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Abstract

Growing items have, in recent years, emerged as a distinct class of items within
inventory modelling, similar to perishable or repairable items, for example. This class
of items includes livestock, crops and fish, to name a few. The importance of inventory
models developed specifically for growing items is due to the utility of these items to
humanity and the financial implication that a poor inventory management system can
have on a business. Most growing items are consumed as food products, albeit in a form
that is suitable for human consumption. From a financial standpoint, inventory often
accounts for the biggest portion of the current assets of a business’ balance sheet and
therefore, a poorly managed inventory system has the potential to financially cripple a
business.

The objective of this research is to develop models for managing growing inventory
items in multi-echelon supply chain settings. Food production operations are complex
industrial systems that often involve multiple entities and processes. Food production sys-
tems often start with farming operations at the upstream end of the supply chain, where
the live growing items are reared, and end with retail operations at the downstream end
of the supply chain, where consumable food products are sold to end-users. The farming
and retail ends of the supply chain are often connected by various forms of value-adding
operations such as, in the case of livestock, de-feathering, stunning, slaughtering, pro-
cessing and packaging. These value-adding activities transform the live items into a form
that is safe for sale and consumption. Hence, a multi-echelon supply chain structure best
represents these operations. This is a departure from most current literature whereby the
models not only ignore the value-adding operations but also the multi-echelon nature of
food production systems. By accounting for these shortcomings in the current literature,
the models presented in this thesis are more realistic and are thus, useful for operations
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and supply chain management practitioners who can use them when making ordering
and shipment decisions in multi-echelon supply chains that involve growing items.

Furthermore, issues such as item mortality, quality control, pricing decisions, quan-
tities of stock on shelves and expiration dates are also taken into account. These issues
are important in food production systems and this further enhances the practical use of
the models. The importance of these issues, along with that of collaboration between
all supply chain members, is quantified through numerical experimentation. In certain
instances, the profit generated across the supply chain can increase by as much as 15% if
all members collaborate and integrate their ordering and shipment decisions. Prolonging
the shelf life (expiration date) of food products by 40% can increase supply chain profits
by as much as 21%. Furthermore, supply chain profits can be increased by as much as
10% and 21%, respectively, if survival rates of live inventory items and acceptable qual-
ity levels of the processed inventory are kept at 100%. While 100% survival rates and
100% acceptable quality levels might not be possible in reality, operations and supply
chain management practitioners should strive to keep them as high as possible. Practi-
tioners should also invest in preservation technologies that have the potential to improve
the freshness of products. All these measures, along with increased collaboration between
supply chain members, can be used by supply chain practitioners to increase profits across
food production systems.

ii

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Research Outputs

The following research articles, all of which are derived from the work carried out for
this thesis, have either been accepted for publication or are currently under review at
accredited journals:

1. Sebatjane, M., Adetunji, O. A three-echelon supply chain for economic growing
quantity model with price- and freshness-dependent demand: Pricing, ordering and
shipment decisions. Operations Research Perspectives (Accepted for publication)
https://doi.org/10.1016/j.orp.2020.100153

2. Sebatjane, M., Adetunji, O. Optimal inventory replenishment and shipment policies
in a four-echelon supply chain for growing items with imperfect quality. Production
& Manufacturing Research (Accepted for publication) https://doi.org/10.1080/
21693277.2020.1772148

3. Sebatjane, M., Adetunji, O. Three-echelon supply chain inventory model for growing
items. Journal of Modelling in Management (Accepted for publication) https:

//doi.org/10.1108/JM2-05-2019-0110

4. Sebatjane, M., Adetunji, O. Optimal lot-sizing and shipment decisions in a three-
echelon supply chain for growing items with inventory level- and expiration date-
dependent demand. Applied Mathematical Modelling (Revised manuscript resub-
mitted for second-round review)

5. Sebatjane, M., Adetunji, O. A four-echelon supply chain for growing items with
imperfect quality and errors in quality inspection. Annals of Operations Research
(Submitted for review)

6. Sebatjane, M., Adetunji, O. Optimal inventory replenishment and shipment policies
in a three-echelon supply chain for growing items with expiration dates. Opsearch
(Submitted for review)

iii

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

https://doi.org/10.1016/j.orp.2020.100153
https://doi.org/10.1080/21693277.2020.1772148
https://doi.org/10.1080/21693277.2020.1772148
https://doi.org/10.1108/JM2-05-2019-0110
https://doi.org/10.1108/JM2-05-2019-0110


Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The importance of growing items . . . . . . . . . . . . . . . . . . 2
1.2.2 The importance of multi-echelon supply chain systems . . . . . . 2

1.3 Research gap identification . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Sub-objective 1: A three-echelon supply chain inventory model for
growing items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.2 Sub-objective 2: A three-echelon supply chain inventory model for
growing items with price- and freshness-dependent demand . . . . 4

1.4.3 Sub-objective 3: A four-echelon supply chain inventory model for
growing items with imperfect quality . . . . . . . . . . . . . . . . 4

1.4.4 Sub-objective 4: A three-echelon supply chain inventory model for
growing items with expiration dates . . . . . . . . . . . . . . . . . 5

1.4.5 Sub-objective 5: A four-echelon supply chain inventory model for
growing items with imperfect quality and errors in quality inspection 5

1.4.6 Sub-objective 6: A three-echelon supply chain inventory model for
growing items with inventory level- and freshness-dependent demand 5

1.5 Thesis organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Relevant inventory management models . . . . . . . . . . . . . . . . . . . 7

2.2.1 Lot-sizing models for growing items . . . . . . . . . . . . . . . . . 8
2.2.2 Joint economic lot-sizing models . . . . . . . . . . . . . . . . . . . 9
2.2.3 Lot-sizing models for items with imperfect quality . . . . . . . . . 11
2.2.4 Lot-sizing models for perishable items with expiration dates . . . 12
2.2.5 Lot-sizing models for items with imperfect quality and inspection

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.6 Lot-sizing models for items with price-dependent demand . . . . . 14
2.2.7 Lot-sizing models for items with inventory level-dependent demand

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Review of Foundational Models 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



3.3 Foundational models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Growing items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Multi-echelon inventory systems . . . . . . . . . . . . . . . . . . . 21
3.3.3 Price-dependent demand . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.4 Imperfect quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Expiration date . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.6 Imperfect quality and inspection errors . . . . . . . . . . . . . . . 25
3.3.7 Inventory level-dependent demand . . . . . . . . . . . . . . . . . . 27

3.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Presentation of Novel Models 29
4.1 A three-echelon supply chain inventory model for growing items . . . . . 29

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.3 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3.1 Retailer’s total cost components . . . . . . . . . . . . . . 33
4.1.3.2 Processor’s total cost components . . . . . . . . . . . . . 34
4.1.3.3 Farmer’s total cost components . . . . . . . . . . . . . . 36
4.1.3.4 Total supply chain cost per unit time . . . . . . . . . . . 37

4.1.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.4.1 Numerical example . . . . . . . . . . . . . . . . . . . . . 39
4.1.4.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 40
4.1.4.3 Further cost reduction mechanisms in the system . . . . 42

4.1.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 A three-echelon supply chain inventory model for growing items with price-

and freshness-dependent demand . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.3.1 The retail echelon . . . . . . . . . . . . . . . . . . . . . 49
4.2.3.2 The processing echelon . . . . . . . . . . . . . . . . . . . 51
4.2.3.3 The farming echelon . . . . . . . . . . . . . . . . . . . . 53
4.2.3.4 The entire supply chain . . . . . . . . . . . . . . . . . . 54

4.2.4 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.5.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 57
4.2.5.2 Investigating the benefits of supply chain integration . . 59

4.2.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 A four-echelon supply chain inventory model for growing items with im-

perfect quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

v

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.3 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.3.1 Farmer’s profit . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.3.2 Processor’s profit . . . . . . . . . . . . . . . . . . . . . . 67
4.3.3.3 Retailer’s profit . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.3.4 Supply chain profit . . . . . . . . . . . . . . . . . . . . . 71
4.3.3.5 Proof of the supply chain profit function’s concavity . . 73

4.3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.4.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 76
4.3.4.2 Comparison with alternative scenarios . . . . . . . . . . 78

4.3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 A three-echelon supply chain inventory model for growing items with ex-

piration dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4.3 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.3.1 Retail operations . . . . . . . . . . . . . . . . . . . . . . 84
4.4.3.2 Processing operations . . . . . . . . . . . . . . . . . . . 85
4.4.3.3 Farming operations . . . . . . . . . . . . . . . . . . . . . 86
4.4.3.4 Whole supply chain . . . . . . . . . . . . . . . . . . . . 88

4.4.4 Special case and theoretical results . . . . . . . . . . . . . . . . . 89
4.4.4.1 Special case with no mortality nor deterioration . . . . . 89
4.4.4.2 Theoretical results . . . . . . . . . . . . . . . . . . . . . 91

4.4.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.5.1 Base example . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 93
4.4.5.3 Comparisons with alternative scenarios . . . . . . . . . . 95

4.4.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 A four-echelon supply chain inventory model for growing items with im-

perfect quality and errors in quality inspection . . . . . . . . . . . . . . . 98
4.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.5.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5.3 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3.1 Profit generated by the farmer . . . . . . . . . . . . . . 102
4.5.3.2 Profit generated by the processor . . . . . . . . . . . . . 104

vi

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.5.3.3 Profit generated by the retailer . . . . . . . . . . . . . . 109
4.5.3.4 Profit generated across the supply chain . . . . . . . . . 112
4.5.3.5 Solution procedure . . . . . . . . . . . . . . . . . . . . . 113

4.5.4 Theoretical results . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5.5.1 Numerical example . . . . . . . . . . . . . . . . . . . . . 116
4.5.5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 117

4.5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.6 A three-echelon supply chain inventory model for growing items with in-

ventory level- and freshness-dependent demand . . . . . . . . . . . . . . 120
4.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.1.2 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.6.1.3 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.6.1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . 121

4.6.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.6.3 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6.3.1 Retail echelon profit . . . . . . . . . . . . . . . . . . . . 125
4.6.3.2 Processing echelon profit . . . . . . . . . . . . . . . . . . 127
4.6.3.3 Farming echelon profit . . . . . . . . . . . . . . . . . . . 129
4.6.3.4 Supply chain profit . . . . . . . . . . . . . . . . . . . . . 130

4.6.4 Profit enhancement mechanism: Non-zero ending inventory . . . . 132
4.6.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.6.5.1 Example 1: Zero ending inventory . . . . . . . . . . . . 134
4.6.5.2 Example 2: Non-zero ending inventory . . . . . . . . . . 137

4.6.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Conclusions and Recommendations 139
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.2 Contributions to knowledge . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.3 Recommendations for practitioners . . . . . . . . . . . . . . . . . . . . . 143
5.4 Suggestions for future research . . . . . . . . . . . . . . . . . . . . . . . . 143
5.5 Closing remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

References 144

vii

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Figures

3.3.1 Inventory system profile for growing items . . . . . . . . . . . . . . . . . 21
3.3.2 Inventory system profile for a vendor and a buyer in a two-echelon inven-

tory system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Inventory system profile for items with price-dependent demand rate . . 23
3.3.4 Inventory system profile for items with imperfect quality . . . . . . . . . 24
3.3.5 Inventory system profile for items with expiration dates . . . . . . . . . . 25
3.3.6 Inventory systems profile for items with imperfect quality and inspection

errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.7 Inventory system profile for items with inventory level-dependent demand

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.1 A three-echelon supply chain for growing items with farming, processing
and retail operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.2 Inventory system profile for growing items in a supply chain with a single
farmer, a single processor and a single retailer . . . . . . . . . . . . . . . 31

4.1.3 Inventory system profile for the retailer . . . . . . . . . . . . . . . . . . . 33
4.1.4 Inventory system profile for the processor . . . . . . . . . . . . . . . . . . 34
4.1.5 Inventory system profile the processor and the retailer [modified from Yang

et al. (2007)] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.6 The farmer’s inventory system profile . . . . . . . . . . . . . . . . . . . . 36
4.1.7 The total supply chain cost’s response to changes in the number of ship-

ments (made by the processor to the retailer) and the retailer’s cycle time. 40
4.2.1 Behaviour of the weight of the live inventory at the growing facility, the

weight of the processed inventory at the processing plant and the weight
of the processed inventory at the retail outlet. . . . . . . . . . . . . . . . 47

4.2.2 The retailer’s processed inventory system behaviour . . . . . . . . . . . . 50
4.2.3 The processor’s processed inventory system behaviour. . . . . . . . . . . 52
4.2.4 The farmer’s live inventory system behaviour . . . . . . . . . . . . . . . . 53
4.3.1 Inventory system profile for a farmer, a processor and a retailer in a sup-

ply chain for growing items with imperfect processing (with ns = 3 for
illustrative purposes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.2 The farmer’s inventory system profile . . . . . . . . . . . . . . . . . . . . 65
4.3.3 Inventory system profile for the processor’s processing facility . . . . . . 67
4.3.4 Inventory system profile for the processor’s inspection facility (with ns = 3

for illustrative purposes) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.5 The retailer’s inventory system profile (with ns = 3 for illustrative purposes) 70
4.3.6 Redrawn version of the retailer’s inventory system profile (with ns = 3 for

illustrative purposes)[modified from Konstantaras et al. (2007)] . . . . . . 70

viii

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



4.4.1 Inventory system profile showing the weight of the live inventory at the
farmer’s growing facility and the weight of the processed inventory at the
processor’s and the retailer’s facilities. . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Inventory system profile the retailer . . . . . . . . . . . . . . . . . . . . . 84
4.4.3 The processor’s processed inventory system behaviour. . . . . . . . . . . 86
4.4.4 Inventory system profile the farmer . . . . . . . . . . . . . . . . . . . . . 87
4.5.1 Inventory system profile for a farmer, a processor and a retailer in a supply

chain for growing items with imperfect quality and errors in the inspection
process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5.2 The farmer’s inventory system profile at the growing facility . . . . . . . 103
4.5.3 The inventory system for processor’s processing plant. . . . . . . . . . . . 105
4.5.4 The processor’s inventory system profile at the inspection facility . . . . 106
4.5.5 The probabilities correlated with each of the four possible inspection sce-

narios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.5.6 The retailer’s inventory system profile at the retail/consumption facility . 110
4.5.7 A redrawn version, adapted from Konstantaras et al. (2007) for ease of

computation, of the retailer’s inventory system profile . . . . . . . . . . . 111
4.6.1 Changes to the weight of the live inventory at the farmer’s growing facility,

the weight of the processed inventory at the processor’s processing facility
and the weight of the processed inventory at the retailer’s selling facility. 122

4.6.2 Changes to the weight of the retailer’s processed inventory level . . . . . 126
4.6.3 Changes to the weight of the processor’s processed inventory level. . . . . 128
4.6.4 Changes to the weight of the farmer’s live inventory level . . . . . . . . . 129
4.6.5 Changes to the weight of the retailer’s processed inventory level with a

non-zero ending inventory policy . . . . . . . . . . . . . . . . . . . . . . . 132

ix

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Tables

4.1.1 Results from the numerical example . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Results from the sensitivity analysis . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Efficiency of the proposed replenishment policy against an equal-cycle time

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1.4 Efficiency of the proposed replenishment policy against an independent

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Results from the example . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.2 Sensitivity analysis of various input parameters . . . . . . . . . . . . . . 58
4.2.3 Quantifying the importance of collaboration . . . . . . . . . . . . . . . . 60
4.3.1 Results from the numerical example showing the objective function’s con-

cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3.2 Sensitivity analysis of various input parameters . . . . . . . . . . . . . . 77
4.3.3 Comparison of the proposed inventory control system with various alter-

native cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.1 Optimal number of shipments per processing run, cycle time and expected

total profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Sensitivity analysis of various input parameters . . . . . . . . . . . . . . 94
4.4.3 Performance of the proposed inventory control mechanism against various

alternative scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5.1 Optimal results from the numerical example . . . . . . . . . . . . . . . . 117
4.5.2 Sensitivity analysis of various input parameters . . . . . . . . . . . . . . 118
4.6.1 Results from Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.6.2 Results from the sensitivity analysis for Example 1 . . . . . . . . . . . . 136
4.6.3 Results from Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.2.1 Characteristics of a selected group of closely related inventory control mod-
els in the literature and the contributions made by each of the six models
presented in the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

x

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



List of Acronyms

3PL Third Party Logistics.

DCF Discounted Cash Flow.

EGQ Economic Growing Quantity.

EOQ Economic Order Quantity.

EPQ Economic Production Quantity.

JELS Joint Economic Lot-Size.

LTL Less Than Truck Load.

SKU Stock Keeping Unit.

SSMD Single Setup-Multiple Deliveries.

SSSD Single Setup-Single Delivery.

TL Truck Load.

ZAR South African Rand.

xi

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Chapter 1

Introduction

1.1 Context

A vast majority of consumable food products are sourced primarily from either crops or
livestock, both of which are living organisms. One of the defining characteristics of living
organisms is their ability to grow. In the context of inventory modelling literature, crops
and livestock constitute an important class of items, referred to as growing items. In
recent years, growing items have emerged as an important research area within inventory
modelling because of their role in food production systems.

End users seldom consume these growing items in their original form. There is usually
some form of value-adding activity, through processing in most instances, that converts
the growing items from their original form to a new form that is consumable and saleable.
For example, live chickens which are growing items in their original form are never con-
sumed in that form. Instead, the live chickens are slaughtered, processed into various
forms (such as whole chicken portions, sausages, among other products) and packaged
prior to being sold to end-users. For this reason, food production systems are complex
industrial operations that involve multiple processes and multiple parties. In the con-
text of inventory modelling literature, these processes and parties can be represented by
supply chain echelons and supply chain members, respectively.

For the sake of simplicity, food supply chains can be envisioned as being comprised of
three main supply chain members, namely, farmers, processors and retailers (Sebatjane
and Adetunji, 2020c). The primary role of farmers is to rear the live growing items to
maturity, while that of processors is to transform the mature live items into a saleable and
consumable form through processing. Processing is an aggregated set of activities that
encompasses individual activities such as de-feathering, stunning, slaughtering, chilling,
cutting and packaging, in the case of livestock. The role of retailers is to sell the processed
products to end-users. In the most basic form of this supply chain, the primary activities
that occur at each of the three supply chain members’ facilities are growing (or farming),
processing and retailing. These activities represent echelons of the supply chain and thus,
the most basic form of this supply chain setup has three echelons. However, in some
instances, additional activities can occur at the supply chain members’ facilities. For
instance, a processor might add a quality control checkpoint to ensure that the products
delivered to the retailer are of acceptable quality. This may represent an additional
echelon to the supply chain setup.

Basic food products are a necessity for existence. This means that their availability
and affordability to consumers are of utmost importance. The availability and afford-
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ability of food products at retail outlets, which represent the downstream echelon of the
broader food supply chain, are dependent on factors from the upstream echelons of the
supply chain such as the lot-sizes and growth rates (of the live newborn items) and the
processing rates and holding costs (of the processed products), among other factors. The
only way to avoid unavailability of food products is through proper inventory manage-
ment techniques that are not only focused on the retail end of the supply chain but rather,
encompass the entire food supply chain from the upstream farming echelon. Therefore,
inventory management is a critical activity in food production systems. Inventory man-
agement in these settings is a complex activity not only because of the vast amounts of
product varieties but also because of the number of supply chain members involved in the
production of the products. Therefore, the availability and affordability of food products
can be improved through better inventory management techniques driven by scientific
principles. Accordingly, this thesis is aimed at developing models for managing growing
inventory items in multi-echelon supply chains.

1.2 Relevance

1.2.1 The importance of growing items

Dani (2015) observed that most food supply chains are comprised of producers, proces-
sors, distributors, retailers and consumers. The producers are typically farmers who are
involved in the production of fruits, vegetables, grains or livestock, among others. Proces-
sors transform the items from the producers into various saleable food items which meet
consumer needs. Logistics providers ensure that the saleable food items reach consumers,
who typically purchase these food items through retailers, in an acceptable condition.
The business of food producers is typically the production (in the form of rearing, in the
case of livestock) of growing items.

1.2.2 The importance of multi-echelon supply chain systems

Globalisation, outsourcing and rapidly evolving technology are some of the factors shaping
today’s competitive business landscape. In order to survive in this competitive landscape,
businesses must offer improved products and services at reduced costs to customers.
Consequently, businesses are forced to increase the efficiency of their operations as a
way of reducing their costs and increasing their responsiveness. As a natural result,
businesses are forced to look beyond the boundaries of their own operations in efforts
to reduce their costs and increase their responsiveness further. Businesses have started
to integrate and coordinate various decisions, such as inventory replenishment policies,
not only within their own boundaries but with their suppliers and customers. Due to
the growing focus on supply chain management in recent years, a lot of businesses have
realised that inventories, which often cut company boundaries when moving from their
point of origin to their destinations, can be managed more effectively through greater
integration and collaboration among supply chain members.
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1.3 Research gap identification

Currently, there aren’t much known lot-sizing models in the literature for integrated
multi-echelon supply chains where growing items are the primary source of the chain
(i.e. growing items are at the upstream end of the supply chain). These types of models
are tailored specifically for food production systems. In the current literature, most lot-
sizing models that account for some features of food production systems, such as price-,
inventory level- and freshness-dependent demand, quality control, and expiration dates,
were developed from the perspective of a retailer and are thus, limited to the retail end
of the supply chain. Consequently, these models did not account for the preceding stages
in the supply chain. The production of food products often involves several stages. In
the most simple supply chains, these stages are often the rearing of live inventory, the
processing of the live inventory into a consumable form and the selling of the consumable
(or processed) inventory to end consumers. Considering that supply chains are intricate
networks with multiple echelons, it is important to study lot-sizing models in multi-
echelon supply chains because they are more representative of real-life inventory systems.

1.4 Objectives

The main objective of this thesis is to develop inventory models for managing growing
items in multi-echelon supply chains. Six inventory models are presented in this thesis
and each of them represents a sub-objective of the thesis. Therefore, the sub-objectives
of this thesis are to develop:

• A three-echelon supply chain inventory model for growing items.

• A three-echelon supply chain inventory model for growing items with price- and
freshness-dependent demand.

• A four-echelon supply chain inventory model for growing items with imperfect qual-
ity.

• A three-echelon supply chain inventory model for growing items with expiration
dates.

• A four-echelon supply chain inventory model for growing items with imperfect qual-
ity and errors in quality inspection.

• A three-echelon supply chain inventory model for growing items with inventory
level- and freshness-dependent demand.

Brief descriptions of the six models are outlined as follows:

1.4.1 Sub-objective 1: A three-echelon supply chain inventory
model for growing items

Food production serves a very important role in society. A simple food production system
often starts with the rearing (growing) of live items, followed by the processing of the
items into a consumable and saleable form and ends with the selling of the processed
items to consumers. An integrated inventory model for a three-echelon supply chain,
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with a farmer, a processor and a retailer, is developed. The farmer grows newborn items
and then delivers them to a processor once the items mature. At the processing plant,
the items are slaughtered, cut, processed and packaged at a certain rate. In the context
of the model, all activities that occur at the processing plant are collectively termed
processing and they are assumed to occur at a finite rate. The processor then delivers a
certain number of equally-sized batches of processed inventory to the retailer who satisfies
customer demand. The proposed supply chain inventory system is formulated as a cost
minimisation problem with the cycle time (and by extension the order quantity) and the
number of shipments as the decision variables.

1.4.2 Sub-objective 2: A three-echelon supply chain inventory
model for growing items with price- and freshness-dependent
demand

The demand for perishable food products is often influenced by the selling price and the
age of the items. This is because perishable food products, which include most grocery
items, have become commodities from consumers’ point of view, hence, there are very
little differences between competing brands. Consequently, factors like price and freshness
(or age) become important determinants of consumer demand. This fact has been used
to develop numerous inventory control models for perishable products. However, all
these models were developed from the perspective of a retailer. Today’s increasingly
competitive business environment has forced companies to collaborate with fellow supply
chain members in an effort to improve profitability and operational efficiency. With this in
mind, a model for inventory management, in a perishable food products supply chain that
begins with farming operations where live inventory items are reared and ends with the
consumption of processed inventory, is developed. The farming and consumption (retail)
stages are connected by a processing stage during which live inventory is processed into a
consumable form. Consumer demand at the retail stage is a function of the selling price
and the freshness of the processed inventory. The farming, processing and retail stages
are the three-echelons of the proposed supply chain aimed at maximising the joint supply
chain profit.

1.4.3 Sub-objective 3: A four-echelon supply chain inventory
model for growing items with imperfect quality

Quality control is an important consideration in food production systems which often start
with farming and processing operations and finish with consumption. This study develops
an integrated inventory control model for a four-echelon supply chain (with farming,
processing, screening and retail operations). The farmer grows newborn items and then
delivers them to a processor once the items are mature enough. At the processing plant,
the items are slaughtered, processed, packaged and screened for quality. The processor
then delivers a certain number of equally-sized batches of good quality processed inventory
to the retailer who satisfies customer demand for good quality processed inventory. The
processor sells the processed poorer quality inventory at a discounted price and as a single
batch to secondary markets. The proposed supply chain inventory system is formulated
as a profit maximisation problem with the number of batches of good quality processed
inventory and the order quantity as the decision variables.
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1.4.4 Sub-objective 4: A three-echelon supply chain inventory
model for growing items with expiration dates

A vast majority of consumable food products have a specified shelf life or expiration
date. The products are no longer suitable for consumption beyond their expiration dates.
Furthermore, most of these products are derived from a variety of growing items such as
crops or livestock and there is usually some form of processing performed on the live items
in order to transform them to a consumable form. Using this logic, a model for managing
growing inventory is developed for a three-echelon supply chain, with farming, processing
and retailing operations. At the farming echelon, the items are reared but there is the
possibility that some of them might die. The surviving items are then transferred to the
processing echelon for slaughtering, processing and packaging. The final echelon is retail
where the processed items, which have a specific shelf life or expiration date, are used to
meet consumer demand.

1.4.5 Sub-objective 5: A four-echelon supply chain inventory
model for growing items with imperfect quality and errors
in quality inspection

In order to safeguard the livelihood of consumers, food producers are required, either by
law or regulatory bodies, to inspect their products for quality before selling the products
to consumers. This is because food processing, as is the case with most production
systems, is not perfect and there is a possibility that some of the processed products
might not meet the required quality standard. Likewise, the inspection process is seldom
perfect meaning that it is subject to errors and thus, it is possible that some of the
processed products might be incorrectly classified. In light of this, an inventory control
model for a four-echelon food processing supply chain is developed. The supply chain
has a farming echelon where live items are grown; a processing echelon where the live
items are transformed into processed inventory; an inspection echelon where the processed
inventory is classified into good and poorer quality classes under the assumption that the
inspection process is subject to type I and type II errors; and a retail echelon where the
processed inventory of good quality is sold to consumers. The supply chain is modelled
as a profit maximisation problem.

1.4.6 Sub-objective 6: A three-echelon supply chain inventory
model for growing items with inventory level- and freshness-
dependent demand

The freshness condition of food products have a major effect on consumers’ purchasing
behaviour for those products. Furthermore, marketing theory has shown that increasing
the levels of inventory on display may stimulate consumer demand. Moreover, the primary
source of a vast majority of perishable food products is growing items such as livestock and
crops. Before these growing items can be consumed, they are often processed into a form
that is safe for human consumption. With all these factors in mind, an integrated model
for inventory control in a three-echelon supply chain for growing items, with farming,
processing and retail echelons, is formulated. Consumer demand at the retail end of
the supply chain is assumed to be dependent on the inventory level and the freshness
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condition, a function of the expiration date, of the products. The effectiveness of a profit
enhancement mechanism which relaxes the traditional zero-ending inventory policy at
the retail end of the supply chain is investigated. In this situation, it is assumed that the
retailer always keeps on-hand inventory and starts a new replenishment cycle once the
inventory level drops to a certain minimum value. The retailer has a clearance sale at
the end of the cycle to clear out the ending on-hand inventory.

1.5 Thesis organisation

Apart from the introductory chapter, this thesis has four additional chapters that are are
organised as follows:

Chapter 2 presents a review of relevant inventory models in the literature. The review
is limited to inventory models for growing items, items in multi-echelon inventory systems,
items with price-dependent demand, items with imperfect quality, perishable items with
expiration dates, items with imperfect quality and errors in quality inspection and items
with inventory level-dependent demand.

Chapter 3 builds on the literature review by reviewing the mathematical theory behind
a few of the reviewed models that form the foundation for the development of the novel
models that are presented in Chapter 4.

The main objective of the thesis is realised in Chapter 4 through the development of
six inventory models for growing items in multi-echelon supply chain settings. Each of
the models is developed under certain conditions which represent situations that might
arise in food production systems. The conditions include price-, inventory level- and
freshness-dependent demand, quality control, quality control with errors in the quality
inspection process and expiration dates.

The thesis is concluded in Chapter 5 through brief discussions of the summary of
findings from the thesis; the contributions made by the thesis to the literature on inventory
management; the benefits that operations and supply chain management practitioners in
industry can draw from the results of the thesis; and possible areas for future research
on inventory management for growing items in multi-echelon supply chains.
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Chapter 2

Literature Review

2.1 Introduction

Inventory often accounts for the biggest portion of the current assets category of a busi-
ness’ balance sheet (Hillier and Lieberman, 2001). Consequently, issues in inventory
management can have huge negative financial effects on an entire business. Beyond the
financial implications, a poorly management inventory system can reduce customer sat-
isfaction levels which inadvertently leads to even more financial strain because of the
resulting lower customer retention rates. These negative effects not only affect the focal
business but they ripple across the entire supply chain.

Inventory management is about optimising the quantity of on-hand stock. It is es-
sentially a balancing act aimed at avoiding two undesirable extremes of a spectrum, with
one being overstocking and the other understocking. When a business overstocks a prod-
uct, not only does the business incur relatively high costs for keeping the product in
storage (in addition to the cost of procuring the product), the business also loses out on
opportunity costs that might have been gained as a result of the capital investment in
inventory. On the other hand, if a product is understocked, the business has to turn away
customers. This not only leads to lost sales but also poor customer satisfaction levels
and lost potential repeat business in the future.

An effective inventory management system is imperative for business success. Conse-
quently, decisions about the quantity of stock to order and the frequency of replenishing
the stock are important management issues (Stevenson, 2018). Mathematical models are
often used to aid management in reaching decisions about order quantities and frequen-
cies. Harris (1913) developed the first model aimed at addressing these decisions. This
model is often referred to as the economic order quantity (EOQ) model and it was aimed
at determined the optimal lot size (i.e. order quantity) and replenishment frequency that
minimised the total inventory management costs. In its most basic form, the EOQ model
achieves its objective by balancing the holding costs (of storing the inventory) with the
fixed costs (of placing an order).

2.2 Relevant inventory management models

Owing to the restrictive assumptions in Harris (1913)’s model which limited its practical
applications to most real life inventory systems, various researchers have extended the
model, either by relaxing the original assumptions (both implicit and explicit) or adding
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new ones, to suit different practical settings (Andriolo et al., 2014). These new extended
lot-sizing models are often more useful to practitioners. Several of such lot-sizing models
form the basis of the work presented in this thesis. These are models developed specifically
for growing items, items in multi-echelon supply chain systems, items with imperfect
quality, perishable items with expiration dates, items with imperfect quality and quality
inspection errors, items with price-dependent demand and items with inventory-level
dependent demand, which are attributed to Rezaei (2014), Goyal (1977), Salameh and
Jaber (2000), Sarkar (2012), Khan et al. (2011), Whitin (1955) and Baker and Urban
(1988), respectively.

2.2.1 Lot-sizing models for growing items

Through the development of an EOQ model for items that experience a weight increase
during a replenishment cycle, Rezaei (2014) introduced a new class of items to inventory
control modelling, namely growing items. These items are not suitable for consumption
at the time they are procured, so before they are used to meet demand (i.e. consumed),
they are fed and consequently, enabled to grow. Examples of items that fall under this
class include seafood, livestock and grains, to name a few.

Given the foundational nature of Rezaei (2014)’s model, in terms of not accounting
for shortages, quantity discounts and multiple-items, among other popular features of
EOQ models, the model has been extended to account for some these shortcomings.
For example, Khalilpourazari and Pasandideh (2019), Nobil et al. (2019) and Sebatjane
and Adetunji (2019b) extended the model to scenarios with multiple items, shortages
and quantity discounts, respectively. Khalilpourazari and Pasandideh (2019) solved the
multi-item variant of Rezaei (2014)’s EOQ model through an exact solution methodology
for small problem sizes and two semi-heuristic algorithms for medium and large problem
sizes because of the proposed model’s non-linearity and the presence of multiple local
optimum solutions. Nobil et al. (2019) extended Rezaei (2014)’s work by assuming that
shortages are permitted and are fully backordered during the consumption (or selling)
period of the replenishment cycle. Sebatjane and Adetunji (2019b) incorporated quantity
discounts, incremental quantity discounts to be exact, to the literature on lot sizing for
growing items. Since most growing items are sold as various food items downstream in
retail supply chains and these supply chains are often characterised by low profit margins,
quantity discounts are a one of improving margins through increased increased purchase
volumes. Besides the incorporation of these common EOQ extensions, other researchers
have extended the model by accounting for specific characteristics of food production
systems. For instance, noting that food products are often screened for quality before
being put on sale, Sebatjane and Adetunji (2019a) considered a situation where a random
percentage of the matured items is of inferior quality and as a result, it is removed from
the lot and salvaged. Despite the presence of two revenue streams in this situation,
one from the good quality inventory used to meet demand and the other from salvaging
the inferior quality inventory, the overall impact of having higher percentages of inferior
quality items was negative since more items have to be ordered to meet a given rate
of demand. Another extension based on the characteristics of food production systems
was presented by Malekitabar et al. (2019) who considered a case study for trout fish
production and developed a model for inventory control when there is a revenue sharing
contract between the party responsible for growing the fish and the one responsible for
selling it. In addition, the authors compared the effectiveness of the revenue sharing
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contract with a revenue and cost sharing contract and found the latter to be more cost
efficient. Sebatjane and Adetunji (2020c) developed an inventory control model for a
three-level supply chain for growing items with separate farming, processing and retail
levels. Through the consideration of probability functions for survival and mortality
throughout the growth period of the replenishment cycle, Gharaei and Almehdawe (2020)
incorporated item mortality to Rezaei (2014)’s model and consequently created a new
type of EOQ model, referred to as the economic growing quantity (EGQ) model. Given
the presence of various illnesses and predators in food production value chains, the EGQ
is more representative of an actual inventory control system for growing items (which are
living organisms) because living organisms are not immune to death.

2.2.2 Joint economic lot-sizing models

The idea of coordinating inventory decisions in a multi-echelon system, which is often
attributed to Clark and Scarf (1960)’s work, predates the concept of supply chain manage-
ment. Building upon Clark and Scarf (1960)’s model, Goyal (1977) studied a coordinated
vendor-buyer inventory system, in which it was assumed that a vendor resells products
to a buyer. The aim of the study was to determine the economic lot-size for both parties,
i.e. the joint economic lot-size (JELS), with the aim of minimising the joint total costs
of managing inventory. In its most basic form, the JELS problem considers a vendor and
a buyer involved in the production and selling, respectively, of a single type of item with
the aim of finding the optimal inventory replenishment policy for both parties. Goyal
(1977)’s model was developed under the assumption of an infinite production rate and
a lot-for-lot production policy at the vendor. The shipment policy between the vendor
and the buyer in Goyal (1977)’s JELS model would later be referred to as the single
setup-single delivery (SSSD) policy, whereby the vendor produces for only one cycle and
then delivers the entire lot to the buyer.

Over the years, numerous extensions of Goyal (1977)’s model have been presented
starting with Banerjee (1986) who relaxed the infinite production rate assumption and
extended the model to a case where the vendor produces items at a given (i.e. finite)
production rate on a lot-for-lot basis. In this instance, the vendor produces enough items
for just the period of interest. Goyal (1988) introduced the (SSMD) variant of Goyal
(1977)’s model formulated under the assumption that the vendor produces enough items
to supply the buyer with an integer number of orders (i.e. for a SSMD policy, the vendor
makes multiple deliveries to the buyer) for each single production setup). The SSMD
policy resulted in lower total system costs because of the smaller lot sizes that attract
relatively cheaper holding costs and are consumed much quicker meaning they spend
less time in storage. Lu (1995) relaxed the single vendor-single buyer assumption and
formulated an inventory model for a situation whereby the buyer is supplying products
to more than one buyer. Hill (1999) investigated different replenishment policies in the
integrated vendor-buyer inventory system. The aim was to investigate the benefits (or
lack thereof) of adopting a different replenishment policy to the classic case where the
vendor delivers equal sized shipments to the buyer. Producing and delivering unequal
shipments (in particular, a different first shipment) led to slightly lower total costs.

Pan and Yang (2002) relaxed the zero lead-time assumption in Goyal (1977)’s model
and formulated an inventory model for an integrated system under the assumption of
a variable lead-time. Valentini and Zavanella (2003) incorporated the concept of con-
signment stock to the vendor-buyer inventory system by considering a case where the
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inventory is kept at the buyer’s premises while it is legally owned by the vendor. When
modelling the inventory system, the buyer’s holding costs were divided into a financial
component and a physical component, with the financial component being paid by the
buyer and the physical component by the vendor. Ouyang et al. (2007) developed an
extension that considered shortages, variable lead-time and quality improvement efforts.
Chen and Kang (2007) presented a model that considered a case where the vendor per-
mits the buyer to pay for the ordered items at a later stage following receipt of the items.
Revenue sharing contacts are often put in place to enhance collaboration between supply
chain members. Ho et al. (2008) studied a coordinated vendor-buyer inventory system
where the vendor permits the buyer to delay payment and simultaneously offers the buyer
discounts for paying in cash and at the same time, the buyer also permits their customer
to delay payments. Giri and Bardhan (2012) incorporated revenue sharing to an inte-
grated inventory system with a buyer and a vendor for an exponentially deteriorating
item in a market with price-dependent demand. Sarkar (2013) investigated the effect
of three different probabilistic deterioration functions, namely uniform, triangular and
beta, on the inventory replenishment policy of a two-member supply chain. Geetha and
Uthayakumar (2014) developed a model for jointly optimising pricing and replenishment
policies in a two echelon (vendor-buyer) supply chain whereby the vendor not only allows
the buyer to pay for the inventory at a later date through trade credit financing, but also
grants the buyer freight discounts for transporting the inventory based on the weight of
the order. Priyan and Manivannan (2017) studied a version of the JELS problem for a
case where the vendor’s production process produces some imperfect quality items that
are screened out at the buyer’s facility under the assumptions that the screening process
is prone to errors and that the fraction of items that are of imperfect quality is a trian-
gular fuzzy variable. Dye et al. (2018) presented an inventory model for a vendor-buyer
system with deteriorating items and investments in preservation technologies in an ef-
fort to slow down the deterioration process. Most of the research published on the JELS
problem seldom accounts for the cost of transporting goods from the vendor to the buyer,
Wangsa and Wee (2018) developed a model which considered stochastic demand and com-
pared two transportation modes, namely, less-than truck load (LTL) and truck load (TL)
shipping. Saha et al. (2018) formulated an inventory control model for a two-echelon
(manufacturer-retailer) supply chain aimed at optimising not only the retailer’s order
quantity, but also their selling price and delivery lead-time. Al-Khazraji et al. (2018)
used particle swarm optimisation to solve a multi-objective model for inventory control
in a supply chain with a single factory and a single retailer when the demand rate is
assumed to be fluctuating. Jaipuria and Mahapatra (2019) investigated bullwhip effects
on a supply chain under a novel forecasting technique. The technique was developed
by combing an existing forecasting technique, namely discrete wavelet transformation,
with a genetic algorithm previously used to forecast demand. Furthermore, the supply
chain under study was assumed to have adopted a periodic review policy for managing
its inventory. Taleizadeh et al. (2019) analysed two different inventory control policies
in an imperfect manufacturing system with multiple items. The two policies stem from
possible cases derived from the way in which imperfect quality items are dealt with, the
first being that they are reworked and the second being that the items are sold at a dis-
counted price. Jaggi et al. (2019) developed an integrated inventory control model for a
two-member supply chain (with a buyer and vendor) dealing in deteriorating items under
trade credit financing. Furthermore, the demand rate was assumed to be dependent on
the amount of stock displayed on shelves and the vendor sold the items to the buyer on
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a short-term credit financing contract. Vats et al. (2019) investigated the effectiveness
of a demand aggregation approach to inventory management in a supply chain with a
multiple distributors and multiple retailers that makes of a reorder point ordering policy
under stochastic demand conditions.

2.2.3 Lot-sizing models for items with imperfect quality

Item quality was incorporated to inventory management research by Salameh and Jaber
(2000) through relaxing the implicit assumption made in most inventory models that all
the items received in each order are of good quality. The authors proposed an inventory
situation in which a specific percentage of the ordered items is of inferior quality. Before
the items are sold, they are all subjected to a screening process in order to isolate the good
quality items from those of poorer quality. A simpler method, with minimal effects on the
expected total profit, for computing the EOQ in Salameh and Jaber (2000)’s model was
proposed by Goyal and Cardenas-Barron (2002). Cardenas-Barron (2000) and Maddah
and Jaber (2008) rectified computational mistakes made in Salameh and Jaber (2000)’s
model pertaining to the EOQ and the expected total profit functions.

