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ABSTRACT In this paper, we extend Jungck–SP iteration with s–convexity in second sense and define its
orbit. We prove the fixed point results for fractal generation via extended iteration and utilize these results
to develop algorithms for fractal visualization. Moreover, we present some complex graphs of Julia and
Mandelbrot sets in Jungck–SP orbit with s–convexity. We also present some examples to show the variation
in images with involved parameters.

INDEX TERMS Jungck-SP, Complex graphics, Escape radius.

I. INTRODUCTION

IF we study the historical background of fractals we ob-
served that the word fractal is almost half-century-old.

The field of fractals is also called fractal geometry. Fractals
have many applications in our real life. In biology fractals are
applied to estimate or observe many biologic or living proce-
dures, phenomena or operations like the growth culture of
micro-organism (i.e. bacteria, chlamydomonas and amoeba)
and analyze the nerve fibre pattern, etc [1]. In physics fractals
are used to determine and understand the turbulent flows in
fluid Mechanics. In telecommunication fractals are used to
manufacture antennae [2]. Computer networking, radar sys-
tem and architectural models etc are the main applications of
fractals [3]. In electronics and electrical engineering fractals
are used to Manufacture radars, capacitors, security control
system, radio, antennae for wireless system, transformer and
lighting model etc [4]. Fractal geometry presented some
beautiful and historic scene of nature, due to this reason
fractal geometry achieved an historic importance from last
five decades. Researcher developed some mathematical mod-
els and sketched beautiful aesthetic patterns of computer
graphics via different mathematical techniques. In 1970’s
Mandelbrot in IBM visualized the complex graphs. He Ob-
served a quite new pattern of graphs for a complex function

f(z) = z2+c [5]. The obtained image was self similar and he
named this complex graph a fractal. He visualized the work
of G. Julia and discussed the properties of Julia sets [6]. He
demonstrated that Julia sets had best richness of artistic pat-
terns. After his work a series of research have been published
on different types of fractals. The generalized form of Man-
delbrot set was studied in [7]. Some rational, trigonometric,
logarithmic and exponential function were studied in [8]. The
quaternions, bi-complex and tri-complex function used in (
[9], [10]) and in [11] to generate some generalized fractals
(i.e. Julia and Mandelbrot sets). The fixed point theory gained
the highest concentration when Rani et al. in [12] and [13]
used some fixed point iterative methods in the visualization of
fractals. They presented some superior fractals and discussed
their characteristics. After studies of Rani et al. the use of
various iteration procedures (used for an approximate finding
of fixed points) in the generation of different types of fractals
became very popular. Some types of fractals like Mandelbrot
and Julia sets via different explicit iterations studied and
generalized in [14], [15], [16], [17], [18] and [19], Iterated
Function System fractals studied in [20] and [21], V-variable
fractals and super-fractals demonstrated in [21] and [22],
inversion fractals discussed in [23] and fractals arising from
the root finding methods presented in [24], [25], [26] and
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[27]. The threshold escape radii for Jungck-Mann, Jungck-
Ishikawa and Jungck-Noor iterations with the combination
of s-convex function in second sense were proved in [28],
[29]. The biological resembled images were demonstrated
in [30], [31], [32], [33] and [34] and Modified results for
Julia sets and Mandelbrot were established in [35]. Recently
boundaries of filled Julia sets discussed in [36].

In this paper, we establish some new fixed point results in
the generation of fractals (i.e. for Julia and Mandelbrot sets)
by using Jungck–SP iteration with s–convexity. We define
Jungck SP orbit with s–convexity and prove escape criterion
for quadratic, cubic and nth degree complex polynomials.
Furthermore, we develop algorithms to visualize Julia and
Mandelbrot sets in Jungck–SP orbit with s–convexity. We
also present some graphical examples to show the variation
in images with involved parameters.

The next four sections of this paper are as follows: In
section II we revise some basic definitions and implicit itera-
tions. We prove results of threshold escape radius for Jungck-
SP iteration with s-convexity in section III. Some complex
graphs of Julia and Mandelbrot sets for different complex
polynomials via proposed iteration present in section IV. In
last section (i.e. In section V) we conclude this research.

