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Simple Summary: Medicinal plants possess the ability to mitigate methane production from
ruminants. Long-term stability of these plant extracts are essential qualities to be able to replace other
rumen modifiers. After one year of storage, plant secondary metabolites used in this study reduced
methane production from low-quality forages, without adverse effects on feed digestibility in vitro.

Abstract: Natural compounds such as plant secondary metabolites (PSM) can be used to replace
antibiotic growth promoters as rumen modifiers. In this study, the effectiveness of stored and freshly
extracted Aloe vera (AV), Azadirachta indica (AZ), Moringa oleifera (MO), Jatropha curcas (JA), Tithonia
diversifolia (TD) and Carica papaya (CP) crude extract and monensin on in vitro gas and methane
production, organic matter digestibility (IVOMD) and volatile fatty acids (VFA) were evaluated using
a total mixed ration (TMR), lucerne or Eragrostis curvula substrates. Fresh extracts were processed
from the same batch of frozen (−20 ◦C) plant material a few days before the trial while the stored
extracts were extracted and stored at 4 ◦C for 12 months prior to the study. Extraction was done by
solubilising 50 g freeze-dried plant material in 500 mL 100% methanol. Four mL of reconstituted
50 mg crude extract per 1000 mL distilled water was added per incubation vial, which already
contained 400 mg substrate and in vitro fermentation, and gas production and IVOMD evaluation
were carried out using standard procedures. Results showed that storing plant extracts for 12 months
did not affect the activity or stability of metabolites present in the crude extracts, as shown by the
lack of differences in total gas production (TGP) and methane produced between fresh or stored
extracts across the substrates. In the TMR substrate, plant extracts increased IVOMD but did not affect
TGP and methane production, whereas monensin did not have any effect. Plant extracts increased
IVOMD of Eragrostis substrate and supressed methane production to a greater extent than monensin
(p < 0.05). It can be concluded that storing plant extracts for up to 12 months did not compromise
their efficacy. In addition, the use of 50 mg/kg of AV, AZ, MO, JA, TD and CP extract to a forage-based
diet will reduce methane production while improving feed digestibility.

Keywords: medicinal plants; methane; volatile fatty acids; organic matter digestibility; lucerne;
Eragrostis curvula

1. Introduction

Several studies have documented the potential benefits of medicinal plants and natural products
for replacing antibiotic growth promoters in animal feeding [1–3]. The use of medicinal plant-based
additives in the diet of farm animals poses little or zero threat to human beings who consume
such products when used correctly. Previous studies [2,4–6] have revealed the beneficial effects of
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including medicinal plants to animals, such as in combating diseases, improving animal welfare and
also increasing feed digestibility. Antibiotics commonly used for disease treatments and as growth
promoters in animal agriculture are reported to have lengthy residence in animal products with its
attendant food safety concerns in humans. One such food safety concern is antibiotic resistance
syndrome in humans consuming animal products produced with antibiotics [7].

With limited food resources and stiffer competition with monogastrics, meeting the demand for
animal protein may be achieved with improvement in the feed conversion efficiency of ruminant
animals. However, in ruminants, about 6–15% of ingested energy meant for growth and production
purposes is lost as methane through eructation [8–10]. Although methane production is one of the
mechanisms that sustains normal rumen fermentation and fibre digestibility, significantly higher
energy losses occur when animals consume poor quality roughages, as opposed to good quality
roughages and concentrates. Aside from the loss of feed energy, rumen-derived methane is also a major
anthropogenic source of greenhouse gases which results in global warming. It is estimated that about
18% of greenhouse gases worldwide are from agriculture sources, with ruminant animals accounting
for the largest single source [11]. Therefore, effective methane mitigation has the potential to improve
feed energy utilisation as well as reduce the environmental impacts of ruminant production.

Aloe vera (AV), Azadirachta indica (AZ), Moringa oleifera (MO), Tithonia diversifolia (TD), Jatropha
curcas (JA) and Carica papaya (CP) have been reported to possess different phytochemicals such as
anthraquinones, saponins, essential oils, catalase, azadirachtin, diastase and different digestive enzymes
that could influence ruminal fermentation [1,2,12,13]. In a previous study [2], extracts of these plants,
at 50 mg/kg substrate, reduced in vitro methane production and also increased the digestibility of
Eragrostis hay, a low-quality roughage diet. Reducing methane production from ruminants without any
adverse effect on feed digestibility is a ‘win-win’ situation for ruminants’ animal production. However,
to validate the beneficial effect of these plant materials, it is necessary to test their effectiveness on a
wide variety of feedstuffs with varying nutritional quality. Furthermore, it is not clear if the potency
of these PSMs are retained over a prolonged storage period. Therefore, the aim of this study was
to evaluate the effect of extract storage on the efficacy of these PSMs on in vitro gas and methane
production, in vitro organic matter digestibility (IVOMD) and volatile fatty acids (VFA) production
using a total mixed ration (TMR), lucerne or Eragrostis curvula as substrates. The substrates used in
this study represent a high-quality feed TMR, high-quality forage (lucerne hay) and low-quality hay
(eragrostis) available in Southern Africa.

