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Abstract

A Hybrid Nonlinear Model Predictive Control (HNMPC) strategy is developed

for temperature control and power consumption minimisation of a cooling water

network. The HNMPC uses a gradient descent optimisation algorithm for the

continuous manipulated variables, and an enumerated tree traversal algorithm

to control and optimise the Boolean manipulated variables. The HNMPC is

subjected to disturbances similar to those experienced on a real plant, and

its performance compared to a continuous Nonlinear Model Predictive Control

(NMPC) and two base case scenarios. Power consumption is minimised, and

process temperature disturbances are successfully rejected. Monetary benefits

of the HNMPC control strategy are estimated.

Keywords: Nonlinear Model Predictive Control, Cooling Tower, Cooling

Water Network, Optimisation, Gradient Descent, Hybrid Systems, Electricity

Consumption Minimisation

1. Introduction

The benefits of applying Advanced Process Control (APC) to petrochemical

plant utilities is becoming more apparent as such plants are coming under in-

creasing pressure to lower their carbon footprints. Increasing attention is there-

fore being paid in the literature to the optimisation of utility systems through5
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advanced control and optimisation techniques (Muller et al., 2011; Ricker et al.,

2012; Deng et al., 2015; Muller and Craig, 2015, 2016, 2017; Dzedzemane et al.,

2018; Yin and Li, 2018).

In this paper, HNMPC techniques are applied to control and optimise an

induced draft cooling water network. A nonlinear dynamic model that includes10

induced draft cooling towers with parallel heat exchangers, pumps and a cooling

water network as developed in Viljoen et al. (2018) is used to design and test

the performance of a NMPC and HNMPC controller.

Manipulated Variables (MVs) that are both continuous and discrete are

used. Such systems are known as hybrid systems (Camacho et al., 2010) and15

can be cast in the form of a Mixed-Integer Nonlinear optimisation/Programming

(MINLP) problem (Belotti et al., 2013). The nonlinear optimisation technique

applied as part of the optimisation and control algorithm is gradient descent for

the continuous MVs (Qian, 1999; Grüne and Pannek, 2017), and graph traversal

for the Boolean MVs (Floudas, 1995).20

Gradient descent, also known as steepest descent, is a first-order iterative

optimisation algorithm well suited to solving NMPC problems (Nocedal and

Wright, 2006). Being a deterministic gradient based optimisation technique,

optimality and stability can be guaranteed under the correct conditions for this

method (Boyd and Vandenberghe, 2004; Grüne and Pannek, 2017). The gra-25

dient descent optimiser has robust characteristics when the objection function

hyperspace has less well conditioned surfaces (Goodfellow et al., 2016) and is

shown to enable fast convergence.

Graph traversal is well suited to finding the optimal configuration of Boolean

MVs that will determine the plant state in a particular process scenario (Floudas,30

1995; Belotti et al., 2013). Given a particular plant trajectory and prediction

horizon, the algorithm can consider the options available for the Boolean MVs

and make an optimal selection per controller iteration to minimise the objective

function (Camacho and Bordons, 2007).

Cooling water network control was previously described in Muller and Craig35

(2017) in which an economic hybrid nonlinear model predictive control of a
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dual circuit induced draft cooling water system was developed. This paper

differs from Muller and Craig (2017) in that the pump and cooling tower fan

speeds are used as continuous MVs, the control algorithm is deterministic, and

the cooling water network is different and modelled using a different modelling40

philosophy (Viljoen et al., 2018).

Three control strategies are simulated for disturbance rejection scenarios

seen on a real plant - two base cases with constant MVs, a NMPC controller with

only continuous MVs, and a HNMPC controller with continuous and Boolean

MVs. The control strategies are simulated for four process scenarios - power45

consumption minimisation; plant load, ambient temperature, and ambient hu-

midity disturbance rejection. Ambient humidity has been identified as one of

the most important disturbance variables to include in the control and opti-

misation of cooling water systems (Castro et al., 2000), and is therefore also

investigated here.50

The monetary benefits achieved by the HNMPC controller are estimated by

simulating the closed-loop system when exposed to actual ambient conditions.

The controller minimises the power consumption while at the same time main-

taining control of the temperatures of the hydrocarbon streams, which results

in significant cost savings for the plant owner.55

2. Cooling water network case study

2.1. Process description and operation

The plant that is being controlled and optimised in this paper is shown at a

high level in Figure 1. The first principles dynamic model used in this paper for

the plant and controllers, has recently been published in Viljoen et al. (2018).60

The cooling capacity is supplied by 3 Cooling Towers (CTs) in parallel.

Cooling Water Return (CWR) is sprayed into each cooling tower at the top of

the tower. At the bottom of the towers, the cooling water falls into a common

Cooling Tower Basin (CTB). Airflow through the cooling towers is induced by

induction motor driven fans at the top of the cooling towers.65
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Figure 1: Overall layout of the Cooling Water Network.

Each tower is designed for a maximum flow rate of 8,700 m3/h of cooling

water, and heat duty of 101 MW. It is designed with a CWR temperature of

45 ◦C and a supply temperature of 35 ◦C in mind. Wet bulb temperature is

designed to be 31 ◦C. Evaporative losses from the cooling tower are designed to

be 1.83% of the total cooling tower flow.70

The cooling tower fans are 9.1 m in diameter, and rotate at a design speed

of 120.1 rpm. The design power consumption of each fan is 137 kW per fan.

Each pump is designed for an operating flow rate of 3850 m3/h, and an

operating discharge pressure of 5.3 barg. The design operating speed of each

pump is 740 rpm, with a power consumption of 811 kW. However, in the actual75

plant it is running at a higher power operating point. The pumps need to

supply the kinetic energy needed to move the cooling water through the entire

cooling water network. In contrast the cooling tower fans are only moving air

up the cooling tower. The water has much higher inertia and mass than the air,
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therefore requiring much more electrical energy to power the pump motors.80

133 parallel cooling water heat exchangers are fed with cooling water by the

cooling towers and the pumps. Most of the heat exchangers are used to cool

down process hydrocarbon streams. However, 73% of all the cooling water flows

through the 10 biggest heat exchangers, and 27% flows through the remaining

123 smaller exchangers. As a simplification, the 123 smaller exchangers are85

lumped into a single heat exchanger in the model called the 11th heat exchanger

(Viljoen et al., 2018). After having passed through the 133 heat exchangers, the

cooling water flows back to the cooling towers, completing the cooling water

circuit.

The plant as described above is highly nonlinear, and interactive. The first90

principles dynamic model developed in Viljoen et al. (2018) for it consists of

80 differential state equations, 148 algebraic equations, 5 Boolean MV inputs,

16 continuous MV inputs, 16 Controlled Variables (CVs), 24 measured distur-

bances, and 86 model parameters.

