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Abstract

The selection of an appropriate descriptive system and modeling framework to capture system dynamics and support process control
applications is a fundamental problem in the operation of industrial processes. In this study, to account for the the highly complex
dynamics of industrial process and additional requirements imposed by smart and optimal manufacturing systems, an extended state
space descriptive system, named comprehensive state space, is first designed. Then, based on the descriptive system, a hybrid first
principles/machine learning modeling framework is proposed. The hybrid model is formulated as a combination of a nominal term
and a deviation term. The nominal term covers the underlyingphysicochemical principles. The deviation term handles the effects
of high-dimensional influence factors using regression of low-dimensional deep process features. To handle the multimodal and
time-varying properties of process dynamics, the comprehensive state space is divided into subspaces indicating different operating
conditions. The model parameters are identified and trainedfor each operating condition to form the sub-models. Then the system
dynamics are formulated as a weighted sum of sub-models, with the weights being the probabilities that the current operating point
belongs to different operating conditions. The weights update with the movement of the operating point in the comprehensive state
space. Moreover, the descriptive system provides a platform for visualization, and can act as a digital twin of the physical process.
A case study illustrates the feasibility and performance ofthe proposed descriptive system.
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1. Introduction

Process industries, which mainly include iron and steel,
nonferrous metals, petrochemical and architectural materials,
are the cornerstones of the economies of many countries
(Craig et al. (2011)). By using continuous and complex
physicochemical processes, they transform elementary raw
materials into products that support economic development
and major engineering projects. The utilization rate of
raw materials, energy consumption, production costs and
environmental effects are the main concerns in the daily
operation of process industries. With the aim of high-efficiency
and green production, modeling, optimization and control of
industrial processes have long been recognized as important
and challenging problems.

Descriptive systems and modeling approaches play a funda-
mental role in capturing process dynamics and support process
control applications (Seborg et al. (2016)). Traditionally, a
description of system dynamics involves the use of a set of
mathematical models to represent the physical and chemical
phenomena, static and dynamic behaviors, as well as the
causal relationships among observed quantities, including
manipulated inputs and technical indexes. These mathematical
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models are widely used in model predictive control (MPC),
state estimation, soft sensing, process monitoring, fault
detection and diagnosis (FDD), operational optimization,plant
design, process simulation, control performance evaluation,
etc. (Olivier & Craig (2013), Pantelides & Renfro (2013)).
The types of system models are many, caused by differences
in the modeling approach and the purpose of the model.
According to Ljung (2010), system models can be categorized
using a whole palette of grey shades from white to black,
including white models (first principle models described by
e.g. differential/algebraic equations (DAEs)), off-white models
(white models with unknown or uncertain parameters described
by e.g. state-space models), smoke-grey models (e.g., semi-
physical modeling), steel-grey models (models linearized
around an operating point), slate-grey models (e.g., hybrid
models, block-oriented models) and black models (e.g., neural
network, support vector machines). All these models are
essentially aimed at extracting facts about the process dynamics
from the measured data, information and knowledge.

Therefore, determination of the model structure, utilization
of measured data, information and knowledge of reaction
mechanisms are vital in process modeling. Among these
models, hybrid models provide more flexibility in defining the
model structure and utilizing available information (von Stosch
et al. (2017)). Akkisetty et al. (2010) proposed a semi-empirical
hybrid model which integrates a population balance model
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with a neural network model to predict the milled particle
size distribution. In Alavi et al. (2014), a neural network
model is incorporated within the mass balance model of an
adiabatic fixed-bed reactor to reduce the computation load.
Keskitalo & Leiviskä (2015) combined several artificial neural
networks into ensembles to account for the difference between
the mechanistic model outputs and the real process values.
Chaffart & Ricardez-Sandoval (2018) proposed a hybrid model
for the simulation of thin film deposition. The multiscale
mechanistic model combined continuum differential equations
describing the transport of the precursor gas phase and a
stochastic partial differential equation (SPDE) predicting the
evolution of the thin film surface. In order to accurately predict
the thin film growth over wide operating ranges, an artificial
neural network was trained to predict the coefficients of the
mechanistic model. These hybrid modeling approaches mainly
combine first-principle models with neural network models that
are used to predict the modeling error or the coefficients of
the first principle model. However, the multimodal and time-
varying properties of the process dynamics are not considered.

With the shrinking of high grade mineral resources, mixed
mineral supply, and fluctuating feed conditions, industrial
processes in the current age are highly complex. The process
dynamics exhibit different modes and vary with time. It is
often not possible for traditional process models to include all
the required information of such systems. Varying degrees of
model uncertainty therefore exist, depending on the modeling
effort. A descriptive model structure that comprehensively
describes such a system and that reduces model uncertainty to
a minimum, should be able to:

(i) Support the comprehensive and precise description of an
industrial process.

(ii) Be ”flexible enough to cover many relevant nonlinear
phenomena, at the same time as they allow inclusion of
physical insight in order not to be too flexible”(Ljung
(2010)).

(iii) ”Describe static and dynamic process characteristics in
the whole operational range”(Hodouin et al. (2001)).

Correspondingly, a descriptive system supporting such a
model type should comprehensively cover the essential factors
influencing process dynamics. In addition, in order to realize
smart and optimal manufacturing, such descriptive system
should also be able to:

(i) Serve as an interface for digitalization and visualization.
(ii) Be compatible with both data analytics and control

design.
(iii) Serve as a container for different sources of information

collected along the production life-cycle.
(iv) Systematically support process control applicationsalong

the production life-cycle, e.g., modeling, optimization,
FDD and control.