2. Materials and Methods

2.1. Collection and Preparation of Plant Extracts

Foliage of AV, AZ, MO, TD, JA and CP were harvested from 10 different trees within the same
farm in the South West region of Nigeria. The plant materials were rinsed with water to remove
dirt, pests and foreign materials before transferring into a waiting refrigerating van. All procedures
involved during collection, handling and transport of plant materials to the Department of Animal
and Wildlife Sciences, University of Pretoria have been fully described [2]. Frozen plant materials were
freeze-dried until a constant weight was achieved and milled through a 1 mm sieve. Extraction was
done by adding 1500 mL 100% methanol to 150 g of dried plant materials. The mixture was then left
for 4 days with periodic agitation to allow for thorough solubilisation into the solvent. The mixture
was sieved through a 150 µm sieve and the filtrate was placed in a fume cupboard to evaporate excess
methanol. To achieve complete dryness, the semi-dried plant extracts were later freeze-dried to a
constant weight and a powdered product was recovered. Plant extract solutions of AV, AZ, MO, TD,
JA and CP were prepared by reconstitution of 50 mg of each plant extract in 1000 mL distilled water to
achieve the recommended dosage [2]. This solution was stored at 4 ◦C for a period of 12 months and
designated as the stored extracts. After 12 months, a different set of plant extract was prepared and
reconstituted from the same batch of plant materials that had been previously frozen at −20 ◦C.
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2.2. Substrates and Chemical Analyses

The substrates used in this study were TMR, lucerne hay and eragrostis hay. TMR for feedlot
lambs was purchased from a commercial feed mill in South Africa. All the substrates were analysed to
determine their chemical composition in terms of dry matter (DM), total ash and ether extract using
the Association of Official Analytical Chemists (AOAC) procedure [14]. Fibre fractions, which includes
acid detergent fibre (ADF), neutral detergent fibre (NDF) and acid detergent lignin (ADL) of these
substrates, were determined using ANKOM 200/220 technology (Macedon, NY, USA) as described
by Van Soest et al. [15]. Crude protein was obtained by analysing the samples for nitrogen with Leco
nitrogen/protein analyser (Leco Instrumente GmbH, Kirchheim, Germany).

2.3. In Vitro Gas, Methane and Organic Matter Digestibility

Two ruminally fistulated Merino sheep fed lucerne hay ad libitum were used as donor sheep
throughout the experiment. Prior to rumen fluid collection, the animals were checked for intact cannula
and signs of good health for 3 consecutive days. Ruminal fluid of about 900 mL was collected from each
donor sheep before morning feeding and strained through four layers of cheese cloth into a pre-warmed
thermos flask. Rumen fluid was transported to the laboratory and placed inside a water bath already
heated to 39 ◦C with continuous flushing with CO2. A buffer mineral solution was prepared following
a standard procedure [2]. Prior to incubation, 400 mg TMR, lucerne and eragrostis substrates had been
weighed into 120 mL serum bottles and 4 mL of the stored or fresh plant extract solutions of AV, AZ,
MO, TD, JA and CP was added 24 h before incubation. Monensin (Rumensin Elanco, Johannesburg,
Gauteng, South Africa) was included as a positive control at a dose of 15 mg/kg DM feed, based on the
manufacturer’s instruction. All stored and fresh extracts of each plant material, monensin and negative
control (with 4 mL distilled water) groups were replicated 4 times within each incubation run and
the experiment was repeated 5 times. Three blanks were included in each incubation run. All other
procedures followed during the in vitro incubation procedure were as reported in a previous study [2].

2.4. Measurement of Total Gas, Methane, VFA and IVOMD

Gas pressure from each incubated serum bottle was measured at 3, 6, 12, 24 and 48 h after
incubation using a pressure transducer PX4200-015GI (Omega Engineering Inc., Laval, QC, Canada)
fitted with a digital data tracker (Tracker 220 series indicators; Omega Engineering Inc., Swedesboro,
NJ, USA). The pressure transducer tip had been modified to fit into 3-way taps fitted on the serum
bottles. All gas pressure readings were recorded in psi and subsequently converted to volume. Gas
samples were also taken at each measurement time (3, 6, 12, 24, 48 h) for methane analysis. Methane
concentration in the samples was obtained by injecting samples into a gas chromatograph (GC) (8610C,
SRI Instruments GmbH, Bad Honnef, Germany) equipped with a flame ionisation detector. The GC
had been pre-calibrated with 200, 500 and 1000 ppm standard methane. Methane concentration was
corrected with gas volume at different collection times to estimate the volume of methane produced.
Both gas and methane volume across the collection times were added to estimate the cumulative
value up to 48 h. The incubation was terminated at 48 h by placing all bottles inside ice. The bottles
were centrifuged at 4500× g for 15 min and 5 mL of the supernatant was collected and stored at
−20 ◦C for VFA analysis [16]. In vitro organic matter digestibility was carried out on the residue using
the two-stage digestion as described by Tilley and Terry [17] and modified by Engels and Van der
Merwe [18].

