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Abstract

The selection of an appropriate descriptive system and limgdfeamework to capture system dynamics and support gocentrol
applications is a fundamental problem in the operation dfigtrial processes. In this study, to account for the thelhigomplex
dynamics of industrial process and additional requiresignposed by smart and optimal manufacturing systems, and&d state
space descriptive system, named comprehensive state spfist designed. Then, based on the descriptive systeyhradHirst
principlegmachine learning modeling framework is proposed. The loyimadel is formulated as a combination of a nominal term
and a deviation term. The nominal term covers the underlgmgsicochemical principles. The deviation term handlesdfects

of high-dimensional influence factors using regressioroef-tlimensional deep process features. To handle the nadahand
time-varying properties of process dynamics, the comprsilie state space is divided into subspaces indicatiifigrdint operating
conditions. The model parameters are identified and trefimeelach operating condition to form the sub-models. Thersistem
dynamics are formulated as a weighted sum of sub-models thétweights being the probabilities that the current cjpeggooint
belongs to dirent operating conditions. The weights update with the movement of the operating point in the comprehensive stat
space. Moreover, the descriptive system provides a piatfor visualization, and can act as a digital twin of the phgbkprocess.

A case study illustrates the feasibility and performancénefproposed descriptive system.

Keywords: comprehensive state space; descriptive system; modetiachine learning

1. Introduction models are widely used in model predictive control (MPC),
_ _ _ o _ state estimation, soft sensing, process monitoring, fault
Process industries, which mainly include iron and steelqetection and diagnosis (FDD), operational optimizatjgant
nonferrous metals, petrochemical and .architectural risdser “design, process simulation, control performance evainati
are the cornerstones of the economies of many countrigs. (Olivier & Craig (2013), Pantelides & Renfro (2013)).
(Craig et al. (2011)). By using continuous and complexThe types of system models are many, caused Herénces
physicochemical processes, they transform elementary rayy the modeling approach and the purpose of the model.
materials into products that support economic developmer)g‘ccording to Ljung (2010), system models can be categorized
and major_ engineering projects.. The utilization rate Ofusing a whole palette of grey shades from white to black,
raw materials, energy consumption, production costs anghciuding white models (first principle models described by
environmental fects are the main concerns in the daily e.g. diferentialalgebraic equations (DAEs))ffewhite models
operation of process industries. With the aim of higlieeency  (white models with unknown or uncertain parameters desdrib
and green production, modeling, optimization and contfol Opy e.g. state-space models), smoke-grey models (e.g.; semi
industrial processes have long been recognized as imﬂ’ortaﬂhysical modeling), steel-grey models (models linearized
and challenging problems. around an operating point), slate-grey models (e.g., dybri
Descriptive systems and modeling approaches play a fundgodels, block-oriented models) and black models (e.grateu
mental role in capturing process dynamics and support BEoce network, support vector machines). All these models are
control applications (Seborg et al. (2016)). Traditional  essentially aimed at extracting facts about the procesardias

description of system dynamics involves the use of a set Ofrom the measured data, information and knowledge.
mathematical models to represent the physical and chemical

. ; . Therefore, determination of the model structure, utilat
phenomena, static and dynamic behaviors, as well as the . . .
' . o : . of measured data, information and knowledge of reaction
causal relationships among observed quantities, inajudin

: . s . mechanisms are vital in process modeling. Among these
manipulated inputs and technical indexes. These matheahati models, hybrid models provide more flexibility in definingeth

model structure and utilizing available information (valo&h
*Corresponding author etal. (2017)). Akkisetty et al. (2010) proposed a semi-eicgli
Email addressychh@csu. edu. cn (Chunhua Yang) hybrid model which integrates a population balance model
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with a neural network model to predict the milled particle factors that influence the process dynamics including inlet
size distribution. In Alavi et al. (2014), a neural network conditions, reaction conditions and output states. Thadeu
model is incorporated within the mass balance model of athe CSS descriptive system, a hybrid first principteschine
adiabatic fixed-bed reactor to reduce the computation loadearning modeling framework, is proposed. In the hybrid
Keskitalo & Leiviska (2015) combined several artificialunal ~ modeling framework, a practical industrial process is d@gw
networks into ensembles to account for thatence between as an interconnected system whose dynamics are formulated
the mechanistic model outputs and the real process valueas a combination of a nominal term and a deviation term.
Chaftart & Ricardez-Sandoval (2018) proposed a hybrid modelfhe nominal term is a first-principle model (FPM) of the
for the simulation of thin film deposition. The multiscale process. The deviation term accounts for tlkecs of the
mechanistic model combined continuunffeiential equations high-dimensional influence factors uncovered by the FPM. It
describing the transport of the precursor gas phase and isexpressed in a regression form with its inputs being the lo
stochastic partial dierential equation (SPDE) predicting the dimensional deep process features extracted from praatucti
evolution of the thin film surface. In order to accuratelygiotd  data via stacked auto-encoders (SAE) (Vincent et al. (2010)
the thin film growth over wide operating ranges, an artificial This model structure contains the underlying physicocleami
neural network was trained to predict the ffmments of the principles while incorporating high-dimensional influenc
mechanistic model. These hybrid modeling approaches gnainifactors in a low-dimensional manner. To handle the multiaiod
combine first-principle models with neural network modekltt and time-varying properties of process dynamics, the deep
are used to predict the modeling error or the fioeents of  process features are first used to divide the CSS into suéspac
the first principle model. However, the multimodal and time-A subspace is a partition of CSS indicating certain opegatin
varying properties of the process dynamics are not coreider condition. By identifying model parameters undeffelient

