
Development and analysis of a malaria

transmission mathematical model with seasonal

mosquito life-history traits

Ramsès Djidjou-Demassea,‡, Gbenga J. Abiodunb,
Abiodun M. Adeolac,d, Joel O. Botaic,e

a MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
b Department of Mathematics,

Southern Methodist University, Dallas, Texas 75275, United States;
c South African Weather Service, Private Bag X097, Pretoria 0001, South Africa
d Institute for Sustainable Malaria Control, University of Pretoria, South Africa

e Department of Geography, Geoinformation and Meteorology,

University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
‡ Author for correspondence: ramses.djidjoudemasse@ird.fr

Abstract

In this paper we develop and analyse a malaria model with season-
ality of mosquito life-history traits: periodic-mosquitoes per capita birth
rate, -mosquitoes death rate, -probability of mosquito to human disease
transmission, -probability of human to mosquito disease transmission and
-mosquitoes biting rate. All these parameters are assumed to be time
dependent leading to a nonautonomous differential equation systems. We
provide a global analysis of the model depending on two thresholds pa-
rameters R0 and R0 < 1 (with R0 ≤ R0). When R0 < 1, then the
disease-free stationary state is locally asymptotically stable. In the pres-
ence of the human disease-induced mortality, the global stability of the
disease-free stationary state is guarantied when R0 < 1. On the contrary,
if R0 > 1, the disease persists in the host population in the long term and
the model admits at least one positive periodic solution. Moreover, by a
numerical simulation, we show that a sub-critical (backward) bifurcation
is possible at R0 = 1. Finally, the simulation results are in accordance
with the seasonal variation of the reported cases of a malaria-epidemic
region in Mpumalanga province in South Africa.

Keywords: Seasonal pattern; Periodic solution; Basic reproduction
number; Global stability; Uniform persistence
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1 Introduction

Malaria is a deadly disease caused by infection with Plasmodium protozoa trans-
mitted by an infective female Anopheles mosquito. Globally, an estimated 219
million malaria cases was recorded in 2017 which is an increase of about 3 mil-
lion cases over 2016 [49]. In the same year, almost 435,000 individuals lost their
lives to the life-threatening disease [49].

Despite more than a century of research, there is a dearth of information
on the mechanistic link between environmental variables, such as temperature
and malaria risk [30, 39, 7]. Temperature is fundamentally linked to malaria
mosquito and parasite vital rates, and understanding the role of temperature in
malaria transmission is particularly important in light of climate change. Us-
ing mathematical model, several attempts have been made to highlight some of
the importance of climate variables on malaria transmission. [34] built nonlin-
ear thermal-response models to understanding the effects of current and future
temperature regimes on malaria transmission. The models, which include em-
pirically derived nonlinear thermal responses, predicts optimal malaria trans-
mission at 25◦C (6◦C lower than previous models).

[22] proposed an ordinary differential equation (ODE) compartmental model
for the spread of malaria with susceptible-infectious-recovered (SIRS) pattern for
humans and a susceptible-infectious (SI) pattern for mosquitoes with mosquitoes
periodic birth rate and death rate. More recently, [3] developed and analysed
a comprehensive mosquito-human dynamical model. The model was validated
by [2] over KwaZulu-Natal province – one of the epidemic provinces in South
Africa. Several other studies [21, 31, 40, 4, 38, 1, 23, 12, 27] have explored
the impacts of environmental variables on malaria transmission and mosquito
abundance. We reference the work of [44] with periodic mosquito per capita
death and birth rate; recent works of [11] with periodic mosquito biting rate
and [37] for a model assessing the impact of the differences in indoor vs outdoor
environments on the efficacy of malaria control. [38] assess the impact of vari-
ability in temperature and rainfall on the transmission dynamics of malaria over
KwaZulu-Natal, South Africa and found that incorporating host age-structure
and reduced susceptibility due to prior malaria infection has marginal effect
on the transmission dynamics of the disease. Similarly, [6] presented a new
mechanistic deterministic model to investigate the impact of temperature vari-
ability on malaria transmission over East, West, South and Central Africa.
With temperature between 16–34oC, their analysis identified mosquito carry-
ing capacity, transmission probability per contact for susceptible mosquitoes and
human recruitment rate as the most sensitive parameters. However, many other
mosquito life-history traits (including larval development rate, larval survival,
adult survival, biting rate, fecundity, and vector competence) are well known
to have seasonal variation [34, 23]. This present study aims to (i) proposed
and analyze a human-mosquito malaria transmission model including all these
life-history traits with periodic variation and (ii) validate the model proposed
over a malaria-epidemic regions in Mpumalanga province in South Africa.

The model proposed in this paper divides the human population into four
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classes: susceptible-exposed-infectious-recovered (SEIRS) and mosquitoes pop-
ulation into three classes: susceptible-exposed-infectious (SEI). The SEIRS pat-
tern for humans and SEI pattern for mosquito model have been also proposed by
Chitnis and collaborators [19, 20]. Human migration is present throughout the
world and plays a large role in the epidemiology of diseases, including malaria.
In many parts of the developing world, there is rapid urbanization as many peo-
ple leave rural areas and migrate to cities in search of employment. We include
this movement as a constant immigration rate into the human susceptible class.
We make a simplifying assumption that there is no immigration of recovered
humans and also include the direct infectious-to-susceptible recovery as in the
model of [36].

This work is organized as follows: In Section 2, we fully describe the malaria
seasonal model studied in this paper as Section 3 describes the main results.
The discussion and numerical simulations illustrating main results are given in
Sections 4. Section 5 is devoted for deriving preliminary results and remarks
that will be used to study the long-term behavior of the problem. Section 6
is concerned with the proof of the main results that, roughly speaking, state
that when some thresholds (explicitly expressed using the parameters of the
system) R0 and R0 (with R0 ≤ R0) are such that: (i) when R0 < 1 the
disease-free stationary state is locally (not necessarily globally) asymptotically
stable; (ii) when R0 ≤ R0 < 1 the disease-free stationary state is then globally
asymptotically stable and the disease certainly die out from the host population;
and (iii) when R0 > 1 the disease persists in the host population in the long
term and the model admits at least one positive periodic solution.

2 The malaria seasonal model

The model sub-divides the total human population at time t, denoted by Nh(t),
into the following sub-populations of susceptible Sh(t), exposed (infected but
not infectious) Eh(t), infectious Ih(t) and recovered individuals with temporary
immunity Rh(t). So that Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t).

The total vector (mosquito) population at time t, denoted by Nv(t), is sub-
divided into susceptible Sv(t), exposed Ev(t) and infectious mosquitoes Iv(t).
Thus, Nv(t) = Sv(t) + Ev(t) + Iv(t).

