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Abstract 

The tree Acacia mearnsii is native to south-eastern Australia but has become an aggressive invader in 
many countries. In South Africa, it is a significant threat to the conservation of biomes. Detecting and 
mapping its early invasion is critical. The current ground-based methods to map A. mearnsii are accurate 
but are neither economical nor practical. Remote sensing (RS) provides accurate and repeatable spatial 
information on tree species. The potential of RS technology to map A. mearnsii distributions remains 
poorly understood, mainly due to a lack of knowledge on the spectral properties of A. mearnsii relative to 
co-occurring native plants. We investigated the spectral uniqueness of A. mearnsii compared to co-
occurring native plant species within the South African landscape. We explored full-range (400–2,500 
nm), leaf and canopy hyperspectral reflectance of the species. The spectral reflectance was collected bi-
weekly from 23 December 2016 and 31 May 2017. We conducted a time series analysis, to assess the 
effect of seasonality on species discrimination. For comparison, two classification models were employed: 
parametric interval extended canonical variate discriminant (iECVA-DA) and non-parametric random 
forest discriminant classifiers (RF-DA). The results of this study suggest that phenology plays a crucial 
role in discriminating between A. mearnsii and sampled species. The RF classifier discriminated A. 
mearnsii with slightly higher accuracies (from 92% to 100%) when compared with the iECVA-DA (from 
85% to 93%). The study showed the potential of RS to discriminate between A. mearnsii and co-occurring 
plant species.  

Keywords: Acacia mearnsii, extended canonical variates analysis, Random Forest, invasive tree species 
classification, linear discriminant analysis, leaf and canopy reflectance.  

1. Introduction

Invasive alien plant (IAP) are of concern in ecological studies [1]. Invasion poses significant threats to the 
ecological integrity of terrestrial and aquatic ecosystems [2, 3]. The International Union for Conservation 
of Nature: Invasive Species Specialist Group (IUCN-ISSG) [4] classifies Australian Acacia species among 
the world's 100 worst IAP [1]. A native of south-eastern Australia, Acacia mearnsii (black wattle) has 
become an aggressive invader in many countries [5]. For example, it is a significant invader in the montane 
rainforest in Rwanda [6]. Moreover, [7] reported it to be the main invader in indigenous cork oak forests 
in Algeria. In South Africa, it is the most significant threat to the conservation of biomes as it has 
aggressively invaded grasslands [8, 9], indigenous forests [10], and watercourses [11]. The main 
environmental impacts of A. mearnsii include biodiversity loss; specifically by modifying the structure 
and composition of terrestrial and riparian inhabitants [2, 3] reduction of catchment and river water flows 
[12, 13] the functioning of ecosystems by changing the nitrogen cycle [14] and the intensification of 
wildfires [11]. Detecting and mapping its early invasion is critical for an effective management strategy.  
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Early invasion and rapid response require accurate, consistent and timely information on species 
distribution. Information on IAP species distribution has been successfully used to model risks and impacts 
of invasions at landscape [15, 16] and regional scales [17]. To understand the distribution patterns of A. 
mearnsii, spatial information of its occurrence is required. Currently, A. mearnsii mapping is based on 
ground survey methods and spatial interpolation techniques that approximate its presence at the un-
sampled points [18]. The ground-based approach is accurate but is neither cost-effective nor practical. This 
approach also precludes accurate mapping of the species over a vast region [19]. In recent years, ecologists 
have embraced RS technology to map invasive species occurrences [ 1,7,14, 20].  

RS provides a non-invasive and non-destructive means of obtaining continuous spatial coverage of the 
target species’ distribution [19]. Over the years, RS data have been used to discriminate between invasive 
and native plant species in various ecosystems, for example, river estuaries [21], coastal dune ecosystems 
[24, 25, 26] and tropical rainforests [22, 23]. However, not all invasive species can be mapped using RS 
[30]. RS mapping of invasive species depends on their spectral separability from other native species in a 
heterogeneous species environment.  

Previous studies showed that the spectral separability of species depend on the assumption that each 
species has a unique spectral signature, controlled by their distinctive structural and biochemical features 
[24-27,29,30]. For example, [29] reported separability between native and exotic trees based on their 
spectra reflectance differences in Hawaiian rainforest. Their study linked spectral separability of the 
species to variations in leaf pigment, nutrient and structural constituents. A study by [24-26] showed that 
absorption features for distinguishing native Mediterranean dune species correlate with the biochemical 
properties of the species (e.g. pigments, water, lignin and cellulose). According to [30], highly pubescent 
(hairy) plants reflected incident light energy very differently from the less hairy surrounding vegetation. 
Other research reported spectral distinction between nitrogen-fixing and non-fixing trees [23].  