In this study, an extended state space descriptive system,
namely Comprehensive State Space (CSS), is first designed to
cope with the high complexity of industrial processes. The CSS
descriptive system is a vector space which covers the essential

factors that influence the process dynamics including inlet
conditions, reaction conditions and output states. Then, under
the CSS descriptive system, a hybrid first principles/machine
learning modeling framework, is proposed. In the hybrid
modeling framework, a practical industrial process is viewed
as an interconnected system whose dynamics are formulated
as a combination of a nominal term and a deviation term.
The nominal term is a first-principle model (FPM) of the
process. The deviation term accounts for the affects of the
high-dimensional influence factors uncovered by the FPM. It
is expressed in a regression form with its inputs being the low-
dimensional deep process features extracted from production
data via stacked auto-encoders (SAE) (Vincent et al. (2010)).
This model structure contains the underlying physicochemical
principles while incorporating high-dimensional influence
factors in a low-dimensional manner. To handle the multimodal
and time-varying properties of process dynamics, the deep
process features are first used to divide the CSS into subspaces.
A subspace is a partition of CSS indicating certain operating
condition. By identifying model parameters under different
operating conditions, sub-models of the process are obtained.
Then, the process model is expressed as a weighted sum of the
sub-models. The weights are the probabilities that the current
operating point belongs to different operating conditions and
changes with the movement of the operating point in the CSS.
Moreover, the CSS description enables the visualization ofthe
evolution of the operating point and the digitalization of the
process.

The rest of this paper is organized as follows. The complexity
of industrial processes is first analyzed in Section 2. Then,the
definition of the comprehensive state space descriptive system
is given in Section 3. Based on the CSS descriptive system,
a hybrid first principles/machine learning modeling framework
is proposed in Section 4. For demonstration purpose, the
feasibility and capability of the hybrid modeling framework and
CSS descriptive system is illustrated via a case study in Section
5. Conclusions are drawn in Section 6.

2. Highly complex industrial processes

A plant is designed as a combination of multiple unit
processes with specific functions. An entire plant could be
viewed as a material flow and processing network in which a
unit process or a single piece of equipment acts as a node. Each
unit process is interconnected with other unit processes through
mass/heat transfers, recycles or reentrances (Fig. 1) (Lee & Lee
(2014)). As a consequence, the inlet conditions of a unit process
is prone to variations caused by:

(i) The fluctuations of the physicochemical properties and
composition of the raw materials caused by the change
of suppliers, price volatility of raw material and reagents,
etc.

(ii) Fluctuations in the feed flow rate.
(iii) Disturbances in upstream unit processes.
(iv) Plant-wide adjustment caused by malfunctions, mainte-

nance, etc.
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Figure 1: A plant composed ofN unit processes

In a unit process or a single piece of equipment, there can
exist multiple main reactions, each reaction corresponding to
a reaction step, especially for processes with slow dynamics
or with complex production technology. In addition, the
heterogeneous nature of the raw feed materials with its
associated elements/compounds causes side reactions to occur
besides the main reactions for which the process was designed.
Whereas the kinetic model of the main reactions can be derived
by applying chemical and physical principles, the practical
dynamics of the main reactions are more complex (Fig. 2):

(i) The side reactions can interact with the main reactions by
competition or promotion.

(ii) The dynamics of the side reactions and their interaction
mechanisms with the main reactions are only partially
known in most cases.

(iii) The variation of the physicochemical properties and
composition of the feed material can change the type of
the side reactions, and the proportions of the side and
main reactions.

Reaction system

Auxiliary system

Main reactions

Side reactions

Figure 2: The interactions between the main reactions, sidereactions and
auxiliary system in a unit process

Take the zinc hydrometallurgy process as an example. In
its cobalt removal process, the main reaction that occurs isthe
electrode reaction between cobalt and zinc catalyzed by arsenic
trioxide (Sun et al. (2014)). The copper ions from the previous
copper removal processes are involved in the following two
reactions:

Cu2+ + Zn = Cu+ Zn2+ (1)

HAsO2+3Cu2++3H++4.5Zn= Cu3As+4.5Zn2++2H2O (2)

Reaction (1) consumes zinc dust. Reaction (2) produces a Cu-
As alloy on the surface of the zinc dust which then serves as a
substrate for the cementation of cobalt ions.

HAsO2+Co2+ + 3H+ + 2.5Zn= CoAs+ 2.5Zn2+ + 2H2O (3)

Thus, an appropriate amount of copper ions would promote
cobalt removal. An excessive amount of copper ions will

however compete with the cobalt ions by consuming zinc dust,
and hence impede the cobalt removal process.

Moreover, kinetic models are often not a reflection of
current practice as production conditions can differ from the
experimental conditions used to derive these models. Auxiliary
systems often form part of unit process to supply necessary
reaction conditions, e.g., temperature and pH (Fig. 2). So,

(i) Changing the configuration of the auxiliary system can
also affect the dynamics of the controlled reactions.

(ii) In addition, change of the reaction conditions can hinder
part of the reactions and promote others, resulting in the
variation of the process dynamics.

Therefore, for each unit process or a single piece of
equipment, the main reactions are exposed to the inlet and
reaction conditions. The inlet conditions are affected by the
upstream and downstream unit processes, while the reaction
conditions are determined by the configuration of the auxiliary
system and type and portion of the side reactions. In this sense,
the practical dynamics of the main reactions is an outcome of
the intricate interactions among the main reactions, internal
environment (side reactions, auxiliary system) and external
environment (interconnected unit processes) (Fig. 3).

