (y′, h2) ∈ Dy1

2 × (0,∞), where
Dz1
i = {z′ ∈ Rd−1 : (z1, z

′) ∈ Di}, for i = 1, 2 and z1 ∈ R. We define the set

B := {(x′, h1)× (y′, h2) : |α− β| < R, α ∈ interiorDx′
1 , β ∈ interiorDy′

2 },

where Dz′
i = {z1 ∈ R : (z1, z

′) ∈ Di}, for i = 1, 2 and z′ ∈ Rd−1. We know by
assumption that B is non-empty. Furthermore, since B is an open set, it has positive
measure. Hence, using the same approach as in the proof of Theorem 4.13.1, we find
that

−d
+

dτ
I[S̃τµ0] =

∫
(Rd−1)2

∫
(R+)2

d+

dτ
IK||x′−y′|| [χUh1

x′
, χ

U
h2
y′

](v(h)τ) dh1dh2dx
′dy′

≥ c|B| > 0 for all τ ∈ [0, τm],

by Lemma 4.14 and 4.15. Thus, there exists a C > 0 such that

E [S̃τµ0]− E [µ0] < −Cτ < 0 (4.24)

for all τ ∈ (0, τm]. However; using the fact that µ0 is a stationary state of (1.1) we
have that

|E [µ(τ, ·)]− E [µ0]| ≤ C2τ
2, (4.25)

for all τ ∈ [0, τm], as discussed in the proof of Theorem 4.13.1. Combining Inequality

(4.24) and (4.25) and taking τ =
C

2C2

, we see that

− C2

4C2

≤ E [µ(τ, ·)]− E [µ0] < − C2

2C2

,

a contradiction.

Hence, from the theorems in this chapter, we have provided a proof for Theorem 4.3.
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5

Mass-independent boundedness of stationary

states

In this chapter, we prove that for m > 2 and for attractive kernels with both compact
and infinite support, stationary states of Equation (1.1) possess a mass-independent
upper-bound. That is, regardless of the size of the support of W , there exists an
upper-bound of any stationary solution to (1.1) that does not depend on the initial
condition. Furthermore, we provide numerical simulations that confirm our analytical
results on stationary states given in both the current and the previous chapter.

5.1 A theoretical upper-bound

Theorem 5.1. Let m > 2. If ρs is a stationary state of (1.1) with W satisfying
assumptions (W1), (W2), and (W4), then

ρs(x) ≤ ρ∗s :=
(m− 1

mε
||W ||L1(Rd)

)1/(m−2)

for all x ∈ Rd.

Proof. Since ρs is a stationary state of (1.1),

mε

m− 1
ρm−1
s (x) + (W ∗ ρs)(x) = Cj for all x ∈ Dj,

where Cj may be different on each connected component Dj of supp ρs. Now, let
z ∈ ∂Dj. Then,

mε

m− 1
ρm−1
s (x) + (W ∗ ρs)(x) =

mε

m− 1
ρm−1
s (z) + (W ∗ ρs)(z) for all x ∈ Dj.

Since ρs ∈ C(Rd) by Theorem 4.11 and ρs is compactly supported by Theorem 4.7,
we have, for z ∈ ∂Dj, that ρs(z) = 0. Hence, for any x ∈ Dj,

mε

m− 1
ρm−1
s (x) + (W ∗ ρs)(x) = (W ∗ ρs)(z).

Furthermore, by (W4), we have that
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(W ∗ ρs)(z) =

∫
Rd
W (z − y)ρs(y) dy ≤ 0.

Therefore, for all x ∈ Dj,

mε

m− 1
ρm−1
s (x) ≤ −(W ∗ ρs)(x) ≤ ||W ||L1(Rd)||ρs||L∞(Rd),

which implies that

ρm−1
s (x) ≤ m− 1

mε
||W ||L1(Rd)||ρs||L∞(Rd), (5.1)

for all x ∈ Dj. Since Dj is an arbitrary connected component of supp ρs and the
upper-bound of ρm−1

s is independent of Dj, then Inequality (5.1) holds for any
Dj ⊆ supp ρs and, thus, for any x ∈ Rd. This yields

||ρs||L∞(Rd) ≤
(
m− 1

mε
||W ||L1(Rd)

)1/(m−2)

as required.

It is quite interesting that this boundedness property can be extended to the case of
ω′ strictly positive on (0,∞). More precisely, the following theorem holds true.

Theorem 5.2. Let m > 2. If ρs is a stationary state of (1.1) with W satisfying
assumptions (W1)-(W3), then

ρs(x) ≤ ρ∗s :=
(m− 1

mε
||W ||L1(Rd)

)1/(m−2)

for all x ∈ Rd.

Proof. Since ρs is a stationary state of (1.1) and is radially decreasing up to a
translation on Rd, by [21, Theorem 2.2], we have that

mε

m− 1
ρm−1
s (x) + (W ∗ ρs)(x) = C = const, for all x ∈ supp ρs.

Since ρs ∈ C(Rd) by [21, Lemma 2.3] and ρs is compactly supported by [26, Lemma
3.2], we have, for z ∈ ∂(supp ρs), that ρs(z) = 0. Hence,

mε

m− 1
ρm−1
s (x) + (W ∗ ρs)(x) = (W ∗ ρs)(z) < 0.

