
1 
 

Pharmacoinformatics-based identification of chemically active molecules 
against Ebola virus 

 
Md Ataul Islam1,2, Tahir S. Pillay*1,3 

1Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and 
National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa. 
2School of Health Sciences, University of Kwazulu-Natal, Westville Campus, Durban, South 
Africa. 
3Division of Chemical Pathology, University of Cape Town, South Africa. 
 
Email IDs:  MA Islam: ataul.islam80@gmail.com 
  TS Pillay: tspillay@gmail.com 
 

*Correspondence should be addressed to T.S. Pillay, Department of Chemical Pathology, 
Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia, Pretoria, 0007 

Email: tspillay@gmail.com  
Phone: +27-123192114 
Fax: +27-123283600 

 
Abstract 
Ebola is a dangerous virus transmitted by animals and humans and to date there is no curable 

agent for such a deadly infectious disease. In this study, pharmacoinformatics-based methods 

were adopted to find effective novel chemical entities against Ebola virus. A well predictive 

and statistical robust pharmacophore model was developed from known Ebola virus 

inhibitors collected from the literature. The model explained the significance of each of 

hydrogen bond acceptor and donor, and two hydrophobic regions for activity. The National 

Cancer Institute and Asinex (Antiviral library) databases were screened using the final 

validated  pharmacophore model. Initial hits were further screened with a set of criteria and 

finally eight molecules from both databases were proposed as promising anti Ebola agents. 

Further molecular docking and molecular dynamics studies were carried out and it was  found 

that the proposed molecules possessed capability to interact with amino residues of Ebola 

protein as well as retaining equilibrium of protein-ligand systems. Finally, the binding 

energies were calculated using MM-GBSA approach and all proposed molecules showed 

strong binding affinity towards the Ebola protein receptor.  
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Introduction 

The deadly Ebola virus (EV) causes an acute, serious illness and haemorrhagic fever in 

humans and nonhuman primates resulting in high mortality rates (Leroy et al., 2009; Ray et 

al., 2004; Sullivan, Sanchez, Rollin, Yang, & Nabel, 2000). The World Health Organisation 

(WHO)  reported an outbreak of Ebola virus disease (EVD) in West Africa in 2014(Briand et 

al., 2014), and there was an urgent response from international agencies and collaboration to 

control the outbreak. As per data by WHO, in 2016 about 28 500 people were infected by EV 

and approximately 28 500 died in the same year (World Health Orginization (WHO), 2016). 

It is also reported that about 900 healthcare personnel working in the war zone of the 

outbreak contracted  EVD  and there were 513 deaths(Horton, 2014). The EV is a 19-kb, 

single-strand, negative-sense RNA virus which is a member of Filoviridae family and 

Mononegavirales order(Vetter et al., 2016). There are five species of EV with major 

variances in response to virulence and geographical distribution. It is elucidated that out of 

five species of the genus, four (Zaire ebolavirus, Sudan ebolavirus, Bundibugyo ebolavirus, 

and Taï Forest ebolavirus) are known to cause EVD in humans, whereas Reston ebolavirus is 

not pathogenic in humans. It is also reported that Zaire ebolavirus is the most pathogenic 

form for humans with lethality rates of up to 90%(Feldmann & Geisbert, 2011). The entire 

genome of the EV consists of seven genes that form a nucleoprotein, virion protein (VP) 35, 

VP40, glycoprotein, VP30, VP24, RNA-dependent RNA polymerase. The virus-like particles 

(VLP) are formed with help of the matrix protein VP40 and exposed on the surface due to 

presence of glycoproteins and subsequently presented to the host cell(Harty, Brown, Wang, 

Huibregtse, & Hayes, 2000; Noda et al., 2002). Furthermore, virus fusion and entry occur 

through a number of processes including a complex cascade of micropinocytosis–

endocytosis(Aleksandrowicz et al., 2011; Nanbo et al., 2010; Saeed, Kolokoltsov, Albrecht, 

& Davey, 2010), endosome trafficking(Carette et al., 2011; Lee & Saphire, 2009) and 

proteolytic activation(Chandran, Sullivan, Felbor, Whelan, & Cunningham, 2005; 

Schornberg et al., 2006). The consequence of fusion and transmission of virions are 

internalization and the viral genome replication in the host cell.  

A number of therapeutic options for EVD are being developed including vaccines(Feldmann 

& Geisbert, 2011), monoclonal antibodies(Olinger et al., 2012; Qiu et al., 2012), recombinant 

proteins(Geisbert et al., 2003; Smith et al., 2013), antibody–interferon (IFN) 

combinations(Qiu et al., 2013) and small interfering (si)RNA(Geisbert et al., 2010) and these 

have been successfully tested in the nonhuman models of virus infection. However, to date 

none of them is approved for the application in humans. As there are no therapeutic agents 
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available to treat or control such life-threatening EVD, it has become high level of public 

concern worldwide, and highlights the requirement to discover promising and effective 

therapeutic chemical agents targeting EV. 

Discovery of therapeutically effective molecules is a complex, cost and time-intensive 

process. Integration of computational power with pharmaceutical research known as 

pharmacoinformatics plays an important role in enhancing the drug discovery pipeline and 

also reduces significant amount of cost as well as animal sacrifice. Pharmacoinformatics 

approaches including pharmacophore(Kim, Kim, & Seong, 2010), virtual screening(Kim et 

al., 2010), molecular docking(Meng, Zhang, Mezei, & Cui, 2011) and molecular 

dynamics(De Vivo, Masetti, Bottegoni, & Cavalli, 2016) studies have already proven their 

pivotal role in identifying promising and medicinally effective small molecules(Sliwoski, 

Kothiwale, Meiler, & Lowe, 2014). Pharmacophore is an abstract representation of the 

structures of small molecules or concept of receptor cavity of the macromolecule which 

allows one to discover structurally diverse promising compounds. Two strategies can be 

adopted to develop pharmacophore models viz. ligand-based and structure-based. In the 

ligand-based method, important mutual chemical functionalities are obtained from 3D 

structures of a set of known inhibitors/activators involved in binding interactions between the 

ligands and a precise macromolecular receptor site. The receptor-based pharmacophore 

approach is the identification of the complementary pharmacophoric features of the receptor 

site with the bound or docked small molecule and their three-dimensional associations, and a 

successive pharmacophore model assembly with selected features(Amaravadhi, Baek, & 

Yoon, 2014).  