Imperfect quality was first considered in integrated inventory systems by Huang (2002)
through extending Salameh and Jaber (2000)’s work to a supply chain with a vendor
who produces items and a buyer who screens them for quality. Based upon Goyal and
Cardenas-Barron (2002)’s correction of Salameh and Jaber (2000)’s model, Goyal et al.
(2003) corrected the earlier integrated inventory control model for imperfect quality items
proposed by Huang (2002). The models proposed by Huang (2002) and Goyal et al. (2003)
were formulated under the assumption that the percentage of poorer quality items is ran-
dom, Ouyang et al. (2006) deviated from this assumption and developed a model under
the assumption that the poorer quality fraction is a triangular fuzzy number. Konstanta-
ras et al. (2007) considered a version of the EOQ model for items with imperfect quality
in a system where the items are inspected in-house at a secondary warehouse. Kreng and
Tan (2011) relaxed the single buyer-single vendor assumption made in most models and
developed one with a single buyer and multiple vendors. Kreng (2011) developed an ex-
tension which considered two-way trade-credit financing (i.e. the vendor offers the buyer
a grace period to settle the bill and the buyer also offers a grace period to consumers).
Hsu and Hsu (2013b) extended Goyal et al. (2003)’s model to a case with permissible
(and fully backordered) shortages. Khan et al. (2014) studied an integrated inventory
control system with imperfect quality items by taking the effects of two human factors,
namely, learning in production (i.e. production efficiency improves from one production
cycle to the next because of the experience the operators get) and errors in inspection
(i.e. the inspectors can make mistakes during the screening process), into consideration.
The recent emphasis on green supply chain management motivated Zanoni et al. (2014)
to formulate a model for a two-echelon supply chain where the demand is a function of
both the selling price and the environmental performance of the supply chain. Khan et al.
(2016) developed a coordinated inventory control model for items with inferior quality
for a vendor and a buyer in a supply chain where the vendor has the responsibility of
managing the inventory at the buyer’s facility. Jauhari and Saga (2017) developed an
extension of the integrated vendor-buyer inventory control system with imperfect quality
items by considering the demand rate to be stochastic, the ordering cost to be fuzzy
and the (vendor’s) production rate to be flexible. Castellano et al. (2017) studied an
inventory control system with quality considerations, price discounts based on permitted
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shortages, stochastic demand and controllable lead time under a periodic review policy.
Tiwari et al. (2018b) proposed an inventory control model for a vendor and a buyer pro-
ducing and selling, respectively, deteriorating items with both environmental and quality
considerations.

2.2.4 Lot-sizing models for perishable items with expiration
dates

Perishable items are one of the most researched areas within inventory theory because
of their applicability to various situations where inventoried items lose some of the util-
ity or value over time. Following the publication of Ghare and Schrader (1963) model
on perishable inventory control, numerous models which consider deterioration in dif-
ferent ways have been presented. Most notably, Covert and Phillip (1973) generalised
Ghare and Schrader (1963)’s work by relaxing the constant deterioration rate assump-
tion and considering a deterioration rate characterised by a Weibull distribution with two
parameters. These two models have have spawned most of the literature on inventory
management for deteriorating items. One of the most recent development in deteriorat-
ing inventory control is the incorporation of expiration dates, which in essence assumes
that the items’ deterioration rate is time dependent and consequently, the items have a
maximum lifetime.

Recently, a number of studies which consider the deterioration to be a function of
the inventory item’s age have been formulated. These types of inventory systems are
representative of retail stores selling products like fresh produce, meat and baked goods
which have specific shelf lives or expiration dates. One of the earliest inventory control
studies to explicitly consider expiration dates is by Hsu et al. (2007) who presented a
model for deteriorating items with a maximum lifetime and a demand rate that varies
seasonally. Sarkar (2012) proposed an EOQ model for a retailer selling items with an
expiration date provided that the supplier permits the retailer to pay for the order at
a later date (i.e. not at the time the order is delivered). Sarkar (2012) optimised an
inventory system for expiring items under the assumption that the supplier of the items
offers the firm selling the items trade credit financing (i.e. a grace period for settling
debt for the ordered items). Wang et al. (2014) developed an extension of Sarkar (2012)’s
model which deemed the demand rate to be a function of the duration of the credit
period. Wu et al. (2014) formulated a model for optimising both the order quantity
and the credit period in an inventory system with perishable items with an expiration
date under the assumption that the retailer receives upstream trade credit from the
supplier of the items and offers downstream trade credit to end consumers. Wu et al.
(2016) used the items’ expiration date to define a freshness index, stating in percentage
terms how fresh an item is, and used it to develop a model for optimising the lot size
provided that the demand rate for the items depends on both the inventory level and the
freshness level. Teng et al. (2016) studied an inventory system for expiring items under
an advance payment agreement between the supplier of the items and the seller whereby
the supplier requires the seller to pay a certain portion of the procurement cost before
the order can be delivered to the seller. Retailers selling products with expiration dates
often discount the products as the expiration dates approach. Using this logic, Banerjee
and Agrawal (2017) developed a model for optimising ordering, pricing and discounting
policies for an inventory system consisting of expiring items with a demand rate that
is dependent on the selling price. Feng et al. (2017) relaxed the assumption made in
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Wu et al. (2016)’s model, that the inventory level at the end of a replenishment cycle is
zero, and formulated a profit maximisation model (with the optimal cycle time, ending
inventory and price as the decision variables) for an inventory system with expiration
dates and freshness and price-dependent demand. Another extension to Wu et al. (2016)’s
model was developed by Wu et al. (2018) through the consideration of a permissible delay
in payment which is an incentive policy where by the supplier delivers the order to the
seller and does not require payment at the moment of delivery but instead offers the seller
a specific amount of time to settle the bill. Li and Teng (2019) incorporated trade credit
financing to Wu et al. (2016)’s model and considered the duration of the credit period to
be an additional decision variable. Khan et al. (2019) proposed an EOQ-type model for
deteriorating products with expiration dates when shortages are permitted and end user
demand depends on the products’ selling prices.

2.2.5 Lot-sizing models for items with imperfect quality and
inspection errors

Salameh and Jaber (2000) introduced the EOQ model for items with imperfect quality.
This model was essentially an extension of classic EOQ model, formulated by Harris
(1913), which relaxed the implicit assumption that the entire lot size is of perfect qual-
ity. Salameh and Jaber (2000) theorised an inventory situation where by the quality
of a random fraction of the ordered items is of unacceptable to end users. The model
assumed that the fraction of imperfect quality items is removed from the lot through a
screening (or inspection) process and sold as a single batch at a discounted price when
the inspection process ends. An implicit assumption of this particular model was that
the inspection process is 100% effective at separating the good quality items from the
poorer quality items. Khan et al. (2011) recognised that this assumption seldom holds
for most production systems. Consequently, Khan et al. (2011) developed an extension
to Salameh and Jaber (2000)’s work which accounted for an inspection process that is
prone to errors. In their model, Khan et al. (2011) assumed that the inspection is subject
to two types of errors, namely, type I and type II errors, representing situations where
poorer quality items are classified as good quality items and where good quality items
are classified as poorer quality items, respectively. Similar to the model by Salameh and
Jaber (2000), it was assumed that the good quality items are sold throughout the replen-
ishment cycle at a given price while the items of poorer quality are sold as a single batch
once the inspection process ends at a discounted price. Furthermore, Khan et al. (2011)
assumed that the incorrectly classified items of poorer quality (sold to consumer as good
quality items) are returned throughout the cycle and incur penalty costs.

Given the relevance of the model to real life production system that have imperfect
inspection processes, Khan et al. (2011)’s model has received considerable attention from
various researchers. For instance, Hsu and Hsu (2013a) developed an extension of the
model that accounted for shortages by assuming that the inventory system under study
permits shortages which are fully backordered. Khan et al. (2014) extended the concept
of inspection errors to a inventory system in a two-echelon supply chain with a single
buyer and a single vendor. This particular model assumed that the vendor manufacturers
inventory items that are used by the buyer (i.e. the seller or retailer) to meet consumer
demand. However, some of the items manufactured by the vendor are of unacceptable
quality. With this in mind, the buyer inspects the items prior to selling them to consumers
but the inspection process is subject to type I and type II errors. The wrongfully classified
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items are returned by consumers. Chang et al. (2016) formulated an EOQ model for an
inventory system in which a percentage of the items the seller receives is of imperfect
quality and the seller has an imperfect inspection process which is not capable of correctly
classifying all the items. Furthermore, the supplier of the items offers the seller trade
credit financing whereby the seller is allowed a specified grace period to settle the bill
for the items. Trade credit financing was the subject of another extension to Khan et al.
(2011)’s model, this time by Zhou et al. (2016). Rout et al. (2019) extended the concept of
inspection errors in an imperfect production process to an EPQ model for deteriorating
items whose rate of decay is assumed to be a fuzzy random variable. Dey and Giri
(2019) developed an inventory control model for a two-member supply chain, with a
single vendor and a single buyer, where the vendor’s production process is imperfect and
consequently, a percentage of the items sent to the buyer, who inspect them for quality,
is of unacceptable quality. Furthermore, the buyer’s inspection process is assumed to be
subject to both errors and learning. For the errors aspect, Dey and Giri (2019) assumed
that the buyer;’s inspection process can make type I and type II errors and for the learning
aspect, the authors assumed that the buyer’s inspection process improves, in terms of
correctly classifying the items, with every batch inspected.

2.2.6 Lot-sizing models for items with price-dependent demand

Lot sizing models for items with a demand rate that is influenced by the selling price have
been studied since the publication of the seminal work by Whitin (1955). Price-dependent
demand is still a popular topic in supply chain modelling as evidenced by recent works
by Gan et al. (2018), Oliveira et al. (2018) and Raza and Govindaluri (2019), to name a
few. In recent times, the demand rate’s price dependency has been combined with various
other factors. One of the more popular factors has been the freshness of the inventory
items which is incorporated through the consideration of expiration dates.

The first inventory control model for perishable items with a demand rate that is
influenced by the item’s age and selling price is credited to Wu et al. (2016). In addition,
the demand rate was assumed to also be a function of the item’s inventory level. In devel-
oping the model, the authors also assumed a non-zero ending inventory policy whereby
once the inventory reaches a certain point, it is salvaged so that it is not completely
wasted after its expiration date. In addition, the capacity of the shelf space was assumed
to be limited. The model was formulated as a profit maximisation problem with the cycle
time, selling price and the ending inventory level as the decision variables.

Numerous researchers have built upon Wu et al. (2016) work. For example, Chen
et al. (2016) formulated a model aimed at optimising not only the price, cycle time
and ending inventory level, but also the available shelf space. Motivated by the fact that
retailers often discount stocks of perishables when their expiration dates are approaching,
Feng et al. (2017) developed an inventory control model for a retailer who has a closeout
sale just before the items expire. Dobson et al. (2017) took a different approach to the
assumption that the demand is a function of the age of the items and developed an EOQ
model for a situation where customers gauge the freshness of the items before making
a purchase and they can decide to either buy the item or not, regardless of its age.
In addition to considering a demand rate that depends on the age, inventory level and
selling price of a perishable item, Wu et al. (2017) incorporated a trapezoidal type demand
pattern which is representative of most products’ life cycles which are characterised by
an increasing rate during the introduction phase, a flat rate at the maturity phase and
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a decreasing rate during the decline phase. Li et al. (2017) and Li and Teng (2018)
incorporated advance payment schemes and reference selling prices, respectively, to Wu
et al. (2016)’s model. In the advance payment model, the authors assumed that the
supplier of the perishable items requires the retailer to pay a portion of the purchase
price prior to receipt of the order. For the model that considers reference prices, the
authors assume that the selling price has a certain threshold beyond which customers are
not willing to purchase the items at all. Li and Teng (2019) included the length of the
credit term as a third decision variable in Wu et al. (2016)’s model by extending it to a
case where the supplier allows the retailer to purchase the items on credit and grants the
retailer a certain amount of time to settle debt.

The aforementioned studies are all limited to the retail end of the supply chain. There
have been a few studies dedicated to inventory management of fresh produce. Cai et al.
(2010) formulated a model for optimising both the selling price and the replenishment
policy in a fresh produce supply chain with a single producer, responsible for growing the
produce, and a single distributor who is in charge of transporting the produce from the
producer’s facility to retail outlets. Cai et al. (2013) developed a model for maximising
profit in a fresh produce supply chain with a producer, a third party logistics (3PL)
provider and a distributor under the assumption that the demand rate for the produce
is stochastic and sensitive to the selling price and the freshness condition of the produce.
Ma et al. (2019) hypothesised a situation where the supply chain members do not have
access to the same type of information such as order lead times, demand and delivery
times, to name a few. This leads to a distortion in the amount of information and this
is termed asymmetric information in economic theory. Ma et al. (2019) compared cen-
tralised and decentralised inventory replenishment policies in agricultural supply chains
with as symmetric information provide that the demand for the agricultural products is
price- and freshness-sensitive.

2.2.7 Lot-sizing models for items with inventory level-dependent
demand rates

Motivated by the observation in Levin et al. (1972), Corstjens and Doyle (1981) and Silver
and Peterson Silver and Peterson (1985), to name a few, that the presence of large piles
of inventory induces consumer demand, Baker and Urban (1988) formulated an EOQ for
items whose demand rate is a function of the on-hand inventory level. The authors used
a power-form function to represent the demand rate’s inventory level dependency and
they assumed that a new replenishment cycle only starts when the inventory level in the
current cycle reaches zero.

Mandal and Phaujdar (1989) presented an extension of Baker and Urban (1988)’s
work that considered deteriorating items and made use of a linear function to represent
the demand rate’s inventory level dependency. Urban (1992) developed an extension
that showed the benefits of adopting a non-zero ending inventory policy. While consumer
demand has been shown to be affected by the inventory level, there are other factors
that influence it too, for example, the selling price. With this in mind, Urban and Baker
(1997) and Teng and Chang (2005) formulated inventory control models for items whose
demand rate is a multivariate function of the inventory level and the selling price. Urban
and Baker (1997)’s work also considered a non-zero ending inventory policy and a price
reduction at the end of the replenishment cycle while Teng and Chang (2005)’s model
considered deteriorating items. Hou and Lin (2006) used the DCF approach to study the

15

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



effects of inflation and the time value of money on an inventory system with a demand rate
that depends on both the selling price and the level of inventory of the items. Goyal and
Chang (2009) developed an EOQ model for a system with an inventory level-dependent
demand rate for a retailer who has a warehouse (used for storing inventory) and a display
area where the inventory is sold with the aim of optimising the initial order quantity
from the supplier and transfer quantity from the warehouse to the display area. Pando
et al. (2012) presented a profit maximisation model for a scenario where the demand rate
is an increasing function of the inventory level and the holding cost varies according to
the amount of time the inventory has been in the system. Duan et al. (2012) developed
two inventory control models, one with backordered shortages and the other without, for
deteriorating items with a demand rate that depends on the inventory level. Krommyda
et al. (2015) studied an inventory system with two substitutable items (i.e. a fraction
of the demand rate for one item can be met with the second item in case of a stock out
situation), each with a demand rate that is a function of the stock level of both items at a
given time. Sargut and Isik (2017) developed a dynamic programming-based heuristic for
optimising the inventory replenishment frequency and backorder quantity in a perishable
inventory system with permitted shortages under production capacity constraints. Pando
et al. (2019) studied an inventory system aimed at maximising the ratio of the profit
generated to the total costs incurred under the assumption that the demand rate depends
on the level of inventory and that the holding cost is a non-linear function of both time
and the inventory level. Urban (2005) conducted an extensive review of the literature on
inventory control models with inventory level-dependent demand rates.

2.3 Concluding remarks

The presented literature highlighted the contributions made by various researchers to
the literature that forms the basis of the work presented in this thesis (namely, lot sizing
models for growing items, multi-echelon inventory systems and items with imperfect qual-
ity, expiration dates, imperfect quality and inspections errors, price-dependent demand
and inventory level-dependent demand). Despite its simplistic nature, the classic EOQ
model, attributed to Harris (1913), is the groundwork behind all these models. While
these models have made significant contributions to the literature, there are still gaps
that might be filled, through the development of new models, to suit various practical
situations in food production systems.

Two aspects of the reviewed literature, namely, lot-sizing models for growing items
and those for items in multi-echelon inventory systems, stand out among the rest with
ample opportunities for further development. In combination with one another, these two
aspects of the reviewed literature are favourable for the development of new models that
suited specifically for complex food production systems. For this reason, the common
thread among all six novel models presented in this thesis is growing inventory items and
multi-echelon inventory systems.

The other aspects of the reviewed literature (specifically, lot-sizing models for items
with price-dependent demand, items with imperfect quality, perishable items with expi-
ration dates, items with imperfect quality and errors in quality inspection and items with
inventory level-dependent demand) also play a vital role in the development of the six
novel models. These aspects are incorporated into each of the models to formulate mod-
els that are not only more realistic (and thus, practical) but are also suited specifically

16

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



for food production systems. This is because aspects such as pricing decisions, quality
inspection, expiration dates and stock levels play important roles in food production sys-
tems. For instance, quality control ensures that the consumption of food products, which
move between different supply chain echelon for value-adding activities such as processing
and packaging, is not compromised. In addition, it is imperative for managers in retail
stores to keep track of the expiration dates of stocked food products so as to minimise
wastage that results from having to dispose of expired food because it is unsuitable for
sale. Both the selling price and the displayed inventory level of products have been shown
to be important determinants of consumer demand. Generally, demand increases with
decreasing selling prices and it increases with increasing levels of stock on shelves.

Owing to their suitability for food production systems, the six models presented in
this thesis not only enrich the reviewed literature but they also represent new research
areas that involve growing items in multi-echelon supply chains. The results from the
six models can help researchers and practitioners in food production system that involve
growing items in multi-echelon settings to gain better a understanding of the inventory
management practices.
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Chapter 3

Review of Foundational Models

3.1 Introduction

Seven previously published lot-sizing models in the literature are the foundation of the
six novel models presented in this thesis. In combination with one another, the lot-sizing
model for growing items, credited to Rezaei (2014), and the lot-sizing models for items
in multi-echelon supply chain settings, credited to Goyal (1977), form the basis of all
six models presented in the thesis. The ideas behind these two foundational models (in
combination with one another) are utilised in combination with the ideas behind the
other five foundational models (namely, models for items with price-dependent demand,
items with imperfect quality, perishable items with expiration dates, items with imperfect
quality and inspections errors and items with inventory level-dependent demand) in the
development of the six original models presented in this thesis. In this chapter, the
mathematical theory governing these seven foundational models is briefly reviewed.

3.2 Notations

The following notations are used during the development of the models presented in this
thesis:

a The fraction of processed inventory that are of poorer quality

b
′

The weight of good quality (as classified by the inspection process) processed
inventory received by the retailer per retail cycle

b
′′

The weight of poorer quality processed inventory that was incorrectly classi-
fied (as good quality processed inventory by the inspection process) received
by the retailer per retail cycle

cf The farmer’s feeding cost per weight unit of live inventory per unit time

D The demand rate, in weight units per unit time, for processed items of good
quality

F (t) Freshness index of the processed inventory at time t (a function of the expi-
ration date)

G The weight of the ending inventory (for the case with a non-zero ending
inventory policy)

hr The retailer’s holding cost per weight unit per unit time

hp The processor’s processing facility holding cost per weight unit per unit time
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hs The processor’s inspection facility holding cost per weight unit per unit time

I(t) The weight of the processed inventory at time t

Kf The farmer’s setup cost per cycle

Kp The processor’s processing facility setup cost per cycle

Kr The retailer’s ordering cost per cycle

Ks The processor’s cost of transferring a single batch of good quality processed
inventory from the inspection facility to the retailer

L The maximum lifetime (i.e. expiration date or shelf life) of the processed
inventory

lr The cost (per weight unit) of accepting poorer quality processed inventory

ls The cost (per weight unit) of rejecting good quality processed inventory

mf The farmer’s mortality cost per weight unit of mortal inventory per unit time

n The number of shipments from the processor to the retailer per unit cycle of
the processor

np The number of batches of processed inventory sent by the processor from the
processing facility to the inspection facility per unit cycle of the processing
cycle

ns The number of batches of good quality processed inventory delivered to the
retailer (by the processor from the inspection facility) during a single inspec-
tion run

pf The farmer’s selling price per weight unit of live items

pp The processor’s selling price per weight unit of (or good quality, in the case
of imperfect quality models) inventory

pq The processor’s selling price per weight unit of poorer quality inventory

pr The retailer’s selling price per weight unit of (or good quality, in the case of
imperfect quality models) processed inventory

ps Retailer’s salvage price per weight unit of processed inventory

pv The purchasing cost per weight unit of live newborn item

Q1 The weight of the items in the retailer’s lot

R The processing rate, in weight units per unit time

S The capacity of the retailer’s shelf space in weight units

s
′

The weight of each batch of good quality processed inventory delivered from
the processor’s inspection facility to the retailer per inspection cycle

s
′′

The weight of poorer quality processed inventory allowed to accumulate at
the processor’s inspection facility per inspection cycle

T The retailer’s cycle time

Tf The duration of the farmer’s growth period

Tp The processor’s cycle time

Ts The duration of time required to inspect the entire lot-size

u1 The probability of a Type I error (i.e. classifying poorer quality processed
inventory as good quality processed inventory)

u2 The probability of a Type II error (i.e. classifying good quality processed
inventory as poorer quality processed inventory)

v The inspection cost per weight unit

w0 The weight of each newborn item

w1 The target (or maturity) weight of each item
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w(t) The weight of an item at anytime t

x The fraction of the live items which survive throughout the growth period

y The (equivalent) number of items in the retailer’s lot per cycle

z The inspection rate in weight units per unit time

α The items’ asymptotic weight

β The integration constant

δ Scale parameter of the demand rate (or asymptotic level of demand attainable
when the inventory level is considered most favourable to consumers)

λ The exponential growth rate of the items

ω Price elasticity of the demand rate

φ Maximum size of the market for processed inventory (or asymptotic level of
demand attainable when the selling price is considered most favourable to
customers)

ψ Shape parameter of the demand rate (or the inventory level-elasticity of the
demand)

τ The duration of time between consecutive deliveries of good quality batches
of processed inventory from the inspection facility to the retailer

θ(t) The age-dependent deterioration rate of the processed inventory at time t

3.3 Foundational models

3.3.1 Growing items

Item growth was first included in an inventory model by Rezaei (2014) through the
development of an EOQ model for a new class of items termed growing items. This class
of items is made up of living organisms with the capability to grow and includes livestock,
fish and crops, to name a few. Rezaei (2014) considered a situation where a company
purchases y live newborn items that are capable of growing. At the time of purchase,
each newborn has an initial weight of w0. This implies that the total weight of all the
ordered newborn items is Q0 = yw0. The cost of purchasing each newborn item is pv per
weight unit. The company rears the items for a period of Tf time units and at the end
of that period, the weight of each newborn item would have grown to w1. Likewise, the
total weight of all the ordered fully grown items would have increased to Q1 = yw1. At
that point, the company slaughters all the fully grown items instantaneously and uses
(i.e. sells) the slaughtered inventory items to meet consumer demand of D weight units
per unit time. The inventory system profile for this situation is depicted by Figure 3.3.1.

The feeding and holding cost per weight unit per unit time are cf and hr, respectively,
and the company incurs these costs for time periods Tf and (T −Tf ), respectively, which
correspond to feeding and consumption periods, respectively. The fixed cost of setting
up a new replenishment cycle is Kr and the company incurs this cost at the beginning of
each cycle. The company sells the slaughtered inventory at a price of pr per weight units.
Given that the demand rate is D and the weight of the demanded (i.e. fully grown and
slaughtered) inventory is replenishment Q1, this means that the company’s replenishment
frequency (or cycle time), T , equals Q1/D = yw1/D. The company’s total profit per unit
time, TPU , is the company’s revenue per unit time less the company’s total costs (i.e.
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the sum of the setup, purchasing, feeding and holding costs) per unit time, and hence,

TPU = prD −
KrD

yw1

− pvw0D

w1

− cfD

w1

∫ t

o

w(t)dt− hryw1

2
. (3.3.1)

Figure 3.3.1: Inventory system profile for growing items

For the growth function, wt, Rezaei (2014) used an approximation first developed by
Richards (1959). The company’s optimal lot-size (y∗), determined by setting the first
derivative of TPU with respect to y to zero, is

y∗ =

√
2KrD

hrw(t)2
(3.3.2)

3.3.2 Multi-echelon inventory systems

Goyal (1977) developed the first model, often referred to as the JELS model, aimed at
jointly optimising the inventory replenishment policy adopted in a two-echelon inventory
system with a single vendor and a single buyer. The vendor is responsible for producing
the demanded items and the buyer sells the demanded items to consumers. In essence,
there is a production echelon (at the vendor’s facility) and a consumption echelon (at
the buyer’s facility). The behaviour of the inventory system in this type of supply chain
setup is depicted by Figure 3.3.2. When a new replenishment cycle starts, the vendor
starts producing items at a rate of R per unit time. Once the quantity of items produced
is enough to make up a batch of size Q, the vendor ships this batch to the buyer who
meets end consumer demand of D items per unit time. The buyer receives a new order
every T time units. Given that the buyer’s lot-size is Q and buyer’s the demand rate
is D, the buyer’s cycle cycle time T = Q/D. The production rate, R, is greater than
the demand rate, D, and as a result, the vendor does not produce through the entirety
of their replenishment cycle, of duration nT . This means that the vendor delivers n
shipments, each with Q items, to the buyer throughout a single production run, with n
being an integer number. The vendor incurs a fixed production setup cost of Kp at the
start of each production cycle. Keeping a single item in stock costs the vendor a holding
cost of hp per unit time. On the other hand, the buyer’s holding cost is hr per unit time
and the buyer incurs a fixed cost of Kr for placing an order.
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Figure 3.3.2: Inventory system profile for a vendor and a buyer in a two-echelon inventory
system

Goyal (1977)’s model was aimed at minimising the total joint inventory management
cost for both parties. Consequently, the joint total cost (i.e. for both echelons) per unit
time, TPUsc, is

TPUsc =
KrD

Q
+
hrQ

2
+
KpD

nQ
+
hpQ

2

[
(n− 1)

(
1− D

R

)
+
D

R

]
. (3.3.3)

The buyer’s optimal lot-size, Q∗, is determined by setting the first derivative of Equa-
tion (3.3.3) with respect to Q to zero, resulting in

Q∗ =

√√√√√√ 2D
(
Kr + Kp

n

)
hr + hp

[
(n− 1)

(
1− D

R

)
+ D

R

] . (3.3.4)

The optimal number of shipments delivered by the vendor to the buyer per production
cycle, n∗, can be determined either by setting the first derivative of Equation (3.3.3) with
respect to n to zero or through an iterative procedure.

3.3.3 Price-dependent demand

Price-dependent demand rates have been of interest to researchers studying the optimi-
sation of inventory systems since the publication of Whitin (1955)’s work. In this type
of inventory system, a company purchases Q items at the beginning of each inventory
replenishment cycle at a cost of pv per item. The company incurs a fixed ordering cost
of Kr per cycle. The company uses the lot-size Q to meet a consumer demand rate of
D. However, the demand rate is not a deterministic constant (unlike in most inventory
models in the literature), instead it is affected by the selling price of the items. This is
based on marketing theory which has shown that the demand for consumer goods gen-
erally increases with decreasing selling prices (Robinson and Lakhani, 1975). Numerous
functions have been used to model this relationship. One such function is

D = φe−ωpr , (3.3.5)
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first adopted by Robinson and Lakhani (1975) where φ represents the maximum number
of potential customers, pr is the selling price of the items and ω is the price elasticity of
the demand rate. If the relationship between the demand and the selling price is given
by Equation (3.3.5), the changes to the inventory level over time can be represented by
Figure 3.3.3.

Figure 3.3.3: Inventory system profile for items with price-dependent demand rate

In addition to the fixed cost of placing an order, the company also incurs holding
costs, with charge a of hr per item per unit time. The company’s total cost is the sum
of the ordering, purchasing and ordering costs. The company’s profit is computed by
subtracting its revenue from its total costs. Consequently, the company’s profit per unit
time, TPU , is

TPU = prφe
−ωpr − Krφe

−ωpr

Q
− pvφe−ωpr −

hrQ

2
. (3.3.6)

The optimal selling price, p∗r, is obtained through trial and errors methods and it is
used to to compute the company’s optimal lot-size, Q∗, as

Q∗ =

√
2Krφe−ωp

∗
r

hr
. (3.3.7)

3.3.4 Imperfect quality

Salameh and Jaber (2000) are credited with the EOQ model for items with imperfect
quality. In this type of inventory system, not all of the ordered items are of good quality
and there is an inspection process in place to separate good and poorer quality items.
Figure 3.3.4 depicts the typical inventory profile for such an inventory system.

Salameh and Jaber (2000) studied an inventory system where, at the start of each
replenishment cycle, a company places an order for Q items. The company is charged a
fixed ordering cost of Kr for order placement at the beginning of each cycle. In addition,
the company pays a purchasing cost of pv for each item. However, not all the items in the
company’s order are of good quality. A certain fraction, a, of the order is of poorer quality
and this can not be used to meet end consumer demand which is for good quality items.
This means the quantity of poorer quality items in each lot, b

′
, equals aQ. The holding

cost is hr per item per unit time. In order to ensure that only good quality items are sold
to consumers, the company inspects the entire lot for quality before putting it on sale at
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a rate of z items per unit time for time period τ . The company sells the fraction of the lot
that is of good quality, (1−a)Q, at a selling price of pr per item throughout the cycle and
salvages the fraction of the lot that is of poorer quality, b

′
= aQ, as a single batch at a

discounted price of pq per item at the end of the inspection process. This means that the
company has two revenue streams, one from the sales of good quality units and the other
from the poorer quality sales. On the cost front, in addition to the purchasing, ordering
and holding costs, the company also incurs inspection costs for separating the lot into
good and poorer quality classes, with the cost of inspecting each unit amounting to v.
The poorer quality fraction, a, is assumed to be a random variable and consequently, the
company’s expected total profit per unit time, E[TPU ], is

E[TPU ] = prD +
pqDE[a](
1− E[a]

) − pvD(
1− E[a]

) − KrD

Q
(
1− E[a]

) − vD(
1− E[a]

)
− hr

{
Q
(
1− E[a]

)
2

+
QDE[a]

z
(
1− E[a]

)}. (3.3.8)

Figure 3.3.4: Inventory system profile for items with imperfect quality

The value of Q that maximises Equation (3.3.8), which corresponds to the optimal
lot-size Q∗, is determined as

Q∗ =

√√√√√ 2KrD

hr

{(
1− E[a]

)2
+ 2E[a]D

z

} . (3.3.9)

3.3.5 Expiration date

The typical behaviour of the inventory level in an inventory system for perishable items
with expiration is depicted by Figure 3.3.5. This type of inventory system is based on
the classic perishable (or deteriorating) inventory system, first proposed by Ghare and
Schrader (1963). In formulating their model, Ghare and Schrader (1963) used a fixed and
deterministic quantity θ(t) to describe the rate of deterioration. Sarkar (2012) described
the deterioration rate in terms of the expiration date (or shelf life) of demanded items as

θ(t) =
1

1 + L− t
, (3.3.10)
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where L is the expiration date. Since the items can not be used to meet consumer demand
(with a rate D) after the expiration date, the replenishment cycle time T is less than or
equal to expiration date (i.e. L ≥ T ). Throughout the replenishment cycle, the inventory
level is depleted as a result of both consumer demand and deterioration and consequently,
the differential equation

dI(t)

dt
= −D − θ(t)I(t), 0 ≤ t ≤ T, (3.3.11)

describes the changes to the inventory level. After solving Equation (3.3.11), the initial
lot-size is determined as

Q = D(1 + L) ln

(
1 + L

1 + L− T

)
. (3.3.12)

Figure 3.3.5: Inventory system profile for items with expiration dates

Inventory systems of this kind typically consider a company that places an order for
deteriorating items at the beginning of a replenishment cycle. The company incurs a fixed
cost of Kr per cycle associated with placing the order. The company also incurs holding
costs, charged at hr per item per unit time, for keeping the items in stock throughout
the cycle. Therefore, the company’s total cost per unit time, TCU , is

TCU =
Kr

T
+
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+
T 2

4
− (1 + L)T

2

]
. (3.3.13)

A closed form solution for the company’s optimal cycle time, T ∗, can not be deter-
mined from Equation (3.3.13). However, various search techniques can be used to solve
for T ∗. Substituting T ∗ into Equation (3.3.12) yields the optimal lot-size Q∗.

3.3.6 Imperfect quality and inspection errors

Khan et al. (2011) studied an inventory system for items with imperfect quality under the
assumption that the inspection process used to separate the good and poorer quality items
is prone to errors. Khan et al. (2011)’s model is essentially an extension of Salameh and
Jaber (2000)’s work, described previously in Subsection 3.3.4, that considers two types
of inspection errors, namely type I and type II errors. The behaviour of the inventory
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level over time for such an inventory system is depicted by Figure 3.3.6. A type I error
is committed when a good quality item is incorrectly classified by the inspection process
as being a poorer quality items whereas, a type II error describes a situation where a
poorer quality item is incorrectly classified as a good quality unit. The probabilities of
committing type I and type II errors are u1 and u2, respectively.

Figure 3.3.6: Inventory systems profile for items with imperfect quality and inspection
errors

Since Khan et al. (2011)’s model is an extension of Salameh and Jaber (2000)’s,
all the basic assumptions from Salameh and Jaber (2000)’s model hold with exception
to the errors made by the inspection process. There are penalty costs associated with
committing the inspection errors. If a poorer quality unit is accepted, the company
incurs a cost of lr per (incorrectly classified) item and if a good quality item is rejected,
the company incurs a cost of ls per (incorrectly classified) item. When a poorer quality
unit is sold to a customer, customers can return the item for a replacement item at no
additional cost. The quantity of poorer quality items that are sold to customers (as a
result of inspection errors) is b

′′
= aQu2 and this quantity is returned to the company

and sold to secondary markets at a discounted price (of pq per item) along with the
poorer quality items. The fraction of items that are of poorer quality, a, is considered
a random variable, as is the case in Salameh and Jaber (2000)’s model. Additionally,
the probabilities of type I and type II errors, u1 and u2, respectively, are also considered
random variables and consequently, the expected value of the total profit per unit time,
E[TPU ] is

E[TPU ] = prD +
prDE[a]E[u2](

1− E[a]
)(

1− E[u1]
) +

pqDE[u1](
1− E[u1]

) +
pqDE[a](

1− E[a]
)(

1− E[u1]
)

− pvD(
1− E[a]

)(
1− E[u1]

) − KrD

Q
(
1− E[a]

)(
1− E[u1]

) − vD(
1− E[a]

)(
1− E[u1]

)
−

ls
(
1− E[a]

)
DE[u1](

1− E[a]
)(

1− E[u1]
) − lrDE[a]E[u2](

1− E[a]
)(

1− E[u1]
)

− hr

{
Q
(
1− E[a]

)(
1− E[u1]

)
2

+
QDE[a]

[(
1− E[u1]

)
+ E[u2]

]
z
(
1− E[a]

)(
1− E[u1]

) }
, (3.3.14)
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and the associated optimal lot-size, Q∗, is

Q∗ =

√√√√√ 2KrD

hr

{(
1− E[a]

)2(
1− E[u1]

)
+

2E[a]D
[(

1−E[u1]
)
+E[u2]

]
z
(
1−E[u1]

) } . (3.3.15)

3.3.7 Inventory level-dependent demand

Baker and Urban (1988) developed a model for a situation where the demand for a
company’s product is a function of the level of on-hand inventory of that particular
product. Figure 3.3.7 depicts the typical inventory profile for such a situation. Based on
marketing theory, consumer demand generally increases with an increasing level of stock
on display (Levin et al., 1972). Baker and Urban (1988) used the function

D = δ
[
I(t)

]ψ
, 0 ≤ t ≤ T, (3.3.16)

to describe the relationship between the demand rate, D, and the inventory level over
time, I(t), where δ represents the scaling parameter for the demand rate (i.e. the max-
imum attainable demand) and ψ represents the shape parameter (i.e. the elasticity of
the demand with respect to the inventory level displayed on shelves). Therefore, the
inventory level changes with time according to the differential equation

dI(t)

dt
= −D = −δ

[
I(t)

]ψ
, 0 ≤ t ≤ T. (3.3.17)

Figure 3.3.7: Inventory system profile for items with inventory level-dependent demand
rate

Upon solving Equation (3.3.17), an expression for I(t) (in terms of Q) is obtained
and this is used to compute the company’s holding costs per unit time. The company is
charged a holding cost of hr per unit time for keeping a single item in stock. Moreover,
the company incurs a fixed ordering cost of Kr whenever an order is placed and the cost
of purchasing each item is pv. If the company sells the items at a selling price of pr per
item, then its total profit per unit time, TPU , is

TPU = prδ(1− ψ)Qψ − Krδ(1− ψ)

Q(1−ψ) − pvδ(1− ψ)Qψ − hr(1− ψ)Q

2− ψ
. (3.3.18)
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Owing to the difficulty associated with obtaining a closed form solution to Equation
(3.3.18), various search techniques are used to determine the company’s optimal lot-size
Q∗.

3.4 Concluding remarks

In this chapter, the mathematical theory behind the seven foundational models that lay
the groundwork for the development of the six original models that are presented in this
thesis, is reviewed. The theory in these foundational models describes common situations
that inventory managers in food production systems might face, for instance, quality
control, perishability and pricing polices, to name a few. Two of the foundational models,
specifically, the model for growing items and the JELS model, are the common thread
among the six original models developed in the next chapter of the thesis. In combination
with one another, these two specific models perfectly describe the inventory system of
most food supply chains which start with the rearing of growing items such as livestock
or crops and finish with retail sale of packaged food products. The upstream farming
and the downstream retail ends of food supply chains are often connected by processing
operations which add value to the grown items and transforms them into form that is
suitable for human consumption. In most cases, the different stages of the supply chain
are handled by different entities. With this in mind, the reviewed foundational models
are used as a basis for developing the six original models for managing growing inventory
items in multi-echelon supply settings that are reminiscent of actual food production
systems.
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Chapter 4

Presentation of Novel Models

4.1 A three-echelon supply chain inventory model

for growing items∗

4.1.1 Introduction

4.1.1.1 Context

As a result of heightened competition in today’s business environment, many companies
have been forced to look beyond the four walls of their own organisations when trying to
improve efficiency or reduce costs in their operations. A lot of companies have realised
that collaborating with their customers and suppliers can lead to sizeable improvements
in responsiveness, efficiency and cost reductions (Ben-Daya and Al-Nassar, 2008). This
collaboration entails integrating various decisions between all supply chain members. One
such decision is the inventory replenishment policy adopted by the chain members.

Owing to the potential cost savings that can be realised as a result of coordinating
inventory decisions with other supply chain members, numerous researchers have devel-
oped integrated inventory models which are aimed at minimising total inventory costs
among all chain members.

4.1.1.2 Purpose

This section attempts to formulate an integrated inventory model for growing items in
a supply chain with a farmer, a processor and a retailer. Growing items are classified
as those which experience an increase in weight during the replenishment cycle (Rezaei,
2014). The items are able to gain weight because they are fed by the farmer until matu-
rity. Once mature, the items are delivered to a processing plant plant for slaughtering,
cutting and packaging (herein collectively called processing). For each processing run,
the processor delivers a certain number of equal-sized batches of processed (ready for
sale) items to the retailer who sells them to customers.

∗A modified version of this section has been accepted for publication as Sebatjane and Adetunji
(2020c) in the Journal of Modelling in Management.
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4.1.1.3 Relevance

Growing items, which include livestock and crops, among others, are a vital part of food
supply chains. Most growing items are consumed as saleable food items in various forms.
Prior to reaching end consumers, these items usually undergo various stages and processes
which ensure that they are ready for consumption (from a health and safety perspective).
Growing items are received as newborn items by a farmer who rears (or grows) them
until their weights are suitable for consumption. Following this, the items are processed
(which includes slaughtering) and transformed into various saleable items. Consumer
demand for saleable/processed items is met by a retailer who receives the items from
the processor. These stages can represent the three echelons of a supply chain, with a
farming operation, a processing plant and a retail store being the echelons.

From the literature review, it appears that no study (focusing on growing inventory
items) has considered a three-echelon supply chain with farming, processing and retailing
operations. This section is aimed at addressing this gap in the literature given that the
proposed inventory system represents a typical situation in the food production supply
chain. The results from this section can be used by purchasing managers in industries
involved in food production when ordering growing items.

4.1.1.4 Organisation

In addition to the introductory subsection, this section has four other subsections. The
proposed supply chain inventory system is briefly described and then modelled mathe-
matically in Subsections 4.1.2 and 4.1.3, respectively. A numerical analysis is given in
Subsection 4.1.4, from which important managerial insights are drawn through sensitivity
analysis and a cost efficiency analysis of the proposed replenishment policy. The section
is then concluded in Subsection 4.1.5.

4.1.2 Problem description

Figure 4.1.1: A three-echelon supply chain for growing items with farming, processing
and retail operations

The problem considered is that of a growing items inventory system in a supply chain
with farming, processing and retailing echelons of operations. This type of supply chain
setup, depicted in Figure 4.1.1, is representative of most food production chains. At
the first stage, a farmer purchases newborn items and rears them till they grow to a
given target weight. As soon as the weight of the items has reached the maturity weight
(i.e. the predefined target weight), the farmer delivers them to a processing plant for
slaughtering, cutting and packaging. All the activities carried out by the processor are
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collectively called processing and they occur at a specified finite rate. The processor then
delivers the ready-for-consumption items to a retailer who meets customer demand.

The behaviour of the inventory at each of the three supply chain echelons is depicted
by Figure 4.1.2. The farmer’s inventory level represents the weight of the live items which
increases throughout the growth period as a result of feeding. On the other hand, the
behaviour of the processor’s and the retailer’s inventory level represents the weight of
the processed items. The farmer’s growth period is synchronised with the processor’s
production cycle time so that when a growth period ends, the processor is ready to start
production. Once the processor has produced enough saleable items to make up a batch,
a shipment is delivered to the retailer. During a single processing run, the processor
delivers multiple equal-sized shipments of saleable items to the retailer (i.e. a SSMD
policy is adopted between the processor and the retailer).

Figure 4.1.2: Inventory system profile for growing items in a supply chain with a single
farmer, a single processor and a single retailer

The model is aimed at determining an inventory replenishment policy which minimises
the total cost of managing inventory in the supply chain, made up of the total costs
incurred by each of the three supply chain members. The decision variables of the model
are the number of shipments made by the processor to the retailer in each production
setup and the replenishment interval (and consequently the order quantity).

In order to model the inventory problem at hand, a number of assumptions were made
to aid the model development process. These include:

• The supply chain comprises of a single farmer, a single processor processor and a
single retailer, dealing in a single type of growing item.
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• The (processor’s) processing rate is greater than the (retailer’s) demand rate, both
of which are deterministic constants.