With the shrinking of high grade mineral resources, mixedoperating conditions, sub-models of the process are aatain
mineral supply, and fluctuating feed conditions, industria Then, the process model is expressed as a weighted sum of the
processes in the current age are highly complex. The processib-models. The weights are the probabilities that thesotirr
dynamics exhibit dierent modes and vary with time. It is operating point belongs to fierent operating conditions and
often not possible for traditional process models to inelal  changes with the movement of the operating point in the CSS.
the required information of such systems. Varying degrdées oMoreover, the CSS description enables the visualizatidch®f
model uncertainty therefore exist, depending on the mngdeli evolution of the operating point and the digitalization bét
effort. A descriptive model structure that comprehensivelyprocess.
describes such a system and that reduces model uncertainty t The rest of this paper is organized as follows. The complexit
a minimum, should be able to: of industrial processes is first analyzed in Section 2. Tten,

- : . o efinition of the comprehensive state space descriptivieisys

() Support the comprehensive and precise description of aIHS given in Section 3. Based on the CSS descriptive system,

industrial process. e . . . ;

(i) Be "flexible enough to cover many relevant nonlinearf”Ihybrld first prmuplgﬁnachme learning mode_lmg framework
phenomena, at the same time as they allow inclusion o pr_o_p_osed n Sec?'_"” 4. For Qemonstratlon purpose, the
physical insight in order not to be too flexiblg™jung easibility a_nd_ capability (.)f'Fhe hybrid ”?Ode"”gframe‘k_‘@'”d

CSS descriptive system is illustrated via a case study itidec

(2010)). . . .
(iii) "Describe static and dynamic process characteristics in5' Conclusions are drawn in Section 6.

the whole operational range(Hodouin et al. (2001)).

Correspondingly, a descriptive system supporting such g' Highly complex industrial processes

model type should comprehensively cover the essentiadf&Ct A plant is designed as a combination of multiple unit
influencing process dynamics. In addition, in order to mali processes with specific functions. An entire plant could be
smart and optimal manufacturing, such descriptive systenjiewed as a material flow and processing network in which a
should also be able to: unit process or a single piece of equipment acts as a nodb. Eac
(i) Serve as an interface for digitalization and visualimat ~ Unit process is interconnected with other unit processesigh
(i) Be compatible with both data analytics and control masgheat transfers, recycles or reentrances (Fig. 1) (Lee & Lee

design. (2014)). As a consequence, the inlet conditions of a unitgss
(iii) Serve as a container for fierent sources of information 1S Prone to variations caused by:
collected along the production life-cycle. (i) The fluctuations of the physicochemical properties and
(iv) Systematically support process control applicatialesg composition of the raw materials caused by the change
the production life-cycle, e.g., modeling, optimization, of suppliers, price volatility of raw material and reagents
FDD and control. etc.

In this study, an extended state space descriptive system(i) Fluctuations in the feed flow rate.
namely Comprehensive State Space (CSS), is first designed i) Disturbances in upstream unit processes.
cope with the high complexity of industrial processes. T&&C  (iv) Plant-wide adjustment caused by malfunctions, mainte
descriptive system is a vector space which covers the éskent nance, etc.
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: : i ‘ however compete with the cobalt ions by consuming zinc dust,
unit process unit process| ,|unit process unit process .
1 B R N and hence impede the cobalt removal process.
, -+ ! Moreover, kinetic models are often not a reflection of
N current practice as production conditions caffedifrom the
unit process . oy . . .
experimental conditions used to derive these models. Asuyil
systems often form part of unit process to supply necessary
Figure 1: A plant composed of unit processes reaction conditions, e.g., temperature and pH (Fig. 2). So,

(i) Changing the configuration of the auxiliary system can
also dfect the dynamics of the controlled reactions.

In a unit process or a Sing|e piece of equipment, there Can(ii) In addition, change of the reaction conditions can leind
exist multiple main reactions, each reaction correspantbn part of the reactions and promote others, resulting in the
a reaction step, especially for processes with slow dynemic ~variation of the process dynamics.
or with complex production technology. In addition, the Therefore, for each unit process or a single piece of
heterogeneous nature of the raw feed materials with itgquipment, the main reactions are exposed to the inlet and
associated elemer®mpounds causes side reactions to ocCufeaction conditions. The inlet conditions argeated by the
besides the main reactions for which the process was debignq pstream and downstream unit processes, while the reaction
Whereas the kinetic model of the main reactions can be deriveconditions are determined by the configuration of the aanili
by applying chemical and physical principles, the pratticasystem and type and portion of the side reactions. In thisesen
dynamics of the main reactions are more complex (Fig. 2):  the practical dynamics of the main reactions is an outcome of

(i) The side reactions can interact with the main reactigns b the intricate interactions among the main reactions, iater

competition or promotion. environment (side reactions, auxiliary system) and eslern

(i) The dynamics of the side reactions and their interactio €nvironment (interconnected unit processes) (Fig. 3).
mechanisms with the main reactions are only partially
known in most cases.

(i) The variation of the physicochemical properties and
composition of the feed material can change the type of
the side reactions, and the proportions of the side and
main reactions.

i

External environment !

I
|| unit process 1‘ ‘unit process N |\
I I

Figure 3: Interaction between the main reactions, inteemafironment and
external environment

Figure 2: The interactions between the main reactions, mdetions and To sum UD_’ an industrial process forms part O_f a mUIt.I'Scale
auxiliary system in a unit process system ranging from molecular reactions, particle cdaliisi,
equipment interactions (basic production unit), plandevi
interactions (whole production life-cycle) to the globahrket
Take the zinc hydrometallurgy process as an example. lthe global value-chain thatffects plant production and
its cobalt removal process, the main reaction that occutseis profit). In addition, due to the inherent complexity and
electrode reaction between cobalt and zinc catalyzed lepars the aforementioned intricate interactions, the dynamits o
trioxide (Sun et al. (2014)). The copper ions from the pregio the main reactions are nonlinear, containing uncertantie
copper removal processes are involved in the following twoand are not consistent underffdrent inlet and reaction
reactions: conditions. Therefore, building a comprehensive and peeci
CW¥ +Zn=Cu+2Zn* (1)  model of an industrial process, which can cover the dynamics
HASO, + 3CL2* +3H" +4.5Zn = CusAS+4.5Zr" +2H,0 (2) of an industrial process under various operating condition

