
Effective graph sampling of a nonlinear image
transform

Mark de Lancey1 and Inger Fabris-Rotelli2[0000−0002−2192−4873]

1 Department of Statistics, University of Pretoria, South Africa
mark.stephen.del@gmail.com

2 Department of Statistics, University of Pretoria, South Africa
inger.fabris-rotelli@up.ac.za

Abstract. The Discrete Pulse Transform (DPT) makes use of LULU
smoothing to decompose a signal into block pulses. The most recent and
effective implementation of the DPT is an algorithm called the Road-
maker’s Pavage, which uses a graph-based algorithm that produces a
hierarchical tree of pulses as its final output. This algorithm has been
shown to have important applications in artificial intelligence and pat-
tern recognition. Even though the Roadmaker’s Pavage is an efficient
implementation, the theoretical structure of the DPT results in a slow,
deterministic algorithm. This paper examines the use of the spectral
domain of graphs and designing graph filter banks to downsample the
Roadmaker’s Pavage algorithm. We investigate the extent to which this
speeds up the algorithm and allows parallel processing. Converting graph
signals to the spectral domain can also be a costly overhead, and so meth-
ods of estimation for filter banks are examined, as well as the design of
a good filter bank that may be reused without needing recalculation.
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1 Introduction

The Discrete Pulse Transform (DPT) decomposes a signal into block pulses us-
ing LULU smoothers in such a way that the signal can be reconstructed fully
[1]. The LULU smoothers Lk and Uk are applied recursively from k = 1 to K to
obtain the DPT, the sequential decomposition of a signal f (such as an image)
into scale levels D1(f), D2(f), D3(f), ..., DK(f) such that the sum of these gives

the original signal f =
∑K

k=1Dk(f). Each scale level consists of block pulses
(connected components) of size k. This in turn has been used to detect fea-
tures in signals and extract textures from images by partial reconstruction of
the pulses. Feature and texture extraction has important applications in artifi-
cial intelligence, pattern recognition and computer vision [4]. Applying LULU
operators directly on a signal using first principles until the signal is fully decom-
posed results in an operation of O(N3) complexity [2]. To create a more feasible
implementation, a graph based algorithm known as the Roadmaker’s algorithm
was developed, which reduced the computational complexity to O(N) [3]. The
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main shortfall of the Roadmaker’s algorithm is that its storage of block pulses
requires a hierarchical tree containing sparse matrices at each node, which makes
extraction of the pulses (and therefore reconstruction of the image) slow as well
as storage requirements of the data structure relatively high. An improvement on
this comes in the form of the Roadmaker’s Pavage algorithm [5]. This algorithm
is also a graph based implementation, however the final data structure produced
does not require sparse matrix storage at each node. The decomposition stage of
the Roadmaker’s Pavage is still O(N) and does not give an improvement on de-
composition time, its advantage comes in the form of an improved resulting data
structure that requires significantly less storage as well as a faster reconstruction
and access time.

It should be noted that although the implementation algorithms of the DPT
have reduced to linear complexity, the algorithms are still computationally slow.
This is due to the algorithms needing to be processed in series, as well as the
comparisons and transformations of data structures required at each step. Hence
the true computational times needed is somewhat masked by the Big-O com-
plexity. There is still a need to reduce to computational time, particularly for
real-time application. The fact that these newer implementations are in the form
of graph structures provides several advantages, especially considering the recent
advances in theory and application of graph sampling and interpolation methods.

The research conducted here makes use of such recent developments in graph
sampling and graph spectral theory to improve the running time and memory
requirements of the Roadmaker’s Pavage algorithm by using an approximation of
the algorithm and its output. In addition to this, any advantages that come with
graph spectral analysis is now also introduced to the algorithm. The primary
mechanism behind these improvements comes from the use of graph spectral
filters and graph sampling methods.

The paper begins with an overview of the suggested algorithm and its compo-
nents in section 2, and then demonstrates application of the algorithm in section
3, before concluding.