II. PRELIMINARIES
Definition 1 (Julia set [37]). Let fc : C → C be a complex
polynomial function depends on c ∈ C. The filled Julia set
Ffc of a function fc is defined as

Ffc = {z ∈ C : |fpc (z)|9∞ as p→∞}, (1)

where fpc (z) is the p-th iterate of the function fc. The Julia
set Bfc of the complex polynomial function fc is defined as
the boundary of filled Julia set Ffc , i.e. Bfc = ∂Ffc . The
boundary of filled Julia set is called simply Julia set.

Definition 2 (Mandelbrot set [38]). The set consists of all
parameters c, for which the filled Julia set of complex poly-
nomial function fc : C→ C connected is called Mandelbrot
set M , i.e.,

M = {c ∈ C : Ffc is connected}, (2)

or we can define Mandelbrot set equivalently as follows
[39]:

M = {c ∈ C : |fpc (θ)|9∞ as p→∞}, (3)

where θ is any critical point of f (i.e., f ′(θ) = 0). Here, we
choose θ as an initial point.

Definition 3 (Jungck iteration [40]). Let P,Q : X → X be
the two maps such that P is one to one andQ is differentiable
of degree greater or equal to 2. For any x0 ∈ X the Jungck
iteration is defined in the following way

P (xk+1) = Q(xk), (4)

where k = 0, 1, . . ..

Definition 4 (Jungck-Mann iteration with s-convex combi-
nation in second sense [28]). Let P,Q : C → C be the two
complex maps such thatQ is a complex polynomial of degree
greater or equal to 2, also differentiable and P is one to one.
For any x0 ∈ C the Jungck-Mann iteration with s-convex
combination in second sense is defined as:

P (xk+1) = (1− a)sQ(xk) + asP (xk), (5)

where a, s ∈ (0, 1], k = 0, 1, 2, . . ..

Definition 5 (Jungck-Ishikawa iteration with s-convex com-
bination in second sense [28]). Let P,Q : C→ C be the two
complex maps such thatQ is a complex polynomial of degree
greater or equal to 2, also differentiable and P is one to one.
For any x0 ∈ C the Jungck-Ishikawa iteration is defined in
the following way{

P (xk+1) = (1− a)sP (xk) + asQ(yk),

P (yk) = (1− b)sP (xk) + bsQ(xk),
(6)

where a, b, s ∈ (0, 1] and k = 0, 1, 2, . . ..

Definition 6 (Jungck-Noor iteration with s-convex combina-
tion in second sense [16]). Let P,Q : C → C be the two
complex maps such thatQ is a complex polynomial of degree
greater or equal to 2, also differentiable and P is one to one.
For any x0 ∈ C the Jungck-Ishikawa iteration is defined in
the following way

P (xk+1) = (1− a)sP (xk) + asQ(yk),

P (yk) = (1− b)sP (xk) + bsQ(uk),

P (uk) = (1− c)sP (xk) + csQ(xk),

(7)

where a, b, c, s ∈ (0, 1] and k = 0, 1, 2, . . ..

III. ESCAPE CRITERION VIA JUNGCK-SP ITERATION
WITH S-CONVEXITY
In this section we prove the threshold escape radius (i.e.
escape criterion) for Jungck-SP iteration extended with s-
convex combination in second sense for complex polynomial
f(x) = xn − a1x + a0 where n ≥ 2, a0, a1 ∈ C. We
abbreviated Jungck-SP orbit with s-convexity as JSPOs.

Definition 7 (Jungck-SP iteration with s-convex combina-
tion). Let P,Q : C → C be the two complex maps such
that Q is a complex polynomial of degree greater or equal
to 2, also analytic and P is one to one. For any x0 ∈ C
the Jungck-SP iteration with s-convex combination in second
sense is defined in the following way

P (xk+1) = (1− a)sP (yk) + asQ(yk),

P (yk) = (1− b)sP (uk) + bsQ(uk),

P (uk) = (1− c)sP (xk) + csQ(xk),

(8)

where a, b, c, s ∈ (0, 1] and k = 0, 1, 2, . . ..

Therefore, in proposed implicit iteration we deal with two
different mappings, we break f into two mappings P and Q
in such a way that f = Q − P and P is one to one. This

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2951385, IEEE Access

X. Li et al.:Fixed Point Results for Fractal Generation in Extended Jungck–SP Orbit

type of formation of f restraint us to adopt P as one to one
mapping and Q as analytic mapping. Thus we derive new
threshold escape radius and implement in our algorithms to
visualize some kind of fractals.