The virtual screening or extraction of small molecules from the molecular databases is 

considered a crucial technique in drug discovery research. With the availability of three-

dimensional crystal structure of receptor molecules, molecular docking is one of the crucial 

step to screen the molecular databases. Molecular docking predicts the preferable orientation 

of the ligand inside the receptor cavity and subsequently calculates the binding affinity 

between ligand and protein. In order to explore dynamic behaviour of the ligand-protein 

complex, molecular dynamics (MD) simulations is one of the best options in which both 

receptor molecule and ligands are treated in a flexible manner and permitted to relax the 

binding site about the bound ligand. Moreover, MD can directly assess the consequence of 

explicit water molecules. In this study, we  developed a well validated pharmacophore 

hypothesis using the HypoGen module(H.  Li, Sutter, & Hoffmann, 2000) with key chemical 

features of a set of inhibitors that selectively hinder the Ebola and Marburg glycoprotein 
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(GP)-mediated infection of human cells(Yermolina, Wang, Caffrey, Rong, & Wardrop, 

2011). The selected pharmacophore model was corroborated using a number of  approved 

statistical approaches including Fischer’s randomization, test set prediction and decoy set 

validation. The virtual screening of small molecular databases was performed using the final 

validated model. The primary goal of the virtual screening is to decrease the large virtual 

chemical space of small organic molecules to a reasonable number of the compounds that 

activate or inhibit the target for a maximum chance to lead to a drug candidate. The potential 

of the work is demonstrated by the credentials of eight promising molecules for the EVD 

described here. The molecular docking study was performed to explore the interactions 

between promising ligands from databases and catalytic amino acid residues. Finally, to 

explore constancy and detailed binding interactions of the final proposed inhibitors inside the 

protein, a molecular dynamics study was carried out. 

 

Materials and methods 

In order to develop pharmacophore model Discovery Studio 2016 (DS) was used. The virtual 

screening and molecular docking studies were also carried out in DS. The DS is a widely 

used commercial software package in pharmaceutical research comprising a number of 

modules(Al-Balas et al., 2013; Chhabria, Brahmkshatriya, Mahajan, Darji, & Shah, 2012; 

Huang et al., 2012). The 3D QSAR pharmacophore generation module of DS was adopted 

for pharmacophore generation in which a set of EV inhibitors and activity data were 

considered. Two modules of ligand-based pharmacophore method viz., HypoGen and HipHop 

incorporated in DS. The HipHop module recognises the hypotheses conjoint in the ‘active’ 

set of compounds of training set but absence in the ‘inactive’ compounds. While, HypoGen 

module advances with hypotheses existing both in ‘active’ and ‘inactive’ compounds. In the 

current work, the HypoGen module was adopted to develop pharmacophore models in DS.  

 

Dataset 

A dataset of 46 isoxazole analogues as inhibitors of Ebola GP-mediated cell entry with 

infectivity values were collected from literature(Yermolina et al., 2011). The Training Set 

Generation module of DS was used to identify the training and test sets compounds. The 2-

dimensional structures of training set molecules are given in the Figure 1. The infectivity 

value of the compounds in the dataset possessed wide range of values from 3 to 421.  

For simplicity the infectivity values have been converted into pInfect = 

log((1/Infectivity)x1000). The entire dataset was categorised into highly active (pInfec > 
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1.700, +++), moderately active (1.301 < Infectivity ≤ 1.700, ++) and least active (Infectivity ≤ 

1.700, +) based on infectivity activity values. In order to identify the training and test set 

molecules the well knows strategies by Li et al.(H. Li, Sutter, & Hoffman, 1999) was used 

and afterward pharmacophore model developed from the training set. The guidelines 

enlightened that (a) compounds present in the set should have provide strong and transitory 

information with chemical features and range of the biological activity, (b) minimum 16 

structurally diverse compounds should be considered in the set to confirm the statistical 

significance and elude chance correlation, (c) the most and least active molecules of the 

dataset must present in the set and (d) the activity of the compounds should have spanned at 

least 4 orders of magnitude. By following the above rules 30 compounds were considered in 

the training set including most and least active compounds. The remaining 16 compounds of 

dataset were taken as test set molecules (Figure 4) and further used to evaluate the 

performance of pharmacophore model. The 2D/3D visualizer module of DS was used to 

generate the three-dimensional (3D) coordinates of the compounds. The modified CHARMm 

force field(Brooks et al., 1983; Momany & Rone, 1992) was implemented to correct the 

coordinates and energy minimization of each compound  of the dataset.  
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Figure 1. Two-dimensional structure of the training set compounds and the pInfect values are given in 
the parentheses 
 

Pharmacophore model generation 

The 3D QSAR Pharmacophore Model Generation module of DS was considered to generate 

pharmacophore hypotheses in which the molecules converted in 3D structure and 

conformations were created by Cat-Conf program. The BEST conformational generation 

method was used to find out various acceptable conformation of each molecules. The BEST 

method uses poling algorithm(Smellie, Teig, & Towbin, 1995) in which the molecular 

conformations are optimized by the rigorous energy minimization and consequently give 
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complete and improved coverage of conformational space. The algorithm also takes into 

consideration the arrangement of the chemical functionalities in space instead of simply the 

arrangement of atoms (Kristam, Gillet, Lewis, & Thorner, 2005). In order to identify the 

favourable pharmacophoric features from the highly active molecules the Feature mapping 

module of DS was used and subsequently best mapped features of the molecules considered 

as input pharmacophoric features for hypotheses development. With the help of conformers 

and chemical features the algorithm drives in two methods such as HipHop and HypoGen. In 

order to develop the hypotheses, only active molecules are considered by the HipHop 

approach, whereas HypoGen method takes both  active and inactive compounds(Kristam et 

al., 2005). HypoGen approach gives the best ten hypotheses from the training set molecules 

by considering conformations of the molecules and pharmacophoric features through 

following steps: constructive, subtractive and optimization(Sadler, Cho, Ishaq, Chae, & 

Korach, 1998). The hypotheses are developed from those conjoint in the active molecules is 

the constructive step; in the subtractive step, the hypotheses are discarded from those fitted to 

the inactive molecules. Finally, in the optimization phase, remaining hypotheses are 

improved with regards to the score using the small perturbations(Kristam et al., 2005; H. Li, 

Sutter, & Hoffman, 2000). The best robust model was considered on the basis of high 

correlation coefficient (R), low root mean square deviation (RMSD), cost function analysis 

and good predictive ability.  

 

Validation of pharmacophore model 

Pharmacophore models validation is a crucial step to verify the predictive and robustness of 

the model. In the current work, the selected pharmacophore model from the training set was 

validated by five different approaches, (a) internal validation, (b) cost function analysis, (c) 

Fischer’s randomization test, (d) test set prediction and (e) decoy set. 