• The arrival of successive shipments of processed inventory from the processor to the
retailer is scheduled to occur when the previous shipment has just been depleted.

• The processor delivers processed inventory to the retailer just at the moment the
processed inventory is enough to make up a batch size.

• The retailer’s replenishment interval is an integer multiple of the processor’s replen-
ishment interval.

• Holding costs are incurred only for the processed items.

• The retailer’s holding costs are higher than those of the processor as a result of
value adding as the items move downstream in the supply chain.

4.1.3 Model development

The start of a new growing cycle is marked by the farmer purchasing ny live newborn
items, each weighing w0 at the time of purchase. After reaching a specific weight, the
items are instantaneously delivered to a processor, who delivers n shipments of y processed
items to a retailer. This implies that in order for the retailer to meet customer demand for
processed items, the farmer should also take into account the number of shipments made
by the processor to the retailer during a single processing run when ordering newborn
items. This means that the weight of all the newborn items ordered, nQ0, is given by
nyw0. The farmer’s growth period is of duration Tf and during this time, the items are
fed so that they can grow. The maturity weight of each item (i.e. weight at the end of
a growing cycle) is w1 and once the items grow to this target weight, they are sent to
a processing facility for slaughtering, cutting and packaging. Likewise, the weight of all
the fully grown ordered items is given by nQ1 = nyw1.

While different items have different growth rates, the general pattern of growth is
similar. Growth functions have a characteristic “S”-shape, and for this reason the logistic
function is used to model the growth pattern. The logistic growth function makes use of
three parameters to represent item growth over time. The items’ growth function can be
represented by

wt =
α

1 + βe−λt
, (4.1.1)

where λ, β and α denote the exponential growth rate, the constant of integration and
the items’ asymptotic weight respectively.

When the growth period concludes at Tf , the items are instantaneously delivered to
the processor who transforms them into a consumable form and at that point, the weight
of each item would have increased to w1. Using Equation (4.1.1), the farmer’s growth
period can be computed as

Tf = −
ln
[
1
β

(
α
w1
− 1
)]

λ
. (4.1.2)

The farmer and the processor’s cycle times are synchronised in such a way that during
the course of a single processing run, the farmer makes a single delivery of mature items
to the processor when the growth period ends (i.e. the farmer and the processor operate
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on a SSSD policy) as shown in Figure 4.1.1. As a way of ensuring that the fully matured
items are ready for processing at the right time (i.e. in the sense that their weight has
reached the target weight), the growth period needs to be at most of equal duration to
the processor’s cycle time. Hence, the relationship between the farmer’s growth period
and the processor’s cycle time is given by

Tf ≤ Tp. (4.1.3)

Since R > D, the processor does not produce for their entire cycle (i.e. Tp). This
means that Tp has a processing portion, during which the processor transforms inputs
from the farm into processed items ready for consumption and ships them to the retailer,
and a non-processing portion where by the processor supplies the retailer with processed
items from the accumulated stock . Stock accumulates because R > D. The processor
and the retailer operate on a SSMD replenishment policy. This means that for each
production setup, the processor delivers a certain number (in this case n) of equal-sized
shipments of processed inventory to the retailer. This means that the weight of all the
ordered inventory delivered by the farmer to the processor is nQ1. The processor thus
makes n deliveries of weight Q1 to the retailer throughout the processor’s replenishment
cycle. Consequently, the relationship between the processor’s cycle time, Tp, and the
retailer’s cycle time, T , is given by

Tp = nT. (4.1.4)

4.1.3.1 Retailer’s total cost components

The behaviour of the retailer’s processed inventory level is depicted in Figure 4.1.3. The
retailer’s total cost function is the sum of the holding and the ordering costs.

Figure 4.1.3: Inventory system profile for the retailer

4.1.3.1.1 Retailer’s ordering cost per unit time

At the beginning of a retailer’s cycle, the processor delivers a shipment of size Q1 in order
for the retailer to meet a demand rate of D. This implies that the retailer places D/Q1

orders per unit time. Whenever the retailer places an order, a cost of Kr is incurred.
Thus the ordering cost incurred by the retailer per unit time, OCUr, is determined as

OCUr =
KrD

Q1

=
KrD

yw1

. (4.1.5)
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4.1.3.1.2 Retailer’s holding cost per unit time

The retailer’s cost for holding inventory per unit time, HCUr, is determined as the
product of the average weight of the inventory level and the cost of holding a single
weight unit of inventory for a single time unit (hr). The average weight of the inventory
items, as determined from Figure 4.1.3, is given by Q1/2. The holding cost incurred by
the retailer per unit time is thus

HCUr =
hrQ1

2
=
hryw1

2
. (4.1.6)

4.1.3.1.3 Retailer’s total cost per unit time

The total cost incurred by the retailer per unit time, TCUr, is determined by adding
Equations (4.1.5) and (4.1.6), resulting in

TCUr =
KrD

yw1

+
hryw1

2
. (4.1.7)

The retailer places D/Q1 orders per unit time in order to satisfy the demand rate.
The retailer’s cycle time is the reciprocal of the number of times an order is placed per
unit time (i.e. T = Q1/D). From this expression of the retailer’s cycle time, their lot-size
can be derived as

y =
TD

w1

. (4.1.8)

Equation (4.1.7) can be expressed in terms of T , by substituting y with the expression
from Equation (4.1.8), as

TCUr =
Kr

T
+
hrTD

2
. (4.1.9)

4.1.3.2 Processor’s total cost components

Figure 4.1.4: Inventory system profile for the processor

The processor’s processed inventory system behaviour is depicted by Figure 4.1.4. The
total cost of managing inventory at the processing facility is comprised of two components,
namely the holding and setup costs.
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4.1.3.2.1 Processor’s setup cost per unit time

During the processor’s replenishment cycle, of duration Tp = nT , the farmer delivers a
single shipment of size nQ1. So as to satisfy the demand rate D, the processor sets up
for processing D/nQ1 times in a single time unit. The processor’s setup cost per unit
time, SCUp, is computed by multiplying the cost of setting up for a single processing run,
Kp, by the number of times per unit time that the processor has to setup for processing.
Thus,

SCUp =
KpD

nQ1

=
KpD

nyw1

. (4.1.10)

4.1.3.2.2 Processor’s holding cost per unit time

The cost of holding inventory at the processing facility per unit time, HCUp, is computed
by multiplying the average inventory level at the processor (Īp) by the holding cost per
weight unit per unit time (hp). The expression for the average inventory level in an
integrated inventory system operating under a SSMD replenishment policy is difficult to
compute given the irregular shape of Figure 4.1.4. To address this, various researchers,
for instance Yang et al. (2007), have derived this expression by redrawing Figure 4.1.4
into a more regular shape as given in Figure 4.1.5.

Figure 4.1.5: Inventory system profile the processor and the retailer [modified from Yang
et al. (2007)]

The processor’s average inventory level can be derived using Figure 4.1.5 as

Īp =
Processor’s time-weighted inventory

Processor’s replenishment interval

=

nQ2
1

2R
+Q2

1

(
1
D
− 1

R

)
+ 2Q2

1

(
1
D
− 1

R

)
+ · · ·+ (n− 1)Q2

1

(
1
D
− 1

R

)
nQ1/D

=
D

nQ1

[
nQ2

1

2R
+
n(n− 1)Q2

1

2

( 1

D
− 1

R

)]
=
Q1

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
.

(4.1.11)

35

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The processor’s holding cost per unit time, HCp, is computed as

HCUp = hpĪp =
hpQ1

2

[(
n−1

)(
1−D

R

)
+
D

R

]
=
hpyw1

2

[(
n−1

)(
1−D

R

)
+
D

R

]
. (4.1.12)

4.1.3.2.3 Processor’s total cost per unit time

Adding Equations (4.1.10) and (4.1.12) results in the processor’s total cost per unit time,
TCUp, which is

TCUp =
KpD

nyw1

+
hpyw1

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
. (4.1.13)

Equation (4.1.13) can be rewritten in terms of T by replacing y with Equation (4.1.8)
and the result is

TCUp =
Kp

nT
+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
. (4.1.14)

4.1.3.3 Farmer’s total cost components

Figure 4.1.6 represents the farmer’s (live) inventory system profile throughout the growth
period. The farmer’s total cost function is determined as the sum of their feeding and
setup costs.

4.1.3.3.1 Farmer’s setup cost

In order for the retailer to meet a demand rate of D, the farmer delivers a shipment of
size nQ1 to the processor (who supplies the retailer with n shipments, each of size Q1).
This means that the farmer places D/nQ1 orders per unit time. Whenever the farmer
places an order, a cost of Kf is incurred. This means that the farmer’s setup cost per
unit time, SCUf , is

SCUf =
KfD

nQ1

=
KfD

nyw1

. (4.1.15)

Figure 4.1.6: The farmer’s inventory system profile
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4.1.3.3.2 Farmer’s feeding cost per unit time

The farmer’s feeding cost component is dependent on the average weight of the inven-
tory. Similar to the processor’s average inventory, the farmer’s average inventory, Īf , is
computed using Figure 4.1.6 as the product of the integral of the growth function (i.e.
the area under the graph) and the number of ordered items divided by the replenishment
interval. Thus,

Īf =
ny
∫ Tf
0
wt dt

nT
=
y

T

(
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

])
. (4.1.16)

The farmer’s feeding cost per unit time, FCUf , is determined by multiplying the
feeding cost per weight unit per unit time (cf ) and the farmer’s average inventory level
(Īf ) and and it is thus

FCUf =
cfy

T

(
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

])
. (4.1.17)

4.1.3.3.3 Farmer’s total cost per unit time

In order to determine the farmer’s total cost per unit time, TCUf , Equations (4.1.15)
and (4.1.17) are summed and the result is

TCUf =
Kf

nT
+
cfD

w1

(
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

])
, (4.1.18)

after substituting y with the expression from Equation (4.1.8).

4.1.3.4 Total supply chain cost per unit time

The total supply chain cost per unit time, TCUsc, is the sum of Equations (4.1.9), (4.1.14)
and (4.1.18), resulting in

TCUsc =
Kr

T
+
hrTD

2
+
Kp

nT
+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
+
Kf

nT

+
cfD

w1

(
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

])
. (4.1.19)

The value of T which minimises the objective function is computed by equating the
objective function’s first derivative (with respect to T ) to zero and the result is

∂TCUsc
∂T

= −Kr

T 2
+
hrD

2
− Kp

nT 2
+
hpD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
− Kf

nT 2
= 0

=⇒ T =

√√√√√√ 2
(
Kr + Kp

n
+

Kf
n

)
{
hr + hp

[(
n− 1

)(
1− D

R

)
+ D

R

]}
D

.
(4.1.20)

The retailer’s order quantity is determined by substituting Equation (4.1.20) into
Equation (4.1.8), resulting in

y =

√√√√√√ 2D
(
Kr + Kp

n
+

Kf
n

)
{
hr + hp

[(
n− 1

)(
1− D

R

)
+ D

R

]}
w2

1

. (4.1.21)
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4.1.3.4.1 Model constraints

Two constraints are imposed on the proposed supply chain inventory model, the first
constraint is to make the solution procedure tractable while the second ensures that the
solution is feasible. The first constraint is that the number of shipments (of processed
items) delivered by the processor to the retailer per unit cycle of the processor, n, is an
integer. The second constraint, formulated by substituting Equation (4.1.4) into Equation
(4.1.3), ensures feasibility by guaranteeing that mature items are ready in the sense that
their weight has reached the target weight) for processing at the required time. These
two constraints along with the objective function, given in Equation (4.1.19), are utilised
to formulate the mathematical problem defining the proposed inventory system, which is

Min.

{
TCUsc =

Kr

T
+
hrTD

2
+
Kp

nT
+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
+
Kf

nT

+
cfD

w1

(
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

])}
s.t. n ∈ Z, Tf ≤ nT. (4.1.22)

4.1.3.4.2 Solution algorithm

The values of n and T which minimise the objective function are determined through an
iterative procedure.

Step 1: Begin with n = 1.

Step 2: Compute T using Equation (4.1.20) and then use that to compute TCUsc using
Equation (4.1.19).

Step 3: Increase n by 1 and then calculate T and TCUsc using Equations (4.1.20) and
(4.1.19).

Step 4: If the value of TCUsc decreases, then go to Step 3. Otherwise, the previously
calculated value of TUCsc (along with the corresponding T and n values) is the
best solution.

Step 5: Check the best solution’s feasibility. The solution is feasible provided that Tf ≤ nT .
Tf is calculated from Equation (4.1.2). If it is feasible, then the best solution is the
optimal solution and proceed to Step 7. If it is not feasible, proceed to Step 6.

Step 6: If Tf ≥ nT , set Tf to nT (i.e. T to Tf/n) and use it to compute TCUsc using
Equation (4.1.19) and then proceed to Step 7.

Step 7: End.

The farmer’s order quantity is simply the product of the number of shipments that the
processor delivers to the retailer in a single processing setup and the retailer’s order
quantity (i.e. ny).
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4.1.3.4.3 Proof of convexity of the objective function

As a way of showing that a unique solution to the objective function exists, it must be
proven that the objective function is convex because it seeks to minimise the total supply
chain cost. The partial derivatives of TCUsc with respect to T and n are

∂TCUsc
∂T

= −Kr

T 2
+
hrD

2
− Kp

nT 2
+
hpD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
− Kf

nT 2
, (4.1.23)

∂2TCUsc
∂T 2

=
Kr

T 3
+

Kp

nT 3
+

Kf

nT 3
, (4.1.24)

∂TCUsc
∂n

= − Kp

n2T
+
hpTD

2

(
1− D

R

)
− Kf

n2T
, (4.1.25)

∂2TCUsc
∂n2

=
Kp

n3T
+

Kf

n3T
, (4.1.26)

∂2TCUsc
∂T∂n

=
∂2TCUsc
∂n∂T

= − Kp

n2T 2
+
hpD

2

(
1− D

R

)
− Kf

n2T 2
. (4.1.27)

The quadratic form of the Hessian matrix is given by

[
T n

] 
Kr
T 3 + Kp

nT 3 +
Kf
nT 3 − Kp

n2T 2 + hpD

2

(
1− D

R

)
− Kf

n2T 2

− Kp
n2T 2 + hpD

2

(
1− D

R

)
− Kf

n2T 2

Kp
n3T

+
Kf
n3T

[ Tn
]

=
2

T

(
Kr +

Kp

n
+
Kf

n

)
> 0. (4.1.28)

From Equation (4.1.28), the objective is proven to be convex because it’s quadratic
from is shown to be positive.

4.1.4 Numerical results

4.1.4.1 Numerical example

As a way of showing the potential practical applications of the inventory problem dis-
cussed, a numerical example considering a supply chain with three members (i.e. a
farmer, a processor and a retailer) involved at various stages of the food production chain
is presented. The farmer grows newborn lambs and ships them to a processor for slaugh-
tering, cutting and packaging. The processor then ships an integer number of batches
of processed item to the retailer. The following parameters apply to the supply chain
inventory problem at hand: D =10 000 kg/year, R =12 500kg/year, Kr =80 000 ZAR,
hr =20 ZAR/kg/year, Kp =60 000 ZAR, hp =15 ZAR/kg/year, Kf =40 000 ZAR, cf
=10 ZAR/kg/year, α =51 kg, β =5, λ =6.2 /year and w1=45 kg. The results from the
example are presented in Table 4.1.1.

According to Table 4.1.1, the farmer should order ny = 640 newborn lambs at the
beginning of a growing cycle and deliver them to to the processor after (Tf=) 0.5746 years
when the weight of each sheep has reached the target weight of 45 kg . The processor
should deliver (n=) four shipments of processed sheep in each processing setup to the
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retailer and each shipment should have y = 160 processed sheep. The weight of each
shipment would be 7 200 kg (Q1 = yw1) and the retailer would replenish orders every
T = 0.7157 years. By following this policy the total supply chain cost would amount
to 329 214.74 ZAR/year. Figure 4.1.7 shows the response of the objective function to
changes in the decision variables.

Table 4.1.1: Results from the numerical example

Number of Retailer’s Retailer’s Total supply
shipments cycle time order quantity chain cost

(n) (T ) (y) (TCUsc)

1 1.0607 236 375 197.98
2 0.8619 192 337 448.78
3 0.7723 172 329 271.54
4 0.7157 160 329 214.74
5 0.6742 150 332 434.67
6 0.6414 143 337 227.71
7 0.6141 137 342 846.52

Figure 4.1.7: The total supply chain cost’s response to changes in the number of shipments
(made by the processor to the retailer) and the retailer’s cycle time.

4.1.4.2 Sensitivity analysis

A sensitivity analysis was conducted on the proposed supply chain system’s major in-
put parameters and the results are presented in Table 4.1.2, from which the following
observations are made:

• The retailer’s ordering cost is the most sensitive input parameter to both the ob-
jective function (TCUsc) and the decision variables (T and n). A 50% decrease in
the retailer’s ordering cost reduces their cycle time by 27.0% and consequently the
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number of shipments of ready-for-consumption (i.e. processed) items made by the
processor to the retailer changes from four to five ( representing a 25% increase).
As a result, the cost of managing inventory in the supply chain decreases by 19.3%.

Table 4.1.2: Results from the sensitivity analysis

Parameters % Retailer’s Number of Total supply chain
change cycle time (T ) shipments (n) cost (TCUsc)

years % change shipments % change ZAR/year % change

Base example 0.7157 4 329 214.74

Kr

-50 0.5222 -27.0 5 +25 265 569.24 -19.3
-25 0.6439 -10.0 4 0 299 794.31 -8.9
+25 0.8377 +17.1 3 -25 354 115.70 +7.6
+50 0.8983 +25.5 3 -25 377 156.52 +14.5

hr

-50 0.8997 +25.7 3 -25 287 712.64 -12.6
-25 0.8288 +15.8 3 -25 309 282.62 -6.1
+25 0.6757 -5.6 4 0 346 592.13 +5.3
+50 0.6086 -15.0 4 0 363 048.09 +10.3

Kp

-50 0.7375 +3.0 3 -25 316 024.72 -4.0
-25 0.7551 +5.5 3 -25 322 724.59 -2.0
+25 0.7283 +1.8 4 0 334 408.56 +1.6
+50 0.7408 +3.5 4 0 339 513.58 +3.1

hp

-50 0.7906 +10.5 5 +25 288 768.94 -12.3
-25 0.7644 +17.0 4 0 309 784.90 -5.4
+25 0.7303 +2.0 3 -25 346 162.85 +5.1
+50 0.6944 -3.0 3 -25 362 181.17 +10.0

Kf

-50 0.6984 -2.4 4 0 322 143.15 -2.1
-25 0.7071 -1.2 4 0 325 700.51 -1.1
+25 0.7241 +1.2 4 0 332 687.39 +1.1
+50 0.7325 +2.4 4 0 336 119.88 +2.1

cf

-50 0.7157 0 4 0 311 321.38 -5.4
-25 0.7157 0 4 0 320 268.06 -2.7
+25 0.7157 0 4 0 338 161.43 +2.7
+50 0.7157 0 4 0 347 108.11 +5.4

• Of all the input parameters tested in the sensitivity analysis, the farmer’s feeding
cost has the least effect on the objective function and the two decision variables.

• The total supply chain cost is affected by changes in any of the input parameters.
However, the effects vary by parameter. In general, the effects caused by changes
in the retailer and the processor’s input parameters are greater than those of the
farmer’s parameters. Changes in the farmer’s feeding and setup costs have the
smallest effects, with 50% decreases in these two costs resulting in decreases of only
5.4% and 2.1% respectively in the total supply chain cost. On the other hand, 50%
decreases in equivalent costs at the processor (i.e. holding costs and setup costs)
resulted in decreases of 12.3% and 4.0% respectively and at the retailer (i.e. holding
costs and ordering costs), the decreases in the total supply chain cost were 12.6%
and 19.3% respectively.
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• With the exception of the farmer’s input parameters, changes to all the other input
parameters affected the number of shipments made by the processor to the retailer
during a single processing run. The shipments delivered by the processor increased
as the retailer’s holding cost and the processor’s setup cost increased.

• In general, decisions of downstream supply chain members have greater effects on
the decision variables than the upstream member, with the retailer’s input parame-
ters having the greatest effect followed by the processor’s parameters. The effects of
changes to the farmer’s individual cost components on the number of shipments of
processed inventory made by the processor, the retailer’s cycle time and the total
supply chain cost are less than the effects of changes to the processor’s and the
retailer’s individual cost components. For example, the total chain cost increases
by 14.5% when the setup cost increases by 50% while the same percentage increase
in the retailer’s ordering cost and the processor setup cost only increases the cost
by 3.1% and 2.1% respectively.

• Given that the input parameters for the downstream supply chain members have
a greater effect, it would be advisable for managers to prioritise most of their cost
saving initiatives at the retail and processing operations as opposed to the farming
operations.

4.1.4.3 Further cost reduction mechanisms in the system

Two properties of this inventory management system further help in reducing the overall
cost. The first is that as soon as the processor has processed enough items to make a
batch, a shipment is made to the retailer (i.e. the processor does not wait for the cycle
to end in order to deliver processed items to the retailer) and consequently the processor
makes a number of shipments of processed items to the retailer during a single processing
setup. The second property is the assumption that inventory replenishment decisions are
made for the benefit of all supply chain members as opposed to optimising the decisions
of individual members. The effectiveness of these cost saving initiatives is tested by
comparing them with more conventional replenishment policies.

4.1.4.3.1 Comparison of results with an equal-cycle time replenishment pol-
icy

Table 4.1.3: Efficiency of the proposed replenishment policy against an equal-cycle time
policy

Variable Base (Proposed Equal-cycle time % difference
replenishment policy) replenishment policy

TCU∗sc 329 214.74 375 197.98 +14.0
T ∗ 0.7157 1.0607 +48.2
n∗ 4 1 -75

One of the assumptions made when formulating the proposed inventory system is that
the processor delivers a certain (integer) number of shipments, of equal size, to the retailer
during the course of a single processing cycle. This implies that the processor’s cycle time
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is a product of the retailer’s cycle time and the integer number of shipments and therefore
their cycle times are not equal. To determine whether the proposed replenishment policy
performs better than an equal-cycle time approach, where by the cycle times of all the
parties involved are equal, the equal-cycle time counter-part of the inventory problem at
hand is computed by setting the number of shipments from the processor to the retailer
to one. When an equal-cycle time policy is adopted, the total supply chain cost increases
from 329 214.74 ZAR/year to 375 197.98 ZAR/year ( while the retailer’s cycle time
increases from 0.7157 years to 1.0607 years) as shown in Table 4.1.3. From a cost saving
perspective, the proposed inventory system leads to a 14.0% decrease in the total supply
chain cost when compared to an equal-cycle time replenishment policy. This indicates
that the proposed policy is more cost efficient than the common-cycle time policy. In
essence, opting for an integer-multiplier replenishment policy is more effective at reducing
total supply chain costs than using an equal-cycle time approach.

4.1.4.3.2 Comparison of results with an independent replenishment policy

Table 4.1.4: Efficiency of the proposed replenishment policy against an independent policy

Variable Base (Proposed Independent % difference
replenishment policy) replenishment policy

TCU∗r 183 349.91 178 885.44 -2.4
TCU∗p 96 105.34 100 623.06 +4.7
TCU∗f 49 759.49 58 147.41 +16.9
TCU∗sc 329 214.74 337 655.91 +2.6

If a system approach is not adopted when managing inventory in the supply chain,
then the chain members act independently and are thus only concerned with reducing
their own costs as opposed to reducing the total system-wide costs. A comparison of the
proposed inventory system, which is aimed at reducing the total supply chain costs, with
its independent counter-part is given in Table 4.1.4. In order to determine the costs for
the different chain members when an independent replenishment policy is adopted, it was
assumed that the retailer, who faces customer demand for processed items, makes inven-
tory replenishment decisions aimed at reducing their own costs and passes these down
to the processor. This means that the retailer orders processed items from the processor
based on their own EOQ and forces it to the upstream chain members. In order to fulfil
the order, the processor places an order for grown items from the farmer. The processor
then optimises the number of shipments made to the retailer, while adhering to the re-
tailer’s EOQ. As shown in Table 4.1.4, opting for an independent replenishment policy is
not beneficial to all chain members and it also increased the cost of managing inventory
across the entire chain (from 329 214.74 ZAR/year to 337 655.91 ZAR/year). While the
retailer’s cost was reduced by 2.4%, the processor’s and the farmer’s total costs increased
by 4.7% and 16.9% respectively. The cost saving realised when all three members are
collaborating, which amounts to 2.6%, highlights the importance of integrating inventory
decisions with all supply chain members.
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4.1.5 Concluding remarks

Growing items, which include crops and livestock, serve as a staple of most diets. Prior to
being sold to consumers, they are usually grown at a farming operation, then processed in
a manufacturing plant and finally sold to consumers through a retailer. Using this logic, a
three-level supply chain (consisting of a farmer, a processor and a retailer) inventory sys-
tem for growing items is proposed and a corresponding model is developed. An iterative
solution algorithm for solving the model is proposed and applied to a numerical example.
Through numerical experimentation, the proposed integrated inventory system is found
to be 2.6% more cost efficient than its independent (i.e. non-coordinated) counterpart
and 14.0% better than its equal-cycle time counterpart.

One of the limitations of the proposed model is that it only considers a serial supply
chain with one member at each echelon. While this makes the mathematical formulation
easier, it is not representative of most real-life supply chains. Secondly, mortality is
an important issue when dealing with live items and this was not accounted for in this
section. These two shortcomings of the proposed inventory system present opportunities
for future research direction in addition to other popular EOQ extensions such as the
incorporation of shortages, maintenance issues and permissible delay in payments. The
three-echelon serial supply chain setup in the proposed model is a simplified version of an
actual food production system, which is often a complex network, so another possible area
of future exploration could be the inclusion of more echelons as well as the transportation
nodes which connect those echelons.

The potential cost savings that can be realised in food production systems by adopting
certain elements of the proposed inventory control model are important for both financial
and social reasons. From an economic perspective, cost saving resulting from better
inventory control can bolster profit margins and, in the process, improve both the financial
performance of the supply chain and shareholder value. Taking a less capitalistic view, the
resulting cost savings can be used for social reasons particularly because growing items
are the primary source of most consumable food products. Supply chains can cushion
consumers against some of the effects of rising food prices by absorbing a portion of the
proposed price increases. By so doing, consumers will not be burdened as much because
the price increases will not be as severe. Given that food products are an essential part
of daily living, managers in food production systems should always be on the lookout for
opportunities to save costs and pass the savings down to consumers. Reducing the costs
of managing inventory is one way for managers to achieve this and the model presented in
this section represents a piece of the puzzle aimed at reducing costs across food production
chains.
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4.2 A three-echelon supply chain inventory model

for growing items with price- and freshness-dependent

demand†

4.2.1 Introduction

4.2.1.1 Context

Lately, a number of inventory control models that are aimed at jointly optimising lot
sizes and selling prices of perishable items have been developed, for example, Chen et al.
(2016), Wu et al. (2016) and Feng et al. (2017). These three models, as well as other
extensions based on them, were formulated specifically for perishable food items, and
consequently, the demand rate used in these models had a few characteristics peculiar
to perishable food products. The focus of this study is on two of those characteristics,
which are the dependence of the demand rate on price and freshness of the items. These
are two of the most important demand characteristics of perishable food products such
as meat, seafood, fruits and vegetables. Two reasons may be adduced to the importance
of these characteristics. Firstly, given the commoditised nature of groceries (and by
extension food products), there is very little to differentiate between competing brands.
As a result, the selling price is one of the most important factors that affect consumers’
purchase decisions. Secondly, consumers prefer perishable food products when they are
fresh implying that consumers are less likely to buy a particular item if it has been on
shelves for longer periods of time because the longer it is on the shelves, the less fresh it
becomes.

Although the aforementioned studies accurately depict the inventory behaviour of
perishable food products, they are all focused on (and limited to) the retail end of the
supply chain. Evidently, decisions affecting the price and length of stay of perishable food
items on shelves are not limited to those taken at the retail end of the chain. In reality,
the primary source of these products is living organisms such as crops and livestock which
are reared at farms. Furthermore, products purchased at retail outlets are seldom in their
original form. Most of the times, they have to be transformed into a different form that
is suitable for human consumption and the transformation processes often take place in
food processing plants.

4.2.1.2 Purpose

The aim of this study is to consider the implications of price and freshness (measured
through the age of the item) on the inventory management policies of a multi-echelon
supply chain of growing items. To this end, an integrated model for managing inventory in
a three-echelon supply chain for growing items is proposed. The three echelons correspond
to the farming, processing and consumption (retail) stages of a simplified value chain for
perishable food products. At the farming echelon, live items are reared until such time as
their weight reaches a given target. Following this, the items are transformed into a form
that is safe for consumption. In the case of meat, the transformation process typically
entails slaughtering, cutting and packaging. In the context of this study, all the tasks

†A modified version of this section has been accepted for publication as Sebatjane and Adetunji
(2020b) in Operations Research Perspectives.
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taking place at this echelon are collectively termed processing and they occur at a given
finite rate. At the final echelon, consumer demand for the processed item is met through
sales, and this demand is assumed to be a function of the product’s selling price and
freshness, measured through the age of the product from the time of processing.

4.2.1.3 Relevance

Perishable inventory control models such as those of Wu et al. (2016) and Feng et al.
(2017) recognised that freshness and selling price, among other factors, are important
determinants of demand for perishable food products. Nonetheless, these studies, along
with their various extensions, were focused entirely on optimising purchasing decisions
at the retail end of the supply chain. The current increasingly competitive business
climate has forced businesses to seek external sources of cost and operational efficiencies
in addition to intra-organisational optimisation. For this reason, a lot of businesses have
been using supply chain integration as a tool for competitiveness.

This study extends the concept of supply chain integration to inventory control mech-
anisms used in perishable food products supply chains dealing with growing items such
as livestock. In essence, the study considers an end-to-end supply chain for perishable
food products, with the downstream end corresponding to consumption (of processed in-
ventory) and the upstream end corresponding to rearing (of live inventory). Seeing that
considerable cost and operational efficiencies can be achieved by integrating purchasing
decisions among all supply chain members (Ben-Daya and Al-Nassar, 2008), the model
presented in this study can serve as a guideline for production and operations managers
in multi-echelon supply chains for growing items when making purchasing, shipment and
pricing decisions.

4.2.1.4 Organisation

Other than the introductory section, this section has five more subsections. Prior to
the model development phase which is presented in Subsection 4.2.3, the assumptions
employed are stated in Subsection 4.2.2. Theoretical results which prove the model’s
optimality are given in Subsection 4.2.4 while numerical results which highlight potential
practical applications of the model are given in Subsection 4.2.5. The section is wrapped
up in Subsection 4.2.6 through the presentation of concluding remarks and suggestions
for future research.

4.2.2 Assumptions

The supply chain under consideration has three echelons and there is a single member at
each echelon. Figure 4.2.1 is a depiction of the proposed inventory control system. The
inventory profile at the uppermost portion of the figure shows the changes to the weight
of the ordered live items at the farming echelon. The middle portion of the figure depicts
the weight of the processed inventory as the live items are slaughtered, prepared and
packaged (i.e. processed). The lowermost portion of the figure also shows the processed
inventory at the retail echelon.

46

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Figure 4.2.1: Behaviour of the weight of the live inventory at the growing facility, the
weight of the processed inventory at the processing plant and the weight of the processed
inventory at the retail outlet.

At the farming echelon, a farmer procures ny live newborn items and rears them.
Given that the initial weight of each live item at the time the farmer receives the order
is w0, the weight of all the newborn items ordered, nQ0, is therefore equal to nyw0. The
items’ growth function is approximated by

w(t) =
α

1 + βe−λt
, (4.2.1)

which is the logistic function where α is the items’ asymptotic weight, β is the integration
constant and λ is the exponential rate of growth for the items. This function is chosen
because of its distinctive “S”-shape which is reminiscent of the growth pattern of livestock.
The farmer rears the live items for a period of Tf time units. This period ends when the
weight of each item reaches the target maturity weight w1. This implies that the duration
of the growth period is

Tf = −
ln
[
1
β

(
α
w1
− 1
)]

λ
, (4.2.2)

as determined from substituting Tf and w1 into Equation (4.2.1). The weight of all the
live mature items is thus given by nQ1 = nyw1. This entire lot is then transferred to the
processing plant. The live mature items are scheduled to arrive at the processing plant
just as the processor starts a new processing cycle of duration Tp. For this reason, it is
imperative for the live items to have grown to the target weight by the time the growing
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period ends after Tf time units. To ensure that this happens, the constraint

Tf ≤ Tp, (4.2.3)

is imposed on the inventory system under consideration.
At the processing echelon, the live inventory items are processed at a rate of R and

they are transformed into processed inventory which is used to meet consumer demand at
the supply chain’s next echelon. The processing rate, R, is assumed to be a deterministic
constant greater than the demand rate D. Consequently, processing does not take place
for the entirety of the processor’s cycle. This is because the weight of the processed
inventory accumulates at a rate of R−D and therefore, the demand can be met without
having to continuously process the live items throughout the whole cycle. In essence, the
processor’s cycle can be divided into two portions: when there is processing and when
there is no processing of items. During the processing time, the live inventory is processed
and shipped to the retailer in equally-sized batches weighing Q1 = yw1. Both processing
(of the live inventory) and shipping (of the processed inventory to the retailer) take place
simultaneously during this time. This implies that processor starts shipping to the retailer
once they have processed enough inventory to make up a batch (of weight Q1). During the
non-processing time, the processor continues to ship batches of processed inventory to the
retailer without having to process because processed inventory would have accumulated
during the processing time of the cycle since R > D. Granted that the processor receives
a lot weighing nQ1 from the farmer and ships it to the retailer (after processing it), in
equally-weighted batches (each with a weight of Q1) and at equally-spaced time intervals,
T , the processor therefore makes n deliveries of processed inventory during the course of
a single processing cycle Tp. This implies that the retailer’s cycle time, T , is an integer
multiple (in this instance the integer is n) of the processor’s cycle time. Hence,

Tp = nT. (4.2.4)

At the final echelon, the retailer receives orders of processed inventory from the pro-
cessor at regular time intervals of duration T in order to meet the consumer demand
rate (for processed inventory) of D. Each order of processed inventory that the processor
ships to the retailer weighs Q1. The demand rate is assumed to be affected by the items’
selling price and freshness index. Classic economic and marketing theories affirm that
the sales of an item are influenced by its selling price, among other factors. In essence,
lower prices tend to spike the sales of an item and for this reason, the demand rate is
assumed to be an exponentially decreasing function of the price. This is in accordance
with studies by Feng et al. (2017), Wu et al. (2017) and Feng and Chan (2019), to name
a few. Hence,

D ∝ φe−ωpr , (4.2.5)

where φ represents the maximum size of the market for the processed inventory (asymp-
totic level of demand attainable when the selling price is considered most favourable to
customers), ω is the price elasticity of the demand rate and pr is the retailer’s selling
price per weight unit of the processed inventory. All three variables are positive numbers
and thus, φe−ωpr > 0.

Another aspect that has an effect on the demand for perishable food products is the
freshness of the items. A vast majority of consumable food products have shelf lives that
are often expressed as expiration or sell-by dates which essentially represent the maximum
life times of those products. The printed expiration dates have an effect on consumers
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likelihood to make purchases. In essence, a consumer’s likelihood of purchasing an item
diminishes as the item ages (i.e. as it gets closer to its expiration date). Wu et al. (2016)
(as well as subsequent models spun off from that particular model) used the Aarhenius
equation to represent the freshness index of items. Therefore,

F (t) =
L− t
L

, (4.2.6)

where L is the maximum shelf life or expiration date of the item. From Equation (4.2.6),
the item is at its freshest (i.e. 100% freshness index) at t = 0 and it reaches its minimum
freshness level of 0% at its expiration date L. The processed inventory is no longer
suitable for consumption at its maximum shelf life meaning that the duration of the
retailer’s replenishment cycle cannot be greater than the shelf life (i.e. L > T ).

In accordance with Chen et al. (2016), Wu et al. (2016) and Feng et al. (2017),
Equations (4.2.5) and (4.2.6) are combined to formulate the demand as a multiplicative
function of the selling price (in this case, per weight unit) and the freshness index of the
inventory. Hence, the demand rate is

D =
(
φe−ωpr

)(L− t
L

)
, 0 ≤ t ≤ T. (4.2.7)

The proposed inventory control system is feasible when R > D. Since the demand
rate varies with time, the only way to guarantee that this condition is met is by ensuring
that the maximum possible demand rate does not exceed the processing rate. From
Equation (4.2.7), the demand rate reaches its maximum value when the inventory is at
its freshest (i.e. t = 0) and the retailer’s selling price is zero (i.e. pr = 0). This means
that the maximum possible demand rate is φ and therefore, R > D can be expressed as
R > φ.

4.2.3 Model formulation

The proposed inventory control model in the three-echelon supply chain system is formu-
lated as a profit maximisation problem. All three members of the supply chain have a
common goal of improving the supply chain’s profit by reducing the costs associated with
managing inventory across the chain. Each member’s profit is calculated by subtracting
the costs associated with managing inventory from the revenue generated from the sales
of the inventory.

Consumer demand is for the processed inventory and this particular inventory, tracked
at the processor’s and the retailer’s facilities, incurs purchasing, setup (or ordering, in
the case of the retailer) and holding costs. On the other hand, the live inventory which is
tracked at the farmer’s facility incurs purchasing, setup and feeding costs, with the last
cost being dependent on the weight of the item.

The model’s objective function is the total supply chain profit and its decision variables
are retailer’s cycle time, the retailer’ selling price and the number of batches of processed
inventory shipped to the retailer per processing cycle.

4.2.3.1 The retail echelon

The start of the retailer’s replenishment cycle is marked by the receipt of an order for
processed inventory weighing Q1. This inventory is displayed on shelves at the retail
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outlet and it can only be kept for a specified amount of time, known as the expiration
date. Once this date has elapsed, the inventory can no longer be used to meet consumer
demand. Figure 4.2.2 is a representation of the changes that occur to the weight of the
retailer’s inventory throughout the cycle.

Figure 4.2.2: The retailer’s processed inventory system behaviour

During the course of a replenishment cycle, the weight of the retailer’s processed
inventory is depleted due to consumer demand. As a result, the weight of the retailer’s
processed inventory is governed by the differential equation

dI(t)

dt
= −D = −

(
φe−ωpr

)(L− t
L

)
, 0 ≤ t ≤ T. (4.2.8)

Equation (4.2.8) can be re-arranged into

dI(t) =
(
φe−ωpr

)(
− 1 +

t

L

)
dt, 0 ≤ t ≤ T. (4.2.9)

Integrating the left and the right hand sides of Equation (4.2.9) leads to

I(t) =
(
φe−ωpr

)(
− t+

t2

2L

)
+ C. (4.2.10)

Since the weight of the processed inventory at the retailer reaches zero at time T , the
boundary condition I(T ) = 0 is binding. Through substitution, it follows that

C = −
(
φe−ωpr

)(
− T +

T 2

2L

)
=
(
φe−ωpr

)(
T − T 2

2L

)
. (4.2.11)

By substituting Equation (4.2.11) into Equation (4.2.10) and re-arranging the terms,
the weight of the retailer’s processed inventory level is determined as

I(t) =

(
φe−ωpr

)
2L

[
t2 + 2L(T − t)− T 2

]
(4.2.12)

Given that the retailer receives an order weighing Q1 at the start of each cycle (i.e.
t = 0), the boundary condition I(0) = Q1 is binding. Through substitution, it follows
that

Q1 = I(0) =

(
φe−ωpr

)(
2LT − T 2

)
2L

. (4.2.13)
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Granted that Q1 = yw1, the equivalent number of items in the retailer’s lot is thus

y =

(
φe−ωpr

)(
2LT − T 2

)
2Lw1

. (4.2.14)

The retailer’s cyclic holding cost (i.e. during the time period [0, T ]) is determined
using Equation (4.2.12) as

HCr = hr

∫ T

0

I(t) dt = hr

[(
φe−ωpr

)(
3LT 2 − 2T 3

)
6L

]
. (4.2.15)

The retailer’s cyclic profit function is defined as the cyclic total revenue less the sum
of the cyclic ordering, purchasing and holding costs. It follows that

TPr =
pr
(
φe−ωpr

)(
2LT − T 2

)
2L

−
pp
(
φe−ωpr

)(
2LT − T 2

)
2L

−Kr−
hr
(
φe−ωpr

)(
3LT 2 − 2T 3

)
6L

.

(4.2.16)
The first term in Equation (4.2.16) represents the cyclic revenue and it is the product

of the selling price per weight unit charged to consumers (pr) and the weight of processed
items sold per cycle (Q1). The second term is the cyclic purchasing cost and it is defined
as the product of the weight of processed items purchased from the processor (Q1) and
the price that the processor charges for the inventory (pp). The third term denotes the
fixed cost associated with placing an order during each cycle while the last term is the
cyclic holding cost from Equation (4.2.15).

The retailer’s total profit per unit time is determined by dividing their cyclic profit
by their cycle duration T and thus,

TPUr =

(
φe−ωpr

)(
2LT − T 2

)(
pr − pp

)
2LT

− Kr

T
−
hr
(
φe−ωpr

)(
3LT 2 − 2T 3

)
6LT

. (4.2.17)

4.2.3.2 The processing echelon

The processor is responsible for transforming the live inventory into consumable processed
inventory. When a new processing cycle starts, the processor receives an order of live items
weighing nQ1 from the farmer and processes the entire order at a rate of R. Throughout
the cycle, the processor delivers n shipments of processed inventory to the retailer. The
shipments are all of equal weight, meaning that they each weigh Q1. The behaviour of the
processor’s processed inventory level is depicted in Figure 4.2.3a which is redrawn into
Figure 4.2.3b for ease of computing the area under the graph. This method of redrawing
the inventory system profile is adapted from a version of the JELS problem formulated
by Yang et al. (2007).

The processor’s cyclic holding cost is computed by multiplying the holding cost per
weight unit by the area under the processor’s inventory system which essentially shows
the processor’s time-weighted inventory level. The area under the graph in Figure 4.2.3b
is thus

Areap = Processor’s time-weighted inventory

=
nQ2

1

2R
+Q2

1

(
1

D(p)
− 1

R

)
+ 2Q2

1

(
1

D(p)
− 1

R

)
+ · · ·+ (n− 1)Q2

1

(
1

D(p)
− 1

R

)
=
nQ2

1

2R
+
n(n− 1)Q2

1

2

(
1

D(p)
− 1

R

)
.

