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ABSTRACT 

In this study, the convection heat transfer and pressure drop of titanium dioxide–water 

nanofluids were modeled by applying the fuzzy C-means adaptive neuro-fuzzy inference 

system (FCM-ANFIS) approach for a completely developed turbulent flow based on 

experimentally obtained training and test datasets. Two models were proposed based on the 

effective parameters; one model was developed for the Nusselt number considering the effects 

of the Reynolds number, Prandtl number, nanofluid volume concentration and average 

nanoparticle diameter. Another model was suggested for the pressure drop of the nanofluid 

as a function of the Reynolds number, nanofluid volume concentration, and average 

nanoparticle diameter. The results of these two proposed models were compared with 

experimental data as well as the existing correlations in the literature. The validity of the 

proposed models was benchmarked by statistical criteria. Moreover, a modified non-

dominated sorting genetic algorithm (NSGA-II) multi-objective optimization technique was 

applied to obtain the optimum design points, and the final result was shown in a Pareto front. 
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INTRODUCTION 

          The paper published by Choi 1995 [1] was one of the first attempts to enhance the 

thermal conductivity performance of conventional fluids by adding nanoparticles to the base 

fluid. This new generation of heat transfer fluids was named nanofluids. Nanofluids are new 

heat transfer fluids that consist of two parts: a base fluid and nanometer-sized particles (1-100 

nm). The latter can be metals, metal oxides, carbon nanotubes, a combination of different 

particles and newly suggested bio-nanoparticles. Nanofluids have received significant 

attention during the last decades and numerous researchers have worked on different aspects 

of nanofluids such as nanofluids synthesis [2–5], nanofluid thermophysical properties [6–9], 

heat transfer characteristics and pressure drop of nanofluids [10–13], and potential industrial 

application [14–16]. 

          Because most of the industrial processes occur in a turbulent regime, studying of the 

heat transfer or pressure drop characteristics of nanofluids there is necessary to increase their 

use in practical applications.  

          Duangthongsuk and Wongwises [17] experimentally studied the heat transfer 

performance as well as friction factor of titanium dioxide–water nanofluids in a turbulent 

regime. They used nanoparticles with an average diameter of 21 nm to prepare nanofluids 

with a volume concentration ranging from 0.2 to 2%. It was shown that for the volume 

concentration of 1% the heat transfer coefficient increased by 26% compared with that of the 

base fluid. It was also observed that the pressure drop of this nanofluid was larger than of the 

base fluid at the same Reynolds number. In addition, the authors investigated the effect of the 

thermophysical property models of the nanofluids on the convection heat transfer and friction 

factor of low-concentration nanofluids [18]. They exhibited that using different models did 

not have a significant effect on the convection heat transfer performance of the titanium 

dioxide–water nanofluid with a volume concentration of 0.2%.  
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          Sajadi and Kazemi [19] investigated the turbulent convective heat transfer 

characteristics and pressure drop of titanium dioxide–water nanofluids in a horizontal circular 

tube. Titanium dioxide nanoparticles with an average diameter of 30 nm were mixed with the 

base fluid (water) and sonicated for 30 min. After the nanofluid preparation, the Nusselt 

number and pressure drop of the nanofluids with volume concentrations below 0.25% were 

measured in a completely developed turbulent regime. It was demonstrated that the addition 

of small amounts of nanoparticles to water significantly enhanced the heat transfer of the 

titanium dioxide–water nanofluids. The pressure drop of the titanium dioxide–water 

nanofluids increased with the increase in the volume concentration, which was in the 

agreement with most of the results reported in the literature. 

          Abbasian Arani and Amani [20] performed an experimental investigation on the heat 

transfer and pressure drop of titanium dioxide nanoparticles with an average size of 30 nm 

dispersed in water serving as the base fluid. The experiments were performed in a turbulent 

flow regime for Reynolds number ranging from 8000 to 51000 and volume concentration 

ranging from 0.02 to 2%. They showed that for Reynolds numbers larger than 30000, more 

pumping power was required compared with that for low Reynolds numbers, whereas the 

Nusselt numbers were approximately equal. 

          Abbasian Arani and Amani [21] studied the effect of the nanoparticle diameter on the 

convective heat transfer characteristics and pressure drop of titanium dioxide–water 

nanofluids in a turbulent flow regime. To this end, nanoparticles with average diameters of 

10, 20, 30, and 50 nm were dispersed in distilled acting as the base fluid and the Nusselt 

number and pressure drop of the titanium dioxide–water nanofluids were measured. The 

result of their experiments showed that the nanofluid with an average diameter of 20 nm had 

the best thermal performance compared with the other nanoparticles used in their 

experimental work. 
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         The application of soft computing methods to model and analyze engineering problems 

has increased significantly during the last decade. Neural networks, fuzzy logic, and genetic 

algorithms are among the most preferred components of soft computing methods. These 

components are used in a wide range of mechanical engineering applications [22–25]. 

Because soft computing methods can recognize the existing knowledge and pattern behind 

empirical data, their application in modeling engineering problems of nanofluids has received 

remarkable attention during the last couple of years [26–29]. 

          Aminossadati et al. [30] studied the laminar mixed convection of aluminum oxide–

water nanofluids in a two-sided lid-driven cavity with a sliding top and bottom walls. In their 

research, a combination of adaptive neuro-fuzzy inference system (ANFIS) and 

computational fluid dynamics (CFD) techniques was used. Their results demonstrated that the 

ability of the ANFIS model to predict the fluid velocity, temperature and heat transfer of the 

cavity was similar to that of the CFD tool but with a much shorter computation time. 

          Balcilar et al. [31] utilized three different artificial neural networks to model the heat 

transfer coefficient and heat flux of the pool boiling of a titanium dioxide–water nanofluid. 

