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ABSTRACT Microbial life is surprisingly abundant and diverse in global desert eco-
systems. In these environments, microorganisms endure a multitude of physico-
chemical stresses, including low water potential, carbon and nitrogen starvation, and
extreme temperatures. In this review, we summarize our current understanding of
the energetic mechanisms and trophic dynamics that underpin microbial function in
desert ecosystems. Accumulating evidence suggests that dormancy is a common
strategy that facilitates microbial survival in response to water and carbon limitation.
Whereas photoautotrophs are restricted to specific niches in extreme deserts, meta-
bolically versatile heterotrophs persist even in the hyper-arid topsoils of the Atacama
Desert and Antarctica. At least three distinct strategies appear to allow such micro-
organisms to conserve energy in these oligotrophic environments: degradation of
organic energy reserves, rhodopsin- and bacteriochlorophyll-dependent light har-
vesting, and oxidation of the atmospheric trace gases hydrogen and carbon monox-
ide. In turn, these principles are relevant for understanding the composition, func-
tionality, and resilience of desert ecosystems, as well as predicting responses to the
growing problem of desertification.
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Drylands cover �40% of the terrestrial land surface area, with arid and hyper-arid
regions constituting 11.5% and 6.4%, respectively (1). Projections based on current

global warming trends suggest that drylands will constitute more than half of land
surfaces by the end of the century (2). Organisms living in these ecosystems face
prolonged and severe water deprivation, which curtail cellular and metabolic activities.
Without extracellular water, nutrients and substrates cannot be mobilized in a dissolved
form for cellular uptake (3) and microbes themselves are unable to move to find
resources, leading to starvation (4). Cellular metabolism is further restricted by envi-
ronmental stressors, such as low organic carbon and nitrogen availability, high UV
irradiation, dryland salinity, and temperature extremes (5–7). In particular, the distribu-
tion of key primary producers, such as oxygenic phototrophs, is limited by these
cumulative pressures (Fig. 1). Processes such as cyanobacterial photosynthesis in soil
biocrusts (8) or water uptake by plant roots (9) generally cease below matrix water
potentials of �3 MPa; however, the matrix water potential in desiccated soils is typically
between �40 and �95 MPa (10). As a result, in hyper-arid desert soils, photosynthetic
organisms are generally restricted to specific lithic refugia, such as the pore spaces of
coarse-grained rocks (endoliths) and the ventral surfaces of translucent minerals, such
as quartz (hypoliths). Here, they are protected from UV radiation and buffered against
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extreme temperature and desiccation, while benefiting from sufficient incident light for
photosynthesis (11, 12).

Despite photoautotrophs typically being low in abundance, diverse and viable
microbial communities are present in the topsoils of most deserts, including the
hyper-arid soils of the Atacama Desert (13) and Antarctic Dry Valleys (14). As summa-
rized in Fig. 1, deserts globally are usually dominated by heterotrophic bacteria from
phyla such as Actinobacteria, Proteobacteria, and Chloroflexi. In these environments,
given that there can be years without precipitation, heterotrophs face extreme starva-
tion for their preferred organic energy and carbon sources. Currently, researchers
lack a holistic understanding of the energetic basis of their growth and persistence in
desert environments. However, through a combination of culture-based and culture-
independent studies, several metabolic mechanisms that may allow these microbes to
survive desiccation and associated stresses have been uncovered.

DORMANCY AS A GENERAL STRATEGY TO REDUCE ENERGY EXPENDITURE

Desert soil microorganisms routinely experience extended periods of desiccation,
during which they are subjected to extreme energy limitation and other environmental
stresses. In response to these harsh conditions, some microbes reversibly enter a