 

Internal validation 

The leave-one out (LOO) cross-validation is an important approach to validate the model 

with the training set data. In this method, one compound from the training set was randomly 

deleted and the model developed with the remaining molecules with the parameters used 

from the original model and subsequently activity of the deleted compound predicted through 

the newly developed model. Similarly, the predicted activity of all molecules of the training 

set were recorded for further analysis. In order to assess the quality of the model two critical 

parameters of internal validation protocol, the LOO cross-validated correlation coefficient 



8 
 

(Q2) and error of estimation (se) were calculated based on estimated and experimental 

activity of the training set molecules. The model explained good predictive ability with high 

Q2 (>0.5) and low se(Kubinyi, Hamprecht, & Mietzner, 1998). Further, the modified r2 (r2
m) 

reported by Roy et al.(Ojha, Mitra, Das, & Roy, 2011; K. Roy et al., 2012) was also 

calculated which measures the degree of deviation of the estimated activity from the 

experimental ones. As reported the model may be considered with r2
m>0.5. 

 
Cost function analysis 

Several statistical parameters included spacing, uncertainty and weight variation were varied 

and given as input to generate the statistically robust model. The spacing parameter implies 

the minimum inter-features distance that may be tolerable in the final hypothesis. The order 

of magnitude explored by the hypothesis in which every pharmacophoric feature indicates 

some degree of magnitude of the molecule’s activity. Generally 3.0 and 0.3 are the default 

values of spacing and weight variation respectively but it can vary from 4.0 to 1.0 and 1 to 2 

respectively. The error of prediction represented by the uncertainty parameter which implies 

the standard deviation of the error cost. The default value of this parameter is 3 but in some 

cases it may vary from 1.5 to 4.0. Three cost factors viz., weight cost, error cost, and 

configuration cost were minimized to explore the cost function of the hypotheses. The weight 

cost based on the weight variation and increases the weight of chemical feature in a 

hypothesis differ from input value. Error cost implies the root mean square deviation 

(RMSD) between the estimated and experimental biological activities for the training set 

molecules. The configuration cost depends on the entropy of hypothesis and it is reported that 

value should be <17 for an acceptable pharmacophore model. A fixed cost penalizes the 

complexity of the hypothesis space. The total cost is inclusive cost of all three costs factors of 

a hypothesis. Another cost factor known as null cost is generated during the null hypotheses 

development which is the postulation that there is no association in the estimated and the 

experimental activities. As per reports, the higher (>60) cost difference (∆cost = null cost - 

total cost) specified that the hypothesis does not reflect a chance correlation. 

Fischer’s randomization test   

The CatsScramble(H. Li et al., 2000) is one of the important approaches to verify the quality 

of the selected model and it is based on Fischer’s randomization test. This approach confirms 

the robust relationship between the molecule and the biological activity of the training set 

compounds. For this purpose, the biological activities of the training set molecules were 

scrambled and the new pharmacophore hypotheses generated with same set of parameters as 
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the original hypothesis. If the statistical parameters of randomized hypothesis were found to 

be better than the original hypothesis then the original hypothesis may have developed by 

chance. Based on the statistical significance a number of spreadsheets are produced. The 

statistical significance is given by following equation. 

[1 (1 ) / ]Significance a b= − +        (1) 

Where, a implies the number of hypotheses developed with low total cost compared to the 

original hypothesis, and b indicates total number of HypoGen and random runs. For example, 

total number of spreadsheets are obtained as 19 (b = 20) with 95% confidence level when 

individual developed spreadsheet is submitted to HypoGen using the original restrictions as 

the initial run.  
 

Test set prediction 

External predictivity of the pharmacophore model outside the compounds involved in the 

model formation is a crucial and essential approach. In this approach, the test set molecules 

were mapped to the best pharmacophore model with help of Ligand Pharmacophore 

Mapping protocol in DS and estimated activity recorded. A number of statistical parameters 

included R2
pred (correlation coefficient) and sp (error of prediction)(Golbraikh & Tropsha, 

2002; Mitra, Saha, & Roy, 2010) were calculated to verify the quality of prediction of the 

model. Further the modified r2 [r2
m(test)](P. P. Roy, Paul, Mitra, & Roy, 2009; P. P. Roy & 

Roy, 2008) value was calculated (threshold value=0.5).  

 

Virtual screening 

Pharmacophore-based virtual screening can be used to identify novel promising compounds 

from the small molecule databases that can interact with the receptor site cavity to block or 

trigger activity. The validated pharmacophore model was adopted to screen the NCI 

(National Cancer Institute) (https://cactus.nci.nih.gov/ncidb2.2/) and Asinex antiviral 

(http://www.asinex.com/libraries-html/) databases to retrieve novel molecular entities for 

EVD. The NCI and Asinex (anti viral) databases contain 265,242 and 8,722 compounds 

respectively. Several measures were used to accomplish final potential molecules for the 

EVD. Subsequently, the molecular docking and molecular dynamics studies were performed 

to explore binding interactions and stability between ligands and protein molecules 

respectively.  
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Molecular docking 

The molecular docking is one of the important and effective approaches to screen the 

promising molecules from the molecule database. In order to identify promising anti-EV 

molecules, several criteria were executed on initial hits. Among these criteria molecular 

docking was one of them. In order to select the molecules with better dock score than most 

active compound (Tr26 in Figure 1)of the dataset and to comprehend how the promising 

drug-like virtual hits molecules bind to the receptor of Ebola protein molecule, the molecular 

docking was carried out with the help of the LigandFit protocol of DS. The LigandFit 

protocol primarily identifies the cavity to recognise and select the portion of the protein as the 

receptor site followed by docking the molecules in the selected site. The 3D coordinates of 

crystal structure of the EVD were downloaded from RCSB Protein Data Bank (RCSB-PDB) 

for the molecular docking study. In order to select the best protein molecules the receptor 

size, resolution and date of submission were explored and finally PDB ID: 5JQB(Zhao et al., 

2016) was considered for further study. Protein and ligands were prepared using the  Prepare 

Protein and Prepare Ligand tools of DS respectively, while the CHARMm force 

field(Vanommeslaeghe et al., 2010) was implemented for minimization of both protein and 

ligand. For preparation of the protein the ‘Build Loop’ and ‘Protonate’ parameters were given 

to ‘True’ and, dielectric constant, pH, ionic strengths and energy cut-off were kept as default. 