Escape criteria play an important role in the generation of
fractals. We use Jungck-SP iteration with s-convexity in sec-
ond sense to prove desire results for the complex polynomial
f(x) = xn − a1x + a0 where n ≥ 2 to generate fractals in
following way:

Theorem 1. Assume that |x| ≥ |a0| > α1 =(
2(1+|a1|)

sa

) 1
n−1

, |x| ≥ |a0| > α2 =
(

2(1+|a1|)
sb

) 1
n−1

, |x| ≥

|a1| > α3 =
(

2(1+|a1|)
sc

) 1
n−1

where a, b, c, s ∈ (0, 1] and
a0, a1 ∈ C. Define a sequence {xk}k∈N as follows:

P (xk+1) = (1− a)sP (yk) + asQ(yk),

P (yk) = (1− b)sP (uk) + bsQ(uk),

P (uk) = (1− c)sP (xk) + csQ(xk),

(9)

where s, a, b, c ∈ (0, 1] and k = 0, 1, 2, . . .. Then |xk| −→
∞ as k −→∞.

Proof. Because f(x) = xn − a1x + a0 with n ≥ 2, where
a0, a1 ∈ C, x0 = x, y0 = y and u0 = u. We handle f as
f = Q − P with choice Q(x) = xn + a0 and P (x) = a1x,
then

|P (u0)| = |(1− c)sP (x) + csQ(x)|
= |(1− c)sa1x+ (1− (1− c))s (xn + a0)| .

By expansion up to degree one of c and 1 − c, and applying
the facts s ≤ 1, we obtain

|a1u0| ≥ (1− s(1− c))|xn + a0| − (1− sc)|a1x|
≥ (s− s(1− c))|xn + a0| − (1− sc)|a1x|,∵ s < 1.

Since |x| ≥ |a0| and sc < 1, we have

|a1u0| ≥ sc |x|n − sc |a0| − |a1x|
≥ sc |x|n − |x| − |a1x|
= |x| (sc |x|n−1 − (1 + |a1|)) .

This provides

|u0| ≥ |x|

(
sc |x|n−1

1 + |a1|
− 1

)
|u0| ≥ sc |x| .

Because |x| ≥ |a0| >
(

2(1+|a1|)
sc

) 1
n−1

, this produced the

situation |x|
(

sc|x|n−1

1+|a1| − 1
)
> |x| ≥ sc|x|.

In second step of iteration, we have

|P (y0)| = |(1− b)sP (u) + bsQ(u)|
= |(1− b)sa1u+ (1− (1− b))s (un + a0)| .

By expansion up to degree one of b and 1 − b, and applying
facts s ≤ 1, we obtain

|a1y0| ≥ (1− s(1− b))|un + a0| − (1− sb)|a1u|
≥ (s− s(1− b))|un + a0| − |a1u|
≥ sb|un| − sb|a0| − |a1u|.

Since |u0| ≥ |x|
(

sc|x|n−1

1+|a1| − 1
)
> |x| ≥ |a0| and sb < 1,

we have

|a1y0| ≥ sb|un| − |u| − |a1u|
= sb|un| − (1 + |a1|)|u|
= |u|

(
sb|u|n−1 − (1 + |a1|)

)
≥ |u|

(
sb|u|n−1

1 + |a1|
− 1

)
.

≥ |x|
(
s2bc|x|n−1

1 + |a1|
− 1

)
.

Because |x| ≥ |a0| >
(

2(1+|a1|)
sc

) 1
n−1

, which im-

plies |x|n
(

sc|x|n−1

1+|a1| − 1
)n

> |x|n. Hence |u|n >

|x|n
(

sc|x|n−1

1+|a1| − 1
)n

> |x|n ≥ sc|x|n. Thus

|y0| ≥ s2bc |x| .

In last step of iteration, we have

|P (x1)| = |(1− a)sP (y0) + asQ(y0)|
|a1x1| = |(1− a)sa1y + as (yn + a0)| .

This yields

|a1x1| ≥ |y|
(
sa|y|n−1 − (1 + |a1|)

)
|x1| ≥ |y|

(
sa|y|n−1

1 + |a1|
− 1

)
.