_ ] ) requires knowledge from multiple disciplines. On the other
Reaction (1) consumes zinc dust. Reaction (2) produces a Cyyund, various restrictions in plant testing result in ifisient

As alloy on the surface of the zinc dust which then serves as gformation about many aspects of the system dynamics, that
substrate for the cementation of cobalt ions. could lead to significant variance errors in the resultingleio
HASO, + CG?* + 3H" + 2.5Zn = CoAs+ 2.5Zr%* + 2H,0 (3) (ITee & Lee (20Q5)). Ip order to more ac_c.urately dgs_cribe
highly complex industrial processes, additional desiépt
Thus, an appropriate amount of copper ions would promotenethods, beyond those described in Ljung (2010), are reduir
cobalt removal. An excessive amount of copper ions willto increase the utilization of information.
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3. Definition of comprehensive state space ¢ Inlet conditions ;): the quantity, physicochemical
properties, composition of the feed material, e.g.,
As discussed in Section 2, the system dynamics and the inlet flow rate, species concentration.
!Htr'(t:atf dln;erlzi_ctlozs Itfh;;[ emit Itn tatunlt prgcesi dc(an be e Reaction conditions xg): the conditions under
![hus_ r?? 3(/“. '9. 2. th € ou tpu S aS'St' are ent(r)] N tﬁ’s which the main and side reactions take place. e.g.
e inlet conditions ax;, the reaction conditions ag, then the temperature, pH, stirring rate.
dynamics of the output states can be described by
) As Xo, X; andxg are high-dimensional, they are compressed
Xo = g(Xo, Xi, XR) (4)  into one-dimensional variables according to certain cgdin
. . . : : rules (Bierbrauer (2016)). As shown in Fig. 8p, X, and
whereg() is a function representing the relation between Xr are coded as hexadecimal numbers. fiddent digits of

andxo, X;, Xg. In this sense, the traditional state-space, whict}he hexadecimal code represenffelient variables, e.g., three
has its states being the output staigs can be extended, by variables in the reaction conditiorgs, Xr2, X také th.e.\,/alue

; ; ; i ; . 1, XR2, XR3

incorporating the inlet conditiong and reaction conditions, of '06", "2A and 05’ respectively,

to a’Comprehensive state space’ (Fig. 5). The CSS description system covers more influence factors
than the traditional state space composed solely of output

i Main reactions states, which reduces the uncertainty in modeling. As shown
> in Figures. 5 and 6, each point in the comprehensive state
X Xg Xo space representsfiirent operating points with corresponding
: : attributes, including model structure, value of model para
Side reactions eters, type of operating condition, etc. The coordinate of a
Auxiliary system operating point depends on the value of output states, inlet
Interconnected processes conditions and reaction conditions (Fig. 6). The ’'coorténa
attributes’ information vectors of each point in the CSSria
Figure 4: Unit process interactions comprehensive description of the process. On the other,hand

the CSS serves as a container for the 'coordinate-attsbute
information pairs, which can then act as a digital twin of the
physical process.
e In the following two sections, a study is performed to
show how the CSS can support operating condition recognitio

.
I
I
! - ~
Desired position P~ _

T | S LT and process modeling, or in other words, how to obtain the
b N ! attributes of the operating condition and process modeéund
. . SR A the CSS framework.
8 - . 'State ! R
g frijectony |
= i L T Coordinate Attributes
% ! Desired position P, [ ——————————————————— 1 oo —i
) : . l Output states |3|6|9|F|0|7|3|1|I | Model |
_- : R | X - |
1 »Current positian | Inletconditions  [8] 6] 5 [E]0]5]6]6] = |yorking condition |
Working conditiomr 1"~ .- I | I Control law |
LoTT T Rk : Rcactionconditions|0|6|2|A|0|5|7m: TR I
___________ = =l —— A S |

Figure 6: Coordinate and attributes of a point in comprelerstate space

Figure_S: lllustration _of comprehensive state spacg MR, Py are diferent Remark 1:Consider the output states and a fixed-length

points in comprehensive state space) time interval o, t;]. If the initial values of the output states
Xo(tp) are the same, and the inlet conditions and reaction
conditions are the same durint.[t;], then starting from any

Comprehensive state space : Comprehensive state space is ato. the final value oko(tr) is the same.

three dimensional vector space with each dimension beingi] Remark 2:1n most cases, the manipulated variablé®at
the codes of: the system dynamics by changing the reaction conditigns

e.g., in the cobalt removal process, the flow rate of spent
e Output statesqp): the output states that describe the acid &fects the pH, the dosage of zinc duffieats the overall
dynamic behavior of the main reactions, which areoxidation-reduction atmosphere which is represented ley th
mainly the controlled technical indexes, e.g., outletoxidation-reduction potential (Sun et al. (2013)). Howegvke
ion concentration of a continuous stirred tank reactorunder certain working conditions the inlet conditions héwe
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be changed, some variables that determine the inlet conditi whereX; € R" represents the inpu¥,; € R™ represents the
then become manipulated variables. hidden variablesY; € R" represents the outpub(-) and

Remark 3:Inside a stficiently small subspace in the entire H'(-) are the element-wise activation functions, e.g., sigmoid
'comprehensive state space’, the system dynamics, i.e. tHenction,W; e R™" W; € R™™ andb; € R™, b, € R™ are
model structure and parameters can be regarded as costant. the weighting matrices and bias vectors respectivelydghabe
in different subspaces, the inlet conditions, reaction conditionidentified by minimizing the reconstruction error on a tran
and output states areftirent. Therefore, flierent subspaces setwithM samples:
indicate diferent operating conditions.

Remark 4:If the process behavior inside each subspace can
be obtained, then the comprehensive state space can saave as
digital twin of the physical process. The operators can then
access the location of the current operating condition & th

: . . 0)) o (1) . .
comprehensive state space to follow and monitor the ewsiuti yvherexi’ andY;" are the inputs and the reconstruction of the
of the process. inputs of thejth training sample.