(4.2.18)
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(a) Original. (b) Redrawn (modified from Yang et al. (2007)).

Figure 4.2.3: The processor’s processed inventory system behaviour.

The demand rate in Equation (4.2.18) is a function of the retailer’s selling price pr.
If pr is held constant, then the demand rate in each cycle interval T is equal, and since
T is used as the time basis for the analysis, all demands for all time intervals can be
aggregated for ease of derivation. Hence, the processor’s holding cost per cycle becomes

HCp = hp

[
nQ2

1

2R
+
n(n− 1)Q2

1

2

(
T

Q1

− 1

R

)]
, (4.2.19)

after replacing D(p) in Equation (4.2.18) with Q1/T so that all the terms are expressed in
terms of T which is one of the model’s decision variables. The expression for D as given
in Equation (4.2.7) is not used because it varies with time and this becomes problematic
when solving the model. Instead, a static approximation of D is used. Since the retailer
receives orders of processed inventory weighing Q1 at equally-spaced time intervals of
duration T in order to meet a demand rate of D, the retailer places ≈ D/Q1 orders per
unit time. This means that the retailer’s cycle time T ≈ Q1/D. Likewise, D ≈ Q1/T .

The processor’s profit per cycle is defined as the cyclic revenue minus the sum of the
cyclic setup and holding costs. Thus,

TPp = ppnQ1 − pfnQ1 −Kp − hp

[
nQ2

1

2R
+
n(n− 1)Q2

1

2

(
T

Q1

− 1

R

)]
. (4.2.20)

The first term in Equation (4.2.20) represents the processor’s cyclic profit and it is
determined as the product of the weight of the processed inventory sold to the retailer in
a single processing run (nQ1) and the price (per weight unit) that the processor charges
the retailer for the processed inventory (pp). The second term denotes the processor’s
procurement cost per cycle and it is computed by multiplying the weight of the mature
live inventory that the processor procures from the farmer (nQ1) and the price that the
farmer charges for the inventory (pf ). The third term denotes the fixed cost of setting up
the processing facility at the beginning of each processing cycle. The last term represents
the the cyclic holding cost as determined in Equation (4.2.19).

Dividing Equation (4.2.20) by the processor’s cycle time, Tp = nT , yields an expression
for the processor’s total profit per unit time. After substitutingQ1 with Equation (4.2.13),
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the expression becomes

TPUp =

(
φe−ωpr

)(
2LT − T 2

)(
pp − pf

)
2LT

− Kp

nT
− hp

2TR

[(
φe−ωpr

)(
2LT − T 2

)
2L

]2
− hp(n− 1)

2T

[(
φe−ωpr

)(
2LT − T 2

)
2L

]2[
2LT(

φe−ωpr
)(

2LT − T 2
) − 1

R

]
. (4.2.21)

4.2.3.3 The farming echelon

Whenever the farmer’s replenishment cycle begins, ny live day-old newly born items are
procured and grown to maturity. The items are deemed mature when the weight of each
item reaches w1 after Tf time units. This means that the weight of all the items in the
farmer’s lot would be nQ1 = nyw1 by the time they are transferred to the processing
plant. This is up from an initial purchase weight of nQ0 = nyw0 for all the ordered
items. Figure 4.2.4 depicts the growth trajectory of the items at the farmer’s growing
facility.

Figure 4.2.4: The farmer’s live inventory system behaviour

The farmer’s cyclic feeding cost (during the time period [0, Tf ]) is defined as the
product of the feeding cost per weight unit, cf , and the area under the graph of the
growth period as given in Figure 4.2.4. Therefore,

FCf = cf

∫ Tf

0

nyw(t) dt = cfny

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.2.22)

The farmer’s profit per cycle is therefore

TPf = pfnQ1 − pvnQ0 −Kf − cfny
{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.2.23)

The first term in Equation (4.2.23) denotes the farmer’s revenue per cycle and it is
computed by multiplying the price (per weight unit) that the farmer charges to the
processor for the live mature inventory (pf ) by the weight of the lot that the farmer
sells to the processor (nQ1). The second term is the cyclic procurement cost and it is
computed as the product of the price (per weight unit) that the farmer is charged for
the live newborn inventory (pv) by their initial supplier and the weight of the lot that
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the farmer receives from their initial supplier (nQ0). The third term is the fixed cost of
setting up a new growing cycle while the last term is the cyclic feeding cost as determined
from Equation (4.2.22).

The farmer’s and the processor’s cycles are synchronised to ensure that the processor
is starts a new processing cycle at the instant that the items have reached the target
maturity weight when the growth period ends at Tf time units. To achieve the synchro-
nisation, the farmer and the processor share the same replenishment interval of Tp = nT
time units. In order to determine the farmer’s profit per unit time, the profit per cycle,
as given in Equation (4.2.23), is divided by the duration of the replenishment interval,
nT , and the result becomes

TPUf =
pf
(
φe−ωpr

)(
2LT − T 2

)
2LT

−
pvw0

(
φe−ωpr

)(
2LT − T 2

)
2LTw1

− Kf

nT

−
cf
(
φe−ωpr

)(
2LT − T 2

)
2LTw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
, (4.2.24)

after replacing Q0 with yw0 and substituting Q1 and y with Equations (4.2.13) and
(4.2.14), respectively.

4.2.3.4 The entire supply chain

4.2.3.4.1 Problem formulation

The total profit generated across the entire supply chain is the sum of the profits gen-
erated at each of the three echelons. Therefore, the total supply chain profit per unit
time, TPUsc, is the sum of Equations (4.2.17), (4.2.21) and (4.2.24). The mathematical
formulation of the proposed inventory system is thus

Maximise: TPUsc =
pr
(
φe−ωpr

)(
2LT − T 2

)
2LT

− Kr

T
−
hr
(
φe−ωpr

)(
3LT 2 − 2T 3

)
6LT

− Kp

nT

− hp
2TR

[(
φe−ωpr

)(
2LT − T 2

)
2L

]2
−hp(n− 1)

2T

[(
φe−ωpr

)(
2LT − T 2

)
2L

]2[
2LT(

φe−ωpr
)(

2LT − T 2
)− 1

R

]
−
pvw0

(
φe−ωpr

)(
2LT − T 2

)
2LTw1

−Kf

nT
−
cf
(
φe−ωpr

)(
2LT − T 2

)
2LTw1

{
αTf+

α

λ

[
ln
(
1 + βe−λTf

)
−ln (1 + β)

]}
subject to: Tf ≤ nT, n ∈ Z. (4.2.25)

The first constraint is from Equation (4.2.3) and it guarantees feasibility by ensuring
that the live items are ready (in terms of having grown to the pre-defined target weight)
for processing when they are transferred from the farming to the processing echelon. The
second constraint is that the number of shipments of processed inventory delivered by the
processor to the retailer is a positive whole number. This constraint makes the problem
readily solvable because it is not possible for the processor to make non-integer deliveries
to the retailer.

4.2.3.4.2 Solution procedure

The values of T , n and pr that maximise TPUsc are determined through the following
iterative procedure:
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Step 1 Set n to 1.

Step 2 Find the values of T and pr that maximise Equation (4.2.25).

Step 3 Increase n by 1 and find the values of T and pr that maximise Equation (4.2.25).
Carry on to Step 4.

Step 4 If the latest value of TPUsc increases, go back to Step 3. If the value of TPUsc
decreases, the previously calculated value of TPUsc (along with the corresponding
T , n and pr values) is the best solution and if this case, carry on to Step 5.

Step 5 Verify the solution’s feasibility with regard to the constraint Tf ≤ nT . Tf is calcu-
lated from Equation (4.2.2). If the solution is feasible, those values of T , n and pr
are optimal and if this is the case, carry on to Step 7. If the solution is not feasible,
carry on to Step 6.

Step 6 If the constraint is violated, set T to Tf/n and use that T value to calculate TPUsc
using Equation (4.2.25) and then carry on to Step 7.

Step 7 End.

4.2.4 Theoretical results

The concavity of the total supply chain profit (TPUsc) with respect to the model’s three
decision variables, namely, the retailer’s cycle time (T ) and selling price (pr) and the
number of shipments of processed inventory delivered to the retailer per processing cycle
(n), is investigated in two ways. Firstly, the concavity of TPUsc in T for fixed values of
pr and n is proven. Secondly, the concavity of TPUsc in pr and n for a fixed T value is
also proven. Together, these two results show that the model’s objective function (i.e.
TPUsc) is concave and that there are unique T , pr and n values that maximise this
objective function.

Theorem 4.2.1. For all pr > 0 and n > 0, TPUsc is a concave function of T . Therefore,
a unique value of T that maximises TPUsc exists.

Proof. For settled values of pr and n, the first and second derivatives of TPUsc, as given
in Equation (4.2.25), with respect to T are
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α
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[
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)
− ln (1 + β)

]}
(4.2.26)

∂2TPUsc
∂T 2

= −Kr

T 3
−

2hr
(
φe−ωpr

)
3L

− Kp

nT 3
−
hp
(
φe−ωpr

)2
(3T − 4L)

4L2R
− Kf

nT 3
< 0 (4.2.27)

Given that the second derivative of TPUsc with respect to T is negative, as shown in
Equation (4.2.27), it is apparent that TPUsc is a concave function of T for any settled
values of pr > 0 and n > 0. This means that there is a unique T value that maximises
TPUsc.
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Theorem 4.2.2. For all T > 0, TPUsc is a concave function of both pr and n. Therefore,
unique values of pr and n that maximise TPUsc exist.

Proof. For compactness, Equation (4.2.25) can be written in terms of Q1 as

TPUsc =
prQ1

T
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2
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Tw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.2.28)

The fact that Q1 is a function of pr does not have an impact on the concavity of
TPUsc with respect to pr and n because Q1 is always positive since it is not possible for
the retailer to receive an order of processed inventory with a negative weight. Recall,
from Equation (4.2.13), that Q1 =

(
φe−ωpr

)(
2LT − T 2

)
/2L. Given that φ, ω and pr are

all > 0, φe−ωpr will always be > 0. Furthermore, it is not possible to have negative time
duration and thus, L and T are > 0. Since the retailer can not sell the processed past
its expiration date, L > T , and thus, 2LT − T 2 will always be > 0. Therefore, Q1 will
always be positive.

For a settled value of T , the first and second derivatives of TPUsc, as given in Equation
(4.2.28), with respect to n and pr are

∂TPUsc
∂n

=
Kp

n2T
− hpQ

2
1

2T

(
T
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− 1
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)
+
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n2T
(4.2.29)

∂2TPUsc
∂n2

= − Kp

n3T
− Kf

n3T
(4.2.30)
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hrφωe
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(4.2.31)

∂2TPUsc
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= −hrφω
2e−ωpr(3LT 2 − 2T 3)

6LT
(4.2.32)

∂2TPUsc
∂n∂pr

= 0 (4.2.33)

The quadratic form of the Hessian matrix of TPUsc as given in Equation (4.2.28) is
therefore

[
n pr

]  − Kp
n3T
− Kf

n3T
0

0 −hrφω2e−ωpr (3LT 2−2T 3)
6LT

[ n
pr

]

= −Kp

nT
− Kf

nT
− hrφω

2pr
2e−ωpr(3LT 2 − 2T 3)

6LT
< 0. (4.2.34)

Since the quadratic form of the Hessian matrix is negative, TPUsc is a concave function
of n > 0 and pr > 0 for any given value of T . This means that TPUsc is a concave function
of n and pr for a settled value of T and therefore, unique values of n and pr that maximise
TPUsc exist.
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4.2.5 Numerical results

A numerical example that considers a chicken production system in a three-echelon supply
chain is used to solve and analyse the proposed inventory control model. The example
makes use of the following parameters: L = 4 days; R=320 kg/day; Kf=7 500 ZAR; cf=1
ZAR/kg/day; Kp=5 000 ZAR; hp=0.5 ZAR/kg/day; Kr=1 000 ZAR; hr=1 ZAR/kg/day;
pv = 10 ZAR/kg; pf = 15 ZAR/kg; pp = 30 ZAR/kg; w0= 0.06kg; w1= 2kg; a = 300
kg/day; b = 0.03 kg/ZAR; α=6.87 kg; β=120; λ=0.12 /day.

Decision variables Quantity
and objective function

T ∗ 1.86 days
n∗ 18 shipments
p∗r 49.59 ZAR/kg

TPU∗sc 759.98 ZAR/day

Table 4.2.1: Results from the example

The example is solved using the Solver function in Microsoft Excel and the results are
presented in Table 4.2.1. The decision variables are used to determine the ordering and
shipment policies to be followed by all three supply chain members. When a new cycle
starts, the farmer should order (ny ≈) 871 newborn items with a total weight of (nQ0 =)
55.7 kg. After (Tf =) 32.5 days, the items would have reached the targeted maturity
weight and the total weight of the live inventory would be (nQ1 =) 1 741.7 kg. The
farmer should then send the live inventory to the next echelon where it is transformed
into processed inventory. During the processing cycle, the processor should deliver (n =)
18 shipments of processed inventory to the retailer, with each shipment weighing (Q1 =)
96.8 kg, at regularly spaced time intervals of (T =) 1.86 days. The retailer should sell the
processed inventory at (pr =) 49.59 ZAR/kg. The farmer and the processor should start
new cycles every (nT =) 33.5 days. If this policy is followed, the supply chain should
make a profit of about 759.98 ZAR/day.

4.2.5.1 Sensitivity analysis

The relative importance, in terms of impact on the objective function and the three
decision variables, of some of the model’s input parameters is investigated by means of
a sensitivity analysis. The results from the analysis are summarised in Table 4.2.2 from
which the following note-worthy observations are drawn:

• The parameters that affect the demand rate, namely ω, φ and L, have the greatest
impact on the objective function and the three decision variables.

• As ω increases, TPUsc decreases. ω is the price elasticity of the demand rate which
represents consumer’s sensitivity to the selling price. Higher values of ω imply that
consumers are more price-conscious. Therefore, when ω increases, the model re-
sponds by lowering the retailer’s selling price (in an effort to increase demand) and
ordering frequency (in an effort to reduce fixed costs). Lower selling prices lead to
reduced revenue and less frequent ordering means that the processed inventory is
kept in stock for much longer which reduces its freshness and by extension it’s de-
mand. Management can take advantage of this observation by targeting consumers
who are less price-conscious in their marketing activities.
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Table 4.2.2: Sensitivity analysis of various input parameters

% Retailer’s Number of Retailer’s Total supply
change cycle time (T ∗) shipments (n∗) selling price (p∗r) chain profit (TPU∗sc)

days % change shipments % change ZAR/kg % change ZAR/day % change

Base 1.86 18 49.59 759.98

hr

-40 1.87 +0.4 18 0 49.25 -0.7 777.49 +2.3
-20 1.86 +0.2 18 0 49.42 -0.3 768.71 +1.1
+20 1.86 -0.2 18 0 49.75 +0.3 751.31 -1.1
+40 1.82 -2.4 19 +5.6 50.09 +1.0 742.77 -2.3

Kr

-40 1.41 -24.1 23 +27.8 49.06 -1.1 1 005.78 +32.3
-20 1.65 -11.2 20 +11.1 49.35 -0.5 874.70 +15.1
+20 2.03 +9.2 17 -5.6 49.91 +0.6 657.01 -13.5
+40 2.20 +18.3 16 -11.1 50.16 +1.1 562.77 -25.9

hp

-40 1.79 -3.7 24 +33.3 48.23 -2.7 921.67 +21.3
-20 1.81 -2.8 21 +16.7 49.03 -1.1 835.04 +9.9
+20 1.91 +2.7 17 -5.6 50.60 +2.0 692.50 -8.9
+40 1.91 +2.7 17 -5.6 51.79 +4.4 628.18 -17.3

Kp

-40 1.80 -3.0 18 0 49.36 -0.5 820.85 +8.0
-20 1.82 -2.0 18 0 49.44 -0.3 790.14 +4.0
+20 1.86 -0.2 19 +5.6 49.91 +0.7 731.17 -3.8
+40 1.85 -0.4 20 +11.1 50.24 +1.3 703.39 -7.4

cf

-40 1.71 -8.1 19 +5.6 45.12 -9.0 976.81 +28.5
-20 1.80 -3.0 18 0 47.29 -4.6 864.07 +13.7
+20 1.93 +3.6 18 0 51.93 +4.7 663.94 -12.6
+40 2.00 +7.3 18 0 54.28 +9.5 575.41 -24.3

Kf

-40 1.80 -3.0 18 0 49.36 -0.5 851.64 +12.1
-20 1.80 -3.0 18 0 49.36 -0.5 805.45 +6.0
+20 1.87 +0.7 19 +5.6 49.99 +0.8 717.06 -5.6
+40 1.89 +1.4 20 +11.1 50.38 +1.6 676.64 -11.0

φ

-40 2.59 +39.3 18 0 53.80 +8.5 134.78 -82.3
-20 2.14 +14.9 18 0 51.27 +3.4 428.38 -43.6
+20 1.62 -12.7 20 +11.1 48.68 -1.8 1 118.33 +47.2
+40 1.48 -20.6 22 +22.2 47.95 -3.3 1 494.49 +96.6

ω

-40 1.30 -30.2 25 +38.9 70.60 +42.4 2 646.83 +248.3
-20 1.55 -16.9 21 +16.7 57.23 +15.4 1 435.69 +88.9
+20 2.16 +16.2 17 -5.6 45.12 -9.0 348.56 -54.1
+40 2.53 +36.1 16 -11.1 42.39 -14.5 86.36 -88.6

L

-40 1.46 -21.4 24 +33.3 49.95 +0.7 495.05 -39.6
-20 1.66 -10.9 21 +16.7 49.83 +0.5 638.24 -16.0
+20 1.99 +7.1 17 -5.6 49.64 +0.1 849.36 +11.8
+40 2.17 +16.4 15 -16.7 49.42 -0.3 918.29 +20.8

• As φ increases, TPUsc increases. In order to understand this response, it is impor-
tant to recall that φ is the asymptotic level of demand attainable when the cost
is considered most favourable to customers. In essence, φ is the maximum size of
the market for the processed inventory. As the size of the market increases, the
retailer has to replenish the processed inventory more frequently (i.e. reduce the
cycle time) because of the increased potential customer base. By so doing, the pro-
cessed inventory is kept much fresher than it would have been if it was replenished
less frequently which spikes consumer demand further. When consumer demand
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is increased and the market is large, the retailer can charge higher prices which
increases revenue. While increasing the selling price negatively affects consumer
demand, the negative effect is cushioned by the positive effects brought by the
larger market size and the more frequent replenishment cycles which ensures that
the inventory does not get close to its expiration date. To take advantage of this
observation, management should increase their marketing (or advertising) spend
which will increase their potential customer base. In the short term, this will in-
crease costs but the long term benefits of having a larger potential customer base
will outweigh the initial marketing spend.

• As L increases, TPUsc increases. In addition to maximising profit, the model aims
to ensure that the processed inventory does not expire and so when the inven-
tory can last for longer periods of time (because of increased L values), the model
prompts the retailer to order less frequently (i.e. increase the cycle time) because
the risk of expiration is reduced. By so doing, the retailer would receive fewer
shipments (of relatively larger sizes). While this reduces the fixed costs, it reduces
demand because of reduced freshness since the inventory will be kept in stock for
a relatively longer period of time because of less frequent ordering. However, this
negative effect is outweighed by the positive effect of the reduced fixed costs. In
order to take advantage of this observation, management should invest in preserva-
tion technologies such as (more advanced) refrigeration which has the potential to
prolong the shelf life of the processed inventory. Once again, the initial investment
will be large in the short term, but the long term benefits will outweigh this initial
investment.

• When any of the fixed costs (i.e. Kr, Kp and Kf ) increase, TPUsc decreases. In an
effort to reduce the fixed costs, the model’s response is to reduce the replenishment
frequency (i.e. increase the cycle time) by placing larger orders. This leads to
increased holding costs because the processed inventory will spend more time in
stock. This inadvertently reduces consumer demand because if the inventory is
kept in stock for longer periods of time, its freshness levels decrease which has a
negative effect on demand.

4.2.5.2 Investigating the benefits of supply chain integration

The proposed inventory control model advocates for the integration of ordering and ship-
ment decisions among all supply chain members. This is because organisations have
realised that significant cost savings can be achieved through collaboration and integra-
tion of certain decisions, such as inventory replenishment policies, with all the supply
chain members (Ben-Daya and Al-Nassar, 2008). In order to investigate the benefits of
(or lack thereof) integrating inventory decisions with all parties in the supply chain, the
proposed supply chain system (which calls for the integration of inventory replenishment
policies) is compared with two alternative scenarios which do not encourage supply chain
integration, in varying degrees. The results from this analysis are presented in Table
4.2.3.

The base scenario corresponds to the proposed inventory system. The two alternative
scenarios include one with partial integration of replenishment decisions where by some of
the supply chain members collaborate and coordinate replenishment decisions (i.e. Sce-
nario 1) and one with no integration at all where each of the members act independently
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(i.e. Scenario 2). For illustrative purposes, Scenario 1 considers a case where the proces-
sor and the retailer coordinate their replenishment policy with the aim of optimising (i.e.
finding T , n and pr values that maximise) the joint profit generated among them. On the
other hand, Scenario 2 considers a case where the retailer acts independently with the
aim of optimising (i.e. finding T , n and pr values that maximise) their individual profit.

Table 4.2.3: Quantifying the importance of collaboration

Variables
Base Scenario Scenario 1 (S1) Scenario 2 (S2)

(Full collaboration) (Partial collaboration) (No collaboration)
Quantity Quantity % difference Quantity % difference

Collaborating parties Retailer; Processor; Farmer Processor; Retailer Retailer
T ∗ (days) 1.86 2.03 +9.1 2.28 +22.6

n∗ (shipments) 18 16 -11.1 18 0
p∗r (ZAR/kg) 49.59 54.93 +10.8 64.32 +29.7

TPU∗cp (ZAR/day) 720.32 (S1) or 437.80 (S2) 748.31 +3.9 599.57 +37.0
TPU∗sc (ZAR/day) 759.98 735.77 -3.2 645.79 -15.0

From the the results, it is clear that supply chain integration will all members is
beneficial to the entire supply chain. The two alternative scenarios succeeded in optimis-
ing the profit of the collaborating members but at the expense of the non-collaborating
members and most importantly, the supply chain. The partial collaboration scenario
resulted in a 3.2% reduction in the supply chain profit (but a 3.9% increase in the profit
of the collaborating partners, symbolised by TCcp). The scenario with no collaborating
members performed even worse, in terms of supply chain profit maximisation, with a
15.0% decrease in the supply chain profit (along with a 37.0% increase in the retailer’s
individual profit).

The results show that the proposed inventory coordination mechanism, which encour-
ages collaboration among all supply chain members, is better at maximising supply chain
profit than alternative replenishment mechanisms which call for either partial collabora-
tion or no collaboration at all.

4.2.6 Concluding remarks

Perishable food products constitute a significant portion of grocery retail sales. Consid-
ering the commoditised nature of grocery items and the fact that retailers often carry
various brands of the same type of perishable food product, pricing and freshness become
important catalysts for consumer demand. A number of studies in the literature have
proposed inventory control models for perishable perishable products whose demand rate
depends on the selling price and freshness or expiration date of the products. The com-
mon denominator among all these previous studies which considered the demand rate’s
price and freshness dependency has been a focus on the retail end of the supply chain. In
reality, retailers do not exist in isolation, they have suppliers and their suppliers might
also have suppliers (i.e. retailers are part of a supply chain network).

This section presents a model for managing inventory in a three-echelon supply chain
for growing items. The echelons include a farming operation where items are reared, a
processing plant where the items are processed so as to get them into a form that is
suitable for human consumption and a retail outlet where consumer demand is met. The
demand rate is affected by the selling price and the expiration date of the processed inven-
tory. The significance of the proposed model lies in the fact that it in more representative,
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when compared to previous studies in the literature, of an actual perishable food supply
chain. This is because it not only accounts for pricing policies and expiration dates at
the retail stage, but also the preceding farming and processing stages (i.e. it considers
an end-to-end supply chain for perishable products). The most important characteristics
of the proposed model are the integration of replenishment and shipment policies among
all supply chain members and the demand rate’s dependency on the selling price and the
expiration date. The importance of these characteristics are quantified through numerical
experimentation.

Despite being more representative of an actual end-to-end supply chain for growing
items, the model presented in this section still makes use of a few assumptions that have
the potential to restrict its applicability to actual food supply chains. For instance, incen-
tive strategies like quantity discounts, revenue sharing contracts, pre-payment agreements
and trade credit financing, among others, are not taken into account. These incentive
policies are often used by supply chain members in food production systems as a way
of boosting profits because of the relatively low margins generated in food retail outlets.
Therefore, the current literature can be enriched by incorporating some of these incentive
policies to the model presented in this section.
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4.3 A four-echelon supply chain inventory model for

growing items with imperfect quality‡

4.3.1 Introduction

4.3.1.1 Context

Building upon Rezaei (2014)’s EOQ model for growing items, Sebatjane and Adetunji
(2019a) developed an extension which incorporated imperfect quality. This extension
captures some aspects of realistic food production systems, particularly item growth and
the presence of items that are of inferior quality. Nonetheless, the model falls short of
being an accurate representation of a real life inventory system because of some of the
assumptions made when it was being developed, three of which are addressed in this
section. The first assumption is that immediately after the items have grow to the target
weight, they are slaughtered and sold to market instantly and the second one is that all the
newborn items survive throughout the growing cycle. The third assumption is that one
entity is responsible for all the activities, this is not always the case, especially in today’s
business environment where the benefits of supply chain management are documented.
Consequently, multiple entities are involved in getting the slaughtered product to market,
albeit at different stages. While these assumptions simplify the modelling process, they
are unrealistic because there is usually some form of processing prior to selling the items
to end consumers and growing items, which are living organisms, are not immune to
mortality.

To overcome some of the shortcomings in Sebatjane and Adetunji (2019a)’s model, an
integrated multi-echelon supply chain is suggested. The proposed supply chain consists of
three members (i.e. a farmer, a processor and a retailer) and four echelons (i.e. farming,
processing, inspection and selling). The farmer, who receives the items as newborns at
the beginning of a replenishment cycle, is responsible for growing the items provided that
some of the items do not survive to the end of the growing period due to mortality. The
processor is involved in the transformation of the live fully grown items into saleable
items through slaughtering, preparation and packaging (collectively termed processing),
while the retailer sells the processed items to end-users. Prior to sending the processed
items to the retailer, the processor inspects them for quality to ensure that consumers
get them in the correct form (from a consumer health and safety perspective).

4.3.1.2 Objectives

The main objective of this section is to formulate a coordinated model for managing
inventory in a supply chain with growing items while taking into account item mortality
and quality control initiatives. In addition to the main objective, the section has a
few sub-objectives that are aimed at investigating, through numerical experimentation,
the effects of item mortality during the farming stage, the presence of imperfect quality
inventory after processing and the adopted shipment policy between the processor and
the retailer on the supply chain’s profit and ordering policy.

‡A modified version of this section has been accepted for publication as Sebatjane and Adetunji
(2020a) in Production & Manufacturing Research.
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4.3.1.3 Relevance

The presence of illnesses, pests (in the case of crops) and predators (in the case of live-
stock) makes item mortality an important factor to consider when studying inventory
systems with growing items. In reality, not all the newborn items ordered when a replen-
ishment cycle starts make it to the processing stage due to mortality.

The primary source of most consumable food products is growing items. However,
these items are rarely consumed in their original form. The items go through a number
of stages before they are in a form suitable for consumption. These stages represent
supply chain echelons and in the context of this section, four are identified, namely,
farming, processing, inspection and selling. This section uses this fact to propose a
model for inventory control in a four-echelon supply chain for growing items when there
is a possibility of having inferior quality items. For this reason, government regulations
require food items to be checked for quality before they are sold to consumers in order
to ensure that the health and safety of consumers is not compromised.

Given that growing items were only incorporated in inventory theory recently (Rezaei,
2014), it appears that no study has considered an integrated inventory control system for
growing items in a four-echelon supply chain with item processing considering mortality
(in the case live items) and quality (in the case of processed items). This study is aimed
at filling this void in the literature. The model and results from the numerical analysis
can be used as a guideline for managers in charge of making purchasing decisions in
industries involved in the broader food chain.

4.3.1.4 Organisation

Besides the introductory subsection, this section has four additional subsections. In
addition to providing a description of the proposed inventory control system, Subsection
4.3.2 also lists the assumptions used when formulating the model. The model is then
developed in Subsection 4.3.3. Following this, important managerial insights are drawn
from a numerical example presented in Subsection 4.3.4 and then concluding remarks are
given in Subsection 4.3.5.

4.3.2 Problem description

The inventory problem at hand considers a four-echelon supply chain for growing items
with the farming, processing, inspection and retail operations as the echelons. The farmer
is responsible for growing the items which are received as newborns. The fully grown items
are then instantaneously shipped to the processor for transformation into a saleable form.
The items are deemed fully-grown or mature once they grow to a specified weight. The
processing stage is not perfect and it thus produces some items of poorer quality, in
addition to those of good quality. As a way of ensuring that the health and safety of end
users is not compromised, the processor is also responsible for quality control (in addition
to processing the items) and for this reason the processor has two facilities, one for
processing and the other one for quality inspection. Throughout the inspection process,
the processor delivers an integer number of batches of good quality processed inventory
to the retailer who meets consumer demand for good quality processed inventory. The
processed poorer quality inventory is accumulated throughout the inspection process and
are then sold as a single batch to secondary markets when the inspection process ends.
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Figure 4.3.1: Inventory system profile for a farmer, a processor and a retailer in a supply
chain for growing items with imperfect processing (with ns = 3 for illustrative purposes)

The inventory system profile for the problem at hand is depicted by Figure 4.3.1.
For the farmer’s inventory profile, the weight depicted in the graph is that of the live
items as they grow throughout the cycle. In the case of the processor’s and the retailer’s
inventory profiles, the graph shows the changes that occur to the processed inventory. At
the processing facility, live items are transformed into saleable processed items and the
weight of the processed inventory increases gradually at a certain rate. At the inspection
warehouse, the processed inventory is inspected for quality and batches of good quality
are transferred to the retailer while the poorer quality processed inventory (shown as
the shaded portion in the figure) accumulates at the warehouse. The processed poorer
quality inventory is then sold off as a single batch when inspection ends.

A number of assumption are made in order to model the proposed supply chain
inventory system. These include:

• There is only one farmer, one processor and one retailer in the supply chain involved,
respectively, in the growing, the processing and the inspection and the selling of a
single type of item.

• A fraction of the live inventory items does not survive until the end of the growth
period.
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• The processor’s processing rate is greater than the retailer’s demand rate and both
quantities are deterministic constants.

• A fraction of the processed inventory does not meet the required quality standard.

• As soon as processing is complete, the entire processed lot is transferred to an
inspection warehouse where a 100% inspection process takes place in which the
items are classified as either being of good quality or poorer quality.

• The inspection rate is greater than the demand rate.

• During the inspection process, equally-sized batches of good quality processed in-
ventory are sent to the retailer.

• The retailer uses the good quality processed inventory to meet consumer demand
as soon as the first batch is delivered.

• The poorer quality processed inventory are allowed to accumulate at the processor’s
inspection warehouse from where they are sold when a single inspection run ends.

• Poorer quality processed items can not be reworked.

• Holding costs are incurred only for the ready-to-consume (i.e. processed) items.

• The retailer’s holding costs are higher than those of the processor due to value
adding as the items move downstream in the supply chain.

• Order lead time is zero and shortages are not permitted.

4.3.3 Model formulation

4.3.3.1 Farmer’s profit

Figure 4.3.2 depicts the weight of the farmer’s live inventory throughout the growth
period. As the items are fed, their weight increases gradually from an initial newborn
weight of w0 to a target maturity weight of w1 at the end of the growing period (of
duration Tf ).

Figure 4.3.2: The farmer’s inventory system profile

The farmer’s replenishment cycle starts with the placement of an order for y live
newborn items. The farmer procures live newborn items from a vendor who charges pv
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per weight unit of the newborn items. Given that at the time of purchase the weight of
each item is w0, the farmer’s purchase cost per cycle, PCf , is therefore

PCf = pvyw0. (4.3.1)

There is a fixed cost of Kf associated with setting up for a new growing cycle. The
farmer’s setup cost per cycle, KCf , is therefore

KCf = Kf . (4.3.2)

The items are allowed to grow until their weight reaches a certain target (i.e. the
maturity weight w1). At that point, they are delivered to the processor for processing
and inspection. Due to its “S”-shaped curve, the logistic function is used to model the
items’ growth function, given by

w(t) =
α

1 + βe−λt
. (4.3.3)

When the farmer’s growth period ends, the weight of the surviving items would have
reached the target weight of w1. From Equation (4.3.3), the length of the growth period,
Tf , is computed using the target maturity weight as

Tf = −
ln
[
1
β

(
α
w1
− 1
)]

λ
. (4.3.4)

The farmer’s cyclic feeding cost, FCf , computed by multiplying the feeding cost per
weight unit (cf ), the fraction of items which survive (x), and the area under the graph
showing the items’ growth trajectory (as given in Figure 4.3.2), is given by

FCf = cfx

∫ Tf

0

yw(t) dt = cfxy

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.3.5)

The farmer incurs a cost associated with disposing the fraction of newborn items
which do not survive until the end of the growing cycle. The farmer’s mortality cost
cycle, MCf , is determined as the product of the farmer’s average inventory level (i.e the
area under the graph of the farmer’s inventory system profile), the fraction of items which
do not not survive (1 − x) and the mortality cost per weight unit per unit time (mf ).
Hence,

MCf = mf (1− x)

∫ Tf

0

yw(t) dt = mf (1− x)y

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(4.3.6)
Since the items have a survival rate of x, when the farmer’s replenishment cycle ends,

the weight of all the surviving items would be given by xyw1. This lot is then transferred
to the processor for further processing and inspection. The weight xyw1 represents the
processor’s lot size. The farmer charges the processor pf for each weight unit of the
surviving live inventory. The farmer’s revenue per cycle, TRf , is therefore

TRf = pfxyw1. (4.3.7)

The farmer’s total profit per cycle, TPf , is the farmer’s cyclic revenue [i.e. Equation
(4.3.7)] less the farmer’s cyclic total costs [i.e the sum of Equations (4.3.1), (4.3.2), (4.3.5)
and (4.3.6)] and it is given by

TPf = pfxyw1−pvyw0−Kf−y
{
αTf+

α

λ

[
ln
(
1 + βe−λTf

)
−ln (1 + β)

]}[
cfx+mf (1−x)

]
.

(4.3.8)
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4.3.3.2 Processor’s profit

4.3.3.2.1 Processor’s processing facility

The inventory system profile for processed inventory in the processing facility, depicted
in Figure 4.3.3, is used to determine various components of the costs incurred in the
processing facility. The weight of the processed inventory increases at a processing rate
of R as the processor transforms the live items (received from the farmer) into saleable
processed items.

Figure 4.3.3: Inventory system profile for the processor’s processing facility

The entire lot size received from the farmer (i.e. xyw1) is processed at a rate R. This
means that the duration of the processing period is

Tp =
xyw1

R
. (4.3.9)

The processor incurs a fixed cost of Kp at the start of each processing run and therefore
the setup cost per cycle, KCp, is

KCp = Kp. (4.3.10)

The processor procures live fully grown items from the farmer for processing. Given
that the farmer charges pf per weight unit of inventory, the processor’s procurement cost
per cycle, PCp, is

PCp = pfxyw1. (4.3.11)

The holding cost per cycle at the processing facility, HCp, is computed by multiplying
the holding cost per weight unit in the facility, hp, by the area under the inventory system
graph, as given in Figure 4.3.3, and it is given by

HCp = hp

(
x2y2w2

1

2R

)
. (4.3.12)

The total cost (per cycle) at the processing facility, TCp, is determined by adding
Equations (4.3.10), (4.3.11) and (4.3.12), resulting in

TCp = Kp + pfxyw1 + hp

(
x2y2w2

1

2R

)
. (4.3.13)
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4.3.3.2.2 Processor’s inspection facility

Once the entire lot is processed, it is transferred to an inspection warehouse for quality
control. In the inspection warehouse, the processor incurs holding, inspection and trans-
fer costs. Figure 4.3.4 depicts the changes to the weight of the processed inventory in
the inspection warehouse. A fraction , a, of the processed inventory does not meet the
required quality standard (i.e these inventory items are of poorer quality). This means
that the weight of good quality processed inventory is xyw1(1−a), and from this the pro-
cessor ships ns batches (each weighing s

′
) to the retailer at equally-spaced time intervals.

Figure 4.3.4: Inventory system profile for the processor’s inspection facility (with ns = 3
for illustrative purposes)

Since the processor inspects the entire lot they received from the farmer (i.e. xyw1)
for quality at a rate of z, the duration of the inspection period, Ts, is thus

Ts =
xyw1

z
. (4.3.14)

At equally-spaced time intervals of τ , the processor delivers an integer number of
shipments (ns in this case) of good quality processed inventory to the retailer. Therefore
the duration of the time interval between successive deliveries of good quality items is

τ =
xyw1

nsz
. (4.3.15)

In each inspection run, the weight of items of good quality that the processor has
is xyw1(1 − a). From this, the processor delivers ns batches of good quality processed
inventory, each batch being of size s

′
, to the retailer. The weight of each batch of good

quality processed inventory is thus

s
′
=
xyw1(1− a)

ns
. (4.3.16)

The processor also incurs a fixed cost for sending a batch of good quality processed
inventory to the retailer. Since the processor sends ns batches to the retailer during a
single inspection run, the transfer cost per cycle, KCs, is thus

KCs = nsKs. (4.3.17)
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The entire lot is subjected to quality inspection process in order to separate the items.
The processor incurs a cost of v per weight unit of the processed inventory inspected.
Therefore, the processor’s inspection cost per cycle, V Cs, is

V Cs = vxyw1. (4.3.18)

The holding cost per cycle at the inspection warehouse, HCs, is computed by multiply-
ing the holding cost per weight unit by the area under the graph depicting the processed
inventory system profile as given in Figure 4.3.4. It follows that

HCs = hs

[
x2y2w2

1

z
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
. (4.3.19)

The cyclic total cost incurred by the processor at the inspection warehouse (TCs),
computed by summing Equations (4.3.17), (4.3.18) and (4.3.19), is therefore

TCs = nsKs + vxyw1 + hs

[
x2y2w2

1

z
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
. (4.3.20)

The processor delivers ns batches of good quality items to the retailer with each batch
weighing s

′
. Noting that all the batches delivered during a single processing cycle have a

combined weight of xyw1(1− a) and that the processor charges the retailer pp per weight
unit of good quality processed inventory, the processor’s cyclic revenue from good quality
processed inventory, TRp, is thus

TRp = ppxyw1(1− a). (4.3.21)

After the inspection process, the processor sells the poorer quality processed inventory
at a cost of pq per weight unit to secondary markets in a single batch. This means that
the processor’s cyclic revenue from sales of poorer quality processed inventory, TRq, is

TRq = pqxyw1a. (4.3.22)

The processor’s cyclic profit, TPp, is computed as the revenue from both good and
poorer quality inventory [i.e the sum of Equations (4.3.21) and (4.3.22)] less the total
cost [i.e the sum of Equations (4.3.13) and (4.3.20)] and is thus

TPp = ppxyw1(1− a) + pqxyw1a−Kp − pfxyw1 − hp
(
x2y2w2

1

2R

)
− nsKs − vxyw1

− hs
[
x2y2w2

1

z
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
. (4.3.23)

4.3.3.3 Retailer’s profit

Figure 4.3.5 shows the behaviour of the retailer’s processed inventory level over time.
The retailer faces a demand rate (for good quality processed inventory) of D. To meet
this demand, the retailer receives ns batches of size s

′
from the processor after the items

have been inspected for quality. Altogether, these batches add up to xyw1(1−a) between
successive order cycles (i.e. when the retailer’s inventory level reaches zero). The duration
of time between successive order cycles is therefore

T =
xyw1(1− a)

D
. (4.3.24)
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Figure 4.3.5: The retailer’s inventory system profile (with ns = 3 for illustrative purposes)

A fixed ordering cost cost of Kr is incurred whenever the retailer places an order
of xyw1(1 − a) good quality items ( received in ns batches of s

′
). The retailer’s cyclic

ordering cost, KCr, is thus
KCr = Kr (4.3.25)

The retailer procures processed good quality inventory from the processor at a cost
of pp per weight unit. Given that the retailer procures good quality inventory weighing
xyw1(1− a) per cycle, their (the retailer’s) procurement cost per cycle, PCr, is

PCr = ppxyw1(1− a). (4.3.26)

Figure 4.3.6: Redrawn version of the retailer’s inventory system profile (with ns = 3 for
illustrative purposes)[modified from Konstantaras et al. (2007)]

Figure 4.3.6, a redrawn version of Figure 4.3.5, is utilised to determine the area under
the graph of the retailer’s processed inventory level (in weight units). The redrawn version
makes the computation of the area easier and the method is adopted from Konstantaras
et al. (2007). This area is computed by subtracting the area of ns(ns−1)/2 parallelograms
of type ABCD from the area of triangle DEF. It follows that

Arear =
[
Area of triangle DEF

]
−
[ns(ns − 1)

2
(Area of parallelogram ABCD)

]
=

[
xyw1(1− a)T

2

]
−
[
ns(ns − 1)s

′
τ

2

]
=

[
xyw1(1− a)T

2
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
.