The ability of the artificial neural networks to predict the pool boiling heat transfer coefficient 

was tested by statistical criteria and experimental data. It was found that the radial basis 

function (RBF) neural network model results were in excellent agreement with the 

experimental data. 

          To obtain the best coolant for heat removal by different heat transfer equipment, Sayahi 

et al. [32] conducted an experimental study on the pool boiling heat transfer of three different 

nanofluids in the presence or absence of a surfactant. The pool boiling heat transfer of 

aluminum oxide–water, silicon dioxide–water, and zinc oxide–water nanofluids in a 

horizontal rod heater was measured experimentally. The experimental data were used to form 
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an RBF neural network model. The outcomes of the proposed RBF neural network model 

were in significant agreement with the experimental data. 

          The literature review revealed that no investigation has been conducted on the 

combination of the fuzzy C-means adaptive neuro-fuzzy inference system (FCM-ANFIS) 

modeling technique and modified non-dominated sorting genetic algorithm (NSGA-II) multi-

objective optimization method for the modeling and optimization of the heat transfer and 

pressure drop of nanofluids. Therefore, the main objective of this study was to evaluate the 

applicability of this novel combination for predicting and optimizing the heat transfer and 

pressure drop of nanofluids. In this study, the Nusselt number and pressure drop of titanium 

dioxide–water nanofluids were modeled by using the FCM-ANFIS technique and four 

experimental datasets [17, 19–21]. The result was benchmarked with correlations available in 

the literature as well as statistical criteria. Moreover, the NSGA-II multi-objective 

optimization approach was used to obtain the Pareto front of the condensation heat transfer 

coefficient and pressure drop.  

 

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM  

          ANFIS is a system that combines an artificial neural network and fuzzy logic methods 

to achieve a more robust modeling technique. In the ANFIS approach, the fuzzy logic 

transforms the qualitative knowledge to accurate quantitative analysis by a rule-based fuzzy 

inference system (FIS), whereas the neural network adjusts the membership functions and 

reduces the rate of errors of the rule determination process.  

          An ANFIS structure consists of introductory and concluding parts that are linked 

together by a set of rules. The multilayer structure of an ANFIS network has five distinct 

layers. The first layer of the ANFIS generates the fuzzy formation, and the second layer 

performs fuzzy “AND” and fuzzy rules. The third layer performs the normalization of the 
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membership functions. The fourth one is the conclusive part of the fuzzy rules, and finally, 

the last layer calculates the network outputs. A detailed information on the ANFIS structure 

layers is provided by Mehrabi et al. [33] and Rezazadeh et al. [34].  

          Three structure identification methods can be used for ANFIS: grid partitioning, 

subtractive clustering and fuzzy C-means (FCM) clustering [10]. In this study, the FCM 

clustering structure identification method was used to identify the premise membership 

functions for the ANFIS and final approach named FCM-ANFIS. The selection of the input 

variables, input space partitioning, choosing the membership functions, generation of the 

fuzzy rules, and selection of the initial parameters for the membership functions was 

conducted in the structure identification process [35]. 

Fuzzy C-Means Clustering algorithm 

          The FCM clustering algorithm was initially introduced by Dunn [36] and subsequently 

by Bezdek [37] and Bezdek et al. [38] as a data clustering technique in which each data point 

belongs to two or more clusters. The purpose of this unsupervised, iterative algorithm was to 

determine cluster centers based on the minimization of the sum of the weighted squares 

distance between each data point and the cluster centers. 

          In the FCM algorithm, first, the number of clusters 𝑣 (1 ≤ 𝑣 ≤ 𝑛) and fuzziness index 

(weighting exponent) m (1 ≤ 𝑚 < ∞) are selected randomly. Subsequent to the random 

selection of 𝑣  and m, the algorithm starts by initializing the cluster centers, 𝑐𝑗  , 𝑗 = 1, 2, … , 𝑣, 

to a random value from n data points {𝑥1, 𝑥2 , … , 𝑥𝑛}. In the following step, the membership 

matrix 𝑢𝑖𝑗 = [𝑈], is computed by using Eq. (1) 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2

𝑚−1𝑣
𝑘=1

 
 

(1) 
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‖𝑥𝑖 − 𝑐𝑗‖, ‖𝑥𝑖 − 𝑐𝑘‖ are the Euclidean distances between the j-th and k-th cluster centers and 

i-th data point. After the computation of the membership matrix, objective function J is 

computed according to Eq. (2).  

𝐽(𝑈, 𝑐1, 𝑐2, … , 𝑐𝑣) = 𝐽𝑚 = ∑∑𝑢𝑖𝑗
𝑚

𝑣

𝑗=1

𝑛

𝑖=1

. ‖𝑥𝑖 − 𝑐𝑗‖
2
      1 ≤ 𝑚 < ∞ 

(2) 

In the last step, new fuzzy cluster centers 𝑐𝑗  , 𝑗 = 1, 2, … , 𝑣 are computed by using the 

following equation: 

𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚. 𝑥𝑖
𝑛
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑖=1

 
(3) 

 

The basic algorithmic strategy of FCM is summarized below: 

Fuzzy C-Means Clustering Algorithm 

Step 1: randomly select the number of clusters and fuzziness index  

Step 2: set termination criteria 𝜀 (𝜀 > 0) 

Step 3: initialize the cluster centers to a random value 

Step 4: initialize the fuzzy membership function by using Eq.(1) 

Step 5: compute the objective function (J) by using Eq.(2) 

Step 6: compute the new cluster centers by using Eq.(3) 

Step 7: repeat steps 4 to 6 until the objective function (J) is lower than the termination criteria 
 