The pre-training of the SAE is conducted in a layer-wise
manner. After all the auto-encoders are pre-trained, theédmn
variables of the last auto-encoder are taken as the deepgzroc
feature sez = Y. The initial regression function parameters

In this section, a CSS-based hybrid first princigieschine  of the deep process featuresre identified by minimizing the
learning modeling framework is presented. The process igegression error:
modeled as a combination of a nominal first-principle model
and a machine-learning based input-output model accayntin
for the deviation between the nominal model and actual
process dynamics. The low-dimensional deep process ésatur
are first extracted to divide the CSS intafdrent partitions — » i
indicating diferent operating conditions. Then, thepsub-modeléNhereXdOewam and %(J) are the_ deV"”?“F’” terms and th_e deep
under each operating condition are obtained by identifyfireg process feature _vanables of thjth training sample.E() is a
model parameters. The dynamic process model is formulated9' eSston function set of the de‘?p process featuhgter pre-
as a weighted sum of the sub-models. The weights aré&""n9: fra, -+, an] and Wi, W;, by, by] are used as initial
the probabilities that the current operating point belotms SOIUI'On.S to fme-Fune the yve|ghts and minimize the overall
different operating conditions and update continuously with th regression modeling error via back-propagation.
movement of the working point in the CSS.

M )
Csae(Wi, W, bi,by) = 3 X0 - ¥ )
=1

4. A hybrid first principles /machine learning modeling
framework

M
L )
CRegressiok®1, ** , aN) = Z ||Xdoe\"":ltlm‘J - E(Z(J))H2 (8)
=

4.2. Deep feature space partitioning
4.1. Deep feature extraction
Deep feature extraction
dimensional raw data into a low-dimensional deep proces , g
feature set which can be used to detect the patterns in thiésinp feature Space, €.g. Support Vector Machine (S_VM)’ Logistic
via multiple levels of representation (LeCun etal. (20CHen ~ Regression (LR)k-Nearest NeighborsNN), Decision Tree
et al. (2016), Shang et al. (2014)). Deep learning methongT)' and Random Forgs_t _(RF)' In this §tudy, a sequent|f'il-
with higher layers of representation can learn very comple>£nanner feature space dividing approach is proposed. At first

nonlinear functions. SAE is a type of unsupervised deeﬁ,roth division of the feature space is done using-a
network, which is composed of multiple-level and StackelemensmnaI Tree (KD-Tree) (Bentley (1975), Zhang et al.

auto-encoders. As shown in Fig. 7, an auto-encoder has 018)). Then a LR classifier is adopted for- fin(_ar.divisions
input layer, output layer and one hidden layer. It aims totHarrell (2015)). ~After the feature space is divided, the
reproduce the input signal in the output layer via encoding?@'titions of the deep process feature space are ‘decoded’ t
and decoding, and extract the latent representation oftsnpu he sgk_)gpaces of the comprehenswg sta’Fe space. T.he. steps fo
by limiting the number of hidden units. An auto-encoderS”bd'V'd'ng the process state are briefly introduced iniSect

is configured by minimizing the 'input-output’ approximati 4.2.1and4.2.2.
error, while the extracted latent representation servethas

is used to transform high- After the extraction, the deep process features are fed to
the operating condition classifier to divide the deep prsces

inputs of its successive auto-encoder. 4.2.1. Rough division using a KD-Tree
Consider theth auto-encoder that first extracts a set of latent A KD-Tree is a space partitioning algorithm for ke
variables from the inputs, dimensional space. Itis a variant of a binary tree with eaxten

beingk-dimensional. It splits the space into two half-spaces
at each level iteratively until a desired number of pantitiags
then the decoder reconstructs the outputs from the laterschieved. The detailed steps are as follows (Fig. 8):
variables Step 1: Determine the desired numbers of partitidis

Yi=H (W)Y +b) (6) Step 2: Calculate the required number of features and the

Yi = H(W;X; + by) )]
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| tnlr Conditons {1 ()4 = O Ol (O ROl IO/ O % G O = R —
1 1 : 203G N I I : [ AN | : Ao aN I
! : I VRN PN I VRN | Subspace
Resction Conditons | || @AM @1 | [QF OO (| QF )] aividng
1 1
\ / | | I N
S d !_ Auto Encoder 1 1 !_ Auto Encoder 2 | !_ Auto Encoder L I
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Figure 7: Deep feature extraction, regression, and subgtieicling

number of splits. 1f 2~ < Np < 2V, N > 1, thenN features  distribution of the data points on that feature dimensiomici

andNs number of splits are required. has a higher dividing faciency compared with other features
N1 N1 with smaller variances.
Ns = (27" =1)+ (N =277) = Np — 1 ©) Remark 6:The variance and covariance ofletermines the

Step 3: Normalize the feature data. Calculate the variances offSt @nd second order properties of the deep process feature
the features, and rank the features according to the matgnitu (LiUNg (1999)), so that the statistical featureszatan also be

of their variances. Lef = 1. used for process monitoring and fault detection.

Step 4: For the jth feature, find its median value, for the ] o

partition Sj_1)q, q = 1 to Zi-1), generate a splitting hyperplane 4-2-2. Fine division based on '—R . N
which is perpendicular to the corresponding axis and tattieg ~ The KD-Tree based rough division process provides aninitia
median value on the axis of thﬁ‘] feature in the feature space. solution for the LR-based fine division. LR classifier estiesa
Rank the resulting new half-spacegi), Sieq) according to and discriminates among the probabilities that an observat

the magnitude of the variance of thig« 1)th feature. belongs to dierent classes:

Step 5: If j < N—1, thenletj = j + 1, and repea$tep 4 until

j=N-1. 4 PM2) = ——5 (10)
Step 6: If 21 < Np, then fromq = 1 toq = 2, 1+5 @

divide the partition §& using the Nth feature until _ .