2.5. Statistical Analyses

All data obtained were checked for normality using the PROC UNIVARIATE procedure and
analysed using the general linear model of SAS 9.4 (SAS Institute Inc., Cary, NC, USA). Differences
among means were compared using Tukey’s test of SAS. The experimental design was a completely
randomised design. The statistical model used is listed below:
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yijk = µ + Block/Run + Pi + Sj +(PS)ij + εijk (1)

where yijk = observation k for different plant extract P (i; AV, AZ, MO, etc.) and level j of extract storage
S (j; stored/old, fresh/new), µ = overall mean, block = effect of blocking (incubation runs), PS is the
interaction effect between PSM and storage, µ is the overall mean and εijk is the effect of random error.

3. Results and Discussion

The chemical analysis of the substrates used in this study is shown in Table 1. Crude protein
levels of the substrates ranged between 56.1 g/kg and 195 g/kg DM. While both TMR and lucerne had
high crude protein to sustain rumen fermentation, the CP value of eragrostis hay was lower than the
80 g/kg DM minimum required for optimal microbial biomass production, as noted by Ikhimioya [19].
The ADL fraction of all three substrates was low. The NDF fraction was highest in eragrostis substrate
(784 g/kg), followed by lucerne (406 g/kg) and was least in the TMR substrate (301 g/kg) DM. Table 2
presents the total gas production (TGP), methane, IVOMD and TVFA when stored or fresh plant
extracts of the medicinal plants were added into various substrates. There was no significant interaction
between extract type and storage for TGP, methane and TVFA. Stored extracts of AV, AZ, MO, TD, JA
and CP were as effective as the fresh extracts in terms of their effect on TGP, methane and total volatile
fatty acid production for all the substrates used in this study.

Table 1. Chemical composition of Eragrostis curvula hay, lucerne hay and total mixed ration substrates
used for in vitro incubation.

Composition in DM (g/kg DM) TMR Lucerne Eragrostis

Crude protein 192 185 56.1
NDF 301 406 784
ADF 214 321 492
ADL 48 55 78

Ether extract 59 19 12
Ash 78 76 45

TMR, total mixed ration; NDF, neutral detergent fibre; ADF, acid detergent fibre; ADL, acid detergent lignin

Generally, storage seems not to have any significant effect on the efficacy of plant extracts. This
suggests the stability of the plant extracts under storage, as tested in this study. The lack of differences
could be due to the stabilising ability of the PSMs present in these extracts under the storage conditions.
Equally, the method of extraction may have exerted minimal interference on bioactivity of the PSMs
present. According to Mediani et al. [19], the activity of plant metabolites could decline over time from
the onset of harvest, handling, drying, extraction or storage. The continuing activity of endoenzymes
usually present in plant materials can reduce the free radical scavenging properties of PSMs. A possible
interaction between phenol and polyphenol oxidase enzyme under the high-water activity of extracts
in solution could result in reduced total phenolic content of plant extracts [20]. This may therefore
impact rumen fermentation and substrate degradation. The result of this study is consistent with
the previous study on Cosmos caudatus, where fresh or extracts stored for three months, from either
air-dried or freeze-dried plants’ extracts, were compared. In that study, the storage or drying method
did not affect the free radical scavenging activity of the extracts [21]. While the extracts in the report
of Mediani et al. [21] were stored at −20 ◦C for three months, in the current study, aqueous extract
solutions were stored at 4 ◦C for 12 months. Cold storage has been noted to halt enzymatic reactions
that are capable of reducing the effectiveness of phytochemicals found in the plants [22]. It is likely that
even under high-water activity of extracts in solution, cold storage can halt these enzymatic reactions.
In a similar study [23], the antibacterial activity of different medicinal plants found in South Africa
were retained in most of the species after 12 months of storage. Prolonged storage up to 12 years of
dried plant materials in a dark cupboard has also shown that total phenolic content and inhibition of
acetylcholinesterase by both fresh and stored plants were not significantly different [24].
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Table 2. Total gas production (TGP), methane, in vitro organic matter digestibility (IVOMD) and total volatile fatty acid (TVFA) from Eragrostis curvula, lucerne and
TMR substrates incubated with stored or fresh plant extracts.

