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Abstract

We parametrize the set of irreducible characters of the Sylow p-subgroups of the Chevalley groups D6(q) 
and E6(q), for an arbitrary power q of any prime p. In particular, we establish that the parametrization is 
uniform for p ≥ 3in type D6 and for p ≥ 5 in type E6, while the prime 2 in type D6 and the primes 2, 3 in 
type E6 yield character degrees of the form qm/pi which force a departure from the generic situations. Also 
for the first time in our analysis we see a family of irreducible characters of a classical group of degree qm/pi 
where i > 1which occurs in type D6.
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1. Introduction

Let q be a power of a prime p, and let G be a finite group of Lie type over Fq and U be a Sylow
p-subgroup of G . Let B := NG(U ) and let P be a parabolic subgroup of G with U ≤ B ≤ P ≤ G . We 
denote by � a prime distinct from p.

Harish-Chandra theory for �-modular representations of general finite groups of Lie type was 
initiated by Hiss (1991, 1993) and continued in Geck et al. (1996b). The theory suggests that the 
representation theory of parabolic subgroups P of G as above has strong influence on the representa-
tion theory of G , in particular towards a determination of its decomposition numbers. This is further 
evidenced by work of Gruber and Hiss (1997) for classical groups at primes �. More recently this 
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has been taken further in Dudas and Malle (2015) and Dudas and Malle (2016) for some non-linear 
classes of primes. For small rank groups the calculation of decomposition numbers in Himstedt (2011), 
Himstedt and Noeske (2014) and Himstedt and Noeske (2015) made strong use of the representation 
theory of parabolic subgroups along with induction/restriction methods to compute decomposition 
numbers. Most recently the third author Paolini (2018) was able to compute most decomposition 
numbers of the groups D4(2 f ) using the generic character table of UD4(2 f ) which was computed in 
Goodwin et al. (2017); here and throughout UYr(q) denotes a Sylow p-subgroup of the group Yr(q)

of type Y and rank r defined over Fq .
Our present work is a first step in computing the character tables of UD6(q) and UE6(q) which 

are intended to aid with the determination of the decomposition numbers of all finite groups of Lie 
type up to rank 8, in particular of those of exceptional type. A parametrization of the irreducible 
characters of each of the groups UYr(q) in the case where p is at least the Coxeter number of Yr(q)

and r ≤ 8 (except Yr = E8) is provided in Goodwin et al. (2016b) by parametrizing of the coadjoint 
orbits of UYr(q) and then applying the Kirillov orbit method. The task of parametrizing the irreducible 
characters of UYr(q) for small primes, especially bad primes, presents much more complication. Our 
focus in the sequel is to consider UYr(p f ) for arbitrary f ∈ Z≥1, but taking p strictly less than the 
Coxeter number of Yr(q).

The elements of Irr(U ) where G ∼= F4(q) with q odd, in particular when q = 3 f is a power of a 
bad prime, were parametrized in Goodwin et al. (2016a) by means of a recursive procedure, relying 
on basic character correspondences, which leads to a natural construction of characters via induction 
from linear characters of certain subgroups. Indeed the terminal points of our algorithm are certain 
subquotients of U , which we call cores. To construct the members of a family one starts with a core 
Q with centre Z , and with a subset Irr(Q )Z of Irr(Q ) of characters which lie over the centre in such 
a way as to not contain any root subgroup of Z in their kernels. For each element of Irr(Q )Z one can 
trace back through the algorithm, and write down a unique character of U .

If Q = Z is abelian, then we can simply extract the family and its parameters. We have been 
able to completely automate this part of the algorithm. If Q �= Z , then we need to determine Irr(Q )Z , 
which in the situation of UF4(q) involved a manageable amount of case analysis. While the number of 
nonabelian cores for UF4(q) is 6, this number increases to 105 for UE6(q) and to several millions for 
UE8(q). We recall from Goodwin et al. (2017) and Himstedt et al. (2016) that the characters of UE6(q)

are naturally partitioned into 833 families which are indexed by the antichains in the poset of positive 
roots. To each family we apply our algorithm, which naturally splits each family into collections of 
subfamilies. For type E8 the first partition already leads to 25080 families. Thus it becomes clear that 
the generic character tables of the groups UYr(q) are best processed in a machine-readable format and 
ideally in a format that can be incorporated into Geck et al. (1996a), the computer algebra system 
which provides a platform for calculations with the generic character tables of finite groups of Lie 
type. Our main theorem thus takes the following form:

Main Theorem. Let q be a power of a prime p, let G be a finite Chevalley group over Fq of type D6 or E6 , 
and let U be a Sylow p-subgroup of G. Then the irreducible characters of U are completely parametrized. Each 
character can be obtained as an induced character of a linear character of a certain determined subgroup. In 
particular, if v := q − 1, we have

1. | Irr(UD6(q))| =
{

p1(v), if q is odd,

p1(v) + 3v4(v4 + 18v3 + 63v2 + 58v + 9), if q = 2 f ,

2. | Irr(UE6(q))| =

⎧⎪⎨
⎪⎩

p2(v), if gcd(q,6) = 1,

p2(v) + v6(v2 + 6v + 12), if q = 3 f ,

p2(v) + 3v4(2v4 + 26v3 + 103v2 + 317v + 45), if q = 2 f ,

where p1(v) and p2(v) are polynomial expressions in v as in Tables 5 and 7 respectively.
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The parametrization is given as follows. For each character χ ∈ Irr(U ), we have been able to store 
electronically the subgroup V and the values of the linear character λ ∈ Irr(V ) such that χ = IndU

V (λ)

as in the Main Theorem, in terms of the root datum of G . The character λ is, in turn, determined 
as the inflation of a linear character μ of an abelian quotient V̄ of V . The labels in Tables 3 and 4
are given in terms of products of root subgroups or their diagonal subgroups defining the subquo-
tient V̄ of U . The degree of each character is then easily determined as [U : V ]. We recall that the 
expressions of p1(v) and p2(v) had already been determined in Goodwin et al. (2014, Section 4) by 
means of a parametrization of the conjugacy classes of UD6(q) when p ≥ 3 and of UE6(q) when p ≥ 5
respectively.

We collect here further consequences of the parametrization in the above theorem. When p is a 
bad prime for E6, then Irr(UE6(q)) possesses characters of degree qi/2 for 3 ≤ i ≤ 15 if p = 2 and 
of degree q7/3 if p = 3, whereas if p = 2 then Irr(UD6(q)) possesses elements of degree qi/2 for 
3 ≤ i ≤ 11, and also a family of characters of degree q10/4 which is obtained by induction from the 
family F4,p=2

3 in Table 3 of characters of degree q6/4; other irreducible character degrees are all 
powers of q. The numbers of characters of fixed degree are given in Tables 5 to 9. We easily check in 
these cases the validity of the generalization of Isaacs (2007, Conjecture B) in types different from A, 
which in turn refines (Lehrer, 1974, Conjecture 6.3), namely the numbers of irreducible characters of 
U of fixed degree can always be expressed as polynomial expressions in v with non-negative integral 
coefficients if p is good. One also immediately deduces by the records in Table 8 for Irr(UE6(3 f )) that 
an extension of such statement to bad primes would not hold; this is the only such instance for the 
groups UYr(q) with Y of simply laced type and r ≤ 6, namely in this case UYr(q) is a natural quotient 
of U , and a parametrization for Irr(UYr(q)) is obtained via the labels determined in our theorem. The 
actual complete list of families is available on the webpage of the third author Le et al. (2018) in both 
tabular and machine-readable format.

The obstruction to automating the parametrization of Irr(U ) is the nonabelian cores mentioned 
above. Thus our focus in this paper is on nonabelian cores with a view towards automating these 
calculations as well. The total number of families of nonabelian cores that we have to consider is 
27 for D6 and 105 for E6. Fortunately several cores are isomorphic, which reduces our problem to 
7 isomorphism types of cores for D6 and 16 for E6 which are easily separated by a set of three 
invariants; this is proved in Section 3. Also certain cores are isomorphic to ones that we have seen 
in Goodwin et al. (2016a), which simplifies our work even further. In Section 4 we begin by proving 
a variant of our reduction lemma which serves as a foundational tool of our analysis of nonabelian 
cores. Also in this section we introduce the concept of a generalized root group which allows us to 
consider transversals which are well suited for our character correspondences, and the concept of a 
“circle quattern”. In fact it is the latter concept which we believe will be crucial in automating the 
analysis of nonabelian cores. We illustrate all of this in our analysis of the nonabelian cores of UD6(q)

and UE6(q) in Section 5. Here computer calculations are used extensively in order to find reasonable 
candidates for arms and legs as explained in Section 4, to compute stabilizers of central character 
extensions, and to obtain the branching determined by such stabilizers. The solutions of the equations 
which arise in this way and the determination of the corresponding labels for the characters in Irr(U )

are essentially the only part which has been solved by hand. We collect the results of our analysis of 
the nonabelian cores in Tables 3 and 4.

To finish, we remark that for groups of rank higher than 6 the three invariants mentioned above 
are not strong enough to separate cores into isomorphism types, and we illustrate this with an ex-
ample in UE7(q). Also we remark here that for UE8(q) the cardinality of the set of invariants of 
nonabelian cores is in the neighborhood of 2 · 105, and that the number of isomorphism types is 
around 4 · 105; again making clear the need for automation.

Authorship: The second author of this work suddenly passed away on July 26th, 2018, during the 
revision of the paper. The first and third authors would like to express with this note their deepest 
gratitude to him for a fantastic collaboration experience, and to give him credit for the insightful and 
necessary proofs and constructions in this paper. They also concur on the fact that he would have 
agreed with the proposed minor changes to the final version of the work.
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2. Preliminaries

2.1. Characters of finite groups

Let G be a finite group. For each g, h ∈ G , we write gh := h−1 gh (respectively h g := hgh−1) for the 
right (respectively left) conjugation in G . The centre of G is denoted by Z(G). We usually denote by 
χ an irreducible character afforded by some representation. All characters considered in this work are 
ordinary. We denote by ker(χ) the kernel of a character χ , and by Z(χ) the centre of χ . Moreover, 
we denote by Irr(G) the set of irreducible characters of G .

We recall some further notation and results on characters contained in Isaacs (1994). If N � G , and 
χ ∈ Irr(G/N), we denote by InfG

N(χ) the inflation of χ to G . For H ≤ G and η ∈ Irr(H), we denote by 
IndG

H (η), or shortly ηG , the induction of the character η from H to G , and we define

Irr(G | η) := {χ ∈ Irr(G) | 〈χ,ηG〉 �= 0} = {χ ∈ Irr(G) | 〈χ |H , η〉 �= 0},
where 〈 , 〉 is the usual scalar product of characters. Let χ1 and χ2 be two characters of G . The 
character χ1 ⊗ χ2 denotes the tensor product of χ1 and χ2. If H ≤ G , and χ ∈ Irr(G) and ψ ∈ Irr(H), 
then (χ |H ⊗ ψ)G = χ ⊗ ψG . Let η ∈ Irr(N) with N � G . For g ∈ G , we denote by gη the irreducible 
character of N such that gη(x) := η(xg) for every x ∈ N . The group G naturally acts on Irr(N) by 
conjugation. Let us define the inertia subgroup of η in G by IG (η) := {g ∈ G | gη = η}. Then

IndG
IG (η) : Irr(IG(η) | η) −→ Irr(G | η)

is a bijection of irreducible characters.
We also recall two useful facts from Goodwin et al. (2016a, §2.1). Let N be a normal subgroup of 

G . For each subgroup H of G containing N , and each χ ∈ Irr(H/N), we have that

InfG
G/N IndG/N

H/N χ = IndG
H InfH

H/N χ.

Moreover, let us assume that there exists Z ≤ Z(G) with Z ∩ N = 1. If λ ∈ Irr(Z), then

InfG
G/N : Irr(G/N | λ) −→ Irr(G | InfZ N

Z (λ))

is a bijective map.
We finish by describing the set Irr(Fq). Let us define φ : Fq → C× by φ(t) := e2π i Tr(t)/p for all 

t ∈ Fq , where Tr : Fq → Fp ∼= Zp is the trace map of the field extension Fq | Fp . It is easy to check 
that φ ∈ Irr(Fq)

× , and in fact φb := φ ◦ mb ∈ Irr(Fq) for every b ∈ Fq , where mb : Fq → Fq denotes the 
multiplication by b in Fq . Notice that φb1 = φb2 implies b1 = b2 for b1, b2 ∈ Fq . Hence Irr(Fq) = {φb |
b ∈ Fq}. Moreover, it is easy to see that if a ∈ F×

q , then ker(φa) = {ap−1t p − t | t ∈ Fq}.

2.2. Simple algebraic groups and Frobenius morphisms

We refer to Digne and Michel (1991) and Malle and Testerman (2011) for basic properties and 
definitions of finite reductive groups. Let q := p f , where p is a prime and f ∈ Z>0. Let Fq be a 
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general finite field with q elements, and let k := Fp be an algebraic closure of Fq . We denote by G a 
simple algebraic group over the field k.

Let F : G → G be a standard Frobenius morphism. Let T be a maximal torus of G such that F (T) = T, 
and let B be a Borel subgroup of G containing T such that F (B) = B. Let U be the unipotent radical 
of B. Here, B = NG(U) = TU. From now on, we fix such F -stable subgroups T, U and B. The group 
G := GF of fixed points of G under F is a finite reductive group. Further, we set B := BF , T := TF , and 
U := UF . Here, we have B = NG(U ) = T � U , and U is a Sylow p-subgroup of G . All subgroups B , T , 
and U are fixed for the rest of the work.

Let 	 denote the root system associated to G with respect to T, and let 
 := {α1, . . . , αr} be the 
set of simple roots of 	, where r is the rank of 	. Let 	+ ⊆ 	 denote the set of positive roots in 	, 
and let m be the number of positive roots. We fix a total ordering on 	+ = {α1, . . . , αm} by refining 
the partial order on 	+ , defined by α < β if β − α is a sum of simple roots; this agrees with the 
ordering in GAP (2016). If 	 is of type Y and rank r, we sometimes denote U more explicitly by 
UYr(q).

For each α ∈ 	+ , there exist an F -stable subgroup Uα ⊆ U and an isomorphism xα : k → Uα , such 
that

Uα := {xα(t) | t ∈ k} ∼= (k,+), and Xα := UF
α = {xα(t) | t ∈ Fq} ∼= (Fq,+).

