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Highlights 

• CNS-Asinex database was virtually screened to identify potential BACE1 inhibitors. 
• Through docking and VSW five potential molecules were identified as BACE1 inhibitors. 
• Different pharmacokinetics parameters were checked for final proposed molecules. 
• MD simulation was performed of BACE1 complex with proposed molecules. 
• The binding energy was calculated using MM-PBSA approach. 
 
Abstract 
Alzheimer’s disease (AD) is a neurodegenerative disorder generally develop with aging. AD 

slowly hammers the memory and cognitive abilities which eventually leads to abnormal 

behaviour, and ultimately left with disability and dependency. It is anticipated that by the 

year 2050, world population will experience the incidence of 100 million AD cases. It has 
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been more than hundred years passed since the AD recognized as a dreadfull disease, but 

there is no effective curative agent discovered against AD to date. One of the major hallmarks 

of the AD development is the accumulation of extracellular amyloid-beta (Aβ) plaques in the 

brain. In the amyloidogenic process, an extensively studied beta-secretase enzyme, known as 

BACE1, plays a key role in the accumulation and production of Aβ fragments. Therefore, 

successful inhibition of BACE1 by small molecular chemical entities can be an effective 

approach for anti-AD drug development. Hence, the current study has been perceived to find 

out potential BACE1 inhibitiors by virtual screening of entire Asinex chemical library 

database through multi-step molecular docking methodologies. Further, sequential screening 

of in-silico pharmacokinetics, molecular dynamic (MD) simulations analyses along with 

binding free energy estimation were performed. Comparative analyses and characteristics of 

molecular binding interactions assessment finally suggests that five molecules (B1-B5) to be 

most promising BACE1 inhibitors. Molecular interactions analyses revealed that either one or 

both the catalytic dyad residues (Asp32 and Asp228) of BACE1 has formed strong molecular 

interactions with all the proposed molecules. Not only the catalytic dyad residues are 

involved in the formation of molecular binding interactions but also other important non-Asp 

binders residues such as Gly34, Tyr71, Trp115, Arg128, Lys224, Gly230, Thr231, Thr232, 

Arg235, Thr329, and Val332 found to interact with the selected compounds. Moreover, the 

dynamic behavior of proposed molecules and BACE1 was explored through all-atoms MD 

simulation study for 100 ns time span. Analyses of MD simulation trajectories explained that 

all identified molecules are efficient enough to retain the structural and as well as molecular 

interactions integretiy inside the receptor cavity of BACE1 in dynamic environment. Finally, 

the binding free energy of each molecule was calculated from MD simulation trajectories 

through MM-PBSA method and found that all molecules possess a strong binding affinity 

towards the BACE1. The high negative binding free energies are found to be within the range 

of -994.978 to -561.562 kJ/mol for identified compounds. Henceforth, analyses of 

extensively studied multi-cheminformatics approaches explained that proposed molecules 

might be promising BACE1 inhibitors for therapeutic application in AD, subjected to 

experimental validation. 

 

Keywords: Alzheimer’s disease; BACE1; Virtual screening; Molecular docking; Molecular 

dynamics simulations 
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Graphical abstract 

 

1. Introduction 
Alzheimer's disease (AD) is a progressive neurodegenerative brain disorder which rapidly 

increasing in the world’s population [1]. According to the report of "2019 Alzheimer's disease 

facts and figures", approximately 5.8 million Americans have Alzheimer's dementia. It is also 

estimated that by mid-century, in the United States itself the Alzheimer's dementia may grow 

up to 13.8 million [2]. According to the official death certificates, 121,404 deaths were 

recorded from AD in the year 2017, making AD as the 6th leading cause of death in the 

United States. It is also ascertained that AD is highly common at the age ≥65 years in the 

Western European population followed by the North American population [3]. With the 

increasing frequency of AD, it is now becoming a major public health burden. AD is the main 

cause of dementia which usually begins with memory loss, difficulties in speaking or writing, 

judgment making, changes in mood and behavior, problems with abstract thought, and 

disorientation with respect to time and place, etc. [3, 4]. Although, the AD was identified 

more than a hundred years ago by Dr. Alois Alzheimer – a German psychiatrist, pathologist 

and neurologist [5], but no definite curative measures except few treatment strategies have 

been developed so far for AD management [1]. At present, almost 132 chemical entities are 

in clinical trials for the treatment of AD, among them 28, 74 and 30 entities are in clinical 

trial phase 3, 2 and 1, respectively [1]. For example, entities like Elenbecestat, Lanabecestat, 

Verubecestat, JNJ-54861911, CNP520, and LY3202626 are entered in human clinical trials 
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and presently being tested on different types of populations with mild-to-moderate AD 

patients or individuals at risk for getting AD [6, 7]. Among them, Verubecestat progressed to 

enter in clinical trial phase 3 and confirmed its safety and efficacy of beta-secretase 1 

(BACE1) inhibition. However, their success rate will be accounted in time. 

Although, a tremendous effort is being given in terms of identifying new targets for the 

treatment of AD, however, since long, BACE1 - a membrane-bound aspartyl protease, has 

been demonstrated to be an appealing therapeutic target for controlling AD. The BACE1 is 

found to be highly expressed in the brain and responsible for 40 or 42 amino acid-long β-

amyloid peptide (Aβ) production. It is widely believed that AD pathogenesis is majorly 

driven by the production, accumulation and deposition of Aβ that aggregates in the brain. The 

aggregated form of neurotoxic Aβ oligomers requires consecutive cleavage of β-amyloid 

precursor protein (APP) by two aspartyl proteases, beta-site APP cleaving enzyme BACE1 

and finally by γ secretase [8, 9]. Since the proteolytic cleaving of APP is rate-limiting step in 

the production of Aβ, this BACE1 enzyme is considered as the major therapeutic target for 

the development of direct or disease-modifying drugs for AD treatment. Therefore, inhibition 

of BACE1 can prevent the deposition of Aβ, which is thought to be a prominent or alternative 

way to prevent or stop neuronal failure and death. BACE1 starts with 21 amino acids long 