In case of preparation of ligands, the ‘Change ionization’, ‘Generate Tautomers’ and 

‘Generate isomers’ were considered as ‘False’, and ‘Generate Coordinates’ was selected as 

‘3D’. The volume occupied by the co-crystallize ligand was used to find out the binding site 

for the molecular docking. False positive output of molecular docking study were overcome 

by validating the selected parameters. In this regard, the co-crystal small molecule present in 

the receptor site was regenerated and afterward docked into the same receptor cavity of EV 

(PDB ID: 5JQB) protein. The binding interactions of the best pose were analysed and further 

the same pose superimposed on the co-crystal small molecule. The RMSD value from the 

superimposed structures was calculated. As per the report RMSD <2Å   explains the 

production of comparable conformation to co-crystal ligand(Taha et al., 2011). In the current 

work RMSD <2Å was observed between docked and co-crystal ligand and hence the same 

parameters as used in the co-crystalized docking study were considered in molecular docking 

studies of proposed compounds retrieved from databases. To explore the binding interactions 

and dock score values, the best ten poses for each docked-ligand were analysed to explore the 

binding interactions and dock score values 
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Molecular dynamics 

It is difficult to explore static complexes to completely understand protein-ligand complexes 

as one needs to grasp dynamic information generated by simulating their internal motions or 

dynamic processes. For this purpose, MD simulations were performed on the best docked 

poses between EV protein and the most active compound, and also with final screened 

compounds from the databases. MD simulation study was performed in the Amber14(D.A. 

Case et al., 2012) using the ff99SB force field35. The explicit TIP3P water model(Lindorff-

Larsen et al., 2010) box was used and minimum distance of 8 Å between the solute and each 

face was considered. The general amber force field (GAFF)(J. Wang, Wang, Kollman, & 

Case, 2006; J. Wang, Wolf, Caldwell, Kollman, & Case, 2004) with Antechamber was used 

to parametrize the ligands. With the help of Propka3.1(Olsson, Sondergaard, Rostkowski, & 

Jensen, 2011; Sondergaard, Olsson, Rostkowski, & Jensen, 2011) missing hydrogen atoms 

were predicted and added. Na+ ions were used to neutralize the system with the help of the 

Leap program of Amber14. Propka allocates the protonation state of the amino acid in a 

protein based on empirical pKa prediction of titratable residues while considering its 

microenvironment. In order to treat the long range electrostatic force the particle mesh Ewald 

(PME) method was used(Harvey & De Fabritiis, 2009), through space and vdW (van der 

Waals) cut off of 12 Å. Before starting the MD runs, the systems were partially minimized 

with a restrained force of 500 kcal/mol on the solute molecule using 750 cycles of the 

steepest descent, followed by 2500 cycles of the conjugate gradient method. Furthermore, the 

conjugate gradient method was used to minimize the system for 1500 cycles. After this the 

systems were heated gradually from 0 to 300 K with a harmonic restraint of 10 kcal/mol to 

hold the solute fixed. In order to control the temperature using a collision frequency of 1.0 ps-

1 the Langevin dynamics was used. The systems were equilibrated for 2 ns at 300 K and 

pressure was kept constant of 1 bar. With the help of the SHAKE algorithm38 bonds were 

constrained involving hydrogen atoms. The MD study was run for 40 ns with a time step of 2 

fs using GPU version of Amber 14(Gotz et al., 2012). The MD trajectories were analysed for 

RMSD, RMSF and Rg for which the ptraj and cpptraj(Roe & Cheatham, 2013) module of 

Amber14 was used.  

 

MM-GBSA analysis 

The Molecular Mechanics Poisson-Boltzmann Surface Area (MMGBSA) method(Genheden 

& Ryde, 2015) in Amber14 was used to quantitatively measure the binding strength between 
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the receptor and ligands. The binding free energy can be expressed as the difference between 

bound and unbound states of two solvated protein molecules as per following equation. 
ΔG(bind)

aq aq aq[PL] [L] +[P]ˆ ˆ ˆ ˆ †̂‡ ˆ ˆ ˆ ˆ̂       (2) 

where, [PL], [L] and [P] are the concentration of protein-ligand complex, ligand and protein 

respectively. The binding energy calculation based on equation (2) is not ideal for practical 

purposes(J. Wang, Deng, & Roux, 2006). Therefore the binding energy calculation may be 

divided and rewritten as given below.  

( , ) ( , ) ( , )

( , ) ( , )                        
bind aq bind vaccum bind complex

bind ligand bind receptor

G G G
G G

∆ = ∆ + ∆

−∆ −∆
    (3) 

The electrostatic component of the solvation free energy in MM-GB method can be 

calculated by solving Generalized Born (GB) equation and an empirical term for hydrophobic 

contribution is added.  

aq GB hydrophobicG G G∆ = ∆ + ∆       (4) 

The average interactions energies of final screened molecules and most active compound 

(Tr26 in Figure 1) of the dataset, and receptor were calculated from 50ns of MD trajectories. 

 

Results and discussion 

The pharmacophore model from the training set was generated using the HypoGen module of 

DS. The training set molecules are given in Figure 1 with their pInfect value in the 

parentheses. The Feature mapping protocol of DS was used to find common chemical 

features in the molecules of the dataset and were considered as inputs to the 3D QSAR 

pharmacophore generation module.  

Minimum and maximum feature values were set to ‘0’ and ‘5’ respectively. Based on 

excellent statistical parameters the top ten hypotheses were considered for further analysis. 

The statistical parameters along with correlation coefficient were noted and are depicted in 

Table 1. Debnath’s analysis(Debnath, 2002, 2003) was used to select the best hypothesis 

which explains that model can be considered for further evaluation if it possessed low 

RMSD, high correlation coefficient, low cost value and high cost difference. For a robust 

model the overall cost of the hypothesis should be distant from the null cost and adjacent to 

the fixed cost. It is stated that differences between null and total cost (Δcost) in the range of 

40–60 bits suggests the possibility of the predictive correlation of 75–90%, while the Δcost ≥ 

60 bits defines the hypothesis and has a correlation probability of more than 90%(Sakkiah, 

Thangapandian, John, Kwon, & Lee, 2010). In the current work, the cost difference of Hypo 
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1 (Table 1) was found to be 76.657 which clearly explained that selected hypothesis has more 

than 90% chance of being able to select EV inhibitors.   

Table 1. Statistical parameters of top ten hypotheses 
Hypo 
No. Spacing 1Unc. 

2Wt. 
Var. 