The subgroup Xα of G is called a root subgroup, and an element of the form xα(t) is called a root 
element. We often abbreviate and write Xi for Xαi and xi for xαi . The group U is the product of all 
root subgroups labelled by positive roots, and each element of U can be uniquely written as a product 
x1(t1) · · · xm(tm) for some t1, · · · , tm ∈ Fq . A presentation for U is given by the Chevalley relations

[xα(s), xβ(r)] =
∏

i, j∈Z>0|iα+ jβ∈	+
xiα+ jβ(cα,β

i, j (−r) j si) (1)

for every r, s ∈ Fq and α, β ∈ 	+ , and for some cα,β

i, j ∈ Z \ {0}, called Lie structure constants. As proved 
in Carter (1989, Section 5.2), the parametrizations of the root subgroups can be chosen so that the 
structure constants cα,β

i, j are always ±1, ±2, ±3, where ±2 occurs only for G of types Br , Cr , F4 or G2, 
and ±3 only occurs for G of type G2. The signs are determined by fixing the ones corresponding to 
the so-called extraspecial pairs of roots; our choice agrees with the records in the computer algebra 
system (Bosma et al., 1997).

We finally recall the definition of bad and very bad primes. The prime p is bad for G if it divides 
one of the coefficients of the longest root of 	+ in its decomposition as sum of simple roots. We say 
that p is very bad for G if p divides one of the constants cα,β

i, j in Equation (1). As the name suggests, 
very bad primes turn out to be bad primes. A prime is good for G if it is not bad. The very bad primes 
are the prime 2 in types Br , Cr , F4 and G2, and the prime 3 in G2. The bad primes which are not very 
bad are the prime 2 in types Dr , E6, E7 and E8, the prime 3 in types F4, E6, E7 and E8, and the prime 
5 in type E8.

2.3. Quattern groups

We now recall some properties that link the structure of 	+ with that of U . If A = {αi1 , . . . , αik }
is a subset of 	+ where i1 < · · · < ik , we define

XA :=
k∏

j=1

Xαi j
.

This is in general not always a subgroup, but it will be in all cases of our interest.
We recall some definitions and properties from Himstedt et al. (2016). We say that P is a pattern

in 	+ if α, β ∈P and α + β ∈ 	+ imply α + β ∈P . Patterns are also known as closed subsets of 	+ , 
see for example (Malle and Testerman, 2011, Definition 13.2). It is easy to check, with no restrictions 
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on the prime p, that if P is a pattern, then XP is a subgroup of U . If p is not a very bad prime for 
	+ , the converse also holds. For very bad primes the converse does not hold in general. For example, 
if p = 2 and α2 is the simple short root in type B2, then Xα2 Xα1+α2 is a subgroup of UB2(2 f ), but 
{α2, α1 + α2} is not a pattern.

Let K, P be two patterns with K ⊆ P . We say that K is normal in P , denoted as K � P , if for 
all δ ∈ K and β ∈ P , δ + β ∈ P implies δ + β ∈ K. A subset S ⊆ 	+ is called a quattern if S = P \K
for some pattern P and K� P . If K� P , then we have that XK � XP . If p is not a very bad prime 
for 	+ , then XK � XP for two patterns K ⊆P also implies K�P . Again, this is not true in type B2
when p = 2, namely Xα1+α2 � UB2(2 f ) = X	+ , but {α1 + α2} is not a normal pattern in 	+ .

From now on, and for the rest of the work, we assume that p is not a very bad prime for G. Under this 
assumption, the definitions and statements in the sequel determine a consistent dictionary from com-
mutator relations of root elements in subquotients of U to additive relations in quatterns of 	+ , and 
vice versa.

Given a quattern S ⊆ 	+ such that S = P \ K, we define the quattern group XS associated to S
by

XS := XP/XK.

This subquotient of U is well-defined, in the sense that if S =P ′ \K′ for P ′ a quattern and K′ �P ′ , 
then XS ∼= XS ′ .

If S is a quattern, we define

Z(S) := {γ ∈ S | γ + α /∈ S for all α ∈ S}
the set of central roots in S , and

D(S) := {γ ∈ Z(S) | α + β �= γ for all α,β ∈ S}
the set of roots parametrizing the root subgroups which are direct factors in XS . We have

Z(XS) = XZ(S) and XS = XS\D(S) × XD(S).

We define the set of irreducible characters of XS with central root support Z ⊆Z(S) by

Irr(XS)Z := {χ ∈ Irr(XS) | Xα � ker(χ) for all α ∈ Z}.
Hence we have

Irr(XS)Z = �
λ∈Irr(XZ )Z

Irr(XS | λ), (2)

and it is easy to see that∑
χ∈Irr(XS )Z

χ(1)2 = q|S\Z|(q − 1)|Z|. (3)

The importance of studying quatterns comes from the fact that we can partition Irr(U ) into fam-
ilies of irreducible characters of quattern groups XS with central root support a certain Z ⊆ Z(S). 
More precisely, let � denote an antichain of 	+ , that is, a subset of 	+ such that

α,β ∈ � and α �= β =⇒ α � β and β � α.

The subset K� defined by

K� := {β ∈ 	+ | β � γ for all γ ∈ �}
is a normal subset of 	+ . We define the standard quattern S� associated to � by S� := 	+ \ K� . 
Notice that � =Z(S�). Finally, we define
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Irr(U )� := {InfU
XS�

(χ) | χ ∈ Irr(XS�)�}.
We can now state the partition of irreducible characters previously announced.

Proposition 1 (Himstedt et al. (2016), Proposition 5.16). We have that

Irr(U ) = �
� antichain in 	+

Irr(U )�.

2.4. Cores and the Reduction algorithm

In order to describe the sets of the form Irr(U )� for an antichain �, we use the following pro-
cedure, explained in Goodwin et al. (2016a, Section 3), and implemented in GAP (2016). Our goal 
is to reduce from the study of some Irr(XS )Z , with Z ⊆ Z(S), to the study of Irr(XS ′ )Z ′ , with 
Z ′ ⊆Z(S ′), such that |S ′| � |S|.

We recall the following result.

Proposition 2 (Goodwin et al. (2016a), Lemma 3.1). Let S := P \ K be a quattern, let Z ⊆ Z(S) and let 
γ ∈Z . Suppose that there exist δ, β ∈ S \ {γ }, such that:

(i) δ + β = γ ,
(ii) α + α′ �= β for every α, α′ ∈ S , and
(iii) δ + α /∈ S for every α ∈ S \ {β}.

Let P ′ := P \ {β} and K′ := K ∪ {δ}. Then we have that S ′ := P ′ \ K′ is a quattern with XS ′ ∼= XP ′/XK′ , 
and the map

Irr(XS ′)Z → Irr(XS)Z

χ �→ Indβ Infδ χ

is a bijection of irreducible characters.

The Reduction algorithm has been presented in Goodwin et al. (2016a, Algorithm 3.3) by applying 
repeatedly Proposition 2 to S� . We summarize it in this section. In particular, we obtain tuples of 
the form C = (S, Z, A, L, K) of positive roots, called cores, and sets O1, O2 containing tuples of this 
form, such that we have a bijection

Irr(U )� ←→ �
C∈O1

Irr(XS)Z � �
C∈O2

Irr(XS)Z .

The quattern group XS is abelian if and only if C ∈ O1, in which case we call C an abelian core; if C ∈
O2, we call C a nonabelian core. In the sequel we sometimes drop the whole notation (S, Z, A, L, K)

for C, and just refer to the pair (S, Z) or to the quattern S .
The abelian and nonabelian cores depend on two kind of choices in 	+ , namely the ordering of 

the simple roots and the choice of maximal/minimal roots in R(S) and Z(S) \ (Z ∪D(S)) in Step 2 
and Step 3 of the algorithm respectively. The number of nonabelian cores does actually change with 
different choices in 	+ , but the difference is small, and the behavior of the nonabelian cores and the 
insight required for their study remain the same in the examined cases.

The reduction procedure is as follows. At each step of the procedure, we examine a tuple 
(S, Z, A, L, K), where the set S is a quattern with Z ⊆ Z(S), the set A (respectively L) keeps a 
record of the roots of the form β (respectively δ) at each step of the application of Proposition 2, and 
the set K keeps a record of the roots indexing root subgroups in the associated quattern group. The 
output of this procedure is the sets O1 and O2. We use in the sequel the notation Indβ , Infδ and 
IndA , InfK defined in Goodwin et al. (2016a, §2.3).
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Table 1
The number of nonabelian cores in U , when G is of rank 7 or less and p is not a very bad prime for G .

Yr≤3

0
B4 C4 D4 F4

1 0 1 6
B5 C5 D5

7 1 6
B6 C6 D6 E6

36 16 27 105
B7 C7 D7 E7

245 129 160 3401

Setup. We initialize by putting S = S� , Z =Z(S�), and A =L =K = ∅ and O1 =O2 = ∅.

Let us now assume that C = (S, Z, A, L, K) is constructed and taken into examination at this step 
of the procedure.

Step 1. Let us assume that S = Z(S). Then XS is abelian, and we can easily parametrize Irr(XS )Z . 
Namely, if Z = {αi1 , . . . , αim } and S \Z = {α j1 , . . . , α jn }, then

Irr(XS)Z =
{
χ

a
b | a = (ai1 , . . . ,aim ) ∈ (F×

q )m,b = (b j1 , . . . ,b jn ) ∈ (F×
q )n

}
,

with χa
b = IndA InfK λ

a
b as explained after (Goodwin et al., 2016a, Lemma 3.5). We add the ele-

ment C to the set O1.
Step 2. Let S �= Z(S), and let R(S) be the set of pairs of the form (β, δ) satisfying the assumptions 

of Proposition 2. Assume R(S) �= ∅. We choose one particular element (β, δ) ∈ R(S), namely we 
choose δ to be maximal with respect to the linear ordering fixed on 	+ , and if (β1, δ), . . . , (βs, δ)
are in R(S), we choose βi minimal with respect to the linear ordering on 	+ . Let us put C′ :=
(S ′, Z ′, A′, L′, K′), with

S ′ = S \ {β, δ}, Z ′ = Z, A′ = A∪ {β}, L′ = L∪ {δ}, K′ = K ∪ {δ}.
Then we have that

Indβ Infδ : Irr(XS ′)Z −→ Irr(XS)Z

is a bijection of irreducible characters. We continue by going back to Step 1 with C′ in place of C.
Step 3. Let C be such that S �= Z(S) and R(S) = ∅. Assume that Z(S) \ (Z ∪ D(S)) �= ∅, and let γ

be its maximal element with respect to the usual linear ordering. Then we have that

Irr(XS)Z = Irr(XS\{γ })Z � Irr(XS)Z∪{γ }.

Correspondingly, we continue by going back to Step 1 with each of the tuples

C′ := (S \ {γ },Z,A,L,K ∪ {γ }) and C′′ := (S,Z ∪ {γ },A,L,K).

Step 4. Let S be such that S �= Z(S), R(S) = ∅ and Z(S) \ (Z ∪D(S)) = ∅. Then XS is not abelian 
and it cannot be reduced further using Proposition 2. We add C to O2. The set Irr(XS ) has to be 
investigated with different methods.

This algorithm has been implemented in GAP (2016) for all groups of rank 7 or less. The numbers 
of nonabelian cores in each case are recorded in Table 1. The convention for the choice of (β, δ) as 
in Step 2 is slightly different from the one in Goodwin et al. (2016a), hence there are some different 
numbers of nonabelian cores for ranks 5 or higher.

We notice that if D(S) �= ∅, then

XS = XS\D(S) × XD(S), hence Irr(XS)Z = Irr(XS\D(S))Z\D(S) × Irr(XD(S))Z∩D(S),

and Irr(XD(S))Z∩D(S) is easily parametrized, as XD(S) is a direct product of its root subgroups. Then 
we assume in the sequel that we have a record of the set D(S), and by slight abuse we identify S
with S \D(S) and Z with Z \D(S).
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Table 2
The numbers of [z, m, c]-cores in types D6 and E6.

D6

[z,m, c] #
[3,9,6] 7
[3,10,9] 15
[4,18,18] 1
[4,21,28] 1
[4,24,43] 1
[5,18,18] 1
[6,19,20] 1

E6

[z,m, c] # [z,m, c] #
[3,9,6] 24 [3,10,9] 45
[4,8,4] 11 [5,10,5] 1
[5,12,8] 2 [5,15,11] 3
[5,16,15] 1 [5,20,25] 1
[5,21,30] 1 [6,12,6] 5
[6,13,7] 1 [6,14,8] 3
[6,15,12] 2 [6,16,12] 1
[6,17,17] 1 [7,15,9] 3

3. Isomorphism of nonabelian cores

The behavior of the nonabelian cores is determined by the relations in the underlying quattern S .
We want to record some invariants associated to such quatterns.

Definition 3. Let C = (S, Z, A, L, K) be a nonabelian core. We say that C is a [z, m, c]-core if

• |Z| = z,
• |S| = m, and
• there are c triples (i, j, k), with i < j and αi, α j, αk ∈ S , such that αi + α j = αk .

The triple [z, m, c] associated to C is called the form of the nonabelian core C.

The focus of this section is to show that a triple [z, m, c] uniquely determines the isomorphism 
type of a core C in simply laced type when the rank of G is 6 or less.

Theorem 4. Let 	+ = D6 or 	+ = E6 , and let S , S ′ be two quatterns of 	+ corresponding to nonabelian 
cores of the form [z, m, c]. Then we have that XS ∼= XS ′ .

The above theorem is proved computationally, following the procedure explained below. We start 
by recording in Table 2 the number of occurrences of each form of nonabelian cores in types D6
and E6. Notice that in these cases, for each z and m there exists a unique c such that [z, m, c] is a 
nonabelian core, then by Theorem 4 the knowledge of |S| and |Z| tells apart the isomorphism type 
of XS .

We recall the lower central series of XS . For all k ∈ Z>0, the k-th member of the lower central 
series is denoted by X (k)

S , recursively defined by X (1)

S := XS and X (k+1)

S := [XS , X (k)

S ]. Notice that 
X (k)

S is always a quattern group, and X (k+1)

S < X (k)

S whenever X (k)

S is nontrivial. We denote by d the 
nilpotency class of XS , that is the unique positive integer such that X (d)

S �= 1 and X (d+1)

S = 1.
The isomorphism test for cores is mainly based on the concept of local height, which is defined as 

follows.

Definition 5. Let C = (S, Z, A, L, K) be a core. A root α ∈ S is said to have local height k if Xα ⊆ X (k)

S
and Xα � X (k+1)

S .