Susceptibles individuals are recruited at a constant rate Λh. We define
the force of infection from mosquitoes to humans by (αβ1(t)θ(t)Iv/Nh) as the
contact probability between human and mosquito α, the probability that the
mosquito is infectious Iv/Nv, the number of mosquito bites per human per time
θ(t)Nv/Nh and the probability of disease transmission from the mosquito to the
human β1(t). Then infected individuals move to the exposed class at a rate
(αβ1(t)θ(t)IvSh/Nh). The natural death rate of human is µh. The rate of pro-
gression from exposed class to infectious individuals class is σh while infectious
individuals recovered due to treatment at a rate γh. The infectious humans
after recovery without immunity become immediately susceptible again at rate
(1 − r)γh, where r is the proportion of infectious humans who recovered with
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temporary immunity. Recovered individual loses immunity at a rate kh.
Susceptible mosquitoes are generated at a per capita rate bv(t) at time t and

acquire malaria through contacts with infectious humans with the force of infec-
tion (β2(t)αθ(t)Ih/Nh) as the product of the probability of disease transmission
from human to the mosquito β2(t), the human-mosquito contact probability
α and the probability that human is infectious Ih/Nh. Hence, newly infected
mosquitoes are moved into the exposed class at a rate (β2(t)αθ(t)IhSv/Nh) and
progress to the class of infectious mosquitoes at a rate σv. Mosquitoes are as-
sumed to suffer death at rate (µv(t) + κv(t)Nv), either due to natural causes at
rate µv(t) or to the density-dependent death at rate κv(t)Nv at time t.

The non-autonomous model has time-dependent ω-periodic coefficients which
account for the environmental variations in the infectivity of both human and
mosquitoes populations, the birth rate of the mosquitoes population, the biting
rate of the mosquitoes population and the death rates of mosquitoes. Setting
ẏ = dy

dt , the resulting system of equation is shown below:

Ṡh = Λh − αβ1(t)θ(t)
Iv
Nh

Sh + khRh + (1− r)γhIh − µhSh;

Ėh = αβ1(t)θ(t)
Iv
Nh

Sh − (σh + µh)Eh;

İh = σhEh − (γh + ρh + µh)Ih;

Ṙh = rγhIh − (kh + µh)Rh;

Ṡv = bv(t)Nv − αβ2(t)θ(t)
Ih
Nh

Sv − (µv(t) + κv(t)Nv)Sv;

Ėv = αβ2(t)θ(t)
Ih
Nh

Sv − (σv + µv(t) + κv(t)Nv)Ev;

İv = σvEv − (µv(t) + κv(t)Nv)Iv;

Ṅh = Λh − µhNh − ρhIh;

Ṅv = (bv(t)− µv(t)− κv(t)Nv)Nv.

(2.1)

For convenience, we work with fractional quantity instead of actual popu-
lations by scaling the population of each by the total species population. We
let

sh = Sh/Nh, eh = Eh/Nh, ih = Ih/Nh, rh = Rh/Nh,

sv = Sv/Nv, ev = Ev/Nv, iv = Iv/Nv.
(2.2)

Differentiating the scaling equations (2.2) and solving for the derivatives of
scaled variables, we obtain for example

ėu =
1

Nu

(
Ėu − euṄu

)
, with the subscript u = h, v

and so on for the other variables.
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Table 1: Parameter description

Constant parameters

Λh human recruitment rate. Human × Time−1.
µh human per capita death rate. Time−1.
α human-mosquito contact probability. Dimensionless.
kh rate of loss of immunity. Time−1.
γh human recovery rate. Time−1.
r Probability of recovered with temporary immunity. Dimensionless.
σh progression rate from exposed class to infectious individuals. Time−1.
σv progression rate from exposed class to infectious mosquitoes. Time−1.
ρh human disease induce mortality rate. Time−1.

ω-Periodic parameters

bv(t) mosquitoes per capita birth rate. Time−1.
µv(t) mosquitoes per capita death rate. Time−1.
κv(t) Density-dependent part of the death rate for mosquitoes. Mosquito−1 × Time−1

β1(t) probability of mosquito to human disease transmission. Dimensionless.
β2(t) probability of human to mosquito disease transmission. Dimensionless.
θ(t) mosquitoes biting rate. Human × Mosquito−1 × Time−1

This creates a new seven-dimensional system of equations with one dimen-
sion for the total population variable, Nh, and five dimensions for the frac-
tional population variables, eh, ih, rh, ev, and iv. For convenience we still use
sh = Sh, eh = Eh, ih = Ih, sv = Sv, ev = Ev and iv = Iv. We then have
Sh = 1− (Eh + Ih +Rh), Sv = 1− (Ev + Iv) and

Ėh = αβ1(t)θ(t)
Nv
Nh

Iv(1− Eh − Ih −Rh)− (σh +
Λh
Nh

)Eh + ρhEhIh;

İh = σhEh − (γh + ρh +
Λh
Nh

)Ih + ρhI
2
h;

Ṙh = rγhIh − (kh +
Λh
Nh

)Rh + ρhIhRh;

Ėv = αβ2(t)θ(t)Ih(1− Ev − Iv)− (σv + bv(t))Ev;

İv = σvEv − bv(t)Iv;
Ṅh = Λh − µhNh − ρhIhNh;

Ṅv = (bv(t)− µv(t)− κv(t)Nv)Nv;

(2.3)

and

Eh(0) ≥ 0; Ih(0) ≥ 0; Rh(0) ≥ 0; Ev(0) ≥ 0; Iv(0) ≥ 0, Nh(0) > 0 and Nv(0) > 0.
(2.4)

Variables and parameters of the model are resumed in Table 1. In what follow
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we shall discuss the asymptotic behavior of system (2.3)-(2.4) and we will make
use of the following assumptions.

Assumption 2.1

1. We assume that, Λh, µh, α, kh, γh, r, σh and σv are positives con-
stants with the exception of the disease-induced death rate ρh, which is
non-negative constant. The functions bv(.), µv(.), κv(.), β1(.), β2(.) and
θ(.) are ω-periodic and belong to L∞+ (0, ω,R+).

2. maxt∈[0,ω] (bv(t)− µv(t)) > 0 and mint∈[0,ω] κv(t) > 0.

Biologically, item 1. of Assumption 2.1 is a quite natural assumption on demo-
graphical, epidemiological and biological model parameters and item 2. means
that the maximum of mosquito’s natural growth rate is positive. For notational
convenience, the ω-periodicity of a function z means that z(· + ω) = z(·) and
the average of the ω-periodic function z is defined by 〈z〉 = 1

ω

∫ ω
0
z(t)dt.

3 Main results

In what follows, we characterize the disease-free periodic state and introduce the
basic reproduction number R0 for system (2.3) according to general procedure
presented in [46, 32] and references therein.

3.1 The disease-free periodic state

In the absence of disease, total populations of human and vectors Nh and Nv
are such that

Ṅh = Λh − µhNh;

Ṅv = (bv(t)− µv(t)− κv(t)Nv)Nv.
(3.5)

Obviously, N∗h = Λh/µh is a globally attractive solution of the Nh-equation,
which can be viewed as ω-periodic when necessary. Next, to ensure the exis-
tence of a ω-periodic stationary state to the Nv-equation, due to the density
dependent death rate κv(t), we reasonably assume that the vector population Nv
has small seasonal fluctuations at equilibrium, i.e. κv(t) ' C0 (bv(t)− µv(t)),
wherein C0 is a positive constant. Therefore, the disease-free ω-periodic state
of system (2.3) is M0 = (0, 0, 0, 0, 0, N∗h , N

∗
v ); where N∗h = Λh/µh and N∗v (t) =

(bv(t)− µv(t)) /κv(t). Moreover, (N∗h , N
∗
v ) is the unique positive ω-periodic so-

lution of System (3.5), which is globally attractive in R2
+ (see section 5.1 for

details of this proof).