3R Rmsd Costs Features Total Null Fixed 4∆ 5Config. 
1 1.5 1.5 0.3 0.882 1.150 113.276 189.933 90.161 76.657 16.731 a, d, 3xp 
2 1.5 1.5 0.3 0.855 1.263 117.617 189.933 90.161 72.316 16.731 a, p, 2xr 
3 1.5 1.5 0.3 0.836 1.338 120.091 189.933 90.161 69.842 16.731 2xa, p, r 
4 1.5 1.5 0.3 0.799 1.465 126.304 189.933 90.161 63.629 16.731 2xa, p, r 
5 1.5 1.5 0.3 0.784 1.514 131.913 189.933 90.161 58.020 16.731 d, 3xp, r 
6 1.5 1.5 0.3 0.764 1.574 132.113 189.933 90.161 57.820 16.731 a, 2xp, r 
7 1.5 1.5 0.3 0.788 1.502 132.301 189.933 90.161 57.632 16.731 2xa, 3xp 
8 1.5 1.5 0.3 0.782  1.519 132.445 189.933 90.161 57.488 16.731 a, 3xp, r 
9 1.5 1.5 0.3 0.781 1.523 132.616 189.933 90.161 57.317 16.731 a, 3xp, r 
10 1.5 1.5 0.3 0.772 1.551 133.197 189.933 90.161 56.736 16.731 d, 3xp, r 
1Uncertainty; 2Weight variation; 3Correlation coefficient; 4(Null cost – Total cost); 5Configuration cost 

From the Table 1 it can be seen that the best hypothesis (Hypo1) was found to have a high 

correlation coefficient value (R = 0.882), which clarifies robustness of the selected model. 

The total cost and fixed cost were found to be 113.276 and 90.161 respectively, along with 

the Δcost of 76.657. The top 10 hypotheses were selected to analyse the results and it was 

found that only Hypo1 possessed high R, less RMSD, highest Δcost and minimum error 

values in contrast to other hypotheses. Consequently, Hypo1 was selected as the best 

pharmacophore model for further analyses.  

The best model is portrayed in Figure 2 and revealed the importance of one of each hydrogen 

bond acceptor (HB) and HB donor along with two hydrophobic regions in three dimensional 

space. Hypo1 mapped with the most active molecule (Tr26 in Figure 1) of the dataset and 

inter-feature distances is depicted in Figure 2.  

 

Figure 2. Best pharmacophore model mapped with most compound and inter-feature distances 
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The Figure 2 explained that oxo group present in the alkyl chain attached to the five member 

ring behaves as HB acceptor. The amine group present in between five membered ring and 

oxo group was found to act as HB donor. The ethyl group attached to the nitrogen atom and 

the benzene ring in the molecular system imparts the hydrophobicity of the molecule. 

Therefore the best model suggested that HB acceptor and donor along with hydrophobic 

regions are crucial to form potential interactions between the ligand and catalytic amino 

residues present in the active cavity of Ebola enzyme. The inter-feature distances may play 

crucial roles for the arrangement of the key pharmocophoric features being a potent and saver 

chemical entity for the treatment of Ebola. Hence the new and potent chemical entities can be 

designed using the above crucial pharmacophoric features with derived inter-feature 

distances. 

 

Validation of pharmacophore model 

It is obligatory to validate the pharmacoinformatics models to check robustness of models 

and their wide applications to new or unknown compounds. In our study the best selected 

model was validated using a) internal, b) cost value analysis, c) test set, d) Fischer’s 

randomization test and e) decoy set. 

 

Internal validation 

The infectivity value of the training set molecules were predicted by fitting all molecules on 

the best selected model. The experimental and predicted activity along with error values 

which represents ratio between observed and predicted pInfect are given in Table 2 and 

Figure 3.  

 
Figure 3. Observed vs predicted infectivity values (pInfect) of training and test set as per Hypo1 
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The error value reflects closeness between observed and predicted infectivity values. Table 2 

clearly explained that error value of all training set molecules are in considerable range. The 

cross-validated correlation coefficient (Q2) was calculated based on procedure explained in 

Materials and Methods section. The Q2 and se value of best model were found to be 0.779 

and 0.206 respectively. Further, r2
m and Δr2

m were calculated and found the values of 0.612 

and 0.127 respectively. Therefore, high Q2 and r2
m, and low se and Δr2

m undoubtedly 

explained that selected model is robust in nature and has excellent predictive ability of 

training set molecules. 

Table 2. Observed, predicted activities values of the training and test sets obtained using the 
pharmacophore model Hypo 1  

Mol. 
No. 

pInfect 
Error 

pInfect Scale Mol. 
No. 

pInfect 
Error 

pInfect Scale 
1Obs 2Pred 1Obs 2Pred 1Obs 2Pred 1Obs 2Pred 

Tr1 1.432 1.196 +1.197 ++ + Tr24 0.955 1.230 -0.776 + + 

Tr2 1.620 1.565 +1.035 ++ ++ Tr25 1.456 1.261 +1.155 + + 

Tr3 0.796 1.065 -0.747 + + Tr26 2.523 2.250 +1.121 +++ +++ 

Tr4 0.742 1.097 -0.676 + + Tr27 1.481 1.765 -0.839 ++ +++ 

Tr5 1.060 1.143 -0.927 + + Tr28 1.036 1.196 -0.866 + + 

Tr6 1.523 1.585 -0.961 ++ ++ Tr29 1.721 1.332 +1.292 + + 

Tr7 1.770 1.770 +1.000 +++ +++ Tr30 1.161 1.222 -0.950 + + 

Tr8 1.114 1.297 -0.859 + + Ts1 1.252 1.947 -0.643 + +++ 

Tr9 1.284 1.283 +1.001 + + Ts2 2.398 2.261 +1.061 +++ +++ 

Tr10 0.991 1.103 -0.898 + + Ts3 0.879 1.002 -0.877 + + 

Tr11 0.726 0.703 +1.033 + + Ts4 1.523 0.656 +2.323 ++ + 

Tr12 0.658 0.944 -0.697 + + Ts5 2.222 2.041 +1.089 +++ +++ 

Tr13 0.595 0.684 -0.870 + + Ts6 1.229 1.352 -0.909 + ++ 

Tr14 0.376 0.488 -0.770 + + Ts7 0.419 0.397 +1.056 + + 

Tr15 0.928 0.951 -0.976 + + Ts8 2.398 1.778 +1.349 +++ +++ 

Tr16 0.917 0.652 +1.406 + + Ts9 0.975 0.963 +1.013 + + 

Tr17 0.979 0.599 +1.634 + + Ts10 0.830 1.052 -0.789 + + 

Tr18 1.004 0.906 +1.108 + + Ts11 0.928 1.003 -0.925 + + 

Tr19 0.936 0.567 +1.651 + + Ts12 1.086 1.750 -0.621 + + 

Tr20 1.237 1.102 +1.123 + + Ts13 2.398 2.032 +1.180 +++ +++ 

Tr21 1.745 1.695 +1.029 +++ ++ Ts14 0.979 1.022 -0.958 + + 

Tr22 1.222 1.381 -0.885 + + Ts15 1.337 1.508 -0.887 ++ ++ 

Tr23 1.180 1.222 -0.966 + + Ts16 2.046 1.768 +1.157 +++ +++ 
1Observed; 2Predicted 
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Cost value analysis 