NH2-terminal signal peptide and followed by a pro-protein domain which is ranging from 

residues 22-45. The catalytic or lumenal domain of a mature BACE1 protein extends from 

residues 46-460 [10]. Moreover, the BACE1 active site contains few highly conserved or 

active site motifs (DTGS (residues 93-96) and DSGT (residues 289-292)) [10] and two 

aspartic acid residues (Asp32 and Asp228) as a catalytic dyad essential for exhibiting 

catalytic activity [11, 12]. Therefore, targeting the BACE1 catalytic dyad has gained special 

attention to academic and industrial researchers for designing novel inhibitors for BACE1. 

Earlier a number of studies have been identified small molecules inhibitors of BACE1 using 

various approaches including in silico analyses [3, 13-24]. For instance, few small molecule 

derivatives of amino/iminohydantoins were identified with high selectivity as BACE1 

inhibitors using structure-activity relationship (SAR) and in vitro study analyses [25-28]. 

Similarly, a variety of aminooxazolines and aminooxazines derivatives also have been 

reported as potent BACE1 inhibitors using a similar approach [29, 30]. Stamford et al. 

identified a new class of iminopyrimidinone scaffold as BACE1 inhibitors which are orally 

bioavailable and blood-brain barrier (BBB) permeable [31]. Genistein - an isoflavone 

identified to exert a notable BACE1 inhibition using biological evaluation, kinetic analysis, 

and molecular docking simulation analysis [16]. Another study explores the binding pattern 
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and potentiality of AZD3293 and Solanezumab as anti-AD agents using molecular docking 

and dynamics simulation techniques targeting the BACE1 [32].    

In this study, we have employed an extensive and rigorous virtual screening strategy for 

identifying potential drug-like small molecules capable of interacting with BACE1, and thus 

can confer BACE1 inhibition effectively. In particular, a multi-step molecular docking, 

classical molecular dynamic (MD) simulations and prediction of ADME (absorption, 

distribution, metabolism and excretion) profile were carried out for identifying five hit 

compounds. Moreover, binding free energy (ΔG) of each hit compound bound with BACE1 

was estimated for evaluating the strength or characteristics of binding affinity in terms of 

different types of energy contributions. The adopted multiple molecular modeling approaches 

may provide an opportunity for extending and expediting the developmental process for 

finding out the treatment measures for AD considering the BACE1 as a potential target.  

  

2. Materials and Methods 
The multiple virtual screening paradigms such as in-silico pharmacokinetics analysis, 

molecular docking and dynamics simulations, and MM-PBSA based protein-ligand binding 

free energy calculations were implemented to identify the promising BACE1 inhibitors. In 

this regard, from the Asinex database, central nervous system (CNS) biased compounds were 

downloaded. This Asinex-CNS database consisting of 131014 compounds which are freely 

available (http://www.asinex.com/cns/). Compounds deposited in the Asinex database are 

ready to dock form and therefore, highly used for virtual screening purposes. Moreover, all 

selected compounds consisting of natural product-like scaffolds with the presence of polar 

functional groups. The above functionalities of the molecules make suitable for hit-to-lead 

identification and optimization, fragment-based drug design (FBDD), and structure-based 

drug design (SBDD), etc. In the current study, primarily molecules were screened out through 

molecular docking study in AutoDock Vina [33] followed by another round of multi-step 

docking protocol using the ‘Virtual Screening Workflow’ (VSW) [34]  in Maestro.  

 

2.1.Preparation of molecular structures obtained from Asinex-CNS library database 

The entire CNS chemical library dataset of Asinex was available in two-dimensional (2D) 

representation and downloaded the structural data format (sdf) file format of the same. To 

remove duplicate molecules, repair the inappropriate valency and generate the 3D coordinates 

all molecules were prepared using the Discovery Studio [35]. Another open-source tool 
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widely accepted for file format conversion, the Open Babel [36], was used to convert each 

ligand compound into PDBQT format. The AutoDock Vina/AutoDock accepts the PDBQT 

format of the molecules [33], which is pretty similar to PDB representation but it includes 

partial charges and AutoDock 4 atom types. To assess the outcome from 

pharmacoinformatics approaches and for comparing purposes, an experimentally evaluated 

known standard or control molecule AZD3293 [37] was considered in this study. AZD3293 

is an established BACE1 inhibitor that was drawn and prepared using the same parameters 

described above.  

 
3. Virtual screening 
3.1.Initial screening using AutoDock Vina 

The crystal structure of BACE1 protein having the resolution of 2 Å and R-value of 0.223 

was obtained from the RCSB-Protein Data Bank (PDB), the PDB ID: 6OD6 [38]. The size of 

the receptor cavity and date of deposition were considered to select the best BACE1 protein 

molecule. The selected BACE1 protein was deposited in March 2019 in the PDB, and to the 

best our knowledge this one was most recently deposited BACE1 crystal structure with 

overall accuracy when our study conceived. In order to prepare the protein structure for 

molecular docking, the polar hydrogen atoms and the suitable number of Gasteiger charges 

were added in the crystal structure of BACE1 protein using AutoDock tool (ADT). Water 

molecules were deleted from the protein crystal structure and the crystal structure saved in 

PDBQT format. The catalytic aspartate (Asp) dyad (Asp32 and Asp228) present in BACE1 

protein at the interface of the two lobes was reported to be crucial for inhibition. Hence, the 

grid box was generated by confining both catalytic dyad residues with the specified 

coordinates of center as -24.693, -95.985 and 6.459 along the X-, Y- and Z-axis, respectively. 