The model is difficult to solve due to the stiff nature of the partial differential95

equations in the cooling tower models, the interactive nature of a closed-loop

water system and the nonlinearity of the state and algebraic equations of each

unit operation in the network.

The purpose of the cooling water network is to cool down various process

hydrocarbon streams that form part of the petro-chemical facility and refinery100

adjacent to the cooling water plant. The cooling water Supply (CWS) streams

flow into the larger facility, and returns back as CWR.

The plant as-is does not have automatic control controlling the hydrocarbon

stream temperatures at the exit of each cooling water heat exchanger as shown

in Figure 1. This results in potential significant fluctuation of the process tem-105

peratures as will be shown for the base case scenarios in this paper. Significant

deviation from setpoint negatively effects the down stream processing equip-

ment (e.g. reactors, distillation columns etc.) where a constant temperature for

the hydrocarbon streams is what the equipment has been designed for.

The cooling water plant is subject to disturbances in the form of process110
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plant load changes, and ambient weather conditions changes. Typical 24 hour

(midnight to midnight) ambient temperature and humidity that the cooling

water plant is exposed to, are shown in Figure 2 and Figure 3.

Figure 2: Typical 24 hour ambient temperature variation.

Figure 3: Typical 24 hour ambient relative humidity variation.

A plant disturbance that is fairly common in the facility modelled, is run-

ning the facility on 80% load during start-up or shut-down transients, or when115

maintenance or catalyst change-out is being carried out on one process train,

or when the facility is being curtailed due to up-sets at the feedstock supplying

company. This scenario is illustrated in Figure 4 that shows a simulated change
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in the hydrocarbon total mass flow load. After 4 hours (14,400 seconds) the

plant load is restored.120

Figure 4: Plant hydrocarbon mass flow rates during plant load disturbance scenario.

2.2. Base case

The base case is the plant without any control and optimisation imple-

mented. The only feedback control in the cooling water network is the PID

level control of the cooling tower basin, where the level is controlled through

make-up water.125

In order to illustrate the power minimisation and then the temperature con-

trol capabilities of the control strategies developed in this paper separately, the

base case is divided into two sub base cases: Base Case A, and Base Case B.

2.2.1. Base Case A

In Base Case A the fan and pump speeds are started at their design values,130

and the control strategies exploit the opportunity to decrease the speeds to

optimal values while controlling temperature. The plant design speed for the

cooling tower fans is 2 rps and for the pumps it is 12.33 rps (Viljoen et al.,

2018). The cooling capacity generated at these speeds is only required during the

warmest summer days when the ambient temperature and ambient humidity are135

at their highest. For the typical ambient conditions that the cooling water plant
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is exposed to during evenings and most days the cooling capacity generated at

these speeds is more than needed, resulting in more electric power consumption

than is optimal for a given cooling requirement.

The uncontrolled plant in Base Case A experiences hydrocarbon temperature140

fluctuation due to the typical ambient temperature and humidity variations

shown in Figure 2 and Figure 3. This is shown in Figure 5 for the temperature

of the hydrocarbon outlet of HX-01.

Figure 5: Base Case A: Uncontrolled HX-01 outlet temperature.

2.2.2. Base Case B

In Base Case B, the starting speeds of the fans and pumps are reduced to 1.2145

rps and 9.75 rps respectively from that of Base Case A. This enables the control

action to be less focused on power minimisation at typical ambient conditions,

and more focused on temperature control.

For the uncontrolled plant in Base Case B, the hydrocarbon temperature

fluctuates significantly from steady-state due to the process disturbances the150

cooling water plant is exposed to. This is shown in Figure 6 resulting from the

plant load disturbance scenario as per Figure 4.
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Figure 6: Base Case B: Uncontrolled HX-01 outlet temperature.

2.2.3. Monetary loss

Typical electricity rates for industries in the Arabian Gulf where the plant

is located are USD 0.048 per kWh (Saudi Electricity Company, 2019). At this155

rate, and for the design fan and pump speeds as indicated above (Base Case A),

the daily power consumption of the plant is 52,826 kWh, which translates into

a daily power bill of USD 2,536.

2.3. Making the cooling water network amenable to Advanced Process Control

The uncontrolled plant does not have enough sensors and actuators for con-160

tinuous NMPC nor HNMPC. Only the hydrocarbon process outlet streams

of HX-04, HX-05, HX-06, HX-07 and HX-09 have temperature measurements

(Viljoen et al., 2018). The other heat exchangers will need to have temperature

measurements installed in order to enable APC strategies for the Cooling Water

Network.165

Saidur et al. (2012) and Al-Bassam and Alasseri (2013) show that energy

consumption can be reduced when using Variable Speed Drives (VSDs). Con-

tinuous NMPC will require VSDs for the cooling tower fans and for the cooling

water pumps. In addition, the fans and pumps will require some switch gear to

enable on and off discrete switching of these equipment by the hybrid component170

of the HNMPC controller (see Section 3.1).
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The hand valves that feed each cooling water heat exchanger with CWS,

will need to be turned into control valves for the continuous NMPC controller

to function. This will require different valve hardware as well positioners and

actuators for each valve. The plant changes described above are assumed to175

be in place in what follows in order to demonstrate the benefits that can be

achieved when using APC. Economic benefits assessment of APC technologies

in general was surveyed in Bauer and Craig (2008).

3. Cooling water network control

In this section, two APC strategies, NMPC and HNMPC, are developed for180

the cooling water network model described in Section 2. The purpose of these

controllers is to demonstrate the benefits that can be obtained over the two base

cases described in Section 2.2.

3.1. Control objectives and framework

The control objectives are disturbance rejection for hydrocarbon process185

stream temperatures, power consumption minimisation for the cooling tower

fans, and power consumption minimisation for the pumps.

The simulation results in Viljoen et al. (2018) show that a number of MVs

can be used to control the process outlet temperatures of the heat exchangers.

These MVs include the cooling tower fan speeds, the pump speed of the CWS190

pumps, and the valve openings of the cooling water flow to each exchanger. For

control strategies in this paper, the hand valves upstream of each heat exchanger

are modelled as equal percentage control valves.

The CVs for the system are the hydrocarbon process stream temperatures

at the outlet of each heat exchanger (THXi
), the power consumption in each195

cooling tower fan motor (Pfi), and the power consumption in each pump motor

(Ppi).

Three control strategies are used. The MVs applied depend on each control

strategy:
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1. Base case: No part of the plant is actuated, and the MVs are kept constant200

(see Section 2.2).