CONVECTIVE HEAT TRANSFER OF TITANIUM DIOXIDE–WATER NANOFLUIDS 

          The generation of unsteady vortexes during a turbulent flow regime coupled with a 

large contact area between the particles and fluid due to the addition of nanoparticles to the 

base fluid will significantly enhance the heat transfer. In view of this significant 

enhancement, investigations on the turbulent heat transfer of nanofluids are crucial for 

industrial applications. In this section, previous research on the convection heat transfer of 

titanium dioxide–water nanofluids in a turbulent flow regime is reviewed, and an FCM-

ANFIS model for the Nusselt number is suggested. 
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          In 1998, Pak and Cho [39] introduced the following correlation for the convection heat 

transfer of turbulent γ-aluminum oxide and titanium dioxide particles dispersed in water by 

curve-fitting of their experimental work: 

𝑁𝑢𝑛𝑓 = 0.021 𝑅𝑒0.8𝑃𝑟0.5 (4) 

The Pak and Cho correlation was introduced under the experimental ranges of the volume 

concentration (0–3%), Reynolds number (104–105), and Prandtl number (6.54–12.33). 

          Duangthongsuk and Wongwises [17] introduced the following correlation for 

predicting the heat transfer coefficient of titanium dioxide–water nanofluids with volume 

concentrations ≤ 1.0% and Reynolds number ranging between 3000 and 18000: 

𝑁𝑢𝑛𝑓 = 0.074 𝑅𝑒0.707𝑃𝑟0.385𝜙0.074 (5) 

          Sajadi and Kazemi [19] proposed a correlation for the Nusselt number of titanium 

dioxide–water nanofluids in a completely developed turbulent regime as a function of the 

Reynolds and Prandtl numbers. 

𝑁𝑢𝑛𝑓 = 0.067 𝑅𝑒0.71𝑃𝑟0.35 + 0.0005 𝑅𝑒 (6) 

          The authors suggested that this correlation could be used for predicting the Nusselt 

number of titanium dioxide–water nanofluids with a volume concentration of 0.25% or lower 

and Reynolds numbers between 5000 and 30000.  

          Abbasian Arani and Amani [20] derived a correlation for the Nusselt number of 

titanium dioxide–water nanofluids with a nanoparticle volume fraction between 0.2% and 

2%, and Reynolds number between 8000 and 51000 based on their experimental study on the 

effect of the nanoparticle volume fraction on the convection heat transfer characteristics of 

Titanium dioxide-water nanofluids as: 

𝑁𝑢𝑛𝑓 = 0.0041 𝑅𝑒0.83𝑃𝑟1.35(1 + 𝜙0.43) (7) 

          A year later, the above authors [21] introduced a new correlation by considering the 

effect of the average particle diameter of the nanoparticles on the convective heat transfer of 
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titanium dioxide–water nanofluids. Subsequent to the careful analysis of the experimental 

data obtained for four different average diameters of titanium dioxide nanoparticles, a 

correlation was proposed as a function of the Reynolds number, Prandtl number, 

nanoparticles volume concentration, and average particle size diameter. 

𝑁𝑢𝑛𝑓 = 0.006 𝑅𝑒0.86𝑃𝑟 𝜙0.35(
𝐷

𝑑𝑏𝑓
)0.1    , {

𝑑𝑏𝑓 = 0.386 (𝑛𝑚)

𝜙 = 1%, 1.5% 𝑎𝑛𝑑 2%
8000 < 𝑅𝑒 < 55000

 

(8) 

where 

𝐷 = −90 + 18.667 𝑑𝑝 − 0.75 𝑑𝑝
2 + 0.00833 𝑑𝑝

3 

𝑑𝑝 = 10, 20, 30 , 𝑎𝑛𝑑 50 (𝑛𝑚) 

(9) 

 

          Saha and Paul [40] after performing a numerical investigation on the heat transfer 

behavior of water-based alumina and titanium dioxide nanofluids in a turbulent flow regime, 

proposed a correlation for predicting the Nusselt number of Titanium dioxide-water 

nanofluids as a function of the Reynolds number (1000 ≤ Re ≤ 10000), Prandtl number (8.42 

≤ Pr ≤ 20.29) and nanoparticle size diameter (10 nm ≤ dp ≤ 40 nm). The correlation was as 

follows: 

𝑁𝑢𝑛𝑓 = 0.01259 𝑅𝑒0.85926𝑃𝑟0.43020(
𝑑𝑏𝑓

𝑑𝑝
)−0.00068 

(10) 

The above-mentioned correlation was used for the volume concentrations ranging from 4 to 

6%.  

          Hejazian and Moraveji [41] numerically investigated the effect of the flow rate and 

nanofluid concentration on the Nusselt number of titanium dioxide–water nanofluids. By 

using the mixture model results, they developed the following correlation between the 

Reynolds number (4800 ≤ Re ≤ 30500), Prandtl number (5.5 ≤ Pr ≤ 5.59), and volume 

concentration (0 ≤ ϕ ≤ 0.25%): 
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𝑁𝑢𝑛𝑓 = 0.00218 𝑅𝑒1.0037𝑃𝑟0.5 [1 + (
𝜙

100
)]

154.6471

 
(11) 

          Table 1 summarizes the proposed correlations for the prediction of the Nusselt number 

of the titanium dioxide–water nanofluids. 

          In this section, some of the significant studies on the convection heat transfer of 

titanium dioxide–water nanofluids in turbulent flow regimes reported in the literature are 

reviewed. After a careful review of these papers, it was realized that only a few of researchers 

considered the average diameters of the nanofluids as effective parameters for the Nusselt 

number. In comparison, almost all of them considered the effect of the Reynolds number and 

volume concentration. By using the experimental results of Duangthongsuk and Wongwises 

[17], Sajadi and Kazemi [19] and Abbasian Arani and Amani [20 and 21] and the FCM-

ANFIS technique, a model was developed to predict the Nusselt number of titanium dioxide–

water nanofluids in a turbulent flow regime as a function of the Reynolds number, Prandtl 

number, volume concentration and average particle size. The results of the proposed model 

were compared with the experimental data [17, 19–21] and above-mentioned correlations.  