This follows from the fact that ω is strictly increasing on (0,∞) and limr→∞ ω(r) = 0.
Therefore,

mε

m− 1
ρm−1
s (x) < −(W ∗ ρs)(x) ≤ ||W ||L1(Rd)||ρs||L∞(Rd),

for all x ∈ supp ρs. Hence,

||ρs||L∞(Rd) ≤
(
m− 1

mε
||W ||L1(Rd)

)1/(m−2)

,

as required.
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5.2. NUMERICAL SIMULATIONS

5.2 Numerical simulations

In this section we present numerical simulations for Equation (1.1) to illustrate the
results in Theorems 4.13, 5.1, and 5.2. We consider two examples of attractive
kernels, one with bounded and the other with unbounded support. We show that in
both cases the numerical solutions converge towards stationary states that are
radially decreasing up to a translation and compactly supported.

Furthermore, we demonstrate that when m > 2 the stationary states have an
upper-bound independent of the mass. In particular, we are able to confirm
numerically that m = 2 is a threshold such that for m > 2 there exists a
mass-independent upper-bound for the density, while for m ≤ 2, the maximal density
increases without bound as more mass is added to the system. In addition, we see
that for m > 2 and sufficiently large mass, the stationary states are approximately
constant in the interior of their support. In this case, we show that, for any
W ∈ L1(Rd), we can approximate the maximum height of the density by minimizing
the energy functional. We consider numerical results in one dimension for both
Examples 1 and 2. For the initial data, we use a characteristic function, defined on a
symmetric real interval. That is, ρ0 = χ[−a,a], for some a > 0.

In addition, we provide simulations in two-dimensions for the particular case of W
compactly supported. We demonstrate that for this choice of interaction kernel, we
can obtain stationary solutions which exhibit pattern formation. For these
experiments in 2D, we vary the choice of initial data in order to illustrate the range
of patterns that can be obtained. For our numerical computations, we set dx = 0.4
and dt = dx, where dx and dt denote the sizes of the spatial and time steps,
respectively. Unless specified otherwise, for all numerical results, we have set ε = 1.

Example 1 Consider

W (x) =

{
−5e1/(|x|2−1), |x| < 1

0, |x| ≥ 1.

We can clearly see from Figures 5.1, 5.2, 5.3, and 5.4 that the existence of a
mass-independent upper-bound is dependent on the value of the diffusion exponent
m. More precisely, we see in Figure 5.1 that, for m = 2.1 and sufficiently large mass,
the maximal density of the stationary state remains constant as the mass of the
population is increased. That is, for M ≥ 40, the maximal density remains at a value
of max ρs ≈ 2.443, with only the support increasing as the mass of the initial data is
increased. The same behaviour occurs in Figure 5.2, where the maximal value that
the density obtains for any mass is max ρs ≈ 1.19.

Furthermore, our numerical results agree with the upper-bound ρ∗s of ρs, derived in
Theorem 5.1. Here, ρ∗s ≈ 3.942 for m = 2.1 and ρ∗s ≈ 1.726 for m = 2.5, where ||W ||L1

is computed numerically using the same spatial step size as the computations for ρs.
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Figure 5.1: Example 1: Stationary solutions of Equation (1.1), where m = 2.1. For
M ≥ 40 we have max ρs ≈ 2.443.

Figure 5.2: Example 1: Stationary solutions of Equation (1.1), where m = 2.5. For
M ≥ 20 we have max ρs ≈ 1.19.
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Figure 5.3: Example 1: Stationary solutions of Equation (1.1), where m = 2. The
maximum density continues to increase with the mass, while the support remains
constant.
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Figure 5.4: Example 1: Stationary solutions of Equation (1.1) where m = 1.5. The
height of the density increases and the support decreases as the mass is increased.
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5.2. NUMERICAL SIMULATIONS

Figure 5.5: Example 1: Stationary solution of Equation (1.1), where m = 2.1, depicting
the formation of multiple connected components.

In contrast, in Figures 5.3 and 5.4 we see that, for m = 2 and m = 1.5, respectively,
the maximal density continues to grow with the mass of the initial data, implying the
absence of a mass-independent upper-bound. Using the same mass as in Figures 5.1
and 5.2, we obtain convergence towards stationary solutions that do not reach a
plateau where the internal density is approximately constant, as is the case for
m > 2. Furthermore, for stationary states with mass that is well above that of the
stationary states depicted in Figures 5.1 and 5.2, the maximum height of the density
continues to grow with the mass, suggesting that the maximum height is dependent
on the mass for any M > 0. It is also interesting to note that for m = 2, the support
of the stationary state remains constant as the mass is increased, while for m = 1.5,
as the mass increases, the size of the support decreases.

The emergence of multiple clumps can be seen in Figure 5.5. Indeed, we see that, for
initial data with sufficiently large support, the support of the stationary solution is
made up of multiple connected components. Figure 5.6 gives another example of a
stationary state with multiple connected components. We choose a randomly
distributed initial condition with mass large enough such that some of the swarms in
the stationary state reach their preferred maximum density with approximately
constant interior. In Figure 5.7, we provide a close up view of the two swarms in
Figure 5.6 with the shortest proximity, that is, the second and third swarms from the
left. We see that the distance between these two swarms is no smaller than the radius
of suppW , confirming the analytical result given in Theorem 4.13.2.
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Figure 5.6: Stationary solution of Equation (1.1), where m = 3 and W (x) = −max(1−
|x|2, 0). The initial condition is randomly distributed with mass M = 55. The mass of
the initial condition is large enough to allow for some swarms to reach their preferred
maximum density, where their interior is approximately constant.