2. Continuous NMPC: The continuous MVs are included in an NMPC con-

troller. In this scenario, the 11 hand-valves upstream of the CW side of

each heat exchanger, are exchanged for positioner controlled control valves

and included as continuous MVs in the controller (VOP ). The 3 cooling205

tower fan motors are assumed fitted with VSDs enabling the fan speeds

(n) to be continuous MVs in the controller. The 2 cooling water pump

motors are assumed fitted with VSDs enabling the pump speeds (ω) to

become continuous MVs.

3. HNMPC: The 3 cooling tower fans on/off states, and 2 pump motor on/off210

states, are included as Boolean MVs in addition to the continuous MVs

of control strategy 2.

The measured Disturbances Variables (DVs) of the system studied in this

paper, are the ambient temperature and humidity, as well as the hydrocarbon

mass flow rates and hydrocarbon input temperatures to the heat exchangers.215

The capabilities of the NMPC and HNMPC controllers will be compared

using the following process scenarios:

1. Power consumption minimisation.

2. Plant load disturbance rejection.

3. Ambient temperature disturbance rejection.220

4. Ambient humidity disturbance rejection.

The industrial cooling water network on which this work is based is not cur-

rently automated. This paper shows what can be achieved if the temperatures

and power consumption are controlled. The MVs (control valves, fan speeds and

pump speeds) do have explicit operating ranges on the real plant and therefore225

the MV constraints are included in the control problem and designed controllers.

Engineering unit CV ranges are defined as an order of magnitude of simulated

range without explicit limits being available in order to be able to do normal-
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isation of engineering units. The limits of the continuous CVs and MVs in

engineering units are as per Table 1.230

Table 1: Continuous CV and MV ranges.

Parameter Min. Max. Units

Heat exchanger temperatures (11 CVs) 0 400 Kelvin

Cooling tower fan power (3 CVs) 0 300 000 W

Pump power (2 CVs) 0 3 000 000 W

Cooling tower fan speed (1 MV) 0.1 2.5 rps

Pump speed (1 MV) 1 14 rps

CW control valves (11 MVs) 0 1 fraction

3.2. NMPC

Linear Model Predictive Control (LMPC) has become the most popular

multivariable control strategy in the process industries (Wang, 2009). A LMPC

formulation can integrate optimal control, stochastic control, control of pro-

cesses with dead time, and multivariable control (Camacho and Bordons, 2007).235

LMPC techniques have been used in (Ma et al., 2008; Marques et al., 2009; Li

et al., 2012; Bakosova and Oravec, 2014; Deng et al., 2015; Yin and Li, 2018) to

control utility and cooling water systems. LMPC makes use of a linear model,

and in cases where the plant exhibits highly nonlinear behaviour, the controller

response will often not be acceptable (Camacho and Bordons, 2007), hence the240

need for NMPC. This problem is exacerbated if the process spends a lot of time

away from the stable design operating point of the LMPC. First principles mod-

els are often used for NMPC internal models (Sridhar et al., 2016). Significant

progress has been made in NMPC research over the last few years (Allgower

and Zheng, 2000; Findeisen et al., 2007; Negrete and D-Amato, 2013; Mayne,245

2014; Biegler et al., 2015; Grüne and Pannek, 2017).

Deterministic NMPC methods are normally divided into two classes in the

literature: Line search methods and trust region methods (Fletcher, 1987; Boyd
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and Vandenberghe, 2004; Nocedal and Wright, 2006; Grüne and Pannek, 2017).

The NMPC problem utilising gradient techniques can be defined as follows:250

min
u(·)

JN (x0,u (·))

with respect to u (·) ∈ UN (x0)

subject to h (u) ≥ 0,

(1)

where JN (x0,u (·)) is the objective function, u (·) is a sequence of real valued

vectors of the MVs, UN (x0) is the set of admissible control sequences, x0 is

the system state vector at initialisation, and h (u) is the inequality constraint

function (Mayne, 2014; Grüne and Pannek, 2017). The control problem in this

paper does not include equality constraints.255

The objective function JN (x0,u (·)) is defined as

JN (x0,u (·)) =

N−1∑
k=0

l (xu (k,x0) ,uk) + Vf (xu (N,x0)) , (2)

where l is the non-terminal cost, xu (k,x0) is the system state at sample time

k as a function of x0 and the preceding MV control vector sequence u (·), Vf
is the terminal value of the objective function, and N is the prediction horizon

Mayne (2014); Grüne and Pannek (2017).260

In the NMPC literature, the control horizon normally refers to the number

of control moves that are calculated in open-loop and sent to the plant, before

feedback from the plant is fed into the controller again and the optimisation

algorithm is run again (Grüne and Pannek, 2017). This definition is different

from the definition for control horizon in LMPC (Camacho and Bordons, 2007).265

Shorter NMPC control horizons require shorter prediction horizons for the same

stability guarantees (Grüne et al., 2012). In order to save on the required com-

putational cost, shorter prediction horizons and control horizons are therefore

preferred.

Gradient descent method, also called the steepest descent method (Nocedal270

and Wright, 2006), is a line search, first order, gradient based optimisation tech-
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nique. Second order methods, also called Newtonian methods, include active

set, and interior point methods (Fletcher, 1987; Boyd and Vandenberghe, 2004;

Wright, 2004; Nocedal and Wright, 2006). Examples of Newtonian methods

applied to NMPC problems are Lucia et al. (2013) and Biegler et al. (2015).275

The steepest descent gradient based algorithm is based on the Jacobian gradient

vector of the system, and does not require the calculation of a Hessian matrix as

required by Newtonian methods. Explicit computation of the Hessian matrix of

second derivatives can be a computationally expensive process (Fletcher, 1987;

Nocedal and Wright, 2006; DeHaan and Guay, 2007; Grüne and Pannek, 2017).280

Minimisation of the time the control algorithm will need to finish running, is an

important goal to ensure practicality of the controller (see Section 4.7). Since

the integration of the 80 state equations over the prediction horizon in the objec-

tive function is already computationally expensive, optimisation methods that

do not require the Hessian are preferred and therefore used in this work.285

For the steepest descent method, the objective function can be decreased

by moving in the direction of the negative gradient of the system (Goodfellow

et al., 2016) which is the direction in which the objective function decreases

most rapidly (Nocedal and Wright, 2006):

uk+1 = uk − η∇uJ (uk) (3)

where uk is the MV vector for controller iteration step k, η is the learning290

rate and ∇uJ (u) is the Jacobian gradient vector of the objective function. The

value of η can be set as a small constant through tuning, or various line search

techniques can be used to set the value (Iusem, 2003; Boyd and Vandenberghe,

2004; Goodfellow et al., 2016).

Qian (1999) shows how the steepest descent algorithm can be made to con-295

verge faster and more robustly by adding an exponentially decaying (Sutskever

et al., 2013) momentum term to the iterative equations. The convergence of the

gradient iterations are accelerated by accounting for the history of iterations
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when computing the ones to come (Ghadimi et al., 2015).