Main reactions

Side reactions

Auxiliary system

External environment

Internal environment

unit process 1 unit process N...

unit process i

Figure 3: Interaction between the main reactions, internalenvironment and
external environment

To sum up, an industrial process forms part of a multi-scale
system ranging from molecular reactions, particle collisions,
equipment interactions (basic production unit), plant-wide
interactions (whole production life-cycle) to the global market
(the global value-chain that affects plant production and
profit). In addition, due to the inherent complexity and
the aforementioned intricate interactions, the dynamics of
the main reactions are nonlinear, containing uncertainties
and are not consistent under different inlet and reaction
conditions. Therefore, building a comprehensive and precise
model of an industrial process, which can cover the dynamics
of an industrial process under various operating conditions,
requires knowledge from multiple disciplines. On the other
hand, various restrictions in plant testing result in insufficient
information about many aspects of the system dynamics, that
could lead to significant variance errors in the resulting model
(Lee & Lee (2005)). In order to more accurately describe
highly complex industrial processes, additional descriptive
methods, beyond those described in Ljung (2010), are required
to increase the utilization of information.
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3. Definition of comprehensive state space

As discussed in Section 2, the system dynamics and the
intricate interactions that exist in a unit process can be
illustrated by Fig. 4. If the output states are denoted asxO,
the inlet conditions asxI, the reaction conditions asxR, then the
dynamics of the output states can be described by

ẋO = g(xO, xI , xR) (4)

whereg(·) is a function representing the relation betweenẋO

andxO, xI, xR. In this sense, the traditional state-space, which
has its states being the output statesxO, can be extended, by
incorporating the inlet conditionsxI and reaction conditionsxR,
to a ’Comprehensive state space’ (Fig. 5).

Main reactions

Side reactions

Auxiliary system

Interconnected processes

xOxI xR

Figure 4: Unit process interactions
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Figure 5: Illustration of comprehensive state space (P0, P1, Pk are different
points in comprehensive state space)

Comprehensive state space : Comprehensive state space is a
three dimensional vector space with each dimension being
the codes of:

• Output states (xO): the output states that describe the
dynamic behavior of the main reactions, which are
mainly the controlled technical indexes, e.g., outlet
ion concentration of a continuous stirred tank reactor.

• Inlet conditions (xI): the quantity, physicochemical
properties, composition of the feed material, e.g.,
inlet flow rate, species concentration.

• Reaction conditions (xR): the conditions under
which the main and side reactions take place. e.g.
temperature, pH, stirring rate.

As xO, xI and xR are high-dimensional, they are compressed
into one-dimensional variables according to certain coding
rules (Bierbrauer (2016)). As shown in Fig. 6,xO, xI and
xR are coded as hexadecimal numbers. Different digits of
the hexadecimal code represent different variables, e.g., three
variables in the reaction conditionsxR1, xR2, xR3 take the value
of ’06’, ’2A’ and ’05’ respectively.

The CSS description system covers more influence factors
than the traditional state space composed solely of output
states, which reduces the uncertainty in modeling. As shown
in Figures. 5 and 6, each point in the comprehensive state
space represents different operating points with corresponding
attributes, including model structure, value of model param-
eters, type of operating condition, etc. The coordinate of a
operating point depends on the value of output states, inlet
conditions and reaction conditions (Fig. 6). The ’coordinate-
attributes’ information vectors of each point in the CSS form a
comprehensive description of the process. On the other hand,
the CSS serves as a container for the ’coordinate-attributes’
information pairs, which can then act as a digital twin of the
physical process.

In the following two sections, a study is performed to
show how the CSS can support operating condition recognition
and process modeling, or in other words, how to obtain the
attributes of the operating condition and process model under
the CSS framework.

Output states

Inlet conditions

Reaction conditions

Coordinate Attributes

Model

Working condition

3 6 9 F 0 7 3 1

6 68 6 5 E 0 5

0 6 2 A 0 5 7 1

Control law

xR1 xR2 xR3xR1 xR2RR xxR3RR ...

Figure 6: Coordinate and attributes of a point in comprehensive state space

Remark 1:Consider the output statesxO and a fixed-length
time interval [t0, t f ]. If the initial values of the output states
xO(t0) are the same, and the inlet conditions and reaction
conditions are the same during [t0, t f ], then starting from any
t0, the final value ofxO(t f ) is the same.

Remark 2: In most cases, the manipulated variables affect
the system dynamics by changing the reaction conditionsxR,
e.g., in the cobalt removal process, the flow rate of spent
acid affects the pH, the dosage of zinc dust affects the overall
oxidation-reduction atmosphere which is represented by the
oxidation-reduction potential (Sun et al. (2013)). However, if
under certain working conditions the inlet conditions haveto
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be changed, some variables that determine the inlet conditions
then become manipulated variables.

Remark 3:Inside a sufficiently small subspace in the entire
’comprehensive state space’, the system dynamics, i.e. the
model structure and parameters can be regarded as constant.As
in different subspaces, the inlet conditions, reaction conditions
and output states are different. Therefore, different subspaces
indicate different operating conditions.

Remark 4:If the process behavior inside each subspace can
be obtained, then the comprehensive state space can serve asa
digital twin of the physical process. The operators can then
access the location of the current operating condition in the
comprehensive state space to follow and monitor the evolution
of the process.

4. A hybrid first principles /machine learning modeling
framework

In this section, a CSS-based hybrid first principles/machine
learning modeling framework is presented. The process is
modeled as a combination of a nominal first-principle model
and a machine-learning based input-output model accounting
for the deviation between the nominal model and actual
process dynamics. The low-dimensional deep process features
are first extracted to divide the CSS into different partitions
indicating different operating conditions. Then, the sub-models
under each operating condition are obtained by identifyingthe
model parameters. The dynamic process model is formulated
as a weighted sum of the sub-models. The weights are
the probabilities that the current operating point belongsto
different operating conditions and update continuously with the
movement of the working point in the CSS.

4.1. Deep feature extraction
Deep feature extraction is used to transform high-

dimensional raw data into a low-dimensional deep process
feature set which can be used to detect the patterns in the inputs
via multiple levels of representation (LeCun et al. (2015),Chen
et al. (2016), Shang et al. (2014)). Deep learning methods
with higher layers of representation can learn very complex
nonlinear functions. SAE is a type of unsupervised deep
network, which is composed of multiple-level and stacked
auto-encoders. As shown in Fig. 7, an auto-encoder has an
input layer, output layer and one hidden layer. It aims to
reproduce the input signal in the output layer via encoding
and decoding, and extract the latent representation of inputs
by limiting the number of hidden units. An auto-encoder
is configured by minimizing the ’input-output’ approximation
error, while the extracted latent representation serves asthe
inputs of its successive auto-encoder.