Figure 5.7: Close up of the two closest swarms of the stationary state depicted in
Figure 5.6, that is, the second and third swarms from the left. The distance between
these two swarms is not smaller than the radius of suppW , confirming the analytical
result given in Theorem 4.13.2.
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5.2. NUMERICAL SIMULATIONS

Finally, we comment on the fact that, in all figures for Example 1, the stationary
states are compactly supported and radially decreasing up to a translation on each
connected component of their support, agreeing with the analytical results given in
Section 4.2.

Example 2 Consider

W (x) = −e−|x|, x ∈ R.

In Example 2, we consider the case of ω with unbounded support. Similarly to
Example 1, we see in Figures 5.8, 5.9, 5.10, and 5.11 that m = 2 acts as a threshold
value separating stationary states that possess a mass-independent upper-bound with
those that do not. In Figures 5.8 and 5.9, where m = 2.1 and m = 2.5, respectively,
we obtain stationary states that are bounded above independent of the mass of the
initial data with the internal density approximately constant, while in Figures 5.10
and 5.11, where m = 2 and m = 1.5, respectively, we obtain stationary states whose
height continues to increase regardless of the mass of the initial data. Hence, for W
with either bounded or unbounded support we obtain the same dichotomy of
behaviour as we vary m.

As in Example 1, our numerical results have an upper-bound less than the theoretical
upper-bound ρ∗s of ρs, derived in Theorem 5.1. Indeed, in our numerical simulation
we obtain a mass-independent upper-bound for m = 2.1 and m = 2.5, respectively,
given by, max ρs ≈ 1.1 and max ρs ≈ 1.0117. Comparing this to our analytical result,
where ρ∗s ≈ 1.59 for m = 2.1 and ρ∗s ≈ 1.44 for m = 2.5, we see that our numerical
upper-bound remains below our analytical upper-bound, regardless of the mass.

Furthermore, we obtain stationary solutions that are compactly supported and are
radially decreasing up to a translation, agreeing with the analytical results given in
[21] and [26]. Moreover, we see in Figure 5.12 that, using the same initial data as in
Figure 5.5, Example 1, we obtain a stationary state whose support consists of a single
component. This is expected, since the attractive kernel W has infinite support.
Hence, we are able to obtain different stationary solutions by varying the size of the
support of W .

In particular, attractive kernels with compact support can be considered
advantageous over kernels with infinite support, since they allow for the formation of
patterns, as can be seen in Figures 5.13, 5.14, and 5.15. In addition, compactly
supported interaction kernels can be considered as more realistic with regard to
modelling physical and biological aggregations, as the sensing mechanisms of agents
in nature do not have an infinite range.

We note that, for both Examples 1 and 2, our numerical simulations of the stationary
solutions are in line with the analytical result given in [31, Corollary 2.3] where it is
proved that, for the particular case of the Newtonian kernel, where m > 2− 2

d
, and for

two stationary states ρ1 and ρ2, with masses M1 > M2, the following properties hold:
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Figure 5.8: Example 2: Stationary solutions of Equation (1.1), where m = 2.1. For
M ≥ 40 we have max ρs ≈ 1.1.

(a) If m > 2, then ρ1 has a bigger support and bigger height than ρ2.

(b) If m = 2, then ρ1 and ρ2 have the same size support.

(c) If 2− 2
d
< m < 2 then ρ1 has a smaller support and greater height than ρ2.

We remark that Property (a) holds unless M1 and M2 are large enough so that both
stationary states reach their preferred maximum density. In this case, both stationary
states will have the same height and ρ1 will have a larger support than ρ2.

Additionally, we see that, in both examples, our numerical results satisfy the
properties of conservation of mass and the preservation of positivity of the solution,
as expected. Furthermore, when we make the domain large enough to accommodate
the mass of the initial condition, we observe that the centre of mass is conserved as
the solution evolves. In particular, for the case of W with unbounded support, the
centre of mass acts as a centre for the radially decreasing stationary solution.

By our numerical simulations for both Examples, we see that, for sufficiently large
mass, the stationary states are approximately constant in the interior of their
support. This is in agreement with the numerical results obtained in [42], where
stationary states corresponding to a special case of Equation (1.1), where m = 3, are
considered. In particular, the authors derive an approximation for the stationary
states using the energy functional (3.1) for the case when the mass is large enough
such that the stationary states are approximately constant inside their support. We
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5.2. NUMERICAL SIMULATIONS

Figure 5.9: Example 2: Stationary solutions of Equation (1.1), where m = 2.5. For
M ≥ 20 we have max ρs ≈ 1.0117.

extend this approximation to stationary states of Equation (1.1) with diffusion
coefficient m > 2 as follows:

We consider the energy functional (3.1) and assume that the mass is large enough
such that the stationary states are approximately constant inside their support. Then,

E [ρs] =
ε

m− 1

∫
Rd
ρms dx+

1

2

∫
Rd
ρs(W ∗ ρs) dx

≈ ε

m− 1
ρms

∫
supp ρs

dx− ρ2
s

2
||W ||L1(Rd)

∫
supp ρs

dx

=
ε

m− 1
ρms | supp ρs|d −

ρ2
s

2
||W ||L1(Rd)| supp ρs|d.