3.2 The basic reproduction number R0

In the sequel, let us introduce the ω-periodic function m∗(t) =
N∗v (t)
N∗h

, the ratio of

mosquitoes to human population. Then, the equation for exposed and infectious
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for both human and mosquitoes populations of the linearized system of model
(2.3) at M0 writes

d

dt
(Eh, Ih, Ev, Iv)

T = (F (t)− V (t)).(Eh, Ih, Ev, Iv)
T ;

where

F (t) =


0 0 0 αm∗(t)β1(t)θ(t)
0 0 0 0
0 αβ2(t)θ(t) 0 0
0 0 0 0

 ;

and

V (t) =


σh + µh 0 0 0
−σh γh + ρh + µh 0 0

0 0 σv + bv(t) 0
0 0 −σv bv(t)


(3.6)

Let ΦV (t) and ρ(ΦV (ω)) be the monodromy matrix of the linear ω-periodic
system dz

dt = V (t)z and the spectral radius of ΦV (ω), respectively. Assume
YV (t, s), t ≥ s, is the evolution operator of the linear ω-periodic system

dz

dt
= −V (t)z. (3.7)

That is, for each s ∈ R, the 4× 4 matrix Y (t, s) satisfies

d

dt
YV (t, s) = −V (t)YV (t, s), ∀t ≥ s, YV (s, s) = I,

where I is the 4 × 4 identity matrix. Thus, the monodromy matrix Φ−V (t) of
(3.7) is equal to YV (t, 0) for t ≥ 0.

Now, we deal with disease-free equilibrium invasion process [45] and refer-
ences therein. Let φ(s) the initial distribution of infectious individuals. Then
F (s)φ(s) is the rate of new infections produced by the infected individuals who
were introduced at time s. Given t ≥ s, then YV (t, s)F (s)φ(s) gives the dis-
tribution of those infected individuals who were newly infected at time s and
remain in the infected compartments at time t. It follows that

ψ(t) :=

∫ t

−∞
YV (t, s)F (s)φ(s)ds =

∫ ∞
0

YV (t, t− s)F (t− s)φ(t− s)ds

is the distribution of accumulative new infections at time t produced by all those
infected individuals φ(s) introduced at time previous to t.

Let Cω(R,R4) be the ordered Banach space of all ω-periodic functions from
R to R4 which is equipped with the maximum norm ||.|| and the positive cone
C+
ω (R,R4) = {φ ∈ Cω(R,R4) : φ(t) ≥ 0}. Then we can define a linear operator
LV : Cω(R,R4)→ Cω(R,R4) by

LV φ(t) =

∫ ∞
0

Y − V (t, t− s)F (t− s)φ(t− s)ds, ∀t ∈ R, φ ∈ Cω(R,R4). (3.8)
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Following [46], we call L the next generation operator, and define the basic
reproduction number as R0 = ρ(LV ), the spectral radius of LV . In the context
of this work, the computation of R0 of model (2.3) is based on Lemma 5.3, item
(ii). Other approximate formula and numerical methods can be founded in [10]
and references cited therein.

In the special case of β1(t) ≡ β1, β2(t) ≡ β2, bv(t) ≡ bv, µv(t) ≡ µv,
κv(t) ≡ κv and θ(t) ≡ θ ∀t ≥ 0, we obtain F (t) ≡ F and V (t) ≡ V . By [45],
the basic reproduction number is:

R0 = αθ

√
m∗β1β2σhσv

(σh + µh)(γh + ρh + µh)(σv + bv)bv
. (3.9)

As pointed in [19], The original definition of the reproductive number of the
Ross-Macdonald model [8] and the Ngwa and Shu model [36], is equivalent to
the square of this R0. Anderson and Ngwa use the traditional definition of the
reproductive number, which approximates the number of secondary infections
in humans caused by one infected human, while the R0 used here is consistent
with the definition given by the next generation operator approach [45] which
approximates the number of secondary infections due to one infected individual
(be it human or mosquito). Moreover, the number of new infections in humans
that one human causes through his/her infectious period isR2

0, notR0. Because
this definition of R0 (3.9) is based on the next generation operator approach,
it counts the number of new infections from one generation to the next. That
is, the number of new infections in mosquitoes counts as one generation. We
further define the average basic reproduction number (according to the periodic
parameters)

〈R0〉 = α〈θ〉

√
〈m∗〉〈β1〉〈β2〉σhσv

(σh + µh)(γh + ρh + µh)(σv + 〈bv〉)〈bv〉
.

In general, R0 6= 〈R0〉. For example, in a tuberculosis model it was shown,
in [32], that R0 < 〈R0〉, and in Dengue fever model it was shown in [46] that
R0 > 〈R0〉. We can also consult [24] for more details.

3.3 The threshold dynamics

To deal with model (2.3), some notations will be given. Let us identify xh
together with (Eh, Ih, Rh, Nh)T and xv together with (Ev, Iv, Nv)

T and set x =
(xTh , x

T
v )T . Define

Ω =

{
(xTh , x

T
v )T ∈ R7

∣∣∣∣∣Eh ≥ 0; Ih ≥ 0; Rh ≥ 0; Ev ≥ 0; Iv ≥ 0, Nh > 0; Nv > 0,

Eh + Ih +Rh ≤ 1; Ev + Iv ≤ 1

}
,

X0 := {(xTh , xTv )T ∈ Ω : Eh + Ih + Ev + Iv > 0} and ∂X0 := Ω \X0.

Using the above notations the main result of this work is the following the-
orem.
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Theorem 3.1 Let Assumption 2.1 be satisfied.

(i) The disease-free equilibrium M0 for System (2.3)-(2.4) is locally asymptoti-
cally stable if R0 < 1 and unstable if R0 > 1.

(ii) If R0 > 1, then system (2.3)-(2.4) is uniformly persistence with respect to
the pair (X0, ∂X0), in the sense that there exists δ > 0, such that for any
x0 ∈ X0 we have,

lim inf
t→∞

d ({x(t, x0)}, ∂X0) ≥ δ,

and system (2.3) admits at least one positive periodic solution; where
x(t, x0) is the unique solution of (2.3) with x(0, x0) = x0. Here, d(·, ·)
is set for the semi-distance defined by d(X ,Y) = sup

x∈X
inf
y∈Y
‖x− y‖.

Details of this proof are given in section 6. Theorem 3.1 states that there
are at least two possible realistic equilibrium: one where the disease die out
proportionately from the host population (i.e. the ratio Ih(t)/Nh(t) → 0 for
large time t) and the other, ifR0 > 1, where the disease persists (with periodical
behaviour) in the host population. So, R0 is a threshold parameter which
partially determines the epidemic behaviour of Model (2.3). Indeed, generally
in epidemiological models, bifurcations at the threshold R0 = 1 tend to be
supercritical (or forward), meaning that a positive endemic equilibria exist for
R0 > 1 near the bifurcation point. In model (2.3) we prove that the bifurcation
is supercritical in the absence of disease-induced death (ρh = 0). In general
case (ρh > 0), the local stability result of the disease-free equilibrium provided
by Theorem 3.1 means that, in the context of model (2.3), there can be stable
endemic equilibrium when R0 < 1 (see [19] for more discussions on backward
bifurcation in some epidemiological model).

However, the global stability of the disease-free equilibrium can be derive
when ρh > 0 with some additional hypothesis. For that ends, let ρh > 0 be
small enough. We introduce the following matrices

V (t) = V (t)− ρh × diag(1, 0, 0, 0), (3.10)

wherein diag(u) is set for a diagonal matrix which diagonal elements are given
by u. Let R0 be the spectral radius of the operator LV defined by (3.8) and
wherein the matrix V is replaced by V . We then have the following result of
the global stability of the disease-free equilibrium.