 

PRESSURE DROP OF TITANIUM DIOXIDE–WATER NANOFLUIDS  

          In the literature, it is widely accepted that adding nanoparticles to a base fluid will 

increase its viscosity and affect the pressure drop. Therefore, the study of the pressure drop of 

these nanofluids is essential for the acceleration of their usage in industrial applications. 

An FCM-ANFIS model based on the experimental results of Duangthongsuk and Wongwises 

[17], Sajadi and Kazemi [19] and Abbasian Arani and Amani [20 and 21] was developed to 

predict the pressure drop of titanium dioxide–water nanofluids in a turbulent flow regime as a 

function of the Reynolds number, nanoparticle volume concentration and average particle 

size. 
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MULTI-OBJECTIVE OPTIMIZATION 

          The majority of engineering applications deal with different objectives that generally 

compete with each other. The best example of this is in the heat transfer engineering 

problems, where normally the attempts to increase the heat transfer result in a larger pressure 

drop, which is not desirable. Multi-objective optimization techniques are the answer to those 

engineering problems that involve more than one objective function or conflicting objective 

functions. 

          Multi-objective optimization problems involve more than one and often competing 

objective functions to be optimized simultaneously. For the majority of the applications in 

heat and fluid sciences, the search is for higher heat transfer while simultaneously avoiding 

an increase in the pressure drop or apparatus size. For these types of problems, where 

maximizing one favorable objective function will result in an unfavorable increase in the 

other objective functions, the only approach is to use multi-objective optimization techniques. 

In a multi-objective optimization, a single optimized solution does not exist; instead, the 

result is in the form of a set of optimized solutions called the Pareto front or Pareto optimal 

points, where the values of none of the objective functions can be improved without 

degrading one or more of the other objective values.  

          Various multi-objective algorithms have been applied to engineering in the last two 

decades. Among them, the NSGA-II algorithm, which was first introduced by Deb et al. [42], 

is one of the most effective approaches and has been chosen for this research. 

          The NSGA-II algorithm has different operators that should work together to generate a 

robust multi-objective optimization technique. The information in the operators including the  

fast non-dominated sorting operator, crowding-distance-assignment operator, and simulated 

binary crossover (SBX) operator, their connections to each other, and flow diagram of the 

algorithm are given in [42–43]. In this study, the condensation heat transfer coefficient and 
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pressure drop are two competing objectives. The objective of the optimization process in this 

study is to obtain the best design variables to simultaneously maximize the Nusselt number 

and minimize the pressure drop with respect to the Reynolds number, Prandtl number, 

volume concentration and average particle size, which are the design variables. 

 

RESULTS AND DISCUSSION  

          A total number of 162 input–output experimental data points obtained from the 

literature [17, 19–21] were used to predict the Nusselt number for titanium dioxide–water 

nanofluids. The experimental data were divided into two subsets as 129 data points for 

training and 33 data points for testing purposes. To model the pressure drop, 153 

experimental data points from [17, 19–21] were divided into two subsets as 125 data points 

for training and 28 data points for testing purposes. 

          The optimum ANFIS structure and membership functions were obtained by the FCM 

clustering technique, in which the input variables were fuzzied with Gaussian membership 

functions labeled MF1–MF15 for the Nusselt number of the titanium dioxide–water 

nanofluids and MF1–MF10 for the pressure drop of the titanium dioxide–water nanofluids. 

The parameters of these membership functions are listed in Tables 3 and 4 for the Nusselt 

number and pressure drop of the titanium dioxide–water nanofluids, respectively.  

          The fuzzy rule base and outputs of our proposed FCM-ANFIS models are listed in 

Tables 5 and 6, respectively. The resultant optimum parameters obtained after the ANFIS 

training process are provided in the Appendix. 

          The mean absolute error (MAE), mean relative error (MRE) and root mean square 

errors (RMSE) criteria were used as listed in Table 1, to exhibit the accuracy of our proposed 

FCM-ANFIS models to predict the Nusselt number and pressure drop of the titanium 

dioxide–water nanofluids. 
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          Figure 1 shows the experimental results of Sajadi and Kazemi [19] for a titanium 

dioxide–water nanofluid with an average nanoparticle size of 30 nm and volume 

concentration of 0.1% compared with the proposed FCM-ANFIS model for the Nusselt 

number of the titanium dioxide–water nanofluid. Four correlations defined by Pak and Cho 

[39], Duangthongsuk and Wongwises [17], Abbasian Arani and Amani [20], and Hejazian 

and Moraveji [41] are also compared with the experimental data and proposed FCM-ANFIS 

model. The FCM-ANFIS result for the Nusselt number exhibit a very good agreement with 

the experimental data (MAE = 1.1, MRE = 1.4%, and RMSE = 1.2). The model matches with 

the experimental data very well and predicts the Nusselt number better than all the mentioned 

correlations. 

          The experimental results of Duangthongsuk and Wongwises [17] for the Nusselt 

number of a titanium dioxide–water nanofluid with an average nanoparticle size of 21 nm and 

volume concentration of 0.6% are shown in Figure 2. The FCM-ANFIS model output and 

three applicable correlations for the particle size of 21 nm and volume concentration of 0.6% 

for the Reynolds numbers ranging from 4500 to 14500 are also presented. The results reveal 

that the FCM-ANFIS model is in good agreement with the experimental data (MAE = 3.6, 

MRE = 4.1%, and RMSE = 4.1).  The correlations defined by Sajadi and Kazemi [19] and 

Abbasian Arani and Amani [20] predict the Nusselt number to be very good for Reynolds 

numbers larger than 8000. The Pak and Cho [39] correlation cover the Reynolds numbers less 

than 10000 but cannot predict the experimental results well. 