Parameters Substrates Extracts Cntrl Mon AV AZ MO TD JA CP SEM
p-Values

p S p*S

TGP, mL

TMR
Stored 89.6 86.2 85.6 85.1 83.4 80.4 82.1 85.6

0.59 0.02 0.53 0.91
Fresh 89.6 86.2 83.4 81.5 82.6 82.3 82.0 85.9

Lucerne
Stored 63.8 56.2 60.1 57.3 56.2 58.2 62.8 61.1

0.49 <0.01 0.61 0.29
Fresh 63.8 56.2 60.4 55.1 59.6 57.8 59.4 60.8

Eragrostis Stored 55.3 53.6 54.2 49.7 50.8 49.2 47.3 50.1
0.58 <0.01 0.06 0.72

Fresh 55.3 53.6 54.4 47.9 47.7 48.5 45.7 48.7

Methane, mL

TMR
Stored 30.6 25.4 22.7 26.7 24.8 22.3 25.1 22.6

0.51 0.01 0.96 0.85
Fresh 30.6 25.4 24.1 24.2 24.4 25.3 25.4 22.1

Lucerne
Stored 22.7 21.1 23.4 18.0 17.8 15.8 20.1 18.6

0.41 0.01 0.37 0.29
Fresh 22.7 21.1 21.8 19.8 20.1 18.2 18.3 19.2

Eragrostis Stored 17.9 14.5 8.72 9.22 7.72 7.87 7.18 6.56
0.76 <0.01 0.20 0.23

Fresh 17.9 14.5 8.88 7.91 7.25 5.81 5.87 7.63

IVOMD, %

TMR
Stored 71.1 76.1 80.8 77.2 77.5 76.1 73.4 76.4

0.76 <0.01 <0.01 0.01
Fresh 71.1 76.1 88.2 83.1 80.3 79.8 77.3 77.7

Lucerne
Stored 61.6 68.6 63.4 63.7 59.6 64.4 62.5 64.7

1.55 0.22 0.35 0.49
Fresh 61.6 68.6 62.5 63.1 63.7 62.7 61.9 64.2

Eragrostis Stored 33.6 35.4 44.6 41.5 44.4 42.5 40.2 42.8
0.72 <0.01 0.42 0.97

Fresh 33.6 35.4 45.8 41.8 45.1 42.6 41.5 42.3

TVFA, mmol/L

TMR
Stored 121 115 129 117 120 118 119 117

0.67 <0.01 0.18 0.08
Fresh 121 115 127 117 119 117 118 119

Lucerne
Stored 95.9 91.8 96.9 93.9 94.7 96.4 97.9 94.2

0.36 <0.01 0.98 0.89
Fresh 95.9 91.5 96.9 93.1 94.8 97.2 97.5 94.5

Eragrostis Stored 82.0 76.1 78.8 77.1 80.1 78.9 78.9 79.0
0.31 0.07 0.42 0.48

Fresh 82.0 76.1 78.7 77.8 78.1 78.5 78.0 80.1

Cntrl, control; Mon, monensin; AV, Aloe vera; AZ, Azadirachta indica; MO, Moringa oleifera; TD, Tithonia diversifolia; JA, Jatropha curcas; CP, Carica papaya; SEM, standard error of
mean; p, plant extracts; S, storage; p*S, Interaction between plant extracts and storage.



Animals 2020, 10, 146 6 of 14

There was a significant interaction effect between extract type and storage on IVOMD in the TMR
substrate but not in the lucerne and eragrostis substrates. The simple effect of extract supplementation
showed that extract type affected TGP, methane volume and TVFA in the eragrostis, lucerne and
TMR substrates (p < 0.05). While inclusion of AZ, MO, TD and JA resulted in lower TGP compared
to the TMR substrate, AV and CP inclusion did not affect TGP in the TMR substrate. Total gas
production in the monensin treatment was not different from the control TMR substrate. In the lucerne
substrate, while Mon, AV, JA, and CP were not different from the control, TGP was lower with AZ,
MO and TD treatment. Meanwhile AZ, JA, MO, TD and CP produced lower TGP compared to the
eragrostis-only substrate while monensin and AV treatments were not different from the eragrostis-only
treatment. Methane volume was affected by extract type (p < 0.05) with all plant extracts and monensin
supplementation resulting in lower methane compared to the TMR-alone substrate. While monensin
did not affect methane volume in the lucerne substrate, AZ, MO, TD, JA and CP extract inclusion
resulted in reduced methane production. All plant extracts reduced methane volume in the eragrostis
hay substrate except monensin. While AV, AZ and MO resulted in higher IVOMD compared to the
TMR substrate alone, TD, CP, Mon and CP also increased IVOMD but to a lesser extent. In the lucerne
substrate, IVOMD was not affected by extract type. Inclusion of AV, MO, TD and CP extracts resulted
in higher IVOMD compared to the extracts of AZ and JA, while monensin and the control treatments
produced the least IVOMD in the eragrostis substrate. While fresh extract of AV and AZ produced
higher IVOMD in the TMR substrate, storage did not affect the extract of MO, TD, JA and CP. In the
TMR substrate, while TVFA was not affected by Mon, AZ, MO, TD, JA and CP, extract of AV resulted in
higher TVFA. In the lucerne substrate, Mon resulted in lower TVFA while TD and JA extract increased
TVFA production. In the eragrostis substrate, extract type did not affect TVFA production.