By manual inspection, the size of X-, Y- and Z-axis dimension of the grid box was 

considered as 60x60x60 Å. In order to execution of molecular docking, the above mentioned 

information of the receptor, ligand and grid center and sizes  were kept inside a configuration 

(.conf) file. Maximum 9 numbers of binding modes were allowed to generate for each ligand 

during docking execution. No others specific constraint were implied for molecular docking. 

The AutoDock Vina program [33] is installed on the Linux platform at the CHPC Lengau 

server (https://www.chpc.ac.za/index.php/resources/lengau-cluster) was used for docking 

execution of all 131014 compounds. Moreover, before analyzing the docking output of the 

131014 compounds, the docking protocol was validated following the re-docking of co-

crystalized ligand (ligand ID: M7D) attached with BACE1. Therefore, similar protocol for 
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ligand and protein preparation was followed and re-docking of co-crystallized ligand was 

carried out. The RMSD value was found to be 1.920Å after superimposing the original ligand 

structure over the re-docked co-crystal ligand structure. The superimposed structure is given 

in Figure S1 (Supplementary file). The molecular docking protocol can be considered 

suitable if the RMSD value between co-crytsal ligand and docking pose of the same found to 

be < 2Å [39]. Hence, the selected docking protocol was successfully validated and can be 

used to dock any molecule. Upon validation of the docking protocol, the binding affinity 

score of all successfully docked molecules was analyzed critically and ranked to reduce the 

chemical space of the CNS dataset. The binding affinity score of control ligand (AZD3293) 

was considered as threshold and molecules having binding affinity score less than or equal of 

AZD3293 considered for subsequent modeling study employing VSW in Maestro.  

 

3.2.Screening using ‘Virtual Screening Workflow’    

The screened out molecules through AutoDock Vina were further submitted for 3 phase step-

wise docking method using VSW, an extensive and rigorous protocol used for virtual 

screening. The VSW utility is available in the Maestro interface of the Schrodinger suite [40]. 

There are basically four steps involved in the VSW which include HTVS (high-throughput 

virtual screening), SP (standard precision),  XP (extra precision) docking, and followed by 

MM-GBSA based binding free energy calculation for top-scored ligand-protein complexes. It 

is illustrated that the successful application of VSW is efficient and reliable to achieve the set 

of ligands with high accuracy and potency [41]. The systematic search is performed through 

the three stages of molecular docking in VSW through analysis of orientational, 

conformational, and positional space of the docked ligand. The VSW protocol was executed 

under some specific set of considerations in the CHPC server. The compounds considered in 

the AutoDock Vina screening step were selected by browsing of .sdf compounds for the 

source of ligands under ‘Input’ tab. To prepare ligands the ‘Preparation’ tab was selected. 

The grid confining the catalytic dyad was selected through the ‘Receptor’ tab. In each of 

HTVS, SP and XP docking filtering step, the best 60% molecules were retained and 

considered for used in subsequent steps. The outcome of XP-docking was written for further 

analysis. Maximum of six binding poses were allowed to generate in XP-docking protocol for 

each ligand. However, the ‘all good scoring states’ in each step was selected to retain the 

best-scored molecules only. The remaining parameters of the VSW panel were kept as 

default. The Prime MM-GBSA method was used in the final stage to estimate the binding 

free energy of the selected compounds retained in XP-docking protocol.  
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3.3. In-silico ADME and drug-likeness prediction    

The ADME analysis is one of the important and as well as critical assessment to screen out a 

few promising chemical entities from a large chemical dataset. Compounds obtained from the 

VSW were therefore allowed for ADME profile predictions using an online accessible web 

tool: SwissADME, publicly available at http://www.swissadme.ch [42]. A number of 

physicochemical, lipophilicity, water-solubility, pharmacokinetics, and drug-likeness 

properties including Lipinski’s rule of five (Ro5) [43] were documented. The SwissADME is 

widely popular to the scientific community for fast predictive power and spontaneous 

straightforward interpretation. Moreover, a number of characteristics such as n-octanol and 

water (log Po/w) partition coefficient or lipophilicity, molar solubility in water, BBB 

permeability, skin permeation, human gastrointestinal absorption (HIA) capability and other 

important medicinal chemistry properties were also examined to select the best BACE1 

inhibitors and further assessment. 

 

3.4.Molecular dynamics simulation 

The dynamic behavior of finalised molecules, each bound bound with BACE1 protein was 

extensively analyzed through conventional all-atom 100 ns of MD simulation study with a 

time step of 2 fs at the constant pressure of 1 atm and constant temperature of 300 K. The 

Gromacs 2018.2 software tool (http://www.gromacs.org/) available at the Lengau CHPC 

server was used for MD simulation. The ligand topology file was generated using the 

SwissParam tool [42]. The CHARMM36 all-atom force field was applied and the TIP3P 

water model considered to solvate the system. A 10 Å distance from the surface of the center 

of the protein was maintained for defining the system size for simulation. Appropriate 

amount of Na+ and Cl- ions were added to neutralize the system. The steepest descent 

algorithm of 10,000 steps was applied and executed to equilibrate and minimize each system. 

To consider the long-range interaction of van der Waals and electrostatic, the cut off was set 

to 0.9 and 1.4 nm, respectively. To obtain trajectory information upon MD simulation 

execution, the snapshots were saved in each 1 ps interval. A number of parameters included 

root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF) and radius of 

gyration (Rg) were calculated from each MD simulation trajectory to explore and analyze the 

conformational and stability of each molecular complex system in the dynamic environment. 

The MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) method was 

employed using g_mmpbsa utility tool [44] to calculate the binding free energy of each 

molecule to explore the relative binding affinity towards the BACE1. The protocol of the 
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MM-PBSA procedure can be found in one of the previous publications by our research group 

[3].  