Now, since we assume ρs is approximately constant in its support, we have that

M =

∫
supp ρs

ρs dx ≈ ρs| supp ρs|d.

Hence, | supp ρs|d ≈ M
ρs

, and so

E [ρs] ≈
ε

m− 1
ρm−1
s M − ρs

2
||W ||L1(Rd)M.

Now, since ρs is a stationary state of (1.1), it is a stationary point of the energy
functional, by Theorem 4.12. Therefore,

ερm−2
s M − M

2
||W ||L1(Rd) ≈ 0,
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Figure 5.10: Example 2: Stationary solutions of Equation (1.1), where m = 2. The
maximum density continues to increase with the mass, while the support remains
constant.
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5.2. NUMERICAL SIMULATIONS

Figure 5.11: Example 2: Stationary solutions of Equation (1.1) where m = 1.5. The
height of the density increases and the support decreases as the mass is increased.
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Figure 5.12: Example 2: Stationary solution of Equation (1.1), where m = 2.1. The
support of ρs consists of a single component, contrasting the stationary state with the
same initial data given in Figure 5.5.

yielding

ρs ≈
( ||W ||L1(Rd)

2ε

) 1
m−2

.

in supp ρs. Denoting the above approximation by ρE, we find that, for Example 1,
ρE ≈ 2.476 if m = 2.1 and ρE ≈ 1.2 if m = 2.5, where we have used the trapezoidal
rule, with spatial step size dx = 0.4, to approximate the integral of W , obtaining
||W ||L1(Rd) ≈ 2.1898. Additionally, for Example 2, we find that ρE ≈ 1 for both
m = 2.1 and m = 2.5.

In Table 5.1, a summary of the results obtained in this section regarding the
mass-independent upper-bound of stationary states of (1.1) for m = 2.1 and m = 2.5
is given. In addition, we include results for cases m = 3 and m = 3.5. We note that
the numerical solution for m = 2.1 and m = 2.5 goes above ρE, implying that ρE is
not an upper-bound for stationary states of (1.1). However, we conjecture that this is
a numerical error as the numerical stationary state moves above ρE when
approaching the threshold value m = 2.

We also note that limm→∞
(
m−1
mε
||W ||L1(Rd)

) 1
m−2 = 1 and limm→∞

( ||W ||
L1(Rd)
2ε

) 1
m−2 = 1,

showing that our theoretical upper-bound ρ∗s and the energy approximated
upper-bound ρE agree in the limit of large m.
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5.2. NUMERICAL SIMULATIONS

Figure 5.13: Pattern formation of a stationary solution of Equation (1.1), where m = 3
and ω(r) = −5e1/(r2−1) for 0 < r < 1 and ω(r) = 0 for r ≥ 1. The initial condition is
made up of a linear combination of step functions of the same height that are evenly
distributed throughout the domain.
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Figure 5.14: Pattern formation of a stationary solution of Equation (1.1), where m = 3
and ω(r) = −5e1/(r2−1) for 0 < r < 1 and ω(r) = 0 for r ≥ 1. The initial condition is
randomly distributed.
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5.2. NUMERICAL SIMULATIONS

Figure 5.15: Pattern formation of a stationary solution of Equation (1.1), where m = 3,
ε = 5 and W = −(1 − ||x||2)+. We choose a randomly distributed initial condition
with mass large enough to allow for some swarms to reach their preferred maximum
density, where their interior is approximately constant.
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Table 5.1: Approximation of the maximal value of ρs for Equation (1.1).
Example 1

ρ∗s numerical
max ρs

ρE

m=2.1 3.942 2.443 2.476
m=2.5 1.726 1.19 1.2
m=3 1.333 1.0925 1.0949
m=3.5 1.333 1.0589 1.0623

Example 2
ρ∗s numerical

max ρs

ρE

m=2.1 1.59 1.1 1
m=2.5 1.44 1.0117 1
m=3 1.333 0.99933 1
m=3.5 1.27 0.99742 1

5.3 The aggregation-diffusion equation with a time

dependent attractive kernel

In this section, we consider the case where the attractive kernel W is dependent on
both space and time. In particular, we provide numerical results in two dimensions of
Equation (1.1) with the addition of an exogenous force V (x, t). That is, we consider
the equation given by

∂tρ = ε∆ρm +∇ · (ρ∇(W ∗ ρ+ V )). (5.2)

In many biological swarms, such as locusts or fruit flies, the aggregation of the species
does not occur constantly over time [43]. For example, the species will aggregate to
find a potential mate, but then disperse to forage for food. Hence, it is noteworthy to
consider how the behaviour of the swarm evolves when the strength of the
aggregation is dependent on time. For our numerical simulations, we consider two
choices of attractive kernels, given by Examples 1 and 2 below.