Since |y| ≥ |x| and |x| ≥
(

2(1+|a1|)
sa

) 1
n−1

, thus
sa|y|n−1

1+|a1| ≥
sa|x|n−1

1+|a1| > 2. Hence |y|
(

sa|y|n−1

1+|a1| − 1
)
≥

|x|
(

s3abc|x|n−1

1+|a1| − 1
)

. Therefore

|x1| ≥ |x|

(
s3abc |x|n−1

1 + |a1|
− 1

)
. (10)

As |x| >
(

2(1+|a1|)
sa

) 1
n−1

, |x| >
(

2(1+|a1|)
sb

) 1
n−1

and |x| >(
2(1+|a1|)

sc

) 1
n−1

, then |x| >
(

2(1+|a1|)
s3abc

) 1
n−1

and this implies
s3abc|x|n−1

1+|a1| − 1 > 1. Therefore there exists λ > 0 such that
s3abc|x|n−1

1+|a1| − 1 > 1 + λ. As a result |x1| > (1 + λ)|x|.
Particularly |x1| > |x|. Subsequently |xk| > (1 + λ)k|x|.
Hence, the orbit of x tends to infinity and this completes the
proof.

Corollary 1. Assume that

|a0| > α1, |a0| > α2and |a0| > α3,

VOLUME 4, 2016 3



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2951385, IEEE Access

X. Li et al.:Fixed Point Results for Fractal Generation in Extended Jungck–SP Orbit

where α1 =
(

2(1+|a1|)
sa

) 1
n−1

, α2 =
(

2(1+|a1|)
sb

) 1
n−1

and

α3 =
(

2(1+|a1|)
sc

) 1
n−1

. Then Jungck-SP orbit with s-
convexity escapes to infinity.

Corollary 2. Assume that a, b, c, s ∈ (0, 1] and

|x| > max [|a0|, α1, α2, α3] ,

where α1 =
(

2(1+|a1|)
sa

) 1
n−1

, α2 =
(

2(1+|a1|)
sb

) 1
n−1

and

α3 =
(

2(1+|a1|)
sc

) 1
n−1

. Then there exists λ > 0 such that

|xk| > (1 + λ)k|x| and |xk| → ∞ as k →∞.

Corollary 3. Assume that

|xm| > |x| > max [|a0|, α1, α2, α3] ,

where α1 =
(

2(1+|a1|)
sa

) 1
n−1

, α2 =
(

2(1+|a1|)
sb

) 1
n−1

and

α3 =
(

2(1+|a1|)
sc

) 1
n−1

and for some m ≥ 0. Thus there exists

λ > 0 such that |xm+k| > (1 + λ)k|xm| and |xk| → ∞ as
k →∞.

IV. APPLICATION TO FRACTALS
In literature authors used different approaches to generate
fractals. Some popular algorithms to visualize the fractals
are, distance estimator [41], escape time [42] and potential
function algorithms [43]. To generate Julia and Mandelbrot
sets, we use escape time algorithms. The escape time algo-
rithm iterate the function upto the desire number of iterations.
The algorithm generate two sets, one is consists of points
for which the JSPOs does not escape to infinity (i.e. Julia
or Mandelbrot set) and the second set consists of points for
which the JSPOs escape to infinity (i.e. Fatou domains). In
section we present Julia and Mandelbrot sets at different
values of n and input parameters. We fixed maximum number
of iterations at K = 20 for all Julia and Mandelbrot sets.

In next two subsections we generate Julia and Mandelbrot
sets in JSPOs by using algorithms 1 and 2.

A. JULIA SETS IN JSPOS
We know that a very small change in any input param-
eter cause drastic change in Julia set. So the comparison
of Julia sets generated by proposed iteration with classical
Julia sets is not possible. As an example we generate a
classical quadratic Julia set for f(x) = x2 + a0 with
a0 = −123 + 0.807i in figure 1. This image is also called
Douady rabbit. But at the same value of a0 the JSPOs does
not converge. We generate quadratic Julia sets of complex
polynomial f(x) = x2−a1x+a0 where a0.a1 ∈ C in JSPOs
at different value of a0. We observe that quadratic Julia sets
in figures (2–4) resemble with classical quadratic Julia set
in figure 1 (i.e. Douady rabbit). In figures (2–4) we fix f(x)
along with a, b, c and change the value of s. The image in
figure 2 is like a fat Douady rabbit, image in figure 3 is smart
and image in figure 4 is smartest Douady rabbits respectively.