Theorem 3.2 Let Assumption 2.1 be satisfied and let ρh > 0 be small enough
such that ρh < µh + γh. Then, the disease-free equilibrium M0 for System
(2.3)-(2.4) is globally asymptotically stable if R0 < 1.

Details on the proof of Theorem 3.2 are given in section 6.2. Moreover,
in section 6.3 we show that in the absence of disease-induced death (ρh = 0),
R0 = R0 and R0 < R0 when ρh > 0.
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4 Numerical results and discussion

In this section, we provide some numerical simulations to support and discuss
our analytical conclusions. As in Section 3.1, we reasonably assume that the
vector population Nv has small seasonal fluctuations at equilibrium such that
the ratio m∗(t) = N∗v (t)/N∗h of mosquitoes to human population is quasi con-

stant and we have 〈m∗〉 ' 1
C0N∗h

, i.e. κv(t) ' bv(t)−µv(t)
〈m∗〉N∗h

, where C0 is a positive

constant.
The temperature-dependent parameters of model (2.1) are defined using

thermal response functions describe in [34]. Our simulations are based on the
daily climate temperature of Nkomazi from 1997 to 2005.

Thermal-response curves. A collection of data to derive functions relating
vector and parasite parameters to temperature was updated by [34]. As all
rate parameters in the temperature-dependent are expected to be unimodal
with respect to temperature, [34] fit quadratic and Brière functions to each life-
history parameter, as well as a linear function for comparison (Table 2). The
Brière function is a left-skewed unimodal curve with three parameters, which
represent the minimum temperature, maximum temperature and a rate constant
[16]. The unimodal functions are defined as Brière [c(T0−T (t))(Tm−T (t))1/2]
and quadratic [qT 2(t) + rT (t) + s], where T (t) is temperature in degrees Celsius
at time t. Constants c, T0, Tm, q, r and s are fitting parameters. In this paper,
mosquitoes per capita birth rate (bv), per capita death rate (µv), infectivity
(β2) and biting rate (θ) are estimated from thermal performance curves and
summarized in Table 2.

Nkomazi (South Africa) climate data. For all simulations, we incorpo-
rate the daily climate data (temperature) of Nkomazi from 1997 to 2005 into
our model to estimate time dependent parameters of model (2.1), namely bv,
µv, β2 and θ (Figure 1). The temperature data were extracted from the Na-
tional Centers for Environmental Prediction (NCEP) Climate Forecast Sys-
tem Reanalysis (CFSR). The 6-hourly climate dataset was converted to daily:
the climate data are recorded in every 6-hour per day, and average of the 4
records (in 24 hours) was taken to arrive at a record per day. Conversely, the
malaria data sourced from the provincial Integrated Malaria Information System
(IMIS) of the malaria control program in the Mpumalanga Provincial Depart-
ment of Health, was obtained from the South African Weather Service (SAWS)
through its collaborative research with the University of Pretoria Institute for
Sustainable Malaria Control (UP ISMC). The locally recorded cases with min-
imal imported cases were extracted from Nkomazi – a local municipality in
Mpumalanga province (one of the epidemic provinces in South Africa). In the
province, malaria distribution is mainly in Nkomazi, Bushbuckridge, Mbombela,
Umjindi and Thaba Chewu local municipalities, with suitable climate conditions
for malaria transmission [42, 5]. Of all the municipalities, Nkomazi has been
identified as the most epidemic region in the province [42, 5]. The province
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recorded high malaria cases between 1998 and 2002 (Figure 5). Similar increase
in cases were recorded across other epidemic provinces in South Africa during
this period [42, 5]. Although studies show that most of the cases were imported
[28]. For this reason, several malaria control measures were introduced to the
provinces, which is traceable to the reduction in transmission after 2002 [42, 5].

The risk of outbreak in Nkomazi is underestimated when using the
average basic reproduction number. Here we take ρh = 0.01, γh = 0.01,
r = 0.9 and Λh = 0.05. We choose the total number of human and mosquitoes
at initial time (t = 0) to be Nh(0) = 1000 and Nv(0) = 2000 respectively.
Two initial data of the model are considered and given in Table 3. Using the
other parameters given by Tables 2 and 3, then by numerical computation, we
get the curve of the basic reproduction number R0 (applying Lemma 5.3 item
(ii)) and the curve of the average basic reproduction number 〈R0〉 with respect
to the mosquitoes contact rate α in Figure 2A. We can see that the average
basic reproduction number 〈R0〉 is always lower than the basic reproduction
number R0 with α ranging from 0 to 0.5. Therefore, using 〈R0〉 rather than R0

underestimates the outbreak of the disease in Nkomazi. Indeed, taking α = 0.2,
numerical computation leads to 〈R0〉 = 0.8 < 1, suggesting that there is no
epidemic into the host population, and R0 = 1.4 > 1, suggesting that there is
an epidemic into the host population (Figure 2B-C). We have also computed
the threshold parameter R0 and we can note that R0 ≥ R0.

Figure 1: Time performance curves of mosquitoes traits using daily temperature
of Nkomazi (South Africa) and thermal performance curves summarized in Table
2.
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(A) (B) (C)

Figure 2: Here we set ρh = 0.01, γh = 0.01, r = 0.9 and Λh = 0.05. A
Comparison between the basic reproduction number (R0), the average basic
reproduction number (〈R0〉) and the threshold parameter (R0), for range of
the mosquitoes contact rate (α). B-C The long term dynamics of infectious
human and infectious mosquitoes with α = 0.1. We use the temperature data
of Nkomazi (South Africa) and find that 〈R0〉 = 0.8 < 1; R0 = 1.4 > 1. Other
parameters are given by Tab. 3 and Tab. 2. We illustrate the behavior of the
model using time dependent parameters bv, µv, β2, θ (solid line) and average
constant parameters 〈bv〉, 〈µv〉, 〈β2〉, 〈θ〉 (dot line). The simulation is run with
two initial data of model (2.1) given in Tab. 3.

Figure 3: The long term behaviours (for two initial values) of four classes of
population illustrated that the disease free state M0 is globally stable. Here, we
use Λh = 0.05, ρh = 0.01, γh = 0.01, r = 0.9 and α = 0.06 per day and other
parameters and initial values are given by Tab. 3 and Tab. 2. Then R0 = 0.92,
R0 = 0.84 < 1 and 〈R0〉 = 0.48 < 1. We illustrate the behavior of the model
using time dependent parameters bv, µv, β2, θ (solid line) and average constant
parameters 〈bv〉, 〈µv〉, 〈β2〉, 〈θ〉 (dotted line).

12



Figure 4: Illustration of the backward bifurcation of the model in the sense that
there is a stable endemic equilibrium when R0 < 1. Here, we use Λh = 0.05,
ρh = 0.01, γh = 0.01, r = 0.9 and α = 0.068 per day such that R0 = 0.96 < 1
and R0 = 1.05 > 1. We also set Nv(0) = 20, Nh(0) = 10 and other parameters
are given by Tab. 3 and Tab. 2. We illustrate the behavior of the model
using time dependent parameters bv, µv, β2, θ (solid line) and average constant
parameters 〈bv〉, 〈µv〉, 〈β2〉, 〈θ〉 (dotted line).