The roots in S are then partitioned into their local height classes as [S1, . . . , Sd], where Sk denotes 
the set of all roots of local height k in S for every k = 1, . . . , d. For any two cores C and C′ , it is clear 
that their quattern groups XS and XS ′ are not isomorphic if there exists a k ≥ 1 such that |Sk| �= |S ′

k|.
Under the assumption that 	+ is of simply laced type, for a quattern S we have that X (k+1)

S =
[XS , X (k)

S ] if and only if Sk+1 = S + Sk; hence every δ ∈ Sk+1 can be written as α + β , with α ∈ Sk
and β ∈ S1. We say that a root α ∈ Sk is a lower bound of a root δ ∈ Sk+1 if there exists a root β ∈ S1

9



such that α+β = δ. The set S naturally inherits a poset structure from 	+ . The suprema of S are the 
elements of Z(S). Notice that if S is a disconnected poset with S = Sa � Sb , then XS = XSa × XSb ; 
without loss of generality, we assume from now on that S is connected.

To show that the quattern groups of two cores of the form [z, m, c] corresponding to S and S ′ are 
isomorphic, we proceed as follows.

(a) We find a poset isomorphism between S and S ′ , that is, a bijection ρ : S → S ′ such that α ≤ β ⇔
ρ(α) ≤ ρ(β) for every α, β ∈ S . Moreover, we require that if α, β ∈ S are such that α + β ∈ S ′ , 
then ρ(α +β) = ρ(α) +ρ(β), and that α +β = γ ⇔ ρ(α) +ρ(β) = ρ(γ ). If such a map ρ exists, 
we go to step (b).

(b) Let ρ be a poset isomorphism between S and S ′ as in (a). We try to lift ρ to a group homo-
morphism ϕ : XS → XS ′ by checking the compatibility of the signs in the commutator relations 
between root elements.

Let S = [S1, . . . , Sd] and S ′ = [S ′
1, . . . , S ′

d] be two quatterns corresponding to a nonabelian core of 
the form [z, m, c], with |Sk| = |S ′

k| for all k = 1, . . . , d. For constructing a poset isomorphism ρ and 
lifting it up as a group isomorphism ϕ , we use the following algorithm.

Setup and base step. For (a), we start with a setup of roots at the first local height layers of S1
and S ′

1, i.e. we choose a bijection ρ from S1 to S ′
1.

For (b), we set ϕ(xα(t)) := xρ(α)(±t) for all α ∈ S1 and all t ∈ Fq . This gives a setting for the first 
local height layer. Notice that the chosen sign ‘+’ works in types D6 and E6, instead of trying every 
choice of the signs ‘+’ and ‘−’.

Iterative step. Assume that we constructed the k-th local height layer map, and Sk+1 and S ′
k+1

are nonempty. We construct the maps ρ for (k + 1)-th local height layers, and ϕ for root groups at 
(k + 1)-th local height layers.

For (a), let δ ∈ Sk+1, where ρ(δ) is yet to be defined. We find α ∈ Sk and β ∈ S1 such that δ = α +
β . If ρ(α) +ρ(β) /∈ S ′

k+1, then this construction ends here, and we return no solution for the choice of 
ρ from the first local height layer. If ρ(α) + ρ(β) ∈ S ′

k+1, then we define ρ(δ) := ρ(α) +ρ(β) ∈ S ′
k+1, 

and proceed further.
For (b), we set ϕ(xδ(t)) := xρ(δ)(εα,βt) for every t ∈ Fq , where εα,β is determined as follows. If 

ϕ(xα(t)) = xρ(α)(ε1t), ϕ(xβ(t)) = xρ(β)(ε2t) and [xα(1), xβ(t)] = xδ(ε3t) for all t ∈ Fq , then εα,β :=
ε1ε2ε3. Notice that in types D6 and E6 we have ε1, ε2, ε3 ∈ {±1}.

We check the compatibility of this setting (that is, that the extension of ϕ on Xδ is well-defined) 
by checking all other pairs (α′, β ′) ∈ Sk−i ×S1+i for i = 1, . . . , k − 1 such that α′ +β ′ = δ. If the value 
εα,β is unique, i.e. there is no pair (α′, β ′) giving εα′,β ′ �= εα,β , then the mapping xδ(t) �→ xρ(δ)(εα,βt)
is well-defined. Otherwise, this extension to Xδ is not well-defined, the construction ends here, and 
we return no solution for this choice of ρ .

Notice that when p = 2, each choice for εα,β is valid, thus the extension is always well-defined 
whenever we find an extension of ρ such that ρ(δ) = ρ(α) + ρ(β) ∈ S ′

k+1 as above.
If there is any other root in Sk+1, then we go back to the iterative step.
Output. Assume that we constructed the k-local height layer map, and Sk+1 = S ′

k+1 = ∅. We obtain 
the required group isomorphism ϕ from XS onto XS ′ .

By using GAP (2016), we apply the isomorphism test to types D6 and E6, and we check that every 
two nonabelian cores corresponding to the same triple [z, m, c] are in fact isomorphic. As previously 
remarked, in types D6 and E6 we only need the setup ϕ(xα(t)) := xρ(α)(t) for all t ∈ Fq in the base 
step, i.e. we do not have to check the negative sign choices. A possible explanation for this behavior 
lies in the fact that we have a small number of isomorphism types of nonabelian cores in rank 6 or 
less. However, Theorem 4 does not generalize to higher rank, as we demonstrate with an example.

Example 6. There exists a [3, 9, 6]-core C in type E7 such that

• S = {α1, α5, α14, α17, α20, α21, α22, α26, α37},
• Z = {α21, α26, α37},
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• A = {α2, α3, α6, α7, α8, α10, α12, α13, α15, α24, α29, α31, α35, α36} and L = {α18, α19, α23, α25, α27,

α28, α30, α34, α39, α40, α41, α42, α44, α45}.

Using the methods described in §4.1, we obtain that Irr(XS )Z(S) consists of q2(q − 1)3 irreducible 
characters of degree q2 for every prime p. On the other hand, we find in E7 another nonabelian 
[3, 9, 6]-core whose underlying quattern group XS ′ is conjugate to the quattern group arising from 
the unique nonabelian core lying inside the natural quotient UD4(q) of UE7(q); this has been studied 
in Himstedt et al. (2011, §4). As recorded in Table 3, we have that Irr(XS ′)Z(S ′) consists instead of 
(q − 1)3 irreducible characters of degree q3 if p ≥ 3.

On the one hand, under the action of the Weyl group of E7 on the root system we get that XS
is isomorphic to the quattern group corresponding to 	+ \ {α1, α3, α5 = α1 + α3} in the root system 
of type D4. On the other hand, it is noted that the [3, 9, 6]-cores we obtain in types D6 and E6
are conjugate to the quattern {α1, . . . , α10} \ {α3} in type D4, which does correspond to the only 
nonabelian core in type D4.

4. A reduction process for nonabelian cores

4.1. A reduction lemma

A method for the study of nonabelian cores is presented in Goodwin et al. (2016a, §4.2). In this 
subsection we present a slight variation of the setup and the method, in order to have a direct algo-
rithmic application to the study of the corresponding quatterns.

Throughout the rest of this subsection, we assume that V is a finite group, H is a subgroup of V
with fixed transversal X in V , and Y , Z are subgroups of V , such that

(i) Z ⊆ Z(V ),
(ii) Y ⊆ Z(H),
(iii) Z ∩ Y = 1, and
(iv) [X, Y ] ⊆ Z .

Moreover, we fix λ ∈ Irr(Z), and we define

X ′ := {x ∈ X | λ([x, y]) = 1 for all y ∈ Y }, Y ′ := {y ∈ Y | λ([x, y]) = 1 for all x ∈ X},
and λ̂ := InfY Z

Z λ. As [Y , H] = 1, we have [Y , V ] = [Y , H X] = [Y , X] ⊆ Z , hence Y Z � V and V acts on 
Irr(Y Z).

Lemma 7. We have I V (λ̂) = H X ′ .

Proof. Let h ∈ H and x ∈ X . For every y ∈ Y and z ∈ Z , we have that

hxλ̂(yz) = λ̂(yhxz) = λ̂(yxz) = λ̂(y[y, x]z) = λ̂(yz)λ([y, x]).
Then hxλ̂ = λ̂ if and only if λ([x, y]) = 1 for every y ∈ Y , that is x ∈ X ′ . �

Let us define H ′ := H X ′ , and let us fix a transversal X̃ of H ′ in V . For every x̃ ∈ X̃ , let us put 
ψx̃ := (x̃λ̂)|Y ∈ Irr(Y ). It is easy to check that ψx̃(y) = λ̂([y, ̃x]) for every y ∈ Y . Let us put W X̃ := {ψx̃ |
x̃ ∈ X̃}.

Lemma 8. W X̃ is a subgroup of Irr(Y ), and

| X̃ | = |W X̃ | = |Y : Y ′|.
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Proof. Let x̃1, ̃x2 ∈ X̃ . Notice that since [Y , H X ′] = kerλ, then if x̃1 x̃2 = x̃3hx′ with x̃3 ∈ X̃ then 
λ([y, ̃x1 x̃2]) = λ([y, ̃x3]) for every y ∈ Y . Hence if ψx̃1 , ψx̃2

∈ W X̃ , then

(ψx̃1ψx̃2
)(y) = (x̃1 λ̂x̃2 λ̂)(y) = x̃1 λ̂(y)x̃2 λ̂(y) = λ̂([y, x̃1][y, x̃2]) = λ̂([y, x̃1 x̃2]) = λ̂([y, x̃3]),

and a similar computation yields ψx̃−1 ∈ W X̃ if ψx̃ ∈ W X̃ . Hence W X̃ is a subgroup of Irr(Y ). Analo-
gously one checks that ψx̃1 �= ψx̃2

if x̃1 �= x̃2, hence | X̃| = |W X̃ |. Finally, notice that

Y ′ =
⋂
x̃∈ X̃

ker(ψx̃) =
⋂

η∈W X̃

ker(η),

hence |W X̃ | = |Y : Y ′|. �
From now on we need an extra assumption on Y ′ , namely

(v) Y ′ has a complement Ỹ in Y .

Proposition 9. We have a bijection

IndV
H ′ InfH ′

H ′/Ỹ
: Irr(H ′/Ỹ | λ) −→ Irr(V | λ). (4)

Proof. Let λ̃ := InfZ Ỹ
Z λ. Lemma 7 yields I V (λ̃) = H X ′ and x̃1 λ̃ �= x̃1 λ̃ if x̃1 �= x̃2. Hence

Irr(Z Ỹ | λ) = {x̃λ̃ | x̃ ∈ X̃}. (5)

Since Z Ỹ � V , by Clifford’s theory we have a bijection

IndV
H ′ : Irr(H ′ | λ̃) −→ Irr(V | λ̃).

By identifying Irr(H ′/Ỹ ) with {η ∈ Irr(H ′) | Ỹ ⊆ ker(η)}, the above yields the bijection

IndV
H ′ InfH ′

H ′/Ỹ
: Irr(H ′/Ỹ | λ) −→ Irr(V | λ̃).

We have that Irr(V | λ̃) = Irr(V | λ) ∩ Irr(V | 1Ỹ ) ⊆ Irr(V | λ).
The claim is then proved if we show Irr(V | λ) ⊆ Irr(V | λ̃). If χ ∈ Irr(V | λ), we have 〈χ |Z Ỹ , λZ Ỹ 〉 �=

0. Let then η ∈ Irr(Z Ỹ | λ) such that χ ∈ Irr(V | η). Then

λ̃ ∈ {x̃λ̃ | x̃ ∈ X̃} = {x̃η | x̃ ∈ X̃} ⊆ {gη | g ∈ V } = {μ ∈ Irr(Z Ỹ ) | 〈χ |Z Ỹ ,μ〉 �= 0},
where the first equality holds by Equation (5), and the second equality holds by Clifford’s theory. 
Hence 0 �= 〈χ |Z Ỹ , ̃λ〉, that is, χ ∈ Irr(V | λ̃). �
Definition 10. The X and Y defined at the start of this section are called candidate for an arm and 
candidate for a leg respectively, and X̃ and Ỹ are called arm and leg respectively.

The terminology of arms and legs is motivated by the case U = UAr(q), as remarked in Himstedt 
et al. (2016, Section 6).

Let V := H ′/(Ỹ kerλ). We observe that Y ′ ⊆ Z(V ). Before stating a consequence of Proposition 9, 
we introduce some notation that is frequently used in the sequel.

Definition 11. Let S be a quattern, and let {αi1 , . . . , αim } be a quattern contained in S such that 
X{αi1 ,...,αim } is abelian. For fixed c1, . . . , cm ∈ F×

q , we define

xc1,...,cm
i1,...,im

(t) := xi1(c1t) · · · xim (cmt) for all t ∈ Fq.
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Moreover, we put

Xc1,...,cm
i1,...,im

:= {xc1,...,cm
i1,...,im

(t) | t ∈ Fq}.

We usually drop the explicit labels c1, . . . , cm ∈ F×
q and we write xi1,...,im (t) instead of xc1,...,cm

i1,...,im
(t), 

and Xi1,...,im instead of Xc1,...,cm
i1,...,im

; the choice of c1, . . . , cm will be made explicit when needed. Notice 
that as Z({αi1 , . . . , αim }) = {αi1 , . . . , αim }, we have that Xi1,...,im

∼= (Fq, +). Moreover, if i := (i1, . . . , im)

with 1 ≤ i1 < · · · < im ≤ |S|, we denote by xi(t) the element xi1,...,im (t), similarly for Xi .

Corollary 12. Assume that Y ′ = Xi1
× · · · × Xis

, where i1, . . . , is are lexicographically ordered. For every
b = (b1, . . . , bs) ∈ Fs

q , let

Kb :=
∏

j=1,...,s|b j=0

Xi j
and Vb := V /Kb,

and let μb ∈ Irr(Y ′/Kb) be such that μb(xi j
(t)) = φ(b jt) for every j = 1, . . . , s. Then the map

� : �
b∈Fs

q

Irr(Vb | λ ⊗ μb) −→ Irr(V | λ)

with �(χ) = InfV
V̄

InfV̄
Vb

(χ) if χ ∈ Irr(Vb | λ ⊗ μb), is a bijective map.

Proof. Observe that for any χ ∈ Irr(V̄ ), we have

〈χ |Z , λ〉 = 〈(χ |Y ′ Z )|Z , λ〉 = 〈χ |Y ′ Z , λY ′ Z 〉 =
∑

μ∈Irr(Y ′)
〈χ |Y ′ Z , λ ⊗ μ〉.