 
4. Results and discussion 
4.1.Virtual screening using multi-step docking and MM-GBSA analysis 

With the advancement in computational techniques, the drug discovery research platform has 

received an exceptional strength for the identification of pharmacologically active lead-like 

chemical compounds against a specific biological target. The computational technique such 

as structure-based virtual screening (SBVS) primarily employs the molecular docking method 

to predict the potentiality of a ligand [45]. Typically, a large chemical library of potential 

compounds can be screened through SBVS to select a small subset of the potential chemical 

dataset that can further be considered for biological assessment. Keeping that view, nowadays 

the SBVS strategies are widely used in drug discovery and developmental projects.  

In the present study, virtual screening was carried out for identifying potential drug-like 

molecules as BACE1 inhibitors from Asinex database - “CNS Library”, containing 131014 

compounds. To select a control compound for comparison of outcomes from the current 

study, a total of 9 reported standard BACE1 inhibitors [37, 46] were considered for molecular 

docking analysis. The binding energy and inhibitory activity of all standard molecules are 

given in Table S1 (Supplementary file). Also, binding interactions between standard BACE1 

inhibitors and catalytic amino residues was explored and 2D molecular interaction diagram 

given in Figure S2 (Supplementary file). It is illustrated that participation of interactions with 

two catalytic dyad amino acid residues Asp32 and Asp228 are important for the exhibiting 

inhibition of BACE1[47]. From Table S1 and Figure S2, it can be observed that AZD3293 

interacted with Asp32, and CNP520 form binding interactions with both Asp32 and Asp228. 

Moreover, AZD3293 was also formed an additional interaction with Gly230. AZD3839 and 

RG7129 were found to form a single interaction with Gly35 and Phe108, respectively. 

Remaining molecules were failed to form any molecular binding interaction with BACE1. 

The binding energy of AZD3293 and CNP520 was found to be -9.00 and -7.00 Kcal/mol, 

respectively. Therefore obtained data  clearly suggested that AZD3293 and CNP520 were the 

most active standard molecules among all studied nine compounds. The IC50 value of 

AZD3293 and CNP520 was reported as 0.60 and 11.00 nM, respectively. Hence, AZD3293 

was selected as a control compound in the current study and binding energy -9.00 kcal/mol 

used as a threshold value to reduce the chemical space after molecular docking. The virtual 

screening method was accompanied by multiple molecular docking steps using AutoDock 
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Vina, and Glide - HTVS, SP and XP docking protocol following different algorithms. The 

flow diagram of the work is given in Figure 1.  

 

 
Figure 1. Flow diagram of virtual screening of BACE1 inhibitors 

 

Out of the 131014 CNS biased chemical agents were docked against the BACE1 using 

AutoDock Vina, only 371 hits initially selected based on the threshold binding affinity scores 

of the compounds. Precisely, the selection was made by user-defined binding affinity score 

i.e. -9.00 Kcal/mol, as the cut-off value of the standard compound. The binding energy 

distribution of all 131014 compounds are given in Figure S3 (Supplementary file). Further, in 

order to narrow down the chemical space and filter out the inactive compounds, the VSW 

utility was adopted where the docking of 371 compounds performed hierarchically using the 

Glide based different–docking programs. In each docking step, almost 60% compounds were 

filtered out, and hence, the final docking step (Glide-XP) was listed as the top 75 compounds. 

In successive steps during the execution of VSW in Schrodinger suite, another highly 



11 
 

rigorous and important parameter such as the contribution of energy properties or ligand 

binding free energies for all 75 compounds were calculated using Prime MM-GBSA method. 

Therefore, the VSW screening in turn provided the XP-GlideScore and MM-GBSA score for 

each compound as an output. For the standard compound AZD3293, also the XP-GlideScore 

and MM-GBSA energy calculation was carried out, which revealed the following values viz. 

-3.71 and -35.08 Kcal/mol, respectively. In order to further screen out the most active and 

potential compounds for BACE1 inhibitor, the XP-GlideScore and MM-GBSA values of 

AZD3293 were considered as the cut-off scores. Therefore, from the 75 compounds, 44 

compounds were further identified which follows both the scoring criteria and demonstrated 

the best docking poses. However, for the final selection of best compounds, in-silico 

pharmacokinetic studies were performed for all 44 compounds discussed in the next section.  

A number of pharmacokinetics and drug-likeness parameters were explored for the 

compounds found in the previous step. The analyses revealed that a total of 13 compounds 

were found to show good absorption, distribution, metabolism excretion and drug-likeness 

characteristics. Further, in detailed the binding interactions and binding energies were 

analyzed. Interactions association with the catalytic dyad was given priority for further 

screening and selection process and finally, five molecules (B1, B2, B3, B4 and B5) were 

identified to be most promising BACE1 inhibitors based on the following criteria. 2D 

representation of all proposed molecules are given in Figure 2. 

 

 
Figure 2. Two-dimensional representation of finally proposed BACE1 inhibitors 
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4.2.Molecular docking analysis 

Analysis of molecular docking based interaction profiles of the selected compounds (B1, B2, 

B3, B4, and B5) including AZD3293 are portrayed in Figure 3. Molecular docking analyses 

revealed that compound B1 was formed hydrogen bond (H-bond), hydrophobic, π-stacking 

and salt-bridge interactions with several amino acid residues of BACE1. In particular, 

residues Asp32, Gly34, Lys224 and Arg235 and Thr329 were formed H-bond interactions 

with ligand B1. Two hydrophobic interactions were observed with Try71 residue of BACE1. 