          In Figures 3 and 4, the experimental results of Abbasian Arani and Amani [21] are 

compared with those of the FCM-ANFIS model and correlations for the Nusselt number of 

titanium dioxide–water nanofluids with particle sizes of 50 nm and 10 nm and volume 

concentrations of 1.5% and 2%, respectively. In Figure 3, the FCM-ANFIS exhibits a very 

good prediction ability and the model is well matched with the experimental data (MAE = 
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6.8, MRE = 3.9%, and RMSE = 8.2) and (MAE = 9, MRE = 4.7%, and RMSE = 9.5), Figure 4 

also shows that the FCM-ANFIS model is in good agreement with the experimental data 

(MAE = 9, MRE = 4.7%, and RMSE = 9.5) and predicts the Nusselt number the best, whereas 

the Abbasian Arani and Amani [20] correlation significantly under-predicts the experimental 

data.  

          Figures 1–4 illustrate that the FCM-ANFIS predicts the Nusselt number of the titanium 

dioxide–water nanofluids significantly better than the correlations in the literature, and in all 

the cases, the proposed model outcome and experimental data match. 

Figure 5a exhibits the comparison between the experimental results of Sajadi and Kazemi 

[19] and FCM-ANFIS model for the pressure drop of a titanium dioxide–water nanofluid 

with a particle size of 30 nm and volume concentration of 0.15%. The FCM-ANFIS model 

predicts the experimental results very well (MAE = 0.32, MRE = 4.7%, and RMSE = 0.34). 

          In Figure 5b, the experimental results of Duangthongsuk and Wongwises [17] are 

compared with those of the FCM-ANFIS model for the pressure drop of a titanium dioxide–

water nanofluid with a particle size of 21 nm and volume concentration of 0.2%. The FCM-

ANFIS model does not predict the pressure drop the best among the considered 

measurements (MAE = 0.59, MRE = 13.7%, and RMSE = 0.53). The proposed model predicts 

the pressure drop of the nanofluid better for Reynolds numbers less than 8000, whereas for 

Reynolds number larger than 11000, it considerably under-predicts the experimental results. 

          Figure 5c presents shows the comparison of the experimental results of Abbasian Arani 

and Amani [21] and FCM-ANFIS model for a particle size of 50 nm and volume 

concentration of 1%. The FCM-ANFIS model is not in a good agreement with the 

experimental data for Reynolds numbers less than 35000 but it predicts very well for large 

Reynolds numbers. The overall prediction ability of the model is acceptable (MAE = 1.2, 

MRE = 11.8%, and RMSE = 1.5).   
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          In Figure 5d, the experimental result of Abbasian Arani and Amani [21] is compared 

with that of the FCM-ANFIS model for a particle size of 10 nm and volume concentration of 

1.5%. The FCM-ANFIS model matches the experimental data well (MAE = 0.92, MRE = 

12.6%, and RMSE = 1.14). 

Optimum operating conditions 

          Figure 6 presents the Pareto front of the Nusselt number and pressure drop of the 

titanium oxide–water nanofluids. All the presented points (Pareto sets) in this figure are the 

optimum points corresponding to different operating conditions. The results are divided into 

two different regions, I and II. The corresponding design variables (input variables) as well as 

objective functions for the four points (A, B, C, and D) corresponding to the start and end 

points of regions I and II are listed in Table 7. 

          The values of the Nusselt numbers are small region I, varying from 207.856 for point A 

to 265.599 for point B, with a pressure drop between 1.187 and 4.629 kPa. Therefore, the 

ultimate optimum operating conditions are not located in region I. In Section I, which starts at 

point A and ends at B, the Nusselt number increases by 28% (from 207.856 to 265.599) when 

the  pressure drop increases by 290% (from 1.187 kPa to 4.629 kPa). In the search for a small 

pressure drop, points closer to point A are the best options but owing to the small Nusselt 

number points in this region cannot be optimum. 

          Region II starts (Point C) with practically the same values of the Nusselt number and 

pressure drop of the end point of section I (Point B). However, at the end of this region, the 

value of the Nusselt number shows an 89% increase from 274.492 to 519.964, whereas for 

the same region, the pressure drop increases by 74% from 5.197 kPa to 9.027 kPa. 

The results show that selecting the final design points from region II is a better option than 

region I. However, it is important to note that all the points in this Pareto front are optimal 
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points. The final optimum point depends on the designer requirement and may vary based on 

the weight of each objective function.  

 

CONCLUSION 

          In the present study, the FCM-ANFIS technique was used for the modeling and 

optimization of the convective heat transfer coefficient and pressure drop of titanium 

dioxide–water nanofluids in a turbulent flow regime. An input–output experimental dataset 

was used to model the Nusselt number and pressure drop as a function of the effective 

parameters: Reynolds number, Prandtl number, nanoparticle volume concentration, and 

average nanoparticle diameter. From this research, the following conclusions can be drawn: 

I. The result predicted by the proposed FCM-ANFIS models showed an excellent 

agreement with the experimental data. The maximum mean relative error (MRE) of 

the predicted results for the Nusselt number and pressure drop was 4.7% and 13.7%, 

respectively. 

II. Although the general trends of the empirical correlations were similar to those of the 

proposed model for the Nusselt number, they often exhibited significant deviations 

relative to the experimental data. This can be attributed to the fact that the proposed 

empirical correlations were based on specific experimental results and so, could not 

be generalized to all the cases.  