2q+ (2 - q) = Np. The original feature spaceg % partitioned o(2) = o+ izj;ﬂlz! (11)

into {Sn1, Sz, -+ Snegy Sigrs - Syt (denoted  as

{SD, 82, ... SNe)} hereafter). whereP(y|z) is the probability that input belongs to the class
with labely, e.g. ifP(y|z) > 0.5, i.e.0(2) > 0, thenz belongs to
classy. o(z) = 0 is the decision boundarg.= [Bo.B1, " - - »AN]

are the cofficients to be learned for each class. The detailed
steps are as follows:

Step 1: Letr = 1.

Step 2: For partition S, train the coéicient setg") by
minimizing the regression error:

M
1 .
O gy — Y ()]
(28" ]Z;[“ec,(,)(zj) Yl

1
1+ e B0+xl A2

-yP? (12)

M=

[

=1

wherey) is the class label of thigh sample obtained by rough
division.
Figure 8: Rough division using a KD-Tree Step3: Ifr < Np, r =1 + 1, repeattep 2.
Step 4: The partition with boundary(z) = 0 is therth
subspace of the entire feature space.
Remark 5: The feature variance is used as criterion when Remark 7:The partitioning of the deep process feature space
doing rough division. A large feature variance indicatesdew can be transformed to the partitioning of the original CSS.
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The borders of the subspaces are not time-invariant. Whe#.3.3. Djferences and connections
a suficient amount of new data samples appear, the process The two modeling methods described in Sections 4.3.1 and
of roughly and finely dividing the feature space, should be4.3.2 use dferent sources of data, information and knowledge

repeated to update the partition. (Fig. 9), and have their pros and cons:
_ ) (i) The SS-FPM utilizes inherent physical or chemical laws

4.3. A hybrid modeling framework such as the underlying physicochemical laws of a process.

This section presents the hybrid modeling framework in However, not all the factors that influence the process are
the context of CSS. To start with, two typical methods to captured in the model.
describe process dynamics, i.e. state-space based firsigbei (i) The ML-IOM utilizes routinely collected production tia
modeling (SS-FPM) and machine learning based jfguiput and machine learning algorithms. It can approximate the
modeling (ML-IOM), are revisited. relationship between process inputs and outputs with very

high accuracy. However, it does not capture the internal

4.3.1. First principle based state-space modeling dynamics of a system.

First principle models that are based on the inherent paysic However, both methods are informed by probability theony an
or chemical laws of a process, e.g. mass and energy balancesatistics, e.g., conservation laws are derived from éxypantal
reaction kinetics, hydrodynamics, and thermodynamics, cadata, and first principle models often contain empirical
often be described in state-space form. State-space modeglsiationships. The combination of these two methods could
consist of a set of input, output and state variables that argcrease the utilization rate of data, information and kiedlge,
related by first-order dierential or dfference equations. The thus leading to the discovery of more facets of the process
state-space approach is powerful as it provides a unifyingiynamics.
framework for representing many classes of system equation
including stochastic, nonlinear and time-varying multighle , A A

Data, information and Facets of process dynamics

systems (Brogan (1991)). —— Machine | ————

The model parameters in such state-space models af |: learning | |, MLAOM

i X i . Production data @ y
typically physical cofficients or constants (Ljung (1999)). Firet
Examples of such models include a continuously-stirrett tan

principle
heater model (Thornhill et al. (2008)), a flotation cell mbde m modeling
(Bascur (1982)), and a grinding circuit model (Le Roux et al. Gonservationliaws

(2013)). However, this modeling approach requires siggnific t
process knowledge, which is not always available (Kadletd.et _
(2009)). As a result not all the factors that influence thepss o ATy proces roee Mot

are captured in the model.

Figure 9: Diferences and connections between state-space and da&a-driv
modeling

4.3.2. Machine learning based ingaitput modeling

Machine learning based ingattput models represent
empirical mathematical or statistical correlations betwimput
and output variables derived from plant data, especially fo4.3.4. CSS-based hybrid modeling
complex systems whose rigorous theoretical model invadves  The system dynamics described by (4) can be decomposed
large number of DAEs and unknown parameters (Seborg et ahs a combination of a nominal term and a deviation term
(2016), Ge (2017)). .

ML-IOM involves the use of machine learning approaches Xo = f(xo, ©, ) + €(Xo, Xi, XR) (13)

(unsu_perws_;ed learning, sup.erV|sed. Iearm_ng, semi-sigget where f(-) is the nominal term or the first principle model
learning, reinforcementlearning) which project the reaess containing the main reactions (white mode)) represents the

to a data space or latent variable space and CONSWUgl,qe| parameters which takefidirent values under fierent
statistical models for correlation analysis, predictidoft  onfigurations of the inlet and reaction conditions, whiah be
sensing, process monitoring, pattern recognition, and FDRQyenyified using historical operation dat:) = g(-) - f(-) is the

(Ge et al. (2017,))' The main actions .|.nvo_lved n ML- geviation between the nominal model and the real dynamics.
IOM approaches include regression, classification, diinge This formulation keeps the nominal dynamics of the main
coordinate transformation, and statistical propertieahy™s. | .5ctions in a state-space form, and can account for the

These methods make use of a large volume of productiopycate interactions by introducing-) which then needs to
data that contain u_seful mformgﬂon and knowledg.e. aboube determined using data analytics (grey or black model), as
the process dynamics and running status. In addition, by nin Fig. 10.

projection, the evolution of operating conditions can be cqngjdering each operating condition, the process dyramic
visualized in the data space. However, the performance of, . pe realized as following:

data driven modeling relies on the quality and operatiogean _ o

covered by the training data. Xo(tr) = xZ™M"ets) + xEVROLy) (14)
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where
. i t
Xnoommal(tf) - Xgomlnal(to) + f(xo, ®)dt (15)
fo
. iati ti
Xdoewatlor(tf) — Xdoewatlor‘(to) + f G(Xo, X, XR)dt (16)
fo

xpeminajt) is the nominal term derived from the FPM of the
main reactions (Buzzi-Ferraris & Manenti (2009), Pantsdid
& Renfro (2013)). xd&viatioyt() is the deviation term with the
output stateso, inlet conditionsx; and reaction conditionsg
as its inputs. Thus, the value x$ can be expressed as