2 Methodology

The method used to improve computational speed of the Roadmaker’s Pavage
algorithm involves the use of a graph spectral filter bank. The reason behind
filtering the signals is in order to band limit the signal. Band limited graph
signals can be interpolated with perfect reconstruction after sampling under
certain conditions [9]. The graph filter bank used makes use of two filters (low-
pass and high-pass) to split the original image into its low and high frequency
components. The high and low frequency signals are then passed on to each
pipeline of the bank at which point each signal is operated on independently of
the other. The remaining operations after filtering include:

1. Downsampling the filtered signals
2. Performing the DPT decomposition using Roadmaker’s Pavage on the fil-

tered signals
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3. Full or partial reconstruction of the pulses stored within the tree structure
4. Upsampling the reconstructed signal
5. Filtering again the upsampled signals
6. Summing the signals and multiplying them with a constant to obtain the

final output signal

Hence the algorithm results in two smaller trees containing low frequency and
high frequency pulses. After reconstruction of the desired pulses the signals pro-
duced are then upsampled, filtered again and combined together to obtain the
final output signal. Each filter and pipeline operates completely independent
from the other, and extraction of pulses from either tree is independent from
each other. Because of this, the new algorithm has become what is known as
embarrassingly parallel, that is, the job of parallel processing the filter bank and
signals is trivial as the only time the two independent pipelines need to com-
municate with each other is at the very end where the two output signals are
added together. The Roadmaker’s Pavage wedged between filter banks is shown
in Figure 1. The individual components of the filter bank and algorithm are
explained next.

Fig. 1. A diagram of a filter bank with the Roadmaker’s Pavage algorithm wedged in
between each pipeline

2.1 Roadmaker’s Pavage decomposition and extraction DPTdc and
DPTex

The Roadmaker’s Pavage is a graph-based algorithm that results in a tree that
contains the information required to extract the same pulses as defined by the
DPT. The algorithm starts by imposing the image on a rectangular grid graph,
known in this context as the Working Graph. Through a series of edge con-
tractions, comparisons and clusterings, this Working Graph is eventually trans-
formed into a tree. An example of the pulses extracted from a small 2×2 image,
as well as the data structures built by the Roadmaker’s Pavage is shown in
Figure 2.

The Working Graph that is initialized is an example of a rectangular grid
graph, which is also a bipartite graph. Even though the final product of the
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(a) (b) (c) (d)

(e) (f)

Fig. 2. Examples of a DPT decomposition using the Roadmaker’s Pavage algorithm.
Showing (a) the original 2×2 image. (b)-(d) The separate pulses of the image such that
(b) + (c) + (d) = (a). (e) The image imposed on the working graph. (f) The final pulse
graph, a directed rooted tree, which is the result of completion of the Roadmaker’s
Pavage. The pulses shown in (b)− (d) can be extracted from this tree.

Roadmaker’s Pavage is a tree, the extracted pulses need to be reshaped into
an image with the same dimensions as the original in order to be meaningful.
The reshaped output signal is not contained in a graph, but its properties and
relations still behave as if it was imposed a new grid graph with the same dimen-
sions as the original working graph. Thus, filtering, sampling and interpolation
is based on this Working Graph structure. The original signal is on a graph of
this type and is filtered and sampled from accordingly, while the output signal is
upsampled and filtered as if it were a signal on a new grid graph. For these rea-
sons the Roadmaker’s Pavage decomposition, as well as extraction of the desired
pulses, is inserted into the middle of the filter bank.

2.2 Graph Spectral Filters H0(Λ) and H1(Λ)

H0(Λ) and H1(Λ) are low and high pass filters respectively. They first con-
vert a graph signal, x ∈ RN with each xi defined on vertex i, into its graph
spectral domain using the Graph Fourier Transform (GFT). The signal is then
converted back to the vertex domain using the Inverse Graph Fourier Trans-
form (IGFT). The Graph Fourier Transform can be obtained from the eigende-
composition of a graph shift operator [14, 12, 13, 11, 9]. An example of a graph
shift operator is the adjacency matrix, A ∈ RN×N where Aij = Aji = 1 if
i 6= j and vi is adjacent to vj otherwise Aij = 0 (for undirected, unweighted
graphs).

An alternative shift operator derived from A is the Laplacian Matrix, L [14,
12, 13, 11, 10]. This is the difference of a graphs degree matrix D (whose diagonal
entries gives the number of edges protruding from the corresponding node) and
its adjacency matrix. Hence the Laplacian is defined by L = D − A. Finally,
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the most important shift operator to be used in this paper is the symmetric
normalized Laplacian, L [12, 13]. The symmetric normalized Laplacian is given

by L = D− 1
2LD− 1

2 = I −D− 1
2AD− 1

2 , with:

Lij =


1 if i = j and deg(vi) 6= 0

− 1√
deg(vi)deg(vj)

if i 6= j and vi is adjacent to vj

0 otherwise.