Consider theith auto-encoder that first extracts a set of latent
variables from the inputs,

Y i = H(W iX i + bi) (5)

then the decoder reconstructs the outputs from the latent
variables

Ŷ i = H
′

(W
′

iY i + b
′

i ) (6)

whereX i ∈ R
ni represents the input,Y i ∈ R

mi represents the
hidden variables,Ŷ i ∈ R

ni represents the output,H(·) and
H
′

(·) are the element-wise activation functions, e.g., sigmoid
function,W i ∈ R

mi×ni , W
′

i ∈ R
ni×mi andbi ∈ R

mi , b
′

i ∈ R
ni are

the weighting matrices and bias vectors respectively, thatcan be
identified by minimizing the reconstruction error on a training
set withM samples:

ℓSAE(W i ,W
′

i , bi , b
′

i ) =
M

∑

j=1

‖X( j)
i − Ŷ

( j)
i ‖

2 (7)

whereX( j)
i andŶ

( j)
i are the inputs and the reconstruction of the

inputs of thejth training sample.
The pre-training of the SAE is conducted in a layer-wise

manner. After all the auto-encoders are pre-trained, the hidden
variables of the last auto-encoder are taken as the deep process
feature setz = YL. The initial regression function parameters
of the deep process featuresα are identified by minimizing the
regression error:

ℓRegression(α1, · · · ,αN) =
M
∑

j=1

‖xdeviation( j)

O − E(z( j))‖2 (8)

wherexdeviation( j)

O andz( j)
i are the deviation terms and the deep

process feature variables of thejth training sample.E(·) is a
regression function set of the deep process featurez. After pre-
training, [α1, · · · ,αN] and [W i ,W

′

i , bi , b
′

i ] are used as initial
solutions to fine-tune the weights and minimize the overall
regression modeling error via back-propagation.

4.2. Deep feature space partitioning

After the extraction, the deep process features are fed to
the operating condition classifier to divide the deep process
feature space, e.g. Support Vector Machine (SVM), Logistic
Regression (LR),k-Nearest Neighbors (k-NN), Decision Tree
(DT), and Random Forest (RF). In this study, a sequential-
manner feature space dividing approach is proposed. At first
a rough division of the feature space is done using ak-
Dimensional Tree (KD-Tree) (Bentley (1975), Zhang et al.
(2018)). Then a LR classifier is adopted for finer divisions
(Harrell (2015)). After the feature space is divided, the
partitions of the deep process feature space are ’decoded’ to
the subspaces of the comprehensive state space. The steps for
subdividing the process state are briefly introduced in Section
4.2.1 and 4.2.2.

4.2.1. Rough division using a KD-Tree
A KD-Tree is a space partitioning algorithm for ak-

dimensional space. It is a variant of a binary tree with each node
being k-dimensional. It splits the space into two half-spaces
at each level iteratively until a desired number of partitions is
achieved. The detailed steps are as follows (Fig. 8):
Step 1: Determine the desired numbers of partitionsNP.
Step 2: Calculate the required number of features and the
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Figure 7: Deep feature extraction, regression, and subspace dividing

number of splits. If 2N−1 < NP 6 2N, N > 1, thenN features
andNS number of splits are required.

NS = (2N−1 − 1)+ (NP − 2N−1) = NP − 1 (9)

Step 3: Normalize the feature data. Calculate the variances of
the features, and rank the features according to the magnitude
of their variances. Letj = 1.
Step 4: For the jth feature, find its median value, for the
partition S(j−1)q, q = 1 to 2( j−1), generate a splitting hyperplane
which is perpendicular to the corresponding axis and takingthe
median value on the axis of thejth feature in the feature space.
Rank the resulting new half-spaces Sj(2q−1),Sj(2q) according to
the magnitude of the variance of the (j + 1)th feature.
Step 5: If j < N − 1, then letj = j + 1, and repeatStep 4 until
j = N − 1.
Step 6: If 2 j < NP, then from q = 1 to q = 2 j ,
divide the partition Sjq using the Nth feature until
2q+ (2 j − q) = NP. The original feature space S0 is partitioned
into {SN1,SN2, · · · ,SN(2q),Sj(q+1), · · · ,Sj(2j )} (denoted as
{S(1),S(2), · · · ,S(NP)} hereafter).

P
N

P
N

P
N

P
N

Figure 8: Rough division using a KD-Tree

Remark 5: The feature variance is used as criterion when
doing rough division. A large feature variance indicates a wide

distribution of the data points on that feature dimension, which
has a higher dividing efficiency compared with other features
with smaller variances.

Remark 6:The variance and covariance ofz determines the
first and second order properties of the deep process features
(Ljung (1999)), so that the statistical features ofz can also be
used for process monitoring and fault detection.

4.2.2. Fine division based on LR
The KD-Tree based rough division process provides an initial

solution for the LR-based fine division. LR classifier estimates
and discriminates among the probabilities that an observation
belongs to different classes:

P(y|z) =
1

1+ e−σ(z)
(10)

σ(z) = β0 +

N
∑

i=1

βizi (11)

whereP(y|z) is the probability that inputz belongs to the class
with labely, e.g. ifP(y|z) > 0.5, i.e.σ(z) > 0, thenz belongs to
classy. σ(z) = 0 is the decision boundary.β = [β0, β1, · · · , βN]
are the coefficients to be learned for each class. The detailed
steps are as follows:
Step 1: Let r = 1.
Step 2: For partition S(r), train the coefficient setβ(r) by
minimizing the regression error:

ℓ
(r)
LR(β(r)) =

M
∑

j=1

[
1

1+ e−σ(r)(z j )
− y( j)]2

=

M
∑

j=1

[
1

1+ e−[β(r)
0 +

∑N
i=1 β

(r)
i z( j)

i ]
− y( j)]2 (12)

wherey( j) is the class label of thejth sample obtained by rough
division.
Step 3: If r < NP, r = r + 1, repeatStep 2.
Step 4: The partition with boundaryσ(r)(z) = 0 is the rth
subspace of the entire feature space.