Ly

Xo(tr) = Xo(to) + t [f(X0, ®) + €(x0, X, Xg)]dt  (17)
or, more practically, in a nonlinear discrete form
Xo(k+1) =Xo(k) + fu(Xo(k), O(K)
+  e(Xo(K), Xi(K), Xr(K) (18)

where k indicates thekth sampling instant,fc(xo(k), ®(K))
and ex(xo(k), x(K),xr(k)) are discretized counterparts of
ft:k” f(xo0, ®)dt and ft:k” €(Xo, X, Xr)dt, respectively.

To make the model usable, the high-dimensional matrix
ex(Xo(K), x1(K), xr(K)) is approximated in this study by the
nonlinear regression form

e = U(z(K) = [U1(2(K) Ua(z(K))---Un(z()]"  (19)
wherez is the vector of low-dimensional deep process features
extracted from the high-dimensional contributors, &i@ is
the regression function set of the deep process featurablesi.

As the process evolves in the CSS, the model parameters
are subject to the inlet conditions, reaction conditions an
output states. However, these parameters are identifiehdr
operating condition, not each point in the CSS. Consider the
time-varying characteristic of the production environmeine
probability information provided by the LR can be incorpexh
into the dynamic process model (Fig. 11).

Np ) '
Xo(k+1) = xo(K)+ > P2 (xo(K), ©(9)+ U (z(K)] (20)
i=1

wheref!) (xo(K), ®(K)) andU® (z(K)) indicate the corresponding
terms under operating conditioni.e. sub-models. Compared
with some typical hybrid modeling approaches (Psichogios &
Ungar (1992), Abonyi et al. (2002)), the proposed CSS-based
modeling approach considers the multimodality and updhtes
weights of each sub-model to enable the dynamic modeling of
the process.

5. Case study

In this section the CSS descriptive framework is used to
develop a process model for a cobalt removal process.



5.1. Process description is scaled and desensitized for confidentiality reasonsy.dEtia
Cobalt removal is performed in a unit process in zincwere divided into two parts: 1000 samples for training and 50
hydrometallurgy. Its main function is to decrease the dobalsamples for verification. Each data sample contains theesalu
jon concentration in the zinc sulfate solution such that theof the output states, inlet conditions and reaction coonli
cobalt ion concentration after removal is lower than a gafet The time span of the data samples ensure that a majority
limit. The cobalt removal process usually consists of fourof the operating conditions are covered. In addition, with
continuously stirred tank reactors and a thickener (Fig. 12 this amount of data samples, deep process feature extractio
Zinc dust is added into each reactor to replace the cobafpproaches can be applied. Knowledge of the reaction kieti
ions. Steam and spent acid are used to maintain the requir@d the production process is obtained from studying the
reaction conditions (e.g., temperature 65 75°C and pH process mechanisms, data analysis, as well as discussitns w
45 ~ 55). Catalyst is provided to promote and accelerateexperienced operators and technicians.
cobalt removal. After retention in the consecutive reasttve The aim of this case study is twofold, i.e. to test if the
solution enters the thickener where solid-liquid separatakes ~ working conditions can be recognized and how well the model
place. The resultant solids, which can be used as crysté&inuc performs under the CSS framework. The steps of the case study
for cementation, is deposited and recycled to promote iiypur are listed as follows:
removal. The overflow is further filtered and delivered to a 0

Extract the low dimensional deep process features from
subsequent process.

the high dimensional process variables.
. (i) Divide the deep process feature space into subspadhs wi
pin3 Bind each of them indicating fferent operating conditions.

yd & - (iii) Testif the working conditions can be recognized an@ho
well the model performs under the CSS framework.

(iv) Build the nominal kinetic model, and formulate the pro-
cess dynamics using the CSS-based modeling framework.

(v) Compare the performance of the nominal kinetic model
and the CSS-based modeling approach.

5.3. Results

According to the reaction mechanism, the output states were
selected as the cobalt ion outlet concentrations of the four
reactors. The variables indicating reaction conditionsewe
chosen as the oxidation reduction potential (ORP) of each
reactor, flow rate of the arsenic trioxide and spent acid. ORP
presents the overall oxidation-reduction atmosphere@gie

The principle of cobalt removal is to use zinc dust to replaceeactor, while the flow rate of the arsenic trioxide and spent
the cobalt ion impurities. However, the replacement is noi@acid determine the catalytic condition and the pH of the
trivial. As shown in Fig. 13, cobalt removal is catalysed solution respectively. The temperatufeats the reaction rate.
by electro-positive metal salts, e.g., arsenic trioxiddyioh  However, the solution temperature in the reactor rarelyigba
reacts with residual copper ions and zinc dust (Reaction 1)gnd was therefore omitted from the simulation. The flow rate,
and provides reaction surfaces for cobalt removal (ReactiopH, and concentrations of the metallic ions (e.g.2C&€u,

2). Besides the main reactions, the residual copper iongn?*, etc.) in the feed solution demonstrate the inlet condition
and hydrogen ions in the solution also react with zinc dus{Table 1). To sum up, there are 4 output states, 12 variables
(Reactions 3 and 4). Reactions 3 andf&et cobalt removal indicating inlet conditions and 6 for the reaction condito

by competing with cobalt ions for zinc dust and changing theTherefore, the dimension of output states, inlet conditiand
oxidation-reduction atmosphere. If zinc dust is overdgsedreaction conditions is 22 in total. The correlations amdmgy t
Reactions 5 and 6 will take place. These two reactions areondition variables and output states are obtained by Bears
undesirable, and produce elemental arsenic and highlyg toxicorrelation analysis, as shown in Table 2.