FIG 1 Microbial community structure of global desert soils. The map is generated by ArcGIS 10.6 and shaded by global aridity index, a ratio of mean annual
precipitation to potential evapotranspiration (160) modeled by Antonio Trabucco and Robert Zomer (161). The relative abundances of major microbial groups
in 20 desert (nonbiocrust) soils from Africa (162, 163), Antarctica (77, 132, 164), Asia (165–170), Australia (171), Europe (172), North America (47, 77, 173), and
South America (13) are displayed in pie charts and in Table S1 in the supplemental material. Phyla with a �1% relative abundance were grouped into the
category “Other.” Actinobacteria is the most abundant phylum detected in bare soils (25.5%), followed by Proteobacteria (21%), Acidobacteria (6.5%),
Bacteroidetes (6%), Chloroflexi (2.5%), and Firmicutes (2%) (median values of the 20 samples are shown in Table S1). Cyanobacteria, though abundant in soil
biocrusts and lithic niches, are present in less than 1% in most bare soil samples.
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metabolically less active state termed dormancy (15). Different groups of microorgan-
isms may adopt different dormancy strategies. Some species form morphologically
distinct resting structures that are commonly characterized by thickened cell walls or
accumulations of extracellular polymeric substances (15). For instance, members of
Actinobacteria and Firmicutes, Gram-positive bacterial phyla widely found in drylands (7,
13, 14, 16), are well known for their ability to form highly stress-resistant spores (17, 18).
Consistently, these sporulating taxa are among the most common groups identified in
desert soils (19–22) based on both conventional cultivation studies and modern
molecular phylogenetic analyses. Common Cyanobacteria isolated from desert
biocrusts, such as Anabaena, Nostoc, and Cylindrospermum (23, 24), can differentiate
into specific spore-like structures termed akinetes, which tend to be much larger in size
than their vegetative structures (25). Gram-negative Proteobacteria isolated from arid
soils, such as Azotobacter (26) and Ramlibacter (27), are likewise able to transit into
multilayered cysts. Under favorable conditions, these resting stages can germinate to
produce vegetative cells.

A substantial proportion of microorganisms, such as the common arid soil actino-
bacterium Arthrobacter (28), do not undergo extensive morphological differentiation
during the transition to the dormant state. However, they still share core strategies with
sporulators, including reduction or cessation of growth; reduction of cell size; repres-
sion of energetically expensive activities, such as motility and the synthesis of macro-
molecules; alteration of the composition of membrane lipids and cell wall components;
and upregulation of macromolecular repair machinery (15, 29, 30). The highly radiation-
and desiccation-resistant genus Deinococcus provides an extreme example of how
microorganisms can minimize energy expenditure during desiccation persistence. This
bacterium tolerates substantial DNA damage, including numerous double-strand
breaks (31), without apparently initiating repair in its desiccated state (32). The chro-
mosome is reassembled from the fragments only upon rehydration (33). Accumulation
of antioxidants, such as carotenoids, small peptides, and manganese complexes, offers
a protective environment for proteins involved in recovery, thereby reducing the
energy costs of repair (34, 35). It has been suggested that members of the Rubrobacteria
(36), a highly abundant desert actinobacterial class (37, 38), adopt similar survival
strategies.

Regardless of the form that it takes, dormancy increases cellular resistance to
external stresses while reducing energy expenditure. However, dormancy does not
completely eliminate the requirement for energy, given that a basal energy supply is
required to maintain cellular integrity. Although the exact maintenance energy for
microbial communities in soils with low water content has not been reported, modeling
studies suggest that microorganisms in moist nutrient-deficient soils may metabolize
between 10 and 100 �g of carbon per gram of biomass carbon per hour for mainte-
nance (39), and one experiment demonstrated that desiccated Arthrobacter in labora-
tory conditions consumed 0.0005% of cellular carbon per hour (40). This indicates that
dormancy cannot be sustained indefinitely without external energy input. Exacerbating
energy demands, hot desert microorganisms are subjected to high levels of oxidative
stress due to the high gas permeability of sandy desert soils, desiccation-induced
reactive oxygen species formation, Maillard reactions, and extreme temperature-
accelerated damage (30, 41–43). The accumulation of excessive damage to nucleic
acids, proteins, and cell membranes, if not repaired, will eventually lead to mortality.
Therefore, even dormant cells may require basal levels of energy to repair damaged
cellular components either during and/or following quiescence. Energy is also required
to maintain a minimum membrane potential for ATP synthesis and metabolite trans-
port (44).

ENERGY RESERVE HYPOTHESIS

In desert ecosystems, a transient water supply can be provided in various ways:
occasional precipitation events, condensation of dew or fog, and ice or snow melts in
polar deserts. Desert microorganisms may depend on such brief “metabolic windows”
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to generate biomass and accumulate reserve compounds in preparation for long
periods of water scarcity and the consequent requirement of maintenance energy. This
constitutes the energy reserve hypothesis, adapted from the “pulse-reserve” paradigm
proposed by Noy-Meir in 1973 (45) for plant adaptation in desert ecosystems.