Example 1

W (x, t) =

{
− 1

2π
e−||x||, for t ∈ A

0, otherwise

Example 2

W (x, t) =

{
−(1− ||x||2)+, for t ∈ A
0, otherwise
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5.3. THE AGGREGATION-DIFFUSION EQUATION WITH A TIME
DEPENDENT ATTRACTIVE KERNEL

In both examples, we denote A to be some union of disjoint intervals.

We first consider solutions to Equation (5.2) where W is given by Example 1, that is,
where W has infinite support. We choose the exogenous force V (x, t) to be a cluster
of four Gaussian functions situated at the bottom left corner of the domain, which
disappears when t ∈ A, that is, when the attractive kernel is ”switched on”. In a
biological setting, we make this choice of V in order to model the presence of a food
source. However; other choices of V can be considered to model other exogenous
forces such as wind, gravity, or light sources.

We pick the initial condition to be a single Gaussian function located away from the
exogenous force V , depicted in Figure 5.16 (a). In (b), we see the time evolution of
the solution as a result of the attractive kernel being switched off and the exogenous
force being switched on. We see that the population breaks away from a single swarm
and moves towards the food source. As a result of the diffusion term and the limited
food source, some of the population remains close to the site of the initial aggregation.

After a certain time, the aggregation term is switched on and the exogenous force is
switched off. As a result, two separate swarms are formed, as illustrated in (c). As
time passes, we see in (d) that the two swarms merge into a single swarm. This is a
consequence of the attractive kernel having infinite support. We comment that the
state in which the solution is comprised of two separate swarms is long-lived. This
meta-stable behaviour is a well-known attribute of solutions to non-linear aggregation
diffusion equations where the attractive kernel decays quickly over space, as shown in
[18] and references therein. A video providing an example of this metastable
behaviour in the dynamics of Equation (1.1) may be found in [12].

Lastly, we note that the final swarm in (d) is in a different location to the initial
condition, attributed to the presence of an exogenous force. Indeed, in the absence of
the exogenous force, the final state of the swarm would be in the same location as the
initial condition in (a). Hence, the exogenous force allows for the swarm to travel in
space over time.

Figure 5.17 illustrates the evolution of the solution of Equation (5.2), where W is
given by Example 2, that is, where W is compactly supported, and where V (x, t) is a
random distribution in space and vanishes when t ∈ A. We pick the initial condition
to be a single Gaussian function situated in the centre of the domain. In (a), we see
the time evolution of the solution as a result of the attractive kernel being switched
off and the exogenous force being switched on. The population breaks away from a
single swarm and moves towards the randomly distributed food source.

When the aggregation term is switched back on and the exogenous force is switched
off, multiple swarms of varying size are formed, as illustrated in (b). Because of the
metastability behaviour, we terminate the simulation before the stationary state is
reached; however, from our analytical results given in Chapter 4, we expect that the
solution will converge in time towards a stationary state where each swarm has a
compact and circular support. We refer to [12] for a video representation of the
dynamics of Equation (5.2) for both Examples 1 and 2.
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Figure 5.16: Simulation of aggregations of a population over time where the time-
dependent attractive kernel W of Equation (1.1) has infinite support and the model
incorporates a space and time-dependent exogenous force V . (a) Depiction of the
initial condition given by a Gaussian function. (b) The attractive kernel is switched
off and the exogenous force, modelling food sources is switched on. The population
breaks away from a single swarm and moves towards the food source. (c) Two separate
swarms are formed when the aggregation term is switched on and the exogenous force
is switched off. (d) The two swarms merge into a single swarm, which has a different
location to the initial condition.
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Figure 5.17: Simulation of aggregations of a population over time where the time-
dependent attractive kernel W of Equation (1.1) is compactly supported and the model
incorporates a space and time-dependent exogenous force V . (a) The attractive kernel
is switched off and the exogenous force, modelling food sources, randomly distributed
over the domain, is switched on. The population breaks away from a single swarm and
moves towards the food sources. (b) Multiple swarms of varying size are formed when
the aggregation term is switched on and the exogenous force is switched off. We expect
the swarms to converge towards a stationary state where each swarm has a compact
and circular support.
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5.3.1 Numerical procedures used

For all numerical results in one dimension, an implicit-explicit (IMEX) scheme,
presented in [16], is used. This scheme is based on the explicit scheme devised in [19].
The convective term is approximated in space using the same second-order upwind
scheme as presented in [19], while the diffusive term is approximated in space by
second order central finite differences. The discrete convolution is evaluated using a
fast Fourier transform algorithm [28].

In our simulations, we use the forward Euler’s method to discretize time. The
diffusive term is discretized implicitly in time while the the convective term is
disctretized explicitly in time, resulting in the Euler IMEX method, given by

ρn+1 = ρn + dt(C(ρn) +D(ρn+1)),

where C(ρ) and D(ρ) are the spatial discretizations of the convective and diffusive
terms, respectively. The resulting nonlinear problem is solved using Newton’s method.

The benefit of the diffusive term being handled implicitly is that less restriction is
needed for the CFL condition, compared to explicit schemes. In addition, under a
suitable CFL condition, it is proved in [16] that this Euler IMEX scheme is
positivity-preserving.

For all numerical simulations in two dimensions, we again use the Euler IMEX
scheme presented in [16], as well as the Alternating-Direction implicit (ADI) method
to handle the implicit in time diffusive term [34]. The ADI method is used here to
allow for a good compromise between accuracy and speed.