The efficacy of plant extracts may be considerably affected by the diet characteristics. Previous
authors [25,26] have reported that ruminants consuming poor quality forage generally tend to produce
higher methane intensity, while PSM supplementation may equally be affected by such factors like
diet CP, rumen degradable nitrogen and dietary fibre characteristics. Furthermore, the report of
Martinez et al. [27] indicated that a minimal effect was obtained in animal performance from the
monensin-treated group when cows were fed a higher forage diet, and this may explain the lower
response to plant extracts observed with the lucerne substrate, which has a high concentration of
rumen degradable protein. In the eragrostis substrate, TGP and methane production were affected
by the addition of plant extracts (p < 0.05) and the trend for each of the plant extracts was similar to
previous results [2]. Total gas production for eragrostis hay alone was highest and this was followed
by monensin and AV, while all the other plant extracts resulted in lower TGP (p < 0.05). Eragrostis
is a drought-resistant grass with “midribs that exhibit a robust, lignified region of collenchyma cells
(sclerenchyma) above the central vascular bundle and phloem fibres below” [28]. These properties
give increased tensile strength and therefore, lower digestibility by ruminants. Methane production
from the eragrostis substrate was significantly reduced by the inclusion of PSM (p < 0.01) regardless of
the storage condition of the extract. When compared with the control diet, extracts of AV, AZ, MO, TD,
JA and CP reduced methane by over 50%, while monensin reduced methane by 19%. Monensin, an
antibiotic growth promoter, is effective in animals consuming high forage diets as it improves forage
utilisation and feed efficiency. The significant reduction in methane witnessed with eragrostis hay
could be attributed to the antimethanogenic properties of the PSMs present in the extracts, as previously
noted by Akanmu and Hassen [2]. The interaction of different PSMs present in the same medicinal
plant, with the diverse microbial population in the rumen might yield different results from the use
of pure compounds, such as purified tannins or saponins [29], especially in terms of its methane
mitigation potential. In the study by Singh et al. [30], aqueous extract blends from Sapindus mukorossi,
Ficus bengalensis and Eucalyptus essential oil reduced methane concentration with increasing inclusion
of plant extract blends in both oat hay and TMR substrate.

The increase in IVOMD of eragrostis by all the plant extracts used in this study confirm earlier
findings [2] about the potential of PSM to improve forage digestibility. The presence of phytochemicals
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diastase and amylase present in the AV extract have been associated with improved feed digestibility in
ruminants [2]. Furthermore, the breakdown of long chain polysaccharides could have been positively
affected by the presence of anthraquinones, which is present at varying proportions in all the medicinal
plants used in this study, as previously noted [2]. Both AZ and MO extracts have been reported to
equally improve feed digestibility at moderate doses [31]. Furthermore, improved digestibility of the
substrate has been associated with the presence of azadirachtin in AZ and the high concentration
of alkaloids in MO [32]. Both azadirachtin and alkaloids exhibit selective antimicrobial and laxative
properties [33]. While the plant extract blends reported in Signh et al. [30] did not affect total digestible
dry matter in the oat hay substrate, there was a significant reduction in digestibility in the TMR
substrate. Meanwhile, Cieslak et al. [34] also reported that Vaccinium vitis idaea extract reduced methane
without compromising feed digestibility.

There was no significant interaction effect between substrate type and extract storage on CH4/TGP,
CH4/IVOMD, TGP/IVOMD and CH4/TVFA for all substrates tested (Table 3). Equally, extract storage
did not affect any of the parameters except TGP/IVOMD ratio in the TMR substrate (p < 0.05).
Nevertheless, for all substrates, extract type had a significant effect on CH4/TGP and TGP/TVFA
(p < 0.05). While extract type did not affect CH4/IVOMD and TGP/IVOMD in the lucerne substrate,
there were significant effects in the TMR and eragrostis substrates. There was up to a 50% reduction in
CH4/TGP with the plant extracts supplementation when tested on the eragrostis substrate. In contrast,
both monensin and AV supplementation did not affect CH4/TGP in the lucerne hay and TMR substrates.
Extract of AV significantly (p < 0.05) reduced CH4/IVOMD, TGP/IVOMD, CH4/TVFA and TGP/TVFA
from TMR and eragrostis but not in lucerne. Extract of AZ also significantly reduced (p < 0.05)
CH4/IVOMD and TGP/IVOMD in the TMR and lucerne substrates. Patra and Yu [35] reported the
anti-methanogenic effect of some of the medicinal plants upon the consequent significant reduction in
the volume of in vitro gas and methane production. The reduction in methane intensity as reflected in
reduced CH4/TGP and CH4/IVOMD ratios reported in this study is consistent with previous studies
on the antimethanogenic properties of TD. Tithonia diversifoia (TD) is reported to contain moderate
concentrations of tannins, flavonoids and alkaloids, and supplementing a tropical grass with 20% TD
foliage reduced the methanogenic bacteria and protozoa populations as a result of the PSMs inherent
in the plant [36]. In that study, a significant defaunating effect, increased biodiversity of bacteria and
ruminal cellulolytic fungi population was observed in the rumen. This, therefore, has the tendency
to increase dry matter digestibility and potential reduction in methane emissions. Flavonoids are
benzo-1-pyrone derivatives with anti-inflammatory, antioxidant and antimicrobial properties [37].
Kim et al. [38] reported the enteric methane reducing properties of flavonoid-rich medicinal plants as a
result of reduced protozoal or methanogen numbers.