Remark 7:The partitioning of the deep process feature space
can be transformed to the partitioning of the original CSS.
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The borders of the subspaces are not time-invariant. When
a sufficient amount of new data samples appear, the process
of roughly and finely dividing the feature space, should be
repeated to update the partition.

4.3. A hybrid modeling framework

This section presents the hybrid modeling framework in
the context of CSS. To start with, two typical methods to
describe process dynamics, i.e. state-space based first principle
modeling (SS-FPM) and machine learning based input/output
modeling (ML-IOM), are revisited.

4.3.1. First principle based state-space modeling
First principle models that are based on the inherent physical

or chemical laws of a process, e.g. mass and energy balances,
reaction kinetics, hydrodynamics, and thermodynamics, can
often be described in state-space form. State-space models
consist of a set of input, output and state variables that are
related by first-order differential or difference equations. The
state-space approach is powerful as it provides a unifying
framework for representing many classes of system equations
including stochastic, nonlinear and time-varying multivariable
systems (Brogan (1991)).

The model parameters in such state-space models are
typically physical coefficients or constants (Ljung (1999)).
Examples of such models include a continuously-stirred tank
heater model (Thornhill et al. (2008)), a flotation cell model
(Bascur (1982)), and a grinding circuit model (Le Roux et al.
(2013)). However, this modeling approach requires significant
process knowledge, which is not always available (Kadlec etal.
(2009)). As a result not all the factors that influence the process
are captured in the model.

4.3.2. Machine learning based input/output modeling
Machine learning based input/output models represent

empirical mathematical or statistical correlations between input
and output variables derived from plant data, especially for
complex systems whose rigorous theoretical model involvesa
large number of DAEs and unknown parameters (Seborg et al.
(2016), Ge (2017)).

ML-IOM involves the use of machine learning approaches
(unsupervised learning, supervised learning, semi-supervised
learning, reinforcement learning) which project the real process
to a data space or latent variable space and construct
statistical models for correlation analysis, prediction,soft
sensing, process monitoring, pattern recognition, and FDD
(Ge et al. (2017)). The main actions involved in ML-
IOM approaches include regression, classification, clustering,
coordinate transformation, and statistical properties analysis.
These methods make use of a large volume of production
data that contain useful information and knowledge about
the process dynamics and running status. In addition, by
projection, the evolution of operating conditions can be
visualized in the data space. However, the performance of
data driven modeling relies on the quality and operation ranges
covered by the training data.

4.3.3. Differences and connections
The two modeling methods described in Sections 4.3.1 and

4.3.2 use different sources of data, information and knowledge
(Fig. 9), and have their pros and cons:

(i) The SS-FPM utilizes inherent physical or chemical laws
such as the underlying physicochemical laws of a process.
However, not all the factors that influence the process are
captured in the model.

(ii) The ML-IOM utilizes routinely collected production data
and machine learning algorithms. It can approximate the
relationship between process inputs and outputs with very
high accuracy. However, it does not capture the internal
dynamics of a system.

However, both methods are informed by probability theory and
statistics, e.g., conservation laws are derived from experimental
data, and first principle models often contain empirical
relationships. The combination of these two methods could
increase the utilization rate of data, information and knowledge,
thus leading to the discovery of more facets of the process
dynamics.

Real industry process Process model

Data, information and 

knowledge

Facets of process dynamics

Production data

Reaction kinetics

Conservation laws

Machine 

learning

First 

principle 

modeling

u¢

u

x
y

( , )y h u u¢=

( , )x f x u= ( ,( ,x fx f ( , )y g x u=ò

y

ML-IOM

SS-FPM

Figure 9: Differences and connections between state-space and data-driven
modeling

4.3.4. CSS-based hybrid modeling
The system dynamics described by (4) can be decomposed

as a combination of a nominal term and a deviation term

ẋO = f(xO,Θ, u) + ǫ(xO, xI , xR) (13)

where f(·) is the nominal term or the first principle model
containing the main reactions (white model),Θ represents the
model parameters which take different values under different
configurations of the inlet and reaction conditions, which can be
identified using historical operation data.ǫ(·) = g(·)− f(·) is the
deviation between the nominal model and the real dynamics.

This formulation keeps the nominal dynamics of the main
reactions in a state-space form, and can account for the
intricate interactions by introducingǫ(·) which then needs to
be determined using data analytics (grey or black model), as
shown in Fig. 10.

Considering each operating condition, the process dynamics
can be realized as following:

xO(t f ) = xnominal
O (t f ) + xdeviation

O (t f ) (14)
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Figure 10: Dynamic modeling framework in the context of CSS

where

xnominal
O (t f ) = xnominal

O (t0) +
∫ t f

t0

f(xO,Θ)dt (15)

xdeviation
O (t f ) = xdeviation

O (t0) +
∫ t f

t0

ǫ(xO, xI , xR)dt (16)

xnominal
O (t f ) is the nominal term derived from the FPM of the

main reactions (Buzzi-Ferraris & Manenti (2009), Pantelides
& Renfro (2013)). xdeviation

O (t f ) is the deviation term with the
output statesxO, inlet conditionsxI and reaction conditionsxR

as its inputs. Thus, the value ofxO can be expressed as

xO(t f ) = xO(t0) +
∫ t f

t0

[f(xO,Θ) + ǫ(xO, xI , xR)]dt (17)

or, more practically, in a nonlinear discrete form

xO(k+ 1) = xO(k) + fk(xO(k),Θ(k))

+ ǫk(xO(k), xI(k), xR(k)) (18)

where k indicates thekth sampling instant,fk(xO(k),Θ(k))
and ǫk(xO(k), xI(k), xR(k)) are discretized counterparts of
∫ tk+1

tk
f(xO,Θ)dt and

∫ tk+1

tk
ǫ(xO, xI , xR)dt, respectively.