Algorithm 1: Julia set visualization
Input: f(x) = xn − a1x+ a0–a complex polynomial,

A–area for image, K–fixed number of iterations,
colourscale[0..h− 1] colourscale with h colours.

Output: Julia set in area A.

1 for x0 ∈ A do
2 R–threshold escape radius proved in Theorem 1
3 k = 0
4 while k ≤ K do
5 P (xk+1) = (1− a)sP (yk) + asQ(yk),
6 P (yk) = (1− b)sP (uk) + bsQ(uk),
7 P (uk) = (1− c)sP (xk) + csQ(xk)
8 if |xk+1| > R then
9 break

10 k = k + 1

11 i = b(h− 1) k
K c

12 colour x0 with colourscale[i]

Algorithm 2: Mandelbrot set visualization
Input: f(x) = xn − a1x+ a0–a complex polynomial,

A–area for image, K–fixed number of iterations,
colourscale[0..h− 1] colourscale with h colours.

Output: Mandelbrot set in area A.

1 for a0 ∈ A do
2 R–threshold escape radius proved in Theorem 1
3 k = 0
4 x0 = any one critical point of f
5 while k ≤ K do
6 P (xk+1) = (1− a)sP (yk) + asQ(yk),
7 P (yk) = (1− b)sP (uk) + bsQ(uk),
8 P (uk) = (1− c)sP (xk) + csQ(xk)
9 if |xk+1| > R then

10 break

11 k = k + 1

12 i = b(h− 1) k
K c

13 colour a0 with colourscale[i]

In figures 5–8 we fix f(x) along with s and the values of
a, b, c. In figures 9 and 10 we change the value of a1 also. We
observe rotational symmetry in figures 5–10. The swirls are
oriented clockwise in all graphs of figures 5–10. The input
parameters were as follows:

• Fig. 1: a0 = −0.123 + 0.807i,A = [−1.5, 1.5] ×
[−1.5, 1.5],

• Fig. 2: a0 = 2 − 2.5i, a1 =
√
5,a, b, c = 0.5,s = 0.9,

A = [−4, 4]× [−3.5, 3.5],
• Fig. 3: a0 = 2 − 2.5i, a1 =

√
5,a, b, c = 0.5,s = 0.8,

A = [−4, 4]× [−3.5, 3.5],
• Fig. 4: a0 = 2 − 2.5i, a1 =

√
5,a, b, c = 0.5,s = 0.75,

A = [−4, 4]× [−3.5, 3],
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FIGURE 1. Quadratic-Julia set in JSPOs.

FIGURE 2. Quadratic-Julia set in JSPOs.

FIGURE 3. Quadratic-Julia set in JSPOs.

• Fig. 5: a0 = 2− 2.5i, a1 =
√
5,a, b = 0.1,c = 0.8,s =

0.5, A = [−6, 6]× [−9.5, 4],
• Fig. 6: a0 = 2− 2.5i, a1 =

√
5,a, c = 0.4,b = 0.6,s =

0.5, A = [−6, 6]× [−5.5, 3.5],
• Fig. 7: a0 = 2 − 2.5i, a1 =

√
5,a = 0.7,b = 0.45,c =

0.55,s = 0.5, A = [−4.5, 4.5]× [−3.5, 2.5],
• Fig. 8: a0 = 2 − 2.5i, a1 =

√
5,a, b, c, s = 0.5, A =

[−4.5, 4.5]× [−4.5, 3],
• Fig. 9: a0 = −0.5 − 0.3i, a1 = e

1
i ,a, b, c, s = 0.9,

A = [−1.7, 1.7]× [−1.5, 1.5],
• Fig. 10:a0 = 2 − 2.5i, a1 = 1 + i, a, b, c, s = 0.1,
A = [−3.5, 2.8]× [−3.5, 2.8].

In second example of Julia sets, we present some cubic
Julia sets of complex polynomial f(x) = x3 − a1x + a0

FIGURE 4. Quadratic-Julia set in JSPOs.

FIGURE 5. Quadratic-Julia set in JSPOs.

FIGURE 6. Quadratic-Julia set in JSPOs.

FIGURE 7. Quadratic-Julia set in JSPOs.

where a0, a1 ∈ C in JSPOs. We notice that the cubic Julia set
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FIGURE 8. Quadratic-Julia set in JSPOs.