Acacia mearnsii, like other invasive species, possesses functional traits that may be different from those 
of native species. For example, A. mearnsii has been reported to have powerful competitive advantages 
due to high efficiency in the acquisition and use of nutrients specifically nitrogen [32]. The species has a 
rapid growth rate, sizeable aboveground biomass and associated leaf area when compared to indigenous 
vegetation [33]. Moreover, the species has pronounced hairy leaves which have been found to reflect 
incident light energy much differently from the less hairy surrounding vegetation [30]. Although spectral 
discernment of Australian Acacias from native species has been accomplished [24, 25, 26], the spectral 
separability between A. mearnsii and co-occurring species has not been meticulously investigated. There 
is thus no comprehensive regional spatial data of the occurrence of the species in South Africa, even though 
A. mearnsii has been rated to be the most aggressive alien species [32-34]. Therefore, the question is 
whether A. mearnsii could be discriminated from co-occurring native species based on leaf and canopy 
spectral information like other Australian acacias.  

Hyperspectral data is known to provide detailed spectral information related to species-level chemical-
structural properties [23]. The adjacent bands allow the detection of subtle spectral  

differences between species that are otherwise masked by broadband sensors [23, 29, 36]. Hence, 
hyperspectral data have been used as an operational tool for early detection and modelling of future 
invasion risks [28, 37]. In Hawaii, RS tools have been used to develop invasive species monitoring 
strategies [38]. Spatially explicit A. mearnsii mapping models are hindered by the dearth of information 
concerning its spectral separability, what constitutes its spectral separability relative to adjacent species, 
and the appropriate spectral resolution required to provide accurate distribution maps [24-26]. Several 
studies have shown that comprehensive spectral libraries could give insights into the separability of target 
species [25, 40]. Subsequently, spectral libraries could be used for the prediction of future invasions and 
identifying priority areas for conservation [88, 89, 40]. This highlights the need for understanding the 
spectral characteristics of A. mearnsii when compared to that of co-occurring native species.  

Although hyperspectral data have the prospects for quantifying spectral properties of plant species, its 
application precludes large area mapping due to a small swath width of the collected data [40]. Moreover, 
lower revisit frequencies limit the chance to capture the target species’ spatial and phenological changes 
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[40]. Due to the rapid growth [6, 8, 41, 42] and spread [43] of A. mearnsii, hyperspectral sensors can hinder 
early detection and timely monitoring prospects. However, A. mearnsii tends to form large stands and 
patches [44], which makes it possible to detect the species using high spatial and satellite sensors with 
frequent revisiting time such as Multispectral Instrument (MSI) on-board Sentinel-2 [45, 46] and 
Operational Land Imager (OLI) on-board Landsat-8 satellite [45, 47]. The availability of space-borne 
sensors such as Sentinel-2 and Landsat-8 Operational Land Imager (OLI) could provide an opportunity to 
distinguish A. mearnsii at the landscape level. However, only a few studies have investigated the potential 
to map A. mearnsii using multispectral satellite data [48]. For this reason, we extended the research by 
including the multispectral dimension to the analysis. The present study aimed to explore:  

(i) whether A. mearnsii is spectrally separable from the co-existing native species; 

(ii) the best spectral wavelength regions for discriminating A. mearnsii from its co-occurring native species 
in South Africa using leaf and canopy spectral reflectance;  

(iii) the optimal phenological period to separate A. mearnsii from its co-occurring species; 

(iv) the potential of Landsat-8 OLI and Sentinel-2 spectral band configurations for discriminating A. 
mearnsii from co-occurring plant species  

2. Methods and materials

2.1 Experimental setup and sampling 

The research method chosen to meet the objectives of the study was an outdoor experiment with potted 
plants. The co-occurring species include Dombeya tileacea, Olea africana, Dombeya rotundifolia, Euclea 
crispa, Vachellia karroo and Vachellia xanthophloea. A. mearnsii and the co-occurring species show 
differences in their foliage structures as depicted in Fig. 1. Approximately 1-metre tall species were 
purchased from Nkosi Indigenous Plant Species Nursery based in KwaZulu-Natal, South Africa. The 
potted plants were left to grow outdoors on the campus of the Council for Scientific and Industrial 
Research (CSIR) for three months (1 September 2016 to 22 December 2016) before the start of the spectral 
data collection. The trees were randomly placed to allow the same distribution of energy and other 
resources. Due to the limited rainfall during this period, we watered the plants once a week from 1 
September to 21 December 2016. The experiment took into consideration the soil type of the study area 
to be surveyed during data collection.  
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Fig. 1. Plant species used to explore spectral separability of A. mearnsii from native species 

2.2 Canopy level spectra measurements 

We conducted a total of nine sets of canopy radiance measurements on a biweekly basis from 23 December 
2016 to 31 May 2017. They match the start and the end of the growing seasons in South Africa. The 
canopy measurements were carried out between 10:00 and 14:00 on cloud-free days. During the sampling 
campaign, we collected both leaf and canopy reflectance of the selected species between 350 and 2500 nm 
using an ASD FieldSpec FR 3 Spectroradiometer at 1 nm bandwidth (Analytical Spectral Devices Inc., 

Species Picture Some characteristics 

Acacia mearnsii Evergreen tree, 6–20 m high. Fast-growing leguminous (nitrogen-
fixing) tree. Leaves dark olive-green branchlets with all parts finely 
hairy. Leaflets short (1.5–4 mm). Flowering Aug–Sept. 