(4.3.27)
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This area is multiplied with the holding cost per weight unit to determine the holding
cost incurred by the retailer in each cycle, HCr, as

HCr = hr

[
xyw1(1− a)T

2
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
. (4.3.28)

The retailer sells the good quality processed inventory to consumers at a selling price
of pr per weight unit. This implies that the retailer’s cyclic revenue, TRr, is

TRr = prxyw1(1− a). (4.3.29)

The retailer’s total profit per cycle, TPr, is the revenue generated from the sales of
good quality processed inventory minus the sum of the ordering and holding costs. It
follows that

TPr = prxyw1(1− a)−Kr − hr
[
xyw1(1− a)T

2
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
(4.3.30)

4.3.3.4 Supply chain profit

The supply chain’s profit profit is computed as the sum of the profits generated at each
supply chain echelon, as given in Equations (4.3.8), (4.3.23) and (4.3.30). Therefore the
cyclic supply chain profit, TPsc, is

TPsc = prxyw1(1− a) + pqxyw1a−Kr − hr
[
xyw1(1− a)T

2
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
−Kp − hp

(
x2y2w2

1

2R

)
− nsKs − vxyw1 − hs

[
x2y2w2

1

z
− (ns − 1)x2y2w2

1(1− a)

2nsz

]
− pvyw0

−Kf − y
{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}[
cfx+mf (1− x)

]
. (4.3.31)

To ensure that the retailer never runs out of processed inventory, the farmer and the
processor start new replenishment cycles every T time units which is the amount of time
it takes for the processed inventory at the retailer’s facility to reach zero. Therefore,
the total supply chain profit per unit time, TPUsc, is determined by dividing Equation
(4.3.31) by the replenishment cycle time, T , as given in Equation (4.3.24) and the result
is

TPUsc = prD +
pqaD

(1− a)
− KrD

xyw1(1− a)
− hr

[
xyw1(1− a)

2
− (ns − 1)xyw1D

2nsz

]
− KpD

xyw1(1− a)
− hp

[
xyw1D

2R(1− a)

]
− nsKsD

xyw1(1− a)
− vD

(1− a)

− hs
[
xyw1D

s(1− a)
− (ns − 1)xyw1D

2nsz

]
− pvw0D

xw1(1− a)
− KfD

xyw1(1− a)

− D

xw1(1− a)

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}[
cfx+mf (1− x)

]
. (4.3.32)

Both the live items’ survival rate, x, and the fraction of processed inventory that is
of poorer quality, a, are considered as random variables with known probability density
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functions given by f(x) and f(a) respectively. Therefore, the expected value of Equation
(4.3.32) is

E[TPUsc] = prD +
pqE[a]D(
1− E[a]

) − KrD

E[x]yw1

(
1− E[a]

)
− hr

[
E[x]yw1

(
1− E[a]

)
2

− (ns − 1)E[x]yw1D

2nsz

]
− KpD

E[x]yw1

(
1− E[a]

)
− hp

[
E[x]yw1D

2R
(
1− E[a]

)]− nsKsD

E[x]yw1

(
1− E[a]

) − vD(
1− E[a]

)
− hs

[
E[x]yw1D

s
(
1− E[a]

) − (ns − 1)E[x]yw1D

2nsz

]
− pvw0D

E[x]w1

(
1− E[a]

) − KfD

E[x]yw1

(
1− E[a]

)
− D

E[x]w1

(
1− E[a]

){αTf +
α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}{
cfE[x]+mf

(
1−E[x]

)}
.

(4.3.33)

The order quantity which maximises the total profit generated by the supply chain is
determined by setting the first derivative of Equation (4.3.33) with respect to y to zero.
The result is

y =

√√√√√√ 2D
(
Kr +Kp + nsKs +Kf

)
{
hr

[
E
[
(1− a)2

]
− D(ns−1)E[1−a]

nsz

]
+ hp

(
D
R

)
+ hs

[
2D
z
− D(ns−1)E[1−a]

nsz

]}
E[x2]w2

1

.

(4.3.34)

4.3.3.4.1 Constraints governing the proposed inventory system

The feasibility and tractability of the proposed inventory control model is dependent on
the imposition of three constraints.

The first constraint ensures that shortages do not occur in the processor’s inspection
facility during the inspection process. By defining E[W ] as the expected weight of good
quality processed inventory less the weight of poor quality processed inventory in each
cycle, the equation

E[W ] = E[xyw1]− E[axyw1] = E[(1− a)xyw1], (4.3.35)

is formulated. One of the assumptions made when developing the model is that shortages
are not permitted. As a way of ensuring that shortages are avoided, the expected weight
of good quality processed inventory should be greater than or equal to the demand during
the inspection period Ts. Thus,

E[W ] ≥ DTs. (4.3.36)

By substituting Equation (4.3.35) and Ts [as given in Equation (4.3.14)] into Equation
(4.3.36), the first constraint is formulated as

E[a] ≤ 1− D

z
. (4.3.37)

The second constraint is that the number of batches of good quality processed inven-
tory delivered to the retailer during a single inspection run (ns) should be an integer.
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This constraint not only ensures that the proposed solution procedure is tractable, it also
makes the problem practical. The second constraint is thus

ns ∈ Z. (4.3.38)

The third constraint relates to the common replenishment cycle time (T ) for all ech-
elons. The constraint guarantees that the solution is feasible. Since a new processing
cycle is set up every T time units, the farmer’s growth period (Tf ) must at most be equal
to the common replenishment cycle time (T ) so that the weight of the live items has
reached the target maturity weight at the start of a new processing run. Therefore, the
third constraint is

Tf ≤ T. (4.3.39)

In addition, the cycle time T also places a restriction on the processor’s processing dura-
tion Tp in a similar manner (i.e. Tp ≤ T ). But since the processing rate (R) is assumed to
be greater that the demand rate (D), this constraints will not be violated and therefore
it’s not necessary to explicitly state it.

4.3.3.4.2 Solution procedure

An iterative solution algorithm is used to determine the model’s optimal solution. The
procedure is as follows:

Step 1: Start with ns = 1.

Step 2:

Step 2a: Compute y using Equation (4.3.34).

Step 2b: Check the model’s feasibility with regards to the third constraint as given
in Equation (4.3.39). To accomplish this, the values of Tf and T are first
calculated using Equations (4.3.4) and (4.3.24). If the model is feasible, keep
the calculated y value and continue to Step 2d. If not, continue to Step 2c.

Step 2c: If Tf ≥ T , equate T to Tf and use the new T value to determine a new y value
from Equation (4.3.24). Continue to Step 2d.

Step 2d: Check the model’s feasibility with regards to the first constraint as given in
Equation (4.3.37). If it is feasible, continue to Step 2e. If not, the problem is
infeasible and in this case continue to Step 4.

Step 2e: Compute E[TPU ] using Equation (4.3.33).

Step 3: Increase ns by 1 and then repeat Step 2. If the value of E[TPUsc] increases, then
go to Step 3. If not, the previously calculated value of E[TPUsc] along with corre-
sponding y and ns values represent the best solution.

Step 4: End.

4.3.3.5 Proof of the supply chain profit function’s concavity

To show that a unique solution to the presented model exists, it must be proven that the
expected total supply chain profit function (E[TPUsc]), as specified in Equation (4.3.33),
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is concave in both the farmer’s order order quantity (y) and the number of shipments
made by the processor from the inspection warehouse to the retailer (ns).

The partial derivatives of (E[TPUsc]) with respect to y and ns are

∂E[TPUsc]

∂y
=

KrD

E[x]y2w1(1− E[a])
− hr

[
E[x]w1(1− E[a])

2
− (ns − 1)E[x]w1D

2nsz

]
+

KpD

E[x]y2w1(1− E[a])
− hs

[
E[x]w1D

s(1− E[a])
− (ns − 1)E[x]w1D

2nsz

]
− hp

[
E[x]w1D

2R(1− E[a])

]
+

nsKsD

E[x]y2w1(1− E[a])
+

KfD

E[x]y2w1(1− E[a])
, (4.3.40)

∂2E[TPUsc]

∂y2
= −D(Kr +Kp + nsKs +Kf )

E[x]y3w1(1− E[a])
(4.3.41)

∂E[TPUsc]

∂n
=
E[x]yw1D(hr + hs)

2n2s
− KsD

E[x]yw1(1− E[a])
(4.3.42)

∂2E[TPUsc]

∂n2
= −E[x]yw1D(hr + hs)

2n3s
(4.3.43)

∂2E[TPUsc]

∂y∂n
= −E[x]w1D(hr + hs)

2n2s
+

KsD

E[x]y2w1(1− E[a])
. (4.3.44)

Based on those partial derivatives, the quadratic form of the Hessian matrix is there-
fore

[
y ns

]  −D(Kr+Kp+nsKs+Kf )

E[x]y3w1(1−E[a])
−E[x]w1D(hr+hs)

2n2s
+ KsD

E[x]y2w1(1−E[a])

−E[x]w1D(hr+hs)
2n2s

+ KsD
E[x]y2w1(1−E[a])

−E[x]yw1D(hr+hs)
2n3s

[ y
ns

]

= −D(Kr +Kp +Kf )

E[x]yw1(1− E[a])
− E[x]yw1D(hr + hs)

2nsz
< 0. (4.3.45)

The quadratic form of the Hessian matrix, as determined in Equation (4.3.45), proves
that the expected total profit function is concave because the quadratic form of the
Hessian is shown to be negative.

4.3.4 Numerical results

A numerical example which considers a mutton production system with a farmer, a pro-
cessor (who also inspects the items for quality after processing) and a retailer is used
to solve and analyse the proposed inventory control model. The example makes use
of the following parameters: D=250 kg/week; R=300 kg/week; w0= 8.5 kg; w1=30
kg; Kr=2 500 ZAR; hr=1 ZAR/kg/week; pr=50 ZAR/kg; Kp=25 000 ZAR; hp=0.5
ZAR/kg/week; pp=30 ZAR/kg; Ks=200 ZAR; hs=0.5 ZAR/kg/week; pq=20 ZAR/kg;
v=0.5 ZAR/kg; z=1 000 kg/week; Kf=30 000 ZAR; pf=15 ZAR/kg; cf=1 ZAR/kg/week;
mf=2 ZAR/kg/week; pv=10 ZAR/kg; α=51 kg; β=5; λ=0.12 /week. x and a are as-
sumed to be random variables uniformly distributed over [0.8, 1] and [0, 0.05], respectively.
Their probability density functions are given by

f(x) =

{
5, 0.8 ≤ x ≤ 1

1, otherwise.
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f(a) =

{
32, 0 ≤ a ≤ 0.05

0, otherwise.

This implies that

E[x] =

∫ 1

0.8

5x dx = 5

[
(12 − 0.82)

2

]
= 0.9

E[a] =

∫ 0.05

0

32a da = 32

[
(0.052 − 02)

2

]
= 0.04

Table 4.3.1 presents the results from the numerical example which was solved using
the proposed iterative solution procedure. The table also shows the profit function’s
concavity. The optimal values of the decision variables were found to be n∗s=9 shipments
(of processed inventory delivered by the processor to the retailer during a single processing
cycle) and y∗=179 newborn lambs (ordered by the farmer at the beginning of a growing
cycle). The model’s objective function, E[TPU∗], amounted to 2 191.76 ZAR/week.

Table 4.3.1: Results from the numerical example showing the objective function’s concavity

Number of Farmer’s Retailer’s Total supply
shipments order quantity cycle time chain profit

(ns) (y) (T ) (E[TPUsc])

1 158 16.38 1 528.28
2 168 17.41 1 928.35
3 172 17.82 2 060.35
4 174 18.06 2 122.20
5 176 18.21 2 155.45
6 177 18.33 2 174.24
7 178 18.42 2 184.72
8 178 18.50 2 189.98
9 179 18.57 2 191.76
10 180 18.63 2 191.09
11 180 18.68 2 188.65
12 181 18.73 2 184.88
13 181 18.78 2 180.09
14 182 18.83 2 174.50

The optimal inventory shipment and replenishment policies for all chain members
are determined using those two decision variables. The farmer should order (y=) 179
live newborn items when a growing cycle commences. When the farmer receives the
order, the weight of all the ordered newborn items (yw0) should be approximately 1 522
kg. Since (x=) 90% of the initially ordered newborn items survive and reach the target
weight at the end of the growth period, the weight of the surviving items delivered to
the processor’s processing facility (xyw1) should be about 4 833 kg. After processing
the entire lot, the processor transfers it to an inspection warehouse where the processed
inventory is inspected for quality. Throughout the inspection process, the processor
should deliver (ns=) 9 batches of good quality inventory, each weighing (s

′
=) 516 kg,

which has been separated from the poorer quality inventory. This implies that the weight
of good quality processed inventory [xyw1(1 − a)] amounts to 4 640 kg per processing
cycle. The poorer quality inventory (xyw1a) in each processing cycle weighs 193 kg
and it is sold as a single batch to secondary markets when inspection is complete. The
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processor should deliver good quality processed inventory to the retailer every τ= 0.54
weeks once enough inventory to make a batch (s

′
) has been inspected. The retailer’s

inventory level will reach zero every (T=) 18.57 weeks, which also represents the time
between successive farming and processing cycles at the farmer’s growing facility and the
processor’s processing facility, respectively.

4.3.4.1 Sensitivity analysis

In order to investigate the relative importance (in terms of effects on the model’s objec-
tive function and decision variables) of the input parameters, a sensitivity analysis was
conducted and its results are presented in Table 4.3.2. The following observations from
the sensitivity analysis are notable:

• The expected supply chain profit is most sensitive to changes in the selling prices of
the items at different stages in the supply chain (i.e. pv, pf , pp and pr). The higher
these input parameters are, the higher the profit. This is not a surprising result
given that as the items move further downstream along the supply chain, the selling
prices increase because of value-adding. Furthermore,none of these parameters have
an effect on the model’s two decision variables. However, this does not understate
the importance of these parameter because the impact they have on the profit is
disproportionately large.

• The survival rate of the items has the second highest impact on the expected profit.
Unlike the selling prices, this parameter has an effect (a significant one at that) on
the farmer’s EOQ. As more items survive during the farmer’s growth period, less
items are required to satisfy a given demand rate. While this implies that the
farmer would have to feed more items and the processor would have to process and
hold more inventory, the net effect on the supply chain profit is positive most likely
because the model introduced a mortality cost, which is sort of like a penalty cost
for items dying. Having fewer items die during the farmer’s growth period means
that the effect of this penalty cost is less severe.

• The fraction of processed items which are of inferior quality also affected both the
profit and the order quantity, but the effect was very small. This is probably due to
the relatively low value of 0.04 in the base example. As this fraction increases, the
total profit decreases despite the fact that the poorer quality are sold a sold when
the inspection process ends. But since they are sold at a lower price than the one
being charged for the good quality inventory, this extra source of revenue does not
increase the supply chain profit.

• Changes to all the different fixed costs in the system have the same general effect on
the supply chain profit and the order quantity. When the fixed costs are increased
the profit across the supply chain decreases and the optimal order quantity increases.
Nonetheless, the severity of the effect varies between the fixed costs. The fixed costs
at the farmer’s and the processor’s setup costs have the greatest effects while the
fixed costs at the downstream echelons, namely the retailer’s ordering cost and the
transfer cost from the inspection facility, have significantly lower effects.
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Table 4.3.2: Sensitivity analysis of various input parameters

Parameters % Farmer’s order quantity (y) Number of shipments (ns) Supply chain profit (E[TPUsc])
change items % change shipments % change ZAR/week % change

Base example 179 9 2 177.29

Kr

-50 177 -1.1 9 0 2 259.44 +3.1
-25 178 -0.5 9 0 2 225.51 +1.5
+25 180 +0.5 9 0 2 158.18 -1.5
+50 181 +1.1 9 0 2 124.78 -3.1

hr

-50 211 +17.8 9 0 3 156.41 +44.0
-25 193 +7.8 9 0 2 654.41 +21.1
+25 168 -6.3 9 0 1 760.42 -19.7
+50 158 -11.6 9 0 1 354.78 -38.2

Kp

-50 158 -11.5 8 -11.1 2 905.79 +32.6
-25 169 -5.4 9 0 2 537.75 +15.8
+25 189 +5.5 10 +11.1 1 863.94 -15.0
+50 198 +10.4 10 +11.1 1 552.01 -29.2

hp

-50 197 +9.8 10 +11.1 2 741.13 +25.1
-25 188 +4.7 10 +11.1 2 459.93 +12.2
+25 172 -3.9 9 0 1 934.61 -11.7
+50 166 -7.3 9 0 1 687.05 -23.0

Ks

-50 179 +0.1 13 +44.4 2 249.68 +2.6
-25 179 +0.2 11 +22.2 2 218.16 +1.2
+25 179 0 8 -11.1 2 168.39 -1.1
+50 180 +0.3 8 -11.1 2 146.88 -2.0

hs

-50 184 +3.0 9 0 2 374.86 +8.4
-25 182 +1.4 9 0 2 282.64 +4.1
+25 177 -1.4 9 0 2 102.15 -4.1
+50 175 -2.4 10 +11.1 2 014.16 -8.1

Kf

-50 154 -13.9 8 -11.1 3 060.07 +39.6
-25 167 -6.5 9 0 2 609.35 +19.1
+25 191 +6.5 10 +11.1 1 800.41 -17.9
+50 201 +12.3 10 +11.1 1 431.05 -34.7

cf

-50 179 0 9 0 3 492.18 +59.3
-25 179 0 9 0 2 841.97 +29.7
+25 179 0 9 0 1 541.55 -29.7
+50 179 0 9 0 891.34 -59.3

mf

-50 179 0 9 0 2 480.74 +13.2
-25 179 0 9 0 2 336.25 +6.6
+25 179 0 9 0 2 047.27 -6.6
+50 179 0 9 0 1 902.78 -13.2

pv; pf ; pp; pr

-50 179 0 9 0 -3 752.49 -271.2
-25 179 0 9 0 -780.37 -135.6
+25 179 0 9 0 5 163.88 +136.5
+50 179 0 9 0 8 136.01 +271.2

E[x]

-50 179 0 9 0 -4 407.73 -301.1
-25 179 0 9 0 -8.07 -100.4
+25 143 -20.0 9 0 3 511.65 +60.2
+50 119 -33.3 9 0 4 391.59 +100.4

E[a]

-50 177 -1.2 9 0 2 221.32 +1.3
-25 178 -0.6 9 0 2 206.81 +0.7
+25 180 +0.6 9 0 2 176.13 -0.7
+50 181 +1.3 9 0 2 159.91 -1.5

• The effect of changes to all the holding costs (i.e. those incurred at the retail
store and those incurred by the processor’s at both the inspection facility and
the processing plant) on the order quantity, number of deliveries and profit is as
expected whereby increases in the holding costs cause the EOQ and the profit to
decrease. When cost of holding processed inventory increases, the model tries to
mitigate this by ordering less newborn items per cycle. This means that less live
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items need to be fed and the processed inventory spends less time in holding. While
this reduces some of the variable inventory management costs, it has an adverse
effect on the fixed costs because more order need to be placed in order to meet
a specified demand rate. Given that the model has quite a few fixed costs at all
four echelons (namely, the setup costs at the farming and processing facilities, the
ordering cost at the retail facility and the transfer cost at the inspection facility),
the net effect effect on the profit is negative.

4.3.4.2 Comparison with alternative scenarios

The proposed model for managing growing inventory items in a supply chain with farming,
processing, inspection and retail stages incorporates a number of concepts to the literature
on inventory control for growing items. These concepts include the delivery of multiple
batches during a single processing run , the possibility of item mortality and the possibility
of having inferior quality inventory in a lot. To quantify the importance of these concepts,
three alternative scenarios, coinciding with each of the three concepts, are considered.
Table 4.3.3 summarises the results from this analysis.

Table 4.3.3: Comparison of the proposed inventory control system with various alternative
cases

Variables
Base case

Case I Case II Case III
(Single shipment) (Perfect survival) (Perfect quality)

Quantity Quantity % difference Quantity % difference Quantity % difference

y∗ (items) 179 158 -11.9 161 -10.0 175 -2.5
n∗s (shipments) 9 1 -88.9 9 0 9 0
T ∗ (weeks) 18.57 16.38 -11.9 18.57 0 18.86 +1.6

E[TPUsc]
∗ (ZAR/week) 2 191.76 1 528.28 -30.3 2 851.71 +31.0 2 248.75 +2.6

In the first case, it is assumed that the processor delivers a single batch of processed
inventory to the retailer when the inspection process ends. In this case, the profit re-
duces by 30.5%. While this leads reduces the cost of sending processed inventory to the
retailer, the overall effect on the supply chain chain is negative because of the increased
holding costs at the processing and inspection facilities. Furthermore, the processor has
to ship each batch to the retailer at more frequent intervals to meet the demand rate and
this increases the fixed costs because new growing, processing and retailing cycle start
more frequently. Therefore, having the processor deliver multiple batches of processed
inventory to the retailer per processing cycle is beneficial from a cost perspective.

For the second case, the survival rate of the live items during the growing period is
assumed to be 100%. The profit generated across the supply chain increases by 31.0%.
There are two factors which contribute to this, the first one (and the most critical) is
that the farmer can meet the demand rate from a smaller lot size because all the items
survive. This reduces the procurement cost and the holding cost at the growing facility.
The second contributing factor is that the farmer incurs zero penalty costs for item
mortality (i.e. the mortality cost) if none of the live items die. This demonstrates the
importance of taking measures to keep item mortality rates during the growing period as
low as possible.

In the third case, all the processed inventory is assumed to be of good quality and in
this instance, the supply chain cost increases by 2.6%. This is significant given the low
base value of the imperfect fraction of the items used in the numerical (of 0.04). The
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increase is also important because when all the items are of good the supply chain looses
the revenue stream from inferior quality items sold to secondary markets and despite this,
the supply chain profit still increases. This observation shows the importance of keeping
items are that are rejected for quality reasons as low as possible.

4.3.5 Concluding remarks

In this section, an inventory control model for an integrated four-echelon supply chain
for growing items is developed. When compared to similar models from previous studies,
the proposed model sets itself apart not only via the four-echelon supply chain setup with
discrete farming, processing, inspection and retail activities but also through the explicit
consideration of the possibility that some of the live inventory items might die during the
growing period and that some of the processed inventory might be of inferior quality.

Through numerical experimentation, it was shown that the total profit generated
by the supply chain is affected by the survival rates of live items, the percentage of
processed items that do not meet the quality standard and the shipment policy between
the processor and the retailer. Consequently, production and operations managers in
food production chains with quality inspection operations should take these three factors
into consideration when making procurement decisions.

Despite being representative of an actual food production system, the model presented
in this section still makes a few assumptions that might limit its practical applications.
For instance, item deterioration, pricing decisions and incentive strategies like quantity
discounts, revenue sharing contracts and trade credit financing, to name a few, are all not
taken into consideration. These are critical issues in food production supply chains which
are often characterised by short product life cycles and relatively low profit margins. It
might be conducive for future research to focus on incorporating some of these issues to
the proposed model.
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4.4 A three-echelon supply chain inventory model

for growing items with expiration dates††

4.4.1 Introduction

4.4.1.1 Context

One of the most fundamental changes to business management in recent years has been
that businesses compete within supply chains, as opposed to competing as individual
entities Lambert (2008). Businesses executives have realised that competitive advantages
such as customer service, responsiveness and cost efficiency, among others, can be im-
proved through collaboration with suppliers and customers. One form of collaboration is
integrating inventory replenishment decisions with other supply chain members.

A multitude of researchers have used this collaboration mechanism to develop various
integrated inventory models in systems with more than one party. Nonetheless, most
of these models have been developed specifically for either conventional or deteriorating
items. While these two groups of items are important, there are other groups of items
which are also important for different reasons. For instance, growing items are the primary
source of most food items. Given that these items are rarely consumed in their original
form (i.e. most of them are processed before being put on sale) and that there are
usually multiple parties involved in the food production chain, growing items (in the
context of inventory control modelling) are the perfect candidate for an extension of the
multi-echelon inventory model.

4.4.1.2 Purpose

In this section, a coordinated model for inventory control in a three-echelon supply chain
for growing items is developed. The farming, processing and retail stages of the supply
chain represent the three echelons of the supply chain. At the farming echelon, newborn
items are procured and grown to maturity. It is assumed that some of the items do not
survive at the farming operation due to factors like scavengers and illnesses. The mature
items are then transferred to a processing plant for slaughtering, processing and pack-
aging. Following this, the processor delivers processed inventory, in an integer number
of shipments per processing run, to the retailer who meets consumer demand. At the
the retail store, the processed inventory is displayed on shelves and consequently, the
inventory has an associated shelf life or expiration date.

4.4.1.3 Relevance

The proposed inventory model accounts for a number of important issues in food pro-
duction chains, namely the possibility of mortality (with reference to the live growing
items), the integration of inventory replenishment decisions among multiple supply chain
members and deterioration (of shelved stock items). Growing items are, like most living
organisms, not immune to illnesses and various other health issues which might result in
mortality. This makes item mortality an important consideration in the upstream por-
tion of most food production chains. At the other end of the chain (downstream), shelf

††A modified version of this section has been submitted to Opsearch for review.
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life becomes very critical because of government health and safety regulations regarding
consumable food products.

4.4.1.4 Organisation

Apart from the introduction, this section has five other subsections. The proposed inven-
tory system is briefly outlined in Subsection 4.4.2 which also includes the assumptions
utilised during the model development phase. The inventory system under consideration
is then modelled as a cost minimisation problem in Subsection 4.4.3. This is followed
by a derivation of a special case of the model and a proof of the model’s optimality in
Subsection 4.4.4. Managerial insights are drawn from a numerical example presented
in Subsection 4.4.5 which also shows the potential practical applications of the model.
Concluding remarks and suggestions for future research are presented in Subsection 4.4.6.

4.4.2 Problem description

The proposed supply chain inventory model consists of three echelons representing dif-
ferent stages of a typical food production chain, namely farming, processing and retail
operations. At the farming echelon, newborn items are procured and reared until ma-
turity. The items are declared mature once their weight reaches a pre-defined target.
Following this, the live items are instantaneously transferred to the next echelon which
is processing. The live items are slaughtered, prepared and packaged in preparation for
consumption (or sale) at the processing plant. For convenience, all activities carried out
at the processing plant are collectively called processing and they are carried out at a
given processing rate. The processed inventory is delivered to the last echelon (i.e. re-
tail) in a number of equally-sized shipments per processing run. At the retail outlet, the
processed inventory is placed on shelves in order to meet consumer demand. However,
the processed inventory can only be displayed on the shelves for a given amount of time.
The inventory continuously loses some of its utility over time and at the end of the shelf
life, often specified as an expiration date, it is no longer suitable for consumption.

The inventory system profile for the problem at hand is depicted by Figure 4.4.1, which
shows the behaviour (over time) of the farmer’s live inventory, the processor’s processed
inventory and the retailer’s processed and deteriorating inventory. The processor’s cycle
time is coordinated with the cycle times of the other two supply chain members on the
basis of the behaviour of the inventory at that particular member’s operations. For
instance, the processor’s cycle time is an integer multiple of the retailer’s cycle time
because the processed inventory is replenished frequently in an effort to keep it as fresh
as possible due to its expiration dates. On the other hand, growing the newborn items
requires a relatively longer period of time and a result the growing cycle is setup up such
that when it ends a new processing cycle commences (as shown in Figure 4.4.1). In a nut
shell, the farmer and the processor operate on a SSSD inventory replenishment policy
while the processor and the retailer operate on a SSMD policy. The difference between
these two policies lies in the number of shipments delivered by upstream supply chain
member to the downstream member per cycle of the upstream member. For the SSSD
replenishment policy, the farmer delivers one shipment of mature items to the processor
during a single growing cycle while in the case of the SSMD policy, the processor delivers
multiple shipments (an integer number) of processed inventory to the retailer during a
single processing cycle.
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Figure 4.4.1: Inventory system profile showing the weight of the live inventory at the
farmer’s growing facility and the weight of the processed inventory at the processor’s and
the retailer’s facilities.

The proposed inventory control problem is formulated as a cost minimisation problem
aimed at determining the optimal number of newborn items that the farmer should order
when a growing cycle commences (and by extension the processor and the retailer’s order
quantities and cycle times) and the optimal number of shipments processor should deliver
to the retailer during a single processing run.

The model representing the proposed inventory system is developed under the follow-
ing assumptions:

• There is only one farmer, one processor and one retailer in the supply chain dealing
in one type of growing item.

• A fraction of the ordered items dies before reaching maturity weight.

• The (processor’s) processing rate is greater than the (retailer’s) demand rate, both
of which are deterministic constants.

• The arrival of successive shipments of processed inventory from the processor to the
retailer is scheduled to occur when the previous shipment has just been depleted.

• The processor delivers processed inventory to the retailer just at the moment the
processed inventory is enough to make up a batch size.

• The retailer’s replenishment interval is an integer multiple of the processor’s replen-
ishment interval.

82

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



• The live inventory incurs feeding costs (during the growth period) while the pro-
cessed inventory incurs holding costs (during the processing and selling periods).

• Once the processed inventory reaches the retailer’s shelves, it has a specified shelf
life (or maximum lifetime) indicated by an expiration date. Beyond this point, the
inventory has lost all utility and it cannot be used to meet consumer demand.

4.4.3 Model development

The procurement of ny newborn items marks the start of the farmer’s replenishment
cycle. At the time they are procured, each of the newborn items weighs w0. Multiplying
the number of items procured by the weight of the items yields the weight of all the
ordered items at the time of procurement (i.e. nQ0 = nyw0). The farmer feeds the live
items throughout the growth cycle, of duration Tf , and stops only when the weight of
each item increases to the target maturity weight of w1. The live items have a survival
rate of x [i.e during the growth period, (1−x) of the initially ordered newborn items die].
This implies that the weight of all the surviving ordered mature items (nQ1) is therefore

nQ1 = nxyw1. (4.4.1)

The logistic function, given by

w(t) =
α

1 + βe−λt
, (4.4.2)

is used to represent the items’ growth function. It is chosen because of its distinctive “S”-
shaped curve which is representative of the pattern of growth in most living organisms.
The function describes the changes to the weight of items during the growth period and
it makes use of three parameters, namely the items’ asymptotic weight, the integration
constant and the growth rate (represented by the symbols α, β and λ respectively). When
the growth period is complete (i.e. when the weight of each has reached the target weight
w1 at time Tf ), the items are delivered to the processor for slaughtering, preparation
and packaging (i.e processing). Equation (4.4.2) can be rewritten in terms of the target
weight and growth cycle duration as

Tf = −
ln
[
1
β

(
α
w1
− 1
)]

λ
. (4.4.3)

Since the processor and the retailer operate on a SSMD replenishment policy, for each
processing run, the processor delivers an integer number (n) of equally-sized shipments
of processed inventory to the retailer. The implications of this are that the retailer places
n orders, of total weight Q1, per processing setup. Likewise, the retailer’s cycle time, T ,
and the processor’s cycle time, Tp, are linked by the relation

Tp = nT. (4.4.4)

This indicates that the processor should process live items of total weight nQ1 per pro-
cessing run. And since the farmer and the processor operate on a SSSD policy, the farmer
should grow the same weight units of live inventory during each processing setup.

The total cost of managing inventory in the proposed three-echelon supply chain is
made up of the individual inventory management costs incurred at each of the three
echelons.
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4.4.3.1 Retail operations

The inventory system profile for the retailer’s processed and deteriorating inventory is
illustrated by Figure 4.4.2. When a replenishment cycle commences, the retailer receives
an order weighing Q1 from the processor in order to meet consumer demand, with a rate
D, for processed inventory. The retailer keeps the processed inventory on shelves and it
deteriorates as a result. For health reasons, the processed inventory has a specified shelf
life, L, beyond which it is no longer suitable for consumption.

Figure 4.4.2: Inventory system profile the retailer

The deterioration experienced by the retailer’s processed inventory is age-dependent
in the sense that the longer the items are on the shelf, the greater the deterioration.
The rate of deterioration peaks (at 100%) at the expiration date. Beyond this point, the
inventory is no longer useful in the sense that it can no longer be used to fulfil consumer
demand. This type of deterioration, associated with items with a maximum lifetime, has
a rate

θ(t) =
1

1 + L− t
, (4.4.5)

for 0 ≤ t ≤ T and it is adopted from works such as Sarkar (2012) and Wang et al. (2014),
to name a few. Since the items’ deterioration rate cannot exceeds 100% (i.e. θ(t) ≤ 1 ),
Equation (4.4.5) implies that the retailer’s replenishment cycle (T ) is less than or equal
to the shelf life/ maximum lifetime of the items (L).

Throughout retailer’s replenishment cycle, the weight of their inventory decreases due
to consumer demand and deterioration. Accordingly, the changes to the weight of the
retailer’s processed inventory can be represented by the differential equation

dI(t)

dt
= −D − θ(t)I(t), 0 ≤ t ≤ T. (4.4.6)

Since the weight of the processed inventory is completely depleted at time T , Equation
(4.4.6) has the boundary condition I(T ) = 0. Using the boundary condition to solve
Equation (4.4.6) results in

I(t) = D(1 + L− t) ln

(
1 + L− t
1 + L− T

)
, 0 ≤ t ≤ T. (4.4.7)

The weight of the retailer’s order quantity, computed by subsisting t = 0 in Equation
(4.4.7), is therefore

Q1 = I(0) = D(1 + L) ln

(
1 + L

1 + L− T

)
. (4.4.8)
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Consequently, the corresponding number of items (or the retailer’s lot size) is

y =
1

xw1

[
D(1 + L) ln

(
1 + L

1 + L− T

)]
. (4.4.9)

The retailer incurs a cost of hr for holding a single weight unit of the processed
inventory per unit time. This cost is multiplied by the average weight of the processed
inventory (i.e. the area under the graph in Figure 4.4.2 divided by the replenishment
interval) in order to determine the holding cost per unit time as

HCUr = hr

∫ T
0
I(t) dt

T
=
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+
T 2

4
− (1 + L)T

2

]
. (4.4.10)

Furthermore, the retailer incurs a fixed ordering cost of Kr whenever a new order for
processed inventory is placed. This means that the ordering cost per unit time is

KCUr =
Kr

T
. (4.4.11)

The total cost (per unit time) of managing inventory at the retailer, computed by
summing Equations (4.4.10) and (4.4.11), is thus

TCUr =
Kr

T
+
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+
T 2

4
− (1 + L)T

2

]
. (4.4.12)

4.4.3.2 Processing operations

The total cost of managing inventory at the processing plant is made up of the holding
and setup costs. The profile of the processor’s inventory (in weight units) is represented
by Figure 4.4.3a. The processor receives one delivery from the farmer at the beginning
of each replenishment cycle with a duration of Tp = nT . The weight of each shipment
received is nQ1 = nxyw1. When a new replenishment cycle starts, the processor incurs
a fixed cost of Kp for preparing the processing facility for slaughtering, preparation and
packaging (all are collectively termed processing and they occur at a rate of R). This
implies that the setup cost per unit time is

KCUp =
Kp

nT
. (4.4.13)

In order to determine the processor’s holding costs per unit time, the average weight
of the processed inventory (in weight units) is multiplied by the holding cost (in weight
units per unit time, i.e. hp). It follows that

HCUp =
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
. (4.4.14)

The average weight of the processed inventory is determined by dividing the area
under the processed inventory level, as shown in Figure 4.4.3a, by the duration of the
replenishment interval. So as to easily determine the area under Figure 4.4.3a, the figure
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is redrawn into Figure 4.4.3b. This approach is adapted from Yang et al. (2007)’s JELS
model and the resulting expression for the average inventory level is

Average inventoryp =
Processor’s time-weighted inventory

Processor’s replenishment interval

=

nQ2
1

2P
+Q2

1

(
1
D
− 1

R

)
+ 2Q2

1

(
1
R
− 1

R

)
+ · · ·+ (n− 1)Q2

1

(
1
D
− 1

R

)
nQ1/D

=
D

nQ1

[
nQ2

1

2R
+
n(n− 1)Q2

1

2

( 1

D
− 1

R

)]
=
Q1

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
.

(4.4.15)

(a) Original. (b) Redrawn (modified from Yang et al. (2007)).

Figure 4.4.3: The processor’s processed inventory system behaviour.

The cost of managing the processor’s inventory (per unit time) is therefore

TCUp =
Kp

nT
+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
. (4.4.16)

4.4.3.3 Farming operations

The farmer, whose inventory system profile is given by Figure 4.4.4, is responsible for
rearing the live newborn items to maturity The items are deemed mature once they
have grown to a pre-defined target weight. The farmer’s total inventory management
cost is comprised of the setup, feeding and mortality costs. In order for the retailer to
meet a demand rate (for processed inventory) of D, the farmer delivers a shipment of
processed inventory weighing nQ1 to the processor, who in turn supplies the retailer with
n shipments of processed inventory each weighing Q1. Since the farmer and the processor
operate on a SSSD replenishment policy, for each of the processor’s processing setups the
farmer starts a single replenishment cycle. Given that the farmer pays a fixed setup cost
of Kf when a new replenishment cycle begins, the farmer’s setup cost per unit time is
therefore

KCUf =
Kf

nT
. (4.4.17)
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Figure 4.4.4: Inventory system profile the farmer

With exception to the setup cost, all of the farmer’s other cost components are de-
pendent on the average weight of the farmer’s live inventory. The average weight is
determined by dividing the area under the inventory system graph, depicted by Figure
4.4.4, by the duration of the replenishment cycle and it is given by

Average inventoryf =
Farmer’s time-weighted inventory

Farmer’s replenishment interval

=

∫ Tf
0
nyw(t) dt

nT

=
D(1 + L) ln 1+L

1+L−T

Txw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(4.4.18)

The farmer incurs a cost associated with disposing the fraction of newborn items
which do not survive until the end of the growing cycle. The farmer’s mortality cost per
unit time is computed as the product of the farmer’s average inventory level, the fraction
of items which do not not survive (1−x) and the mortality cost per weight unit per unit
time (mf ). The mortality cost per unit time is therefore

MCUf =
mf (1− x)D(1 + L) ln 1+L

1+L−T

Txw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(4.4.19)
Similarly, the farmer’s feeding cost per unit time is determined as the product of the

farmer’s average inventory level, the fraction of items which survive (x) and the feeding
cost per weight unit per unit time (cf ). It follows that

FCUf =
cfxD(1 + L) ln 1+L

1+L−T

Txw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.4.20)

The farmer’s total cost per unit time is the sum of Equations (4.4.17), (4.4.19) and
(4.4.20) and it is given by

TCUf =
Kf

nT
+
cfx+mf (1− x)

Txw1

(
αTf+

α

λ

[
ln
(
1 + βe−λTf

)
−ln (1 + β)

])
D(1+L) ln

(
1 + L

1 + L− T

)
.

(4.4.21)
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4.4.3.4 Whole supply chain

4.4.3.4.1 Constraints governing the proposed inventory system

The feasibility and tractability for the proposed inventory control model is dependent on
the imposition of two constraints. Firstly, the number of shipments of processed inventory
delivered to the retailer per processing setup (n) should be an integer. This makes the
solution procedure tractable. Secondly, the duration of the farmer’s growth period (Tf )
should be less than or equal to the duration of the processor’s cycle time (Tp = nT ). This
ensures that the solution to the problem is feasible by assuring that the weight of the live
items has reached maturity at the start of the processing run.

4.4.3.4.2 Total inventory management cost across the whole supply chain

The total supply chain (inventory management) cost per unit time is determined by
adding Equations (4.4.12), (4.4.16) and (4.4.21). Furthermore, the fraction of items items
which survive throughout the farmer’s replenishment cycle, x, is considered a random
variable with a given probability density function f(x). The two constraints and the
expected value of the total supply chain cost per unit time are used to formulate the
inventory problem at hand as

Min.

{
E[TCUsc] =

Kr

T
+
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+
T 2

4
− (1 + L)T

2

]
+
Kp

nT

+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
+
Kf

nT

+

[
cfE[x] +mfE[1− x]

TE[x]w1

][
αTf+

α

λ

[
ln
(
1 + βe−λTf

)
−ln (1 + β)

]][
D(1+L) ln

(
1 + L

1 + L− T

)]}
s.t. n ∈ Z, Tf ≤ nT. (4.4.22)

4.4.3.4.3 Solution procedure

The following iterative procedure is followed when calculating the optimal values of n
and T :

Step 1 Set n to 1.

Step 2 Find the value of T which minimises Equation (4.4.22).

Step 3 Increase n by 1 and find the value of T which minimises Equation (4.4.22). Carry
on to Step 4.

Step 4 If the latest value of E[TCsc] decreases, go back to Step 3. If the value of E[TCUsc]
increases, the previously calculated value of E[TCUsc (along with corresponding T
and n values) is the best solution and in this case carry on to Step 5.

Step 5 Verify the solution’s feasibility with regard to the constraint Tf ≤ nT . Tf is calcu-
lated from Equation (4.4.2). If the solution is feasible, those values of n and T are
optimal and if this is the case, carry on to Step 7. If the solution is not feasible,
carry on to Step 6.
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Step 6 If the constraint is violated, set T to Tf/n and use that T value to calculate
E[TCUsc] using Equation (4.4.22) and then carry on to Step 7.

Step 7 End.

4.4.4 Special case and theoretical results

4.4.4.1 Special case with no mortality nor deterioration

A special case of the proposed inventory model is derived by disregarding the possibility
of some of the live items dying throughout the growing cycle and the fact that the
processed inventory has a specified shelf life at the retail store. Before deriving this
result, two scenarios (which aid in the derivation) are briefly discussed, namely one with
no deterioration at the retail echelon and one with no mortality at the farming echelon.

4.4.4.1.1 Scenario I: Infinite shelf life (i.e. no deterioration)

Using the result

lim
L→∞

(
1 + L

T

)
ln

(
1 + L

1 + L− T

)
= 1, (4.4.23)

from Wang et al. (2014), the weight of the retailer’s order for processed inventory, as
given in Equation (4.4.8), can be rewritten in terms of the result in Equation (4.4.23) as

Q1 = DT

(
1 + L

T

)
ln

(
1 + L

1 + L− T

)
. (4.4.24)

This means that when the processed inventory is assumed to have an infinite shelf life
(i.e. in the absence of deterioration), the retailer’s order for processed inventory weighs

Q1 = DT, (4.4.25)

as L→∞.
Likewise, the result

lim
L→∞

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
− (1 + L)T

2

]
=
T 2

4
, (4.4.26)

from Wang et al. (2014) is used to evaluate the retailer’s holding cost per unit time as
given in Equation (4.4.10). This holding cost can be rewritten in terms of the result in
Equation (4.4.26) as

HCUr =
hrD

T

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
− (1 + L)T

2
+
T 2

4

]
. (4.4.27)

Consequently, when the processed inventory is assumed to have an infinite shelf life,
the retailer’s holding cost per unit time becomes

HCUr =
hrD

T

(
T 2

4
+
T 2

4

)
=
hrDT

2
, (4.4.28)

as L→∞.
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Therefore, the retailer’s total cost associated with managing the processed inventory
per unit time becomes

TCUr =
Kr

T
+
hrDT

2
. (4.4.29)

Similarly, as L→∞, the farmer’s total cost associated with managing the processed
inventory per unit time becomes

TCUf =
Kf

nT
+

[
cfx+mf (1− x)

]
D

xw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.4.30)

Since the processor’s total cost function is not a function of L, it remains the same as
the one given in Equation (4.4.16) even under this scenario.