Hence Irr(V̄ |λ) = �μ∈Irr(Y ′) Irr(V̄ | λ ⊗ μ). The claim follows since inflation over Ỹ ker(λ) gives
the bijection Irr(V̄ |λ) → Irr(V |λ) as in Proposition 9, and the bijection �b∈Fs

q
Irr(Vb | λ ⊗ μb) →�μ∈Irr(Y ′) Irr(V̄ | λ ⊗ μ) is given by partitioning Irr(Y ′) into characters with determined root kernel,

namely each of the Kb for b ∈ Fs
q , and by inflating over each of the Kb . �

For example, let us suppose that Y ′ is a diagonal subgroup of XJ isomorphic to Fq , that is s = 1. 
Then

Irr(V | λ) ∼= Irr(V /Y ′ | λ) � �
μ∈Irr(Y ′)\{1Y ′ }

Irr(V | λ ⊗ μ).

We are interested in applying Proposition 9 and Corollary 12 to the setting of quattern groups. 
Given a quattern in rank 6 or less, the validity of the assumptions of the following result is easy to 
check by using GAP (2016). We recall the assumptions (i)–(v) before Proposition 9.

Corollary 13. Let S =P \K be a quattern. Assume that there exist subsets Z , I and J of S , such that

(0) S \ I is a quattern,
(i) Z ⊆Z(S),

(ii) J ⊆Z(S \ I),
(iii) J ∩Z = ∅, and
(iv) α ∈ I, β ∈J , α + β ∈ S ⇒ α + β ∈Z .

Let us put Z = XZ , X = XI , Y = XJ and H = XS\I , and define X ′ , Y ′ and H ′ as in Proposition 9 and V as 
in Corollary 12. Then we have a bijection

IndXS
H̃

InfH ′
V

: Irr(V | λ) −→ Irr(XS | λ).
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Fig. 1. The graphs of the core of the form [5,16,15] in D6 and of the core of the form [6,19,20] in E6.

Proof. By §2.3, it is easy to check that (0) is equivalent to H being a subgroup of XS and each of (i) 
to (iv) is equivalent to the corresponding assumption in Proposition 9. Moreover, (v) is clear as Y is 
elementary abelian. �
Remark 14. Let us assume that S = Z ∪ I ∪J , such that assumption (ii) of Corollary 13 is satisfied. 
Then S \ I is automatically a quattern.

4.2. Graphs of nonabelian cores

Let us fix a nonabelian core C corresponding to S and Z . In order to check the assumptions of 
Corollary 13, we define a graph associated to C.

Definition 15. Let C be a nonabelian core corresponding to S and Z . We say that α, β ∈ S are 
Z-connected, or just connected, if α + β = γ with γ ∈Z .

With this definition, we regard C as a graph whose vertices are the elements of S \Z , and there 
is an edge between α and β if and only if α and β are Z-connected. We then have the usual notion 
of connected components. We say that the heart H of the core C is the set of roots α ∈ S \Z such that 
{α} is a connected component on its own. If H = ∅, we say that the underlying core C is a heartless 
core. Otherwise, we call C a core with a heart.

We now define some important cycles in C, whose analysis allows us to have a systematic proce-
dure to reduce to the study of irreducible characters of smaller subquotients of XS .

Definition 16. We say that C := {β1, . . . , βs} ⊆ S with β1, . . . , βs distinct is a circle in S if βi is con-
nected to βi+1 for i = 1, . . . , s − 1, and βs is connected to β1.

The goal of the rest of this section is to construct unique I and J satisfying the assumptions of 
Corollary 13 for each nonabelian core C.

Remark 17. Let us assume that S contains just a single circle C . Let C = {β1 . . . , βs} in the notation 
of Definition 16. We start by describing a construction of such I and J in this particular case. Let 
us define β0 := βs and βs+1 := β1. We first define δ1 to be the minimal root in C with respect to the 
usual linear ordering on roots. If δ1 = β j1 , then we choose δ2 to be the maximum of β j1−1 and β j1+1.

Now we assume that δi is constructed for 2 ≤ i ≤ s − 1. Then δi = β ji for some β ji , hence δi−1 ∈
{β ji−1, β ji+1}. If δi−1 = β ji−1, we define δi+1 := β ji+1. Vice versa if δi−1 = β ji+1, we define δi+1 :=
β ji−1. Notice that δs is connected to δ1. If s = 2m is even, then we put I := {δ1, δ3, . . . , δ2m−1} and 
J := {δ2, δ4, . . . , δ2m}. If s = 2m + 1 is odd, then we put I := {δ1, δ3, . . . , δ2m−1, δ2m+1} and J :=
{δ2, δ4, . . . , δ2m}.
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Fig. 2. The I and J constructed in Remark 17, corresponding to roots in a dotted box and roots in a straight box respectively,
in the cases of the circles corresponding to the [3, 9, 6]-core of D6 and to the [5, 10, 5]-core of E6.

We now check the conditions of Corollary 13. Assumptions (i), (iii) and (iv) clearly hold. If two 
roots in J were connected to each other, we would have a smaller circle C′ in C , which contradicts 
the assumption of C being the unique circle in S . Hence Z(J ) = J , which implies J ⊆ Z(S \ I). 
Then (ii) is satisfied, and by Remark 14 we have that (0) is also satisfied. Therefore, I and J satisfy 
all the assumptions of the corollary.

We now construct I and J for types D6 and E6 in the case when two or more circles occur 
in S . The number of circles of each nonabelian core in rank 6 or less is relatively small, and we 
check by GAP (2016) that the I and J obtained as follows satisfy the assumptions of Corollary 13
for all nonabelian cores, except the [4, 24, 43]-core in type D6. This core is examined in full details in 
§5.2. For several nonabelian cores in type E7, the I and J constructed in this way do not satisfy the
conditions of Corollary 13. One of the aims of subsequent work is to refine the following construction 
for higher numbers of circles in a nonabelian core.

Setup. We collect all the distinct circles C1, . . . , Ct in S , ordered such that

• if |Ci | is even and |C j | is odd, then i < j;
• if |Ci | �= |C j | have the same parity, then i < j if and only if |Ci | > |C j |; and
• if |Ci | = |C j |, then i < j if and only if min{k | αk ∈ Ci \ C j} < min{k | αk ∈ C j \ Ci}.

As circles are determined just by the relations among roots in S , the sets C1, . . . , Ct can easily be 
determined by using GAP (2016). We decide to look first at the circles with even cardinality because 
the construction of arms and legs of smaller even circles is often compatible with the one of bigger 
even circles, while in general we have less compatibility among odd circles.

Base step. We start by looking at C1. We define I1 and J1 as we determined I and J in Re-
mark 17, namely we decide the minimum root δ of C1 to be in I1, and we alternate adjoining the 
remaining roots of C1 into J1 and I1 in the direction of the maximum neighbor of δ in C1.

Iterative step. Let us suppose that Ik and Jk have been constructed with k < t . Then there exists 
another circle Ck+1 after Ck in the ordering previously fixed. We now define two sets I(Ck+1) and 
J (Ck+1) such that I(Ck+1) ∪J (Ck+1) = Ck+1, and then we take advantage of them to construct Ik+1
and Jk+1.

If Ck+1 ∩ Ik �= ∅, then we construct I(Ck+1) and J (Ck+1) exactly as we constructed I and J
in Remark 17 respectively. If Ck+1 ∩ Ik = ∅ and Ck+1 ∩ Jk �= ∅, then we let Ck+1 = {β1 . . . , βs} be 
as in Definition 16, with β0 := βs and βs+1 := β1. We let δ1 be the maximum root in Ck+1 ∩ Jk ; 
we have δ1 = β j1 for some j1 ∈ {1, . . . , s}. Then we let δ2 be the minimum of the roots β j1−1 and 
β j1+1. If 2 ≤ i ≤ s − 1 and δi is constructed such that δi = β ji , we define δi+1 to be β ji+1 in the case 
δi−1 = β ji−1, and β ji−1 in the case δi−1 = β ji+1. If s = 2m then we put J (Ck+1) := {δ1, δ3, . . . , δ2m−1}
and I(Ck+1) := {δ2, δ4, . . . , δ2m}; otherwise |C| = 2m + 1 and we put J (Ck+1) := {δ1, δ3, . . . , δ2m−1}
and I(Ck+1) := {δ2m+1} ∪ {δ2, δ4, . . . , δ2m}. If Ck+1 ∩Ik = Ck+1 ∩Jk = ∅, again we proceed in the same 
way as Remark 17 to construct I(Ck+1) and J (Ck+1). Finally, we define Ik+1 := Ik ∪ I(Ck+1) and 
Jk+1 := (Jk ∪J (Ck+1)) \ Ik+1.
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Fig. 3. The construction of I and J for the two nonabelian cores of the form [5, 12, 8] and [6, 16, 12] of E6, represented as in 
Fig. 2.

Output. The sets It and Jt are constructed. We define I := It and J := Jt . These sets turn out 
to satisfy our desired properties.

Lemma 18. Let C be a nonabelian core of D6 not of the form [4, 24, 43] or a nonabelian core of E6 , corre-
sponding to S and Z . Then the sets I and J constructed as above satisfy the assumptions of Corollary 13.

Proof. This is a straightforward check, see the corresponding detailed computations and the GAP4 
functions in Le et al. (2018). �

An explicit form of the sets I and J for each nonabelian core in types D6 and E6 is provided in 
Le et al. (2018). Through the construction pointed out above, we can reduce to smaller subquotients 
of XS . The analysis of Irr(XS ) for a heartless core is straightforward, once the sets X ′ and Y ′ are 
explicitly known, as such subquotients turn out to be abelian, except in the case of the [6, 16, 12]-core 
of E6; the study of heartless cores is explained in §5.1. The analysis of nonabelian cores with a heart, 
detailed in §5.2, is more complicated. In particular, the case of the [4, 24, 43]-core of D6 is not covered 
by Lemma 18; we treat it by applying directly Proposition 9.

Remark 19. Let 	 be a root system of type D6 or E6. Let I = {i1, . . . , im}, J = { j1, . . . , j�} and 
Z satisfy the assumptions of Corollary 13. The equation λ([y, x]) = 1, for x = xi1 (ti1 ) · · · xir (tir ) ∈ X
and y = x j1 (s j1 ) · · · x j� (s j� ) ∈ Y , where ti1 , . . . , tir , s j1 , . . . , s j� are unknown variables over Fq , can be 
rewritten as

�∑
h=1

m∑
k=1

dh,ks jh tik = 0, (6)

which just contains linear terms in the s jh ’s and the tik ’s, where each constant dh,k ∈ Fq depends on 
S and the choice of the extraspecial pairs in U . In particular, if αih + α jk /∈ S then dh,k = 0.

It is then easy to work out explicitly X ′ (respectively Y ′), namely by finding the values of 
ti1 , . . . , tim ∈ Fq (respectively s j1 , . . . , s j� ∈ Fq) such that Equation (6) holds for every s j1 , . . . , s j� ∈ Fq

(respectively for every ti1 , . . . , tim ∈ Fq).

5. Parametrization of Irr(UD6(q)) and Irr(UE6(q))

We now describe the parametrization of the sets Irr(XS )Z that arise from nonabelian cores
in types D6 and E6. By Theorem 4, it is enough to consider just one quattern arising from each 
[z, m, c]-core in Table 2. Applying Propositions 1 and 2, we can then obtain the corresponding 
parametrization of characters in Irr(U ) using the information stored in A and L and the record of 
roots in direct products.
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Table 3
Parametrization of nonabelian cores in UD6(q) for every p.

Form Family Label Number Degree

[3,9,6] F p �=2
1 χa18,a19,a24 (q − 1)3 q3

F p=2
1 χ

a18,a19,a24
b2,10,11,b8,14,15

q2(q − 1)3 q2

[3,10,9] F p �=2
2 χ

a12,a27,a28
b2

q(q − 1)3 q3

F1,p=2
2 χa12,a27,a28 (q − 1)3 q3

F2,p=2
2 χ

a7,8,26,a12,a27,a28
d2,d1,3,24

4(q − 1)4 q3/2

[4,18,18] F p �=2
3 χ

a16,a21,a22,a28
b2,b4

q2(q − 1)4 q6

F1,p=2
3 χa16,a21,a22,a28 (q − 1)4 q6

F2,p=2
3 χ

a7,18,19,a16,a21,a22,a28
d1,14,15,d2

4(q − 1)5 q6/2

F3,p=2
3 χ

a10,11,17,a16,a21,a22,a28
d4,d5,6,12

4(q − 1)5 q6/2

F4,p=2
3 χ

a7,18,19,a10,11,17,a16,a21,a22,a28
d1,14,15,d2,d4,d5,6,12

16(q − 1)6 q6/4

[4,21,28] F p �=2
4 χ

a20,a21,a22,a26
b3,13,b8,b9

q3(q − 1)4 q7

F1,p=2
4 χ

a20,a21,a22,a26
b3,13

q(q − 1)4 q7

F2,p=2
4 χ

a12,18,19,a20,a21,a22,a26
b3,9,13,d1,10,11,d8

4q(q − 1)5 q7/2

F3,p=2
4 χ

a14,15,17,a20,a21,a22,a26
b3,8,13,d5,6,7,d9

4q(q − 1)5 q7/2

F4,p=2
4 χ

a12,18,19,a14,15,17,a20,a21,a22,a26
d1,5,6,7,10,11,b3,8,9,13,d8,9

4q(q − 1)6 q7/2

[4,24,43] F1,p �=2
5 χ

a13,a21,a22,a23,a24
b3

q(q − 1)5 q9

F2,p �=2
5 χa8,9,a21,a22,a23,a24 (q − 1)5 q9

[4,24,43] F3,p �=2
5 χ

a21,a22,a23,a24
b2,4,b3

q2(q − 1)4 q8

F1,p=2
5 χ

a17,18,19,a21,a22,a23,a24
d1,5,6,b3,d13

4q(q − 1)5 q9/2

F2,p=2
5 χ

a8,9,a17,18,19,a21,a22,a23,a24
b2,4,7,10,11,b12,14,15

q2(q − 1)5 q8

F3,p=2
5 χ

a21,a22,a23,a24
b2,4

q(q − 1)4 q8

F4,p=2
5 χ

a12,14,15,a21,a22,a23,a24
b2,4,d3,d7,11

4q(q − 1)5 q8/2

[5,18,18] F p �=2
6 χ

a17,a18,a19,a24,a25
b3

q(q − 1)5 q6

F1,p=2
6 χ

c∗
8,14,15,a17,a18,a19,a24,a25

b2,4,7,10,11,16,b9,12,20
q2(q − 1)6 q5

F2,p=2
6 χ

a17,a18,a19,a24,a25
b2,4,7,10,11,16

q(q − 1)5 q5

F3,p=2
6 χ

c∗
9,12,20,a17,a18,a19,a24,a25

b2,4,7,10,11,16,d2,4,7,10,11,16,d3
4q(q − 1)6 q5/2

[6,19,20] F1,p �=2
7 χ

a13,a17,a18,a19,a24,a∗
25

b3
q(q − 1)5(q − 2) q6

F2,p �=2
7 χa8,9,12,14,15,20,a13,a17,a18,a19,a24 (q − 1)6 q6

F3,p �=2
7 χ

a13,a17,a18,a19,a24
b2,4,7,10,11,16,b3

q2(q − 1)5 q5

F p=2
7 χ

a13,a17,a18,a19,a24,a25
b3

q(q − 1)6 q6

The degrees of the irreducible characters and the numbers of irreducible characters of fixed degree 
arising from a nonabelian [z, m, c]-core are collected in Table 3 for UD6(q) and in Table 4 for UE6(q), 
along with the labels of the characters in each Irr(XS )Z . We notice that the parametrization is uni-
form for p ≥ 3 in type D6, and for p ≥ 5 in type E6. For q = 2 f in type D6, and for q = 2 f or q = 3 f

in type E6, the parametrization is more complicated.
Let us put v := q − 1, and let S and Z correspond to a nonabelian core C. The number | Irr(XS )Z |

may not always be expressed as a polynomial in v with nonnegative coefficients, even when p is a 
good prime, as in the case of C of the form [7, 15, 9] in type E6 (see Table 4), where | Irr(XS )Z | =
v6(v2 + 2v − 2) for corresponding S and Z . Nevertheless, we notice that for a good prime p in both 
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cases U = UD6(q) and U = UE6(q), the character degrees of U are powers of q, and the numbers 
k(U , qd) of irreducible characters of U of degree qd are in Z[v] for every power q of p and every 
d ∈ Z≥0.