∆uk+1 = γ∆uk + η∇uJ (uk)

uk+1 = uk −∆uk+1

(4)

where γ is the exponential decay fraction of the previous step for the momen-300

tum term. During each iteration of the control algorithm, the MVs are adjusted

by the term calculated as per (4). This momentum gradient descent algorithm

is also called Polyak’s heavy ball algorithm in the literature (Polyak, 1964).

Gradient descent is known to start the optimisation quickly (Bryson, 1975),

and momentum can considerably accelerate convergence to a local minimum305

(Polyak, 1964; Sutskever et al., 2013).

For the steepest descent algorithm, constraints can be managed through

the projected gradient method where the optimisation variables are projected

onto the allowed hyperspace at all times usually through an orthogonal method

(Iusem, 2003). For box constraints (constant, linear constraints) on the variables310

to be optimised, this method modifies (4) as follows (Calamai and More, 1987):

uk+1 = Π (uk −∆uk+1) (5)

where Πi (ui) is the projection function for one element of the u vector and

is defined as

Πi (ui) = min (hi,max (li, ui))

=


hi, if ui > hi

ui, if li ≤ ui ≤ hi

li, if ui < li

(6)

where li is the lower bound constraint on ui, and hi is the upper (higher)

bound constraint on ui (Calamai and More, 1987).315
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Under the right conditions and convexity gradient based NMPC techniques,

including the steepest descent algorithm are guaranteed to converge to a global

minimum (Fletcher, 1987; Iusem, 2003; Boyd and Vandenberghe, 2004; Grüne

and Pannek, 2017).

In Abbas et al. (2017) first order gradient descent was used for trajectory320

tracking for obstacle avoidance of autonomous road vehicles using NMPC. In

Conceicao et al. (2008) steepest descent without momentum, and the conjugate

gradient methods were used to solve the NMPC problem for trajectory tracking

of a four-wheeled omnidirectional mobile robot. In DeHaan and Guay (2007) the

steepest descent method, as well as a second order method where the Hessian is325

approximated were used to analyse real-time NMPC theory. In Guerreiro et al.

(2014) both the steepest descent algorithm, and a Newton based line search

algorithm was used to control an autonomous surface craft.

For the plant controlled in this paper, Viljoen et al. (2018) indicates that each

discrete mode of the plant model has a convex hyperspace for the continuous330

MVs. This is indicated by the shapes of the curves of the CV responses to equal

sized steps in the MVs from steady-state in (Viljoen et al., 2018). This implies

that gradient based NMPC techniques can be used to apply NMPC to the plant

(Grüne and Pannek, 2017) using the plant model developed in Viljoen et al.

(2018).335

NMPC problems have been shown in (Grüne and Pannek, 2017) to have

stable closed-loop control solutions for the continuous control problem type of

this work. The first order gradient descent methods of steepest descent (3),

and steepest descent with momentum (4), were applied to the NMPC problem.

Both methods resulted in stable closed-loop control, but the steepest descent340

with momentum method had superior performance with significantly faster con-

vergence of the most important CVs to their set points in each process scenario

simulated (see Section 4 for detailed results). Empirical closed-loop tuning of

the exponential decay momentum factor γ and learning rate η were performed.

The constraints on the MVs for the control problem (see Table 1) are con-345

stant, linear constraints (”box constraints”). Therefore the projected gradient
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method, (5) and (6), is applicable for handling the constraints in the NMPC

algorithm and was implemented.

Derivative calculation for NMPC applications can be done through numerical

differentiation, analytical derivation, symbolic math engines or automatic differ-350

entiation (Giftthaler et al., 2018). Analytical and symbolic approaches are often

intractable for complex systems (Giftthaler et al., 2018), like the plant controlled

in this paper. Automatic differentiation exploits the fact that every computer

program executes a sequence of elementary arithmetic operations and elemen-

tary functions. By applying the chain rule repeatedly to these operations deriva-355

tives can be computed automatically (Baydin et al., 2018). The derivatives can

be computed accurately to working precision, requiring a small constant fac-

tor more arithmetic operations than the original program (Bartholomew-Biggs,

2000). Automatic differentiation techniques, also called algorithmic differenti-

ation (Giftthaler et al., 2017), are often divided into forward accumulation of360

gradients using the chain rule techniques, or reverse accumulation techniques

(Neidinger, 2010). Automatic differentiation can be implemented using source

code transformation, or operator overloading (Bartholomew-Biggs, 2000; Baydin

et al., 2018). Walther (2007) has specifically shown how automatic differenti-

ation can be applied to solve the optimal control problem of systems that use365

Runge-Kutta techniques to solve their state space equations.

Numerical differentiation has less numerical accuracy and computation speed

compared to automatic differentiation (Bartholomew-Biggs, 2000). However, it

enables faster setup time due to the significant additional software dependencies

of automatic differentiation (Baydin et al., 2018). Numerical differentiation also370

has a high degree of error safety (Giftthaler et al., 2018) and is often used for

these reasons (Grüne and Pannek, 2017). Lucia et al. (2013) also used numer-

ical derivatives for the Jacobian. For all gradient based numerical nonlinear

optimisation algorithms used in experiments and implemented in this paper,

the one-sided-difference approximation was used to calculate the derivatives of375

the Jacobian vectors and Hessian matrices. At a given point u for the objective
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function J ,

∂J

∂ui
(u) ≈ J (u + εei)− J (u)

ε
(7)

where ε is a small scalar and ei is the ith unit vector, i.e. the vector of which

the elements are all 0 except for a 1 in the ith position (Nocedal and Wright,

2006).380

3.3. HNMPC

The control of nonlinear plant models where the MVs are partly Boolean and

partly continuous variables, are part of a collection of problems solved through

control algorithms using Mixed Integer Nonlinear Programming (MINLP) mod-

els (Floudas, 1995). Real plants have both time-driven and event-driven dynam-385

ics, and control systems for such plants should preferably be able to accommo-

date both types (Camacho and Bordons, 2007). MINLP problems combine the

combinatorial difficulty of optimising over discrete variable sets with the chal-

lenges of handling constrained continuous nonlinear functions (Belotti et al.,

2013). These problems are usually much more complicated and expensive to390

solve than the corresponding continuous problem on account of the discrete na-

ture of the variables and the combinatorial number of feasible solutions which

thus can exist (Fletcher, 1987). The structure of these problems take the form

min
uR,uI

J (uR,uI)

s.t. h (uR,uI) ≥ 0

uR ∈ UR ⊆ R

uI ∈ UI ⊆ I

(8)

where J (uR,uI) is the objective function, h (uR,uI) is the inequality con-

straint function, uR is a real valued vector, and uI is an integer valued vector395

(Floudas, 1995). UR is typically a real valued set within the constraint bound-

aries for each real valued manipulated variable in uR. UI is typically an integer
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valued set within the constraint boundaries for each integer valued manipulated

variable in uI

Each permutation of the discrete state variables could define a different plant400

state. These different plant states, will each have different continuous dynamics

as per the hybrid automata of each state (Camacho and Bordons, 2007). If the

number of possible discrete states that the plant can be in is large, (8) can be

an NP-hard combinatorial problem (Belotti et al., 2013).