To make the model usable, the high-dimensional matrix
ǫk(xO(k), xI(k), xR(k)) is approximated in this study by the
nonlinear regression form

ǫk = U(z(k)) = [U1(z(k)) U2(z(k)) · · ·UN(z(k))]T (19)

wherez is the vector of low-dimensional deep process features
extracted from the high-dimensional contributors, andU(·) is
the regression function set of the deep process feature variables.

As the process evolves in the CSS, the model parameters
are subject to the inlet conditions, reaction conditions and
output states. However, these parameters are identified foreach
operating condition, not each point in the CSS. Consider the
time-varying characteristic of the production environment, the
probability information provided by the LR can be incorporated
into the dynamic process model (Fig. 11).

xO(k+1) = xO(k)+
Np
∑

i=1

P(i|z)[f(i)
k (xO(k),Θ(k))+U(i)(z(k))] (20)

wheref(i)
k (xO(k),Θ(k)) andU(i)(z(k)) indicate the corresponding

terms under operating conditioni, i.e. sub-models. Compared
with some typical hybrid modeling approaches (Psichogios &
Ungar (1992), Abonyi et al. (2002)), the proposed CSS-based
modeling approach considers the multimodality and updatesthe
weights of each sub-model to enable the dynamic modeling of
the process.

5. Case study

In this section the CSS descriptive framework is used to
develop a process model for a cobalt removal process.
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5.1. Process description
Cobalt removal is performed in a unit process in zinc

hydrometallurgy. Its main function is to decrease the cobalt
ion concentration in the zinc sulfate solution such that the
cobalt ion concentration after removal is lower than a safety
limit. The cobalt removal process usually consists of four
continuously stirred tank reactors and a thickener (Fig. 12).
Zinc dust is added into each reactor to replace the cobalt
ions. Steam and spent acid are used to maintain the required
reaction conditions (e.g., temperature 65∼ 75◦C and pH
4.5 ∼ 5.5). Catalyst is provided to promote and accelerate
cobalt removal. After retention in the consecutive reactors, the
solution enters the thickener where solid-liquid separation takes
place. The resultant solids, which can be used as crystal nuclei
for cementation, is deposited and recycled to promote impurity
removal. The overflow is further filtered and delivered to a
subsequent process.

Inlet solution

Thickener

Liquid 

Storage 

Tank

Pump1

Pressure Filter 1

Pressure Filter 2

Residue

To 

subsequent 

process

Weigher 1
Weigher 2

Weigher 3
Weigher 4

Bin 1
Bin 2

Bin 3
Bin 4

Underflow

Overflow 

Tank

Pump2

Reactor 3
Reactor 4

Reactor 2
Reactor 1

Figure 12: A cobalt removal process

The principle of cobalt removal is to use zinc dust to replace
the cobalt ion impurities. However, the replacement is not
trivial. As shown in Fig. 13, cobalt removal is catalysed
by electro-positive metal salts, e.g., arsenic trioxide, which
reacts with residual copper ions and zinc dust (Reaction 1),
and provides reaction surfaces for cobalt removal (Reaction
2). Besides the main reactions, the residual copper ions
and hydrogen ions in the solution also react with zinc dust
(Reactions 3 and 4). Reactions 3 and 4 affect cobalt removal
by competing with cobalt ions for zinc dust and changing the
oxidation-reduction atmosphere. If zinc dust is overdosed,
Reactions 5 and 6 will take place. These two reactions are
undesirable, and produce elemental arsenic and highly toxic
arsine gas. Besides, other elements and compounds in the inlet
solution can result in other side reactions. The flow rates of
the inlet solution, spent acid, arsenic trioxide, underflow, steam
and zinc dust can affect the process dynamics. In addition, the
interactions with its preceding and subsequent unit processes
can also affect cobalt removal (Sun et al. (2013)).

5.2. Experiment setup
In the case study, 1050 data samples were collected over a 4

months period from an industrial zinc smelting plant (The data

is scaled and desensitized for confidentiality reasons). The data
were divided into two parts: 1000 samples for training and 50
samples for verification. Each data sample contains the values
of the output states, inlet conditions and reaction conditions.
The time span of the data samples ensure that a majority
of the operating conditions are covered. In addition, with
this amount of data samples, deep process feature extraction
approaches can be applied. Knowledge of the reaction kinetics
and the production process is obtained from studying the
process mechanisms, data analysis, as well as discussions with
experienced operators and technicians.

The aim of this case study is twofold, i.e. to test if the
working conditions can be recognized and how well the model
performs under the CSS framework. The steps of the case study
are listed as follows:

(i) Extract the low dimensional deep process features from
the high dimensional process variables.

(ii) Divide the deep process feature space into subspaces with
each of them indicating different operating conditions.

(iii) Test if the working conditions can be recognized and how
well the model performs under the CSS framework.

(iv) Build the nominal kinetic model, and formulate the pro-
cess dynamics using the CSS-based modeling framework.

(v) Compare the performance of the nominal kinetic model
and the CSS-based modeling approach.

5.3. Results

According to the reaction mechanism, the output states were
selected as the cobalt ion outlet concentrations of the four
reactors. The variables indicating reaction conditions were
chosen as the oxidation reduction potential (ORP) of each
reactor, flow rate of the arsenic trioxide and spent acid. ORP
presents the overall oxidation-reduction atmosphere inside the
reactor, while the flow rate of the arsenic trioxide and spent
acid determine the catalytic condition and the pH of the
solution respectively. The temperature affects the reaction rate.
However, the solution temperature in the reactor rarely change,
and was therefore omitted from the simulation. The flow rate,
pH, and concentrations of the metallic ions (e.g., Co2+, Cu2+,
Zn2+, etc.) in the feed solution demonstrate the inlet conditions
(Table 1). To sum up, there are 4 output states, 12 variables
indicating inlet conditions and 6 for the reaction conditions.
Therefore, the dimension of output states, inlet conditions and
reaction conditions is 22 in total. The correlations among the
condition variables and output states are obtained by Pearson
correlation analysis, as shown in Table 2.