Vachellia 
karroo 

A deciduous tree (7–12 m). Leaves (pinnate pairs leaflets. 
Flowering Nov–April. 

Vachellia 
xanthophloea 

A deciduous tree (7–12 m). Leaves (pinnate pairs leaflets. 

Flowering November–April. 

Euclea crispa Variable short shrub to medium tree (8–20 m), Flowering 
December–May.  

Dombeya 
tiliacea 

Scrambling shrub tree (10 m). Spiralled, ovate leaves. Flowering 
March–August. 

Dombeya 
rotundifolia 

Small deciduous tree (5–10 m). Spiralled irregular lobed dark green 
leaves. 
Flowering July–September. 

Olea Africana Tree to 14 m tall in the forest. 

Opposite, decussate, shiny, leathery leaves. 

Flowering October–January. 

Celtis Africana A deciduous tree (30 m), smooth and slightly leathery leaves. 
Flowering August–October. 
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Boulder, USA). We positioned the fibre optic (FOV 25°) at nadir and a height of approximately 30 cm 
above the undisturbed individual tree canopy.  

Consequently, the field of view at the canopy level was circular, with a radius of 13.3 cm, and the field of 
view area was covered entirely by leaves to ensure standardised measurements. Furthermore, we 
eliminated the interference of the background (grass and bare ground) reflectance by placing the pot on a 
black sheet (board) [49]. We used a ladder for the canopy measurements to ensure that the entire canopy 
was covered to account for the canopy spectral variability. In order to get the canopy spectral data of each 
plant, we randomly took six radiance readings and calculated the average to get one canopy reflectance. 
Overall we collected 80 x 6 measurements per survey. To reduce the effects of changing atmospheric and 
solar conditions, the reflectance of a Spectralon white reference panel was recorded every 10-15 
measurements. The reflectance of the individual tree was converted using a reference measurement for 
each sample by dividing the reflected target radiance by the irradiance of the white Spectralon® panel.  

2.3 Leaf-level spectra measurement 

After every canopy measurement, ten leaves per tree were randomly harvested and taken to a dark 
laboratory room with the walls and the ceiling coated with the black material. The dark room was used to 
ensure stable atmospheric and uniform illumination conditions [50-52]. We placed the leaves on a non-
reflective black background surface to avoid the impact of external illumination. However, the leaflets of 
the pinnate leaves of A. mearnsii, V. Karroo and V. Xanthophloea (refer to Fig. 1) were smaller than the 
sensor FOV, and their reflectance measurements would therefore not be truly representative of the leaf 
morphology and biochemistry because the leaf area per unit surface would also impact the measured 
reflectance.  

Consequently, we counteracted this effect by stacking the leaflets to simulate a continuous layer of leaves 
[53]. The fibre optic with a FOV of 25° was attached to the leaf clip and placed in a nadir position from 
approximately 4 cm above the leaves. However, in case of bigger leaves, no stacking of the leaves was 
done during spectra data collection. To capture the natural variations of leaf properties, five measurements 
were collected per leaf by repositioning the leaf clip at five different positions for each scan. The 
reflectance of the individual plant was obtained by averaging the collected spectra reflectance per plant. 
The resultant spectral database included that of A. mearnsii and seven grown native tree species.  
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Fig. 2. Proposed method for distinguishing between A. mearnsii and sampled native species using leaf and canopy spectral 
reflectance. 

2.4 Spectral reflectance pre-processing 

The pre-processing of spectral reflectance was conducted using the Field Spectroscopy Facility (FSF) 
Post-Processing Toolbox (MATLAB toolbox) [54].  

(i) the toolbox allowed for the exclusion of outliers caused by measurement errors and atmospheric 
interference;  

(ii) the 350–399 nm bands were not included in the analysis, thus limiting the spectral range to the 
traditional visible (VIS) to shortwave infrared (SWIR) (400 nm to 2500 nm);  

(iii) in the case of canopy spectra reflectance, we removed SWIR ranges with high noise that were 
identified through literature and visual inspection, that is, 1350–1460 nm and 1790–1960 nm [25].  

After applying the pre-processing, 1759 canopy bands were left for analysis. Lastly, we eliminated sensor 
noise by using a moving Savitzky-Golay filter [55] with nine-point window size and second polynomial 
order. Furthermore, we explored various spectral transformation algorithms to evaluate the impact of 
spectral transformation on species discrimination. We considered the following methods: multiplicative 
scatter correction (MSC) [56], standard normal variation (SNV) [57] and first derivatives. The 
performance of the transformed data was then compared with that of the untransformed spectral dataset.  
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2.5 Simulation of Landsat-8 OLI and Sentinel-2 wavelengths 

To investigate the potential of mapping A. mearnsii at the regional level using spaceborne sensors, we 
simulated Landsat-8 OLI and Sentinel-2 MSI data based on canopy spectral measurements using the 
respective pre-defined spectral response functions provided by the package 'hsdar'- CRAN.R-project.org 
[58] of R statistical software [59]. The resultant centre wavelengths were: Landsat 8 OLI (442.96 nm; 
482.04 nm; 561.41 nm; 654.59 nm; 864 nm; 1609 nm and 2201 nm) and Sentinel-2 (490 nm; 560 nm; 665 
nm; 705 nm; 740 nm; 785 nm; 842 nm, 1601 nm and 2190 nm).  