Finally, we note that in all simulations presented in this dissertation, we have used
periodic boundary conditions. Since the problem is posed on R or R2, periodic
boundary conditions are convenient as they account for the fact that we are not
interested in any boundary effects. For efficiency, in our 2D simulations we made use
of the Sherman-Morrison formula, which treats our system of equations generated by
our finite difference scheme as a tridiagonal system plus a correction [40].
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6

Model of non-local aggregation and non-local

repulsion

In this chapter, we investigate a model incorporating both non-local repulsion and
non-local attraction. Similarly to Equation (1.1), we aim to model the behaviour of
individuals as a result of long-range attraction and short-range repulsion; however, as
opposed to modelling the repulsion using non-linear diffusion, we consider a non-local
term where the kernel, denoted R, has a shorter range of interaction compared to the
attractive kernel W . We consider the following non-local integro-differential equation
given by

∂tρ = ∇ · (ρ∇(W ∗ ρ+ εR ∗ ((R ∗ ρ)m−2ρ) +
ε

m− 1
(R ∗ ρ)m−1)). (6.1)

Recalling the property of the Dirac measure given in Section 2.1.4, if R is the Dirac
measure, then

(R ∗ ρ)(x) =

∫
Rd
ρ(y) dδx(y) = ρ(x).

For this choice of R, Equation (6.1) reduces to Equation (1.1). Hence, (6.1) can be
considered as a generalization of (1.1).

It is proved in [20] that under certain regularity conditions on R and W , and for
m ≥ 2, we have global existence and uniqueness of weak solutions to Equation (6.1),
where test functions are taken in C∞0 so that weak solutions of (6.1) lie in the dual
space of C∞0 .

We note that Equation (6.1) looks rather complicated. The motivation to have it in
such a form is the fact that the corresponding energy functional is conveniently given
by

E [ρ] =
ε

m− 1

∫
Rd
ρ(R ∗ ρ)m−1 dx+

1

2

∫
Rd
ρ(W ∗ ρ) dx,

as shown in [20]. Furthermore, the energy functional is a Lyapunov functional for the
dynamics of (6.1). Indeed, suppose first that ρ is a classical solution of (6.1). Taking
the derivative of E [ρ] with respect to time, we see that

∂tE [ρ] =

∫
Rd
ρt(W ∗ ρ) dx+

ε

m− 1

∫
Rd
∂t

[
ρ(R ∗ ρ)m−1

]
dx
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where the first term on the right is obtained using the same argument given for the
proof of the dissipation of (3.1) in Section 3.1. Now, considering the second term on
the right, we see that∫

Rd
∂t

[
ρ(R ∗ ρ)m−1

]
dx =

∫
Rd
ρt(R ∗ ρ)m−1 + (m− 1)ρ(R ∗ ρ)m−2(R ∗ ρt) dx.

Using the assumption that R is even and making a slight abuse of notation by
suppressing the t dependence of ρ, we have that∫

Rd
ρ(R ∗ ρ)m−2(R ∗ ρt) dx =

∫
Rd

∫
Rd
ρ(x)(R ∗ ρ)m−2(x)

[
R(x− y)ρt(y)

]
dydx

=

∫
Rd
ρt(y)

∫
Rd
R(y − x)

[
ρ(x)(R ∗ ρ)m−2(x)

]
dxdy

=

∫
Rd
ρtR ∗

(
(R ∗ ρ)m−2ρ

)
dx,

by change of variables. Hence,

∂tE [ρ] =

∫
Rd
ρt

(
W ∗ ρ+

ε

m− 1
(R ∗ ρ)m−1 + εR ∗

(
(R ∗ ρ)m−2ρ

))
dx.

Now, using the fact that ρ satisfies equation (6.1) and applying integration by parts,
we find that

∂tE [ρ] = −
∫
Rd
ρV 2 dx ≤ 0,

where
V = ∇

(
W ∗ ρ+

ε

m− 1
(R ∗ ρ)m−1 + εR ∗

(
(R ∗ ρ)m−2ρ

))
.

This property of energy dissipation is extended in [20] to hold for weak solutions in
the dual of C∞0 . Hence, similarly to Equation (1.1) and its corresponding energy, the
energy functional (6) may provide insights into stationary states of (6.1).

6.1 Stationary states for m = 2

Recall that for Equation (1.1), for the particular case of m > 2 and for any attractive
kernel W satisfying (W1), (W2) and either (W3) or (W4), we obtain stationary
states that are physically and biologically relevant. That is, they have an
upper-bound that is independent of the mass of the initial condition, they are
compactly supported with sharp edges, and their internal density is approximately
constant for sufficiently large mass. Hence, it is natural to consider whether we
obtain the same result for stationary solutions to Equation (6.1).

In this section, we consider the case when m = 2 so that Equation (6.1) reduces to

∂tρ = ∇ · (ρ(∇Q ∗ ρ)) (6.2)
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6.1. STATIONARY STATES FOR M = 2

Figure 6.1: Stationary solution of Equation (6.2), where W given by (6.3) with G = 0.4
and L = 4. The initial condition is a step function centred at 0.

where Q : Rd → R is the interaction kernel incorporating both attractive and
repulsive parts, given by Q = W + 2εR. Examples of attractive-repulsive interaction
kernels found in the literature include the attractive-repulsive power-law kernels [24],
given by

Q(x) =
|x|a

a
− |x|

r

r
,

as well as the Morse potential,

Q(x) = −Cae−|x|/`a + Cre
−|x|/`r .