Table 1: Variables selected for the CSS

State type Variables
Output states c1, c2, c3, c4
Reaction conditions v1, v2, v3, v4, fAs, fAcid
Inlet conditions f0, mpH, c0, cCu, cZn, cCd, cNi , cAs, cSb,

cGe, cFe, cCa
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Figure 13: Main and side reactions in a cobalt removal process

Table 2: The correlations between the condition variables and output states

Variables c1 c2 c3 c4

v1 0.2143 0.1476 0.1572 0.3085
v2 0.0580 0.0419 0.0206 -0.0863
v3 -0.1221 -0.1567 -0.2421 -0.1648
v4 0.1511 0.0595 0.0494 0.0129
fAs 0.3712 0.3427 0.3759 0.3942
fAcid 0.0128 -0.0555 0.0420 0.1625
f0 0.3467 0.2015 0.2529 0.2664
mpH 0.1390 0.0683 0.0469 0.0354
c0 0.5910 0.3890 0.3085 0.4931
cCu 0.1819 0.2220 0.2317 0.3073
cZn 0.0481 0.0938 0.0696 0.0772
cCd -0.2684 -0.1675 -0.1493 -0.1023
cNi 0.0182 -0.0515 -0.0377 -0.0005
cAs 0.1889 0.1144 0.1432 0.2587
cSb -0.0666 -0.0958 -0.0936 -0.0247
cGe -0.1512 -0.2045 -0.1987 -0.1254
cFe 0.1264 0.0946 0.0443 -0.0388
cCa 0.1299 0.0040 -0.0385 -0.0737

Based on a process analysis, the number of operating
conditions was determined asNP = 7. Three deep process
features are therefore required to divide the deep process feature
space into 7 subspaces. To extract the 3 deep process features,
two auto encoders were used to form an SAE. The number
of latent variables in the two auto encoders are 18 and 3
respectively. The activation function adopted is the sigmoid
function:

fsig(x) =
1

1+ e−x
(21)

Then, rough division was conducted based on the variance of
the 3 deep process features, and the resulting subspaces were
denoted as S31 (Working condition type 1), S32 (Type 2), S33

(Type 3), S34 (Type 4), S35 (Type 5), S36 (Type 6), S24 (Type
7) (Figs. 8, 14). Then, fine division based on LR followed.
The LR provides probability class information, which is useful
especially for the junctions of two or more subspaces (Fig. 14).
Fig. 14 shows the location and the probability that the
operating point belongs to different operating conditions of the
50 test samples in the deep process feature space. The 30th
sample is on the border of operating conditions S35 and S36.
The probability that it belongs to these two operating conditions
are 85% and 15%, respectively. The corresponding partitioning
of the CSS is shown in Fig. 15.

The nominal part of the model is derived using mass balances
and first order reaction kinetics. Assuming ideal mixing
conditions, i.e. the reaction rate and solution temperature are
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Figure 14: Partitioning of the deep process feature space

Figure 15: Partitioning of the CSS

uniform throughout the reactor, then:

dci

dt
=

fi−1

V
ci−1 −

fi
V

ci − r ici (22)

where ci , r i and fi are the outlet cobalt ion concentration,
reaction rate, and outlet flow rate of theith reactor respectively,
with i = 1, 2, · · · ,N. V is the volume of the reactor.c0 and f0
are the cobalt ion concentration and the flow rate of the inlet
solution of the first reactor, respectively.

The reaction rate termr can be derived using the Arrhenius
equation and electrode kinetics (Antropov (1977), Zha (2002)):

r = A0βgse
−

Ee+2γF(v−veq)
RT (23)

where v is the Oxidation Reduction Potential (ORP). It
represents the oxidation-reduction ability of the solution, and
is controlled by the addition of zinc dust,u. The physical
meanings of the parameters in the process model are listed
in Table 3. To increase the identification accuracy, model
parametersA0, β and gs were combined as a new parameter
Aβ in the identification of model parameters (Buzzi-Ferraris
& Manenti (2009)). The value of model parameters under
different operating conditions are shown in Table 4. The
performance of the nominal kinetic model is shown in Fig. 16
and Table 5. For comparison purpose, the performance of pure
data-driven model (PDDM) is also included. The PDDM is a
combination of SAE and radius basis neural network (RBFNN).
The input of the RBFNN is the deep process features extracted
using SAE. The output of the RBFNN is the estimated value of
cobalt ion concentrations of each reactor. As indicated by the
results, compared with kinetic model, PDDM is less sensitive
to the change of operating conditions.

Table 3: Physical meaning of the parameters in the process model

Parameter (unit) Physical meaning
A0(s−1) frequency factor of the reaction
β reaction surface area available on a unit area of the

crystal nucleus
gs weight of crystal nucleus per unit volume of the

reactor
Ee(J ·mol−1) standard activation energy of the reaction
γ variation factor between the electrode potential and

the cathode activation energy
veq(V) equilibrium potential of the cathode reaction
v(V) oxidation reduction potential of the solution in the

reactor
T(K) reaction temperature
F(C ·mol−1) Faraday constant, F= 96485
R(J·mol−1K−1) ideal gas constant, R= 8.314

To account for the unknown dynamics, a deviation term
cdeviation

i is added to the nominal model, then under certain
operating condition, for each reactor:

ci(t) = ci(0)+
∫ t

0

(

fi−1

V
ci−1 −

fi
V

ci − r ici

)

dτ + cdeviation
i (24)

The deviation term is a neural network model with its inputs
being the deep process features. Its output is the estimated
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Figure 16: Performance of the nominal kinetic model and puredata-driven model

Table 4: Values of model parameters under different operating conditions

Working condition Reactor Aβ Ee γ veq

S31

Reactor 1 6981106 72932 0.618 -0.300
Reactor 2 7286393 79847 0.625 -0.332
Reactor 3 8073669 79998 0.706 -0.373
Reactor 4 8983144 71945 0.664 -0.436