2.6. Classification of plant species samples from leaf and canopy spectra data 

The classification between A. mearnsii and sampled native species was based on multivariate Interval 
Extended Canonical Variable Analysis (iECVA) [60] and tree-based Random Forest discriminant analysis 
(RF-DA) [61, 62] methods. Fig. 2 summarises the methodology applied in this work. The analysis was 
carried out in Matlab using the ECVA toolbox available at http://www.models.life.ku.dk/source/. On the 
other hand, RF-DA applied for the classification between A. mearnsii and sampled native species were 
carried out using Matlab Fathom Toolbox by [61]. The toolbox is available at 
http://www.marine.usf.edu/user/djones/.  

2.6.1 Interval Extended canonical variate analysis-discriminant analysis 

The iECVA method [60] is a modified classical CVA. The modification was done to mitigate the 
shortcomings of standard canonical variates analysis (CVA) discriminant analysis methods. Unlike 
standard CVA, iECVA [60] can handle high dimensional dataset [65]. The iECVA [60] is a statistical 
method that finds multivariate directions that separate species classes, and, subsequently, reduces the 
dimensionality of the predictors. The iECVA [60] reduces data dimensionality using embedded interval 
partial least square (iPLS) [63] concepts. The concept of iPLS is used to select important spectral regions 
to separate the species. In a nutshell, iECVA technique focuses on the absorption area that contains the 
critical information that discriminates between species classes. The iECVA uses the mathematical 
foundation of CVA explained below.  

CVA is the problem that finds a direction, k, which maximises the ratio of the within the group and the 
between-group covariance matrices as shown in (4). The method assumes that the matrix, X (n, m) 
represents the spectral reflectance to be categorised into the samples to target species, where n (samples 
from different species) and m (number of wavelengths) per species. The standard CVA finds the within 
(1) and between (2) covariate matrices on the assumption that all species are subject to the same variability. 

(1) 

(2) 

CVA is the problem that assumes to find a direction, k, which maximises the ratio of the within-group and 
the between-group covariance matrices as shown in Eq 3. In the case where CVwithin is a non-singular, the 
eigenvalue problem is possible and is calculated as shown in Eq 5. However, for a singular CVwithin, left 
multiplication by the inverse of CVwithin is impossible, and this becomes problematic when CVA is used 
for calibration of multi-collinearity data as CVA tends to break down. 

(3) 

(4) 

(5) 
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The breakdown problem of CVA in multi-collinearly data has been elucidated by the formulation of 
iECVA [55]. The iECVA assumes that the two groups shown in Eq.1 and Eq. 2 can be rewritten according 
to [56] in which the directions of the multi-group analysis are calculated as in Equation 6 and then 
transformed into multivariate regression problem as in Equation 7. 

(6) 

(7) 

Where Ycv represents the columns of the differences between each group mean and the overall mean, Xmc,
is between groups covariance, W is the weights, while e is the residual matrix. The partial least squares 
regression (PLS2) is used as the regression technique to solve the regression equation for the multi-group 
and is shown in Equation 7. In this case, the number of weights calculated corresponds to the number of 
groups; the weights are sorted in descending order and introduced into Eq. 3 for an optimisation process. 
During optimisation, the weight with the lowest value is left out before application of the classifier. PLS2 
is utilised to ensure that the space covered by the retained k-1 weights cover the full space of the solution 
[57]. The canonical variates are obtained by multiplying mean-centred data matrix with the canonical 
weights matrix. The resulting canonical variates are then used as an input to the LDA classifier [55]. The 
model has a built-in centring; the spectra were therefore not mean-centred prior application of the model.  

2.6.2. Random forest-discriminant analysis 

In this work, iECVA has been compared to the tree-based RF-DA. RF is the most used technique for tree 
discrimination [90]. It is used for feature selection, thus providing a better understanding of the spectral 
information variation among species. In contrast to parametric iECVA, the RF is a non-parametric decision 
tree based technique. The technique uses the majority vote of the ensemble of trees to identify the species 
class. The values of the number of variables that are randomly sampled as candidates at each split (mtry) 
and the number of trees to grow (ntree) parameters were identified based on algorithm tuning strategy. 
We searched for the optimal mtry band the ntree values using random search and grid search strategies. 
Subsequently, the most accurate value for mtry was ten. These parameters were tuned because of their 
importance in RF. The rest of the RF parameters were based on default values used by [61].  