III. The multi-objective optimization results, presented two distinct regions. Even though 

the selection of the optimum point depended on the designer requirements, selecting 

choosing the final design points from region II was a better option than from region I. 
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APPENDIX 

[𝐚𝒊,𝒋] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

6.444
−184.2
34.06

−212.8
708.7
123.8
428.2
92.79
74.3
32.85

−413.8
97.96
22.1

−72.37
27.61

1.06
20.69

−2.777
6.575
2.87
3.223

−0.3784
−1.036
−0.9992
0.2868
−66.05
−6.333
12.87
1.143

−2.269

0.006189
−0.01053
0.01674
0.007908
−0.04242
0.003876
0.01136
0.007783
0.007398
−0.01205
−0.00277
0.002565
−0.01146
−0.00245
0.004854

6.921
−206.6
−5.601
−84.95
154.7
151.9
194.6
83.96
119.7
24.65
557.7
70.8
513.5

−167.9
35.57

−40.08
187.7
16.02
440

34.87
−553.9
−1155
−405

−478.8
−216.9
−282.3
−14.67
−1645
931.1

−1.974]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

[𝐛𝒊,𝒋] =

[
 
 
 
 
 
 
 
 
 

5.059
26.22
3.277
4.485
5.059
9.898

−5.198
−9.089
4.424
2.656

−0.06457
−0.0077
−0.1322
−0.01561

12.44
−0.3202
−15.69
0.1311

−0.1554
−0.1059

0.000876
0.000936
0.001228
0.001166
−0.00395
0.002164
0.005577
0.000427
0.001702
0.000623

−22.23
−45.24
−30.15
2.832

−209.5
−52
388.7
4.353

−39.02
−6.428]
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NOMENCLATURE 

ai     polynomial coefficient (weight) 

ANFIS     fuzzy C-means adaptive neuro-fuzzy inference system 

dp     nanoparticle average diameter, nm 

D     modified nanoparticle average diameter, nm 

Nu     Nusselt number 

∆P     pressure drop, kPa 

Pr     Prandtl number 

Re     Reynolds number 

c     cluster centres 

J     objective function 

U     fuzzy membership matrix 

uij     fuzzy membership function 

v     number of clusters 

x     data point 

m     fuzziness index 

M     Gaussian fuzzy membership function center 

MAE     mean absolute error 

MRE     mean relative error 

n     Gaussian fuzzy membership function width 

NSGA     Non-dominated sorting genetic algorithm 

RMSE     root mean squared error 

Xp     predicted value 

Xa     actual (experimental) data 

Greek symbols 
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ϕ     volume concentration, % 

Subscripts 

nf     nanofluid 

bf     base fluid 
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Table 1 Convective heat transfer correlations for Titanium dioxide-water nanofluids 

Reference Equation Conditions 

Pak and Cho [39] 𝑁𝑢𝑛𝑓 = 0.021 𝑅𝑒0.8𝑃𝑟0.5 1000 <  Re < 10000 

6.54 < Pr < 12.33 

0 < ϕ ≤ 3% 

Duangthongsuk 

and Wongwises 

[17] 

𝑁𝑢𝑛𝑓 = 0.074 𝑅𝑒0.707𝑃𝑟0.385𝜙0.074 3000 <  Re < 18000 

1.5 < Pr < 7.5 

ϕ ≤ 1% 

Sajadi and Kazemi 

[19] 

𝑁𝑢𝑛𝑓 = 0.067 𝑅𝑒0.71𝑃𝑟0.35 + 0.0005 𝑅𝑒 5000 <  Re < 30000 

1.7 < Pr < 2.5 

0 < ϕ ≤ 0.25% 

Abbasian Arani 

and Amani [20] 

𝑁𝑢𝑛𝑓 = 0.0041 𝑅𝑒0.83𝑃𝑟1.35(1 + 𝜙0.43) 8000 <  Re < 51000 

3.2 < Pr < 4.5 

0.2% ≤ ϕ ≤ 2% 

 

Abbasian Arani 

and Amani [21] 

 

 

 

𝑁𝑢𝑛𝑓 = 0.006 𝑅𝑒0.86𝑃𝑟 𝜙0.35(
𝐷

𝑑𝑏𝑓
)0.1 

Where 

D = -90+18.667 dp -0.75 dp
2+ 0.00833 dp

3 

8000 <  Re < 55000 

3.2 < Pr < 4.5 

ϕ = 1%, 1.5% and 2% 

dbf = 0.386 nm 

dp=10, 20, 30 and 50 

nm 

Saha and Paul [40] 
𝑁𝑢𝑛𝑓 = 0.01259 𝑅𝑒0.85926𝑃𝑟0.43020(

𝑑𝑏𝑓

𝑑𝑝
)−0.00068 

1000 ≤ Re ≤ 10000 

4% ≤ ϕ ≤ 6% 

10 nm ≤ dp ≤ 40 nm 

8.42 ≤ Pr ≤ 20.29 

Hejazian and 

Moraveji [41] 𝑁𝑢𝑛𝑓 = 0.00218 𝑅𝑒1.0037𝑃𝑟0.5 [1 + (
𝜙

100
)]

154.6471

 
4800 ≤ Re ≤ 30500 

0 ≤ ϕ ≤ 0.25% 

5.5 ≤ Pr ≤ 5.59 
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Table 2 Statistical criteria used for the analysis of the results 

Statistical criterion Equation 

Mean absolute error 

1

1 n

p a

i

MAE X X
n =

= −  

Mean relative error 

1

100
(%)

n
p a

i a

X X
MRE

n X=

 −
 =
 
 

  

Root mean square error 

( )
2

1

1

=

= −
n

p a

i

RMSE X X
n
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Table 3 Parameters of the membership functions for modeling the Nusselt number of the 

titanium dioxide–water nanofluids 

 

 

Membership 

function 

 

Input 1 

ϕ (%) 

 

Input 2 

dp(nm) 

 