We collect the numbers of irreducible characters of each fixed degree of UD6(q) in Tables 5 and 
6 when p ≥ 3 and p = 2 respectively, and of UE6(q) in Tables 7, 8 and 9 when p ≥ 5, p = 3 and 
p = 2 respectively. We notice that we have fractional degrees of the form q3/2, . . . , q11/2 and q10/4
in UD6(2 f ), q3/2, . . . , q15/2 in UE6(2 f ), and q7/3 in UE6(3 f ). Observe that the numbers k(U , D) of 
irreducible characters of U of fixed degree D can always be expressed as polynomials in v with 
nonnegative coefficients; such coefficients are in fact integers, except in the cases

k(UE6(q),q7), k(UE6(q),q7/3) ∈ Z[v/2] \Z[v].
When p is a good prime, the formulas for each k(U , qd) coincide with the expressions obtained in 
Goodwin et al. (2016b, Table 3) when p is at least the Coxeter number of G .

We recall the algorithm in §2.3. If a core is abelian, then through our computer records of A, L
and K, each of the characters χa

b = IndA InfK λ
a
b can be constructed. The elements a = (ai1 , . . . , ain )

and b = (b j1 , . . . , b jm ) correspond to character values in F×
q (respectively Fq) on the root subgroups 

Xαi1
, . . . , Xαim

(respectively Xα j1
, . . . , Xα jn

). In fact, the values of each χa
b can be in principle explicitly 

determined, see Goodwin et al. (2017). In the case of nonabelian cores, we still get our characters 
parametrized as IndA InfK ψ with ψ ∈ Irr(XS )Z , but in this case XS is not abelian. Here we are 
also able to record electronically the form of the abelian subquotients that yield characters of U by 
inflation and induction, see the examples worked out in Le et al. (2018). The labels of the characters, 
which again correspond to character values in such subquotients, are though more elaborated, since 
diagonal subgroups of products of root groups are involved.

It is enough to provide a parametrization and labels for one representative of each isomorphism 
class of nonabelian cores. In fact, let S = {αi1 , . . . , αir } and S ′ = {α j1 , . . . , α jr } be quatterns corre-
sponding to the same isomorphism class of cores. Then the bijection ρ : S → S ′ yields a bijection 
σ : {i1, . . . , ir} → { j1, . . . , jr}. Once we determine a parametrization for the core corresponding to S , 
the parametrization of the core corresponding to S ′ is given just by replacing each index i with σ(i), 
and by possibly re-ordering these labels in increasing index order.

As in §2.4, the label a (respectively b) corresponds to a tuple of elements of F×
q (respectively Fq). 

The meaning of a∗ in a label of the form a, a∗ is that a∗
j ∈ F×

q \ { f j(a)} for every 1 ≤ j ≤ �, where
� is a positive integer and each f j(a) is a nonzero expression depending on a; these are explicitly 
determined in each case. A label of the form c∗ corresponds to a more involved expression indexed 
by F×

q , detailed in the case-by-case analysis. Finally, labels of the form d index elements of a subset 
of (Fq, +) isomorphic to (Fp, +), and the labels e1 and e2 correspond respectively to (q + 1)/2 and 
(q − 1)/2 elements in Fq when q = 3 f .

5.1. Heartless cores

Recall that the heart of a nonabelian core consists of the roots α such that {α} is a connected 
component in the associated graph defined in §4.2. Among the cores of D6 (respectively E6) listed in 
Table 3 (respectively Table 4), the following forms are heartless,

[3,9,6], [4,8,4], [5,10,5], [5,12,8], [5,15,11],
[6,12,6], [6,13,7], [6,14,8], [6,16,12], [7,15,9].

In Proposition 20 we study in detail the [6, 16, 12]-core, whose analysis departs from the uniform 
treatment of the remaining heartless cores which we discuss first.

Now let (S, Z, A, L, K) be a nonabelian core of one of the forms listed above, but not [6, 16, 12]. 
Then we have that S =Z∪I∪J , for I = {i1, . . . , ik} and J = { j1, . . . , jh} as defined in Section 4, and 
the study of Equation (6) yields X ′ = 1 or X ′ = {xi1,...,ik (t) | t ∈ Fq}, and Y ′ = 1 or Y ′ = {x j1,..., jh (s) | s ∈
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Table 4
Parametrization of nonabelian cores in UE6(q) for every p.

Form Family Label Number Degree

[3,9,6] F p �=2
1 χa23,a29,a31 (q − 1)3 q3

F p=2
1 χ

a23,a29,a31
b7,11,19,b12,16,24

q2(q − 1)3 q2

[3,10,9] F p �=2
2 χ

a23,a29,a31
b4

q(q − 1)3 q3

F1,p=2
2 χa23,a29,a31 (q − 1)3 q3

F2,p=2
2 χ

a12,16,24,a23,a29,a31
d4,d7,11,19

4(q − 1)4 q3/2

[4,8,4] F1
3 χa8,a12,a14,a∗

18 (q − 1)3(q − 2) q2

F2
3 χ

a8,a12,a14
b2,7,b4,10

q2(q − 1)3 q

[5,10,5] F4 χ
a7,a9,a10,a17,a19
b1,4,13

q(q − 1)5 q2

[5,12,8] F5 χ
a9,a15,a16,a26,a27
b3,4,6,17

q(q − 1)5 q3

[5,15,11] F p �=3
6 χa12,a16,a22,a24,a25 (q − 1)5 q5

F p=3
6 χ

a12,a16,a22,a24,a25
b1,4,6,13,14,b7,9,10,11,19

q2(q − 1)5 q4

[5,16,15] F p �=2
7 χ

a15,a17,a18,a20,a21
b4

q(q − 1)5 q5

F1,p=2
7 χa15,a17,a18,a20,a21 (q − 1)5 q5

F2,p=2
7 χ

a8,9,10,12,16,a15,a17,a18,a20,a21
d4,d2,3,5,7,11

4(q − 1)6 q5/2

[5,20,25] F p �=3
8 χ

a17,a18,a20,a21,a24
b2,3,5

q(q − 1)5 q7

F1,p=3
8 χa7,11,13,14,15,a17,a18,a20,a21,a24 (q − 1)6 q7

F2,p=3
8 χ

a17,a18,a20,a21,a24
b1,6,8,9,10,12,16,b2,3,5

q2(q − 1)5 q6

[5,21,30] F p �=3
9 χ

a17,a18,a19,a20,a21
b4,b8,9,10

q2(q − 1)5 q7

F1,p=3
9 χ

a12,13,14,15,16,a17,a18,a19,a20,a21
b4

q(q − 1)6 q7

[5,21,30] F2,p=3
9 χ e1

8,9,10,a17,a18,a19,a20,a21 (q − 1)5(q + 1)/2 q7

F3,p=3
9 χ

e2
8,9,10,a17,a18,a19,a20,a21

d1,2,3,5,6,7,11,d4
9(q − 1)6/2 q7/3

[6,12,6] F1
10 χa8,a10,a12,a15,a23,a∗

25 (q − 1)5(q − 2) q3

F2
10 χ

a8,a10,a12,a15,a23
b1,2,5,b4,9,21

q2(q − 1)5 q2

[6,13,7] F11 χ
a7,a11,a18,a19,a26,a28
b1,5,14,24

q(q − 1)6 q3

[6,14,8] F1
12 χa12,a13,a15,a16,a20,a∗

22 (q − 1)5(q − 2) q4

F2
12 χ

a12,a13,a15,a16,a20
b3,6,7,11,b4,8,10,14

q2(q − 1)5 q3

[6,15,12] F p �=2
13 χ

a8,a9,a15,a20,a22,a23
b4,10

q(q − 1)6 q4

F1,p=2
13 χa8,a9,a15,a20,a22,a23 (q − 1)6 q4

F2,p=2
13 χ

a8,a9,c∗
14,16,18,a15,a20,a22,a23

d2,3,6,7,d4,10
4(q − 1)7 q4/2

[6,16,12] F p �=3
14 χa12,a16,a18,a22,a24,a25 (q − 1)6 q5

F p=3
14 χ

a12,a16,a18,a22,a24,a25
b1,6,7,14,b4,6,7,13

q2(q − 1)6 q4

[6,17,17] F1,p �=2
15 χ

a13,a14,a15,a17,a20,a∗
23

b4
q(q − 1)5(q − 2) q5

F2,p �=2
15 χa8,9,10,12,16,a13,a14,a15,a17,a20 (q − 1)6 q5

F3,p �=2
15 χ

a13,a14,a15,a17,a20
b2,3,5,7,11,b4

q2(q − 1)5 q4

F1,p=2
15 χa8,9,10,12,16,a13,a14,a15,a17,a20 (q − 1)6 q5

F2,p=2
15 χa13,a14,a15,a17,a20,a∗

23 (q − 1)5(q − 2) q5

F3,p=2
15 χ

a8,9,10,12,16,a13,a14,a15,a17,a20,a∗
23

d2,3,5,7,11,d4
4(q − 1)6(q − 2) q5/2

F4,p=2
15 χ

a13,a14,a15,a17,a20
b2,3,5,7,11,b4

q2(q − 1)5 q4

[7,15,9] F1
16 χa9,a12a13,a15,a16,a∗

20,a∗
22 (q − 1)5(q − 2)2 q4

F2
16 χa9,a12a13,a15,a16,a22 (q − 1)6 q4

F3
16 χ

a9,a12a13,a15,a16,a∗
20

b3,6,7,11,b4,8,10,14
q2(q − 1)5(q − 2) q3
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Table 5
The numbers of irreducible characters of UD6(q) of fixed degree for q = pd , p ≥ 3, where v = q − 1.

D k(UD6(pd), D), p ≥ 3

1 v6 + 6v5 + 15v4 + 20v3 + 15v2 + 6v + 1

q v7 + 9v6 + 31v5 + 54v4 + 51v3 + 25v2 + 5v

q2 v8 + 9v7 + 38v6 + 89v5 + 119v4 + 89v3 + 34v2 + 5v

q3 v8 + 15v7 + 72v6 + 165v5 + 201v4 + 130v3 + 40v2 + 4v

q4 3v8 + 31v7 + 124v6 + 246v5 + 260v4 + 145v3 + 39v2 + 4v

q5 v10 + 10v9 + 46v8 + 135v7 + 280v6 + 393v5 + 339v4 + 163v3 + 36v2 + 2v

q6 2v9 + 18v8 + 77v7 + 200v6 + 317v5 + 288v4 + 138v3 + 30v2 + 2v

q7 5v8 + 43v7 + 154v6 + 282v5 + 270v4 + 128v3 + 25v2 + v

q8 3v8 + 31v7 + 122v6 + 227v5 + 208v4 + 89v3 + 15v2 + v

q9 v9 + 9v8 + 41v7 + 113v6 + 181v5 + 152v4 + 61v3 + 8v2

q10 v8 + 8v7 + 31v6 + 62v5 + 61v4 + 27v3 + 5v2

q11 2v7 + 12v6 + 29v5 + 32v4 + 15v3 + 2v2

q12 v6 + 4v5 + 6v4 + 4v3 + v2

k(UD6(q)) = v10 + 13v9 + 87v8 + 393v7 + 1157v6 + 2032v5 + 2005v4 + 1060v3 + 275v2 + 30v + 1

Table 6
The numbers of irreducible characters of UD6(q) of fixed degree for q = 2d , where v = q − 1.