Figure 5: Daily malaria cases: reported number in Nkomazi (red dot line) and
simulation curve (blue solid line) from October 1, 1997 to December 31, 2005.
Here, we have a better fit with α ≈ 0.082, Λ ≈ 0.013, γh ≈ 0.01, ρh ≈ 0.0082,
r ≈ 0.121, Nv(0) ≈ 2000 and Nh(0) ≈ 313. We find R0 ' 1.22 > 1 and
〈R0〉 ' 0.69 < 1. Other parameters are given by Tab. 3 and Tab. 2.
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Illustration of disease extinction and persistence stated by Theorems
3.1 and 3.2. From Theorem 3.1, R0 is a threshold parameter to determine
whether malaria persists in the population. We choose the total number of
human and mosquitoes at initial time (t = 0) to be Nh(0) = 1000 and Nv(0) =
2000 respectively. Two initial data of the model are considered and given in
Table 3. We take ρh = 0.01, γh = 0.01, r = 0.9, Λh = 0.05 and the other
parameters are given by Table 2 and 3. By setting the mosquitoes contact
rate per human host to α = 0.1 per day, numerical simulations complete the
theoretical analysis that there exists a global attractive positive periodic solution
when R0 = 1.4 > 1 (Figure 2 B, C). With α = 0.06, Figure 3 supports the
theoretical fact that the disease-free equilibrium M0 is globally asymptotically
stable when R0 = 0.92 < 1. Note that, here we have R0 = 0.84.

We now illustrate that model (2.1) can exhibits a backward bifurcation for
some well chosen parameters, i.e., there can be stable endemic equilibrium when
the basic reproduction number R0 < 1. For a better illustration, here we
choose the total number of human and mosquitoes at initial time (t = 0) to
be Nh(0) = 10 and Nv(0) = 20. Moreover, based on Figure 2A, we choose
α = 0.068 such that R0 = 1.05 > 1 and R0 = 0.96 < 1. Then, Figure 4
illustrates the persistence of the epidemic although the R0 < 1.

A case study. In this section, we estimate parameters of model (2.1)-(2.4)
which are assumed to be variable (namely the human recruitment, disease in-
duce mortality and recovery rate, Λ, ρh, γh and r; the mosquitoes contact rate
per human α) and the total number of human and mosquitoes at time t = 0,
(Nh(0), Nv(0)). We then study the transmission trend of malaria in Nkomazi,
South Africa. Simulation results are given to show that our model with periodic
parameters matches the seasonal fluctuation data reasonably well. The daily
numbers of human malaria cases from the study region corresponds to the term
Ih(t) of model (2.1). Since we assume seven model parameters to be variable,
π := (Λ, ρh, γh, r, α,Nv(0), Nh(0)), we then find the value π which minimize
the difference (∆[π]) between model prediction (Ih) and the malaria cases of
Nkomazi (Icases) from day DS= October 1, 1997 to day DF= December 31,

2005: ∆[π] :=
(∑DF

t=DS
|Ih(t)− Icases(t)|2

)1/2

. The value π is identified with

the MatLab nonlinear programming solver fmincon. Nkomazi malaria cases and
the model fit well with α ≈ 0.082, Λ ≈ 0.013, γh ≈ 0.01, ρh ≈ 0.0082, r ≈ 0.121,
Nv(0) ≈ 2000 and Nh(0) ≈ 313 (see Figure 5).

The simulation result based on our model exhibits the seasonal fluctuation
and matches the data reasonably well. We estimate the basic reproduction
number and the average basic reproduction number R0 ' 1.22 and 〈R0〉 ' 0.69
respectively. Furthermore, the value of 〈R0〉 < 1 suggests that the epidemic
is not endemic in Nkomazi leading to a wrong interpretation as illustrated by
Figure 5.

Although, generally a significant proportion of malaria cases over South
Africa are imported [28], the current study focuses on locally transmitted cases
with a closed system of exposed or infected population. It is envisaged that
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incorporating the impact of migration (into exposed and/or infectious human
compartments) the model could yield more precise results. We leave this aspect
for future studies when such data is available.

Model’s assumption of recovered human with temporary immunity.
In the context of this work, we assume a temporary immunity in some frac-
tion of the host population (the Rh-class). However, for malaria, individuals
can in fact be co-infected with multiple cohorts of parasites [17], and the im-
pacts of immunity tend to be in controlling parasite densities to reduce severity
and infectiousness without necessarily preventing reinfection. But, this feature
can be easily removed by setting the probability to recovered with temporary
immunity to zero. Another interpretation of the Rh-class could also be as a
temporary chemoprotected state for individuals who received treatment, which
would require some difference in fitting but would be structurally equivalent to
the model as presented here.

5 Existence of the disease-free periodic state and
preliminary results

The aim of this section is to derive some preliminary remarks on system (2.3)-
(2.4). These results include the existence of the disease-free periodic state and
the unique maximal non-autonomous semiflow associated with this system.

5.1 Existence of the disease-free ω-periodic state

The Nh-equation of (3.5) gives

Nh(t) = e−µht
(
Nh(0) +

Λh
µh

(eµht − 1)

)
trough the arbitrary initial value Nh(0), and has a unique periodic attractive
solution in R+, N∗h = Λh

µh
. It follows that |Nh(t)−N∗h | → 0 as t→∞. Thus N∗h

is globally attractive on R+.
Solving the Nv-equation of (3.5), we have

Nv(t) =
Nv(0)e

∫ t
0

(bv(s)−µv(s))ds

1 +Nv(0)C0

[
e
∫ t
0

(bv(s)−µv(s))ds − 1
] , (5.11)

wherein C0 is the constant such that κv(t) = C0 (bv(t)− µv(t)). From where,
N∗v (t) = (bv(t)− µv(t)) /κv(t) = 1/C0 is a positive ω-periodic state of (5.11)
and |Nv(t)−N∗v (t)| → 0 as t → ∞. This last estimate holds because the map
t 7→ (bv(t)− µv(t)) is ω-periodic and the average 〈bv − µv〉 > 0.
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5.2 Preliminary results

As in [26], the following vector order in Rn will be used. For u, v ∈ Rn, we write

u ≤ v ⇔ ui ≤ vi,
u < v ⇔ ui ≤ vi, u 6= v,

u� v ⇔ ui < vi,

where i = 1, . . . , n.

Definition 5.1 Consider two maps τ : [0,∞) × Ω → (0,∞] and U : Dτ → Ω,
where Dτ =

{
(t, s,v) ∈ [0,∞)2 × Ω : s ≤ t ≤ s+ τ(s,v)

}
. We say that U is a

maximal non-autonomous semiflow on Ω if U satisfies the following properties:
(i) τ(r,U(r, s)v) + r = τ(s,v) + s,∀s ≥ 0,∀v ∈ Ω,∀r ∈ [s, s+ τ(s,v)).
(ii) U(s, s)v = v,∀s ≥ 0,∀v ∈ Ω.
(iii) U(t, r)U(r, s)v = U(t, s)v,∀s ≥ 0,∀v ∈ Ω,∀t, r ∈ [s, s + τ(s,v)) with

t ≥ r.
(iv) If τ(s,v) < +∞, then limt→(s+τ(s,v))− ||U(t, s)v||Ω = +∞.

We first derive that the Cauchy problem (2.3)-(2.4) generates a unique globally
defined and positive non-autonomous semiflow.