In order to assess the pharmacophore models, HypoGen gives a number of parameters during 

the hypotheses generation including different cost functions and RMSD. The cost functions 

included Δcost, total cost, null cost, fixed cost and configuration cost. The Δcost was found to 

be 76.657 and this explains that the model was not developed by chance. As per elucidation 

that for a statistically robust model, difference between fixed and total cost should be as close 

as possible and in the current findings it was found to be 23.115. For a consistent and well 

validated pharmacophore model the configuration cost should be <17. For the Hypo1 (Table 

1) the configuration cost was observed to be 16.731. The RMSD between observed and 

predicted infectivity for Hypo1 was obtained as 1.150. Therefore the cost value analysis 

indisputably favour towards the robustness of the model. 

 

Test set prediction 

Checking the predictive ability of molecules not involved in model generation is one of the 

crucial approaches of validation. For this purpose, the infectivity values of test compounds 

(Figure 4) were predicted using the Ligand Pharmacophore Mapping protocol of DS and 

depicted in Table 2 and Figure 3. Both observed and predicted infectivity values were 

converted into logarithm value [pInfect = log(1/infectivity)x10000]. The test set compounds 

were divided according to their infectivity values i.e. highly active (pInfect > 2.700), 

moderately active (2.301 < pInfect ≤ 2.700) and least active (pInfect ≤ 2.301). On analysis of 

test set predicted pInfect values, it was observed that one and two least active molecule were 

underestimated as moderately and highly active respectively. One moderately active 

molecule  was overestimated as least active molecule. The rest of the test set molecules were 

estimated within their range. Moreover the correlation coefficient (R2
pred) between observed 

and predicted infectivity and error of prediction (sp) were calculated. The value of R2
pred and 

sp were obtained as 0.672 and 0.390 respectively. Therefore the above finding clearly 

explains that the selected hypothesis is proficient enough to predict the infectivity of 

molecules outside the compounds used in model development. 

Additionally the selected model was taken into consideration to check better predictive ability 

and calculated r2
m(test) and Δr2

m(test) from the predicted and experimental infectivity values. 

These parameters explain how the predicted infectivity values are contiguous to the actual 

experimental values because high R2
pred value of test set cannot always put forward a low 

residual between actual and predicted activity data. Both r2
m(test) and Δr2

m(test) were calculated 

and values found as 0.510 and 0.033 respectively. According to reports for good predictive 
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model values r2
m(test) and Δr2

m(test) should be >0.5 and <0.2 respectively. Therefore the above 

findings can clearly explain that selected hypothesis (Hypo1) has sufficient predictive 

capability for new molecules. It is always recommended to validate the in silico models with 

large test set. Due to unavailability of suitable compounds sometimes test set may be smaller. 

Although several successful pharmacophore models were validated using the smaller test set 

compounds(Fu et al., 2017; Kandakatla & Ramakrishnan, 2014; Madan et al., 2018; F. Wang 

& Chen, 2013) but it may give false positive results. Therefore the test set is not only 

sufficient to validate the pharmacophore model and subsequent use for virtual screening. 

Other validation protocols must be employed and checked the superiority of the model. The 

current study was used a small test set to validate the pharmacophore model and subsequent 

several validation approaches as well. 
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Figure 4. Two-dimensional structure of test compounds. The pInfect values are given in the 
parentheses 

Fischer’s randomization test 

The Fischer’s randomization test was carried to check the quality of the selected hypothesis 

by assigning a particular confidence level. The selected hypothesis (Hypo1) in the study was 

considered for 95% confidence level in which observed infectivities of training set 

compounds were randomized and produced into 19 random spreadsheets by creating a 

hypothesis on each spreadsheet. Lowest total cost and highest correlation coefficient of each 
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spreadsheet were collected and depicted in Figure 5 and Table 3 respectively. Significance of 

the model was evaluated by using the equation (1).  

 
Figure 5. Total cost of 19 randomized runs and Hypo1 in Fischer’s randomization test 

 
Table 3: Highest correlation coefficient of 19 randomized runs and Hypo1 in Fischer’s randomization 
test 
Hypotheses R Hypotheses R Hypotheses R Hypotheses R 

Hypo1 0.882 Random5 0.657 Random10 0.827 Random15 0.721 

Random1 0.746 Random6 0.580 Random11 0.719 Random16 0.810 

Random2 0.770 Random7 0.616 Random12 0.721 Random17 0.610 

Random3 0.697 Random8 0.687 Random13 0.690 Random18 0.838 

Random4 0.782 Random9 0.746 Random14 0.766 Random19 0.787 

 

From Figure 5 and Table 3 it can be seen that not a single randomized run perceived 

predictive capability comparable to or improved over that of Hypo1. Highest correlation 

coefficient among all 19 trials was found to be 0.838 while average value of 0.725. Both 

highest and average correlation values of 19 trials are much lower compare to Hypo1. 

Further, the total cost of all 19 trails were found be higher than Hypo1. Therefor on analysis 

of correlation coefficient and total costs of Hypo1 and 19 trials it can be conclude that 

selected hypothesis is superior in nature and was not generated by chance. 

 

Decoy set 

A set of 450 decoy molecules were retrieved from ZINC database using the DecoyFinder2.0 

to explore the screening capability of the selected model. Total 9 active molecules from the 

dataset were combined with decoy molecules and amalgamated set used to screen through the 

Hypo1. The screening results explained accuracy of 0.660 and, the true positive (TP), false 
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positive (FP), True negative (TN) and false negative (FN) as 9, 157, 293 and 0 respectively. 

The ROC plot was generated by plotting true positive rate of active vs. false positive rate of 

decoys and depicted in Figure 6. 

The area under curve (AUC) was calculated and the value found to be 0.960. The ROC curve 

and AUC value undoubtedly explained that the selected hypothesis has sufficient potential to 

discriminate between the active and inactive molecules, and more biased towards selection of 

active molecules rather inactive. The enrichment factor (EF 1%) was found to be 40.80 which 

acknowledged active compound very well. The average BEDROC value was found to be 

0.620, which indicates that the top hits were not only enriched with active molecules but also 

ranked higher than inactive. Therefore above findings and explanations clearly indicated that 

pharmacophoric features present in the Hypo1 are well capable to screen active molecules 

from the molecular databases. 