arsine gas. Besides, other elements and compounds in éte inl

solution can result in other side reactions. The flow rates of

the inlet solution, spent acid, arsenic trioxide, underflsti@am

Figure 12: A cobalt removal process

Table 1: Variables selected for the CSS

and zinc dust canffect the process dynamics. In addition, the State type Variables
interactions with its preceding and subsequent unit peEses g“tpli‘_t Statesd,t_ C1, C2, C3, C4 .
eaction conaitions vi, V2, V3, V4, Tas, TAcid
can also &ect cobalt removal (Sun et al. (2013)). Inlet conditions for Mk, Cos Cou, Czn, e Chis Chs: Cob
CGe, Cres Cca

5.2. Experiment setup

In the case study, 1050 data samples were collected over a 4
months period from an industrial zinc smelting plant (Theada

9
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Based on a process analysis, the number of operating
conditions was determined & = 7. Three deep process
features are therefore required to divide the deep proeassre
space into 7 subspaces. To extract the 3 deep process fgature
two auto encoders were used to form an SAE. The number

Table 2: The correlations between the condition variabesautput states of latent variables in the two auto encoders are 18 and 3
respectively. The activation function adopted is the sigino

Variables ¢ C2 C3 Csq A

Vi 02143 01476 01572  0.3085 function: .

V2 0.0580  0.0419  0.0206  -0.0863 B

Vs -01221 -0.1567 -0.2421 -0.1648 fsigX) = T (21)

Vs 0.1511  0.0595  0.0494  0.0129

fas 0.3712 03427 0.3759  0.3942 L .

facid 00128  -0.0555 00420 01625 Then, rough division was conducted based_ on the variance of
fo 0.3467 0.2015 0.2529  0.2664 the 3 deep process features, and the resulting subspaces wer
MpH 0.1390  0.0683  0.0469  0.0354 denoted as § (Working condition type 1), & (Type 2), S3

% 02910 03850 05985 02931 (Type 3), Sa (Type 4), Ss (Type 5), S (Type 6), Sa (Type

ceu 0.1819 02220 0.2317  0.3073 : : e

o 0.0481 00938 00696 00772 7) (Figs. 8, .14). Then,_flne d|V|§|on basgd on LR fpllowed.
Ccd -0.2684 -0.1675 -0.1493 -0.1023 The LR provides probability class information, which is fuge

CNi 00182  -0.0515 -0.0377 -0.0005 especially for the junctions of two or more subspaces (F4g. 1

Cas 0.1889 = 0.1144 = 0.1432 = 0.2587 Fig. 14 shows the location and the probability that the
Csb -0.0666 -0.0958 -0.0936 -0.0247 . ; . . "

Coe 01512 -02045 -0.1987 -0.1254 operating point bglongs tofilerent operating conditions of the

Cre 0.1264  0.0946  0.0443  -0.0388 50 test samples in the deep process feature space. The 30th
Cca 01299  0.0040  -0.0385 -0.0737 sample is on the border of operating conditions S35 and S36.

The probability that it belongs to these two operating ctiods
are 85% and 15%, respectively. The corresponding parititgpn
of the CSS is shown in Fig. 15.

The nominal part of the model is derived using mass balances
and first order reaction kinetics. Assuming ideal mixing
conditions, i.e. the reaction rate and solution tempeeatue

10
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uniform throughout the reactor, then:

((jj—? = %Ci—l - %Ci —liGi
where ¢, r; and f; are the outlet cobalt ion concentration,
reaction rate, and outlet flow rate of thl reactor respectively,
withi =1,2,---,N. V is the volume of the reactocy and fy
are the cobalt ion concentration and the flow rate of the inlet
solution of the first reactor, respectively.

The reaction rate termcan be derived using the Arrhenius
equation and electrode kinetics (Antropov (1977), Zha 2200

(22)

Ee+2~/F(v—veq)

r=AdBgse
where v is the Oxidation Reduction Potential (ORP). It
represents the oxidation-reduction ability of the solutiand
is controlled by the addition of zinc dusti. The physical
meanings of the parameters in the process model are listed
in Table 3. To increase the identification accuracy, model
parameterd\, S and gs were combined as a new parameter
A; in the identification of model parameters (Buzzi-Ferraris
& Manenti (2009)). The value of model parameters under
different operating conditions are shown in Table 4. The
performance of the nominal kinetic model is shown in Fig. 16
and Table 5. For comparison purpose, the performance of pure
data-driven model (PDDM) is also included. The PDDM is a
combination of SAE and radius basis neural network (RBFNN).
The input of the RBFNN is the deep process features extracted
using SAE. The output of the RBFNN is the estimated value of

(23)

cobalt ion concentrations of each reactor. As indicatedhisy t
results, compared with kinetic model, PDDM is less sensitiv
to the change of operating conditions.

Table 3: Physical meaning of the parameters in the procesgimo

Parameter (unit)

Physical meaning

Ao(sT) frequency factor of the reaction

B reaction surface area available on a unit area of the
crystal nucleus

Os weight of crystal nucleus per unit volume of the
reactor

Ee(J- mol1) standard activation energy of the reaction

y variation factor between the electrode potential and
the cathode activation energy

Veq(V) equilibrium potential of the cathode reaction

v(V) oxidation reduction potential of the solution in the
reactor

T(K) reaction temperature

F(C- mol1) Faraday constant, £ 96485

R(J-mol-lK-1) ideal gas constant, R 8.314

To account for the unknown dynamics, a deviation term
cdeviaton s added to the nominal model, then under certain
operating condition, for each reactor:

t i i ..
Ci(t) = ci(O) + f (Mcil _ Eci —ric|dr + Cidewamon (24)
0

V \%

The deviation term is a neural network model with its inputs

being the deep process features.