Apart from that, two other types of molecular interactions profile were generated via π-

stacking interaction with residue Phe108, and salt-bridge interactions with catalytic dyad 

residues Asp32 and Asp228. Compound B2 was found to be involved in H-bond interactions 

with residue Tyr198. Hydrophobic interactions were noticed with BACE1 residues Tyr71, 

Arg128 and Val332. Amino acid residue Tyr71 not only participated in hydrophobic 

interaction but also formed π-stacking interaction with compound B2. A significant number 

of H-bond and salt-bridge interactions were observed between BACE1 and compound B3 

(Figure 3). Precisely, amino acid residues Gln73, Gly230 and Thr231 were formed H-bond 

interactions, whereas BACE1 catalytic dyad residues Asp32 and Asp228 participated to form 

salt-bridge interactions with compound B3. With a high GlideScore value (-6.58 Kcal/mol), 

compound B4 was participated to form 4 types of molecular interactions. Two consecutive 

amino acid residues Thr231 and Thr232 created halogen and H-bond interactions, 

respectively with B4. Few other residues Tyr71, Phe108, Ile110 and Trp115 of BACE1 were 

participated in hydrophobic interaction with compound B4. It was also observed that one 

catalytically active amino acid residue Asp32 was formed a salt-bridge interaction with 

compound B4. Although, B5 was generated the highest GlideScore (-6.66 Kcal/mol) in 

docking analysis, interestingly, only two H-bond interactions were observed between 

compound B5 and amino acid residue Gly230 of BACE1.  
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Figure 3. Binding interactions mode of proposed inhibitors with BACE1 

 

The standard compound, AZD3293 interacted with BACE1 by forming three types of 

molecular interactions profiles viz. H-bond, hydrophobic and π-stacking interactions. Docked 

complex of protein BACE1 and standard compound revealed that Asp32 and Thr329 

involved in H-bond interactions. The hydrophobic interactions were noticed with residues 

Tyr71 and Phe108 of BACE1. The same residue Tyr71 also formed salt-bridge interaction 

with the standard compound. Overall, the docking study revealed that standard compound 

showed relatively much lower GlideScore value (-3.71 Kcal/mol) than the selected five 

compounds and therefore considered for subsequent molecular modeling purposes. The 3D 

surface view orientation of each molecule inside the BACE1 active site cavity was checked 

closely and given in Figure 4.  Figure 4 clearly indicate that all identified molecules were 

perfectly fitted inside the active site cavity of the BACE1.          
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Figure 4. The binding pose in 3D space of proposed molecules and AZD3293 

 

4.3.Comparative analysis of molecular interaction profiles  

Earlier, several studies reported a number of small molecule BACE1 inhibitors using in-silico 

methods in the drug-designing aspect. In this study, the docking based molecular interactions 

maps revealed for the five selected compounds against BACE1 were demonstrated selective 

inhibition mechanism and specificity for ligand binding interactions. For instance, one of the 

catalytic dyad residues Asp32 was found to be a prominent interacting residue for interacting 

with all identified compounds except B2 and B5. However, the types of molecular 

interactions observed were not the same for all the compounds. In particular, Asp32 

participated through mainly two types of molecular interactions such as H-bond and salt-

bridge interactions. Another catalytic residue Asp228 also found to form salt-bridge 

interactions with compounds B1 and B3. Not only the Asp-catalytic dyad residues of BACE1 

binds with the selected identified compounds, but also few important non-Asp binders 

(Gly34, Tyr71, Gln73, Phe108, Ile110, Trp115, Arg128, Lys224, Gly230, Thr231, Thr232, 

Arg235, Thr329, Val332) found to be interacted with the selected compounds. A similar 

observation was noticed earlier which suggested that few non-Asp binders residues (Leu30, 

Tyr71, Phe108, Ile110, Trp115, and Ile118) participated in π-stacking and hydrophobic 

interactions with their identified compounds [48]. According to the study of Yechun Xu et 

al., the flexibility of the flap in the active site of BACE1 was revealed by crystal structures 

and molecular dynamics simulations study demonstrated that residues Gly34, Gln73, Tyr198, 

Gly230, Thr232 can frequently form hydrogen bonds with the peptides and other small 

organic ligands. They have also reported that few other residues Tyr71, Thr72, Gln73, 
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Phe108, Ile110, Trp115, Ile118, Ile126, Tyr198, Ile226 and Gly230 often contributed to form 

hydrophobic interactions profile with the ligand [49]. Most importantly, the study 

demonstrated that residues Tyr71 and Gln73 showed the highest tendency to interact with the 

ligand, hydrophobically [49]. The present study findings also reveal a similar interaction map 

for the residues Tyr71 and Gln73. Precisely, at N-terminal region, the Asp catalytic dyad of 

BACE1 is usually covered with 11 amino acid residues (Val67- Glu77) fragment of 

antiparallel hairpin loop which long been known as a flap. It was proposed that by acid-base 

mechanism of hydrolysis, BACE1 catalyzes the cleavage of peptide bonds of the substrate 

with the help of Asp catalytic dyad. It was found that the Tyr71 residue of flap interacts with 

APP and facilitated the movement of the flap, which in turn provides the entry of substrate 

into the BACE1 active site and organizes the correct conformation in the catalytic site [50]. 

In another study, ensemble based docking and MM-GBSA residue decomposition analysis 

identified few potential BACE1 inhibitors for AD suggested that residues Asp32, Asp228, 

and Tyr71 as the main contributors for showing crucial binding mechanisms [51].  

 

4.4. Pharmacokinetics assessment 

It is crucial to examine the physicochemical properties and pharmacokinetics of a molecule to 

discuss the potentiality of the molecule in depth. Propose BACE1 inhibitors (Figure 2) were 

taken into account to study the ADME profile and other properties such as physicochemical 

properties, lipophilicity, water-solubility, drug-likeness, and medicinal chemistry. The above 

characteristics were obtained from online tool, SwissADME (http://www.swissadme.ch/) and 

given in Table 1. 