 

 
Figure 6. ROC curve for Hypo 1, derived from true positive rate of actives vs. false positive rate of 
decoys 
 

Virtual screening 

The validated pharmacophore model was used to screen NCI and Asinex antiviral databases 

to identify promising molecules for therapeutic application in EVD. The ‘Search Database’ 

protocol of ‘Pharmacophore’ module of DS package was adopted to screen both databases. 

The ‘Search Method’ and ‘Limit Hits’ were set to ‘Best’ and ‘All’ respectively.  
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Figure 7. Flow diagram of virtual screening of NCI and Asinex databases 

 

The best model was able to retrieve initial hits of 34181 and 3390 compounds from NCI and 

Asinex respectively. Initial hits were further sorted out separately using a number of criteria. 

Flow diagram of the virtual screening of both databases is given in Figure 7. The estimated 

activities of the compounds were calculated after mapping on the best model using the 

“Ligand Pharmacophore Mapping” protocol of DS with “Maximum Omitted Feature” set to 

‘0’. Furthermore, Lipinski’s rule of Five and Veber’s rule were checked. The compounds 

were only considered if those possessed activity within the range of activity of the dataset, 

and passed both Lipinski’s rule of Five and Veber’s rules. It was observed that 2625 and 267 

compounds from NCI and Asinex respectively satisfied the above criteria and were 

considered for further screening. The ADMET descriptors were calculated using the ADMET 

Descriptor protocol of DS. The human intestinal absorption (HIA), aqueous solubility and 

blood brain barrier (BBB) were analysed and found that 38 and 25 compounds from NCI and 

Asinex respectively show good absorption, aqueous solubility and penetration values. 

Finally, above compounds along with most active molecule (Tr26 in Figure 1) of the dataset 

were taken into consideration for molecular docking study. Molecular docking study revealed 

that 14 and 13 molecules from NCI and Asinex respectively were docked successfully inside 
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the receptor cavity. Docking analysis portrayed that most active compounds gave dock scores 

and binding energy of 39.603 and -105.480 respectively.  

 

 
Figure 8. Final proposed molecules from NCI (NSC164505, NSC210468 and NSC119666) and 

Asinex (Asinex - 864, Asinex - 958, Asinex - 965, Asinex - 2835 and Asinex - 8320) 
 

All docked screened compounds were analysed and considered only those give dock score 

more than 39.603 and binding energy less than -105.480. It was observed that 3 and 5 

molecules from NCI (NSC164505, NSC210468 and NSC119666) and Asinex (Asinex – 864, 

Asinex – 958, Asinex – 965, Asinex – 7984 and Asinex – 8320) respectively satisfied above 

criteria and hence these eight molecules (Figure 8) proposed as promising anti Ebola 

molecules. 

 

Molecular docking 

Molecular docking is one of the crucial approaches to determine favourable orientations of 

the small molecules at the receptor site cavity. The final screened eight molecules were 

considered for molecular docking and the crystal structure of the protein molecule (PDB ID: 

5JQB) downloaded from RCSB Protein Data Bank. In order to validate the docking study, 

self-docking approach was used in which bound ligand of crystal structure re-docked at the 

same active site and original bound conformation superimposed on the best docked pose to 

calculate RMSD value. As per report, the RMSD <0.2 Å between original ligand and docked 
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pose validate the docking procedure. In the current study, RMSD value was found to be 0.134 

Å which directs that selected parameters in the molecular docking study were validated. 

 

 
Figure 9. Binding modes of final screened compounds from NCI and Asinex databases 

 

The best pose of final screened molecules are depicted in Figure 9. The docking study 

revealed that Lys191 was found to be critical amino residue to form number of hydrogen 

bond interactions to all screened compounds except NSC164505, Asinex – 864 and Asinex – 

8320. It was also observed that Arg64 and Leu186 established hydrogen bonds with Asinex – 

965 and Asinex – 8320 respectively. The bump interaction which is defined as any bonding 

interactions except hydrogen bonding plays an important role to stabilize the ligand-receptor 

complex. The proposed molecules formed a number of bump interactions with catalytic 

amino residues. Leu186 formed several bump interactions with NSC164505, Asinex – 864, 

Asinex -964 and Asinex -7984. Lys191 and Tyr517 successfully established bump 

interactions with NSC164505, Asinex – 864 and Asinex -958. NSC164505, NSC210468 and 

Asinex – 8320 were connected with both Met548 and Leu558 through bump interactions. 

NSC119666 was found to be crucial to form a number of binding interactions with Lys191 

and Met548 in the form of hydrogen bonds and bump interactions. Three critical hydrogen 

bonds were formed between Lys191 and NSC119666, while each of Lys191 and Met548 

established bump interactions with NSC119666. Beyond the above, several catalytic amino 

residues including Arg64, Leu184, Thr519 and Gln521 were anticipated to create number of 

bump interactions with the proposed promising compounds. The above observations 
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undoubtedly indicate that the final proposed molecules are capable of forming number of 

interactions with the catalytic amino residues present at the active site of the EV protein. 

 
Molecular dynamics 

Molecular dynamics study of 50ns time span was performed on complexes of final screened 

molecules and most active compound (Tr26 in Figure 1) with the Ebola protein. The RMSD, 

RMSF and radius of gyration from the MD trajectories were analysed to explore dynamic 

stability of the protein-ligand complex. 

 

 
Figure 10. RMSD vs time of protein-ligand complexes 

 

The RMSD values of protein backbone were calculated and plotted in the Figure 10.  It was 

observed that after 10ns of time span all systems were equilibrated except for the complex 

with NSC119666 and NSC210468. The complex with NSC119666 initially increases the 

RMSD value and after about 12ns it achieved stability but again the compactness was 

disturbed during about 34ns to 40ns. Afterwards the system accomplished constancy. The 

complex between Ebola protein and NSC210468 showed a slow rise in the RMSD and finally 

equilibrated after about 34ns. Detailed analysis of the individual system explained that 

complex with Tr26, NSC164505, Asinex – 965, Asinex – 7984 and Asinex – 8320 achieved 

equilibration at the RMSD range of 6.0 to 6.5nm. RMSD trajectories of Ebola protein 

complex with NSC119666, NSC210468, Asinex – 864 and Asinex – 958 were found to be at 

steady state at 10.4, 8.0, 7.0 and 10.0nm respectively. It can be worth noting that NSC119666 

fluctuated much higher when compared to others and this explained that the flexibility of this 

compound is much higher with respect to others. The average RMSD values of entire 

trajectories can give idea of the fluctuation of the backbone of the system during the MD 
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simulation. The mean RMSD values were found to be 5.666, 7.442, 5.203, 7.861, 5.494, 

8.875, 4.713, 6.775 and 6.429 nm for protein-ligand system with Tr26, NSC164505, 

NSC210468, NSC119666, Asinex – 864, Asinex – 958, Asinex – 965, Asinex – 7984 and 

Asinex – 8320 respectively. 