In plant-free desert soils, oxygenic photosynthetic organisms are key primary pro-
ducers. Such organisms are the keystone taxa of biocrust communities (46, 47) and
photosynthetic lithic communities (11, 12, 47). Biocrusts cover up to 70% of semiarid
and arid zones on all seven continents (46) and comprise a global area of over 1.3
billion hectares (48). In these environments, water is often provided in the form of
early-morning dew, quickly followed by desiccation as the day breaks with rising
temperatures and declining relative humidity (49, 50). Microbial communities within
the biocrusts must therefore rapidly respond to wetting by resuming respiration and
photosynthesis for biomass synthesis and then just as rapidly shut off these systems.
For example, simulation of dew hydration in Leptolyngbya ohadii, a dominant cyano-
bacterium in desert sand biocrusts, causes a rapid resumption of photosynthesis (51).
Upon the onset of desiccation, Microcoleus vaginatus, a keystone cyanobacterial species
in biocrusts, channels energy into the synthesis of energy and carbon storage com-
pounds, such as polyhydroxyalkanoates, polyphosphates, and cyanophycins (10). Many
other cyanobacteria, such as Scytonema and Aphanizomenon, are also known to accu-
mulate energy reserves in response to water stress or during the transition to dormancy
(25, 52, 53).

For heterotrophs, metabolic substrates become available at the instance when soil
is wetted. Increases in soil water potential cause the mobilization of extracellular soil
organic carbon (54). In addition, due to osmotic changes, hydration is thought to
stimulate the release of organic carbon from microorganisms through either inducing
cellular lysis (55, 56) or stimulating the secretion of intracellular osmoprotectants, such
as trehalose and glycine betaine (57, 58); note, however, that in situ evidence for
osmolyte release remains lacking (59–61). The sudden availability of metabolizable
substrates supports the idea that heterotrophs consume them rapidly, with respiration
rates peaking within minutes of soil hydration and then gradually declining (62, 63).
This phenomenon is termed the “Birch effect” (64). Upon depletion of these carbon
sources, heterotrophs rely on cross-feeding by exometabolite exchange with pho-
totrophs and other heterotrophs (Fig. 2). Cyanobacteria in biocrusts release a large
range of photosynthates and exudates, such as hexose sugars, while heterotrophs
excrete a smaller subset of metabolites (65, 66). Additionally, biocrust microorganisms,
most prominently M. vaginatus, produce large amounts of complex extracellular poly-
meric substances, such as polysaccharides (67–69), which can potentially be digested
by associated specialized heterotrophs like Bacteroidetes (70), as observed, for example,
in marine consortia (70, 71). The sharing and differential partitioning of this exome-
tabolite pool allows the rapid buildup and accumulation of biomass. In response
to xeric stress, heterotrophs upregulate the synthesis of reserve molecules, such as
glycogen (72), wax esters (73), and lipids (74).

Chemolithoautotrophs also benefit from trophic interactions with phototrophs and
heterotrophs. Diazotrophic Cyanobacteria fix nitrogen to ammonia, a portion of which
is excreted or leaked from cells (6, 75, 76). This supply of fixed nitrogen supports
nitrifying microorganisms, such as Thaumarchaeota, which are typically the dominant
archaea in desert soils (77–79). In addition, the anaerobic conditions resulting from
rapid respiration by heterotrophs after a wetting event can create microenvironments
for chemolithoautotrophic anaerobes to flourish (80, 81). This is exemplified by the
detection of methanogens in arid soils containing biocrusts, albeit in low abundance
(82). Methanogenesis can also be activated by wetting of arid soils, whereby aceto-
clastic/hydrogenotrophic Methanosarcina and hydrogenotrophic Methanocella organ-
isms consume fermentative end products produced by heterotrophs as substrates for
methane production (78, 83, 84). Chemolithoautotrophs are also known to accumulate
energy reserves when under stressed conditions (85–89).