4.4.4.1.2 Scenario II: No mortality

When all the live items are assumed to survive throughout the growing period (i.e. 100%
survival rate or simply, x = 1), the farmer’s total cost associated with managing the live
inventory per unit time becomes

TCUf =
Kf

nT
+

cf
Tw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
D(1 +L) ln

(
1 + L

1 + L− T

)
.

(4.4.31)
Under this scenario, the retailer and the processor’s total cost function remain the

same as those in Equations (4.4.12) and (4.4.16), respectively.

4.4.4.1.3 Special case

A special case of the proposed inventory model is derived by assuming that all the live
ordered items survive (at the farming echelon) and that the processed inventory has an
infinite shelf life (at the retail echelon). In essence, this special case is derived by letting
x = 1 and L → ∞ (simultaneously, as opposed to doing it separately as was the case
in the two aforementioned scenarios). Since the processor’s total cost function is not
affected by neither x nor L, it remains the same as the one given in Equation (4.4.16).
The retailer’s total cost function is only affected by L and it becomes the same as the
one given in Equation (4.4.29) which corresponds to a situation where L → ∞. Since,
the farmer’s total cost function is affected by both x and L, the farmer’s new total cost
for the special case is determined by evaluating Equation (4.4.31) for L→∞. Equation
(4.4.31) can be rewritten in terms of the result in Equation (4.4.23) as

TCUf =
Kf

nT
+

cf
Tw1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
DT

(
1 + L

T

)
ln

(
1 + L

1 + L− T

)
=
Kf

nT
+
cfD

w1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
,

(4.4.32)

as L→∞.
Consequently, the total inventory management cost across the supply chain becomes

TCUsc =
Kr

T
+
hrDT

2
+
Kp

nT
+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
+
Kf

nT

+
cfD

w1

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.4.33)
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The result in Equation (4.4.33) corresponds to the one in Sebatjane and Adetunji
(2020c) who developed an inventory control model for a three-echelon supply chain for
growing items without considering the possibility of mortality at the farming echelon and
the shelf life of the processed inventory at the retail echelon.

4.4.4.2 Theoretical results

It is necessary to show that the objective function of the proposed inventory control
model has a unique solution which actually minimises the function. This is achieved by
proving that the function is convex.

Theorem 4.4.1. For a certain n > 0, E[TCUsc] is a convex function of T and thus there
exists a unique value of T which minimises E[TCUsc].

Proof. The following auxiliary functions are derived by rewriting the objective function
to be of the form E[TCUsc] = g(T )

h(T )

g(T ) = Kr + hrD

[
(1 + L)2

2
ln

(
1 + L

1 + L− T

)
+
T 2

4
− (1 + L)T

2

]
+
Kp

n

+
hpT

2D

2

[(
n− 1

)(
1− D

R

)
+
D

R

]
+
Kf

n

+

[
cfE[x] +mfE[1− x]

E[x]w1

][
αTf+

α

λ

[
ln
(
1 + βe−λTf

)
−ln (1 + β)

]][
D(1+L) ln

(
1 + L

1 + L− T

)]
,

(4.4.34)

and
h(T ) = T. (4.4.35)

Taking the first and the second derivatives of g(T ) with respect to T for any specified n
results in

g′(T ) = hrD

[
(1 + L)2

2(1 + L− T )
+
T

2
− 1 + L

2

]
+
hpTD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]

+

[
cfE[x] +mfE[1− x]

E[x]w1

][
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]][ D(1 + L)

(1 + L− T )

]
.

(4.4.36)

and

g′′(T ) = hrD

[
(1 + L)2

2(1 + L− T )2
+

1

2

]
+
hpD

2

[(
n− 1

)(
1− D

R

)
+
D

R

]

+

[
cfE[x] +mfE[1− x]

E[x]w1

][
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]][ D(1 + L)

(1 + L− T )2

]
.

(4.4.37)

To show that g(T ) is strictly convex, it should be guaranteed that (1+L)2

2(1+L−T )2 and D(1+L)
(1+L−T )2

are always positive. This achieved using Lemma 4.4.1. Consequently, g′′(T ) > 0 for all
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T > 0 and therefore g(T ) is a differentiable and positive convex function. Given that
h(T ) is also differentiable and positive convex function, E[TCUsc] is a convex function of
T for a given value of n and hence, there exists a unique optimal value of T .

Lemma 4.4.1. (1+L)2

2(1+L−T )2 and D(1+L)
(1+L−T )2 are always positive for all T > 0.

Proof. Let

∆1(T ) =
(1 + L)2

2(1 + L− T )2
, (4.4.38)

∆2(T ) =
D(1 + L)

(1 + L− T )2
. (4.4.39)

Taking the first derivatives of ∆1(T ) and ∆2(T ) with respect to T results in

∆′1(T ) =
(1 + L)2

(1 + L− T )3
, (4.4.40)

∆′2(T ) =
2D(1 + L)

(1 + L− T )3
. (4.4.41)

Since ∆′1(T ) > 0 and ∆′2(T ) > 0, ∆1(T ) and ∆2(T ) are increasing functions of T .

Therefore, for all T > 0, (1+L)2

2(1+L−T )2 and D(1+L)
(1+L−T )2 are always positive.

Theorem 4.4.2. For all T > 0 values, E[TCUsc] is a convex function of n and conse-
quently, there exists a unique value of n which minimises E[TCUsc].

Proof. Taking the first and the second derivatives of E[TCUsc] with respect to n for any
specified T results in

∂E[TCUsc]

∂n
= − Kp

n2T
+
hpTD

2
− Kf

n2T
, (4.4.42)

∂2E[TCUsc]

∂n2
=

Kp

n3T
+

Kf

n3T
. (4.4.43)

E[TCUsc] is a convex function of n because ∂2E[TCUsc]
∂n2 > 0. This indicates that a unique

value of n which minimises E[TCUsc] exists.

4.4.5 Numerical results

4.4.5.1 Base example

As a way of demonstrating the potential practical applications of the proposed inventory
system, an example which considers a farmer, a processor and a retailer involved in the
chicken production supply chain (at different stages) is considered. The retailer meets
end consumer demand for processed chicken at a store and can only keep the chicken on
shelves for a maximum of 4 days. The example considers the following input parameters:
L=4 days; w0= 0.06kg; w1= 2kg; D=100 kg/day; R=150 kg/day; Kf=7 500 ZAR; cf=1
ZAR/kg/day; mf=2 ZAR/kg/day; Kp=5 000 ZAR; hp=0.5 ZAR/kg/day; Kr=1 000
ZAR; hr=1 ZAR/kg/day; α=6.87 kg; β=120; λ=0.11 /day. The fraction of items which
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survive throughout the farmer’s growth period, x, is assumed to be a random variable
that is uniformly distributed over [0.8, 1] with a probability density function given by

f(x) =

{
5, 0.8 ≤ x ≤ 1

1, otherwise.

This means that

E[x] =

∫ 1

0.8

5x dx = 5

[
(12 − 0.82)

2

]
= 0.9

The example is solved using Solver, a Microsoft Excel add-in, and the results are
presented in Table 4.4.1.

Decision variables Quantity
and objective function

T ∗ 1.79 days
n∗ 22 shipments

E[TCUsc]
∗ 2 909.78 ZAR/day

Table 4.4.1: Optimal number of shipments per processing run, cycle time and expected
total profit

From those results, the optimal inventory replenishment and shipment policies for all
three supply chain members are determined. The farmer should place an order for (ny =)
2 706 live newborn (day old) items. The weight of the all the ordered newborn items
(nQ0) would amount to 162 kg. When the growth period ends, (E[x] =) 90% of the
initially ordered items would have survived. This implies that the weight of the surviving
mature items (nQ1) would be 5 412 kg. The farmer should then transfer the entire lot
to the processing plant. Throughout the processing cycle, the processor should deliver
the items (now in a consumable form) to the retailer in (n =) 22 equally sized batches.
Each batch that the retailer receives will weigh about (Q1 =) 246 kg. The retailer should
replenish their inventory every (T =) 1.79 days so that the processed items don’t expire
(after L = 4 days). The farmer and the processor should start new growing and processing
cycles every (nT=) 39.6 days. By following this replenishment and shipment policy, the
total costs of managing inventory in the supply will be minimised at 2 909.78 ZAR/day.

4.4.5.2 Sensitivity analysis

A sensitivity analysis was performed on the major input parameters in the base example
in order to observe the effect of changes (increases and decreases of 25% and 50%) to those
parameters on the objective function (E[TCUsc]) and the two decision variables (T and
n). The results are given in Table 4.4.2 and the following observations are note-worthy:

• While the shelf life (or expiration date) of the processed items affected the total
inventory management cost across the supply chain, the effect was minimal when
compared to those it had on the number of shipments and the retailer’s cycle time.
Case in point, a 50% reduction in the shelf life increased the cost by about 9%,
increased the number of shipments by roughly 32% and reduced the retailer’s cycle
time by roughly 25%. The effects on the shipment and replenishment policy are not
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surprising considering that the retailer does not want to keep the products beyond
their expiration dates. Consequently, when the shelf life of the products is reduced,
the model’s optimal solution recommends placing orders for relatively smaller lot
sizes, but more frequently.

Table 4.4.2: Sensitivity analysis of various input parameters

Parameters % Retailer’s cycle time (T ∗) Number of shipments (n∗) Supply chain cost (E[TCU∗sc])
change days % change shipments % change ZAR/day % change

Base example 1.79 22 2 909.78

L

-50 1.34 -24.9 29 +31.8 3 183.07 +9.4
-25 1.60 -10.6 24 +9.1 3 015.86 +3.6
+25 1.96 +9.8 20 -9.1 2 835.93 -2.5
+50 2.14 +19.4 18 -18.2 2 781.36 -4.4

Kr

-50 1.38 -23.1 28 +27.3 2 595.94 -10.8
-25 1.61 -9.8 24 +9.1 2 763.34 -5.0
+25 1.95 +9.1 20 -9.1 3 042.64 +4.6
+50 2.08 +16.1 19 -13.6 3 166.25 +8.8

hr

-50 1.87 +4.6 21 -4.5 2 855.84 -1.9
-25 1.84 +3.0 21 -4.5 2 883.07 -0.9
+25 1.76 -1.4 22 0 2 935.59 +0.9
+50 1.74 -2.8 22 0 2 960.96 +1.8

Kp

-50 1.78 -0.4 20 -9.1 2 841.84 -2.3
-25 1.81 +1.3 20 -9.1 2 876.62 -1.1
+25 1.79 +0.1 23 +4.5 2 941.26 +1.1
+50 1.79 +0.1 24 +9.1 2 971.36 +2.1

hp

-50 1.81 +1.4 30 +36.4 2 713.09 -6.8
-25 1.80 +0.7 25 +13.6 2 819.45 -3.1
+25 1.78 -0.8 20 -9.1 2 989.93 +2.8
+50 1.77 -1.0 20 -9.1 3 067.44 +5.4

Kf

-50 1.77 -1.0 20 -9.1 2 806.59 -3.5
-25 1.80 +0.4 20 -9.1 2 859.30 -1.7
+25 1.80 +0.8 23 +4.5 2 956.36 +1.6
+50 1.79 0 25 +13.6 3 000.24 +3.1

cf

-50 2.06 +14.9 19 -13.6 2 247.90 -22.7
-25 1.92 +7.5 20 -9.1 2 582.00 -11.3
+25 1.70 -5.0 23 +4.5 3 232.47 +11.1
+50 1.62 -9.3 24 +9.1 3 551.25 +22.0

mf

-50 1.85 +3.3 21 -4.5 2 764.71 -5.0
-25 1.83 +2.4 21 -4.5 2 837.34 -2.5
+25 1.77 -0.9 22 0 2 981.80 +2.5
+50 1.76 -1.7 22 0 3 053.66 +4.9

E[x]

-50 1.29 -28.0 30 +36.4 5 680.03 +95.2
-25 1.56 -12.9 25 +13.6 3 855.18 +32.5
+25 2.03 +13.5 19 -13.6 2 322.78 -20.2
+50 2.26 +26.2 17 -22.7 1 917.81 -34.1

• The effects of changes to the retailer’s ordering cost were also significant, but highly
anticipated as well. When the cost of placing an order increases, the model’s most
obvious response is to let the retailer place orders less frequently (by increasing
the lot size). However, this can have negative effects on the total cost, particularly
due to the increased holding costs as a result of the larger lot size. For example,
increasing the ordering cost by 50% increases the cycle time (and lot size) by about
17%. While this counters the effect of the increased ordering cost, it also increases
the total cost by approximately 9%.
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• When the retailer’s holding costs are increased, the model’s optimal solution re-
sponds by prompting the retailer to order less processed items. The main benefit of
ordering smaller lot sizes is that they attract relatively lower holding costs, firstly,
because there are fewer items that need to be kept in storage and secondly, because
when the lot size is smaller, the retailer’s cycle time is reduced which means that
the processed inventory spends less time in storage and consequently, the holding
costs are reduced. However, meeting a given demand rate from smaller lots leads
to an increase in the number of shipments delivered to the retailer. This response
is emulated by the results of the sensitivity analysis where, for example, a 50%
increases in the retailer’s holding costs resulted in a 3% reduction in the cycle time
and a 2% increase in the shipments.

• Changes to the processor’s setup and holding costs followed an identical response
pattern to the retailer’s holding and ordering costs. The major difference being
that the response in the upstream members is not as sever as those shown by the
downstream members. For example, when the processor and the retailer’s fixed
costs (i.e. setup and ordering costs, respectively) are reduced by 50%, the cycle
time and total cost decreased by roughly 23% and 11% respectively in case of the
retailer, while for the processor, the changes were about 1% and 2% respectively.

• A reduction in the farmer’s feeding and mortality costs prompts the farmer to order
more live newborn items. As a result, the processor and the retailer will receive
relatively larger lots of mature items for processing and selling respectively. Con-
sequently, the cycle time will increase and the number of shipments will decrease.
The increased cycle time means that the processed inventory spends more time in
holding and consequently, the total cost increase.

• As the fraction of live items which survive during the growing cycle increases, the
number of shipments and the total cost decrease while the cycle time increases.
The model’s optimal solution responds this way because the a given demand rate
for processed items can be met from a smaller lot size of newborn items since the
survival rate has improved. While this increases the holding costs at the processor
(since there are more mature surviving items that need to be processed), the reduced
mortality costs at the farmer cushions against this and consequently, the total
supply chain cost decreases despite the increased processor’s costs.

4.4.5.3 Comparisons with alternative scenarios

The proposed inventory replenishment and shipment policy is compared with three al-
ternative scenarios in order to investigate the benefits (or lack thereof) that might be
reaped if those alternative scenarios occurred. The first of these alternative scenarios
considers the shelf life of the processed items to be infinite (i.e. the items do not expire).
The second alternative scenario considers a situation where the survival rate of the live
items during the farmer’s growth period is 100%, while the last scenario considers an
independent replenishment policy where the replenishment decisions are made for the
benefit of individual chain members as opposed to optimising costs for the whole supply
chain. The results from the comparison are presented in Table 4.4.3.

For the first scenario, the processed items were assumed to have no expiration dates.
When the items have an infinite shelf life at the retail store, the retailer’s optimal cycle
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time increases significantly and the number of shipments delivered by the processor to
the retailer decreases notably. This is achieved by ordering larger lot sizes. This scenario
is actually beneficial to the whole supply chain because of the decreased fixed costs since
fewer setups are required if the processed inventory can spends longer time periods in
stock without expiring. In the example studied, the supply chain cost decreased by
21.6% under this scenario. While it might not be practical for management to infinitely
increase the shelf life of the inventory, this result should motivate management to invest
in better preservation technologies which have the potential to prolong the life time of
the inventory.

Table 4.4.3: Performance of the proposed inventory control mechanism against various
alternative scenarios

Variables
Base Scenario Scenario 1 Scenario 2 Scenario 3

(Proposed system) (Infinite shelf life) (No mortality) (Independent)
Quantity Quantity % difference Quantity % difference Quantity % difference

T ∗ (days) 1.709 4.23 +136.3 1.91 +16.7 3.04 +70.0
n∗ (shipments) 22 9 -59.1 20 -9.1 22 0
y∗ (items) 123 235 +91.1 121 -1.6 260 +111.6

TCU∗r (ZAR/day) 663.18 447.89 -32.5 635.61 -4.2 540.02 -18.6
TCU∗p (ZAR/day) 469.90 483.98 +3.0 465.49 -0.9 657.54 +39.9
TCU∗f (ZAR/day) 1 777.70 1 350.25 -24.0 1 517.64 -14.6 2 086.33 +17.4
TCU∗sc (ZAR/day) 2 909.78 2 282.12 -21.6 2 618.74 -10.0 3 283.90 +12.9

For the second scenario, it was simply assumed that all (100%) of the initially ordered
newborn items survive throughout the farmer’s growth cycle. The increased inventory
management resulting from mortality also show that item mortality is an important
consideration in food production systems which derive most of their products primarily
from growing items. Since growing items are living organisms, it is possible for the to
die. The financial benefits of having no mortality are not only reaped by the farmer,
they also trickle (albeit lower) downstream across the supply chain. The total cost of
inventory control across the supply chain decreased by 10% when the survival rate was
100% (compared to 90% in the base case). This result should motivate management to
take measures aimed at increasing the survival rate of the items such as immunisations
and inoculations.

For the scenario with an independent replenishment policy (i.e. third scenario), it was
assumed that the retailer (who faces consumer demand for processed items) optimises
their own inventory replenishment and shipment decisions (while ensuring that the lot
does not expire) and these are passed down to the upstream chain members. This resulted
in a sizeable reduction (of 18.6% ) in the retailer’s inventory management costs, however,
the total costs of managing inventory across the supply chain increased (by 12.9%).
The benefits of coordinating replenishment and shipment decisions with all supply chain
members outweigh those achieved through individual optimisation. This emphasises the
importance of one of the main objectives of supply chain management which collaborating
will all chain members towards a common goal (for the benefit of all parties involved).

The cost differences between the proposed inventory system and the three alternative
scenarios highlight the importance of the three major concepts incorporated in the pro-
posed model, namely, item mortality, expiration dates and the integration of shipment
and replenishment decisions with all supply chain members. It would, therefore, be ad-
visable for procurement managers in food production systems with an inventory control
setup similar to the proposed one to pay close attention to those three issues as they have
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sizable effects on the financial and operational performance of the supply chain.

4.4.6 Concluding remarks

Operations managers and inventory control specialists at various stages of food production
systems are faced with a number of issues. For instance, at the down stream end of the
supply chain, retailers are confronted with short product life cycles and their aim is to
sell the inventory as fast as possible in order to avoid expiration and to reduce holding
costs. One way of achieving this goal is to keep stock levels low but doing so puts the
retailers at a higher risk of losing sales due to stock-outs. At the upstream end of the
chain, item mortality is a threat to the livelihood of growing items. Another issue facing
all supply chain members is deciding whether to make inventory replenishment decisions
individually or jointly with other chain members.

This section take all these issues into consideration and develops a coordinated model
for inventory control in a supply chain with distinct farming, processing and retail ech-
elons. In addition to determining the optimal replenishment policies to be followed at
each echelon, the model demonstrates the benefits (through cost savings) of supply chain
integration as well as the drawbacks of item mortality which are not only detrimental at
the farming echelon, but are also amplified across the entire supply chain.

Several assumptions, which have the potential to limit the practical applications of
the model, were made during the model development process. These include, but are
not limited to, deterministic demand and processing rates, one type of growing item
in the inventory system and the absence of incentive policies between the supply chain
members. Food production systems are not isolated from macroeconomic conditions
and are therefore characterised by uncertainty and more often than not, retailers often
stock multiple food products derived from growing items. Furthermore, incentive policies
like quantity discounts, pre-payments and delayed payments are not uncommon in food
production chains where margins are relatively low. Any of these factors, along with
various popular EOQ extensions, can be used (solely or in combination with one another)
to extend the proposed model.
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4.5 A four-echelon supply chain inventory model for

growing items with imperfect quality and errors

in quality inspection∗∗

4.5.1 Introduction

4.5.1.1 Context

Commercial food processing operations are complex industrial production systems often
involving multiple processes and entities. One of the most critical processes, from a
consumer health perspective, is the inspection of the food products for quality control.
The purpose of inspection is to separate the products into two groups, those of good
quality and those of poorer quality. Inspection processes are not error-free and therefore,
it is possible for food products to be incorrectly classified at the inspection stage. In other
words, poorer quality processed inventory might be mistakenly classified as being of good
quality (i.e. a type I inspection error might occur). Conversely, a type II error might
occur whereby good quality processed inventory is classified as being of poorer quality.

4.5.1.2 Purpose

This section is aimed at formulating a model for inventory management in a multi-echelon
supply chain for growing items. The proposed supply chain has three members (namely,
a single farmer, a single processor and a single retailer) and four echelons (namely, the
farmer’s growing facility, the processor’s processing facility, the processor’s inspection
facility and the retailer’s selling facility).

At the farming echelon, the farmer rears live newborn items until maturity provided
that some of the items might die throughout the growing cycle as a result of predators and
illnesses. At the end of each growing period, the farmer sends a batch of mature items
to the processor. The processor operates two facilities, corresponding to two echelons
(i.e. processing and inspection). At the processing echelon, the live inventory received
from the farmer is transformed into a form that is consumable (and saleable). A given
fraction of the processed inventory is of poorer quality. During a single processing cycle,
the processor ships an integer number of processed inventory from the processing facility
to the inspection facility. At the inspection echelon, the processed inventory is classified
into one of two classes, namely, good and poorer quality processed inventory, provide
that the inspection is subject to type I and type II errors that result in some items being
misclassified. During the course of a single inspection cycle, the processor ships an integer
number of good quality processed inventory, as classified according to the inspection pro-
cess, from the inspection facility to the retailer’s selling facility. The processor sells the
poorer quality processed inventory (as classified by the inspection process) to secondary
markets at a discounted price. At the retail echelon, good quality processed inventory (as
per the inspection process) is used to meet consumer demand. Some of the inventory is
incorrectly classified, a fraction of the poorer quality processed will be used to meet con-
sumer demand. When consumers mistakenly receive poorer quality processed inventory
as a result of errors in inspection, they return it to the retailer who sells it at a discounted

∗∗A modified version of this section has been submitted to Annals of Operations Research for review.
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price to secondary markets. There are penalty costs associated with committing any of
the two types of errors.

4.5.1.3 Relevance

This section accounts for a number of pertinent issues related to inventory management in
food processing systems. These issues include the possibility of mortality at the farming
echelon, the shipments policies adopted among the echelons, the quality inspection at
the inspection echelon and the possibility of committing type I and type II errors at the
inspection echelon. Because real life food processing systems are faced with all these
issues, the results from this section can be used by production and operations managers
as a guideline when making procurement and shipment decisions at different stages (or
echelons) of the broader food processing value chain.

4.5.1.4 Organisation

Other than the introduction, this section has five additional subsections. The introduction
is followed, in Subsection 4.5.2, by an overview of the assumptions employed in the section.
In Subsection 4.5.3, a model representing the proposed inventory system is developed.
Theoretical results that demonstrate the proposed model’s optimality are presented in
Subsection 4.5.4. Prior to concluding the section in Subsection 4.5.6, numerical results
showing the potential practical applications of the model are provided in Subsection 4.5.5.

4.5.2 Problem description

Figure 4.5.1 depicts the proposed four-echelon supply chain system. At the farming
echelon, the farmer procures live newborn items (and thus have the capability to grow).
The farmer rears the items until such a time that their weight has reached a specified
target, at which point the items are deemed mature. The farmer then delivers the mature
items to the next echelon, which is the processing facility where the live inventory is
transformed into processed inventory. Following processing operations, the now processed
inventory is delivered to the next echelon, which is the inspection facility where the quality
control measures are in place. The processor sends an integer number of shipments of
processed inventory during from the processing facility to the inspection facility during
a single processing cycle. This is different from the shipment policy between the farming
facility and the processing facility whereby the farmer delivers a single shipment of mature
live inventory to the processing facility per farming cycle. This is because the process
of growing live items takes a relatively longer period of time. At the inspection facility,
the processed inventory is classified into two groups, namely, good and poorer quality
processed inventory. However, the inspection process is subject errors and therefore,
some of the processed inventory is incorrectly classified. The processed inventory that
is classified as being of poorer quality (including the incorrectly classified good quality
inventory) is sold as a single batch to secondary markets at a discounted price. The
processed inventory that is classified as being of good quality (including the incorrectly
classified poorer quality inventory) is shipped to the final echelon which is the retail
echelon where consumer demand for good quality processed inventory is met. Since some
of the inventory that is sold to consumers would have been incorrectly classified, it is
returned to the retailer (shown as the red area of the lowermost portion of Figure 4.5.1)
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and replaced with good quality processed inventory. The returned inventory is then sold
to secondary markets at a discounted price.

The proposed supply chain system is studied as a profit maximisation problem. The
objective function of the problem is the total profit generated across the supply chain
being the objective function and problem’s decision variables are the order quantity for
live inventory items, the number of shipments of processed inventory delivered from
the processing facility to the inspection facility per processing cycle and the number of
shipments of processed inventory delivered from the inspection facility to the retail facility
per inspection cycle.

Figure 4.5.1: Inventory system profile for a farmer, a processor and a retailer in a supply
chain for growing items with imperfect quality and errors in the inspection process
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The following assumption are employed when modelling the proposed four-echelon
supply chain inventory system:

• The supply chain is comprised of a single farmer, a single processor and a single
retailer involved in the growing, processing and retailing of a single type of growing
item.

• A fraction of the ordered live items dies at the farmer’s growing facility before
reaching the maturity weight.

• The processing rate at the processor’s processing facility is greater than the demand
rate at the retailer’s retail facility and both rates are deterministic constants.

• A fraction of the processed inventory is of poorer quality (i.e. it does not meet the
required quality standard).

• Throughout the course of a single processing cycle, the processor transfers an integer
number of shipments of processed inventory to the inspection facility where a 100%
inspection process takes place in which the processed inventory is classified into two
groups, namely, good quality and poorer quality processed inventory.

• The inspection process is not perfect and is thus prone to errors.

• Two types of errors can occur, namely, type I (whereby poorer quality processed in-
ventory is incorrectly classified as being of good quality) and type II errors (whereby
good quality processed inventory is incorrectly classified as being of poorer quality).

• During the inspection process, the processor transfers equally-sized shipments of
good quality processed inventory (as classified by the inspection process which is
prone to errors) from the inspection facility to the retailer’s selling facility.

• Throughout the inspection process, the processor allows the poorer quality pro-
cessed inventory (as classified by the inspection process which is prone to errors) to
accumulate at inspection facility.

• At the end of each inspection run, the poorer quality processed inventory (as clas-
sified by the inspection process which is prone to errors) is sold as a single batch to
secondary markets at a discounted price.

• Since the inspection process is prone to errors, some of the poorer quality processed
inventory sold to secondary markets is in fact good quality processed inventory
(that was incorrectly classified by the inspection process). The processor incurs a
penalty cost for selling incorrectly classified processed inventory.

• The retailer uses the good quality processed inventory (as classified by the inspection
process which is prone to errors) to meet consumer demand as soon as the first
shipment is delivered by the processor (from the inspection facility).

• Since the inspection process is prone to errors, some of the good quality processed
inventory that the retailer sells to end consumers is in fact poorer quality processed
inventory (that was incorrectly classified by the inspection process). The retailer
incurs a penalty cost for selling incorrectly classified processed inventory.
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• Consumers who received poorer quality processed inventory that was incorrectly
classified as good quality inventory can return the inventory to the retailer who will
replace their order with a new order for good quality processed inventory.

• The live inventory incurs feeding costs (during the growth cycle) while the processed
inventory incurs holding costs (during the processing, inspection and selling cycles).

• The probabilities of survival, type I errors and type II errors and the fraction of
poorer quality processed inventory are assumed to be random variables with known
probability density functions.

4.5.3 Model development

4.5.3.1 Profit generated by the farmer

A replenishment cycle starts with the purchase of npy newborn items. The weight of the
each newborn item is w0. This implies that the weight of all the ordered newborn item,
npQ0, is given by npyw0. The weight of each item increases throughout the replenishment
cycle until it reaches a target of w1. All the ordered newborn items grow at the same
rate and when the weight of each of them reaches the target weight, of w1, the items
are transferred to the processing echelon. However, not all the items survive to the end
of the growth period due to illnesses and scavengers. Based on a survival rate of x, the
total weight of all the ordered surviving items at the end of the growing period, npQ1, is
given by xnpyw1. This quantity is transferred to the processor for processing and quality
control.

The general pattern of growth is similar for different items despite the fact that
different items have different growth rates. Growth functions have a characteristic “S”-
shaped curve, and for this reason the logistic function is used to model the growth pattern.
The items’ growth function can be represented by

wt =
α

1 + βe−λt
. (4.5.1)

The logistic growth function makes use of three parameters to represent item growth over
time. These are λ, β and α which denote the exponential growth rate, the constant of
integration and the items’ asymptotic weight respectively.

When the growth period concludes at Tf , the farmer instantaneously delivers the
surviving mature items to the processor. At this point, each item would be fully grown
and its weight would have reached the target weight of w1. The duration of the growth
period can be determined from Equation (4.5.1) by replacing wt with the specified target
maturity weight (w1) and Tf with t and the result is

Tf = −
ln
[
1
β

(
α
w1
− 1
)]

λ
. (4.5.2)

Figure 4.5.2, a diagrammatic representation of the farmer’s live inventory profile over
time, is used to evaluate the area under the farmer’s inventory system profile. This area
represents the farmer’s average inventory level (in weight units). The area is evaluated
as

Areaf =

∫ Tf

0

npyw(t) dt = npy

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.5.3)
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There is a cost associated with feeding the items (i.e the feeding cost) that the farmer
incurs. The cyclic feeding cost incurred by the farmer, FCf , is computed as the product
of the farmer’s average inventory level as determined in Equation (4.5.3), the fraction
of surviving items (x) and the farmer’s feeding cost per weight unit per unit time (cf ).
Thus,

FCf = cfxnpy

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.5.4)

Figure 4.5.2: The farmer’s inventory system profile at the growing facility

In addition, the farmer incurs a cost associated with disposing the fraction of newborn
items which do not survive until the end of the growing cycle. The farmer’s mortality
cost per cycle, MC, is computed as the product of the farmer’s average inventory level,
the fraction of items which do not not survive (1− x) and the mortality cost per weight
unit per unit time (mf ). Thus,

MCf = mf (1− x)npy

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.5.5)

The profit generated by the farmer per cycle, TPf , is calculated as the difference
between their revenue and their total costs. This profit is given by

TPf = pfnpxyw1 − pvnpyw0 −Kf

− npy
{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}[
cfx+mf (1− x)

]
. (4.5.6)

The first term in Equation (4.5.6) represents the revenue generated by the farmer per
cycle and it is computed as the product of the price that the farmer charges the processor
for mature live inventory (pf ) and the quantity, in weight units, of live inventory that
the farmer sells to the processor per cycle (npxyw1). The next term is the farmer’s
procurement cost per cycle and it is calculated by multiplying the procurement cost that
the farmer gets charged for the newborn inventory (pv) and the total weight of newborn
inventory that the farmer procures per cycle (npyw0). The third term is the fixed setup
cost incurred at the beginning of each cycle for preparing the growing facility (Kf ) and
the last term is the sum of Equations (4.5.5) and (4.5.6).

103

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



The duration of the farmer’s growing period is dependent on the specified maturity
weight of the items. Since the farmer delivers a single shipment of live items to the
processing facility per processing cycle, it is imperative that the two cycles (i.e. the
farming and processing cycles) are synchronised for better planning. In order to ensure
the proposed synchronisation, it is assumed that the farmer’s replenishment frequency is
equal to that of the processor. Therefore, the farmer’ total profit per unit time, TPUp,
is computed by dividing the farmer’s total profit per cycle, as given in Equation (4.5.6),
by the duration of the processor’s replenishment cycle (i.e. npT ) and hence,

TPUf =
pfxyw1

T
− pvyw0

T
− Kf

npT

− y

npT

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}[
cfx+mf (1− x)

]
. (4.5.7)

4.5.3.2 Profit generated by the processor

The processor operates two facilities, namely, a processing facility and a inspection facility.
The processing facility is used to transform the live mature inventory items (received
from the farmer) into processed inventory suitable for consumption. Prior to delivering
the processed inventory to the retailer who meets end consumer demand, the processor
transfers the processed inventory from the processing plant to a inspection house where
quality control takes place. In the inspection facility, good quality processed inventory is
separated from processed inventory of poorer quality. However, some of the good quality
processed inventory is mistakenly classified as poorer quality processed inventory and
vice versa.

4.5.3.2.1 Costs incurred at the processing facility

The processor receives live inventory from the farmer weighing npQ1 = npxyw1 at the
beginning of each cycle. The live inventory is converted into processed inventory at a
rate of R weight units per unit time. The processor sends np equally-sized batches of
processed inventory to the inspection facility during the course of a single processing
cycle (of duration Tp). Given that the batches are of equal size, this means that each
batch sent to the inspection facility weighs xyw1. A profile of the processor’s processed
inventory level (in the processing facility) over time is depicted in Figure 4.5.3a.

The average inventory level in the processing facility is determined by evaluating the
area under the inventory profile as depicted in Figure 4.5.3a. Given the irregular shape
of Figure 4.5.3a, it suffices to redraw that figure into Figure 4.5.3b which makes the
computation of the area much easier. This method is adapted from Yang et al. (2007).
The area under the inventory profile as depicted in Figure 4.5.3b is thus evaluated as

Areap =
npQ

2
1

2R
+Q2

1

(
1

D
− 1

R

)
+ 2Q2

1

(
1

D
− 1

R

)
+ · · ·+ (np − 1)Q2

1

(
1

D
− 1

R

)
=

(
npQ1

)2
2R

+
np(np − 1)

(
npQ1

)2
2

(
1

D
− 1

R

)
=

(
npxyw1

)2
2R

+
np(np − 1)

(
npxyw1

)2
2

(
1

D
− 1

R

)
.

(4.5.8)
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(a) Original. (b) Redrawn for ease of computation.

Figure 4.5.3: The inventory system for processor’s processing plant.

The total cost incurred by the processor at the processing facility per cycle is the sum
of the purchasing, setup and holding costs per cycle, given by

TCp = pfnpxyw1 +Kp + hp

[(
npxyw1

)2
2R

+
np(np − 1)

(
npxyw1

)2
2

(
1

D
− 1

R

)]
. (4.5.9)

The first term in Equation (4.5.9) is the farmer’s purchasing cost per cycle and it is
calculated by multiplying the price that the processor gets charged (by the farmer) for
mature live inventory (pf ) and the quantity, in weight units, of live inventory that the
processor procures (from the farmer) per cycle (npxyw1). The second term in Equation
(4.5.9) is the fixed setup cost incurred by the processor for preparing the processing
facility (Kp) at the start of each cycle. The last term in Equation (4.5.9) represents the
holding cost incurred at the processing facility per cycle and this cost is calculated as
the product of the average processed inventory level, i.e. Equation (4.5.8), and the cost
of holding a single weight unit of processed inventory at the processing facility per unit
time (hp).

4.5.3.2.2 Costs incurred at the inspection facility

The processor sends np batches of processed inventory from the processing facility to
the inspection warehouse during the course of a single processing run. This implies that
the processor has np inspection runs per processing cycle. Each batch has a weight of
Q1 = xyw1. The inventory system profile for the processed inventory at the inspection
warehouse is depicted by Figure 4.5.4. It is assumed that a certain fraction (a) of the
processed inventory received from the processing plant is of poorer quality. This means
that for every batch received from the processing facility (with a weight of xyw1), the
weight of poorer quality processed inventory is xyw1a and the good quality processed
inventory weighs xyw1(1−a). For every inspection cycle, the entire lot received from the
processing facility (i.e. xyw1) is inspected in order to separate the processed inventory of
good quality from that of poorer quality at a rate of z weight units per unit time. This
implies that the duration of inspection period (i.e the time required to inspect the entire
lot received) is

Ts =
xyw1

z
. (4.5.10)
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During the course of a single inspection run, the processor delivers an integer number
(ns) of batches of good quality processed inventory to the retailer at regular intervals of
duration τ . Given that the duration of a single inspection run is Ts, the duration of τ is
computed by dividing Ts by ns. Therefore,

τ =
xyw1

nsz
. (4.5.11)

Figure 4.5.4: The processor’s inventory system profile at the inspection facility

In an idealistic situation with a perfect inspection process (i.e. all good quality pro-
cessed inventory is separated from poorer quality processed inventory), the weight of
the good and poorer quality processed inventory per inspection run would be given by
xyw1(1 − a) and xyw1a, respectively. In most production systems, inspection processes
are seldom perfect. To account for this, probabilities of erroneously classifying good and
poorer quality items are Incorporated. A type I error is committed when poorer quality
processed inventory is classified as good quality processed inventory following the inspec-
tion process, while a type II error is committed if, at the end of inspection, good quality
processed inventory is classified as poorer quality processed. The probabilities of com-
mitting type I and type II errors are given by u1 and u2, respectively. This means that
the probabilities of correctly classifying good and poorer quality processed inventory are
(1−u1) and (1−u2), respectively. Hence, the inspection process can lead to four possible
outcomes or scenarios. These are: Scenario 1 - good quality processed inventory is clas-
sified as good quality processed inventory; Scenario 2 - good quality processed inventory
is classified as poorer quality processed inventory; Scenario 3 - poorer quality processed
inventory is classified as good quality processed inventory; and Scenario 4 - poorer qual-
ity processed inventory is classified as poorer quality processed inventory. Figure 4.5.5
depicts the four probabilities associated with the four different scenarios.

The weights of the processed inventory for each of the four scenarios are

Scenario 1: xyw1(1− a)(1− u1)

Scenario 2: xyw1(1− a)u1

Scenario 3: xyw1au2

Scenario 4: xyw1a(1− u2)
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Figure 4.5.5: The probabilities correlated with each of the four possible inspection scenar-
ios

The sum of the weights in Scenarios 1 and 3 represents the weight of the processed
inventory that is classified as being of good quality in each inspection run, with Scenario 1
being correctly classified and Scenario 3 being misclassified. From this sum, the processor
delivers ns shipments to the retailer at equally-spaced time intervals of τ . This means
that the weight of each batch delivered to the retailer after τ time units, is

s
′
=
xyw1(1− a)(1− u1) + xyw1au2

ns
. (4.5.12)

Likewise, the sum of the weights in Scenarios 2 and 4 represents the weight of the
processed inventory that is classified as being of poor quality in each inspection run, with
Scenario 2 being misclassified and Scenario 4 being correctly classified. The processor
lets this inventory accumulate throughout the inspection run and sells it to secondary
markets (at a discounted price) at the end of each inspection run. This means that every
τ time units, the processor allows

s
′′

=
xyw1(1− a)u1 + xyw1a(1− u2)

ns
, (4.5.13)

weight units of processed inventory classified as being of poorer quality to accumulate.
At the end of each inspection run, the processor would have let ns batches to accumulate
and these are sold simultaneously as a single batch at a discounted price to secondary
markets. This means that the weight of each batch sold by the processor to secondary
markets at the end of each inspection run is xyw1(1− a)u1 + xyw1a(1− u2).

The average inventory level of processed inventory in the inspection facility is used to
compute the holding costs. The average inventory level is determined by evaluating the
area under the processor’s inventory system profile at the screening facility, as depicted
in Figure 4.5.4. The area under Figure 4.5.4 is given by

Areas =
x2y2w2

1

z
−
[
(ns − 1)x2y2w2

1

][
(1− a)(1− u1) + au2

]
2nsz

. (4.5.14)
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The total cost incurred by the processor in each inspection run is made up of the cost
of transferring a batch to the retailer every τ time units, the inspection cost, the cost of
and the holding cost.

TCs = nsKs + vxyw1 + lsxyw1(1− a)u1

+ hs

{
x2y2w2

1

z
−
[
(ns − 1)x2y2w2

1

][
(1− a)(1− u1) + au2

]
2nsz

}
. (4.5.15)

The first term in Equation (4.5.15) represents the transfer cost. This cost is included
because it is assumed that the processor sends equally-sized batches of processed inventory
classified as being of good quality to the retailer at time intervals of τ during a single
inspection run, while the retailer’s cycle time (defined at successive time intervals at
which the retailer’s processed inventory level reaches zero) is T . The processor does not
wait for the retailer’s inventory to reach zero before sending a batch of good quality
processed inventory. The processor sends ns batches during the retailer’s cycle time of
T . Hence, the processor incurs the cost of sending batches before the retailer’s inventory
level reaches zero. The transfer cost is computed by multiplying the number of batched
sent to the retailer during the retailer’s cycle time (ns) and the fixed cost of sending a
single batch (Ks). The second term in Equation (4.5.15) represents the inspection cost
per inspection run and it is computed as the product of the cost of inspecting a single
weight unit of inventory (v) and the weight of the processed inventory inspected per
inspection run (xyw1). The third term in Equation (4.5.15) is the cost of rejecting good
quality processed inventory per inspection run. This cost is determined as the product
of the cost of rejecting a single weight unit (ls) and the weight of good quality processed
inventory classified as poorer quality inventory [xyw1(1−a)u1]. The last term in Equation
(4.5.15) is simply the holding cost per inspection run and it is the product of the holding
cost per weight unit in the inspection facility (hs) and the average inventory level in the
inspection facility as given in Equation (4.5.14).