D k(UD6(2d), D)

1 v6 + 6v5 + 15v4 + 20v3 + 15v2 + 6v + 1

q v7 + 9v6 + 31v5 + 54v4 + 51v3 + 25v2 + 5v

q2 v8 + 9v7 + 38v6 + 89v5 + 119v4 + 89v3 + 34v2 + 5v

q3/2 4v6 + 8v5 + 4v4

q3 v8 + 15v7 + 71v6 + 163v5 + 200v4 + 130v3 + 40v2 + 4v

q4/2 4v7 + 16v6 + 16v5 + 4v4

q4 4v8 + 35v7 + 128v6 + 247v5 + 260v4 + 145v3 + 39v2 + 4v

q5/2 4v7 + 16v6 + 20v5 + 8v4

q5 v10 + 10v9 + 46v8 + 135v7 + 278v6 + 388v5 + 337v4 + 163v3 + 36v2 + 2v

q6/2 8v7 + 28v6 + 28v5 + 8v4

q6 2v9 + 18v8 + 76v7 + 196v6 + 312v5 + 286v4 + 138v3 + 30v2 + 2v

q7/2 4v7 + 24v6 + 32v5 + 12v4

q7 6v8 + 47v7 + 157v6 + 280v5 + 268v4 + 128v3 + 25v2 + v

q8/2 8v7 + 36v6 + 36v5 + 8v4

q8 4v8 + 35v7 + 122v6 + 221v5 + 205v4 + 89v3 + 15v2 + v

q9/2 12v7 + 40v6 + 36v5 + 8v4

q9 v9 + 9v8 + 38v7 + 102v6 + 168v5 + 149v4 + 61v3 + 8v2

q10/4 16v6

q10/2 8v7 + 20v6 + 28v5 + 4v4

q10 v8 + 6v7 + 25v6 + 55v5 + 60v4 + 27v3 + 5v2

q11/2 8v6 + 12v5 + 4v4

q11 2v7 + 10v6 + 26v5 + 31v4 + 15v3 + 2v2

q12 v6 + 4v5 + 6v4 + 4v3 + v2

k(UD6(q)) = v10 + 13v9 + 90v8 + 447v7 + 1346v6 + 2206v5 + 2050v4 + 1060v3 + 275v2 + 30v + 1

Fq} for some xi1,...,ik (t) and x j1,..., jh (s) as in Definition 11. Hence by Proposition 9 and Equation (2), if 
we put Z = XZ/(kerλ) then we have that

IndXS
X ′ XJ XZ

Inf
X ′ XJ XZ
X ′Y ′ Z : �

λ∈Irr(XZ )

Irr(X ′Y ′ Z | λ) −→ Irr(XS)Z
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Table 7
The numbers of irreducible characters of UE6(q) of fixed degree for q = pd , p ≥ 5, where v = q − 1.

D k(UE6(pd), D), p ≥ 5

1 v6 + 6v5 + 15v4 + 20v3 + 15v2 + 6v + 1

q v7 + 9v6 + 31v5 + 54v4 + 51v3 + 25v2 + 5v

q2 5v7 + 34v6 + 93v5 + 130v4 + 97v3 + 36v2 + 5v

q3 v9 + 9v8 + 42v7 + 123v6 + 223v5 + 240v4 + 145v3 + 44v2 + 5v

q4 5v8 + 42v7 + 155v6 + 300v5 + 316v4 + 176v3 + 46v2 + 4v

q5 2v9 + 23v8 + 118v7 + 327v6 + 518v5 + 462v4 + 219v3 + 48v2 + 3v

q6 14v8 + 113v7 + 367v6 + 602v5 + 523v4 + 231v3 + 45v2 + 3v

q7 v11 + 11v10 + 57v9 + 186v8 + 433v7 + 730v6 + 826v5 + 560v4 + 204v3 + 36v2 + 2v

q8 v10 + 10v9 + 51v8 + 173v7 + 396v6 + 558v5 + 444v4 + 183v3 + 31v2 + v

q9 3v9 + 30v8 + 144v7 + 385v6 + 575v5 + 455v4 + 177v3 + 28v2 + v

q10 12v8 + 95v7 + 304v6 + 480v5 + 375v4 + 131v3 + 16v2 + v

q11 2v9 + 21v8 + 97v7 + 243v6 + 334v5 + 233v4 + 71v3 + 10v2

q12 2v8 + 20v7 + 76v6 + 139v5 + 124v4 + 49v3 + 6v2

q13 3v7 + 24v6 + 63v5 + 68v4 + 28v3 + 3v2

q14 4v6 + 19v5 + 27v4 + 12v3 + v2

q15 3v5 + 8v4 + 5v3

q16 v4 + v3

k(UE6(q)) = v11 + 12v10 + 75v9 + 353v8 + 1286v7 + 3178v6 + 4770v5 + 4035v4 + 1800v3 + 390v2 + 36v + 1

Table 8
The numbers of irreducible characters of UE6(q) of fixed degree for q = 3d , where v = q − 1.

D k(UE6(3d), D)

1 v6 + 6v5 + 15v4 + 20v3 + 15v2 + 6v + 1

q v7 + 9v6 + 31v5 + 54v4 + 51v3 + 25v2 + 5v

q2 5v7 + 34v6 + 93v5 + 130v4 + 97v3 + 36v2 + 5v

q3 v9 + 9v8 + 42v7 + 123v6 + 223v5 + 240v4 + 145v3 + 44v2 + 5v

q4 5v8 + 42v7 + 155v6 + 300v5 + 316v4 + 176v3 + 46v2 + 4v

q5 2v9 + 23v8 + 118v7 + 327v6 + 518v5 + 462v4 + 219v3 + 48v2 + 3v

q6 14v8 + 113v7 + 367v6 + 602v5 + 523v4 + 231v3 + 45v2 + 3v

q7/3 9v6/2

q7 v11 + 11v10 + 57v9 + 186v8 + 434v7 + 1463v6/2 + 827v5 + 560v4 + 204v3 + 36v2 + 2v

q8 v10 + 10v9 + 52v8 + 178v7 + 403v6 + 560v5 + 444v4 + 183v3 + 31v2 + v

q9 3v9 + 30v8 + 144v7 + 384v6 + 572v5 + 455v4 + 177v3 + 28v2 + v

q10 12v8 + 95v7 + 304v6 + 480v5 + 375v4 + 131v3 + 16v2 + v

q11 2v9 + 21v8 + 97v7 + 243v6 + 334v5 + 233v4 + 71v3 + 10v2

q12 2v8 + 20v7 + 76v6 + 139v5 + 124v4 + 49v3 + 6v2

q13 3v7 + 24v6 + 63v5 + 68v4 + 28v3 + 3v2

q14 4v6 + 19v5 + 27v4 + 12v3 + v2

q15 3v5 + 8v4 + 5v3

q16 v4 + v3

k(UE6(q)) = v11 + 12v10 + 75v9 + 354v8 + 1292v7 + 3190v6 + 4770v5 + 4035v4 + 1800v3 + 390v2 + 36v + 1

is a bijective map.
If |X ′| = qs and |Y ′| = qt , put δ := logq(|X ′||Y ′|) = s + t .

• If the sizes of |X ′| and |Y ′| do not depend on the values of λ on Irr(XZ ), then we have that

Irr(XS)Z = {χa
b | b ∈ Fδ

q,a ∈ (F×
q )|Z|},
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Table 9
The numbers of irreducible characters of UE6(q) of fixed degree for q = 2d , where v = q − 1.

D k(UE6(2d), D)

1 v6 + 6v5 + 15v4 + 20v3 + 15v2 + 6v + 1

q v7 + 9v6 + 31v5 + 54v4 + 51v3 + 25v2 + 5v

q2 5v7 + 34v6 + 93v5 + 130v4 + 97v3 + 36v2 + 5v

q3/2 4v6 + 8v5 + 4v4

q3 v9 + 9v8 + 42v7 + 122v6 + 221v5 + 239v4 + 145v3 + 44v2 + 5v

q4/2 8v6 + 16v5 + 8v4

q4 5v8 + 44v7 + 159v6 + 302v5 + 316v4 + 176v3 + 46v2 + 4v

q5/2 12v6 + 24v5 + 12v4

q5 2v9 + 24v8 + 123v7 + 333v6 + 517v5 + 459v4 + 219v3 + 48v2 + 3v

q6/2 16v6 + 32v5 + 16v4

q6 14v8 + 115v7 + 368v6 + 597v5 + 519v4 + 231v3 + 45v2 + 3v

q7/2 24v7 + 92v6 + 92v5 + 20v4

q7 v11 + 11v10 + 57v9 + 188v8 + 437v7 + 723v6 + 811v5 + 555v4 + 204v3 + 36v2 + 2v

q8/2 4v7 + 28v6 + 44v5 + 20v4

q8 v10 + 10v9 + 51v8 + 176v7 + 399v6 + 553v5 + 441v4 + 183v3 + 31v2 + v

q9/2 8v7 + 44v6 + 56v5 + 20v4

q9 3v9 + 32v8 + 154v7 + 398v6 + 577v5 + 452v4 + 177v3 + 28v2 + v

q10/2 4v7 + 28v6 + 44v5 + 20v4

q10 13v8 + 102v7 + 314v6 + 479v5 + 370v4 + 131v3 + 16v2 + v

q11/2 4v7 + 36v6 + 56v5 + 20v4

q11 2v9 + 21v8 + 98v7 + 239v6 + 320v5 + 224v4 + 71v3 + 10v2

q12/2 12v6 + 28v5 + 16v4

q12 2v8 + 20v7 + 74v6 + 132v5 + 119v4 + 49v3 + 6v2

q13/2 8v6 + 24v5 + 12v4

q13 3v7 + 22v6 + 57v5 + 64v4 + 28v3 + 3v2

q14/2 8v5 + 8v4

q14 4v6 + 17v5 + 25v4 + 12v3 + v2

q15/2 4v4

q15 3v5 + 7v4 + 5v3

q16 v4 + v3

k(UE6(q)) = v11 + 12v10 + 75v9 + 359v8 + 1364v7 + 3487v6 + 5148v5 + 4170v4 + 1800v3 + 390v2 + 36v + 1

where a is indexed by root indices of XZ , and b is indexed by the i1, . . . , ik or j1, . . . , jh in the 
cases when X ′ �= 1 or Y ′ �= 1.

• In the case when |X ′| and |Y ′| do depend on the values of λ, then we get a branching which
results in a decomposition of Irr(XS )Z as a union of families of the following form,

{χa,a∗
b | b ∈ Fδ

q,a ∈ (F×
q )|Z|−�,a∗ ∈ S},

where 1 ≤ � ≤ |Z| is an integer, and

S := (F×
q \ { f1(a)}) × · · · × (F×

q \ { f�(a)})
for fractional polynomial expressions f1, . . . , f� that are explicitly determined. Notice that in the 
case of D6 and E6 we always have that � ∈ {0, 1} except in the case of a [7, 15, 8]-core, where we 
have that � = 2.
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The successive stabilizers in a study of a nonabelian core are given in terms of the solutions of 
an equation of the form φ(P ) = 0 with P some polynomial expression in several variables. If P is 
linear in all variables, as in the case of Equation (6) corresponding to the first stabilizer in the core 
examination, then we can find solutions and labels via our programs in GAP4. If this is not the case, 
then the number of such solutions does depend on the values of the character λ, and we obtain 
families of curves in Fs

q for some s ∈ Z≥1. Describing such curves is a challenge in computational 
algebra. Here lies essentially the only part of the computations that one has to perform by hand.

The cores of the form [3, 9, 6] in both D6 and E6 are isomorphic to one of the nonabelian cores 
of F4 determined in Goodwin et al. (2016a, §4.3). As done in Goodwin et al. (2016a), we include no 
further details here for the straightforward analysis of heartless cores, and we refer to Le et al. (2018)
for information on the sets S , Z , A and L and the form of Equation (6) and other equations defining 
stabilizers in each case. The labels of the sets Irr(XS )Z are collected in Tables 3 and 4.

Recall that there is a unique nonabelian core of E6 of the form [6, 16, 12]. In this case,

• S = {α1, α4, α6, α7, α9, α10, α11, α12, α13, α14, α16, α18, α19, α22, α24, α25},
• Z = {α12, α16, α18, α22, α24, α25},
• A = {α2, α3, α5, α15} and L = {α8, α17, α20, α21},
• I = {α1, α4, α6, α7, α13, α14} and J = {α9, α10, α11, α19}.

Our analysis differs from the previous cases in that X ′ is not a subgroup, and |X ′| = q2. The graph 
structure of C, represented in Fig. 3, is more complicated than in the case of the other heartless 
cores, as we have 7 circles of both parities. This case can be examined in a similar way by applying 
Proposition 9 after the first reduction. We end this subsection by including the computational details 
in this case.

Proposition 20. The irreducible characters corresponding to the [6, 16, 12]-core in type E6 are parametrized 
as follows:

• If p �= 3, then Irr(XS )Z =F p �=3
14 consists of (q − 1)6 characters of degree q5.

• If p = 3, then Irr(XS )Z =F p=3
14 consists of q2(q − 1)6 characters of degree q4.

The labels of the characters in F p �=3
14 and F p=3

14 are collected in Table 4.

Proof. The form of Equation (6) is

s1(a22t19 + a12t9) + s4(a16t11 + a24t19) + s6(−a16t10 − a25t19) + s7(a18t10)

+ s13(a24t10 + a25t11) + s14(a24t9) = 0.

We have X ′ = X ′
1 X ′

2 with X ′
1 := {x1,6,7,14(t1) | t1 ∈ Fq} and X ′

2 := {x4,6,7,13(t2) | t2 ∈ Fq}, and Y ′ = 1,
where

x1,6,7,14(t1) := x1(a18a24a25t1)x6(a18a22a24t1)x7(a16a22a24t1)x14(−a12a18a25t1)

and

x4,6,7,13(t2) := x4(a18a25t2)x6(a18a24t2)x7(2a16a24t2)x13(−a16a18t2).

We notice that each of X ′
1 and X ′

2 are subgroups, but we have

[x1,6,7,14(t1), x4,6,7,13(t2)] = x12(a16a18a22a24a25t1t2)x16(2a12a18a22a24a25t1t2),

hence

λ([x1,6,7,14(t1), x4,6,7,13(t2)]) = φ(3a12a16a18a22a24a25t1t2)
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and X ′ is not necessarily a subgroup of XS .
If p �= 3, then we can apply again Proposition 9 with arm X ′

1 and leg X ′
2, reducing to the abelian

subquotient XZ/(kerλ). This gives the family F p �=3
14 in Table 4.

If p = 3, then X ′ and X ′ XZ are abelian subgroups of XS/(kerλ). In this case, we obtain the family 
F p=3

14 in Table 4, which concludes our analysis. �
5.2. Cores with a heart

We now want to investigate the cores of the form

[3,10,9], [4,18,18], [4,21,28], [4,24,43], [5,18,18], [6,19,20]
in type D6, and of the form

[3,10,9], [5,16,15], [5,20,25], [5,21,30], [6,15,12], [6,17,17]
in type E6. To study them, we apply repeatedly Proposition 9 and Corollary 12.