Theorem 5.2 Let Assumption 2.1 be satisfied. Then there exits a map τ :
[0,∞)×Ω→ (0,∞] and a maximal non-autonomous semiflow U : Dτ → Ω, such
that for each x0 := x(0) ∈ Ω and each s ≥ 0, U(., s)x0 ∈ C ([s, s+ τ(s, x0)),Ω) is
a unique maximal solution of (2.3)-(2.4). The map U(t, s)x0 := (xh(t)T , xv(t)

T )T

satisfied the following properties: The subsets X0 and ∂X0 are both positively
invariant under the non-autonomous semiflow U ; in other words,

U(t, s)X0 ⊂ X0 and U(t, s)∂X0 ⊂ ∂X0, ∀(t, s) ∈ Dτ .

Proof. The proof of this result is rather standard. Standard methodology apply
to provide the existence and uniqueness of the semiflow of system (2.3)-(2.4)
[47, 25, 29, 35].

Let us check the positive invariance of Ω with respect to the semiflow U(t).
To do so, let x0 = (Eh(0), Ih(0), Rh(0), Ev(0), Iv(0), Nh(0), Nv(0))T ∈ Ω, we
shall prove that U(t, s)x0 = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t), Nv(t))

T ∈ Ω
for all (t, s) ∈ Dτ . By Assumption 2.1 we find that Nh(t) > 0 and Nv(t) > 0,
for all t ≥ 0.

For the other variables, we consider first the case where Ih(0) > 0. Using
the continuity of the semiflow we find t0 > 0 such that Ih(t) > 0 for t ∈
[0, t0]. If there is t1 ∈ [0, t0] such that Eh(t1) + Ih(t1) + Rh(t1) = 1, then
Ėh(t1)+İh(t1)+Ṙh(t1) < 0. Therefore Eh(t)+Ih(t)+Rh(t) ≤ 1 for all t ∈ [0, t0].
Similarly, Ev(t) + Iv(t) ≤ 1 for all t ∈ [0, t0]. If Ev(t1) = 0 for t1 ∈ [0, t0], then
Ev-equation of system (2.3) gives Ėv(t1) = αβ2(t1)θ(t1)Ih(t1)(1 − Iv(t1)) ≥ 0.
Thus Ev(t) ≥ 0 for all t ∈ [0, t0]. The same arguments give successively that
Rh(t) ≥ 0, Iv(t) ≥ 0 and Eh(t) ≥ 0, for 0 < t ≤ t0.

16



We next show that Ih(t) remains positive for all t ≥ t0. Proceeding by contra-
diction we suppose that Ih(t) > 0 for 0 ≤ t < t0 and Ih(t0) = 0. Then İh(t0) ≤ 0.
On the other hand, by Ih-equation of System (2.3), İh(t0) = σhEh(t0) > 0,
which is a contradiction. This complete the proof of the first part of theorem in
the case Ih(0) > 0. It remains to consider the case Ih(0) = 0. In this case, recall-
ing Eh(0) + Rh(0) ≤ 1 so that either Eh(0) > 0 or Rh(0) > 0. Without loss of
generality, we suppose Eh(0) > 0 and denote by xδ(t) the solution (δ-solution) of
System (2.3) with Eδh(0) = Eh(0)−δ, Iδh(0) = δ, Rδh(0) = Rh(0), Eδv(0) = Ev(0),
Iδv (0) = Iv(0), Nh(0)δ = Nh(0), Nv(0)δ = Nv(0); where 0 < δ < Eh(0). By
what we have already proved, the δ-solution xδ(t) remains on Ω for all t > 0.
Taking δ → 0, the first part of the theorem follows.

To end the proof of the theorem, let

x0 = (Eh(0), Ih(0), Rh(0), Ev(0), Iv(0), Nh(0), Nv(0))T ∈ X0

be given and let us denote for each (t, s) ∈ Dτ ,

U(t, s)x0 = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t), Nv(t))
T ,

the orbit of system (2.3) passing through x0. Let us set yh(t) = Eh(t) + Ih(t)
and yv(t) = Ev(t) + Iv(t). It follows from system (2.3) that ẏh(t) ≥ −fh(t)yh(t)
and ẏv(t) ≥ −fv(t)yv(t); with fh(t) = αβ1(t)θ(t)IvNv/Nh + Λh/Nh + ρh + γh
and fv(t) = αβ2(t)θ(t)Ih + bv(t). That is

yh(t) ≥ yh(0)e−
∫ t
0
fh(η)dη and yv(t) ≥ yv(0)e−

∫ t
0
fv(η)dη.

This end the proof of the fact that U(t, s)X0 ⊂ X0.
Now, let x0 ∈ ∂X0. We have ẏh(t) + ẏv(t) ≤ fh+v(t)(yh(t) + yv(t)), where

fh+v(t) = αβ1(t)θ(t)Nv/Nh + αβ2(t)θ(t) + ρh(Ih + Eh). Then,

(yh(t) + yv(t)) ≤ (yh(0) + yv(0))e−
∫ t
0
fh+v(η)dη.

Since yh(0) +yv(0) = 0, we find that yh(t) +yv(t) = 0. Therefore, U(t, s)∂X0 ⊂
∂X0.

Recalling (3.6), we now deal with the spectral properties of the linearized
system of model (2.3) at the disease-free equilibrium M0.

In the periodic case, we let Wλ(t, s), t ≥ s, s ∈ R, be the evolution operator
of the linear ω-periodic system

dz

dt
=

(
1

λ
F (t)− V (t)

)
z, t ∈ R

with parameter λ ∈ (0,∞). Clearly, ΦF−V (t) = W1(t, 0), ∀t ≥ 0. Note that
1
λF (t)−V (t) is cooperative. Thus, the Perron-Frobenius theorem (see [43], The-
orem A.3) implies that ρ(Wλ(ω, 0) is an eigenvalue of Wλ(ω, 0) with nonnegative
eigenvector. We can easily find that the matrix Wλ(s + ω, s) is similar to the
matrix Wλ(ω, 0), and hence σ(Wλ(s+ω, s)) = σ(Wλ(ω, 0)) for any s ∈ R, where
σ(D) denotes the spectrum of the matrix D. It is easy to verify that system
(2.3) satisfies assumptions (A1)-(A7) in [46]. Thus, recalling (3.8), we have the
following results.
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Lemma 5.3 ([46], Theorem 2.1). The following statements are valid:

1. If ρ(Wλ(ω, 0) = 1 has a positive solution λ0, then λ0 is an eigenvalue of
operator L, and hence R0 > 0.

2. If R0 > 0, then λ = R0 > 0 is the unique solution of ρ(Wλ(ω, 0) = 1.

3. R0 = 0 if and only if ρ(Wλ(ω, 0) < 1 for all λ > 0.

Note that the above result can be used to numerically compute the repro-
duction number R0 of the model, namely Lemma 5.3 item (ii).

The next result shows that R0 is a threshold parameter for the local stability
of the disease-free periodic state M0 of system (2.3).

Lemma 5.4 ([46], Theorem 2.2). The following statements are valid:

1. R0 = 1 if and only if ρ(ΦF−V (ω)) = 1.

2. R0 > 1 if and only if ρ(ΦF−V (ω)) > 1.

3. R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

Let P : Ω→ Ω be the Poincaré map associated with system (2.3), that is Px0 =
x(ω, x0) where x(ω, x0) is the unique solution of system (2.3) with x(0, x0) = x0.
We easily find that Pnx0 = x(nω, x0), for all n ≥ 0.

The following lemma will be useful later to derive the malaria persistence in
the host population when the basic reproduction number R0 > 1.