It should be noted that the total cost in Equation (4.5.15) is the cost incurred per
inspection run. Since the processor sends np batches of processed inventory from the pro-
cessing plant to the inspection warehouse in each processing run, the total cost incurred
at the inspection facility per processing run is thus

TCs = npnsKs + npvxyw1 + nplsxyw1(1− a)u1

+ nphs

{
x2y2w2

1

z
−
[
(ns − 1)x2y2w2

1

][
(1− a)(1− u1) + au2

]
2nsz

}
. (4.5.16)

4.5.3.2.3 Profit generated by the processor

During each processing setup, the processor generates revenue from the sale of both good
and poorer quality processed inventory. The revenue is given by

TRp = npppxyw1(1−a)(1−u1) +npppxyw1au2 +nppqxyw1(1−a)u1 +nppqxyw1a(1−u2).
(4.5.17)

The first two terms in Equation (4.5.17) represent the revenue from sales of processed
inventory classified as good quality following the inspection process. The weights of the
processed inventory for these two terms correspond to Scenarios 1 and 3. Multiplying
these weights [xyw1(1−a)(1−u1) and xyw1au2, respectively] by the cost that the processor
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charges the retailer for each weight unit of processed inventory classified as good quality
(pp) yields the revenue from good quality inventory per inspection run. Since the are
np inspection runs in each processing run, these terms are multiplied by the number of
inspection runs (or batches of processed inventory sent from the processing facility to the
inspection facility). The third and the fourth terms in Equation (4.5.17) represent the
revenue from sales of processed inventory classified as being of poorer quality following
the inspection process. The revenue per processing run is determined using the weights
processed inventory in Scenarios 2 and 4 and the cost that the processor charges the
secondary markets for each weight unit of processed inventory classified as poorer quality
(pq) inventory.

The processor’s total profit per cycle (i.e. TPp) is equal to the processor’s total revenue
per cycle, as given in Equation (4.5.17), less the processor’s total costs per cycle, which
is the sum of Equations (4.5.9) and (4.5.16), and thus,

TPp = npppxyw1(1−a)(1−u1)+npppxyw1au2+nppqxyw1(1−a)u1+nppqxyw1a(1−u2)

pfnpxyw1−Kp−hp

[(
npxyw1

)2
2R

−
np(np − 1)

(
npxyw1

)2
2

(
1

D
− 1

R

)]
−npnsKs−npvxyw1

− nplsxyw1(1− a)u1 − nphs
{
x2y2w2

1

z
−
[
(ns − 1)x2y2w2

1

][
(1− a)(1− u1) + au2

]
2nsz

}
.

(4.5.18)

The processor’ total profit per unit time, TPUp, is computed by dividing the proces-
sor’s total profit per cycle, as given in Equation (4.5.18), by the duration of the processor’s
replenishment cycle (i.e. npT ) and hence,

TPUp =
ppxyw1(1− a)(1− u1)

T
+
ppxyw1au2

T
+
pqxyw1(1− a)u1

T
+
pqxyw1a(1− u2)

T

− pfxyw1

T
− Kp

npT
− hp
npT

[(
npxyw1

)2
2R

+
np(np − 1)

(
npxyw1

)2
2

(
1

D
− 1

R

)]
− nsKs

T
− vxyw1

T

− lsxyw1(1− a)u1
T

− hs
T

{
x2y2w2

1

z
−
[
(ns − 1)x2y2w2

1

][
(1− a)(1− u1) + au2

]
2nsz

}
.

(4.5.19)

4.5.3.3 Profit generated by the retailer

The retailer receives batches of processed inventory classified as good quality inventory
from the processor’s inspection facility every τ time units, with the weight of each of batch
received given in Equation (4.5.12). The profile for the retailer’s processed inventory is
depicted by Figure 4.5.6. The retailer receives ns batches of processed inventory during
the course of a single replenishment cycle, defined at successive time intervals at which
the retailer’s processed inventory level reaches zero, of duration T . This means that the
weight of processed inventory received during the retailer’s replenishment cycle, b

′
, is

determined by multiplying Equation (4.5.12) by ns. Hence,

b
′
= xyw1(1− a)(1− u1) + xyw1au2. (4.5.20)

All the processed inventory in Equation (4.5.20) was classified as being of good quality
through the inspection process. Because it is assumed that the processor’s inspection
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process is prone to errors, some of the processed inventory gets misclassified. As a result,
some of the processed inventory used to fulfil end consumer demand throughout the
retailer’s cycle T would be of poorer quality. It is implicitly assumed that consumers
are capable of judging the quality of the processed inventory and if they receive poorer
quality processed inventory, they return it to the retailer who replaces them with good
quality processed inventory. The poorer quality processed inventory sold to consumers
that is later returned to the retailer is shown as b

′′
in Figure 4.5.6. b

′′
is essentially the

portion of processed in Equation (4.5.20) that is incorrectly classified, and thus,

b
′′

= xyw1au2. (4.5.21)

Figure 4.5.6: The retailer’s inventory system profile at the retail/consumption facility

The incorrectly classified processed inventory is returned throughout T at a rate of
xyw1au2/T . In order to avoid shortages, it is assumed that the weight of the processed
inventory received by the retailer is at least equal to the adjusted demand for good
quality processed inventory. The adjusted demand is the sum of the weight of the actual
demand for good quality processed inventory (i.e. DT ) and the weight of used to replace
the poorer quality inventory that is returned from the market over the internal T (i.e.
xyw1au2). Therefore,

xyw1(1− a)(1− u1) + xyw1au2 ≥ DT + xyw1au2

xyw1(1− a)(1− u1) ≥ DT

Hence, for the limiting case, the duration of the retailer’s cycle time can be computed
as

T =
xyw1(1− a)(1− u1)

D
(4.5.22)

In order to determine the average inventory level at the retailer’s facility, which is
used to compute the retailer’s holding cost, the area under the retailer’s inventory system
profile as given in Figure 4.5.6 is evaluated. Figure 4.5.6 is redrawn into Figure 4.5.7
(without the returned poorer quality processed inventory) for ease of computation, a
method first used by Konstantaras et al. (2007), and it follows that

Arear =
[
Area of triangle DEF

]
−
[ns(ns − 1)

2
(Area of parallelogram ABCD)

]
=

[
xyw1(1− a)(1− u1)T

2

]
−
[
ns(ns − 1)τs

′

2

]
=

[
xyw1(1− a)(1− u1)T

2
− (ns − 1)x2y2w2

1(1− a)(1− u1)
2nsz

− (ns − 1)x2y2w2
1au2

2nsz

]
.

(4.5.23)
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Figure 4.5.7: A redrawn version, adapted from Konstantaras et al. (2007) for ease of
computation, of the retailer’s inventory system profile

The retailer has two revenue streams in each replenishment cycle. The first one is
from the sales of good quality processed inventory that was correctly classified during
the inspection process. The second revenue stream is from the sales of the poorer quality
processed inventory that is returned from the market because it was incorrectly classified
during the inspection process. It is assumed that the retailer offers customers a full refund
if they are sold incorrectly classified processed inventory and hence, the retailer does not
generate any revenue for selling the misclassified inventory. The retailer’s profit per cycle
is thus

TRr = prxyw1(1− a)(1− u1) + pqxyw1au2. (4.5.24)

The first term in Equation (4.5.24) is the revenue from sales of correctly classified
processed inventory which is sold at a price of pr while the second term represents revenue
from the sales of returned poorer quality processed inventory which is sold to secondary
markets as a single batch and at a discounted price of pq.

The retailer’s profit per cycle is the revenue from the two streams less the total costs
(made up of the purchasing cost, the fixed ordering cost, the cost of accepting poorer
quality inventory as good quality inventory and the holding cost), and hence,

TPr = prxyw1(1−a)(1−u1)+pqxyw1au2−ppxyw1(1−a)(1−u1)−ppxyw1au2−Kr−lrxyw1au2

− hr
{
xyw1(1− a)(1− u1)T

2
−
[
(ns − 1)x2y2w2

1

][
(1− a)(1− u1) + au2

]
2nsz

}
(4.5.25)

The first two terms in Equation (4.5.25) represent the revenue from the two streams
as computed in Equation (4.5.24). The third and the fourth terms in Equation (4.5.25)
represent the purchasing cost which is determined by multiplying the weights of the pro-
cessed inventory received from the processor (i.e. both the correctly classified inventory
and the incorrectly classified inventory which are xyw1(1 − a)(1 − u1) and xyw1au2, re-
spectively) and the purchasing cost charged by the processor (pp). The fifth term in
Equation (4.5.25) is simply the fixed cost of placing an order at the beginning of each
replenishment cycle (Kr). The sixth term in Equation (4.5.25) is the cost of accepting
poorer quality processed inventory per cycle. This cost is determined as the product of
the cost of accepting a single weight unit of poorer quality inventory (lr) and the weight
of poorer quality processed inventory classified as good quality inventory [xyw1au2]. The
last term in Equation (4.5.25) is simply the holding cost per cycle and it is the product
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of the holding cost per weight unit in the retailer’s facility (hr) and the average inventory
level in the retail outlet as determined in Equation (4.5.23).

The retailer’ total profit per unit time, TPUr, is computed by dividing the retailer’s
total profit per cycle, as given in Equation (4.5.25), by the duration of the retailer’s
replenishment cycle (i.e. T ) and thus,

TPUr = prD+
pqau2D

(1− a)(1− u1)
−ppD−

ppau2D

(1− a)(1− u1)
− KrD

xyw1(1− a)(1− u1)
− lrau2

(1− a)(1− u1)

− hr
{
xyw1(1− a)(1− u1)

2
−
[
(ns − 1)xyw1D

][
(1− a)(1− u1) + au2

]
2nsz(1− a)(1− u1)

}
(4.5.26)

4.5.3.4 Profit generated across the supply chain

The total supply chain profit generated across the supply chain per unit time, TPUsc, is
determined by summing Equations (4.5.26), (4.5.19) and (4.5.7). Since it is assumed that
the probabilities of survival (x), type I errors (u1) and type II errors (u2) and the fraction
of poorer quality processed inventory (a) are random variables with known probability
density functions, given by f(x), f(u1), f(u2) and f(a), respectively, the expected value
of the supply chain profit, E[TPUsc], is thus defined as

E[TPUsc] = prD+
pqE[a]E[u2]D

E[1− a]E[1− u1]
− KrD

E[x]yw1E[1− a]E[1− u1]
− lrE[a]E[u2]

E[1− a]E[1− u1]

− hrD

E[1− a]E[1− u1]

{
E[x]yw1

2
−
{

(ns − 1)E[x]yw1D
}{
E[1− a]E[1− u1] + E[a]E[u2]

}
2nsz

}
+
pqE[u1]D

E[1− u1]
+
pqE[a]E[1− u2]D
E[1− a]E[1− u1]

− KpD

npE[x]yw1E[1− a]E[1− u1]
− nsKsD

E[x]yw1E[1− a]E[1− u1]

− hpD

E[1− a]E[1− u1]

{
npE[x]yw1

2R
+
np(np − 1)npE[x]yw1

2

(
1

D
− 1

R

)}

− hsD

E[1− a]E[1− u1]

{
E[x]yw1

z
−
{

(ns − 1)E[x]yw1D
}{
E[1− a]E[1− u1] + E[a]E[u2]

}
2nszE[1− a]E[1− u1]

}
− lsE[u1]D

E[1− u1]
− vD

E[1− a]E[1− u1]
− KfD

npE[x]yw1E[1− a]E[1− u1]

−
{
cfE[x] +mfE[1− x]

}
D

npE[x]w1E[1− a]E[1− u1]

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
− pvw0D

E[x]w1E[1− a]E[1− u1]
(4.5.27)

The retailer’s optimal lot size, y, is determined by setting the first derivative of
E[TPUsc], as given in Equation (4.5.27), with respect to y to zero and solving for y.
The first derivative of E[TPUsc] with respect to y is given in Equation (4.5.29). The
result is

y =

√√√√√ 2D
(
Kr + Kp

np
+ nsKs +

Kf
np

)
[
hr(γ1) + hp(γ2) + hs(γ3)

]
E[x2]w2

1

, (4.5.28)

where

γ1 = E[1− a]2E[1− u1]2 −
[
(ns − 1)D

]{
E[1− a]E[1− u1] + E[a]E[u2]

}
nsz

,
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γ2 = np

[
D

R
+ (np − 1)

(
1

D
− 1

R

)]
,

and

γ3 =
2D

z
−
[
(ns − 1)D

]{
E[1− a]E[1− u1] + E[a]E[u2]

}
nsz

.

The tractability of the proposed inventory system is dependent on the imposition
of two constraints while the feasibility of the system is dependent on the imposition of
an additional constraint. The two constraints that ensure the tractability are that the
number of shipments of processed inventory transferred from the processing facility to
the inspection facility per processing cycle and the number of shipments of good quality
processed inventory (as classified by the inspection process which is prone to errors)
delivered from the inspection facility to the retail facility per inspection cycle should be
integers (i.e. np, ns ∈ Z). These two constraints make the solution procedure tractable.
The third constraint, which ensures the feasibility of the solution obtained, is that the
duration of the farmer’s growth period should be less than or equal to the duration of the
processor’s cycle time (i.e. Tf ≤ npT ). This ensures that the solution to the problem is
feasible by assuring that the weight of the live items has reached the maturity weight at
the start of the processing cycle which means that the items will be ready for processing
at that time.

4.5.3.5 Solution procedure

An iterative procedure is used to compute the optimal values of y, np and ns. The
procedure is made up of two sub-processes, namely Steps 1 and 2. Step 1 is aimed
at finding the optimal value of np while Step 2 is aimed at optimising y and ns. The
procedure is as follows:

Step 1 Set ns to 1.

Step 1.1 Set np to 1.

Step 1.2 Compute the values of y and E[TPUsc] using Equations (4.5.28) and (4.5.27), re-
spectively.

Step 1.3 Increase np by 1 and values of y and E[TPUsc] using Equations (4.5.28) and (4.5.27),
respectively. Carry on to Step 1.4.

Step 1.4 If the latest value of E[TPUsc] increases, go back to Step 1.3. If the value of
E[TPUsc] decreases, the previously calculated value of E[TPUsc (along with corre-
sponding y and np values) is the best solution so far and if this is the case, carry
on to Step 2. The corresponding np value is the optimal value.

Step 2 Set nsto 2.

Step 2.1 Compute the values of y and E[TPUsc] using Equations (4.5.28) and (4.5.27), re-
spectively.

Step 2.2 Increase ns by 1 and calculate the values of y and E[TPUsc] using Equations (4.5.28)
and (4.5.27), respectively. Carry on to Step 2.3.
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Step 2.3 If the latest value of E[TPUsc] increases, go back to Step 2.2. If the value of
E[TPUsc] decreases, the previously calculated value of E[TPUsc (along with corre-
sponding y and ns values) is the best solution so far and if this is the case, carry
on to Step 2.4.

Step 2.4 Verify the solution’s feasibility with regard to the feasibility constraint Tf ≤ npT .
If the solution is feasible, those values of y and ns are optimal and if this is the
case, carry on to Step 2.6. If the solution is not feasible, carry on to Step 6.

Step 2.5 If the constraint is violated, set T to Tf/np and use that T value to calculate new y
and E[TCUsc] values using Equations (4.5.22) and (4.5.27), respectively, and then
carry on to Step 2.6.

Step 2.6 End.

4.5.4 Theoretical results

In order to show that there are unique values of the model’s three decision variables,
namely, y, np and ns, that maximise the model’s objective function, E[TPUsc], it is nec-
essary to demonstrate that E[TPUsc] is concave. The concavity of E[TPUsc] is explored
in two ways. In the first way, it is proven that E[TPUsc] is a concave function of y for
fixed values of np and ns. Secondly, it is proven that E[TPUsc] is a concave function of
np and ns for a fixed value of y. Together, these pair of results not only demonstrate that
E[TPUsc] is concave, but they also prove the existence of unique y, np and ns values that
maximise E[TPUsc].

Theorem 4.5.1. E[TPUsc] is a concave function of y for all np > 0 and ns > 0.
Therefore, there exists a unique value of y that maximises E[TPUsc].

Proof. For fixed values of np and ns, the first and second derivatives of E[TPUsc], as
given in Equation (4.5.27), with respect to y are

∂E[TPUsc]

∂y
=

KrD

E[x]y2w1E[1− a]E[1− u1]
+

KpD

npE[x]y2w1E[1− a]E[1− u1]

+
nsKsD

E[x]y2w1E[1− a]E[1− u1]
+

KfD

npE[x]y2w1E[1− a]E[1− u1]

− hrD

E[1− a]E[1− u1]

{
E[x]w1

2
−
{

(ns − 1)E[x]w1D
}{
E[1− a]E[1− u1] + E[a]E[u2]

}
2nsz

}
− hsD

E[1− a]E[1− u1]

{
E[x]w1

z
−
{

(ns − 1)E[x]w1D
}{
E[1− a]E[1− u1] + E[a]E[u2]

}
2nszE[1− a]E[1− u1]

}
− hpD

E[1− a]E[1− u1]

{
npE[x]w1

2R
+
np(np − 1)npE[x]w1

2

(
1

D
− 1

R

)}
(4.5.29)

∂2E[TPUsc]

∂y2
= − KrD

E[x]y3w1E[1− a]E[1− u1]
− KpD

npE[x]y3w1E[1− a]E[1− u1]

− nsKsD

E[x]y3w1E[1− a]E[1− u1]
− KfD

npE[x]y3w1E[1− a]E[1− u1]
< 0 (4.5.30)
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From Equation (4.5.30), it is obvious that E[TPUsc] is a concave function of y for any
fixed values of np > 0 and ns > 0 because the second derivative of E[TPUsc] with respect
to y is negative. This implies that a unique y value that maximises E[TPUsc] exists.

Theorem 4.5.2. For all y > 0, E[TPUsc] is a concave function of both np and ns.
Therefore, there exists unique values of np and ns that maximise E[TPUsc].

Proof. For a fixed value of y, the first and second derivatives of E[TPUsc], as given in
Equation (4.5.27), with respect to np and ns are

∂E[TPUsc]

∂np
=

KpD

np2E[x]yw1E[1− a]E[1− u1]
+

KfD

np2E[x]yw1E[1− a]E[1− u1]

+
hpD

E[1− a]E[1− u1]

{
E[x]yw1

2R
+

(np − 1)npE[x]yw1

2

(
1

D
− 1

R

)}
(4.5.31)

∂2E[TPUsc]

∂np2
= − KpD

np3E[x]yw1E[1− a]E[1− u1]
− KfD

np3E[x]yw1E[1− a]E[1− u1]

− hpD

E[1− a]E[1− u1]

{
(np − 1)E[x]yw1

2

(
1

D
− 1

R

)}
(4.5.32)

∂E[TPUsc]

∂ns
= − KsD

E[x]yw1E[1− a]E[1− u1]

+
hsD

E[1− a]E[1− u1]

{
E[x]yw1D

{
E[1− a]E[1− u1] + E[a]E[u2]

}
2ns2zE[1− a]E[1− u1]

}
(4.5.33)

∂2E[TPUsc]

∂ns2
= − hsD

E[1− a]E[1− u1]

{
E[x]yw1D

{
E[1− a]E[1− u1] + E[a]E[u2]

}
2ns3zE[1− a]E[1− u1]

}
(4.5.34)

∂2E[TPUsc]

∂np∂ns
= 0 (4.5.35)

The quadratic form of the Hessian matrix of E[TPUsc] is defined as

[
np ns

] [ ∂2E[TPUsc]
∂np2

∂2E[TPUsc]
∂np∂ns

∂2E[TPUsc]
∂np∂ns

∂2E[TPUsc]
∂ns2

] [
np
ns

]
, (4.5.36)

which upon further expansion results in

− KpD

npE[x]yw1E[1− a]E[1− u1]
− KfD

npE[x]yw1E[1− a]E[1− u1]

− hsD

E[1− a]E[1− u1]

{
E[x]yw1D

{
E[1− a]E[1− u1] + E[a]E[u2]

}
2ns3zE[1− a]E[1− u1]

}
< 0. (4.5.37)

From Equation (4.5.37), it is obvious that E[TPUsc] is a concave function of np > 0
and ns > 0 for any fixed value of y because the quadratic form of the Hessian matrix of
E[TPUsc] is negative. This implies that unique np and ns values that maximise E[TPUsc]
exist.
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4.5.5 Numerical results

4.5.5.1 Numerical example

As a way of demonstrating the potential practical applications of the proposed inventory
management policy, an example which considers the entire chicken production value chain
with a farming facility, a processing facility, an inspection facility and a retail facility is
solved. The retailer meets end consumer demand for good quality processed chicken.
The example considers the following input parameters:D=250 kg/week; R=300 kg/week;
w0= 8.5 kg; w1=30 kg; Kr=2 500 ZAR; hr=1 ZAR/kg/week; pr=50 ZAR/kg; lr=500
ZAR/kg; Kp=25 000 ZAR; hp=0.5 ZAR/kg/week; pp=30 ZAR/kg; Ks=200 ZAR; hs=0.5
ZAR/kg/week; pq=20 ZAR/kg; v=0.5 ZAR/kg; z=1 000 kg/week; ls=200 ZAR/kg;
Kf=30 000 ZAR; pf=15 ZAR/kg; cf=1 ZAR/kg/week; mf=2 ZAR/kg/week; pv=10
ZAR/kg; α=51 kg; β=5; λ=0.12 /week. x, u1, u2 and a are assumed to be random
variables uniformly distributed over [0.8, 1], [0, 0.05], [0, 0.05] and [0, 0.05], respectively.
Their probability density functions are given by

f(x) =

{
5, 0.8 ≤ x ≤ 1

1, otherwise.

f(a) =

{
32, 0 ≤ a ≤ 0.05

0, otherwise.

f(u1) =

{
32, 0 ≤ u1 ≤ 0.05

0, otherwise.

f(u2) =

{
32, 0 ≤ u2 ≤ 0.05

0, otherwise.

This implies that

E[x] =

∫ 1

0.8

5x dx = 5

[
(12 − 0.82)

2

]
= 0.9

Likewise,

E[a] = E[u1] = E[u2] = 32

[
(0.052 − 02)

2

]
= 0.04

The results from the example, solved using the Microsoft Excel add-in Solver , are
presented in Table 4.5.1. From the results, in order to maximise the expected total
supply chain profit, the farmer should place an order for (npy ≈) 227 live newborn chicks
at the beginning of each growing cycle. The total weight of the live newborn inventory
items (npQ0 = npyw0) would be roughly 1 926 kg at the time of purchase. Once items
mature (i.e. the weight of each item reaches w1 = 30 kg), the farmer should ship them
to the processor for processing and inspection. About (E[x] =) 90% of the initially
ordered orders survive until the end of the growth cycle, this means that by the time the
farmer ships the items to the processing facility, the total weight of the live inventory
(npQ1 = npxyw1) would be roughly 6 118 kg. After the entire lot is processed, the
processor transfers it to the inspection facility, in (n∗p=) 2 batches per processing cycle,
where the processed inventory is inspected for quality and separated into good and poorer
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quality classes. Throughout the inspection process, the processor should deliver (ns=) 5
batches of good quality inventory from the inspection facility to the retail facility, each
weighing (s

′
=) 565 kg. The poorer quality processed inventory in each processing cycle

(nss
′′
) amounts to 235 kg, with s

′′ ≈ 47 kg being accumulated in each inspection cycle.
The processor should deliver good quality processed inventory from the inspection facility
to the retailer every τ= 0.61 weeks. The retailer’s inventory level will reach zero every
(T=) 11.28 weeks. If this order replenishment and shipment policy is followed, the supply
chain should expect to make a profit of about (E[TPUsc] =) 1 836.52 ZAR/week.

Objective function Quantity
and decision variables

E[TPU∗sc] 1 836.52 ZAR/week
n∗p 2 shipments
n∗s 5 shipments
y∗ 113 items
T ∗ 11.28 weeks

Table 4.5.1: Optimal results from the numerical example

4.5.5.2 Sensitivity analysis

The impact of changes to some of the model’s input parameters were tested through a
sensitivity analysis, whose results are presented in Table 4.5.2. The following observations
from the analysis were notable:

• The retailer’s optimal lot size (y∗) is most sensitive to E[x]. A 40% decrease in E[x]
result in a 66.7% increase in y∗. If an increasing number of items do not survive
during the farmer’s growth period, obviously more items would need to be ordered
in order to meet the specified demand. Changes to all the other input parameters
apart from E[u2], cf and mf had minimal effects on y∗. All the changes to E[u2],
cf and mf values tested had no effect on y∗.

• Changes to all the input parameters had no effect on the optimal number of ship-
ment transferred from the processing facility to the inspection facility (n∗p). The
number of shipments remained at 2 regardless of the percentage change or input
parameter.

• The optimal number of shipments of good quality processed inventory delivered
from the inspection facility to the retail facility (n∗s) remained the same the same as
well for most input parameters. It only changed when Ks, Kp, hp and Kf changed.
All changes were quite minimal and limited to 20% with the only exception being
a 40% increase in n∗s as a result of a 40% increase in the value of Ks.

• The expected value of the optimal total supply chain profit E[TPU∗sc] was affected
by changes to all the input parameters. However, the severity of the impact different
across the parameters. E[x] had the greatest effect while E[u2] had the least. A
40% increase in E[x] and E[u2] resulted in a 257.1% increase in E[TPU∗sc] and a
4.8% decrease in E[TPU∗sc] , respectively.
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Table 4.5.2: Sensitivity analysis of various input parameters

% Items in retailer’s Shipments from Shipments from Expected total supply
change lot size (y∗) processing facility (n∗p) screening facility (n∗s) chain profit (E[TPU∗sc])

items % change shipments % change shipments % change ZAR/week % change

Base example 113 2 5 1 836.52

Kr

-40 111 -1.6 2 0 5 0 1 934.90 +5.4
-20 112 -0.8 2 0 5 0 1 885.51 +2.7
+20 114 +0.8 2 0 5 0 1 787.92 -2.7
+40 115 +1.6 2 0 5 0 1 739.71 -5.3

hr

-40 124 +9.1 2 0 5 0 2 246.60 +22.5
-20 118 +4.3 2 0 5 0 2 038.18 +11.1
+20 109 -3.8 2 0 5 0 1 641.05 -10.7
+40 105 -7.2 2 0 5 0 1 451.27 -21.2

Ks

-40 114 +0.3 2 0 7 +40.0 1 881.68 +2.5
-20 114 +0.3 2 0 6 +20.0 1 857.66 +1.2
+20 114 +0.3 2 0 5 0 1 817.03 -1.1
+40 113 -0.3 2 0 4 -20.0 1 798.98 -2.1

hs

-40 116 +2.0 2 0 5 0 1 931.39 +5.2
-20 114 +1.0 2 0 5 0 1 857.66 +2.6
+20 112 -0.9 2 0 5 0 1 817.03 -2.6
+40 111 -1.9 2 0 5 0 1 798.98 -5.1

Kp

-40 104 -8.4 2 0 5 0 2 345.87 +28.0
-20 109 -4.1 2 0 5 0 2 085.60 +13.7
+20 118 +4.0 2 0 5 0 1 597.29 -13.1
+40 123 +8.4 2 0 6 +20.0 1 367.40 -25.8

hp

-40 128 +12.8 2 0 6 +20.0 2 605.58 +42.2
-20 120 +6.2 2 0 6 +20.0 2 207.22 +20.4
+20 108 -4.7 2 0 5 0 1 486.94 -19.2
+40 103 -8.8 2 0 5 0 1 155.16 -37.4

Kf

-40 102 -10.2 2 0 5 0 2 453.47 +33.9
-20 108 -5.0 2 0 5 0 2 136.71 +16.5
+20 119 +4.7 2 0 5 0 1 550.53 -15.7
+40 125 +9.9 2 0 6 +20.0 1 277.96 -30.7

cf

-40 113 0 2 0 5 0 2 920.20 +59.5
-20 113 0 2 0 5 0 2 378.36 +29.7
+20 113 0 2 0 5 0 1 294.68 -29.7
+40 113 0 2 0 5 0 752.23 -59.5

mf

-40 113 0 2 0 5 0 2 077.34 +13.2
-20 113 0 2 0 5 0 1 956.93 +6.6
+20 113 0 2 0 5 0 1 716.11 -6.6
+40 113 0 2 0 5 0 1 595.70 -13.2

E[x]

-40 189 +66.7 2 0 5 0 -2 746.46 -249.5
-20 142 +25.0 2 0 5 0 117.91 -93.6
+20 94 -6.7 2 0 5 0 2 981.81 +62.4
+40 81 -28.6 2 0 5 0 3 800.65 +106.9

E[u1]

-40 112 -0.7 2 0 5 0 2 099.22 +14.4
-20 113 -0.4 2 0 5 0 1 969.02 +7.3
+20 114 +0.4 2 0 5 0 1 701.67 -7.4
+40 114 +0.7 2 0 5 0 1 564.40 -15.0

E[u2]

-40 113 0 2 0 5 0 1 923.04 +4.8
-20 113 0 2 0 5 0 1 879.78 +2.4
+20 113 0 2 0 5 0 1 793.26 -2.4
+40 113 0 2 0 5 0 1 750.00 -4.8

4.5.6 Concluding remarks

Food production operations are complex industrial systems that involve multiple entities
and processes. The entities involved range from farmers, at the upstream end of the
supply chain, who are responsible for rearing live items, to processors, who not only
process the live items into a form that is suitable for consumption but also inspect the
items for quality, and finally to retailers at the downstream end of the supply chain,
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who are responsible for selling the consumable food products to end consumers. Quality
inspection is one of the most important processes in food production systems because
consumer health is at stake. However, inspection processes are not perfect and are prone
to errors. If these errors are not minimised, the repercussions are not only costly, in terms
of liability and lost business, but they also place consumers’ health at risk.

This section formulated an inventory model for a multi-echelon supply chain for grow-
ing items with imperfect quality and the possibility of committing errors while inspecting
the items for quality. The financial impact of committing inspection errors is quantified
through numerical results. Even when the probability of committing such errors is small
(i.e. for instance, 4% as is the case in the numerical example, the impact on the sup-
ply chain profit is quite sizeable. Furthermore, small changes to these probabilities also
lead to significant shifts in the supply chain profit. Production managers should aim to
keep these errors to a minimum not only for the sake of maximising profits but also for
protecting the health of consumers.

The proposed model can be developed further in several ways. For instance, the
effects of learning on both processing and inspection operations can be incorporated.
Additionally, the effectiveness of adopting different shipment policies, such as power-of-
two policies instead of the integer shipment policy, can be explored. The deterministic
demand assumption is not realistic and thus, stochastic demand patterns represent one
potential area for further exploration.
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4.6 A three-echelon supply chain inventory model

for growing items with inventory level- and freshness-

dependent demand‡‡

4.6.1 Introduction

4.6.1.1 Context

Perishables such as meat, fish and fresh produce, account for a significant portion of retail
grocery sales (Agi and Soni, 2020). The primary source of perishable food products is
growing items such as livestock, grains and crops, to name a few. In most instances,
these growing items require some form of transformation process in order to get them
into a consumable and saleable form. For example, livestock is slaughtered, processed
and packaged prior to being sold while grains are usually harvested, processed and pack-
aged. One of the defining features of most modern business enterprises is a focus on core
competencies. Consequently, most activities that are classified as non-core competencies
are outsourced. In the context of perishable food production systems, the implication is
that more often than not, there are multiple parties involved in different stages of the
value chain such as rearing the live items, processing the items and eventually selling
them to end users.

Consumer demand for perishable food products is often met by retailers who display
these products on shelves. As a result, the demand rate for a perishable product is
often affected by its availability on shelves and its shelf life. The product’s availability is
essentially its inventory level displayed at the retail store and its shelf life is its expiration
date which affects its freshness condition.

4.6.1.2 Purpose

The main objective of this section is to develop a model for inventory control in a perish-
able food production system. For simplicity, it is assumed that there are three distinct
stages involved in the system, namely, rearing (or growing), processing and selling carried
out by a farmer, a processor and a retailer, respectively.

The first stage of the proposed inventory system is concerned with the growing of live
newly born items which are not immune to mortality and therefore the possibility of the
items dying during the course of the growing cycle is considered. The mature items are
then processed into a form that is safe for consumption. The term processing encompasses
all the activities that take place at this stage which might include slaughtering, cleaning,
processing and packaging. To keep the model tractable, all these activities are collectively
called processing and it is assumed that they collectively take place at a finite rate. The
final stage is when the processed (and thus, safe for consumption) inventory is sold to
end consumers. The demand rate at this stage is a function of the inventory level and the
expiration date of the perishables. The three stages correspond to supply chain echelons.

A secondary objective of this section is to develop an extension of the aforementioned
model that relaxes the traditional zero-ending inventory policy at the retail end of the
supply chain. Numerous previously published EOQ models that consider an inventory

‡‡A modified version of this section has been submitted to Applied Mathematical Modelling for review.
A revision was requested and the revised manuscript was resubmitted.
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level-dependent demand rate have shown that replenishing the inventory once it reaches
a certain minimum level, as opposed to doing so when it reaches zero in most traditional
EOQ models, can improve profitability. For this reason, the extension assumes that the
retailer holds a clearance sale at the end of the cycle when the inventory reaches a specific
minimum level.

4.6.1.3 Relevance

This section accounts for a number of important issues, from an inventory control per-
spective, in perishable food production systems. The first of these issues is that at the
retail echelon, final consumer demand is a function of both the level of inventory and the
expiration date of the perishables. This is important for two reasons, firstly, expiration
dates are important determinants of product freshness which itself affects consumers’
purchasing behaviour. Secondly, while higher inventory levels have been shown to en-
courage consumers’ purchasing behaviour, it is important to keep the right amount of
inventory because it incurs relatively expensive holding costs. The second issue is the
possibility of item mortality at the growing echelon. This is an important issue because
the inventory items of interest are living organisms and are therefore not immortal. The
third issue pertains to investigating the benefits (or lack thereof) of the retailer adopting
a non-zero ending inventory policy as a way of improving profitability. This is partic-
ularly important for perishable food products because they can not be sold once their
expiration dates have elapsed so it might be beneficial to hold a clearance sale at the end
of the replenishment cycle.

The proposed inventory system presents a realistic inventory control mechanism in
perishable food supply chains which are often comprised of multiple echelons with various
issues at each of those echelons. By accounting for all these factors, the results from this
section have the potential to guide production managers when making procurement and
shipment decisions in perishable food supply chains.

4.6.1.4 Organisation

Besides the introduction, this section has five more subsections. The introduction is
followed by the assumptions used to develop the model, which are presented in Subsec-
tion 4.6.2. Subsequently, the model development phase follows in Subsection 4.6.3. The
zero-ending inventory assumption (at the retail echelon) made in the model is relaxed
in Subsection 4.6.4 as a way of improving profitability. The results from two numerical
examples, from which important managerial insights are drawn, are presented in Subsec-
tion 4.6.5. The section is then wrapped up, through the provision of concluding remarks
and suggestions for further development of the proposed model, in Subsection 4.6.6.

4.6.2 Problem description

The proposed inventory control systems, depicted in Figures 4.6.1a and 4.6.1b, considers
one farmer, one processor and one retailer involved in the rearing (i.e. growing) of live
items, the transformation of the live items into consumable processed items and the
selling of the processed items, respectively. The farmer tracks the live inventory while
both the processor and the retailer track the processed inventory, with the latter tracking
it at the retail outlet where it is used to meet consumer demand and the former tracking
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it at the processing plant as the live inventory is slaughtered, prepared and packaged (i.e.
processed) into processed inventory.

The main objective of this section is to develop a model for inventory control in a
three-echelon supply chain for growing items with a demand rate that is dependent on
the inventory level and the expiration date. A secondary objective of this section is to
extend the model to a case where a non-zero ending inventory policy is adopted as a
way of improving profitability. Figure 4.6.1a shows the proposed inventory system with
the traditional zero-ending inventory policy at the retail echelon. This addresses the
main objective of this section. Figure 4.6.1b, showing the inventory profile when a non-
zero ending inventory policy is adopted at the retail echelon, is an an extension of the
model represented in Figure 4.6.1a and it is used to investigate the profit enhancement
mechanism.

From Figures 4.6.1a and 4.6.1b, it should be noted that the delivery policy adopted by
the farmer and the processor are different due to the nature of the inventory they track
and deliver. The farmer, who delivers live inventory to the processor, makes use of a SSSD
policy whereby the farmer delivers a single shipment of mature live items to the processor
for each farming cycle. This is because live items often require considerable amount of
time to grow. On the other hand, the processor, who delivers processed inventory to
the retailer, adopts a SSMD policy. The reason being that the processed inventory is
assumed to have a specified maximum shelf life (expiration date) and in order to avoid
the inventory going bad and losing all utility (i.e. expiring), it is imperative for the
retailer to replenish the inventory as frequently as possible in a reasonable manner while
minimising the total inventory management costs.

(a) Zero ending inventory policy. (b) Non-zero ending inventory policy.

Figure 4.6.1: Changes to the weight of the live inventory at the farmer’s growing facility,
the weight of the processed inventory at the processor’s processing facility and the weight
of the processed inventory at the retailer’s selling facility.

When a new replenishment cycle begins, the farmer places an order for live newborn
items. The number of live items in each order is ny and each item has a newborn weight
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of w0. The weight of all the ordered newborn items, nQ0, is therefore the product of the
number of items in the order and the weight of each item in the order (i.e. nQ0 = nyw0).
The farmer feeds the items and this facilitates growth. The weight of the items changes
with time according to the equation

w(t) =
α

1 + βe−λt
. (4.6.1)

The expression in Equation (4.6.1) is the logistic function and it is used to approximate
the items’ weight because of its characteristic “S” shape which is representative of actual
item growth. At the beginning of the growth period, there is a slow rate of increase in
weight and this is followed by a faster rate of increase (in weight) in the intermediate
region. Following this is a slowing rate of weight increase which asymptotes towards the
maximum possible weight the items can grow to. This pattern results in an “S”-shaped
curve.

The farmer grows the items until they reach maturity, defined by a pre-defined target
weight w1. All the items in the order are assumed to grow at the same rate and thus,
they reach maturity at the same time. The duration of the farmer’s growth period (i.e.the
duration of time required to grow the items to the target weight of w1) can be determined
from Equation (4.6.1) as

Tf = −
ln
[
1
β

(
α
w1
− 1
)]

λ
. (4.6.2)

Growing items are living organisms and can therefore contract various illnesses. This
along with presence of predators means that not all the items survive to the end of the
growth period. Based on a survival rate of x, the number of live grown items at the end
of the growing cycle equals xny. The total weight of all the ordered surviving items at
the end of the growing period, nQ1, is determined by multiplying the number of surviving
items and the maturity weight of each item (i.e. nQ1 = xnyw1).

Since the delivery policy between the farmer and the processor is a SSSD type policy,
at the end of each growth period (after Tf time units), the farmer delivers the entire lot of
mature surviving items (weighing nQ1 weight units) in a single shipment. From Equation
(4.6.2), it is clear that the duration of the farmer’s growth period, Tf , is dependent on the
target maturity weight and given that the farmer and the processor operate on a SSSD
policy, it is imperative that the processor’s cycle time, Tp, is at least equal to farmer’s
growth duration (i.e. Tf ) and thus,

Tf ≤ Tp. (4.6.3)

The constraint in Equation (4.6.3) is imperative because it guarantees that live inven-
tory delivered by the farmer to the processor would have grown to the target maturity
weight by the time the growth period ends.

The processor receives an order of mature surviving inventory, with a weight nQ1

weight units, whenever the farmer’s growth period ends. At the processing plant, the
mature surviving inventory is transformed into processed inventory at a processing rate
of R. The delivery policy between the processor and the retailer is a SSMD and conse-
quently, the processor starts delivering equally-sized batches of processed inventory to the
retailer once the amount of surviving inventory that has been transformed into processed
inventory is enough to make a batch. The processor delivers n batches of processed
inventory to the retailer during a single processing cycle. Since the processor delivers
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equally-sized batches of processed inventory, this implies that each batch of processed
inventory that the retailer receives has a weight of Q1. The retailer utilises these batches
to meet a consumer demand rate (for processed inventory) of D. In order to guarantee
the feasibility of the proposed inventory system it is assumed that the rate at which the
surviving inventory is transformed into processed inventory at the processing echelon is
greater than the rate at which the processed inventory is consumed at the retail echelon
(i.e. R > D). The processor delivers the batches at equally-spaced intervals of T time
units. Consequently, these equally-spaced time intervals (i.e. the retailer’s cycle time)
and the processor’s cycle time, Tp, are linked by

Tp = nT. (4.6.4)

On receipt of an order, the retailer places the processed inventory on shelves. The
retailer has a maximum shelf space for stocking S weight units of processed inventory
which implies that the lot size has to be at most equal to the maximum shelf space (i.e.
Q1 ≤ S). Once placed on shelves, the processed inventory has an associated maximum
lifetime (or shelf life) which ensures that the inventory is safe for consumption from
consumer health perspective. The shelf life of the processed inventory is indicated by
its expiration date often imprinted on the packaging. End consumer demand for the
processed inventory is assumed to be a function of both the inventory level displayed on
shelves and the expiration date.

Levin et al. (1972) noted that an item’s inventory level on display is an important
determinant of demand. Higher inventory levels on display tend to entice consumers to
buy more. In the context of inventory control modelling, a variety of functions have been
used to represent this observation. One of the most widely used functions is the power
function, first used by Baker and Urban (1988), which expresses the demand rate as a
power function of the inventory level. Therefore,

D ∝ δ
[
I(t)

]ψ
, (4.6.5)

where δ > 0 and 0 ≤ ψ < 1. Moreover, δ is the scaling parameter for the demand rate
(or asymptotic level of demand attainable when the inventory level is considered most
favourable to consumers) and ψ is the shape parameter representing the elasticity of the
demand rate with respect to the inventory level displayed on the shelves. The relationship
in Equation (4.6.5) suggests that the demand rate for processed inventory increases as
the level of processed inventory at the retail echelon increases. Likewise, as the inventory
level decreases so does the demand rate. The power form relationship also means that at
the beginning of a replenishment cycle, whereby the inventory level is at its maximum,
the rate at which the processed inventory depletes is higher and as time goes on, the rate
at which the inventory is depleted slows down.