Most solution methods for MINLP in the literature apply some form of405

tree search (Belotti et al., 2013). If the integer variables in the problem are

Boolean, the resulting state tree is a binary tree with two branches for every

node. The nodes at level m in such a tree correspond to each of the 2m nonlinear

optimisation problems that would have to be solved if each node was visited

during a brute force overall solution algorithm (Camacho and Bordons, 2007).410

Instead of solving all the possible objective function minimisation problems

defined by each possible combination of Boolean variables, alternatively branch

and bound methods can be used to solve the MINLP problem (Camacho and

Bordons, 2007). In addition to branch and bound other algorithms are also

found in the literature (Floudas, 1995).415

Mayer et al. (2016) used a linear approach with hybrid branch and bound

methods to control a building cooling system supply. Cacchiani and DoAmbro-

sio (2016) developed a branch and bound algorithm to solve a unit commitment

problem of a generation company whose aim is to find the optimal scheduling

of a multi-unit pump-storage hydro utility power station. Although this prob-420

lem is not a control problem, it is a case of a nonlinear constrained MINLP.

In Long et al. (2007) deterministic HNMPC with a tree based algorithm was

used to control the pressure of two pressure vessels in series taking in air as the

process input. Deterministic nonlinear optimisation methods using tree graphs,

are shown to be able to guarantee global optimality (Long et al., 2007), and be425

able to perform direct optimisation.

For the plant controlled in this paper, the 3 cooling tower fans, and the

2 cooling water pumps can be turned into Boolean MVs if the motors of the
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rotating equipment can be switched on and off by the HNMPC controller. Due

to the induction motors driving the fans and pumps exceeding their steady-430

state current by 500 to 800 percent during start-up (Viljoen et al., 2018), a

natural deadband is introduced into the controller if the power is included for

minimisation in the objective function, in order to limit unnecessary switching

of the equipment.

The steepest descent with momentum NMPC controller designed in Section435

3.2 for the continuous MVs, was combined with a graph traversal approach to

optimise the discrete states that the plant can be in. This design resulted in an

HNMPC controller based on first order gradient descent with momentum for

the continuous MVs, and a tree based MINLP Boolean MV controller for the

Boolean MVs.440

At least one of the two pumps needs to run at all times since with no pumps

running no cooling water would circulate in the network. This results in the

number of effective Boolean MVs dropping from 5 to 4. The possible states that

the plant can be in from the perspective of the hybrid controller, is shown in the

tree graph of Figure 7. The graph is shown as a tree where each level of the tree445

shows the permuted possible states of 1 of the 4 Boolean MVs. The leaves of

the tree in the lowest row when traced up to the root node, represent all the 16

possible permutations of discrete states the controller can put the plant in. The

3 cooling tower fans can all be off as a discrete plant state, or can be switched

on one by one. If one pump is chosen to always be on, and each cooling tower is450

assigned a fixed role in the permutations of cooling tower states, the number of

effective discrete plant states to be optimised between can be limited to 8 states

as per Table 2. The MINLP problem to be solved by the HNMPC controller

(8) can be an NP-hard problem, therefore any consolidation of plant discrete

states that can be done as per Figure 7 will increase the controller viability and455

reduce computational cost. The reduced number of effective states are shown

as the red nodes in Figure 7.

The number of possible plant states to be optimised between, and for which

the NLP problem has to be solved each time the controller is run, has been
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Figure 7: Hybrid controller state graph (Short hand: ctx:1 means cooling tower x fan is on,

and ctx:0 means it is off. px:1 means pump x is on, and px:0 means it is off).

reduced through this consolidation so that all the essential states can be iterated460

over (Camacho and Bordons, 2007). If this is viable, then the need for a more

complex and expensive algorithm like branch and bound (Belotti et al., 2013)

can be averted. This approach was found to be viable for the HNMPC controller

implemented.

During each iteration of the HNMPC controller, the objective function (9) is465

calculated for each plant state which is modelled as a red node on the plant state

graph being traversed (Figure 7). The best node as per the objective function

(9) is chosen, and the hybrid MVs switched accordingly given the current state

of the continuous MVs. Then the gradient descent step for the continuous

MVs is calculated and implemented with (4). After this, the iteration step is470

completed, and the algorithm will start again with traversing the tree nodes at

the next controller iteration. This high-level algorithm is portrayed in pseudo

code in Algorithm 1.

A logic block is inserted between the model and the NMPC controller to take
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Algorithm 1 HNMPC controller algorithm

Initialise plant model.

Initialise Boolean MVs.

Initialise continuous MVs.

for the simulation period do

Integrate plant model state equations one step.

if controller waiting period complete according controller frequency then

for all effective discrete plant states do

Evaluate objective function for plant state

end for

Select Boolean MVs of plant state with highest objective function.

Calculate continuous MV Jacobian gradient of objective function.

Calculate the new continuous MV values with the gradient.

Apply the projected gradient method for constraint handling.

Implement gradient descent continuous MV step for the gradient.

end if

end for
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Table 2: Discrete plant states as determined by Boolean MVs.

State nr CT 1 CT 2 CT 3 Pump 1

1 1 1 1 1

2 0 1 1 1

3 0 0 1 1

4 0 0 0 1

5 1 1 1 0

6 0 1 1 0

7 0 0 1 0

8 0 0 0 0

a single continuous MV from the NMPC controller for fan speed, and duplicate475

it across all 3 fans. The same is done for the 2 pumps. This approach simplifies

the NMPC design. Individual motors can still be shut-down and started up by

the Boolean MVs of the HNMPC controller independent from each other.