The molecular weight was measured to be less than 404 g/mol of all the molecules. The 

prediction of transport properties of drugs can be explained using the polar surface area and 

the values was measured to be 74.35, 63.17, 70.67, 67.23 and 76.58 Å² for B1, B2, B3, B4 

and B5, respectively. For an orally active molecule, the value of topological polar surface 

area (TPSA) should be less than 130Å², therefore values of all proposed molecules indicated 

to be orally active. The solubility class describes that all molecules were soluble in nature. 

The absorption of the molecule in the intestine is explained by the gastro-intestinal (GI) 

parameter, here it is reported as high which means all the molecules are highly absorbed in 

the intestine. The BBB parameter of all molecules was explored and found that B2, B3 and 

B4 capable to penetrates in the brain. The synthetic accessibility (SA) describes the ease of 

synthesis of the molecule. The low SA value of all proposed molecules indicated that not a 

single molecule is difficult to synthesis. 
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Table 1. Physiochemical parameters proposed BACE1 inhibitors 

Parameters B1 B2 B3 B4 B5 

Formula C21H23N5O2 C21H23N5O C22H30FN3O3 C19H21FN4O2 C22H26N4O3 
1MW 

(g/mol) 377.44 361.44 403.49 356.39 394.47 
2NHA 28 27 29 26 29 

3NAHA 16 18 6 11 12 
4NRB 3 6 5 6 4 
5MR 114.62 108.64 118.86 97.52 115.44 

6TPSA (Å2) 74.35 63.17 70.67 67.23 76.58 
7LogS -2.76 -3.96 -3.87 -2.53 -2.98 

8SC Soluble Soluble Soluble Soluble Soluble 
9GI High High High High High 

10BBB No Yes Yes Yes No 
11vROF 0 0 0 0 0 

12vGhose 0 0 0 0 0 
13vVeber 0 0 0 0 0 

14BS 0.55 0.55 0.55 0.55 0.55 
15SA 3.24 3.53 4.73 3.8 3.75 

iLOGp 2.91 3.03 3.45 2.58 3.28 
1Molecular weight; 2No.of heavy atoms; 3No.of aromatic heavy atoms;  4No. of rotatable bonds; 5Molar 
refractivity; 6Topological polar surface area; 7Solubility; 8Solubility class; 9Gastrointestinal absorption; 10Blood 
Brain Barrier Penetration; 11Violation of Lipinski’s rule of five; 12Violation of Ghose rule; 13Violation of Veber 
rule; 14Bioavailability Score; 15Synthetic accessibility 
 

The bioavailability radar plot was obtained from the SwissADME and shown in Figure 5. 

The pink area is represented as the different features such as unsaturation (INSATU), 

insolubility (INSOLU), hydrophobicity (LIPO), rotatable bonds (FLEXI), molecular weight 

(SIZE) and polar surface area (POLAR). The optimum range of LIPOPHILICITY i.e. 

XLOGP3 is between -0.7 to +5.0, SIZE i.e. MW should be less than 500 g/mol, POLARITY 

:TPSA should lie between 20 to 130 Å², INSOLU should lie between 0 to 6, INSATU should 

be in between 0.25 and 1, FLEX should not have more than 9 rotatable bonds. The radar plot 

of B1, B2, B3, B4 and B5 molecules represents that they have adequate drug-likeness 

properties. 
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Figure 5. The bioavailability radar plot of proposed BACE1 inhibitors 

 

The boiled-egg figure was obtained which depicts the two important aspects such as human 

intestinal absorption (HIA) and BBB as shown in Figure 6. The yellow part (yolk) represents 

the BBB permeation and the white part (albumin) represents the HIA absorption. The 

albumin and yolk regions are independent of each other. The boiled-egg model also 

represents the prediction of substrates (PGP+) and non-substrates (PGP-) of the permeability 

glycoprotein (PGP) as shown in Figure 6. Blue dots represent the PGP+ molecules that are 

predicted to be effluated from the CNS by the P-glycoprotein whereas red dots represent the 

PGP- molecules that are predicted not to be effluated from the CNS by P-glycoprotein. All 

BACE1 inhibitors were PGP+, therefore they belong to the substrate. From the above 

analysis of the physicochemical properties and pharmacokinetics, it is consequentially 

justified that all the BACE1 inhibitors are potential enough to show drug-like nature.    
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Figure 6. Egg-boiled model of final proposed BACE1 inhibitors   

 

4.5.Quality Assessment 

To assess the quality of the molecules various parameters were calculated which include 

ligand efficiency (LE), ligand efficiency scale (LE_scale), fit quality (FQ), and LE-dependent 

lipophilicity (LELP), shown in Table 2. The important drug-likeness parameter, LE was 

proposed by Hopkins et al.[52] and can be calculated using the equation (1). The LE is the 

negative ratio between binding energy and the number of heavy atoms. The value of  LE <= 

0.4 specifies the lead-like nature. In this case, B1, B2, B3, B4 and B5 were having a value of 

0.350, 0.344, 0.317, 0.365 and 0.331 respectively which states all the compounds as a lead-

like molecule. 

BELE
NHA
−

=         (1) 

The second parameter is proposed by Reynolds et al. [53] known as LE_Scale and can be 

evaluated using equation (2). The LE_Scale depicts the size-dependent comparison of the 

small molecule. As shown in Table 2, the LE_Scale value of B1, B2, B3, B4 and B5 was 

found to be 0.358, 0.369, 0.347, 0.380 and 0.347 respectively which indicates the potentiality 

of the molecule. 
0.026_ 0.873 0.064NHALE Scale e− ×= × −    (2) 
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Table 2: Bioactivity and efficiency parameters of BACE1 inhibitors 
Molecule 1BE 2LE 3LE_Scale 4FQ 5LELP 

B1 -9.8 0.350 0.358 0.979 8.314 

B2 -9.3 0.344 0.369 0.934 8.797 

B3 -9.2 0.317 0.347 0.915 10.875 

B4 -9.5 0.365 0.380 0.961 7.061 

B5 -9.6 0.331 0.347 0.955 9.908 
1Binding energy; 2Ligand efficiency; 3Ligand efficiency scale; 4Fit quality;  
5Ligand-efficiency-dependent lipophilicity 
 

The fit quality score can be evaluated by using equation (3) and expressed for a good binding 

molecule in the receptor. The FQ value should be about 1. The FQ value of B1, B2, B3, B4 

and B5 are 0.979, 0.934, 0.915, 0.961, and 0.955 respectively as given in the Table 2. 