Table 4 presents the effect of stored or fresh plant extracts on in vitro VFA production from different
substrates. The interaction effect between extract type and storage was not significant for all VFA molar
proportions as well as the acetate:propionate (A/P) ratio. Except for the A/P ratio in eragrostis hay,
storage did not affect the efficacy of plant extracts in terms of acetate, propionate, iso-butyrate, butyrate,
iso-valerate and valerate molar proportions. However, plant extract type significantly affected the
molar proportions of the individual VFAs as well as the A/P ratio (p < 0.05). All plant extracts reduced
(p < 0.05) the acetate proportion of the TVFA produced, unlike monensin which was not different
from the control treatment. Extract type did not affect propionate proportion in the lucerne substrate,
unlike in the TMR and eragrostis substrates. All the plant extracts resulted in higher propionate
proportion (p < 0.05) in the eragrostis substrate and higher valerate molar proportion in the TMR and
lucerne substrates. This resulted in a reduced A/P ratio in both TMR and lucerne substrates. Monensin,
however, did not have any significant effect on A/P ratio in the TMR and lucerne substrates but resulted
in a lower A/P ratio in the eragrostis substrate. In the eragrostis substrate, while fresh extracts of MO,
TD, JA and CP resulted in a lower A/P ratio, stored extracts had no such effect. Storage did not affect
AV and AZ in terms of its effect on the A/P ratio in the eragrostis substrate. Monensin did not have any
effect on acetate and propionate proportion in the three substrates.
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Table 3. The ratios of total gas production (TGP), methane (CH4) and in vitro organic matter digestibility (IVOMD) from Eragrostis curvula, lucerne and TMR substrates
incubated with stored or fresh plant extracts.