While the energy reserve hypothesis provides a feasible mechanism for maintaining
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microbial cell energy requirements in desert soils, it is not without limitations. Some
deserts may receive insufficient water input over long periods to support this mecha-
nism. Hyper-arid regions in the central Atacama Desert can receive less than 5 mm of
rainfall per year (90) and may experience decades without precipitation (6, 13). Like-
wise, annual precipitation of less than 10 mm in certain areas of the Antarctic McMurdo
Dry Valleys is common (91), and a significant fraction of this moisture sublimates (5).
The combined effects of other environmental factors may reduce the capacity to
generate sufficient energy during one short “water pulse.” For instance, salt accumu-
lated in hyper-arid soils reduces water bioavailability (92–94), the low mean tempera-
tures in Antarctic soils reduce cellular metabolism (95), and the highly limited organic
carbon and bioavailable nitrogen in hyper-arid soils may restrict heterotrophic pro-
cesses (5). Overall, the ability of xerotolerant microorganisms inhabiting desert soils to
accumulate and utilize long-term energy storage compounds requires more extensive
study, especially in situ.

CONTINUAL-ENERGY-HARVESTING HYPOTHESIS

It is increasingly realized that heterotrophic microorganisms in desert environments
possess hidden metabolic flexibility. As elaborated below, they may meet energy
demands during starvation by continually harvesting atmospheric trace gases (litho-
heterotrophy) or sunlight (photoheterotrophy) as alternative energy sources. These
mechanisms are likely to be particularly important in the bare soils of deserts, which are
typically dominated by heterotrophic bacterial taxa (Fig. 1), with relatively low numbers
of photoautotrophs, such as Cyanobacteria (13, 47, 96).

Light-dependent energy harvesting (photoheterotrophy). Oxygenic photosyn-
thesis is limited by the availability of its electron donor: water. Water limitation,
together with damage of photosystems due to desiccation-induced reactive oxygen
species (42) and salt stress (97), is thought to primarily limit the abundance of
Cyanobacteria in hyper-arid soils. However, it is possible for heterotrophs to derive
energy from light by using photons to generate a membrane potential independently

FIG 2 Conceptual diagram representing the model lifestyle of a microbial community in a desert in response to hydration-desiccation
cycles. It is proposed that organic carbon reserves (energy reserve hypothesis), light (light-dependent continual-energy-harvesting
hypothesis), and trace gases (air-dependent continual-energy-harvesting hypothesis) are the major energy sources that allow dormant
microorganisms to persist during prolonged desiccation. Abbreviations: CODH, carbon monoxide dehydrogenase; Hyd, group 1h
[NiFe] hydrogenase; pMMO, particulate methane monooxygenase; PS, photosystem of aerobic anoxygenic phototroph; Rho, microbial
rhodopsin; and Cox, terminal oxidase.
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of the photosynthetic dark reactions. Two variants of such a light-harvesting mecha-
nism that are dependent on bacteriochlorophyll or rhodopsin (Rho) have been iden-
tified (98) (Fig. 2). These processes have sometimes been referred to as “aerobic
anoxygenic phototrophy.”

Bacteriochlorophyll (BChl)-dependent light harvesting has been observed in four
bacterial phyla: Proteobacteria (99), Chloroflexi (100), Acidobacteria (101), and Gemma-
timonadetes (102). Unlike Cyanobacteria, these bacteria contain only one photosystem,
with bacteriochlorophyll a being the major photosynthetic pigment (103). The electron
transport chain in BChl-dependent light harvesting can operate in a cyclic fashion
without exogenous electron donors (103), and therefore, energy can be generated
continually with solar input. While BChl-dependent light harvesting is a widespread
mechanism for harvesting supplemental energy, particularly in bacteria inhabiting
oligotrophic aquatic environments (104, 105), its ecological role in arid soils has not
been explored. A culture-dependent study confirmed the presence of soil crust bacte-
rial strains capable of BChl-dependent light harvesting (106). BChl-dependent light
harvesting may also be important in hyper-arid Antarctic desert soils. Amplicon se-
quence screening for genetic determinants of BChl-dependent light harvesting in
oligotrophic soils from the Sør Rondane Mountains identified diverse bacteria with this
capacity, which were affiliated primarily with the class Alphaproteobacteria (107, 108). A
subsequent isolation campaign recovered nearly 1,000 isolates, many affiliated with
known Alphaproteobacteria, harboring BChl-dependent light-harvesting capacity
(22). Likewise, a Hymenobacter strain (phylum Bacteriodetes) was found to have BChl-
dependent light-harvesting potential, a trait not previously observed in members from
this phylum (22).