Input 3 

Re 

 

Input 4 

Pr 

 

MF1 

MF2 

MF3 

MF4 

MF5 

MF6 

MF7 

MF8 

MF9 

MF10 

MF11 

MF12 

MF13 

MF14 

MF15 

n M n M n M n M 

1.123 

0.4352 

0.5198 

0.2451 

0.1984 

0.345 

0.3369 

0.2285 

0.4052 

0.5183 

0.0936 

0.2993 

0.2519 

0.38 

0.341 

0.79 

0.9124 

1.473 

1.225 

1.408 

1.306 

0.9932 

1.577 

1.383 

1.363 

1.465 

1.627 

1.586 

1.528 

0.2856 

10.9 

5.675 

9.194 

5.833 

2.718 

4.921 

5.99 

5.553 

7.403 

7.66 

3.624 

4.018 

4.19 

5.433 

3.052 

23.67 

32 

24.16 

21.83 

23.25 

23.55 

28.2 

34.41 

25.74 

26.82 

15.48 

25.18 

30.24 

25.78 

28.99 

4395 

3174 

3841 

3368 

3283 

5720 

3841 

6493 

4509 

3209 

3211 

5193 

3558 

3142 

3400 

5274 

20170 

8358 

12140 

23480 

43740 

30940 

47470 

36160 

14850 

21820 

40810 

28020 

18110 

25730 

2.939 

0.3583 

0.7735 

0.6087 

0.2106 

0.243 

0.4181 

0.2283 

0.2132 

1.021 

0.2024 

0.1552 

0.2193 

0.1825 

0.4339 

3.927 

2.808 

4.118 

3.898 

3.382 

3.551 

2.848 

3.614 

3.592 

3.501 

3.488 

3.481 

3.461 

3.22 

2.224 

n represents the Gaussian MF width, M determines the Gaussian MF center 
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Table 4 Parameters of the membership functions for modeling the pressure drop of the titanium 

dioxide–water nanofluids 

 

 

Membership 

function 

 

Input 1 

ϕ (%) 

 

Input 2 

dp(nm) 

 

Input 3 

Re 

 

MF1 

MF2 

MF3 

MF4 

MF5 

MF6 

MF7 

MF8 

MF9 

MF10 

n M n M n M 

0.4 

0.2612 

0.1906 

2.016 

1.172 

0.5482 

0.7903 

0.8266 

1.172 

0.4059 

1.383 

1.002 

1.646 

0.8562 

1.517 

1.289 

1.261 

0.6216 

1.877 

1.756 

6.007 

5.477 

6.592 

11.88 

3.703 

4.78 

4.263 

8.065 

10.08 

10.1 

28.43 

26.97 

25.45 

22.97 

23.24 

27.04 

29.63 

27.14 

24.1 

29.93 

6350 

4126 

4962 

4773 

3769 

3571 

3571 

3657 

4157 

3774 

44850 

31300 

37440 

5082 

11910 

20100 

15140 

25250 

8377 

27640 

n represents the Gaussian MF width, M determines the Gaussian MF center 
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Table 5 Fuzzy rule base and ANFIS output for modeling the Nusselt number of the titanium 

dioxide–water nanofluids 

 