Therefore, all molecules have a strong binding capability to the BACE1. 

_
LEFQ

LE Scale
=       (3) 

The LELP value can be calculated by using equation (4). LELP is the ratio between logP and 

LE and proposed by Keseru and Makara[54]. The LELP value should be more than 3. The 

LELP value of B1, B2, B3, B4 and B5 was found to be 8.314, 8.797, 10.875, 7.061 and 9.908 

respectively. Hence, the LELP values from the above table show that all the molecules have 

drug-like properties.  

 

log pLELP
LE

=
           (4) 

 

 

4.6. Molecular dynamics simulation 

The stability and dynamic behavior of the protein-ligand complex was explored using all-

atom MD simulation study. Application of classical MD simulation approach on the 

structure-based discovery of molecules become an excellent approach to explore 

conformational analysis and binding pattern of molecule inside the receptor cavity [55]. In 

order to check the retaining conformational comforts of the proposed BACE1 inhibitors and 

AZD3293 in dynamic state of both small molecule and protein, the 100 ns time span of MD 

simulation was performed. A number of parameters were calculated including RMSD, RMSF 

and Rg from MD simulation trajectories to evaluate the dynamic charateristics of each 

complex. 
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From the MD simulation trajectory, the RMSD values of the protein backbone of each 

complex was calculated and given in Figure 7. The average, maximum and minimum RMSD 

values are given in Table 3. The RMSD plot portrayed in Figure 7 clearly revealed that 

RMSD values of protein backbone atoms bound with compounds B1, B2, B3, B4, B5 and 

AZD3293 within the range of 0 to 0.3 nm, which is no-doubt an acceptable range to judge the 

protein’s conformational stability with respect to the bound ligand. Deep observation on 

RMSD values revealed that protein backbone bound with compound B1 attained a bit higher 

RMSD in comparison to others. BACE1 backbone bound with B2 was also found to exhibit a 

similar type of fluctuation profile throughout the MD simulation, howevere the RMSD values 

remained below 0.27 nm. Taken together, analysis of MD simulated trajectories explained 

that the backbone of BACE1 was achieved enough stability with bound proposed BACE1 

inhibitors.  

 

 

 
Figure 7. BACE1 protein backbone RMSD values over time obtained from MD simulated 

complexes 
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Table 3. Average, maximum and minimum RMSD, RMSF and Rg values of proposed 

BACE1 inhibitors and AZD3293 

 B1 B2 B3 B4 B5 AZD3293 

RMSD 

Min 0.001 0.001 0.001 0.001 0.001 0.000 

Max 0.332 0.302 0.291 0.262 0.286 0.307 

Average 0.231 0.206 0.201 0.184 0.186 0.222 

RMSF 

Min 0.052 0.048 0.046 0.047 0.047 0.051 

Max 0.557 0.512 0.869 0.623 0.537 0.495 

Average 0.143 0.135 0.128 0.133 0.123 0.138 

Radius of gyration (Rg) 

Min 2.108 2.108 2.108 2.105 2.105 2.109 

Max 2.230 2.213 2.209 2.198 2.220 2.223 

Average 2.177 2.167 2.162 2.160 2.172 2.183 

 
The average RMSD value of the protein backbone can explain the deviation from the initial 

native form of crystal structure during the MD simulation. The average RMSD value of the 

protein backbone was found to be 0.231, 0.206, 0.201, 0.184, 0.186 and 0.222 nm when 

bound with B1, B2, B3, B4, B5 and AZD3293, respectively. The above low mean value 

undoubtedly explained that any weird deviation or instability of the BACE1 was not found 

during the conformational changes throughout the MD simulation run period.  

The fluctuation of individual amino residue plays a critical role in the stability of protein-

ligand complexes. The RMSF values for the backbone of BACE1 were calculated separately 

bound with B1, B2, B3, B4, B5 and AZD3293 and presented in Figure 8. The RMSF plot 

shows a similar pattern with little exemption in fluctuation of amino residues for BACE1 

bound with proposed and standard molecules. Moreover, it was revealed that more or less in 

each complex the amino acid residues around Arg128, Pro129, Asp130 and Asp131; Gly158, 

Phe159, Pro160, Leu161, Asn162, Glu163, Ser164, Glu165, Val166, Leu167 and Ala168; 

Ser253, Thr254, Glu255 and Lys256; and, Val312, Ala313 and Thr314 were found to 

fluctuate more in comparison to rest of the amino acid residues. It was also noted that amino 

residues around Gly158, Phe159, Pro160, Leu161, Asn162, Glu163, Ser164, Glu165, 

Val166, Leu167 and Ala168 fluctuated in large scale when BACE1 bound with B3. Such 

above fluctuation may be due to open up the protein molecules or lack of binding interactions 
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with the ligand. But it is also worth to note that not a single amino residues was fluctuated 

beyond 0.869 nm. The average, maximum and minimum RMSF values were found to be 

0.143, 0.557 and 0.052; 0.135, 0.512 and 0.048; 0.128, 0.867 and 0.56; 0.133, 0.623 and 

0.047; 0.123, 0.537 and 0.047; and, 0.138, 0.495 and 0.051 for B1, B2, B3, B4, B5 and 

AZD3293 respectively. Hence, the above observation of RMSF analysis can conclude that 

BACE1 was undergoing some structural changes to form an active conformation when bound 

with the identified ligands.  