S32

Reactor 1 7362697 72747 0.600 -0.300
Reactor 2 7832393 79968 0.689 -0.367
Reactor 3 8668537 77202 0.671 -0.392
Reactor 4 6562077 72362 0.603 -0.404

S33

Reactor 1 5984033 72400 0.600 -0.300
Reactor 2 8365405 78822 0.601 -0.348
Reactor 3 5308410 79043 0.608 -0.348
Reactor 4 8186106 72876 0.750 -0.463

S34

Reactor 1 7638676 73391 0.600 -0.300
Reactor 2 8858660 77157 0.797 -0.427
Reactor 3 6213033 77216 0.791 -0.429
Reactor 4 5874675 78829 0.621 -0.368

S35

Reactor 1 5957729 72265 0.600 -0.300
Reactor 2 7970208 79557 0.630 -0.352
Reactor 3 8510620 77102 0.734 -0.417
Reactor 4 8817141 73734 0.695 -0.440

S36

Reactor 1 5349874 72240 0.600 -0.300
Reactor 2 6516429 74700 0.616 -0.385
Reactor 3 5255406 78698 0.772 -0.414
Reactor 4 7004144 71521 0.704 -0.457

S31

Reactor 1 5311958 72624 0.600 -0.300
Reactor 2 5438328 77854 0.671 -0.382
Reactor 3 8817776 70562 0.617 -0.440
Reactor 4 8756903 79996 0.640 -0.379

deviation between the nominal model and practical system
dynamics. Eq.(24) is a basic model of process dynamics. Its
model parameters take different values under different working
conditions. The formulation of the overall system dynamics
was the same as Eq.(20). The performance of the integrated
model is shown in Fig. 17. The performance comparison
between the integrated model and the nominal model is given
in Table 5, and Fig. 18 using a four plot figure (Yuan et al.
(2018)), respectively. The proposed modeling approach has
higher accuracy on average, and its performance is more stable.
This indicates by combining reaction kinetics, productiondata
and information about the current operating conditions, the
system dynamics can be described more comprehensively. This
is due to the higher information utilization rate under the CSS
framework.

5.4. Discussion

It can be observed from the above results that the CSS
framework provides:

(i) Improved modeling accuracy: By using the CSS
modeling approach, the ARE of the four reactors are
lower than 10%, which is satisfactory for an industrial
application. The norm of the Fisher information matrix
of the kinetic model and the integrated model have
orders of magnitude of 104 and 1015, respectively.
This indicates that more information is utilized in the
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Figure 17: Performance of the integrated model under the CSSmodeling framework

Figure 18: Four plot performance comparison between the integrated model and the nominal kinetic model
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Figure 19: Trajectory of the test samples in the CSS

Table 5: Performance comparison between nominal kinetic model, pure data-
driven model and CSS modeling framework using average relative error (ARE)
and root mean square error (RMSE)

Performance measure Reactor 1 Reactor 2 Reactor 3 Reactor 4
ARE of FPM 15.19% 15.55% 16.14% 17.21%
ARE of PDDM 8.38% 10.70% 6.67% 8.32%
ARE of CSS model 5.7% 4.02% 3.33% 7.90%
RMSE of FPM 1.3967 0.6132 0.2506 0.0706
RMSE of PDDM 0.6296 0.3877 0.1069 0.0397
RMSE of CSS model 0.4166 0.1568 0.0679 0.0314

integrated modeling approach. Therefore, higher model
accuracy is obtained as an outcome.

(ii) Intuitive process monitoring: CSS provides a visual
abstraction of the physical process. The location and the
evolution of the process in the CSS can be monitored
intuitively. Fig. 19 shows the evolution trajectory of the
50 test samples. Different marker colors indicate different
operating conditions. The variation of model parameters
(see Table 4) and operating conditions along the evolution
trajectory can be observed from Fig. 19.

(iii) Comprehensive descriptive capability: The CSS descrip-
tive framework covers the essential influence factors of
the process. These factors are organized to form a
digitized container of the physical process which can
accommodate various attributes of an operating point
under many different operating conditions, including e.g.,
model parameters, controller gain, status, and suggested
operation.

6. Conclusions

In this study, a comprehensive state space descriptive
system and a corresponding hybrid first principles/machine
learning modeling framework were proposed. As a wide
variety of process control applications is model-based, the CSS
descriptive system can better support process control in terms
of better understanding of process dynamics. In addition, its
intuitive nature provides a platform for process monitoring.
It provides a comprehensive yet ’not overly complex’ way
to describe the dynamics of a process that enables the
digitalization and visualization of a physical process. The CSS
descriptive system is an open framework, which can serve as
a container for the fusion of data, information and knowledge
from various sources. Due to the above characteristics of CSS,
it can also serve as a ’digital twin’ of a physical process. The
physical process and its CSS counterpart can therefore act as
a ’cyber-physical component’ in a smart factory. The results
presented in this paper are preliminary and mainly considers
process modeling in the context of CSS. For future extension,
the following should be considered:

• The dividing of the deep process feature space is based
on the variance of deep process features. This dividing
approach is easy to implement. However, the physical
meaning of the subspaces are not clear. Therefore,
generating subspaces with concrete physical meanings can
provide more useful information to the operators.

• Transforming the system dynamics into a linear time
varying (LTV) format by using a U-model (Zhu et al.
(2019)) approach to describe the nominal term and
deviation term respectively. This would resulted in an
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LTV model of the physical process, which can bridge
the gap between the nonlinear system description and
linear controller design approaches with well established
properties.

• Integrating modeling, control, and estimation in an
interactive and systematic framework to gradually increase
the understanding of the system dynamics and achieve
intelligent autonomous control.

Solutions to the above problems and the methods proposed in
this study can enrich the theoretical foundations for the smart
and optimal manufacturing in the process industries.

References

Abonyi, J., Madar, J., & Szeifert, F. (2002). Combining firstprinciples models
and neural networks for generic model control. In R. Roy, M. Köppen,
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