As the name implies, this version of the Laplacian is always symmetric, hence its
eigenvector basis is real and orthogonal [11, 13]. Some other important properties
of the symmetric normalized Laplacian in the spectral domain include the fact
that its eigenvalues range from 0 to 2 [11, 13] and since the graph used in the
Roadmaker’s Pavage is bipartite (described in section 2.3) its eigenvalues are
also symmetric around 1. Now that L has been defined, its eigendecomposition
is given by

L = UΛUT ,

where Λ is a diagonal matrix containing the eigenvalues {λ1, λ2, ..., λN} of L and
the columns of U contains the eigenvectors of L . This eigenbasis is orthonormal,
hence U−1 = UT .

Definition 1. The Graph Fourier Transform is the projection of a graphs
signal in its vertex domain to the graphs spectral domain. For a diagonalizable
graph shift operator L = UΛUT on graph G, the Graph Fourier Transform of
graph signal x ∈ RN is given by:

x̂ = UTx

Alternatively it may be defined by its evaluation at each eigenvalue:

∀λk, x̂k = (x,vTk ) =

N∑
i=1

xiuk,i = xTuk

where uk is the eigenvector associated with the kth eigenvalue of L, which is
also the kth column of U [12, 11, 14].

The GFT is invertible, as Ux̂ =UU−1x = x. With the GFT defined, graph
spectral filters can be constructed.

Definition 2. A Graph Spectral Filter is a function that projects separately
on each of the eigenspaces of L depending on the value of the respective λ.
Mathematically, a kernel λ → h(λ), defines a graph filter H such that H =
Uh(Λ)UT .

Hence a filtered signal is defined such that xh = Hx. Several kernels are
suitable to define a filter. The simplest is to use an indicator function that cuts
off certain frequencies completely, such as h(λ) = 1 if λ < w, else h(λ) = 0, where
w is the desired cut-off frequency. The filter used here is a graph quadrature
mirror filter (graph-QMF) so that:
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1. H0 andH1 are used in both the analysis and synthesis bank of each respective
pipeline, as opposed to different filters used at each end,

2. H0 = H1(2 − λ). Recall that the eigenvectors of L are symmetric around 1
and range from 0 to 2, and

3. H2
0 (λ) +H2

1 (λ) = c2

where 1/c2 is a constant that scales the final output signal [13]. For a simple
indicator kernel where w = 1, c2 = 2.

Finally, of note is the fact that exact calculation of these graph filters requires
calculation of the full eigenspectrum as well as the dense eigenvector matrix U
of size N2 which can require more memory space than available for large N .
For this reason, Chebyshev polynomials are used to approximate the response
of xh = Uh(Λ)UTx. This is because h(λ) can be approximated as a Kth order

polynomial
∑K−1

k=0 akλ
k [10].

2.3 Upsampling and downsampling operators ↓ S and ↑ S
The operators Sd0, Sd1 and Su0,Su1 are used to downsample and upsample sig-
nals, respectively. Downsampling is done by simply taking only the n < N ver-
tices and corresponding signals in the graph that are chosen so that RN → Rn.
Upsampling increases the dimension of a sampled signal to the original graph di-
mensions, imposing the signal on the original vertices and then fills any missing
values with zeroes. The initial graph used in the Roadmaker’s Pavage algorithm
is a grid graph, which is also a bipartite graph. A bipartite graph is a graph that
can be divided into two disjoint and independent sets VBottom and VTop such
that every edge connects a vertex in VBottom to one in VTop, while the vertices
within a set are not connected to each other. Sampling a bipartite graph signal
according to these disjoint bipartite sets is a standard procedure when sampling
is required, as the sets will cover a large area of the graph with approximately
equal spacing between both sampled and excluded vertices. This makes interpo-
lation of an upsampled signal more accurate as each empty excluded node will
have several neighbours used to interpolate its value [13, 12].

There is however, a major caveat when using bipartite sampling for the Road-
maker’s Pavage. By definition, each bipartite set has no connections within itself
but the Roadmaker’s Pavage requires a connected graph in order to perform the
required transform and comparisons. To remedy this, an adjusted graph is used
for sampling. First, vertex indices to be sampled are chosen in a bipartite manner
as usual. Additional diagonal edges are then used to join nodes together. Finally
the two sets are separated from each other as if the graph is still bipartite, but
now each set is connected. Thus the Roadmaker’s Pavage algorithm can proceed
on these sampled graphs. An example of this procedure performed on a small
graph with 4 nodes is shown in Figure 3.