We trained the RF model using bootstrapped leaf and canopy reflectance corresponding to the species. To 
avoid the influence of both between-class and within-class disparities during classification, we iterated the 
model 100 times during fitting as recommended by [65]. During training, the feature selection and removal 
of the most correlated spectral wavebands were based on embedded feature section techniques within RF. 
According to [66], the selection of the features is based on the variables (wavebands) importance yielded 
by random forest. This approach identifies important variables based on randomisation [66] and 
estimations of out-of-bag error [66]. The detailed description of the method can be found in [66]. Similar 
to iECVA, the selected variables were then used as an input to the DA classification model also found in 
Fathom Toolbox for Matlab [61].  

In classification problems, an imbalanced dataset may lead to the inadequate identification of the minority 
class. To avoid the problems related to the majority class on the classifier we used an equal number of 
samples per species. Moreover, we examined the relative importance of different parts of the spectrum for 
distinguishing between A. mearnsii and native species. Both leaf and canopy spectral reflectance were 
divided into visible (VIS, 400- 650nm), Red-edge (RE,651-750 nm), near-infrared (NIR, 751- 1300nm), 
early-shortwave-infrared (ESWIR, 1301-1460 nm), mid-shortwave-infrared (MSWIR, 1451-1789 nm) 
and far shortwave-infrared (FSWIR, 1901-2449 nm) subregions.  

( )( )'

1 2 1 2 withinx x x x k CV kλ− − =

cv mcY X W=
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2.7. Evaluation of classifiers performance 

Performances of these spectral regions were then assessed and compared to each other and with that of the 
model built using the full-spectra data also known as a global model using a multi-class confusion matrix 
(MCCM). The MCCM evaluates the model based on per species accuracy (Acc) in percentage as shown 
in (8), classification error, true positive rate (TPR), sensitivity, specificity, positive predictive value (PPV) 
(9), false positive rate (FPR), true negative rate (TNR), false negative rate (FNR), F-Score and Kappa 
statistics (10). As explained in [67], sensitivity represents the proportion of actual positives that are 
correctly identified by a classification model, whereas specificity is the percentage of the true negatives 
correctly identified by an iECVA-LDA model. The numerical values of sensitivity represent the 
probability that iECVA-LDA [60] model could identify individual species. The higher the values of 
sensitivity, the higher the chance that the model will discriminate that particular species from others. On 
the other hand, the specificity represents the probability of the iECVA-LDA to distinguish a specific 
species without giving false positive results. Also, the model calculates per species accuracy from the 
proportion of both true positive and true negative in the selected population. The maximum numerical 
values of 1.0 or 100% demonstrate that the species is strongly separable from other species [67]. It is 
noteworthy that high sensitivity or specificity does not necessarily imply that the accuracy of the 
classification is high as well [67]. As a result, we also used the coefficient statistic to measure if there was 
an actual agreement between predicted and observed species [67]. According to Cohen, we can interpret 
kappa statistics as follows: values ≤ 0% are an indication of no agreement, 20–40% is considered fair, 
while values between 41–60% are moderate, 61–80% is substantial, and values between 81 and 100 
indicate perfect agreement [68]. The probability that the classifiers discriminated the A. mearnsii better 
than the random chance has been demonstrated with the Z-score and associated P-value.  

According to [69, 70], sensitivity is conceptually equivalent to the Producer’s Accuracy. Moreover, 
assesses the probability that the species will be classified an A. mearnsii if it is A. mearnsii. Whereas, 
Specificity is a measure of the probability that a species class will not be predicted as A. mearnsii if it is 
not A. mearnsii.  

     %  *100
  

obtained result expected resultAccuracy
expected result

−
=

(8) 
        (9) 

TNSpecificity
TN FP

=
+ (9) 

Where TP = number of true positive, that is   correctly classified as correct species and FN = number of 
false negatives, that is, wrongly classified as species. 

Pr( ) Pr( )
1 Pr( )
a eKappa

e
−

=
−              (10) 

Where  Pr( )a  and Pr( )e  represent the probability of species classification success and probability of
classification success due to chance, respectively.  
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3. Results

3.1 The spectral separability between A. mearnsii and co-occurring native species at the leaf level 

Among all the transformations spectral transformation methods, spectral separability between A. mearnsii 
and studied native species was slightly higher with Standard normal variate (SNV) processed reflectance. 
Therefore, only the results observed from SNV transformed spectra are presented. Nevertheless, spectral 
separability of the species showed the difference in phenological stages throughout the sampled growing 
season of the year. Figure 3 and Table I, indicate the phenological period that optimised the spectral 
separability between A. mearnsii and studied native species. The period is the transition from peak 
productivity to senescence in South Africa (Table I, March and April). As showed in Figure 3, the 
distribution patterns of the tree species in the two-dimensional canonical variate space of their leaf spectra 
reflectance displayed a tight grouping of A. mearnsii and a rather substantial overlap among native species. 