The objective function to be minimised by the HNMPC controller, is a

weighted sum of the 3 classes of CVs in the controller (see Section 3.1):480

JN =
1

N

N∑
i=1

 11∑
j=1

QTHXj

(
THXj

− TSPHXj

)2
+

3∑
j=1

QPfj

(
Pfj − PSPfj

)2
+

2∑
j=1

QPpj

(
Ppj
− PSPpj

)2
(9)

where the set point targets (e.g. TSPHXj for the temperature CVs) are sub-

tracted in each summation from the heat exchanger outlet process temperatures

(THXj
), the fan power consumptions (Pfj ), and the pump power consumptions

(Ppj
) (Rubio-Castro et al., 2013). QTHXj

, QPfj
and QPpj

are the weights for

the heat exchanger hydrocarbon stream outlet temperatures, and fan and pump485

power error terms. The objective function is calculated and summed over a

Prediction Horizon (N) of 45 minutes simulation time, each time the HNMPC

control algorithm executes. In order to minimise computational cost, shorter
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prediction horizons and shorter NMPC control horizons are preferred for a cer-

tain level of stability (Grüne et al., 2012). Therefore, the NMPC control horizon490

is 1 control move for the prediction horizon of 45 minutes. With this design,

feedback from the plant is obtained after each control move that the controller

algorithm sends to the plant.

The frequency of the controller executing one iteration was set to 10 minutes

simulation time. The numerical plant model is iterated every 200ms due to495

the stiff nature of the plant model differential equations (Viljoen et al., 2018).

No terminal constraint (Grüne and Pannek, 2017) was added to the objective

function.

For the continuous-only NMPC scenarios, the same objective function (9) is

used, but the Boolean MVs are not available to the controller to manipulate.500

The power variables are always minimised in the objective function by setting

the set point target equal to zero, and tuning the weight of the relevant term

in (9). The HNMPC controller will not allow the MVs to move outside their

limits (6), whereas CVs can but are penalised more in the objective function

the further away from the set point targets they move.505

Empirical tuning of the controller tuning constants was performed through

simulation runs of the closed-loop system for all scenarios and control strategies

with the goal of achieving tight control but also stability. Other parameter

values experimented with either compromised on tightness of control, or stability

of the closed-loop response. The maximum step size allowed for the continuous510

MVs during one controller iteration, was limited to 10% of the engineering unit

range of the MV. The purpose of this limitation is to prevent severe disturbances

to the plant due to potentially very aggressive action of the controller. Tuning

constants and optimisation algorithm parameters were used in the controller as

per Table 3.515

The same tuning values for all controller parameters was used for both the

NMPC and HNMPC controllers. A high-level portrayal of the plant and de-

signed control system indicating the various MV and CV signals between the

plant equipment and NMPC/HNMPC controller is shown in Figure 8. The 11
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Table 3: Tuning parameters of NMPC and HNMPC controllers.

Parameter Symbol Value Units

Momentum decay γ 0.0925

Learning rate η 0.0625

Objective weight HX temp. QTHXj
1

Objective weight Fan power QPfj
0.00001

Objective weight Pump power QPpj
0.0001

Controller prediction horizon N 45 Minutes

Controller running interval 10 Minutes

Controller NMPC control horizon 1 Control move

Maximum continuous MV change per iteration 10 % of EU range

parallel heat exchangers and 11 control valves are shown as 1 exchanger and520

valve to save space on the drawing.

The HNMPC controller is implemented in a C++ simulation platform (Strous-

trup, 2013) that is able to control and optimise the plant model (Viljoen et al.,

2018) with its stiff partial differential equations in real time.

4. Results and discussion525

The NMPC and HNMPC controllers are simulated in closed-loop in the

subsections that follow. The different scenarios are discussed separately with

each control strategy simulated for each scenario. Subsequently the scenarios

and strategies are compared and conclusions drawn.

All simulations are started with the plant running with an ambient tem-530

perature of 25 ◦C, and an ambient humidity of 50%. The power minimisation

scenario is run over 24 hours of simulation time. The plant load disturbance,

ambient temperature disturbance and ambient humidity disturbance rejection

scenarios are started with 5 minutes of simulation time with the plant at steady-

state before the disturbances are applied, followed by 8 simulation hours of dis-535

turbance rejection control. Only the fan and pump power is shown in figures
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Figure 8: Overall control system design with NMPC/HNMPC, MV and CV signals.

and not the speed as well, in order to limit the number of figures in the paper.

Since the speed and power variables are correlated, they will normally move in

the same direction.

4.1. Power consumption minimisation540

The design figures documented in Section 2.1 for the cooling tower fan speeds

and cooling water pump speeds are higher than what is required for the ambient

conditions the plant is typically exposed to. The continuous NMPC controller is

able to exploit this opportunity when excess cooling capacity is being generated

by ramping down the fan and pump speeds while maintaining the temperatures.545

In this scenario the simulation is started with the fans and pumps running

at their design speeds as per Base Case A in Section 2.2. The plant is exposed

to a typical 24 hour ambient temperature and humidity cycle as per Figure 2
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and Figure 3. The hydrocarbon stream temperatures at the outlet of HX-01 are

shown in Figure 9 for the uncontrolled base case and when NMPC and HNMPC550

are used. The NMPC and HNMPC controllers are able to keep the temperature

at set point, and have the same effect since fast discrete control action is not

required due to the slowly varying disturbances.

Figure 9: HX-01 outlet hydrocarbon temperature for power minimisation scenario.

The controllers decrease the fan speeds in order to minimise fan power as

shown in Figure 10 while controlling temperature. Due to the cubed relationship555

between fan power and speed (Viljoen et al., 2018), a 40% reduction in speed

results in a almost an 80% reduction in fan power.

Figure 10: Cooling tower fan power for power minimisation scenario.
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The pump speed is also reduced by the controller in order to minimise pump

power as shown in Figure 11.

Figure 11: Cooling water pump power for power minimisation scenario.

Cooling water valve movement is negligible in this scenario since the ambient560

conditions change very slowly and adjusting cooling capacity in the circuit as

a whole is needed. This cooling capacity adjustment is mainly done by the

fan and pump speeds as opposed to the cooling water valves. As expected,

the controllers focus on the fans and pumps as this is where the most power is

consumed.565

4.2. Plant load disturbance scenario

Base Case B as described in Section 2.2 is used here to compare the NMPC

and HNMPC controllers to. The plant load disturbance applied is shown in

Figure 4. The simulation is continued for another 4 hours after the plant loads

have been restored to give the temperature time to settle.570

The temperature disturbance rejection performance of the NMPC and HN-

MPC controllers are compared to Base Case B in Figure 12. The NMPC and

HNMPC controllers optimise the cooling capability as much as possible, and

limit the undershoot of the hydrocarbon temperatures. The HNMPC can con-

tain the undershoot slightly better than the NMPC. When the plant load is575

restored, the controllers bring the temperature back to set point.
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Figure 12: HX-01 outlet hydrocarbon temperature, with plant load disturbance.

The cooling tower fan power is minimised by the controller while still keep-

ing the temperature under control (Figure 13). Under continuous control the

controller is limited to moving the fan speed to not more than 10% of its range

per control iteration. The fan speed is ramped down as fast as possible, and580

then ramped up again to limit temperature overshoot when the plant load is

restored. This results in the fan power trend as in Figure 13. After the temper-

ature is restored to set point, the fan speed is still ramped down somewhat to

further minimise power consumption.