Considerable research has been done in the existing literature on Equation (6.2) for Q
equal to the Morse potential [8, 33]. In particular, for the special case of the Morse
potential, given by

W (x) = −GLe−|x|/L + e−|x| where L > 1, (6.3)

the authors of [33] provide numerical results depicting solutions to (6.2) that either
decay to zero, blow up in finite time or converge in time to a compactly supported
stationary state.

More precisely, for the case when solutions exist globally in time, that is when G ≤ 1,
it is proved numerically in [33] that the value GL2 = 1 acts as a threshold value.
That is, for GL2 ≥ 1, solutions converge to compactly supported stationary states
whose maximum height doubles by doubling the mass of the initial condition. These
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numerical results imply that stationary solutions in this regime do not have a
mass-independent upper-bound and thus are not physically and biologically realistic.
In contrast, for GL2 < 1, solutions decay to zero on an unbounded domain, implying
the absence of non-trivial stationary solutions. Hence, we may conclude that, for the
case of m = 2, we do not obtain stationary solutions of (6.1) that are physically and
biologically relevant.

6.2 Stationary states for m > 2

In this section, we obtain numerical results on the stationary solutions to Equation
(6.1) for m > 2. We consider two choices of the interaction kernels R and W - one
where both kernels have compact support and one where both have infinite support.
We see that, just as for stationary solutions of Equation (1.1) for m > 2 and for both
choices of W , numerical solutions of Equation (6.1) converge to stationary states that
are compactly supported with steep edges and have a mass-independent
upper-bound, as depicted in Figures 6.2 and 6.3. Figure 6.2 illustrates stationary
states where R are W are compactly supported, while Figure 6.3 gives an illustration
of stationary states where R and W have infinite support. In addition, we see that for
large enough mass, the stationary states have a constant internal density. Hence, we
obtain stationary states of Equation (6.1) with the same characteristics as those of
Equation (1.1). Therefore, we can conclude that m = 2 is a threshold value such that
for m > 2 we obtain stationary solutions that are physically and biologically realistic.

We note that for all numerical simulations of Equation (6.1), we have set ε = 1.
Furthermore, we have used the upwind scheme presented in [19], where we have
chosen dx = 0.267 and dt = dx7.

Remark 6.1. We recall that Equation (6.1) is a generalization of Equation (1.1). In
fact, it is proved in [20] that for m > 2, solutions of Equation (6.1) converge in the
sense of distributions to solutions of Equation (1.1) as the interaction potential R is
localized. More precisely, considering the repulsive kernel

Rr(x) = r−dR(r−1x),

and for all r > 0 where ρr is a weak solution to Equation (6.1) and ρ is a weak
solution to Equation (1.1), it is proved that∫

Rd
ρr(·, t)φ dx→

∫
Rd
ρ(·, t)φ dx

as r → 0, for all φ ∈ C∞0 (Rd) and for almost every t ≥ 0.
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6.2. STATIONARY STATES FOR M > 2

Figure 6.2: Stationary solutions to Equation (6.1) for m = 3. We choose W = −(1 −
|x|)+ and R = 2−1(1− 2−1|x|)+.

Figure 6.3: Stationary solutions to Equation (6.1) for m = 3. We choose W = −1
2
e−|x|

and R = e−2|x|.
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CHAPTER 6. MODEL OF NON-LOCAL AGGREGATION AND NON-LOCAL
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6.3 Approximation of stationary states using the

energy

In this section, we derive an approximation for the stationary solutions to Equation
(1.1) for m > 2 and when the mass of the swarm is sufficiently large so that
stationary solutions have a constant internal density. Similarly to Equation (1.1), we
can approximate the maximum height of these stationary states by minimizing the
energy functional of Equation (6.1). Indeed, for ρs a stationary state of (6.1) with
internal density approximately constant, we have that

E [ρs] =
ε

m− 1

∫
supp ρs

ρs(R ∗ ρs)m−1 dx+
1

2

∫
supp ρs

ρs(W ∗ ρs) dx

≈ ερms
m− 1

||R||m−1
L1(Rd)

∫
supp ρs

dx− ρ2
s

2
||W ||L1(Rd)

∫
supp ρs

dx

=
ερms
m− 1

||R||m−1
L1(Rd)

| supp ρs|d −
ρ2
s

2
||W ||L1(Rd)| supp ρs|d.

Since M =
∫
Rd ρs dx = ρs| supp ρs|d, we have that | supp ρs|d = M

ρs
. Hence,

E [ρs] ≈
εM

m− 1
ρm−1
s ||R||m−1

L1(Rd)
− Mρs

2
||W ||L1(Rd).