We recall the structure of the graph of C in each case. The cores of the form [3, 10, 9] have a 
single circle, and a heart of size 1. The graphs of the cores of the form [4, 18, 18], [4, 21, 28] and 
[5, 18, 18] have two connected components, and each of them is a hexagon. Their hearts have sizes 
2, 5 and 1 respectively. The graph of the [6, 19, 20]-core contains 6 circles, as Fig. 1 shows, and its 
heart has size 1. The graph of [5, 16, 15]-core, as in Fig. 1, has three circles, as well as the graphs of 
the [5, 20, 25]-core and the [5, 21, 30]-core, and their hearts have sizes 1, 5 and 6 respectively. The 
heart of the latter nonabelian core is the biggest among all nonabelian cores in rank 6 or less, which 
makes it one of the most complicated to study. We just refer to Le and Magaard (2015, Section 3) in 
the sequel, where the study of the [5, 21, 30]-core of E6 has been carried out thoroughly. The graph 
of [6, 15, 12]-core has two connected components, namely its unique circle, and its heart of size 1. 
Finally, we find 3 circles in the [6, 17, 17]-core; here |H| = 1.

The cores of the form [3, 10, 9] in types D6 and E6 are isomorphic to the only [3, 10, 9]-core in 
type F4. The additional complication in the analysis of a core with a heart, as in Goodwin et al. 
(2016a, §4.3), lies in the determination of a certain non-linear polynomial over Fq , which arises from 
the action of the root subgroups indexed by the heart on a suitable subquotient of XS , and of the 
solutions in Fq of an equation depending on such a polynomial and the function φ : Fq → C× defined 
in §2.1. The typical situation is that we get a polynomial of degree p when p is a bad prime for G . If 
p = 2, then the situation can be easily described.

Remark 21. Let q = 2 f , and let us consider the following expression in Fq ,

f (s, t) = φ(st(b + at))

for every b, a ∈ Fq . Let us define

Z1 := {s ∈ Fq | f (s, t) = 1 for all t ∈ Fq}, Z2 := {t ∈ Fq | f (s, t) = 1 for all s ∈ Fq}.
It is easy to see that

• If b = a = 0, then Z1 = Z2 = Fq .
• If (b �= 0 and a = 0) or (b = 0 and a �= 0), then Z1 = Z2 = {0}.
• If b �= 0 and a �= 0, then Z1 = {0, a/b2} and Z2 = {0, b/a}.

When p = 3 is a bad prime for E6, the polynomial arising from the above investigation is of degree 
3 just in the case of the core of the form [5, 21, 30], which gives rise to irreducible character degrees 
q7/3 in UE6(3 f ); as previously remarked, the study of this core is detailed in Le and Magaard (2015, 
Section 3). We include below the analysis just for three nonabelian cores with a heart. We discuss first 
the core of the form [4, 18, 18] in D6, which for p = 2 gives rise to the only examples of irreducible 
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characters of UYr(q) of the form qm/pi with i ≥ 2 when Y is of simply laced type and r ≤ 6. We 
then include full details for the [4, 24, 43]-core in type D6 and the [5, 20, 25]-core in type E6; one 
notices the different behavior of the bad primes p = 2 in type D6 and p = 3 in type E6 respectively. 
We decide to include every step in their study since these two cores, along with the [5, 21, 30]-core, 
seem to be the most difficult cases to examine. The other cases are investigated in a similar manner; 
the computations are available in Le et al. (2018). All character labels for each nonabelian core with 
a heart are also collected in Tables 3 and 4.

We use the following notation for a core C corresponding to S and Z . We construct subquotients 
V n

b , and Hn
b , Xn

b , Y n
b , X ′ n

b , Y ′ n
b and the character λb in the following way. The index n corresponds to 

the n-th application of Proposition 9 (possibly trivial if we just enlarge the kernel of a central charac-
ter from step n − 1 to step n), and b denotes a certain tuple with entries in Fq , which corresponds to 
the value of a central character.

We initialize b = ∅ the empty tuple and V 0
∅ = XS , and λ∅ = λ a central character. Now as-

sume V n−1
b̂

is constructed for n ≥ 1. We assume that Proposition 9 applies to V = V n−1
b̂

and let 

H =: Hn
b̂

, X =: Xn
b̂

, Y =: Y n
b̂

, X ′ =: X ′ n
b̂

, Y ′ =: Y ′ n
b̂

. Finally, for every b̃ = (b̃1, . . . , b̃s) ∈ Fs
q and μb̃ as

in Corollary 12, we define b as the concatenation of b̂ and b̃ and λb := λb̂ ⊗ μb̃ , and we construct 
V n

b := (V n−1
b̂

)b̃ . By convention, in the sequel we omit the top index 1, and we drop the symbol ∅
when it occurs.

We expand in the rest of this section the computations for the [4, 18, 18]- and the [4, 24, 43]-cores 
in type D6, and for the [5, 20, 25]-core in type E6. The computations for the other nonabelian cores 
in types D6 and E6, which happen to be easier, are collected in Le et al. (2018). We recall that 
our computer programs help out finding candidates for arms and legs as in §4.2. Such computer 
programs are also used to compute commutators of products of root elements and finding the form 
of the equations involving λ and φ. The branching for the values of the ai ’s and the solutions of 
non-linear equations in several variables remain a computational challenge, and constitute the part of 
the computations that has been studied by a case-by-case check.

We start by studying the unique core of the form [4, 18, 18] in type D6. In this case,

• S = {α1, α2, α4, α5, α6, α7, α10, α11, α12, α14, α15, α16, α17, α18, α19, α21, α22, α28},
• Z = {α16, α21, α22, α28},
• A = {α3, α8, α9, α13} and L = {α20, α23, α24, α26},
• I = {α1, α5, α6, α12, α14, α15} and J = {α7, α10, α11, α17, α18, α19}.

Proposition 22. The irreducible characters corresponding to the [4, 18, 18]-core in type D6 are parametrized 
as follows:

• If p �= 2, then Irr(XS )Z =F p �=2
3 consists of q2(q − 1)4 characters of degree q6.

• If p = 2, then

Irr(XS)Z = F1,p=2
3 �F2,p=2

3 �F3,p=2
3 �F4,p=2

4 ,

where
– F1,p=2

3 consists of (q − 1)4 characters of degree q6,

– F2,p=2
3 and F3,p=2

3 consist each of 4(q − 1)5 characters of degree q6/2, and

– F4,p=2
3 consists of 16(q − 1)6 characters of degree q6/4.

The labels of the characters in F p �=2
3 and in F1,p=2

3 , . . . , F4,p=2
3 are collected in Table 3.

Proof. The form of Equation (6) is

s7(a21t14 + a22t15) + s10(−a16t6 − a21t12) + s11(−a16t5 − a22t12) + s17(a21t5 + a22t6)+
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+ s18(−a21t1 − a28t15) + s19(−a22t1 − a28t14) = 0.

If p �= 2, then X ′ = Y ′ = 1, and V = X2 X4 Z/(kerλ) is abelian. We obtain the family F p �=2
3 in 

Table 3.
If p = 2, we have that X ′ := X ′

1 X ′
2 and Y ′

1Y ′
2, where

X ′
1 := {x1,14,15(t1) | t1 ∈ Fq} and X ′

1 := {x5,6,12(t2) | t2 ∈ Fq},
Y ′

1 := {x7,18,19(s1) | s1 ∈ Fq} and Y ′
2 := {x10,11,17(s2) | s2 ∈ Fq},

and for every s1, s2, t1, t2 ∈ Fq ,

x1,14,15(t1) := x1(a28t1)x14(a22t1)x15(a21t1) and

x5,6,12(t2) := x5(a22t2)x6(a21t2)x12(a16t2)

x7,18,19(s1) := x7(a28s1)x18(a22s1)x19(a21s1) and

x10,11,17(s2) := x10(a22s2)x11(a21s2)x17(a16s2).

Notice that X ′ is a subgroup of V . We extend λ to λ′ = λc7,18,19,c10,11,17 for every c7,18,19, c10,11,17 ∈ Fq . 
In V , we have that [X ′

1, X4] = [X ′
2, X2] = 1, and that

[x2(s2)x4(s4), x1,14,15(t1)x5,6,12(t2)] = x7,18,19(s2t1)x10,11,17(s4t2)x16(a21a22s4t2
2) ·

· x21(a22a28s2t2
1 + a16a22s4t2

2)x22(a21a28s2t2
1 + a16a21s4t2

2)x28(a21a22s2t2
1).

We then want to apply Proposition 9 with X ′ as a candidate for an arm, and X2 X4 as a candidate for 
a leg. We apply λ to the above, and we use Remark 21 study the equation

φ(s2t1(c7,18,19 + a21a22a28t1) + s4t2(c10,11,17 + a16a21a22t2)) = 1.

If c7,18,19 = 0 and c10,11,17 = 0, then X ′ 2
(0,0)

= Y ′ 2
(0,0)

= 1 and V 2
(0,0)

is abelian. This gives the family 
F1,p=2

3 in Table 3.
If a7,18,19 := c7,18,19 �= 0 and c10,11,17 = 0, then

X ′ 2
(a7,18,19,0) := {1, x1,14,15(a7,18,19/(a21a22a28))} and

Y ′ 2
(a7,18,19,0) := {1, x2(a21a22a28/(a

2
7,18,19))},

and V 2
(a7,18,19,0) is abelian. This gives the family F2,p=2

3 in Table 3.
If c7,18,19 = 0 and a10,11,17 := c10,11,17 �= 0, then

X ′ 2
(0,a10,11,17) := {1, x5,6,12(a10,11,17/(a16a21a22))} and

Y ′ 2
(0,a10,11,17) := {1, x4(a16a21a22/(a

2
10,11,17))},

and V 2
(0,a10,11,17) is abelian. This gives the family F3,p=2

3 in Table 3.

Finally, if a7,18,19 := c7,18,19 �= 0 and a10,11,17 := c10,11,17 �= 0, then we have that X ′ 2
(a7,18,19,a10,11,17) =

X ′ 2
(a7,18,19,0) X ′ 2

(0,a10,11,17) and Y ′ 2
(a7,18,19,a10,11,17) = Y ′ 2

(a7,18,19,0)Y ′ 2
(0,a10,11,17) , and V 2

(a7,18,19,a10,11,17) is abelian. This 

yields the family F4,p=2
3 in Table 3.

We observe that

(q6)2|F1,p=2
3 | + (q6/2)2|F2,p=2

3 | + (q6/2)2|F3,p=2
3 | + (q6/4)2|F4,p=2

3 | = q14(q − 1)4,

and since |S \Z| = 14 and |Z| = 4, Equation (3) then yields

Irr(XS)Z = F1,p=2
3 �F2,p=2

3 �F3,p=2
3 �F1,p=2

4 ,

which is our second claim. �
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We now study the unique core of the form [4, 24, 43] in type D6. In this case,

• S = {α1, . . . , α24},
• Z = {α21, α22, α23, α24},
• A =L = ∅,
• I = {α1, α5, α6} and J = {α17, α18, α19}.

Proposition 23. The irreducible characters corresponding to the [4, 24, 43]-core in type D6 are parametrized 
as follows:

• If p �= 2, then

Irr(XS)Z = F1,p �=2
5 �F2,p �=2

5 �F3,p �=2
5 ,

where
– F1,p �=2

5 consists of q(q − 1)5 characters of degree q9,

– F2,p �=2
5 consists of (q − 1)5 characters of degree q9, and

– F3,p �=2
5 consists of q2(q − 1)4 characters of degree q8.

• If p = 2, then

Irr(XS)Z = F1,p=2
5 �F2,p=2

5 �F3,p=2
5 �F4,p=2

5 ,

where
– F1,p=2

5 consists of 4q(q − 1)5 characters of degree q9/2,

– F2,p=2
5 consists of q2(q − 1)5 characters of degree q8,

– F3,p=2
5 consists of q(q − 1)4 characters of degree q8, and

– F4,p=2
5 consists of 4q(q − 1)5 characters of degree q8/2.

The labels of the characters in F1,p �=2
5 , . . . , F3,p �=2

5 and in F1,p=2
5 , . . . , F4,p=2

5 are collected in Table 3.

Proof. The form of Equation (6) is

s17(a21t5 + a22t6) + s18(−a21t1 − a23t6) + s19(−a22t1 − a23t5) = 0.

Let p �= 2. Then X ′ = Y ′ = 1, and V = X2 X3 X4 X7 · · · X16 X20 Z/(kerλ). Notice that X2 ∩ [V , V ] =
X4 ∩ [V , V ] = 1, and [Xi, X20] �= 1 just for i = 2, 4. Then we can take X2 X4 for a candidate of an arm 
and X20 for a candidate of a leg. We have

[x20(s20), x2(t2)x4(t4)] = x23(−s20t2)x24(−s20t4).

Hence we apply Proposition 9 with X ′ 2 = X2,4 = {x2,4(t) | t ∈ Fq} and Y ′ 2 = 1, reducing to V 2 =
X2,4 X3 X7 · · · X16 Z/(kerλ); here, we have

X2,4 := {x2,4(t) | t ∈ Fq} where x2,4(t) := x2(a24t)x4(−a23t).

We have that X12 X14 X15 is a subgroup of V 2, and that

[X12 X14 X15, Xi] �= 1 =⇒ i ∈ {7,10,11} and Xi ∩ [V 2, V 2] = 1 for i ∈ {7,10,11}. (7)

We then apply Proposition 9 with X7 X10 X11 and X12 X14 X15 as candidates for an arm and a leg 
respectively, reducing to studying the equation

s12(a21t10 + a22t11) + s14(−a21t7 − a24t11) + s15(−a22t7 − a24t10) = 0. (8)

As p �= 2, we have that X ′ 3 = Y ′ 3 = 1. We reduce to V 3 = X2,4 X3 X8 X9 X13 X16 Z/(kerλ).
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We observe that in V 3 we have that if i = 8, 9, then [X2,4, Xi] = X13 and [Xk, Xi] �= 1 just for 
k = 16, and that X2,4 ∩ [V 3, V 3] = 1 = X16 ∩ [V 3, V 3]. Moreover, we notice that X13 is central in V 3; 
we extend λ to λc13 in the usual way for every c13 ∈ Fq . If a13 := c13 �= 0, we apply Proposition 9 with 
X2,4 X16 as a candidate for an arm, and X8 X9 as a candidate for a leg. We have that

λ([x2,4(t)x16(t16), x8(s8)x9(s9)]) = φ(a13t(a24s9 + a23s8) + t16(a24s9 − a23s8)). (9)

We get that X ′ 4
(a13) = Y ′ 4

(a13) = 1, and V 4
(a13) = X3 X13 Z/(kerλ) is abelian. We obtain the family F1,p �=2

5
in Table 3.