Rhodopsin-based light harvesting (Rho-light harvesting) is a minimalistic light
energy-harvesting mechanism consisting of a single ion-pumping protein (type I opsin)
with a retinal chromophore cofactor (109). This process generates an ion-motive force
for ATP synthesis (but not reducing power), potentially providing a survival advantage
for microorganisms during nutrient deprivation (110–112). The minimal genetic deter-
minants of this process, namely, a single opsin gene and another gene for retinal
synthesis from carotenoid (109), facilitate horizontal gene transfer (113, 114); this has
likely enabled the dissemination and diversification of microbial rhodopsins across
archaea and bacteria. A global metagenomic survey focused on marine environments
estimated that rhodopsin genes are carried by half of prokaryotic taxa and are 3-fold-
more abundant than genes for photochemical reaction centers (115). Despite the
possible importance of this physiology as a survival strategy in dry oligotrophic
habitats, the ecological relevance of Rho-light harvesting in arid soils has received little
attention. Analyses of soil crust metagenomes by Finkel et al. indicated that up to half
of microbial genomes encode rhodopsins (115). Several more recent studies have
focused on Antarctic deserts: while PCR amplification failed to detect rhodopsin genes
in soils from the Sør Rondane Mountains (107, 108), a metagenomic study of hypolithic
communities from the Miers Valley (McMurdo Dry Valley region) indicated that 20% of
bacterial taxa harbored rhodopsin genes (116).

Atmospheric trace gas oxidation (lithoheterotrophy). While light-dependent
energy harvesting strategies are clearly important physiological processes in desert soil
habitats (5, 6, 11, 46), such processes are always constrained by light penetration.
Atmospheric trace gases may provide a viable alternative energy source for desert soil
microorganisms residing within and below the photic zone. Trace gases, such as
hydrogen (H2), carbon monoxide (CO), and methane (CH4), are ubiquitous, diffusive,
and high-energy electron donors. The porosity of dry desert soils, due to their coarse
texture and low water retention, may also facilitate trace gas permeation (117). The
possibility that these substrates support respiration in desert soil microbial communi-
ties should therefore be considered (Fig. 2).

Dihydrogen, as the most fundamental molecule, can serve as an energy source for
microorganisms from a wide range of taxa and ecosystems (118, 119). Soil microor-
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ganisms scavenge H2, which is present at atmospheric mixing ratios of 530 ppbv (120),
as an electron donor for aerobic respiration (121). While this process was inferred some
four decades ago, the organisms and enzymes responsible for this process have only
recently been characterized (122, 123). Genetic and biochemical studies have shown
that this process is catalyzed by the group 1h [NiFe]-hydrogenases linked to the
respiratory chain; synthesis of this enzyme is induced during nutrient starvation and is
critical for long-term survival (124–128). It is now established that atmospheric H2

oxidation is a broadly distributed trait among major soil microbial phyla, having been
experimentally verified in Actinobacteria (126, 128–130), Acidobacteria (125, 131), and
Chloroflexi (124). The genetic determinants of this activity were found to be carried by
at least five additional cultured microbial phyla (123) and two candidate phyla (132).

Carbon monoxide, present at �90 ppbv in the atmosphere (133), is also aerobically
respired by soil microbial communities. Physiological studies have shown that the
enzyme responsible for this process, carbon monoxide dehydrogenase (134), is also
induced during carbon limitation and enhances survival during starvation (124, 135–
138). At least four microbial phyla can scavenge atmospheric CO (135), namely,
Actinobacteria (135, 139), Proteobacteria (140, 141), Chloroflexi (124, 142), and Euryar-
chaeota (143, 144). Moreover, a recent genomic survey identified putative CO dehy-
drogenase genes in 16 microbial phyla, encompassing most of the dominant taxa
detected in soils (135).