 

 
Figure 8. RMSF vs residue number of BACE1 when bound to final screened BACE1 

inhibitors and AZD3293 
 

The rigidity of the system can be explained through a detailed analysis of Rg of the protein-

ligand system during the MD simulation. The Rg value of each frame was calculated and 

plotted against the time span of MD simulation, presented in Figure 9. The trajectories 

obtained from the MD simulation undoubtedly explained that all complexes were remained 

rigid during the entire simulation. The average, maximum and minimum Rg values were 

calculated and given in Table 3. The difference between maximum and average, and, average 

and minimum can give an idea about the deviation of the system throughout the simulation. 

The difference between maximum and average, and, average and minimum was found as 

0.053 and 0.069; 0.046 and 0.059; 0.046 and 0.054; 0.038 and 0.055; 0.048 and 0.067; and, 

0.040 and 0.073 nm for the protein-ligand system bound with B1, B2, B3, B4, B5 and 

AZD3293, respectively. The low value of the above parameters clearly indicated without any 

doubt that all systems retained the rigidity throughout the simulation. Therefore, the above 
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analysis of MD simulation trajectories of proposed BACE1 inhibitors with protein suggested 

that B1, B2, B3, B4 and B5 might be promising molecules and retained binding with the 

catalytic amino residues in static and dynamic states. 
 

 
Figure 9. Radius of gyration vs time during MD simulation for all proposed and standard 

compound 
 

4.7. Binding free energy using MM-PBSA approach 

MD simulated entire trajectory frames were used to calculate the binding free energy for all 

proposed BACE1 inhibitors including AZD3293 using the MM-PBSA approach. In this 

method, the binding free energy was calculated from each of the frames and can be 

considered more accurate in comparison to binding energy calculated from any other static 

frame such as molecular docking. For details analysis, the maximum, minimum and average 

binding free energy was calculated and given in Table 4. Binding free energy against frame 

numbers plotted and displayed in Figure 10.  

 

Table 4. Binding free energies of proposed BACE1 inhibitors and AZD3293 calculated using 
MM-PBSA approach  

 B1 B2 B3 B4 B5 AZD3293 

Min -1225.380 -1033.990 -1195.000 -1084.640 -1174.100 -357.776 

Max -727.861 -155.436 -604.601 -650.001 -650.215 -83.617 

Average -994.978 -561.562 -961.925 -851.570 -844.707 -247.313 

Std. dev. 68.116 184.440 111.581 49.876 68.561 34.399 
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It was observed that standard BACE1 inhibitor, AZD3293 was showed the lowest binding 

free energy (-247.313 KJ/mol)  in comparison to other proposed molecules. Highest binding 

free energy was found to be -994.978 kJ/mol for compound B1 followed by other compounds 

B3, B4, B5 and B2 of -961.925, -851.570, -844.707 and -561.562 kJ/mol, respectively. The 

above data explained without any doubt that all proposed molecules were shown a strong 

affinity towards BACE1 in comparison to standard compound AZD3293.  

 

 
Figure 10. Binding free energy of proposed BACE1 inhibitors and AZD3293 

 

Figure 10 explained that binding energy of all frames (~100000) consisted throughout the 

simulation except B2. The binding energy of different frames in the case of B2 fluctuated 

much but not a single frame was found to have a value greater than -155.436 KJ/mol. 

Moreover, it was observed that the Coulomb or electrostatic interaction (ΔGCoulomb) and van 

der Waals interaction energy (ΔGvdW) majorly contributed to achieve higher ΔGbind values. 

Hence, from the above data and discussion, it can be clearly seen that all proposed BACE1 

molecules bind in the receptor and possess strong competency to inhibit the BACE1.  

 

4.8. Future prospects 

Despite gigantuous application of pharamcoinformatics in drug discovery research, there is a 

need to check the potentiality of the proposed BACE1 inhibitors through a number of 

experimental validation approaches. The affinity of the molecules can also be checked 
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through the thermal shift assay approach. The binding and unbinding mechanism through 

kinetic study can be assessed which is a crucial approach to explore the stability of the 

molecules in dynamic states. Further optimization may be required based on experimental 

assessments to improve the therapeutic efficacy of the molecules. 
 

5. Conclusion 
Structure-based virtual screening of large molecular database becomes the pivotal and crucial 

paradigm to identify potential molecules for the specific target. Encouraged to find out 

promising chemical therapeutic agents for managing AD, the pharmacoinformatics based 

screening of small molecular databases was explored. Multiple molecular docking strategies 

were applied on more than 100 thousands molecules obtained from the CNS subset of Asinex 

database. Based on binding energy, binding interactions pattern and ADME profile analysis 

finally five promising BACE1 inhibitors were proposed. A number of binding interactions 

were observed between proposed molecules and catalytic amino residues of BACE1 which 

clearly suggested that proposed molecules possess a number of important chemical 

functionalities that actively participated in bond formations. The important catalytic dyad  

residues were also found to interact with proposed molecules which indicated that proposed 

molecules efficient enough for successful inhibition of BACE1. A number of drug-likeness 

characteristics calculated from proposed BACE1 inhibitors favor as drug-like candidates. The 

ADME profile analysis also clearly explained that each molecule consists of good absorption, 

distribution, metabolism and excretion characteristics. Several parameters from 100ns MD 

simulation study revealed that BACE1 retained stability after the binding of proposed 

molecules. The binding energy calculated using MM-GBSA from the MD simulation 

trajectories strongly suggested that all molecules possess a strong affinity towards BACE1. 

Therefore, the pharmacoinformatics approach directed that proposed BACE1 molecules 

consist of all characteristics for successful inhibition of BACE1 and might be crucial for the 

control and management of the AD.  
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