Using the fact that E is a Lyapunov functional for the evolution of (6.1), we have that
εMρm−2

s ||R||m−1
L1(Rd)

≈ M
2
||W ||L1(Rd), which yields

ρs ≈

(
||W ||L1

2ε||R||m−1
L1

) 1
m−2

=: ρE,

in supp ρs.
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6.3. APPROXIMATION OF STATIONARY STATES USING THE ENERGY

In Table 6.1, we summarize the results obtained for stationary states of (6.1) for varying
m and for both examples of interaction kernels. In particular, we provide a comparison
between the numerically obtained maximum height of stationary states and the mass-
independent upper-bound ρE derived from the energy functional.

Table 6.1: Approximation of the maximal value of ρs for Equation (6.1).
R and W with compact support

numerical
max ρs

ρE

m=2.5 0.25 0.25
m=3 0.498 0.5
m=3.5 0.61 0.63

R and W with infinite support
numerical
max ρs

ρE

m=2.5 0.207 0.25
m=3 0.45 0.5
m=3.5 0.58 0.63

We expect that the numerical maximum of ρs will converge to 1 as m→∞, since

lim
m→∞

(
||W ||L1

2ε||R||m−1
L1

) 1
m−2

= 1.

87

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



7

Conclusion and Future work

In this dissertation, we extend the theory of stationary solutions to Equation (1.1) to
compactly supported attractive kernels. We prove that, for m > 2, stationary
solutions are compactly supported and radially decreasing up to a translation on each
connected component of their support. Furthermore, we prove that, if the support of
the stationary solution is made up of more than one component, then the distance
between any two connected components must be greater than the radius of the
support of the attractive kernel. In addition, for m > 2 and for attractive kernels
with either bounded or unbounded support, we prove that stationary solutions have a
mass-independent upper-bound.

Additionally, we obtain numerical results that agree with our analytical results. We
note that our analytical and numerical results agree with characteristics of physical
and biological aggregations [38, 39, 42]. That is, the population aggregates to form a
group whose spatial extent is bounded, the density has a mass-independent
upper-bound and, for sufficiently large mass, the internal density of the population is
approximately constant, implying a preferred inter-organism spacing that is
independent of the mass of the population. More precisely, for the case of a domain
that is large enough to accommodate the mass, increasing the population beyond a
certain point does not cause over-crowding, but rather an increase in the support of
the population.

Furthermore, we find that there is an advantage to consider attractive kernels with
compact support over those with infinite support, as they allow for the formation of
patterns, where multiple disjoint ”clumps” are formed, in comparison to a single
connected ”clump” for the case of an attractive kernel with infinite support. We also
consider the case where the attractive kernel is dependent on time and where a term
modelling an exogenous force is incorporated into the model. When the attractive
kernel has compact support, numerical results show the formation of multiple
aggregations that can change location over time due to the presence of the exogenous
force and the fact that the attractive kernel is time-dependent.

Finally, we consider a model, given by Equation (6.1), where the diffusion is replaced
by a non-local repulsive term. Just as for stationary solutions to Equation (1.1),
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numerical results show that m = 2 acts as a threshold value such that for m = 2
stationary states of (6.1) either decay to zero or double in height as we double the
mass of the initial condition, whereas, for m > 2, stationary states are bounded above
independent of the mass of the initial condition. Moreover, for sufficiently large mass,
the internal density is approximately constant. Lastly, we obtain an approximate
upper-bound for stationary states of (6.1) for m > 2 by minimizing the equation’s
corresponding energy functional.

As a result, we can conclude that for both Equations (1.1) and (6.1), with m > 2 and
no restriction on the support of the attractive kernel, we obtain stationary states with
characteristics that are physically and biologically realistic. We also show that by
considering an attractive kernel with compact support, solutions of Equation (1.1)
form spatial patterns over time.

There are several lines of research arising from this work which can be pursued. For
instance, an extension of the current theory can be made where Equations (1.1) and
(6.1) are defined on a bounded domain. Interestingly, in [8] it is proved through
numerical and analytical results that, for Equation (6.1) with m = 2 and when the
domain of definition is bounded, solutions with sufficiently large mass will converge to
a stationary state with internal density almost constant and with an accumulation of
mass on the boundary in the form of delta-like functions. In addition, our own
numerical results in one dimension show that, for Equation (6.1) with m > 2, we also
obtain an accumulation of mass on the boundary of our domain when no-flux
boundary conditions are used. This occurs when the mass of the initial data is larger
than what the domain can accommodate to allow for stationary states to reach their
preferred maximum density over the whole domain.

It is interesting to note that this accumulation of mass on the boundary does not
occur for Equation (1.1), which results in stationary solutions that do not reach their
preferred maximum density for the mass sufficiently large. Hence, the non-local
repulsion may provide an advantage over non-linear diffusion in the modelling of
collective behaviour on a bounded domain. This is because it is more biologically
realistic that individuals would not tolerate a density higher than their preferred
maximum, resulting in individuals on the periphery of the swarm being forced to
accumulate on the boundary. However, to our knowledge, no theoretical analysis has
been done regarding stationary states of Equation (6.1) for m > 2 on a bounded
domain. Hence, this can be considered as a possible line of research for the future.

Additionally, since the uniqueness result for stationary solutions to Equation (1.1)
where W has unbounded support relies on the radial symmetry property, one may
expect that the result on radial symmetry given here may open a window to obtain
uniqueness of stationary states on each connected component of the support for the
case of compactly supported attractive kernels.
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