Let us now assume that c13 = 0. We examine V 3
(0) , and we notice that in this case [X2,4, Xi] = 1

if i = 8, 9. Hence we apply Proposition 9 with X8 X9 as candidate for a leg, and X16 as candidate for 
an arm. We get the expression as in Equation (9) by replacing a13 with 0. We obtain X ′ 4

(0) = X8,9 :=
{x8,9(t) | t ∈ Fq} and Y ′ 4

(0) = 1. Here, we have x8,9(t) := x8(a24t)x9(a23t) for every t ∈ Fq . Notice that 
X8,9 is central in V ′ 4

(0)
= X2,4 X3 X8,9 Z/(kerλ); we denote by λ′′ = λ′ c8,9 the usual extension of λ′ to 

X8,9 for every c8,9 ∈ Fq .
If a8,9 := c8,9 �= 0, then we have

λ([x2,4(s), x3(t)]) = λ(x8,9(st)) = φ(a8,9st).

Proposition 9 applies again, with arm X2,4 and leg X3, and we reduce to V 5
(0,a8,9) = X8,9 Z/(kerλ′). 

We get the family F2,p �=2
5 in Table 3.

Finally, if a8,9 := c8,9 �= 0 then V 5
(0,0) := X2,4 X3 Z/(kerλ′) is abelian; this gives the family F3,p �=2

5
in Table 3.

As done at the end of Proposition 22, the claim in the case p �= 2 follows by a counting argument 
and Equation (3).

Let us now assume p = 2. In this case, we have

X ′ := {x1,5,6(t) | t ∈ Fq} and Y ′ := {x17,18,19(s) | s ∈ Fq},
where for every s, t ∈ Fq ,

x1,5,6(t) := x1(a23t)x5(a22t)x6(a21t) and x17,18,19(s) := x17(a23s)x18(a22s)x19(a21s),

and V = X2 X3 X4 X7 · · · X16 X20 X ′Y ′ Z/(kerλ). In a similar way to the case p �= 2 after computing X ′
and Y ′ , we notice that we can apply Proposition 9 with X ′ 2 = X2,4 and Y ′ 2 = 1. We reduce to V 2 =
X2,4 X3 X7 · · · X16 X ′Y ′ Z/(kerλ). We notice that Y ′ is central in V 2; let us denote by λ′ := λc17,18,19 the 
usual extension of λ.

Suppose a17,18,19 := c17,18,19 �= 0. In the group V , we have

[Xi, X13] �= 1 ⇒ i ∈ {1,5,6} and Xi ∩ [V , V ] = 1 for i ∈ {1,5,6}.
We can then apply Proposition 9 with X1,5,6 as a candidate for an arm, and X13 as a candidate for a 
leg. In V 2, we have

[x13(s13), x1,5,6(t)] = x17,18,19(s13t)x21(a22a23s13t2)x22(a21a23s13t2)x23(a21a22s13t2),

hence applying λ′ we obtain the following equation,

φ(a17,18,19s13t + a21a22a23s13t2) = 1. (10)

We have that

X ′ 3
(a17,18,19) = {1, x1,5,6(a17,18,19/(a21a22a23))} and Y ′ 3

(a17,18,19) := {1, x13(a21a22a23/(c2
17,18,19))},

and V 3
(a17,18,19) = X2,4 X3 X7 · · · X12 X14 X15 X16 X ′ 3

(a17,18,19)Y ′ 3
(a17,18,19)Y ′ Z/(kerλ′). In this subquotient, we 

have that [X2,4, X12 X14 X15] ∩ X17,18,19 �= 0, that X2,4 ∩ [V 3
(a17,18,19), V

3
(a17,18,19)]=1, and that Equation 

28



(7) holds. Moreover, recall that in V we have that if k ∈ {7, 10, 11}, then [Xi, X j] ∩ Xk �= 1 implies 
i ∈ {2, 4} or j ∈ {2, 4}. We can then take X2,4 X7 X10 X11 and X12 X14 X15 as candidates for an arm and 
a leg respectively. We get the equation

λ([x12(s12)x14(s14)x15(s15), x2,4(t)x7(t7)x10(t10)x11(t11)]) = λ(x17(a23s12t1)x18(a24s14t1)·
·x19(a24s15t1))φ(s12(a21t10 + a22t11) + s14(a21t7 + a24t11) + s15(a22t7 + a24t10)) = 1.

We get that X ′ 4
(a17,18,19) = X7,10,11 := {x7,10,11(t) | t ∈ Fq} and Y ′ 4

(a17,18,19) = 1, where for every t ∈ Fq we 
have x7,10,11(t) := x7(a24t)x10(a22t)x11(a21t), and

V 4
(a17,18,19) = X3 X7,10,11 X8 X9 X16 X ′ 3

(a17,18,19)Y ′ 3
(a17,18,19)Y ′ Z/(kerλ′).

Notice that X ′ 4
(a17,18,19) X7,10,11 is a subgroup of Va17,18,19 , and that X3 is there a direct product factor. 

Observe then that [X8, X9] = [X16, X7,10,11] = 1, and that

λ([x8(s8)x9(s9), x7,10,11(t)x16(t16)]) = λ(x17(a24s9t)x18(a22s8t)x19(a21s8t))

× φ(a23s8t16 + a24s9t16).

As a17,18,19 �= 0, applying Proposition 9 with arm X7,10,11 X16 and leg X7,10,11 X16 yields X ′ 5
(a17,18,19) =

Y ′ 5
(a17,18,19) = 1, and the subquotient V 5

(a17,18,19) = X3 X ′ 3
(a17,18,19)Y ′ 3

(a17,18,19)Y ′ Z/(kerλ′) of V is abelian. We 

obtain the family F1,p=2
5 in Table 3.

Let us now assume c17,18,19 = 0. As done for c17,18,19 �= 0, we take X1,5,6 and X13 as candidates for 
an arm and a leg respectively, but as we have no a17,18,19 term in Equation (10) we now get X ′ 3

(0)
=

Y ′ 3
(0) = 1 and V 3

(0) = X2,4 X3 X7 · · · X12 X14 X15 X16 Z/(kerλ′). Notice that in this subquotient we have 
[X2,4, X j] = 1 for j = 8, 9, 16, and that [X16, Xi] �= 1 implies i ∈ {8, 9}. We can apply Proposition 9
with X16 as a candidate for an arm, and X8 X9 as a candidate for a leg. We have that

λ([x8(s8)x9(s9), x16(t16)]) = λ(x23(s8t16)x24(s9t16)) = φ(t16(a23s8 + a24s9)).

We then get X ′ 4
(0) = 1 and Y ′ 4

(0) = {x8,9(s) | s ∈ Fq}, where x8,9(s) = x8(a24s)x9(a23s) for every s ∈ Fq , 
and

V 4
(0) = X2,4 X3 X7 X8,9 X10 X11 X12 X14 X15 Z/(kerλ′).

Now we observe that (7) holds with V 4
(0) in place of V 2, as X20 and X17 X18 X19 are contained in 

kerλ′ . We take X7 X10 X11 as a candidate for an arm and X12 X14 X15 as a candidate for a leg. Equation 
(8) yields in this case

X ′ 5
(0) := X7,10,11 = {x7,10,11(t) | t ∈ Fq} and Y ′ 5

(0) := X12,14,15 = {x12,14,15(s) | s ∈ Fq},
and V 5

(0)
= X2,4 X3 X8,9 X7,10,11 X12,14,15 Z/(kerλ′). Here, for s, t ∈ Fq we have

x7,10,11(t) = x7(a24t)x10(a22t)x11(a21t) and x12,14,15(s) = x12(a24s)x14(a22s)x15(a21s).

Finally, we observe that X8,9 and X12,14,15 are central in V 5
(0); we extend λ′ to λ′′ := λ′ c8,9,c12,14,15 in

the usual way. Observe that [X2,4, X7,10,11] = 1. We can then take X2,4 X7,10,11 and X3 as candidates 
for an arm and a leg respectively. We study

λ([x3(s3), x2,4(t1)x7,10,11(t2)]) = φ(s3(c8,9t1 + c12,14,15t2 + a21a22a24t2
2)) = 1.

If a8,9 := c8,9 �= 0 and b12,14,15 := c12,14,15 is arbitrary in Fq , we have that

X ′ 6
(0,a8,9,b12,14,15) = {x2,4((b12,14,15t + a21a22a24t2)/(a2

8,9))x7,10,11(t) | t ∈ Fq} and

Y ′ 6
(0,a8,9,b12,14,15) = 1,
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and V 6
(0,a8,9,b12,14,15)

= X ′ 6
(0,a8,9,b12,14,15)

X8,9Y ′ 5
(0) Z/(kerλ′′) is abelian; this gives the family F2,p=2

5 in Ta-
ble 3.

If c8,9 = 0 and a12,14,15 := c12,14,15 �= 0, we have that

X ′ 6
(0,0,a12,14,15) = X2,4{1, x7,10,11(c12,14,15/(a21a22a24))}

and

Y ′ 6
(0,0,a12,14,15) = {1, x3(a21a22a24/(c2

12,14,15))},
and V 6

(0,0,a12,14,15) = X ′ 6
(0,0,a12,14,15)Y ′ 6

(0,0,a12,14,15)Y ′ 5
(0) Z/(kerλ′′) is abelian; we obtain the family F4,p=2

5 in 
Table 3.

If c8,9 = c12,14,15 = 0, we have that

X ′ 6
(0,0,0) = X2,4 and Y ′ 6

(0,0,a12,14,15) = 1,

and V 6
(0,0,0) = X2,4 Z/(kerλ′′) is abelian. This yields the family F3,p=2

5 in Table 3.
As done for the case p �= 2, we check that

Irr(XS)Z = F1,p=2
5 �F2,p=2

5 �F3,p=2
5 �F4,p=2

5

by apply the counting argument and Equation (3). This concludes our analysis. �
Finally, we study the unique core of the form [5, 20, 25] in type E6. In this case,

• S = {α1, α2, α3, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14, α15, α16, α17, α18, α20, α21, α24},
• Z = {α17, α18, α20, α21, α24},
• A = {α4} and L = {α19},
• I = {α1, α6, α8, α9, α10} and J = {α7, α11, α13, α14, α15}.

Proposition 24. The irreducible characters corresponding to the [5, 20, 25]-core in type E6 are parametrized 
as follows:

• If p �= 3, then Irr(XS )Z =F p �=3
8 consists of q(q − 1)5 characters of degree q7.

• If p = 3, then

Irr(XS)Z = F1,p=3
8 �F2,p=3

8 ,

where
– F1,p=3

8 consists of (q − 1)6 characters of degree q7, and

– F2,p=3
8 consists of q2(q − 1)5 characters of degree q6.

The labels of the characters in F p �=3
8 and in F1,p=3

8 , F2,p=3
8 are collected in Table 4.

Proof. The form of Equation (6) is

s7(a17t8 + a18t10) + s11(−a20t8 − a21t9) + s13(−a17t1 + a24t10)+
+ s14(a20t6 + a24t9) + s15(−a18t1 + a21t6 + a24t8) = 0.

Let p �= 3. Then X ′ = Y ′ = 1, and V = X2 X3 X5 X12 X16 Z/(kerλ). Observe that in V the pairs of root 
subgroups that give nontrivial commutator brackets are exactly the following,

[X2, X12] = X17, [X2, X16] = X20, [X3, X16] = X21, [X5, X12] = X18. (11)
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We apply Proposition 9 with X2 X3 X5 as a candidate for an arm, and X12 X16 as a candidate for a leg. 
We have

[x2(t2)x3(t3)x5(t5), x12(s12)x16(s16)] = x17(s12t2)x18(−s12t5)x20(s16t2)x21(s16t3),

hence

λ([x2(t2)x3(t3)x5(t5), x12(s12)]) = φ(s12(a17t2 − a18t5) + s16(a20t2 + a21t3)).

We get X ′ 2 = {x2,3,5(t) | t ∈ Fq} and Y ′ 2 = 1, where

x2,3,5(t) := x2(a18a21t)x3(−a18a20t)x5(a17a21t)

for every t ∈ Fq . As V 2 = X ′′ Z/(kerλ) is abelian, we get the family F p �=3
8 in Table 4.

Let us now assume that p = 3. Then we have

X ′ := {x1,6,8,9,10(t) | t ∈ Fq} and Y ′ := {x7,11,13,14,15(s) | s ∈ Fq},
where for every s, t ∈ Fq ,

x1,6,8,9,10(t) := x1(a21a24t)x6(−a18a24t)x8(−a18a21t)x9(a18a20t)x10(a17a21t)

and

x7,11,13,14,15(s) := x7(a20a24s)x11(−a17a24s)x13(−a18a20s)x14(−a17a21s)x15(a17a20s),

and V = X2 X3 X5 X12 X16 X ′Y ′ Z/(kerλ). We extend λ to λ′ = λc7,11,13,14,15 , c7,11,13,14,15 ∈ Fq .
Notice that X ′ is a subgroup of V . Moreover, the nontrivial commutator relations in V are as in 

Equation (11), plus [X ′, Xi] �= 1 if and only if i ∈ {2, 3, 5}, in which case such a commutator lies inside 
Y ′ . In this case, Proposition 9 applies with X ′ X12 X16 as a candidate for an arm and X2 X3 X5 as a 
candidate for a leg. We study the equation

λ([x1,6,8,9,10(t)x12(t12)x16(t16), x2(s2)x3(s3)x5(s5)]) = λ(x7(−a21a24s3t)x11(−a18a24s5t))·
· λ(x13(a18a20s2t − a18a21s3t)x14(a18a21s5t + a17a21s2t)x15(−a18a20s5t + a17a21s3t))·
· φ(s2(a17t12 + a20t16 + a17a18a20a21a24t2) + s3(a21t16 − a17a18a2

21a24t2))·
· φ(s5(−a18t12 − a2

18a20a21a24t2)) = 1.

If a7,11,13,14,15 := c7,11,13,14,15 �= 0, then we have that X ′ 2
(a7,11,13,14,15) = Y ′ 2

(a7,11,13,14,15) = 1, and

V 2
(a7,11,13,14,15) = Y ′ Z/(kerλ′) is abelian. We get the family F1,p=3

8 in Table 4.
If c7,11,13,14,15 = 0, then we have

X ′ ,2
(0) = {x1,6,8,9,10(t)x12(a18a20a21a24t2)x16(a17a18a21a24t2) | t ∈ Fq},

Y ′ ,2
(0)

= {x2(a18a21s)x3(−a18a20s)x5(a17a21s) | s ∈ Fq},
and V 2

(0) = X ′ ,2
(0) Y ′ ,2

(0) Z/(kerλ′) is abelian. This yields the family F2,p=3
8 in Table 4.

The claim now follows by Equation (3) as done in Propositions 22 and 23. �
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