Lemma 5.5 If R0 > 1, then there exists ε > 0, such that for any x0 :=
(E0

h, I
0
h, R

0
h, E

0
v , I

0
v , N

0
h , N

0
v ) ∈ X0 with ||x0 −M0|| ≤ ε, we have

lim sup
n→∞

||Pnx0 −M0|| ≥ ε.

Proof. Let η > 0. By the continuity of the solutions with respect to the initial
values, we find ε = ε(η) > 0 such that for all x0 ∈ X0 with ||x0−M0|| ≤ ε, there
holds ||x(t, x0)− x(t,M0)|| < η, ∀t ∈ [0, ω]. We further claim that

lim sup
n→∞

||x(nω, x0)−M0|| ≥ ε. (5.12)

Assume by contradiction that (5.12) does not hold. Then without loss of gener-
ality, we assume that ||x(nω, x0)−M0|| < ε, for all n ≥ 0 and for some x0 ∈ X0.
It follows that

||x(t, Pnx0)− x(t,M0)|| < η, ∀n ≥ 0,∀t ∈ [0, ω].

For any t ≥ 0, let t = nω + s and n is the largest integer less than or equal to
t/ω. Therefore, we have

||x(t, x0)−M0|| = ||x(s, Pnx0)− x(s,M0)|| < η, ∀t ≥ 0.
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Recalling that x(t, x0) = (Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t), Nv(t))
T , and

since x(t,M0) ∈ ∂X0 for all t ≥ 0 (see Theorem 5.2); it then follows that
Eh(t) < η, Ih(t) < η, Ev(t) < η, Iv(t) < η for all t ≥ 0. By the Nh-equation of
(2.3), we have Ṅh ≥ Λh − (µh + ηρh)Nh. Note that the perturbed system

dN̂h
dt

= Λh − (µh + ηρh)N̂h; (5.13)

has a unique globally attractive (periodic) solution in R+ defined by

N̂⊥h (η) =
Λh

µh + ηρh
.

Since N̂⊥h (η) > Λh
µh+C0ηρh

, with C0 > 1 a constant, it comes Nh(t) ≥ Λh
µh+C0ηρh

,
for t sufficiently large.

By the Rh-equation of (2.3), we also have Ṙh ≤ η(rγh + ρh) − khRh, from
where we find a constant C1 > 0 such that Rh(t) ≤ C1η, for t sufficiently large.
Further, by the globally attractivity in R+ of N∗v (see section 5.1), we also
have (1 − η)N∗v (t) ≤ Nv(t) ≤ C2N

∗
v (t), for sufficiently large t ( with C2 > 1 a

constant). Therefore, the term Y (t) = αβ1(t)θ(t)NvNh (Eh + Ih +Rh) is such that

Y (t) ≤ ηC2(2 + C1)(1 + C0N
∗
hρhη)

N∗v (t)
N∗h

, for sufficiently large t.

Now, let us find an estimation of the term Nv(t)/Nh(t). Again, we have
Ṅh ≤ Λh − µhNh. From where, Nh(t) ≤ (1 − η)−1N∗h , for t sufficiently large,
and so Nv(t)/Nh(t) ≥ N∗v (t)/N∗h + η(η − 2)N∗v (t)/N∗h .

Then, from the Eh, Ih, Ev and Iv equations of system (2.3), we obtain, for
sufficiently large time t,

d

dt
(Eh, Ih, Ev, Iv)

T ≥ (F (t)− V (t)−Aη(t)) (Eh, Ih, Ev, Iv)
T , (5.14)

with

Aη =


C0ρhη 0 0 ηC4(η)

0 C0ρhη 0 0
0 −2η 0 0
0 0 0 0

 ,

with C4(η) = (C2(2 + C1)(1 + C0N
∗
hρhη − η + 2))

N∗v (t)
N∗h

.

Since R0 > 1, Lemma 5.4 implies that ρ(ΦF−V (ω) > 1. We can choose
η > 0 small enough such that ρ(ΦF−V−Aη (ω) > 1.

We then consider the following system

d

dt
(Êh, Îh, Êv, Îv)

T = (F (t)− V (t)−Aη(t)) (Êh, Îh, Êv, Îv)
T . (5.15)

By [50], Lemma 2.1, it follows that there exists a positive ω-periodic func-
tion z̄(t) such that ẑ(t) = eξtz̄(t) is a solution of system (5.15), with ξ =
1
ω ln ρ(ΦF−V−Aη (ω)). Since ρ(ΦF−V−Aη (ω)) > 1, ξ is a positive constant. Let
t = nω and n be nonnegative integer and get

ẑ(nω) = eξnω z̄(nω)→ (∞,∞,∞,∞)T
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as n → ∞, since ωξ > 0 and z̄(t) > 0. For any nonnegative initial condition
(Eh(0), Ih(0), Ev(0), Iv(0)) of system (5.14), there exists a sufficiently small n0 >
0 such that (Eh(0), Ih(0), Ev(0), Iv(0))T > n0z̄(0). By the comparison principle
(Theorem B.1, [43]) we have (Eh(t), Ih(t), Ev(t), Iv(t))

T > n0ẑ(t), for all t > 0.
Thus, we obtain (Eh(nω), Ih(nω), Ev(nω), Iv(nω))T → (∞,∞,∞,∞)T as n →
∞, a contradiction with the first part of Theorem 5.2.

6 Proof of Theorems 3.1 and 3.2

This section is devoted to the threshold dynamics results state by Theorems 3.1
and 3.2.

6.1 Proof of Theorem 3.1

From Lemma 5.4, it follows that the disease-free equilibrium for System (2.3)-
(2.4) is locally asymptotically stable if R0 < 1 and unstable if R0 > 1, which
ends the proof of Theorem 3.1 (i). In the sequel, we check the disease persistence
results. It remains to check item (ii) of the theorem.

By Theorem 5.2, the discrete system P = {Pn}n∈N admits a global at-
tractor in Ω. For any x0 := (E0

h, I
0
h, R

0
h, E

0
v , I

0
v , N

0
h , N

0
v ) ∈ X0, Let x(t, x0) =

(Eh(t), Ih(t), Rh(t), Ev(t), Iv(t), Nh(t), Nv(t))
T be the orbit of (2.3) passing through

x0. We have show that, both Ω, X0 and ∂X0 are positively invariant with respect
to the non-autonomous semiflow U (Theorem 5.2). Clearly, ∂X0 is relatively
closed in Ω, and there is exactly one fixed point M0 = (0, 0, 0, 0, 0, N∗h , N

∗
v ) of

P in ∂X0.
Note that the non-linear system

Ṅh = Λh − µhNh,
Ṅv = (bv(t)− µv(t)− κv(t)Nv)Nv,

admits a global asymptotic equilibrium (N∗h , N
∗
v (·)), see section 5.1. Then,

Lemma 5.5 implies that {M0 = (0, 0, 0, 0, 0, N∗h , N
∗
v (·))} is an isolated invariant

set in Ω and W s({M0}) ∩ X0 = ∅. We can also note that every orbit in ∂X0

approches to M0 and M0 is acyclic in ∂X0. By [51], Theorem 1.3.1, it follows
that P is uniformly persistence with respect to the pair (X0, ∂X0). That is,
there exists a δ > 0 such that any solution x(t, x0) of system (2.3) with initial
value x0 ∈ X0 satisfies lim inft→∞ d(x(t, x0), ∂X0) ≥ δ.