The demand rate’s expiration date dependency is incorporated through the use of
a freshness index. Most growing items are processed into fresh meat, produce or fish
products which have relatively short shelf lives. This means that consumers’ likeliness
to purchase these items is dependent on the age of these items. In other words, when
food products have expiration dates, consumers are more likely to purchase items whose
expiration date are further away than those whose expiration dates are much closer. Wu
et al. (2016) used the expiration date of an item to define the item’s freshness index as

F (t) =
L− t
L

, (4.6.6)
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where L is the expiration date of the item. With the passage of time, the item becomes
less fresh. Likewise, Equation (4.6.6) is used to quantify the freshness condition of the
processed inventory. The processed inventory is at its freshest after it was just delivered
to the retail store with F (0) = 1 and it is at its least freshest when it has expired
(i.e. reached its maximum shelf life) with F (L) = 0. For health reasons, the processed
inventory can no longer be sold to consumers once it has expired. This means that the
retailer’s cycle time, T , can not exceed the expiration date (L > T ). For this reason, it
is important for the retailer to replenish processed inventory frequently so that it does
not expire. Hence, the adoption of a SSMD delivery policy between the processor and
the retailer is very appropriate for this situation.

Equations (4.6.5) and (4.6.6) are combined to define the demand rate for the processed
inventory as a multiplicative function of the inventory level on shelves and freshness
condition. It follows that

D = δ
[
I(t)

]ψ(L− t
L

)
. (4.6.7)

One of the feasibility conditions for the proposed inventory system is that R > D.
Given that the demand rate varies with time, it is necessary to redefine this condition so
that feasibility is guaranteed at all times. The demand rate peaks when the two factors
which affect it, namely the inventory level and the freshness index, are at their maximum
possible values. The demand rate’s inventory level dependency reaches its maximum
value when the shelf space is stocked to capacity (i.e I(t) = S) while the demand rate’s
freshness dependency reaches its maximum when the inventory is at its freshest (i.e t = 0).
This means that the condition R > D has to only be met when the demand rate reaches
its maximum to ensure feasibility at all time. The maximum possible demand rate is at
the beginning of the retailer’s cycle when the shelf space is fully stocked and the processed
inventory is furthest from its expiration date. Accordingly, the condition R > D can be
rewritten as R > δSψ.

4.6.3 Model development

The aforementioned inventory system is modelled as a profit maximisation problem with
the retailer’s cycle time and the number of shipments delivered by the processor to the
retailer as the decision variables.

Consumer demand is for the processed inventory and this particular inventory, tracked
at the processor’s and the retailer’s facilities, incurs procurement, setup (or ordering, in
the case of the retail facility) and holding costs. On the other hand, the live inventory,
tracked at the farming facility, incurs procurement, setup and feeding costs.

4.6.3.1 Retail echelon profit

Whenever a new replenishment cycle commences, the retailer receives an order for pro-
cessed inventory (from the processor) weighing Q1 = xyw1. The inventory is displayed
on shelves so as to induce consumer demand. The available shelf space has a maximum
capacity of stocking S weight units of processed inventory with a shelf life of L time units.
Figure 4.6.2 is a depiction of the retailer’s processed inventory system profile.

Throughout a replenishment cycle, the weight of the processed inventory at the retail
echelon is depleted due to demand which itself is a function of the processed inventory level
and the freshness index of the inventory. Hence, the weight of the processed inventory is
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controlled by the differential equation

dI(t)

dt
= −D = −δ

[
I(t)

]ψ(L− t
L

)
, 0 ≤ t ≤ T. (4.6.8)

Figure 4.6.2: Changes to the weight of the retailer’s processed inventory level

Through rearrangement of terms, Equation (4.6.8) can be rewritten as

dI(t) = −δ
[
I(t)

]ψ(− 1 +
t

L

)
dt, 0 ≤ t ≤ T. (4.6.9)

Integrating both sides of Equation (4.6.9) results in

1

1− ψ
[
I(t)

]1−ψ
= δ

(
t− t2

2L

)
+ C. (4.6.10)

The processed inventory is completely depleted at the end of each replenishment cycle
(i.e. I = 0 at t = T ). Therefore, the boundary condition I(T ) = 0 is used to solve for C
in Equation (4.6.10) as

C = δ

(
T − T 2

2L

)
. (4.6.11)

An expression for the weight of the processed inventory at any time is determined
by substituting Equation (4.6.11) into Equation (4.6.10) and rearranging the terms. The
result is

I(t) =

{
δ(1− ψ)

2L

[
t2 + 2L(T − t)− T 2

]} 1
1−ψ

(4.6.12)

When a new replenishment cycle starts, the retailer receives an order of processed
inventory weighing Q1. This implies that the boundary condition I(0) = Q1 is binding.
The weight of the retailer’s lot size is determined by substituting the boundary condition
into Equation (4.6.12). Hence,

Q1 = I(0) =

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

. (4.6.13)

Since Q1 = xyw1, the number of mature items in the retailer’s lot is therefore

y =
1

xw1

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

. (4.6.14)
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The retailer’s cyclic holding cost, HCr, is computed by multiplying the area under
the retailer’s processed inventory system profile by the holding cost per weight unit per
unit time. Hence,

HCr = hr

∫ T

0

I(t) dt = hr

∫ T

0

{
δ(1− ψ)

2L

[
t2 + 2L(T − t)− T 2

]} 1
1−ψ

dt. (4.6.15)

After integration, the cyclic holding cost becomes

HCr =
hrδ(1− ψ)

2L

{
T +

[(
1− ψ
2− ψ

)(
2

1
1−ψL

1
1−ψT

2−ψ
1−ψ

)]
+ T

3−ψ
1−ψ

}
. (4.6.16)

The retailer’s cyclic profit, TPr, is computed by subtracting the total cyclic inventory
management cost (which includes the holding, the ordering and the procurement costs)
from the cyclic revenue and the result is

TPr = pr

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

−Kr − pp
[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

− hrδ(1− ψ)

2L

{
T +

[(
1− ψ
2− ψ

)(
2

1
1−ψL

1
1−ψT

2−ψ
1−ψ

)]
+ T

3−ψ
1−ψ

}
. (4.6.17)

The first term in Equation (4.6.17) is the retailer’s revenue per cycle which is computed
by multiplying selling price per weight unit of processed inventory charged to consumers
(pr) by the weight of the processed inventory sold per cycle (Q1). The second term is
the fixed cost of placing an order (Kr) which the retailer incurs at the beginning of each
cycle. The third term is the retailer’s procurement cost per cycle which is computed by
multiplying the procurement cost per weight unit of processed inventory procured from
the processor (pp) by the weight of the processed inventory procured per cycle from the
processor (Q1). The last term is the retailer’s holding cost per cycle as determined in
Equation (4.6.16).

4.6.3.2 Processing echelon profit

At the start of a new replenishment cycle, the processor receives an order of live mature
inventory from the farmer. The weight of the mature live inventory in the order is nQ1 =
nxyw1. The live inventory is transformed into processed inventory at a processing rate
of R. Throughout the processing cycle, the processor delivers n shipments of processed
inventory, each weighing Q1 = xyw1, to the retailer. Figure 4.6.3b is a depiction of
the processor’s processed inventory system profile. The figure is a redrawn version of
Figure 4.6.3a which represents the processor’s inventory system profile. It is easier to
derive the area under the graph of the redrawn figure than the original figure because the
original’s irregular shape. This area is used to determine the processor’s holding costs.
This method of redrawing the figure is adopted from Yang et al. Yang et al. (2007) who
studied a integrated vendor-buyer inventory system operating on a SSMD policy, similar
to the delivery policy between the processor and the retailer in this section.

The processor’s holding costs per cycle, HCp, is the product of the area under the
processor’s inventory system profile and the holding cost per unit time. The area is
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derived as

Areap = Processor’s time-weighted inventory

=
nQ2

1

2R
+Q2

1

(
1

D
− 1

R

)
+ 2Q2

1

(
1

D
− 1

R

)
+ · · ·+ (n− 1)Q2

1

(
1

D
− 1

R

)
=
nQ2

1

2R
+
n(n− 1)Q2

1

2

(
1

D
− 1

R

)
.

(4.6.18)

(a) Original. (b) Redrawn (modified from Yang et al. (2007)).

Figure 4.6.3: Changes to the weight of the processor’s processed inventory level.

The expression in Equation (4.6.18) depends on the demand rate D. However, the
demand rate is varies with time because it is a function of the inventory level and the
freshness index. The variability of the demand function increases the problem’s complex-
ity. To counter this, a static approximation of the demand rate is used. Given that the
processor ships orders of processed inventory weighing Q1 to the retailer every T time
units in order to meet a demand rate D, the retailer places ≈ D/Q1 orders per unit time.
This implies that T ≈ Q1/D and thus, D ≈ Q1/T . The processor’s holding cost per cycle
is therefore

HCp = hp

[
nQ2

1

2R
+
n(n− 1)Q2

1

2

(
T

Q1

− 1

R

)]
. (4.6.19)

The processor’s total profit per cycle, TPp, is defined as the total revenue per cycle
less the total inventory management cost per cycle. The total cost of managing inventory
at the processing echelon is comprised of the setup, procurement and holding costs. It
follows that

TPp = ppn

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

−Kp − pfn
[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

− hpn

2R

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 2
1−ψ

− hpn(n− 1)

2

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 2
1−ψ
{
T

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
ψ−1

− 1

R

}
.

(4.6.20)
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The first term in Equation (4.6.20) is the processor’s revenue per cycle which is com-
puted by multiplying selling price per weight unit of processed inventory charged to the
retailer (pp) by the weight of the processed inventory sold to the retailer per cycle (nQ1).
The second term is the fixed cost of setting up for processing (Kp) which the processor
incurs at the beginning of each cycle. The third term is the processor’s procurement
cost per cycle which is computed by multiplying procurement cost per weight unit of
live inventory procured from the farmer (pf ) by the weight of the processed inventory
procured per cycle from the farmer (nQ1). The last two terms represent the processor’s
holding cost per cycle as determined in Equation (4.6.19).

4.6.3.3 Farming echelon profit

Whenever a new replenishment cycle commences, the farmer procures ny live items. Each
of the items has a weight of w0 at the time of procurement. Likewise, the weight of all
the items in the order is nQ0 = nyw0 at the time of procurement. Through feeding, the
farmer enables the items to grow for a period of Tf time units, at which point the weight
of each item would have increased to w1. Since growing items are living organism and are
thus not immune to death, it is assumed that a fraction x of the initially procured items
survive throughout the growth period. Therefore, the weight of all the surviving mature
items is nQ1 = xnyw1. Figure 4.6.4 is a depiction of the farmer’s live inventory system
profile. The farmer’s profit per cycle is defined as the profit per cycle less the sum of the
procurement, feeding, mortality and setup.

Figure 4.6.4: Changes to the weight of the farmer’s live inventory level

The feeding and mortality costs are determined using the area under the inventory
system profile graph. The area under the farmer’s inventory system profile, as depicted
in Figure 4.6.4, is determined as

Areaf = Farmer’s time-weighted inventory

=

∫ Tf

0

nyw(t) dt

= ny

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
.

(4.6.21)

The feeding cost is assumed to be incurred for successfully rearing the live items to
maturity. This implies that it is only incurred for the fraction of items that survive
(i.e. x), On the other hand, the mortality cost is assumed to be a penalty cost for not
successfully rearing the items to maturity, meaning that it is only incurred for the fraction
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of items that do not survive (i.e. 1 − x). The farmer’s feeding cost per cycle, FCf , is
therefore

FCf = cfxny

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.6.22)

Likewise, the farmer’s mortality cost per cycle, MCf , is

MCf = mf (1− x)ny

{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}
. (4.6.23)

The farmer’s total cyclic profit, TPf , is defined as the total cyclic revenue less the
sum of the cyclic setup, procurement and feeding, mortality costs. The farmer’s total
cyclic profit is thus

TPf = pfn

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

−Kf −
pvnw0

xw1

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

− ny
{
αTf +

α

λ

[
ln
(
1 + βe−λTf

)
− ln (1 + β)

]}[
cfx+mf (1− x)

]
. (4.6.24)

The first term in Equation (4.6.24) is the farmer’s revenue per cycle which is computed
by multiplying selling price per weight unit of live inventory charged to the processor (pf )
by the weight of the processed inventory sold to the retailer per cycle (nQ1). The second
term is the fixed cost of setting up for a new growing cycle (Kf ). The third term is the
farmer’s procurement cost per cycle which is computed by multiplying procurement cost
per weight unit of live newborn inventory procured from the supplier of the newborn items
(pv) by the weight of the live newborn inventory procured per cycle from the supplier of
the newborn items (nQ0 = nyw0). The last two term represents the sum of the farmer’s
feeding and mortality costs per cycle as determined by adding Equations (4.6.22) and
(4.6.23).

4.6.3.4 Supply chain profit

4.6.3.4.1 Problem formulation

Since the farmer and the processor operate on a SSSD policy, the two parties share
the same replenishment interval of nT . On the other hand, the retailer (who receives
multiple shipments per single processing cycle) replenishes processed inventory every T
time units. Therefore, Equations (4.6.17), (4.6.20) and (4.6.24) are divided by T , nT and
nT , respectively, in order to determine the retailer’s, processor’s and farmer’s profits per
unit time, respectively. These are then summed to get the total supply chain profit per
unit time function (i.e. TPUsc).

Moreover, the fraction of live items that survives throughout the farmer’s growth
period, x, is considered a random variable with a known probability density function
f(x). The expected value of TPUsc along with three constraints (pertaining to the
growth period duration, the number of shipments and the available shelf space) are then
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used to formulate the proposed inventory control system as

Maximise: E[TPUsc] =
pr
T

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

− pvw0

TE[x]w1

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

− Kr

T
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nT

−hrδ(1− ψ)

2LT

{
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2− ψ
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1
1−ψL

1
1−ψT

2−ψ
1−psi

)]
+T

3−ψ
1−ψ

}
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δ(1− ψ)

(
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] 1
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{
αTf+
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[
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1 + βe−λTf

)
−ln (1 + β)

]}
subject to: Tf ≤ nT, n ∈ Z, S ≥

[
δ(1− ψ)

(
2LT − T 2

)
2L

] 1
1−ψ

. (4.6.25)

The first (or growth period duration) constraint is from Equation (4.6.3) and it ensures
that the live items are mature enough, in terms of reaching the target weight, for the
processing cycle when the growth period ends. The second (or number of shipments)
constraint ensures that the problem is practical because it is not possible for the processor
to deliver a non-integer number of shipments of processed inventory to the retailer. The
third (or available shelf space) constraint, which is essentially S ≥ Q1, ensures that the
retailer’s order quantity Q1 can be accommodated on the shelves.

4.6.3.4.2 Solution procedure

An iterative solution procedure is used to determine the values of T and n that maximise
E[TPUsc]. The procedure is as follows:

Step 1 Set n to 1.

Step 2 Find the value of T that maximises E[TPUsc] as given in Equation (4.6.25).

Step 3 Increase n by 1 and find the value of T that maximises E[TPUsc] as given in
Equation (4.6.25). Carry on to Step 4.

Step 4 If the latest value of E[TPUsc] increases, go back to Step 3. If the value of E[TPUsc]
decreases, the previously calculated value of E[TPUsc] (along with the correspond-
ing T and n values) is the best solution and if this case, carry on to Step 5.

Step 5 Check the solution’s feasibility with regard to the growth period duration and avail-
able shelf space constraints (i.e. Tf ≤ nT and S ≥ Q1, respectively). Tf and Q1

are calculated from Equations (4.6.2) and (4.6.13), respectively. If the solution is
feasible, those values of T and n are optimal and if this is the case, carry on to Step
7. If the solution is not feasible, carry on to Step 6.

Step 6 If the solution is not feasible because of the growth period constraint, carry on to
Step 6a. If it is infeasible due to the shelf space constraint, carry on to Step 6b. If
both constraints are violated, a solution does not exist and in this instance, carry
on to Step 7.
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Step 6a Set nT to Tf (by adjusting the value of T ) and carry on to Step 7.

Step 6b Set Q1 to S (by adjusting the value of T ) and carry on to Step 7.

Step 7 End.

4.6.4 Profit enhancement mechanism: Non-zero ending inven-
tory

With reference to inventory control models with a demand rate that depends on the
inventory level, the higher the level of on-hand inventory, the higher the consumer de-
mand. This implies that displaying more stock on shelves has the potential to increase
sales and profits. In order to take advantage of this, it might be beneficial to order larger
quantities at the beginning of a replenishment cycle so that demand is increased (as a
result of higher on-hand inventory levels). On the other hand, the lower the level of
on-hand inventory, the lower the demand (and by extension profits). This means that it
is financially detrimental for organisations to display low volumes of stock. This observa-
tion motivated Urban (1992) to extend the basic EOQ model for items with an inventory
level-dependent demand to a case where the ending inventory is non-zero. While the
adoption of this non-zero ending inventory policy increases the size of the order (and
thus higher holding costs), it also improved profits because the benefits of keeping higher
levels of stock are reaped at the beginning of a cycle (due to the larger order size and
thus, increased demand) and the detriments of keeping lower levels of stock are minimised
by clearing the stock before it reaches zero at the end of the cycle.

Figure 4.6.5: Changes to the weight of the retailer’s processed inventory level with a
non-zero ending inventory policy

It might be financially beneficial for the retailer to adopt a non-zero ending inventory
policy. In this instance, the retailer would receive an order of processed inventory weighing
Q1 from the processor every T time units. This order would then be used to meet
consumer demand which depends on both the inventory level and the freshness index of
the inventory. However, the retailer does not wait for the processed inventory level to drop
to zero before the receiving a new order from the processor. Instead, the retailer receives
a new order when the processed inventory level drops to a certain point G. The retailer’s
new inventory system profile under this profit improvement mechanism is depicted in
Figure 4.6.5. In order to make room available for the new stock, the retailer clears the
entire ending stock (i.e. all G weight units) as a single batch through a clearance sale at
a salvage price of ps per weight unit.
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Following on from Equations (4.6.8), (4.6.9) and (4.6.10), and using the new boundary
condition I(T ) = G since the ending inventory level is now G weight units instead of zero,
the weight of the retailer’s processed inventory at any time t is determined as

I(t) =

{
δ(1− ψ)

2L

[
t2 + 2L(T − t)− T 2

]
+G

1
1−ψ

} 1
1−ψ

. (4.6.26)

Likewise, the weight of the retailer’s processed inventory is

Q1 = I(0) =

[
δ(1− ψ)

(
2LT − T 2

)
2L

+G
1

1−ψ

] 1
1−ψ

(4.6.27)

The area under the inventory system profile, as given in Figure 4.6.5, is made up of two
sections, namely a triangular-ish portion (as a result of regular demand and deterioration)
and a rectangular portion (i.e the non-zero ending inventory that is salvaged). Therefore,
the retailer’s cyclic holding cost, HCr, is

HCr = hr

∫ T

0

I(t) dt+hrGT =
hrδ(1− ψ)

2L

{
T+

[(
1− ψ
2− ψ

)(
2

1
1−ψL

1
1−ψT

2−ψ
1−ψ

)]
+T

3−ψ
1−ψ

}
+ hrGT. (4.6.28)

The retailer’s total profit per cycle is determined as the sum of the revenue and salvage
value of the processed inventory per cycle less the total inventory management cost (i.e.
the sum of the setup, procurement and holding costs) per cycle. The retailer’s total profit
per cycle, TPr, is thus

TPr = pr

{[
δ(1− ψ)

(
2LT − T 2

)
2L

+G
1

1−ψ

] 1
1−ψ

−G

}
+ psG−Kr

− pp
[
δ(1− ψ)

(
2LT − T 2

)
2L

+G
1

1−ψ

] 1
1−ψ

− hrδ(1− ψ)

2L

{
T +

[(
1− ψ
2− ψ

)(
2

1
1−ψL

1
1−ψT

2−ψ
1−ψ

)]
+ T

3−ψ
1−ψ

}
+ hrGT. (4.6.29)

The first term in Equation (4.6.29) is the retailer’s revenue per cycle from the sales
of processed inventory and it is determined by multiplying the selling price per weight
unit of processed inventory (pr) by the weight of the processed inventory sold per cycle
at the regular selling price (Q1 −G). The second term is the retailer’s salvage value per
cycle and it is computed by multiplying the salvage value of the processed inventory (ps)
by the weight of the ending inventory level (G) which is cleared at the end of the cycle.
The third term is the fixed cost of placing an order (Kr) incurred at the start of each
replenishment cycle. The fourth term is the retailer’s procurement cost per cycle which
is computed by multiplying the procurement cost per weight unit of processed inventory
procured from the processor (pp) by the weight of the processed inventory procured per
cycle from the processor (Q1). The last term is the retailer’s holding cost per cycle as
determined in Equation (4.6.28).

It should be noted that Equation (4.6.17) is a special case of Equation (4.6.29) when
G = 0 (i.e. when the traditional zero-ending inventory policy is adopted).
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The retailer’s total profit per unit time, TPUr, is therefore

TPUr =
pr
T

{[
δ(1− ψ)

(
2LT − T 2

)
2L

+G
1

1−ψ

] 1
1−ψ

−G

}
+
psG

T
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− pp
T

[
δ(1− ψ)
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)
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1

1−ψ

] 1
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1
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1
1−ψT

2−ψ
1−ψ

)]
+ T

3−ψ
1−ψ

}
+ hrG. (4.6.30)

4.6.5 Numerical results

Two numerical examples are used to solve and analyse the proposed inventory control
mechanisms. Both examples consider a three-echelon chicken production supply chain.
In the first example, it is assumed that the traditional zero ending inventory policy (at
the retail echelon) is adopted while in the second example, the non-zero ending inventory
policy (at the retail echelon) is adopted. Both examples make use of the following input
parameters: L=4 days; w0= 0.06kg; w1= 2kg; R=250 kg/day; Kf=7 500 ZAR; cf=1
ZAR/kg/day; mf=2 ZAR/kg/day; Kp=5 000 ZAR; hp=0.5 ZAR/kg/day; Kr=1 000
ZAR; hr=1 ZAR/kg/day; α=6.87 kg; β=120; λ=0.12 /day; δ=80 kg/day; ψ=0.2; S=300
kg; pv=10 ZAR/kg; pf=20 ZAR/kg; pp=30 ZAR/kg; pr=50 ZAR/kg. The survival rate
of the newborn items, x, during the course of the farmer’s growth period is assumed to
be a random variable that is uniformly distributed over [0.8, 1] with a probability density
function given by

f(x) =

{
5, 0.8 ≤ x ≤ 1

1, otherwise.

This implies that

E[x] =

∫ 1

0.8

5x dx = 5

[
(12 − 0.82)

2

]
= 0.9

Both examples are solved using the Solver function in Microsoft Excel.

4.6.5.1 Example 1: Zero ending inventory

The results from the first example are presented in Table 4.6.1. The two decision variables
are used to determine the optimal replenishment and shipment policies to be followed at
all three supply chain echelons. The farmer should place an order for roughly (ny =) 2
776 live newly born (i.e. one day old) chicks. The weight of the all the ordered newborn
chicks (nQ0) would amount to about 167 kg. When the growth period ends (at Tf=32.5
days), (E[x] =) 90% of the initially ordered chicks would have survived and reached the
targeted maturity weight. This implies that the weight of the surviving mature chickens
(nQ1) would be roughly 4 998 kg. The farmer should then transfer the entire lot to
the processing plant. During the course of the processing cycle, the processor should
deliver the processed chickens (now in a consumable form) to the retailer in (n =) 20
equally sized batches. Each batch that the retailer receives should have processed chickens
weighing about (Q1 =) 250 kg, which is less than the maximum shelf capacity of S =
300 kg. In order to ensure that the processed chickens don’t expire (after L = 4 days)
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and the demand rate does not diminish as a result of reduced freshness, the processor
should deliver new orders of processed chickens to the retailer every (T =) 1.62 days. The
farmer and the processor should start new growing and processing cycles every (nT=)
32.5 days. By following this replenishment and shipment policy, the entire supply chain
should except to make a profit of about 4 213.77 ZAR/day.

Decision variables Quantity
and objective function

T ∗ (days) 1.62
n∗ (shipments) 20

E[TPU∗sc] (ZAR/day) 4 213.77

Table 4.6.1: Results from Example 1

In order to investigate the relative importance of some of the model’s input param-
eters, in terms of effects on the model’s objective function and decision variables, a
sensitivity analysis was performed. The results from the analysis are presented in Table
4.6.2 and the following observations and managerial insights are note-worthy:

• When the expiration date of the processed inventory (L) is reduced, the model’s
optimal solution responds by reducing the retailer’s replenishment interval and in-
creasing the number of shipments delivered by the processor to the retailer. A
reduction in the retailer’ cycle time implies that the size of the retailer’s order size
is reduced as well. This leads to reduced holding costs because the processed in-
ventory will spend less time in stock. On the other hand, the fixed costs (of placing
an order and setting up the growing and processing facilities) are increased. Since
the demand rate is a function of the freshness index and stock level of the pro-
cessed inventory, smaller order sizes have a negative effect on the demand rate and
by extension, the supply revenue. The negative effects of reduced order sizes on
the demand combined with the increased fixed costs supersede the reduced holding
costs and consequently, as the expiration date increases, the supply chain profit
decreases. In practical terms, management can use this observation to increase
profit by prolonging the lifetime of the processed inventory. This can be achieved
by investing in advanced refrigeration and preservation technologies.

• When the expected value of the survival rate of the items (E[x]) is reduced, the
model responds by increasing the retailer’s replenishment interval and reducing the
number of shipments. When a higher fraction of the live inventory items die, the
farmer has to neutralise this (i.e. ensure that the specified demand is met) by
ordering more live items. The effect on the supply chain profit is negative not only
because of the increased holding cost (due to larger order sizes) but also because
there is a penalty cost (i.e. the mortality cost) incurred for every item that dies.
Based on this observation, management should take measures aimed at improving
the survival rates of the items such as vaccinating them and feeding them with
healthier feedstock.

• The optimal solution responds to a reduction in the shelf capacity (S) by prompting
the retailer to reduce their replenishment interval. The major benefit of doing this
is that the size of the retailer’ order fits on the available shelf space. Consequently,
the processor will have to deliver more shipments (of smaller sizes) to the retailer.
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This results in reduced profit, but the reduction is relatively small. When the
shelf capacity increases beyond a certain point, the no benefit in terms of a profit
increase. This is because the retailer’s optimal order quantity in the base example
is very close to the shelf capacity. Management should strive to make use of the
available shelf space as far as possible instead of investing in additional capacity
because there is no profit benefit.

Table 4.6.2: Results from the sensitivity analysis for Example 1

Parameters % Retailer’s Number Total supply chain
cycle time (T ∗) of shipments (n∗) profit

(
E[TPU∗sc]

)
change days % change shipments % change ZAR/day % change

Base case 1.62 20 4 213.77

L

-40 1.16 -28.6 28 +40.0 3 200.02 -24.1
-20 1.41 -13.0 23 +15.0 3 776.66 -10.4
+20 1.83 +12.9 18 -10.0 4 564.30 +8.3
+40 1.78 +9.7 19 -5.0 4 823.61 +14.5

E[x]

-40 1.80 +11.1 18 -10.0 1 991.36 -52.7
-20 1.71 +5.3 19 -5.0 3 378.41 -19.8
+20 1.62 0 20 0 4 770.68 +13.2
+40 1.62 0 20 0 5 168.48 +22.7

S

-40 1.17 -28.2 28 +40.0 4 043.33 -4.0
-20 1.56 -4.2 21 +5.0 4 209.67 -0.1
+20 1.62 0 20 0 4 213.77 0
+40 1.62 0 20 0 4 213.77 0

δ

-40 2.03 +25.0 16 -20.0 1 598.69 -62.1
-20 1.80 +11.1 18 -10.0 2 817.75 -33.1
+20 1.55 -4.7 22 +10.0 5 782.79 +37.2
+40 1.27 -21.7 48 +140.0 7 551.36 +79.2

ψ

-40 1.62 0 20 0 2 339.03 -44.5
-20 1.62 0 20 0 3 127.79 -25.8
+20 1.56 -4.0 22 +10.0 5 743.49 +36.3
+40 1.25 -23.0 58 +190.0 7 786.24 +84.8

• When the scale parameter of the demand rate (δ) is increased, the replenishment
interval is reduced and the number of shipments is increased. While this leads to
increased fixed setup and ordering costs which negatively affect the profit, it also
leads to reduced holding costs and more importantly, increased demand because
reduced replenishment intervals ensure that the inventory is kept as fresh as possible
which leads to increased sales. Since the scale parameter of the demand represents
the asymptotic level of demand attainable when the inventory level is considered
most favourable to consumers, from a practical standpoint, management can exploit
this observation by improving their marketing efforts which has the potential to
increase the number of prospective consumers.

• When the shape parameter of the demand rate (ψ) is increased, the optimal solution
responds by reducing the retailer’s replenishment interval and increasing the number
of shipments. This parameter corresponds to the elasticity of the demand rate
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with respect to the level of inventory on the retailer’s shelves which represents the
sensitivity of the demand rate to the inventory level. As this parameter is increased,
so does the demand rate and consequently, the supply chain profit is increased as
well.

4.6.5.2 Example 2: Non-zero ending inventory

The results from the second example are presented in Table 4.6.3. When the retailer
adopts a non-zero ending inventory policy, the remaining inventory is salvaged as a single
batch at a discounted price. For this analysis, it is assumed that the number of shipments
delivered by the processor remains the same and the retailer is concerned with determining
the optimal replenishment cycle time (T ∗) and ending processed inventory level (G∗).

Decision variables Salvage value as a %
and of retailer’s selling price

objective function 0% 25% 50%
T ∗ (days) 1.80 1.79 1.62

n∗ (shipments) 20 20 20
G∗ (kg) 2.57 10.26 24.77

E[TPU∗sc] (ZAR/day) 4 286.77 4 513.02 5 043.66

Table 4.6.3: Results from Example 2

Three different salvage values were considered, namely, ps = 0 ZAR/kg, ps = 12.50
ZAR/kg and ps = 25.00 ZAR/kg, which correspond to 0%, 25% and 50%, respectively,
of the retailer’s selling price (pr = 50.00 ZAR/kg). For all three salvage values tested,
the expected supply chain profit improved when compared to the traditional zero-ending
inventory policy (i.e. Example 1). However, the improvement in profit varied with the
salvage value. When the salvage value is 0% of pr, profit improved by 1.7% (from 4
213.77 to 4 286.77 ZAR/day), at 25% of pr, profit improved by 7.1% (from 4 213.77 to 4
513.02 ZAR/day) and at 50% of pr, profit improved by 19.7% (from 4 213.77 to 5 043.66
ZAR/day).

In essence, the salvage value of the ending processed inventory level is the major deter-
minant of the profitability of the non-zero ending inventory policy. As the salvage value is
increased, the retailer’s replenishment interval is reduced and the ending inventory level
is increased. As a result, the profit is increased because frequent replenishment implies
that the processed inventory is fresher (than it would have been if the replenishment
interval was longer) which intensifies the demand rate.

4.6.6 Concluding remarks

Managers in charge of procurement and inventory control in perishable food production
chains are faced with several unique challenges because of the structure of those supply
chains and the perishability of food products. From a supply chain structure perspective,
there are often multiple parties involved in the different stages before meeting consumer
demand. There is often a farming operation at the upstream end of supply chain where
live items are reared while the downstream end is often characterised by the presence
of a retail outlet through which end consumer demand for the perishable food products
is met. These two ends are often connected by a processing operation where the live
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items are transformed into a form that is suitable for human consumption. Furthermore,
each of these stages have unique challenges of their own as well. For instance, consumer
demand at the retail end of the supply chain is often influenced by the expiration date
of the products (due to their perishability) and the level of on-hand inventory. At the
farming stage, item mortality is an important issue because the inventory items are alive
at that stage.

With this in mind, this section developed an integrated model for inventory control
in a three-echelon supply chain for growing items whose end demand rate depends on
the levels of stock and the expiration date. The model was then extended to a case
where the traditional zero-ending inventory policy at the retail end of the supply chain
is relaxed in favour of a non-zero ending inventory policy. Under this policy, the retailer
sells the processed inventory at the regular selling price throughout the cycle but when
the inventory level reaches a certain point, it is salvaged as a single batch at a discounted
price. Through numerical experimentation, the adoption of a non-zero ending inventory
policy was found to have a positive impact supply chain profit depending on the salvage
value.

Granted that this section focused specifically on perishable food supply chains, there
a still a few more characteristics of these type of supply chains that might still be ex-
ploited in the future as possible extensions to the proposed model. For instance, retailers
often carry multiple stock-keeping units (SKU’s) of a particular product, this presents an
opportunity for further research through the development of an extension that consid-
ers an inventory system with multiple-items. Most food retailers are huge corporations
with buying and negotiation powers so it might be useful to investigate the effects that
different incentive mechanisms such as quantity discounts and revenue-sharing contracts
might have on the supply chain. Other characteristics of food supply chains that are
worth investigating include pricing decisions, transportation and distribution modes, re-
verse logistics and quality control.
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Chapter 5

Conclusions and Recommendations

5.1 Summary

The main objective of this thesis was to develop inventory models for the management
of growing items in multi-echelon supply chains. This was achieved through the develop-
ment of six lot-sizing models, with each model representing a sub-objective of the thesis,
in supply chains with separate farming, processing and retail facilities. The multi-echelon
structure of the models, as well as the fact that a vast majority of growing items are the
primary source of food products, make these models ideal representations of industrial-
scale food production systems. To enhance their practicality, each of the models accounts
for specific characteristics of food production systems, such as price-dependent demand,
freshness-dependent demand, inventory level-dependent demand, item mortality (of the
live growing items), item perishability (of the processed inventory) in the form of expi-
ration dates and quality control. In addition to filling the research gaps identified in the
literature, the development of these models can also be of use to operations and supply
chain management practitioners in food production and related industries.

5.2 Contributions to knowledge

Effective inventory management in food supply chains is very crucial, not only because
it ensures that consumable products are available to meet consumer demand at the right
time and right price, but also because a well-managed inventory system has the potential
to significantly reduce operational costs. Any form of cost-saving, regardless of its mag-
nitude, is important in food production systems because they are often characterised by
relatively low profit margins.

The six models presented in this thesis represent simplified versions of end-to-end
food supply chains with separate farming, processing and retail echelons. Two of the
models, which consider the probability that some of the processed inventory might be of
unacceptable quality, have an additional quality inspection echelon on top of the three
basic echelons. Table 5.2.1 provides a summary of a selection of lot-sizing models that are
closely related to the six models presented in the thesis. From the table, it is evident that
the six models represent the first attempts at developing lot-sizing models for growing
items in multi-echelon supply chain settings. The individual contributions made by each
of the six models to the literature are as follows:
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Section 4.1 of this thesis: A three-echelon supply chain inventory model
for growing items.
The novelty of this model is due to the explicit consideration of the following factors
simultaneously:

• A three-echelon supply chain involving growing items with farming, processing and
retail echelons.

• Growing inventory items are at the upstream end of the supply chain.

• Processed and ready-for-sale inventory is at the downstream end of the supply chain.

• The upstream and downstream ends of the supply chain are joined by the processing
echelon where the live inventory items are slaughtered, cut and packaged at a finite
rate.

Section 4.2 of this thesis: A three-echelon supply chain inventory model
for growing items with price- and freshness-dependent demand.
The novelty of this model is due to the explicit consideration of the following factors
simultaneously:

• Separate farming, processing and retail operations with the common goal of jointly
maximising profit.

• The demand rate at the retail level is a function of freshness and selling price.

• At the retail level, the inventory has a maximum life time (or expiration date) which
is the main determinant of the inventory’s freshness index.

Section 4.3 of thesis: A four-echelon supply chain inventory model for
growing items with imperfect quality.
The novelty of this model is due to the explicit consideration of the following factors
simultaneously:

• A supply chain for growing items with farming, processing, inspection and retail
echelons.

• Growing items are reared at the farming echelon provided that a fraction of the
items does not survive.

• A fraction of the processed inventory is of poorer quality.

• An inspection echelon is added between the processing and the retail echelons in
order to isolate poorer quality processed inventory from that of good quality.

Section 4.4 of this thesis: A three-echelon supply chain inventory model
for growing items with expiration dates.
The novelty of this model is due to the explicit consideration of the following factors
simultaneously:

• A three-echelon (namely, farming, processing and retail echelons) supply chain for
perishable food products.
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• Survival rates at the farming echelon are not 100% (i.e. some of the live inventory
items do not survive throughout the replenishment cycle).

• Once the processed inventory reaches the retail echelon, it has a maximum shelf
life, indicated by its expiration date, beyond which its no longer suitable for human
consumption.

Section 4.5 of this thesis: A four-echelon supply chain inventory model for
growing items with imperfect quality and errors in quality inspection.
The novelty of this model is due to the explicit consideration of the following factors
simultaneously:

• Separate farming, processing, inspection and retail echelons with the aim of max-
imising the joint supply chain profit.

• At the farming echelon, survival rates for the live items are not 100%.

• At the processing echelon, the processed inventory that is of good quality is not
100% of the initially received order.

• The inspection process at the inspection echelon is not 100% effective and thus
makes some classification errors.

Section 4.6 of this thesis: A three-echelon supply chain inventory model
for growing items with inventory level- and freshness-dependent demand.
The novelty of this model is due to the explicit consideration of the following factors
simultaneously:

• Perishable food products supply chain with farming, processing and retail echelons.

• At the farming echelon, some of the live inventory items do not survive throughout
the replenishment cycle.

• At the retail echelon, consumer demand is a function of the processed inventory
level and the freshness index which itself is a function of the expiration date.
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5.3 Recommendations for practitioners

In addition to the contributions to the available literature, the results from this thesis
can be of help to operations and supply chain management practitioners in multi-echelon
supply chain systems involving growing items. Before discussing some potential benefits
afforded to practitioners, a few notable results from the models’ numerical experimenta-
tion are highlighted. In certain instances, the profit generated across the supply chain
may increase by as much as 15% if all members collaborate and integrate their ordering
and shipment decisions. Prolonging the shelf life (expiration date) of food products by
40% may increase supply chain profits by as much as 21%. Furthermore, supply chain
profits may be increased by as much as 10% and 21%, respectively, if survival rates of live
inventory items and acceptable quality levels of the processed inventory are kept close to
100%. Granted that some of these results might not be possible to achieve in reality (for
instance, 100% survival rates and 100% acceptable quality levels), operations and supply
chain management practitioners should strive to keep them as high as possible. Based on
these results, the following recommendations are made for operations and supply chain
practitioners:

• With regards to keeping survival rates as high as possible, practitioners should
take measures aimed at improving the livelihood of the growing items in farming
operations. These measures could include vaccinating the items from common
infections and feeding them with healthier feedstock.

• Marketing theory has shown that price, among other factors, is an important de-
terminant of demand (Feng et al., 2017). Consequently, pricing decisions are very
critical. Effective pricing is a balancing act because, on the one hand, lower prices
spike demand but the resulting margins are relatively lower when compared to
higher prices which reduce demand. Practitioners should carefully balance these
two extremes to get the most benefit.

• Quality levels should be kept as high as possible because the cost of poor quality
is high not only because of lost sales but also because of potential liability costs as
a result of selling poorer quality processed inventory to consumers. Furthermore,
inspection processes should be continually monitored to ensure that they are not
incorrectly classifying the inventory. In practical terms, this can be done through
regular maintenance of inspection equipment and regular training of inspection
personnel.

• Investments in preservation technologies such as more advanced refrigeration should
be prioritised because these technologies have the potential to prolong the shelf life
(or expiration date) of processed inventory. Longer shelf lives have been shown to
increase supply chain profits. While the initial investment will be large in the short
term, the long term benefits will outweigh the initial investment.

5.4 Suggestions for future research

There are various avenues that can be explored as potential future research directions
for the six inventory models presented in this thesis. These directions include accounting
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for the presence of multiple parties in each of the supply chain echelons, uncertainty in
demand and incentive mechanisms such as profit-sharing agreements.

All six models were formulated under the assumption that there is only one party
in each echelon. While this assumption removes some complexity from the modelling
process, it is not realistic because supply chains are very complex systems that often
involve multiple parties at each echelon. For instance, a processor might receive live items
from multiple farmers for processing and the same processor might sell the processed
inventory to multiple retailers. This is not accounted for in each of the six models.
Therefore, the incorporation of multiple farmers, processors and retailers in a growing
items supply chain represents possible future extensions for the six models.

The models presented in the thesis are suited specifically for multi-echelon food pro-
duction systems involving growing items. Profit margins in these industries are relatively
thin and therefore, supply chain members often resort to incentive mechanisms such as
profit-sharing agreements. These types of agreements encourage collaboration and trans-
parency, in terms of information sharing, among supply chain members which leads to
improved profits for the entire supply chain. If supply chain members share the gains eq-
uitably (which can be enforced through profit-sharing agreements), they are incentivised
to share more information for the benefit of the supply chain. Game-theoretic methods
can be used to incorporate profit-sharing agreements in any of the six models.

The demand rate in four of the six models was assumed to be a deterministic con-
stant. This assumption can be relaxed to accommodate uncertainties in demand. Macro-
economic factors such as unemployment and inflation rates, natural disasters such as
tornado’s and earthquakes and global pandemics such as the Ebola or coronavirus dis-
eases are some of the few factors that lead to uncertainties in global supply chains. For
instance, the ongoing global coronavirus pandemic has highlighted the importance of in-
ventory management in retail outlets, where certain products, particularly canned food
products and toilet paper, were out of stock at multiple retail outlets (USAToday, 2020).
This shows that demand patterns in food supply chains are very unpredictable and this
presents an opportunity for further development. Therefore, the models presented in this
thesis can be extended by considering stochastic demand patterns.

5.5 Closing remarks

The six models presented in this thesis add to the increasing body of knowledge on
inventory management for growing items. The multi-echelon structure of the models
that integrates the separate functions of farming, processing and retail operations not
only enhances the models’ practicality, which is helpful to operations and supply chain
management practitioners, but it also represents, from a research perspective, a new sub-
field for inventory management for growing items. This presents researchers with a good
foundation for developing new extensions by relaxing some of the assumptions made in
the development of the six models presented in the thesis. Furthermore, practitioners
also stand to benefit from new extensions that are more practical.
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