The tree species discrimination using iECV-DA and RF-DA models produced the best result in the VIS, 
Red-edge, NIR and early shortwave infrared (ESWIR) spectral regions (Table I). From Table I, iECVA-
DA and RF-DA yielded accuracies and kappa coefficient that ranged from 85–100% and 93 to100%, 
respectively (Table I). In comparison, the RF-DA model yielded somewhat slightly higher accuracies and 
kappa coefficient that ranged from 93% to100%. We also observed an enhanced separation between A. 
mearnsii and native species in May with RF-DA (Table I).  

In addition to the classification models based on selected wavebands, the classification based on the full 
spectra data set showed a significant (p=0.0002) separation between A. mearnsii and the native species. 
The full spectra data produced higher accuracies than models with MSWIR and FSWIR wavebands  

(Table I). The strong performance of full spectra data implies that both classifiers can deal very well with 
high spectral variability and multi-collinearity of the hyperspectral data. Overall there was greater spectral 
confusion among the native species. Hence, iECVA-DA and RF-DA classifiers produced significantly 
lower overall accuracies and kappa statistics that ranged from 31–52% and 20–51%, respectively (Table 
I).  

A statistical comparison of the classifiers suggests that there is no significant difference between the 
iECVA-DA and RF-DA tree-based models (Z=0.335, p = 0.369). Moreover, both classifiers indicated 
statistically significant P-value < 0.0002, inferring both models discriminated A. mearnsii better than 
random chance.  
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3.2 Canopy level spectral separability of A. mearnsii among co-occurring native species 

At canopy level, similar spectral dissimilarities as that of leaf spectral data were observed between A. 
mearnsii and native species with an overall best discrimination accuracy between March and April (Table 
II). The ECV plots (Fig. 4) showed a clear separation between A. mearnsii and native species. Interestingly, 
upscaling from leaf to canopy level slightly increased the spectral variation between A. mearnsii and native 
species in the VIS, red-edge, NIR and ESWIR reflectance bands (Table II), irrespective of the classifier 
used. The iECVA-DA and RF-DA accuracies and Kappa statistics ranged from ranged from 92–100% and 
93–100%, respectively (Table II). Contrary to iECVA-DA, RF-DA produced slightly higher accuracies in 
RE, NIR and ESWIR reflectance during the senescence-winter transition period, April-May (Acc(AM) = 
83-95%, Kcc (AM)=0.75 -0.83).  

Overall accuracies were significantly low which could be attributed to the strong spectral reflectance 
confusion between native species as demonstrated in Fig. 4. The use of the whole wavelength range (400–
2,500 nm) yielded significant (p=0.0001) high accuracy for A. mearnsii, regardless of classifier employed. 
As opposed to iECVA-DA, at both leaf and canopy level, the spectral separability between A. mearnsii 
and native species was also clearly expressed in May (Table I and II) with RF-DA.  
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3.3 Upscaling in situ canopies spectral to Sentinel-2 and Landsat-8 OLI bands 

Table III shows results from using simulated Landsat 8 OLI and Sentinel-2 MSI data. The results of 
Sentinel-2 MSI shows comparable results with that of Landsat 8 OLI regarding discriminating between A. 
mearnsii and sampled native species. Both spectral datasets indicated high discrimination of the A. 
mearnsii. Sentinel-2 MSI yielded a percentage Acc (AM) of 95.52 and Kcc (AM) of 0.90, whereas 
Landsat-8 OLI spectral data achieved % Acc = 93.38 and Kcc of 0.88.  

Although both classifiers selected the same variables, RF discriminated A. mearnsii with slightly lower 
Acc and Kcc (AM) values (Table III). Both classifiers selected the same best predictor variables (Table 
III), where SWIR and NIR showed to be important for Sentinel-2 MSI and Landsat 8 OLI (Table III). 
Also, red-edge (783 nm) and red-edge (707 nm) bands were selected as best the predictor variables for 
Sentinel-2. Furthermore, Red (654 nm) was selected for Landsat 8 OLI.  
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4 Discussion 

This study investigated the separability of A. mearnsii from co-occurring native species using both leaf 
and canopy hyperspectral reflectance. Spectral information of the species has been used successfully to 
discriminate invasive species from their co-occurring plant species [22, 23] but no study has been done 
for distinguishing invasive A. mearnsii among co-occurring native species in the South African landscape. 
This study demonstrated for the first time the utility of the iECVA-LDA classifier for classification of 
vegetation species. We also compared the ability of the iECVA-LDA classifier to discern species with that 
of RF-DA classifier. The results from our study suggest that A. mearnsii is distinguishable from native 
species. However, seasonal shifts showed to be important in separating between species. Our results 
corroborate those from [22] and [23] studies that have found the high spectral separation between invasive 
and native species due to phenology.  

In this study, the most significant spectral differences between A. mearnsii and other species was observed 
for the March and April reflectance data at both leaf and canopy levels. In Southern Africa, March to April 
is the transition period from vegetation peak productivity to senescence [71] and [72]. The high 
separability of A. mearnsii during the summer-autumn transition period could be attributed to the fact that 
the species is an evergreen leguminous species [23, 71, 73]. According to [73], the canopy of evergreen  

species remains relatively stable throughout the growing cycle. Thus during leaf fall and senescence 
evergreen species tends to exhibit a more traditional leaf strategy with higher leaf biomass and longer leaf 
lifespan when compared to deciduous plants.  