Increasing evidence suggests that oxidation of atmospheric H2 and CO is a feasible
continuous-energy-harvesting strategy for microorganisms living in desert ecosystems.
Indeed, the genetic determinants for these reactions are consistently detected in desert
surveys. Analysis of metagenomic and metatranscriptomic sequence data from the
Colorado Desert and Tarim Basin revealed that the genes encoding these enzymes are
both abundant and expressed by the soil microbial communities (135). Metagenome-
assembled genomes of bacteria with trace gas oxidation potentials, including
Pseudonocardia from the high-elevation Atacama Desert (145) and “Candidatus
Dormibacteraeota,” “Candidatus Eremiobacteraeota,” Actinobacteria, Chloroflexi, and
Verrucomicrobia from Robinson Ridge, Antarctica (132), have been recovered from
hyper-arid mineral soils. Experimentally, the rapid consumption of H2 and CO to
subatmospheric concentrations was demonstrated in microcosm experiments using
Antarctic soils (132). In addition, calculations of theoretical energy yield from trace gas
oxidation suggest that this process is sufficient to support the maintenance energy
requirement of soil microbial communities (132, 146). Trace gas oxidation may explain
why Actinobacteria is the dominant bacterial phylum in desert soils. The relative
abundance of this phylum increases with aridity (147, 148), and it typically accounts for
30 to 80% of the microbial community in hyper-arid sites (7, 13, 132, 145, 147, 149)
(Fig. 1). Concomitantly, genome-mining data suggest that group 1h [NiFe] hydrogenase
genes (123) and carbon monoxide dehydrogenase genes (135) are universally distrib-
uted within this phylum. Importantly, CO and H2 oxidation can remain active at low
water potentials, with the slow uptake of atmospheric CO detectable at water poten-
tials between �41 MPa and �117 MPa (143, 150), comparable to values in hyper-arid
desert soils.

Methane, present at 1.9 ppmv, is the most abundant reduced gas in the troposphere
(151). Unlike atmospheric H2 and CO oxidation, it is likely that atmospheric CH4

oxidation has a limited role in supporting microbial persistence in desert environments.
This compound is oxidized to methanol by particulate and soluble methane monoox-
ygenases, which is further oxidized for energy production or carbon assimilation (152).
To date, taxa with the ability to oxidize CH4 at atmospheric concentrations are exclu-
sively found in specific lineages of the Alphaproteobacteria and Gammaproteobacteria
(153). In desert soil ecosystems, atmospheric CH4 oxidation has been reported (154–
157). However, the observation of detectable methane oxidation and methane mono-
oxygenase genes in different samples is highly sporadic, especially in more arid soils
(145, 155, 156, 158). Moreover, the activity of CH4 oxidation and the abundance of
methanotrophs appear to decline dramatically at low water content (117, 150, 159).
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However, it is known that some methylotrophs are in high relative abundance in some
desert soils; an example is Methylobacterium radiotolerans, which dominates the mi-
crobial communities at depths below 5 meters in the Playa of the Atacama Desert soils
(94).

CONCLUSIONS

Recent advances in “omics” techniques, in combination with pure culture studies
and sensitive biogeochemical measurements, have enabled a rapid expansion of
knowledge of the diversity and function of organisms living in water-scarce environ-
ments. It is now acknowledged that surprisingly diverse microbial communities survive
in even the most arid and oligotrophic soils, such as the Antarctic cold deserts and the
Atacama Desert. In the absence of macrophytic phototrophs, these microorganisms are
the predominant contributors to primary productivity and biogeochemical activities.
However, our understanding of how these organisms survive during long periods of
water deficiency and how biodiversity in arid soil environments is maintained and
shaped remains incomplete. Here, we have presented two strategies for microbial
survival in arid ecosystems that can sustain dormancy: the energy reserve hypothesis
and the continual-energy-harvesting hypothesis. The strategies are certainly not mu-
tually exclusive, but their degree of relative importance is likely to vary according to the
severity of different environmental parameters, such as light availability, oligotrophy,
and water availability (Fig. 2). A deeper understanding of these mechanisms is likely to
contribute substantially to our capacity to predict how ecosystems, as well as the
services that they provide, are affected by the projected global desertification.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, XLSX file, 0.02 MB.
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169. Baubin C, Farrell AM, Šťovíček A, Ghazaryan L, Giladi I, Gillor O. 2019.
Seasonal and spatial variability in total and active bacterial communi-
ties from desert soil. Pedobiologia (Jena) 74:7–14. https://doi.org/10
.1016/j.pedobi.2019.02.001.

170. Abed RMM, Tamm A, Hassenruck C, Al-Rawahi AN, Rodriguez-Caballero
E, Fiedler S, Maier S, Weber B. 2019. Habitat-dependent composition of
bacterial and fungal communities in biological soil crusts from Oman.
Sci Rep 9:6468. https://doi.org/10.1038/s41598-019-42911-6.