FIGURE 9. Quadratic-Julia set in JSPOs.

FIGURE 10. Quadratic-Julia set in JSPOs.

changes with change of input parameters. The figures (11, 12
and 13) present some variations in shapes of cubic Julia set.
The input parameter for cubic Julia set were as follows:

• Fig. 11: a0 = −0.6 − 0.045i, a1 = 1
i ,a, b, c, s = 0.9,

A = [−1.2, 1.4]× [−1.4, 1.2],
• Fig. 12: a0 = −0.629, a1 = i,a, b, c, s = 0.5, A =

[−1.4, 1.4]× [−2, 2],
• Fig. 13:a0 = −0.06 + 0.02i, a1 =

√
i, a, b, c, s = 0.1,

A = [−1.7, 1.5]× [−2, 2].
The next example of Julia sets, we demonstrate some

quadric Julia sets of complex polynomial f(x) = x4−a1x+
a0 where a0, a1 ∈ C in JSPOs. The images of quadric Julia
sets change with different values of input parameters. The
figures (14, 15 and 16) present the variations in shapes of

FIGURE 11. Cubic-Julia set in JSPOs.

FIGURE 12. Cubic-Julia set in JSPOs.

FIGURE 13. Cubic-Julia set in JSPOs.

quadric Julia set. The input parameter for quadric Julia sets
were as follows:
• Fig. 14: a0 = −0.85+1.52i, a1 = 1− i,a, b, c, s = 0.9,
A = [−1.4, 1.4]× [−1.4, 1.4],

• Fig. 15: a0 = −0.95, a1 = 1,a = 0.5, b, c = 0.9, s =
0.4, A = [−1.5, 1.4]× [−1.4, 1.4],

• Fig. 16:a0 = −0.06 + 0.02i, a1 =
√
i, a, b, c, s = 0.1,

A = [−1.7, 1.5]× [−2, 2].

B. MANDELBROT SETS IN JSPOS
Here we visualize some complex graphs of Mandelbrot sets
for a polynomial f(x) = xn − a1x + a0 where a0, a1 ∈ C
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FIGURE 14. Quadric-Julia set in JSPOs.

FIGURE 15. Quadric-Julia set in JSPOs.

FIGURE 16. Quadric-Julia set in JSPOs.

in JSPOs and compare them with classical Mandelbrot sets.
We discuss our results in the form of some examples. The
first example presents some quadratic Mandelbrot sets. The
graph in figure 17 is the classical quadratic Mandelbrot set
for f(x) = x2 + a0, whereas the figures 18–24 show
the variety of quadratic Mandelbrot sets for different input
parameters in JSPOs. The classical Mandelbrot set contains
a large cardioid, a largest bulb on left side of main cardioid on
real axis and infinite many small bulbs around the perimeter
of cardioid and largest bulb. Furthermore each bulb has its
own antennas. When we magnify the Mandelbrot set closer
to its antennas we can see the copies of itself. In figures 18–20
we fix f(x) along with a, b, c and change the value of s, we
observe that the graphs are resemble with classical quadratic
Mandelbrot set but the shape of largest bulb and cardioid

FIGURE 17. Classical quadratic-Mandelbrot set.

FIGURE 18. Quadratic-Mandelbrot set in JSPOs.

slightly change in each figure. We again fix f(x) along with
s and change the values of a, b, c, same changes observe as
we discuss earlier (See in figures 21 and 22). We analyze
that at different values of input parameters the behavior of
quadratic Mandelbrot set is different and area of each image
also different. The images in figures 23 and figure 24 have
different directions from images in figures 18–22. The image
in figure 24 is completely different from the images in figures
18–23. The input parameters were as follows:
• Fig. 17: A = [−2.3, 1]× [−1.5, 1.5],
• Fig. 18: a1 = 2, a2 = 10,a, b, c, s = 0.9, A = [−9, 6]×

[−6, 6],
• Fig. 19: a1 = 2, a2 = 10,a, b, c = 0.9,s = 0.7, A =

[−11, 3]× [−6, 6],
• Fig. 20: a1 = 2, a2 = 10,a, b, c = 0.9,s = 0.5, A =

[−9.5, 3]× [−6, 6],
• Fig. 21: a1 = 2, a2 = 10,a = 0.7,b = 0.8,c = 0.6,s =

0.9, A = [−15, 3]× [−8, 8],
• Fig. 22: a1 = 2, a2 = 10,a = 0.8,b = 0.7,c = 0.8,s =

0.9, A = [−15, 3]× [−8, 8],
• Fig. 23: a1 = i

3 , a, b, c, s = 0.5, A = [−0.1, 0.6] ×
[−0.3, 0.3],

• Fig. 24: a1 = i, a, b, c, s = 0.1, A = [−1.1, 9.6] ×
[−3.3, 3.3].