Consequently, high biomass enhances the spectral separability between evergreen and deciduous tree, 
particularly during leaf senescence period [74]. As reported by [73], tree species that vary in leaf habit 
(deciduous and evergreen) have different leaf chemical and physiological leaf traits. Their study reported 
differences in the amount of nutrients per leaf area between evergreen and deciduous savannah species. 
Likewise [23] and [71] observed spectral disparities between deciduous and native species due to 
variations in structural and biochemical constituents during the transition period from March to April (peak 
productivity to senescence). The current study corroborates [73] because it demonstrated spectral 
information (such as biochemical and structural traits) shifts between A. mearnsii and sampled native 
species when conditions were unfavourable for the growth of native deciduous species.  
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4.1. Optimal spectral regions for species differences 

The full spectrum (400–2500 nm) has been widely used for discriminating vegetation species [24, 25, 26, 
29, 31]. Among explored hyperspectral regions, VIS, Red-edge, NIR and ESWIR from both leaf and 
canopy levels were significant in this study. The performance observed from regions above confirmed the 
results of [23] and [36] in which infrared region (680-1080 nm), VIS (400-650nm) and SWIR (1300-2500 
nm) were the best regions for discriminating between native and invasive Hawaiian tree species. At the 
leaf level, the red edge spectral range did not contribute as much as VIS, NIR and ESWIR to distinguish 
between A. mearnsii from the native species. However, the red edge extracted from canopy spectra 
performed better than the MSWIR (1461-1789 nm) and FSWIR (1952-2449 nm). Substantial differences 
in the VIS, RE, NIR and ESWIR points to high disparities in biochemical and other properties that have 
an impact on the spectral signature in these regions between A. mearnsii and the native species. In the 
visible wavelengths regions, the spectral disparities between species are associated with differences in 
pigments concentration, mainly leaf chlorophyll. Numerous studies have shown that the RE region has a 
strong correlation with foliar chlorophyll and nitrogen content [77, 78].  

Strong separability in the visible and the RE region of the spectrum, thus implies significant variation in 
nitrogen and chlorophyll content between A. mearnsii and studied native species. This study corroborates 
findings from [37] which indicated that there is a strong distinction in leaf traits between native and 
invasive Australian Acacia species. Australian acacias are nitrogen fixers [26,33], as such, they tend to 
have a more considerable amount of leaf N when compared to co‐occurring non-N2‐fixing trees and 
shrubs. As a result, it is not clear whether observed spectral differentiation at the visible regions is due to 
chlorophyll or leaf nitrogen as the two traits are strongly correlated.  

Also, notable spectral reflectance differences exist between A. mearnsii and the rest of the trees in the 
SWIR part of the spectrum. The difference between an Australian Acacia spp and non-acacias species in 
the SWIR part of the spectrum is due to the differences in condensed tannin contents [24, 26]. Strong 
dissimilarities between the species in the SWIR spectral regions of the spectrum could suggest high 
nitrogen variations between species because it is highly correlated with N-H and C-H vibrations of 
proteins. Moreover, SWIR was found to be necessary for the discrimination of species based on leaf tannin 
content, which has been shown to vary between invasive Australian acacias and non-invasive species. For 
example, [24] discriminated Acacia longifolia using four SWIR wavelength regions (1360–1450 nm and 
1630–1740 nm) due to their high correlation with tannin concentration. According to [75, 76] the 
dissimilarities at the SWIR could be attributed to the fact that wavelengths related to tannin are linked to 
the molecular vibration such as bending and broadening of C-H, C-O and O-H bonds and their overtones. 

Substantiating the studies by [23, 36, 77], we observed disparities in discrimination abilities between leaf 
and canopy spectral. As in [23] the canopy level spectra showed a higher discrimination performance 
compared to leaf spectra. The difference in discrimination abilities among spectral regions, notably VIS 
and red edge at leaf and canopy levels, highlights the significance of scaling up the leaf-level spectral to 
the canopy level for species discrimination, as emphasised by [36,79]. Also, [29] showed improvement in 
differentiating species from canopy spectra, as compared to the leaf level. Moreover, [79] linked the 
disparities between leaf and canopy red edge spectra in discriminating species to the fact that canopy 
reflectance affords extra information, such as leaf orientation, leaf clumping and colour of twigs. On the 
other hand low separability in MSWIR and FSWIR spectral domains could be suggesting that the 
differences in leaf and canopy water content did not contribute significantly to spectral separability.  

Furthermore, strong distinctions demonstrated at the NIR indicate differences in structural and 
physiological attributes in tannin contents [24]. The invasive Acacia longifolia, native to south-eastern 
Australia has been spectrally distinguished from native species based on its structural, secondary 
metabolites [24,26] and biochemical traits [26].  