171. Reith F, Brugger J, Zammit CM, Gregg AL, Goldfarb KC, Andersen GL,
DeSantis TZ, Piceno YM, Brodie EL, Lu ZM, He ZL, Zhou JZ, Wakelin SA.
2012. Influence of geogenic factors on microbial communities in met-

allogenic Australian soils. ISME J 6:2107–2118. https://doi.org/10.1038/
ismej.2012.48.

172. Ferrari BC, Bissett A, Snape I, van Dorst J, Palmer AS, Ji MK, Siciliano SD,
Stark JS, Winsley T, Brown MV. 2016. Geological connectivity drives
microbial community structure and connectivity in polar, terrestrial
ecosystems. Environ Microbiol 18:1834 –1849. https://doi.org/10.1111/
1462-2920.13034.

173. Steven B, Lionard M, Kuske CR, Vincent WF. 2013. High bacterial
diversity of biological soil crusts in water tracks over permafrost in the
High Arctic Polar Desert. PLoS One 8:e71489. https://doi.org/10.1371/
journal.pone.0071489.

Pok Man Leung graduated from the Inter-
national Research Enrichment Program at
the Hong Kong University of Science and
Technology, where he received intensive re-
search training on environmental microbiol-
ogy. He then worked as a research intern
at the Scripps Institution of Oceanography,
investigating extremophiles from the sub-
seafloor environment. Fascinated by the
largely untapped potentials and capabilities
of microorganisms, he started his Ph.D. can-
didature in this area under the supervision of Associate Professor Chris
Greening at Monash University in 2018. His current research focuses on
the energetic mechanisms that support microbial growth and persis-
tence in different ecosystems using both culture-dependent and
culture-independent approaches.

Sean K. Bay completed his Honours in Evo-
lutionary Biology degree at the University of
Exeter before spending time working as an
environmental field officer down under. He
thereafter completed a Masters in Environ-
mental Monitoring, Modelling, and Manage-
ment at King’s College London, learning
computer- and field-based techniques to
query environments undergoing change. He
is currently a final-year Ph.D. student at Mo-
nash University investigating the structure
and basis of soil microbial biodiversity under the primary supervision of
Associate Professor Chris Greening. Over the past 3 years Sean has used
molecular, biogeochemical, and in situ approaches to understand how
microbial communities are structured and how they remain energized
in aerated surface soils.

Dimitri V. Meier completed Bachelors and
Masters degrees at Georg-August University
of Göttingen, Göttingen, Germany. He sub-
sequently completed a Ph.D. on microbial
communities of hydrothermal vents at the
Max Planck Institute for Marine Microbiol-
ogy, Bremen, Germany, in 2016. In 2017, he
moved to the University of Vienna, Vienna,
Austria, to work on microbial ecology and
survival in desert soil crusts and hypersaline
microbial mats. He is fascinated by microbial
survival in seemingly extreme conditions and aims to gain a holistic
understanding of these ecosystems. In his current work, he uses largely
culture-independent methods, such as metagenomics, metatranscrip-
tomics, and microscopy, to obtain a comprehensive picture of microbial
lifestyles and strategies that enable survival at very low water availabil-
ity while maintaining ecosystem functions.

Eleonora Chiri attained her Ph.D. in Science
at the Swiss Federal Institute of Technology
ETH Zurich in 2016, investigating the ecolog-
ical role of methane-oxidizing bacteria in
natural and anthropogenic soil chronose-
quences. Since then, she has extended her
field-based studies of microbial methane
and hydrogen oxidation to Australian ter-
mite mound and savanna soil ecosystems
during her postdoctoral experience at Charles
Darwin University, the University of Mel-
bourne, and, most recently, Monash University. As a Swiss National
Science Foundation Fellow, her current research focuses primarily on
understanding the ecological role of microbial atmospheric trace gas
oxidation by investigating the establishment and development of these
biogeochemical processes in oligotrophic and extreme soil ecosystems.
Uncovering the identity, activity, and ecosystem function of soil micro-
organisms that “live from air” represent the core goals of her scientific
career.