Figure 13: Cooling tower fan power with plant load disturbance.
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Under HNMPC control, all 3 cooling tower fans are switched off by the585

controller as soon as the plant load drops thus minimising cooling capacity

and saving power (Figure 13). Fan 2 is switched on again after around 2,500

seconds, followed by fan 3 at around 3,000 seconds. Fan 1 is switched on at

9,000 seconds, and switched off again at 11,000 seconds. When the plant load is

restored, fan 1 is switched on again and all fans are ramped up and later down590

to limit temperature overshoot, and save power.

Under NMPC control the pump power is minimised (Figure 14) by turning

the pump speeds down. When the plant load returns, the pump speeds are

ramped up to prevent hydrocarbon temperature overshoot.

Figure 14: Cooling water pump power with plant load disturbance.

Under HNMPC control, pump 1 is shut down immediately when the plant595

load is reduced, thus minimising cooling capacity, as well as pump power (Figure

14). Pump 2 is kept on to supply cooling water to the plant but turned down

to save power (Figure 14). The power consumption of pump 2 drops initially

when pump 1 is switched on again, as less CW flows through it when pump 1

also starts pumping CW.600

The CW valve movements during both NMPC and HNMPC are very similar,

and are shown for valve 1 in Figure 15. The control valves move significantly

in the plant load disturbance scenario since the effect of this disturbance has a
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considerable effect on the temperature CVs with faster dynamics. This is due

to the disturbance not being in the ambient conditions but very close to the605

CVs in the plant, thus effecting the CVs faster.

Figure 15: Cooling water valve 1 movement under continuous control with plant load distur-

bance.

4.3. Ambient temperature disturbance scenario

Changes in ambient conditions can have a large effect on the cooling tower

performance. The ambient temperature changes in this scenario are made more

rapidly than what would occur naturally. The performance of the controllers is610

compared to that of Base Case B as described in Section 2.2.2.

The NMPC and HNMPC controllers are required to maintain the hydrocar-

bon heat exchanger outlet temperatures at set point, and in addition to consume

as little power as possible. The ambient temperature was first stepped down

from a starting value of 25 ◦C to 5 ◦C and kept there for 4 hours to allow the615

controller to act and the variables to settle, then the temperature was stepped

back to 25 ◦C for another 4 hour period (see Figure 16).

Both the NMPC and HNMPC restrict the drop in hydrocarbon outlet tem-

perature and limit the overshoot above set point when the ambient temperature

is restored (see Figure 17). The NMPC performs well, but the HNMPC performs620

significantly better in this scenario.
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Figure 16: Ambient temperature during ambient temperature disturbance scenario.

Figure 17: HX-01 outlet temperature during ambient temperature disturbance scenario.

The NMPC controller keeps reducing the CT fan speeds and power con-

sumption (Figure 18) in order to minimise cooling when the ambient tempera-

ture drops. The HNMPC controller does not change the fan speeds for CTs 2

and 3. It does however shut down the CT 1 fan when the ambient temperature625

drops, and starts it up again when the ambient temperature increases as shown

in Figure 18. In this way the HNMPC controller balances the demand for power

minimisation and temperature control.

The CT fans have more of an influence on the hydrocarbon temperature

than the speed of the pumps. The HNMPC controller therefore uses the pump630
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Figure 18: CT fan power during ambient temperature disturbance scenario.

speed MVs to mainly reduce the power consumption (Figure 19) in the circuit.

It can afford to only make small changes to the pump speeds as it has shut down

a CT fan (Figure 18) in order to reject the ambient temperature disturbance.

The NMPC controller does not have this luxury, and therefore its pump speed

movements are more pronounced, resulting in the pump power trend as in Figure635

19.

Figure 19: CW pumps power during ambient temperature disturbance scenario.

The control valve movements have less of an influence on the hydrocarbon

temperature than the CT fans, and also a smaller influence on power consump-
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tion than the CW pumps. The HNMPC controller does not need to change the

valve opening much as it has shut down a CT fan (Figure 18) in order to reject640

the ambient temperature disturbance. The valve opening movements resulting

from the NMPC controller are more pronounced as for the pump speeds (Figure

20).

Figure 20: CW valve 1 movement during ambient temperature disturbance scenario.

4.4. Ambient humidity disturbance scenario

The ambient humidity changes are made more rapidly than what would645

occur naturally. The performance of the controllers is compared to that of Base

Case B as described in Section 2.2. The relative humidity was first stepped

down from a starting value of 50% to 0% and kept there for 4 hours to allow

the controller to act and the variables to settle, then the humidity was stepped

back to 50% for another 4 hours (see Figure 21).650

Both controllers contain the hydrocarbon outlet temperature well compared

to the uncontrolled plant Base Case B response (Figure 22). The hybrid con-

troller does slightly better since it has more degrees of freedom with the Boolean

MVs also at its disposal (see Table 5).

Both controllers ramp down the CT fan speeds (Figure 23) in order to contain655

the drop in hydrocarbon temperature when the ambient humidity is stepped

down. The HNMPC controller shuts down fan 1 for some time in order to
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Figure 21: Ambient humidity steps to test humidity disturbance in the NMPC controller

cases.

further minimise power (Figure 23) and assist in containing the temperature

drop. The opposite occurs when the humidity is stepped back up.

The cooling water pumps are used mainly by the controllers to minimise660

power, and less to control temperature. That is the reason that the pump

speeds are not moved much over the simulation time resulting in the pump

power trends as in Figure 24.

Pump power consumption is further minimised over the life of the scenario

(Figure 24), and when the temperature is under control again at the end of the665

scenario, the pump power consumption is slightly less than at the start of the

scenario.

The cooling water valves are also moved to a much smaller degree by the

controller during the ambient humidity steps. See Figure 25 for the trajectory

of valve 1.670

4.5. Simulation scenario and control strategy comparison

4.5.1. Base Case A

In Table 4, the power consumption and resulting electricity cost of the con-

trol strategies in the power consumption scenario are shown. Since no fast

discrete action is required due to the slowly varying disturbances prevalent in675
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Figure 22: HX-01 outlet temperature during ambient humidity disturbance scenario.

Figure 23: Cooling tower fan power during ambient humidity disturbance scenario.

this scenario, the NMPC and HNMPC controllers take the same action. The

controllers are able to reduce the total power consumption and cost by 44.1%

compared with Base Case A over the 24 hour simulation period (the electricity

pricing is the same over the 24 hour period).

From Figure 10 and Figure 11 it can be seen that the controllers reduce680

the fan speeds by a greater degree than the pump speeds. The controllers find

an optimal ratio between fan and pump speed for the cooling and temperature

control requirement, given the power minimisation objective.
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Figure 24: Cooling water pump power during ambient humidity disturbance scenario.