In general, physio-chemical traits dissimilarities between Australian acacia and studied native trees can be 
derived from their spectral reflectance data. The identified spectral regions from this study could be useful 
in providing scientific guidance for the development of tailor-made species mapping platforms like 
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unmanned aerial vehicle (UAV) [80, 81]. These platforms have been shown to offer a cost-effective 
solution to address the challenge of monitoring invasions [82].  

4.2 Species discrimination based on simulated Sentinel-2 MSI and Landsat-8 OLI 

In general, A. mearnsii is separable from sampled native species with both Landsat 8 OLI and Sentinel-2 
MSI. Both Landsat-8 OLI and Sentinel-2 simulated data could discriminate over 90% of A. mearnsii 
among co-occurring species. Our results substantiate those of [83] in which both Sentinel-2 MSI and 
Landsat-8 OLI classified subtropical trees. Similar to studies by [84, 85] and [86], the current study found 
critical spectral regions for optimal discrimination of A. mearnsii in the red edge, NIR and SWIR for 
Sentinel-2 and NIR and SWIR for Landsat-8 OLI. Likewise, [86] demonstrated improved species 
discrimination accuracy because of the inclusion of the red edge and SWIR for Sentinel-2 data. This could 
provide an opportunity to locate the species regularly at the regional scale. However, numerous studies 
have noted that the spatial resolution of these sensors might complicate species mapping application, 
among other things due to spatial variability in the canopy. Findings in this paper are mainly based on 
simulated MSI Sentinel-2 and Landsat 8 OLI data. Therefore, there is a need to validate the findings here 
with real satellite and the respective field data.  

4.3 Comparison of iECV-DA and RF-DA models 

Both models were able to reduce the redundancy of the hyperspectral data while retaining the most useful 
information to carry out the discrimination classification. However, the results are shown in this study 
indicate that the classification results obtained from the RF-DA are slightly better than those obtained from 
the iECVA-DA classifier. It implies that the RF was able to reduce overlap in the spectra of some species 
and to extract meaningful information wavebands to attain high classification results. The performance of 
RF-DA (both scales) corroborates with other studies of plant species discrimination [87].  

Similarly, [87] reported high accuracies and kappa statistics with RF-LDA when compared to typical RF 
classifier. In our case, at both the canopy scale, for example, the highest PPV, delineation accuracies of A. 
mearnsii was provided by RF-DA. However, there  

was a relatively high amount of false positives and misclassification when compared to iECVA-DA 
classifier. Though these classifiers were successful in distinguishing A. mearnsii, it is essential to explore 
the validity of these models real field spectral reflectance of the plants.  

The validity of the results from the simulated Landsat and Sentinel bands centres require evaluation using 
actual satellite images because the conditions of in-situ reflectance spectra data collection are different 
from that of the optical satellite images. For example, satellite image-based reflectance is affected by 
atmospheric effects, which is not the case with in-situ spectra data. Moreover, image spectral information 
is influenced by various environmental factors (e.g. micro-climate, soil characteristics, precipitation and 
topography), which causes spectral variance. Therefore, the demonstrated uniqueness of A. mearnsii 
spectra from that of sampled co-occurring native species requires validation at the regional level.  

5. Conclusion

Methods of RS are powerful tools to characterise invasive species’ distribution patterns. However, species 
characterisation using RS data is always hindered by strong spectral similarities between invasive species 
and other native plants. As a result, not all invasive species can be detected by RS data. It is critical to 
understand the limitations of the approach and to explore the prospect of detecting target species before 
incorporating the RS data in operational monitoring projects. This study investigated spectra separability 
between A. mearnsii and co-occurring species (Celtis Africana, V. karoo, Dombeya tileacea, Olea 
Africana, Dombeya rotundifolia, V. xanthophloea, Euclea crispa) within the South African landscape. The 
intention was to understand the spectral and seasonal variation between A. mearnsii and native species at 
leaf and canopy spectral level. The results of the study highlighted the following about the discrimination 
of A. mearnsii.  
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i. Invasive A. mearnsii can be distinguished from other species at leaf and canopy level using spectral
reflectance 

ii. Spectral differences related to senescence phenology (March and April) had a stronger effect on the
separability between A. mearnsii and native species than other periods (December, January, February and 
May).  

iii. Spectral regions associated with biochemical properties are essential in discriminating the species. For
instance, there was high spectral separability in Red-edge and visible spectral regions at leaf and the 
canopy scales.  

iv. A high spectral separability was yielded by using non-parametric RF-DA classifiers. The classifier was
able to distinguish between A. mearnsii and sampled species even during the Southern Africa senescence-
winter transition period (April-May).  

v. Sentinel-2 MSI showed results comparable to Landsat-8 OLI regarding classifying A. mearnsii and
studied native species. 

This study can contribute to initiatives aimed at managing and monitoring invasive A. mearnsii. This 
research provides critical information towards an understanding of the spectral differences between A. 
mearnsii and co-occurring native species. The findings could be useful for understanding vital spectral 
bands required to delineate and monitor A. mearnsii in a mixed species environment.  
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