Don A. Cowan was educated (B.Sc., M.Sc.,
Ph.D.) at the University of Waikato (Hamilton,
New Zealand) and completed a 4-year pe-
riod of postdoctoral research under the su-
pervision of Professor Roy Daniel before
moving to a Lectureship at University Col-
lege London (UK) in 1985. After 16 years in
London, he was appointed to the Chair of
Microbiology and Head of the Department
of Biotechnology at the University of the
Western Cape (Cape Town, Republic of
South Africa), where he established the Institute for Microbial Ecology
and Metagenomics. In 2012, he moved to the University of Pretoria,
where he is a professor in the Department of Biochemistry, Genetics,
and Microbiology, and is currently the director of both the Genomics
Research Institute and the Centre for Microbial Ecology and Genomics.
Much of Don’s research focuses on the diversity and function of micro-
bial communities in extreme environments, particularly hot (Namib)
and cold (Antarctic) desert soils.

Continued next page

Minireview

March/April 2020 Volume 5 Issue 2 e00495-19 msystems.asm.org 13

https://doi.org/10.1016/j.pedobi.2019.02.001
https://doi.org/10.1016/j.pedobi.2019.02.001
https://doi.org/10.1038/s41598-019-42911-6
https://doi.org/10.1038/ismej.2012.48
https://doi.org/10.1038/ismej.2012.48
https://doi.org/10.1111/1462-2920.13034
https://doi.org/10.1111/1462-2920.13034
https://doi.org/10.1371/journal.pone.0071489
https://doi.org/10.1371/journal.pone.0071489
https://msystems.asm.org
http://msystems.asm.org/


Osnat Gillor attained her Ph.D. in 2002 from
the Department of Environmental Sciences
at the Hebrew University of Jerusalem. She
investigated the causes of harmful cyano-
bacterial blooms in freshwater and seawater
systems. During her postdoc, she explored
toxin-mediated bacterial interactions in the
lab and murine gastrointestinal tract at Yale
University and the University of Massachu-
setts, Amherst, MA. In 2006, she joined the
faculty of the Zuckerberg Institute for Water
Research at Ben Gurion University of the Negev, where she studies
microbial interactions in water and soil systems. She has a broad set of
research interests, ranging from the role of antimicrobials in biofilm
formation to the diversity, composition, and function of microbial
communities in arid soils, dust, and rocks. What unites these disparate
topics is the study of processes and patterns that control microbial
interactions from the most complex habitat, the soil, to a simplified
laboratory model system.

Dagmar Woebken studied biology at the
Leibniz University, Hannover, Germany, and
conducted her Ph.D. research at the Max
Planck Institute for Marine Microbiology in
Bremen, Germany (2007). After her postdoc-
toral work at Stanford University in collabo-
ration with the NASA Ames Research Center
and the Lawrence Livermore National Labo-
ratory in California, she relocated to Austria
in 2012 for a group leader position at the
University of Vienna. She currently holds an
assistant professorship and is a member of the Young Academy of the
Austrian Academy of Sciences. Dagmar’s group explores the function of
microorganisms in soils, which are among the most diverse microbial
communities on Earth. In her ERC-funded project, she has focused on
the survival strategies of soil microorganisms. Dagmar is particularly
fascinated by the physiologies that allow the survival of microorgan-
isms under unfavorable conditions, as it is a key factor in maintaining
the high diversity in soil.

Chris Greening studied molecular and cel-
lular biochemistry at the Bachelor and Mas-
ter levels (University of Oxford, 2010). For his
doctoral degree in molecular microbiology
(University of Otago, 2014), he investigated
the physiological role of mycobacterial hy-
drogenases under the mentorship of Profes-
sor Gregory Cook. He subsequently gained
postdoctoral experience at the University of
Otago, CSIRO, and the Australian National
University before setting up his group at
Monash University in 2016. Chris’ team is dedicated to understanding
the metabolic mechanisms that allow environmental and pathogenic
bacteria to adapt to resource limitation. This has led to a range of key
findings, for example, that atmospheric trace gases serve as alternative
energy sources for bacteria in nutrient-starved environments, including
desert ecosystems. He uses his diverse experiences to connect findings
at the molecular, cellular, and ecosystem scales.

Minireview

March/April 2020 Volume 5 Issue 2 e00495-19 msystems.asm.org 14

https://msystems.asm.org
http://msystems.asm.org/

	DORMANCY AS A GENERAL STRATEGY TO REDUCE ENERGY EXPENDITURE
	ENERGY RESERVE HYPOTHESIS
	CONTINUAL-ENERGY-HARVESTING HYPOTHESIS
	Light-dependent energy harvesting (photoheterotrophy). 
	Atmospheric trace gas oxidation (lithoheterotrophy). 

	CONCLUSIONS
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