Number of 

Rules 

Rule description 

1 If (ϕ is ϕ MF1) and (dp is dp MF1) and (Re is Re MF1) and (Pr is Pr MF1) then                       

Nunf = a1,1. ϕ +a1,2. dp +a1,3. Re +a1,4. Pr +a1,5 

2 If (ϕ is ϕ MF2) and (dp is dp MF2) and (Re is Re MF2) and (Pr is Pr MF2) then                       

Nunf = a2,1. ϕ +a2,2. dp +a2,3. Re +a2,4. Pr +a2,5 

3 If (ϕ is ϕ MF3) and (dp is dp MF3) and (Re is Re MF3) and (Pr is Pr MF3) then                       

Nunf = a3,1. ϕ +a3,2. dp +a3,3. Re +a3,4. Pr +a3,5 

4 If (ϕ is ϕ MF4) and (dp is dp MF4) and (Re is Re MF4) and (Pr is Pr MF4) then                       

Nunf = a4,1. ϕ +a4,2. dp +a4,3. Re +a4,4. Pr +a4,5 

5 If (ϕ is ϕ MF5) and (dp is dp MF5) and (Re is Re MF5) and (Pr is Pr MF5) then                       

Nunf = a5,1. ϕ +a5,2. dp +a5,3. Re +a5,4. Pr +a5,5 

6 If (ϕ is ϕ MF6) and (dp is dp MF6) and (Re is Re MF6) and (Pr is Pr MF6) then                       

Nunf = a6,1. ϕ +a6,2. dp +a6,3. Re +a6,4. Pr +a6,5 

7 If (ϕ is ϕ MF7) and (dp is dp MF7) and (Re is Re MF7) and (Pr is Pr MF7) then                       

Nunf = a7,1. ϕ +a7,2. dp +a7,3. Re +a7,4. Pr +a7,5 

8 If (ϕ is ϕ MF8) and (dp is dp MF8) and (Re is Re MF8) and (Pr is Pr MF8) then                       

Nunf = a8,1. ϕ +a8,2. dp +a8,3. Re +a8,4. Pr +a8,5 

9 If (ϕ is ϕ MF9) and (dp is dp MF9) and (Re is Re MF9) and (Pr is Pr MF9) then                       

Nunf = a9,1. ϕ +a9,2. dp +a9,3. Re +a9,4. Pr +a9,5 

10 If (ϕ is ϕ MF10) and (dp is dp MF10) and (Re is Re MF10) and (Pr is Pr MF10) then                       

Nunf = a10,1. ϕ +a10,2. dp +a10,3. Re +a10,4. Pr +a10,5 

11 If (ϕ is ϕ MF11) and (dp is dp MF11) and (Re is Re MF11) and (Pr is Pr MF11) then                       

Nunf = a11,1. ϕ +a11,2. dp +a11,3. Re +a11,4. Pr +a11,5 

12 If (ϕ is ϕ MF12) and (dp is dp MF12) and (Re is Re MF12) and (Pr is Pr MF12) then                       

Nunf = a12,1. ϕ +a12,2. dp +a12,3. Re +a12,4. Pr +a12,5 

13 If (ϕ is ϕ MF13) and (dp is dp MF13) and (Re is Re MF13) and (Pr is Pr MF13) then                       

Nunf = a13,1. ϕ +a13,2. dp +a13,3. Re +a13,4. Pr +a13,5 

14 If (ϕ is ϕ MF14) and (dp is dp MF14) and (Re is Re MF14) and (Pr is Pr MF14) then                       

Nunf = a.14,1. ϕ +a14,2. dp +a14,3. Re +a14,4. Pr +a14,5 

15 If (ϕ is ϕ MF15) and (dp is dp MF15) and (Re is Re MF15) and (Pr is Pr MF15) then                       

Nunf = a15,1. ϕ +a15,2. dp +a15,3. Re +a15,4. Pr +a15,5 
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Table 6 Fuzzy rule base and ANFIS output for modeling the pressure drops of the titanium 

dioxide–water nanofluids 

 

Number 

of Rules 

Rule description 

1 If (ϕ is ϕ MF1) and (dp is dp MF1) and (Re is Re MF1) then                                                                 

ΔPnf = b1,1. ϕ +b1,2. dp +b1,3. Re +b1,4 

2 If (ϕ is ϕ MF2) and (dp is dp MF2) and (Re is Re MF2) then                                                                 

ΔPnf = b2,1. ϕ +b2,2. dp +b2,3. Re +b2,4 

3 If (ϕ is ϕ MF3) and (dp is dp MF3) and (Re is Re MF3) then                                                                 

ΔPnf = b3,1. ϕ +b3,2. dp +b3,3. Re +b3,4 

4 If (ϕ is ϕ MF4) and (dp is dp MF4) and (Re is Re MF4) then                                                                 

ΔPnf = b4,1. ϕ +b4,2. dp +b4,3. Re +b4,4 

5 If (ϕ is ϕ MF5) and (dp is dp MF5) and (Re is Re MF5) then                                                                 

ΔPnf = b5,1. ϕ +b5,2. dp +b5,3. Re +b5,4 

6 If (ϕ is ϕ MF6) and (dp is dp MF6) and (Re is Re MF6) then                                                                 

ΔPnf = b6,1. ϕ +b6,2. dp +b6,3. Re +b6,4 

7 If (ϕ is ϕ MF7) and (dp is dp MF7) and (Re is Re MF7) then                                                                 

ΔPnf = b7,1. ϕ +b7,2. dp +b7,3. Re +b7,4 

8 If (ϕ is ϕ MF8) and (dp is dp MF8) and (Re is Re MF8) then                                                                 

ΔPnf = b8,1. ϕ +b8,2. dp +b8,3. Re +b8,4 

9 If (ϕ is ϕ MF9) and (dp is dp MF9) and (Re is Re MF9) then                                                                 

ΔPnf = b9,1. ϕ +b9,2. dp +b9,3. Re +b9,4 

10 If (ϕ is ϕ MF10) and (dp is dp MF10) and (Re is Re MF10) then                                                                                   

ΔPnf = b10,1. ϕ +b10,2. dp +b10,3. Re +b10,4 
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Table 7 Values of the design variables (input variables) and objective functions at the start and 

end section points 

 

Points ϕ (%) dp (nm) Re Pr Nu ∆𝑃 (kPa) 

A 1.5 34 22143 3.5 207.856 1.187 

B 1.5 35 233333 3.5 265.599 4.629 

C 1.17 20 20159 3.5 274.492 5.197 

D 1.5 24 22937 3.5 519.964 9.027 
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Figure 1 Comparison of the experimental data of Sajadi and Kazemi [19] with the proposed 

FCM-ANFIS model for the Nusselt number and existing correlations (titanium dioxide–water 

nanofluid with an average particle size of 30 nm at a volume concentration of 0.1%) 
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Figure 2 Comparison of the experimental data of Duangthongsuk and Wongwises [17] with the 

proposed FCM-ANFIS model for the Nusselt number and existing correlations 

(titanium dioxide–water nanofluid with an average particle size of 21 nm at a volume 

concentration of 0.6%) 
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Figure 3 Comparison of the experimental data of Abbasian Arani and Amani [21] with the 

proposed FCM-ANFIS model for the Nusselt number and existing correlations 

(titanium dioxide–water nanofluid with an average particle size of 50 nm at a volume 

concentration of 1.5%) 
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Figure 4 Comparison of the experimental data of Abbasian Arani and Amani [21] with the 

proposed FCM-ANFIS model for the Nusselt number and existing correlations 

(titanium dioxide–water nanofluid with an average particle size of 10 nm at a volume 

concentration of 2%) 
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Figure 5 Comparison of the experimental data with the proposed FCM-ANFIS model for the 

pressure drop (a- titanium dioxide–water nanofluid with an average particle size of 30 

nm at a volume concentration of 0.15% [19] b- titanium dioxide–water nanofluid with 

an average particle size of 21 nm at a volume concentration of 0.2% [17] c- titanium 

dioxide–water nanofluid with an average particle size of 50 nm at a volume 

concentration of 1% [21] d- titanium dioxide–water nanofluid, with an average particle 

size of 10 nm at a volume concentration of 1.5% [21]) 
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Figure 6 Multi-objective Pareto front of the Nusselt number and pressure drop 
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