Its output is the estimated
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Figure 16: Performance of the nominal kinetic model and plate-driven model

Table 4: Values of model parameters unddfedent operating conditions

Working condition ~ Reactor  Ag Ee b% Veq
Reactor1 6981106 72932 0.618 -0.300
s31 Reactor2 7286393 79847 0.625 -0.332
Reactor 3 8073669 79998 0.706 -0.373
Reactor 4 8983144 71945 0.664 -0.436
Reactor1 7362697 72747 0.600 -0.300
s32 Reactor 2 7832393 79968 0.689 -0.367
Reactor 3 8668537 77202 0.671 -0.392
Reactor 4 6562077 72362 0.603 -0.404
Reactor 1 5984033 72400 0.600 -0.300
s33 Reactor 2 8365405 78822 0.601 -0.348
Reactor 3 5308410 79043 0.608 -0.348
Reactor4 8186106 72876 0.750 -0.463
Reactor1 7638676 73391 0.600 -0.300
s34 Reactor 2 8858660 77157 0.797 -0.427
Reactor 3 6213033 77216 0.791 -0.429
Reactor 4 5874675 78829 0.621 -0.368
Reactor1 5957729 72265 0.600 -0.300
S35 Reactor2 7970208 79557 0.630 -0.352
Reactor 3 8510620 77102 0.734 -0.417
Reactor4 8817141 73734 0.695 -0.440
Reactor1 5349874 72240 0.600 -0.300
s36 Reactor 2 6516429 74700 0.616 -0.385
Reactor 3 5255406 78698 0.772 -0.414
Reactor 4 7004144 71521 0.704 -0.457
Reactor1 5311958 72624 0.600 -0.300
s31 Reactor 2 5438328 77854 0.671 -0.382
Reactor 3 8817776 70562 0.617 -0.440
Reactor4 8756903 79996 0.640 -0.379
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deviation between the nominal model and practical system
dynamics. Eq.(24) is a basic model of process dynamics. Its
model parameters takeftérent values under filerent working
conditions. The formulation of the overall system dynamics
was the same as Eq.(20). The performance of the integrated
model is shown in Fig. 17. The performance comparison
between the integrated model and the nominal model is given
in Table 5, and Fig. 18 using a four plot figure (Yuan et al.
(2018)), respectively. The proposed modeling approach has
higher accuracy on average, and its performance is morkestab
This indicates by combining reaction kinetics, productiaa

and information about the current operating conditiong th
system dynamics can be described more comprehensively. Thi
is due to the higher information utilization rate under tH&SC
framework.

5.4. Discussion

It can be observed from the above results that the CSS
framework provides:

(i) Improved modeling accuracy: By using the CSS
modeling approach, the ARE of the four reactors are
lower than 10%, which is satisfactory for an industrial
application. The norm of the Fisher information matrix
of the kinetic model and the integrated model have
orders of magnitude of TOoand 16 respectively.
This indicates that more information is utilized in the
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Table 5: Performance comparison between nominal kinetidein@ure data-
driven model and CSS modeling framework using averageivelatror (ARE)
and root mean square error (RMSE)

Performance measure  Reactor 1  Reactor 2  Reactor 3

ARE of FPM 15.19% 15.55% 16.14% 17.21%
ARE of PDDM 8.38% 10.70% 6.67% 8.32%
ARE of CSS model 5.7% 4.02% 3.33% 7.90%
RMSE of FPM 1.3967 0.6132 0.2506 0.0706
RMSE of PDDM 0.6296 0.3877 0.1069 0.0397
RMSE of CSS model  0.4166 0.1568 0.0679 0.0314

6. Conclusions

In this study, a comprehensive state space descriptive
system and a corresponding hybrid first principieschine
learning modeling framework were proposed. As a wide

Reactor 4 ariety of process control applications is model-baseslG8S

descriptive system can better support process controkinste

of better understanding of process dynamics. In addititn, i
intuitive nature provides a platform for process monitgrin

It provides a comprehensive yet 'not overly complex’ way
to describe the dynamics of a process that enables the
digitalization and visualization of a physical processeTUSS
descriptive system is an open framework, which can serve as
a container for the fusion of data, information and knowkedg

integrated modeling approach. Therefore, higher modefrom various sources. Due to the above characteristics & CS

accuracy is obtained as an outcome.
(i) Intuitive process monitoring: CSS provides a visual

it can also serve as a ’digital twin’ of a physical processe Th
physical process and its CSS counterpart can thereforesact a

abstraction of the physical process. The location and the 'cyber-physical component’ in a smart factory. The result
evolution of the process in the CSS can be monitorepresented in this paper are preliminary and mainly consider

intuitively. Fig. 19 shows the evolution trajectory of the
50 test samples. Berent marker colors indicateftirent

operating conditions. The variation of model parameters
(see Table 4) and operating conditions along the evolution

trajectory can be observed from Fig. 19.
(iif) Comprehensive descriptive capability: The CSS digscr

tive framework covers the essential influence factors of

the process. These factors are organized to form

process modeling in the context of CSS. For future extension
the following should be considered:

e The dividing of the deep process feature space is based
on the variance of deep process features. This dividing
approach is easy to implement. However, the physical
meaning of the subspaces are not clear. Therefore,
generating subspaces with concrete physical meanings can

a i . :
provide more useful information to the operators.

digitized container of the physical process which can
accommodate various attributes of an operating point
under many dterent operating conditions, including e.g.,
model parameters, controller gain, status, and suggested
operation.
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Transforming the system dynamics into a linear time
varying (LTV) format by using a U-model (Zhu et al.

(2019)) approach to describe the nominal term and
deviation term respectively. This would resulted in an



LTV model of the physical process, which can bridgeLe Roux, J. D., Craig, I. K., Hulbert, D., & Hinde, A. (2013). nAlysis
the gap between the nonlinear system description and and validation of a run-of-mine ore grinding mill circuit whel for process

linear controller design approaches with well establishedLe

properties.

e Integrating modeling, control, and estimation in an
interactive and systematic framework to gradually inceeas
the understanding of the system dynamics and achieve

intelligent autonomous control.
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