Parameters Substrates Extracts Cntrl Mon AV AZ MO TD JA CP SEM
p-Values

p S p*S

CH4/TGP

TMR
Stored 34.1 29.5 26.5 31.4 29.5 30.7 30.5 26.4

0.49 0.01 0.71 0.88
Fresh 34.1 29.5 28.6 29.7 29.4 28.5 30.9 25.7

Lucerne
Stored 35.5 34.7 38.9 31.4 31.2 27.3 32.1 30.4

0.58 0.01 0.22 0.28
Fresh 35.5 34.7 36.0 36.1 33.6 31.5 30.8 31.7

Eragrostis Stored 28.9 33.5 16.1 18.6 15.1 15.9 15.2 13.1
1.29 <0.01 0.31 0.25

Fresh 28.9 33.5 16.3 16.5 15.3 12.0 12.9 15.7

CH4/IVOMD,
mL/kg

TMR
Stored 42.9 33.4 28.1 34.7 31.9 30.2 34.2 29.7

0.87 <0.01 0.21 0.71
Fresh 42.9 33.4 27.2 29.1 30.3 31.6 32.8 28.3

Lucerne
Stored 36.8 30.7 36.9 28.3 29.9 24.6 32.2 28.8

3.52 0.23 0.29 0.50
Fresh 36.8 30.7 34.7 31.6 31.5 29.1 29.6 30.1

Eragrostis Stored 47.7 51.0 19.8 22.2 17.4 18.5 17.9 15.4
2.50 <0.01 0.20 0.25

Fresh 47.7 51.0 19.4 18.9 16.1 13.6 14.1 18.0

TGP/IVOMD,
mL/kg

TMR
Stored 1.26 1.13 1.06 1.10 1.08 1.07 1.11 1.12

0.02 <0.01 0.02 0.18
Fresh 1.26 1.13 0.95 0.97 1.03 1.02 1.06 1.10

Lucerne
Stored 1.04 0.88 0.94 0.89 0.94 0.91 1.00 0.94

0.09 0.32 0.35 0.48
Fresh 1.04 0.8 0.96 0.87 0.93 0.92 0.95 0.94

Eragrostis Stored 1.65 1.52 1.22 1.19 1.14 1.16 1.18 1.17
0.04 <0.01 0.15 0.96

Fresh 1.65 1.52 1.19 1.15 1.06 1.14 1.09 1.15

CH4/TVFA

TMR
Stored 25.2 22.0 17.5 22.7 20.7 19.3 21.1 19.4

0.43 <0.01 0.91 0.78
Fresh 25.2 22.1 18.9 20.5 20.4 21.5 21.4 18.5

Lucerne
Stored 23.6 23.0 24.1 19.2 18.8 16.4 20.5 19.7

0.44 <0.01 0.38 0.37
Fresh 23.6 23.1 22.5 21.3 21.1 18.7 18.8 20.4

Eragrostis Stored 21.9 19.1 11.1 10.6 9.65 9.98 9.11 8.31
0.96 <0.01 0.29 0.26

Fresh 21.9 19.1 11.2 10.1 9.26 7.41 7.52 9.51
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Table 3. Cont.

Parameters Substrates Extracts Cntrl Mon AV AZ MO TD JA CP SEM
p-Values

p S p*S

TGP/TVFA

TMR
Stored 73.9 74.8 66.1 72.3 69.8 67.9 69.0 73.3

0.59 <0.01 0.70 0.85
Fresh 73.9 74.8 66.0 68.8 69.3 70.2 69.3 72.2

Lucerne
Stored 66.6 66.4 61.9 61.1 59.3 60.3 64.2 64.8

0.55 <0.01 0.66 0.54
Fresh 66.6 66.4 62.3 59.2 62.8 59.5 60.9 64.3

Eragrostis Stored 67.3 70.5 68.7 66.5 63.5 62.3 60.1 63.4
0.73 <0.01 0.06 0.64

Fresh 67.3 70.5 69.1 61.6 61.1 61.7 58.5 60.7

Cntrl, control; Mon, monensin; AV, Aloe vera; AZ, Azadirachta indica; MO, Moringa oleifera; TD, Tithonia diversifolia; JA, Jatropha curcas; CP, Carica papaya; SEM, standard error of
mean; p, plant extracts; S, storage; p*S, Interaction between plant extracts and storage.

Table 4. Molar proportions of volatile fatty acids from the in vitro incubation of E. curvula, lucerne and TMR substrates from E. curvula, lucerne and TMR substrates
incubated with stored or fresh plant extracts.

VFA Molar Proportions Extracts Cntrl Mon AV AZ MO TD JA CP SEM
p-Values

p S p*S

Acetate

TMR
Stored 45.5 44.5 33.6 33.9 31.3 31.5 33.5 33.2

1.00 <0.01 0.38 0.47
Fresh 45.5 44.5 34.1 35.3 30.6 29.7 32.5 32.2

Lucerne
Stored 43.3 41.9 37.3 34.1 33.1 36.5 32.6 36.1

0.66 <0.01 0.95 0.34
Fresh 43.3 41.9 35.4 35.5 34.1 34.5 34.6 35.6

Eragrostis Stored 44.4 42.2 35.8 36.2 38.2 39.1 38.5 38.1
0.55 <0.01 0.26 0.28

Fresh 44.4 42.0 37.6 36.1 39.0 37.9 34.5 36.8

Propionate

TMR
Stored 22.7 23.2 20.3 20.2 21.3 19.6 19.7 21.8

0.32 0.04 0.62 0.92
Fresh 22.7 23.2 20.3 19.9 22.6 21.8 18.9 21.6

Lucerne
Stored 21.0 19.4 20.8 20.3 19.7 20.6 19.6 20.7

0.13 0.82 0.60 0.14
Fresh 20.1 20.9 19.4 19.7 19.4 20.2 20.7 19.6

Eragrostis Stored 17.9 20.1 21.9 22.1 21.4 21.5 22.5 21.6
0.30 0.01 0.25 0.49

Fresh 17.9 20.1 22.7 21.7 22.9 23.3 21.8 22.6
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Table 4. Cont.