3 Application

In this section a comparison is shown between using the original Roadmaker’s
Pavage algorithm on an example image (of Chelsea the cat), and the proposed
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(a) (b)

(c) (d)

Fig. 3. An example of bipartite graph sampling with added edges The graphs are
coloured according to their disjoint bipartite sets: VBottom in blue and VTop in red.
Shown: (a) original toy graph, (b) disconnected graph after bipartite sampling, (c)
graph with added diagonal edges, (d) two connected graphs after sampling using indices
as if bipartite.

Roadmaker’s Pavage used in conjunction with a filter bank. The original image
was decomposed into pulses using both methods. In the case of the sampled and
filtered algorithm, it was found that the entire high frequency pipeline could be
discarded for the cost of a small decrease in mean-squared-error and extraction
accuracy of smaller features. This meant that only one line of filters and samplers
was required in this instance as well as only a single tree data structure.

The image was then reconstructed both fully and partially in both cases.
Partial reconstruction included extraction of only the smallest textures in the
image, extraction of a mid-range of pulse sizes giving a smoothed image and
extraction of the largest pulses giving the large features present in the image.
The full and partial reconstruction of the image can be seen in Figure 4 while
the equivalent reconstructions can be seen in Figure 5.

The original image has 135 300 pixels. The root-mean-squared-error between
the fully reconstructed original image and the interpolated fully reconstructed
image from the filtered Roadmaker’s Pavage was 1.47. The original algorithm
has an RMSE of zero as it perfectly reconstructs the original image. The error
introduced by the filtered algorithm can be justified by the noticeable decrease in
computational time and storage requirements. The original algorithm required 87
CPU seconds to decompose, approximately 5.5 CPU seconds to reconstruct the
signals and needed a tree with 170 777 nodes to store the information. The filtered
algorithm needed only 27.5 CPU seconds to decompose the signal, approximately
2.5 CPU seconds to reconstruct and a tree with 89 234 nodes for storage. A
summary of these findings is given in Table 1

The size of the sampled graphs is approximately half the size of the original.
The size and distribution of pulses extracted depends on the signal and size of
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Table 1. Summary of application findings.

Measurement Original Algorithm Proposed Algorithm

Pulse Graph size (number of nodes) 170777 89234
Decomposition Time (in CPU seconds) 87.0 27.5
Reconstruction Time (in CPU seconds) 5.5 2.5
RMSE against original image 0.00 1.47

the graph used. No precise method to find equivalent pulses between the full
Roadmaker’s Pavage output and the filtered and sampled Roadmaker’s Pavage
output. Future work will develop adaptive selection of the pulses using shape
measurements of pulses.

(a) (b)

(c) (d)

Fig. 4. An image of Chelsea decomposed and reconstructed using the Roadmaker’s
Pavage. Shown in: (a) original image, (b) smallest textures extracted, (c) smooth image
extracted, (d) largest features extracted.

4 Conclusion

This paper has shown that an approximation of the Discrete Pulse Transform
can be obtained using the Roadmaker’s Pavage algorithm in conjunction with



Graph sampling of an image 9

(a) (b)

(c) (d)

Fig. 5. An image of Chelsea decomposed and reconstructed using the Roadmaker’s
Pavage via a graph bank that has been upsampled, filtered and interpolated after the
pulses were reconstructed. Shown in: (a) interpolation of all pulses reconstructed, (b)
interpolation of smallest textures, (c) interpolation of smooth image, (d) interpolation
of largest features.
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graph spectral filtering and sampling. A minor loss of accuracy comes with the
benefits of noticeably shorter computational time and storage requirements. De-
pending on the level of precision required and the size of the features needed, the
high pass filters can be discarded if not necessary for the task. Even if the high
frequencies are still needed, this approximate algorithm can now be calculated
with two independent channels and thus can be parallel processed. Simulations
are to be conducted in the future on sets of images to find the distribution
and consistency of these findings. The partially reconstructed images here were
obtained through trial and error to find rough equivalents between the two meth-
ods. For these reasons no mean square-error or similarity comparison was yet
made to compare partial reconstruction. These will be compared in simulations
in the future using trial methods such as approximating the equivalent pulse
sizes needed by checking the relative pulse distributions of the original Road-
maker’s Pavage and the new filtered Roadmaker’s Pavage, and shape measures.
This sampling approach for the DPT should be further tested for accuracy in
areas the DPT has been applied such as segmentation [6], feature detection [7]
and its effectiveness when considering leakage [8].
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