The role of individual amino residues of the protein-ligand complex system RMSF were 

calculated and depicted in the Figure 11. The figure of RMSF explained that all most all 

systems shared similar distribution with some differences in the case of NSC119666. RMSF 

trajectories revealed that fluctuations of amino residues were found to be higher in around the 

Leu20, Gly60, Pro92, Val110, Glu170, Gly240, Ile270, Trp310 and Asp400. The possible 

reason of deviation of these amino acids may be region of flexible loop and lack of 

interactions with corresponding ligands.  

 
Figure 11. RMSF vs number of residues of complexes of most active compound of the dataset and 

final screened molecules 

On detailed analysis of trajectories, the difference between maximum and minimum, and 

average value of RMSF were found to be 8.932 and 1.893; 18.256 and 3.539; 12.458 and 

2.224; 17.772 and 2.800; 12.365 and 2.206; 16.904 and 2.143; 14.148 and 2.140; 11.152 and 

2.234; and, 14.514nm and 2.438nm for the system of Tr26, NSC164505, NSC210468, 

NSC119666, Asinex – 864, Asinex – 958, Asinex – 965, Asinex – 7984 and Asinex – 8320 

respectively.  

In order to explore the compactness of protein-ligand complex systems the radius of gyration 

were calculated and plotted in the Figure 12. The trajectories explained that all the systems 

except NSC119666 and NSC164505 were almost equilibrated after about 25ns of time span.  
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Figure 12. Radius of gyration of Cα atoms of EV protein over the simulation time 

 

Initially the trend of NSC119666 was found to stable but it reduces around 39ns and finally 

equilibrated after 40ns. Similarly, system of NSC164505 was fluctuating up to 38ns and 

thereafter achieved steady state. All the systems were found to be equilibrated within the Rg 

value of 24 to 26nm. Therefore the above observations of MD simulation study indicated that 

all molecules well equilibrated and correlate with findings of the molecular docking study.  

 
Binding free energy using MM-GBSA 

The binding affinity towards the receptor cavity of respective ligands were calculated from 

the 50ns trajectories using the MM-GBSA approach in AMBER14. The total binding free 

energy (∆Gbind), van der Waals interactions energy (∆GvdW), electrostatics energy (∆Gele), 

polar solvation energy (∆Gele,sol) and nonpolar solvation energy (∆Gnonpol,sol) are given in the 

Table 4.  

Table 4. Binding free energies and its components for Tr26 and final screened compounds 

Complex ∆GvdW ∆Gele ∆Gele,sol ∆Gnonpol,sol ∆Gbind 

Tr26 -49.093 -0.249 8.974 -5.927 -46.295 

NSC119666 -22.804 -35.842 41.116 -3.843 -21.373 

NSC164505 -46.499 -4.406 16.430 -6.057 -40.533 

NSC210468 -37.792 -3.370 13.376 -5.209 -32.996 

Asinex – 864 -54.917 -4.680 17.253 -6.650 -48.997 

Asinex – 958 -46.135 -1.050 14.457 -6.042 -38.773 

Asinex – 965 -52.072 -2.716 16.111 -6.840 -45.517 

Asinex – 7984 -41.698 -29.184 44.179 -6.166 -32.869 

Asinex – 8320 -41.961 -6.428 20.450 -5.823 -33.748 
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The ∆Gbind data (Table 4) of all systems explained that each and every molecule was 

successful in binding to the receptor site of Ebola protein. The complexes with NSC164505, 

Asinex – 864, Asinex - 958 and Asinex – 965 were found to be possess similar affinity in 

respect to the ∆Gbind as complex with Tr26. The systems of NSC210468, Asinex – 7984 and 

Asinex – 8320 were found to show comparable binding affinity with ∆Gbind value of -32.996, 

-32.869 and -33.748 kcal mol-1 respectively. The lowest binding energy was found for 

complex with NSC119666 with -21.373 kcal mol-1. Individual components of the binding 

free energies including ∆GvdW, ∆Gele, ∆Gele,sol and ∆Gnonpol,sol were analysed to explore 

detailed binding process. In can be observed that ∆GvdW and ∆Gnonpol,sol mainly contributed to 

the protein-ligand complexes and are responsible for the imbedded hydrophobic regions of 

the molecules. 

From the Table 4 it can be seen that for all the systems ∆GvdW were higher than ∆Gbind indicating 

the major contribution of ∆GvdW on binding affinity. With exception of the complex with 

NSC119666, in all systems ∆GvdW was greater when compared to ∆Gele. In case of 

NSC116999 system the ∆GvdW was much lower and ∆Gele relatively higher compared to other 

systems, leading to achieve lower binding energy. The value of ∆Gnonpol,sol was found to  

contribute  consistently to binding energies with some fluctuations. The above discussion 

clearly suggest that the final screened molecules might have potential to be therapeutic 

inhibitors for the EV. 

 

Conclusions 

A set of isoxazole analogues as inhibitors of Ebola GP-mediated cell entry with infectivity 

were used to developed ligand-based pharmacophore model. Among several developed 

pharmacophore models, initially best one was selected based on statistical parameters. 

Further selected models was validated using test set, cost functional analysis, Fischer’s 

randomization test and decoy set validation. The best model described the importance of HB 

acceptor and donor along with two hydrophobic regions in the three dimensional space. 

Furthermore, the model was used to screen the NCI and Asinex databases to identify 

promising molecules for the EVD. Several criteria were used to sort out the initial hits of 

about 38000 compounds and finally eight compounds (NSC164505, NSC210468, 

NSC119666, Asinex – 864, Asinex – 958, Asinex – 965, Asinex – 7984 and Asinex – 8320) 

proposed as potential inhibitors for EV. The binding interactions between proposed 

molecules and catalytic amino residues were explored and we observed that screened 
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molecules were capable of forming a number of interactions. The complexes between EV and 

ligands were subjected to molecular dynamics study of 50ns of time span. The RMSD, RMSF 

and Rg values clearly demonstrated that all molecules were well equilibrated and correlated 

with findings of the molecular docking study. Finally, binding affinity of the molecules inside 

the receptor cavity of EV were analysed. The data of binding free energies and its 

components substantiated the evidence that the proposed molecules represent possible 

promising chemical entities for therapeutic application in EVD. 
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