VFA Molar Proportions Extracts Cntrl Mon AV AZ MO TD JA CP SEM
p-Values

p S p*S

Iso-butyrate

TMR
Stored 2.92 3.97 7.66 6.57 6.46 7.42 7.06 9.26

0.43 <0.01 0.79 0.19
Fresh 2.92 3.97 5.80 4.72 6.84 8.63 10.2 9.21

Lucerne
Stored 3.00 13.1 8.3 9.59 8.98 7.51 9.16 8.62

0.49 <0.01 0.82 0.86
Fresh 3.00 12.5 9.69 9.14 7.39 7.83 8.51 9.28

Eragrostis Stored 4.89 5.91 12.5 8.97 9.39 9.19 8.63 9.35
0.40 <0.01 0.52 0.10

Fresh 4.89 5.91 7.54 9.26 10.3 8.42 9.96 10.1

Butyrate

TMR
Stored 12.8 14.5 18.9 19.7 20.3 20.4 19.4 18.5

0.51 <0.01 0.32 0.94
Fresh 12.8 14.6 19.1 20.6 20.7 21.4 18.8 19.5

Lucerne
Stored 15.8 10.9 13.5 14.1 14.6 14.2 15.6 13.9

0.27 <0.01 0.68 0.62
Fresh 15.8 10.4 14.1 14.3 14.8 14.7 14.8 14.1

Eragrostis Stored 15.9 12.1 8.72 12.1 11.1 11.4 11.1 11.4
0.40 0.03 0.15 0.18

Fresh 15.6 12.1 14.7 11.6 9.7 11.6 11.6 13.7

Iso-valerate

TMR
Stored 11.7 9.52 10.3 10.1 11.1 11.3 10.5 11.1

0.16 0.04 0.65 0.99
Fresh 11.7 9.52 1.1 10.6 11.1 11.1 10.5 11.1

Lucerne
Stored 12.9 8.16 10.1 10.8 12.1 10.8 12.3 10.3

0.33 0.01 0.60 0.95
Fresh 12.9 12.8 11.3 10.8 12.9 11.8 11.2 11.1

Eragrostis Stored 11.9 10.7 9.91 10.7 9.79 9.14 9.43 9.81
0.24 0.45 0.23 0.81

Fresh 11.9 10.7 9.25 10.9 10.8 11.2 11.5 9.56

Valerate

TMR
Stored 4.06 4.21 9.13 9.34 9.50 9.82 9.87 6.83

0.43 <0.01 0.21 0.80
Fresh 4.05 4.21 9.6 8.99 8.13 7.51 9.14 6.58

Lucerne
Stored 4.76 4.72 10.0 11.1 11.7 10.2 10.6 10.4

0.47 <0.01 0.42 0.76
Fresh 4.76 4.72 10.0 10.4 11.4 10.9 10.1 10.2

Eragrostis Stored 5.22 6.61 11.2 10.0 10.2 9.65 9.86 9.81
0.43 0.03 0.19 0.71

Fresh 5.22 6.61 8.16 10.4 7.64 7.52 11.3 7.61
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Table 4. Cont.

VFA Molar Proportions Extracts Cntrl Mon AV AZ MO TD JA CP SEM
p-Values

p S p*S

A: p ratio

TMR
Stored 1.99 1.92 1.65 1.67 1.46 1.60 1.69 1.52

0.04 <0.01 0.63 0.81
Fresh 1.99 1.92 1.67 1.79 1.36 1.39 1.71 1.48

Lucerne
Stored 2.16 2.17 1.78 1.67 1.68 1.76 1.66 1.75

0.03 <0.01 0.74 0.45
Fresh 2.16 2.17 1.82 1.79 1.75 1.71 1.67 1.81

Eragrostis Stored 2.48 2.02 1.63 1.64 1.78 1.82 1.71 1.76
0.05 <0.01 0.03 0.42

Fresh 2.48 2.02 1.65 1.66 1.70 1.63 1.63 1.60

Cntrl, control; Mon, monensin; AV, Aloe vera; AZ, Azadirachta indica; MO, Moringa oleifera; TD, Tithonia diversifolia; JA, Jatropha curcas; CP, Carica papaya; SEM, standard error of
mean; p, plant extracts; S, storage; p*S, Interaction between plant extracts and storage.
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The reduction in A/P ratio associated with the inclusion of PSMs are usually due to reduced acetate,
an increase in propionate or a shift from acetate to propionate. An increase in propionate observed
in this study is similar to the reports of Adejoro et al. [39] on tannin, Cieslak et al. [34] on Vaccinium
vitis extract supplementation and Wang et al. [12] on Atractylodes rhizome and Amur cork tree
supplementation. Propionate formation and methanogenesis are competitive pathways for hydrogen
metabolism in the rumen [34]. Methanogens utilise hydrogen in the rumen, and in the process, compete
with propionate-producing microbes that also utilise hydrogen to form propionate [12]. Therefore,
processes that enhance increased propionate could result in reduced methanogenesis, as shown by
the results of this study. A lower A/P ratio associated with tannin is usually due to a reduction in the
activities of acetate forming bacteria which result in an increased propionate proportion [34]. Acetate
reduction due to supplementation of PSMs could also be due to a direct reduction in the activities of
acetate forming bacteria or a reduction in hydrogen production [39,40]. Reduced hydrogen production
will result in decreased fibre digestion. Nevertheless, reduced acetate did not result in decreased
IVOMD in the current study.

4. Conclusions

Generally, extracts of Aloe vera, Azadirachta indica, Carica papaya, Moringa oleifera, Jatropha curcas and
Tithonia diversifolia were potent methane reducing agents and storage for 12 months did not affect their
potency, indicating that the bioactivity of the PSMs inherent in them did not deteriorate. Although the
responses of the extracts varied due to substrate differences, these plant extracts effectively reduced
methane emission from poor quality roughage (eragrostis) to a higher degree compared to lucerne and
TMR substrates without a significant reduction in in vitro organic matter digestibility.
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