Figure 25: Cooling water valve 1 movement during ambient humidity disturbance scenario.

4.5.2. Base Case B

In Table 5 the Integral Square Error (ISE) sums and the total power con-685

sumption are shown for each scenario. The ISE is calculated as the difference

between the normalised controlled variable (actual divided by engineering unit

range) and the normalised set point, squared and totalled for the whole simu-

lation period. The ISE figure tabled is the sum of the 11 temperature CV ISE

figures.690

Both the NMPC and HNMPC controllers succeeded in controlling the tem-

perature well in the face of significant disturbances (see Figures 12, 17 and 22).
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Table 4: Comparison of 24 hour power minimisation scenario.

Cntrl. strategy Power (kWh) Cost (USD) Power reduction

vs. Base Case A

Base Case A 52,826 2,536 0%

NMPC & HNMPC 29,543 1,418 44.1%

Table 5: Comparison of 8 hour disturbance rejection scenarios and control strategy runs.

Scenario & control strat-

egy

Temp.

ISE

Temp. ISE

reduction

vs. NMPC

Power

(kWh)

Power

reduction

vs. Base

Case B

Load dist., NMPC 3.10E-04 0% 4,051 48.5%

Load dist., HNMPC 2.58E-04 16.6% 4,255 45.9%

Amb. temp. dist., NMPC 1.06E-05 0% 7,289 7.3%

Amb. temp. dist., HNMPC 2.33E-06 78.0% 7,537 4.1%

Amb. hum. dist., NMPC 5.99E-06 0% 7,395 5.9%

Amb. hum. dist., HNMPC 5.56E-06 7.3% 7,410 5.7%

Base Case B power 7,860 0%

The HNMPC controller performed better than the NMPC controller, particu-

larly when rejecting the ambient temperature disturbance for which its temper-

ature ISE score was 78% smaller. The reduction in power consumption shown695

in Table 5 is due mainly to the controllers turning down the rotating equipment

in order to control temperature. The power consumed by the NMPC and HN-

MPC controllers is less than that of Base Case B, with the biggest reduction

occurring in the load disturbance scenario.

Since the objective function (9) is tuned to focus the controllers on tem-700

perature control (Table 3), the HNMPC controller uses the extra degrees of

freedom it has compared to the continuous controller to further improve tem-
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perature control as can be seen in the second and third columns of Table 5.

This improved temperature control comes at the cost of slightly higher power

consumption compared to the continuous controller (see last column of Table705

5).

4.6. Monetary benefit

Monetary benefit estimation of advanced control and optimisation for the

cooling water network is focused on electricity consumption minimisation in this

paper. Advanced process temperature control also has significant monetary ben-710

efits, but quantification of those benefits is different for each sub-plant serviced

by the different cooling water heat exchangers, and is beyond the scope of this

paper. The estimated savings achieved by the NMPC/HNMPC control strate-

gies is therefore derived from the power minimisation scenario and compared

with Base Case A.715

The NMPC and HNMPC controllers achieved a significant reduction in

power consumption over Base Case A while maintaining the temperature at

setpoint (Figure 9). These gains come from the reduction in fan and pump

speeds as shown in Figures 10 and 11. The daily power cost savings is esti-

mated to be USD 1,118 (2,536 - 1,418) as shown in Table 4. Assuming that720

the full design cooling capacity of the cooling water network is effectively not

needed for 70% of the year and that these benefits can be achieved for that

period of time, the annual total saving is USD 285,540.

The capital cost of making the cooling water network amenable to advanced

control (Section 2.3) is estimated at USD 243,000. Assuming the implementa-725

tion of HNMPC as per the design in this paper is done by the plant owner’s

control engineers, a cost of capital discount rate of 8%, and annual inflation of

2%, then the business case is a 10 year NPV of USD 1,829,251, an IRR of 120%

and a 0.95 year payback period.

The electricity rates in the Arabian Gulf are typically lower than most other730

economies. The benefits of the control strategies developed in this paper could

be increased in other markets because of potentially higher pricing of electricity.
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In addition, if improved temperature control is taken into account as well, the

benefits of advanced control will be even larger.

4.7. Computation platform735

All simulations were conducted on a 2.5 GHz Intel Core i7 computer with

16 GB memory. The code was compiled in C++ 11 and ran on the Mac OS

10.13 operating system. This platform takes 33.1 seconds to run the plant model

(Viljoen et al., 2018) in open-loop for 8 hours of simulation time. Running the

HNMPC controller in closed-loop requires an average of 66.99 seconds per iter-740

ation, which is well within the 10-minute running interval indicated in Table 3.

It takes 54.1 minutes for the closed-loop simulation to complete an 8-hour sim-

ulation time period. The NMPC gradient descent optimiser assists in limiting

the time needed to execute the NMPC control algorithm, by not requiring the

Hessian but only the Jacobian of the objective function to be calculated.745

4.8. Conclusion

This paper showed how an NMPC and HNMPC controller can successfully

control hydrocarbon temperatures, as well as minimise the power consumption

of a cooling water network represented by a fundamental process model. The

continuous MVs used by the NMPC controller can be combined with Boolean750

MVs in an HNMPC controller where the rotating equipment are switched on

and off as needed.

The NMPC and HNMPC controllers are able to exploit the power minimi-

sation opportunity whenever the cooling requirement and ambient conditions

allow it by optimally decreasing fan and pump speeds from their original design755

settings while controlling temperature. This results in significant annual savings

in electricity costs for the plant owner, as estimated in Section 4.6.

The HNMPC controller is able to perform well for a range of plant states

and conditions. Large plant disturbances such as a reduction of the hydrocarbon

mass flow to the cooling water exchangers, and large changes in ambient tem-760

perature and humidity conditions, can be controlled, contained and managed

by the HNMPC control system.
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The HNMPC controller performs better than the NMPC controller due to

it having access to Boolean MVs and hybrid plant states in addition to the con-

tinuous MVs. This greater flexibility enables the HNMPC controller to better765

minimise the objective function and drive the plant towards an optimum state.

Overall hybrid NMPC has great potential for online optimisation of the

cooling water networks of processing facilities. Normally plants of this kind do

not have variable speed drives for the fans and pumps. This paper has shown

that these MVs are effective in enabling NMPC to deal with typical conditions770

that occur on industrial cooling water networks. A capital investment roadmap

could take a phased approach to first install variable speed drives and continuous

NMPC, followed by a second phase of hybrid NMPC. Power consumption cost

savings (Matthews and Craig, 2013; Muller and Craig, 2016) should be able to

justify a business case for actuation and HNMPC control of such plants.775
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