In next example, we test the variations in cubic Mandelbrot
set for a complex polynomial f(x) = x3 − a1x + a0 where
a0, a1 ∈ C in JSPOs and compare them with classical cubic
Mandelbrot set. The image in figure 25 is classical cubic
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FIGURE 19. Quadratic-Mandelbrot set in JSPOs.

FIGURE 20. Quadratic-Mandelbrot set in JSPOs.

FIGURE 21. Quadratic-Mandelbrot set in JSPOs.

FIGURE 22. Quadratic-Mandelbrot set in JSPOs.

Mandelbrot set for f(x) = x3 + a0. The classical cubic

FIGURE 23. Quadratic-Mandelbrot set in JSPOs.

FIGURE 24. Quadratic-Mandelbrot set in JSPOs.

Mandelbrot has two large cardioid and two largest bulbs.
The cardioids are also called the primary Mandelbrot set
and bulbs around the perimeter of cardioids are called sec-
ondary Mandelbrot sets. The figures 26–28 are present cubic
Mandelbrot sets at different input parameters in JSPOs. The
images in figures 26 and 28 have same main cardioids resem-
bled with classical cubic Mandelbrot set but the secondary
Mandelbrot sets is different. The image in figure 27 have a
chain of Mandlebulbs in diagonal form. The Mandlebulbs in
this figure originate from origin. The input parameters were
as follows:
• Fig. 25: A = [−1, 1]× [−1.7, 1.7],
• Fig. 26: a1 = 1, a, b, c, s = 0.9, A = [−1, 1]× [−2, 2],
• Fig. 27: a1 = 1

2 , a, b = 0.5, c = 0.1, s = 0.9, A =
[−0.8, 0.8]× [−1.8, 1.8],

• Fig. 28: a1 = 1
i , a, b, c, s = 0.1, A = [−2, 2]× [−2, 2].

The next example demonstrate some graphs of quadric
Mandelbrot sets for a complex polynomial f(x) = x4 −
a1x + a0, where a0, a1 ∈ C in JSPOs. The figure 29
is classical quadric Mandelbrot set for f(x) = x4 + a0.
Interesting images visualize in figures 30–32 at different
values of input parameters in JSPOs. The images in figures
30–32 totally different from classical quadric Mandelbrot set
in shapes. The input parameters were as follows:
• Fig. 29: A = [−1.5, 1.5]× [−1.5, 1.5],
• Fig. 30: a1 = i,a, b, c, s = 0.9, A = [−1.6, 1]× [−1, 1],
• Fig. 31: a1 = 2 + i, a, b = 0.5, c = 0.1, s = 0.9,
A = [−3.5, 3.5]× [−3.5, 3.5],
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FIGURE 25. Classical cubic-Mandelbrot set.

FIGURE 26. Cubic-Mandelbrot set in JSPOs.

FIGURE 27. Cubic-Mandelbrot set in JSPOs.

FIGURE 28. Cubic-Mandelbrot set in JSPOs.

• Fig. 32: a1 = 1, a = 0.5, b, c = 0.9, s = 0.4, A =

FIGURE 29. Classical quadric-Mandelbrot set.

FIGURE 30. Quadric-Mandelbrot set in JSPOs.

FIGURE 31. Quadric-Mandelbrot set in JSPOs.

FIGURE 32. Quadric-Mandelbrot set in JSPOs.

[−1.5, 1]× [−1, 1].
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V. CONCLUSIONS
We studied Jungck-SP iteration as an application of fractal
geometry. We extended Jungck–SP iteration with s-convexity
and defined its orbit (JSPOs). We proved some fixed point
results for complex polynomial f(x) = xn − a1x + a0
(where n ≥ 2) to generate fractals in JSPOs. We used
the established results in algorithms to visualize Julia and
Mandelbrot sets. We showed in examples that the images of
Julia and Mandelbrot sets changed with change in involved
parameters.
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