Furthermore, [51], Theorem 1.3.6, implies that the discrete system {Pn}n∈N
has a fixed point x†0 = (E†h(0), I†h(0), R†h(0), E†v(0), I†v(0), N†h(0), N†v (0))T ∈ X0.

Then, by (Eh, Ih, Rh, Ev, Iv)-equation of system (2.3) and the irreducibility
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of the cooperative matrix A†(t) =
a†1 0 0 0 αβ1(t)θ(t)

N†v (t)

N†h
g†h

σh a†2 0 0 0

0 rγh a†3 0 0
0 αβ2(t)θ(t)g†v 0 −(σv + bv(t)) 0
0 0 0 σv −bv(t)

 ,

it follows that (E†h(t), I†h(t), R†h(t), E†v(t), I
†
v(t))T � 0 for all t ≥ 0. Where

g†h = (1 − E†h − I†h − R†h) and g†v = (1 − E†v − I†v); wherein a†1 = ρhI
†
h −

(σh + Λh
N†h

), a†2 = −(γh + ρh + Λh
N†h

) + ρhI
†
h, a†3 = ρhI

†
h − (kh + Λh

N†h
). Therefore,

(E†h(t), I†h(t), R†h(t), E†v(t), I
†
v(t), N†h(t), N†v (t)) is a positive ω-periodic solution of

system (2.3). This end the proof of the second part of Theorem 3.1.

6.2 Proof of Theorem 3.2

By the Nh-equation of system (2.3), it comes Nh(t) ≥ N∗h

(
1 + ρh

µh

)−1

for all

t > 0 sufficiently large. Further, due to the globally attractivity in R+ of N∗v

(see section 5.1), we have Nv(t) ≤
(

1 + ρh
µh

)−1

N∗v (t) for all t sufficiently large.

Therefore, 

Ėh ≤ αβ1(t)θ(t)m∗(t)Iv − (σh + µh − ρh)Eh;

İh ≤ σhEh − (γh + ρh + µh)Ih + ρhIh;

Ṙh ≤ rγhIh − (kh + µh)Rh + ρhRh;

Ėv ≤ αβ2(t)θ(t)Ih − (σv + bv(t))Ev;

İv = σvEv − bv(t)Iv.

So, for all t sufficiently large, we obtain

d

dt
(Eh, Ih, Ev, Iv)

T ≤ [F (t)− V (t)](Eh, Ih, Ev, Iv)
T . (6.16)

Now, we introduce the solution z of

dz

dt
= [F (t)− V (t)]z, (6.17)

where z(0) is given.
Applying Lemma 5.4, we know that R0 < 1 if and only if ρ(ΦF−V (ω)) < 1.

By [50], Lemma2.1, it follows that there exists a positive ω-periodic func-
tion z̄(t) such that z(t) = eτtz̄(t) is a solution of system (6.17), with τ =
1
ω ln ρ(ΦF−V (ω)). Since ρ(ΦF−V (ω)) < 1, then τ is a negative constant; and
we have z(t) → 0 as t → +∞. This implies that the zero solution of sys-
tem (6.17) is globally asymptotically stable. For any non-negative initial value
(Eh(0), Ih(0), Ev(0), Iv(0)) of system (6.16), there is a sufficiently large C0 > 0
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such that (Eh(0), Ih(0), Ev(0), Iv(0)) ≤ C0z(0). Then, the comparison princi-
ple (Theorem B.1, [43]) gives (Eh(0), Ih(0), Ev(0), Iv(0)) ≤ C0z(t), for all t > 0,
where C0z(t) is also the solution of system (6.16). We then get (Eh(t), Ih(t), Ev(t), Iv(t))

T →
(0, 0, 0, 0)T as t → +∞. It is easy to find that Nh(t) → N∗h as t → +∞. Let
ε > 0, we find tε > 0 such that Ih(t) ≤ ε for all t ≥ tε. Then, the Rh-equation
of (2.3) gives Ṙh ≤ rγhε− (kh+µh)Rh, for large time t. From where Rh(t)→ 0
as t→ +∞. This ends the proof of Theorem 3.2.

6.3 We always have R0 ≤ R0

Let YV (t, s), t ≥ s, the evolution operator of the linear ω-periodic system (3.7)
associated to the matrix V (t), with YV (s, s) = I (the identity matrix). We find
that,

YV (t, s) =


y11(t, s) 0 0 0
y21(t, s) y22(t, s) 0 0

0 0 y33(t, s) 0
0 0 y43(t, s) y44(t, s)

 ,

with y11(t, s) = e−(t−s)v1 ; y21(t, s) = σhe
−(t−s)v2

∫ t
s
y11(η, s)e−(η−s)v2dη; y33(t, s) =

e−
∫ t
s
v3(η)dη; y44(t, s) = e−

∫ t
s
v4(η)dη; y43(t, s) = σve

−
∫ t
s
v4(η)dη

∫ t
s
y33(η, s)e

∫ η
s
v4(τ)dτdη;

and where v1 = σh + µh; v2 = γh + ρh + µh; v3(t) = σv + bv(t); v4(t) = bv(t).
By the same way we, the evolution operator YV (t, s) of the linear ω-periodic

system (3.7) associated to the matrix V (t), with YV (s, s) = I is given by

YV (t, s) =


y11(t, s) 0 0 0
y21(t, s) y22(t, s) 0 0

0 0 y33(t, s) 0
0 0 y43(t, s) y44(t, s)

 ,

with y11(t, s) = e−(t−s)v1 ; y21(t, s) = σhe
−(t−s)v2

∫ t
s
y11(η, s)e−(η−s)v2dη and

v1 = v1 − ρh.
Further, we can find J > 0 and l > 0 such that ‖YV (t, s)‖ ≤ Je−l(t−s) and

‖YV (t, s)‖ ≤ Je−l(t−s) for all t ≥ s. Therefore,

‖YV (t, t− s)F (t− s)‖ ≤ J‖F (t− s)‖e−ls,
‖YV (t, t− s)F (t− s)‖ ≤ J‖F (t− s)‖e−ls,∀t ≥ s.

(6.18)

Recall operators LV and LV defined by (3.8) with the matrix V and V
respectively. Clearly, LV and LV are positive operators. From (6.18) we easily
get that LV and LV are bounded, and so, continuous on Cω(R,R4). Since

LV φ(t) =
∫ t
−∞ YV (t, s)F (s)φ(s)ds, it comes

d

dt
LV φ(t) = F (t)φ(t)− V (t)(LV φ)(t), ∀t ∈ R;φ ∈ Cω(R,R4).

Then for any positive constant c > 0, there exists U = U(c) > 0 such that∣∣ d
dtLV φ(t)

∣∣ ≤ U(c) for all t ∈ [0, ω], φ ∈ Cω(R,R4) with ‖φ‖ ≤ c. Hence, the
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Ascoli–Arzela theorem gives the compacity of LV on Cω(R,R4). By the same
arguments, we obtain the compacity of LV .

Recall that spectral radius of operators LV and LV are R0 and R0 respec-
tively. Obviously, when ρh = 0, we have V = V , i.e. LV = LV and then
R0 = R0. Now let ρh > 0. Then LV 6= LV and we have (YV (t, t− s)−YV (t, t−
s))F (t − s)φ(t − s) ≥ 0 for all φ ∈ C+

ω (R,R4). From the primitivity (or non-
supporting) property of operators LV and LV its comes that R0 < R0 when
ρh > 0. See [33, 41] for some development on positive operator theory.
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