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Abstract
This study analyses the dynamic linkages between oil and gold prices for the spot and 1‐ to 12‐month futures markets using 
monthly data over the period 1983–2016. To do this, we use the rolling and recursive rolling Granger causality approaches. 
The distinguishing feature of this study from the previous studies is that this is the first study investigating the causal links 
between oil and gold using time‐varying causality tests. The findings show that the causality links between oil and gold 
display strong time variation. Although causal links are not detected for most of the study period, strong bidirectional or 
unidirectional causality is found in several subsamples. The duration of the periods with causality links varies from a few 
months to 3 years, whereas the duration for the noncausality periods might be 15 years long. By date stamping the causality 
links between oil and gold, our paper discovers that causality from oil to gold is related to large oil price changes, whereas 
causality from gold to oil is related to large financial crises. The evidence obtained in the paper points out the dangers of 
assuming a constant causality link between oil and gold markets because these links might break down unexpectedly. Our 
findings point out to the dangers of assuming noncausality between oil and gold particularly in hedging oil price risk using 
gold.
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1. Introduction

Oil and gold, which are frequently tradable and have high
liquidity and synchronization in their movements, are the
two commodities with an irreplaceable role in an econ-
omy. Oil is the most traded commodity in the world
and has a highly volatile price. Gold, on the other hand,
with the lowest volatility, is the leader of all precious
metals. When stock market risks are considered, gold is
known as a safe haven and used as an efficient hedge
instrument (Junttila, Pesonen, & Raatikainen, 2018). As
oil has been increasingly becoming financialized,
whether gold does also function as an efficient hedge

instrument against oil price risk is interest to financial
industry. A long‐term analysis of the behavioural ten-
dency of oil and gold demonstrates that both commodi-
ties historically tend to move simultaneously upward
and downward in price, and a change in the price of
one appears to induce a change in the price of the other.
An observation of the two commodities for the last
50 years, for instance, has shown that they tend to behave
in similar ways with respect to price, with a positive
correlation of 80% (see Tiwari & Sahadudheen, 2015)—a
view that is also supported by a large number of studies.
Accordingly, Sari, Hammoudeh, and Soytas (2010) con-
tend that changes in the price of gold mainly stem from
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fluctuations in the price of oil. Hence, this study empiri-
cally investigates the time‐varying Granger causality
between the oil and gold markets.

The relationship between the oil price and gold price
can arise from several channels. Most oil‐importing coun-
tries' preference to pay for their oil supplies in gold and
the investment of a large part of oil‐exporting countries'
revenues in gold are just a few of the examples to support
this suggestion. Still another example is that an increase
in oil price means an increase in the cost of gold extrac-
tion, and this results in a reduction in the profit margin.
It may be said that oil prices are inversely proportional
to the share prices of gold mining companies.

Another channel—indeed, the best one according to
Narayan, Narayan, and Zheng (2010)—used to explain
the link between oil and gold stems from inflation.
Accordingly, an increase in the international crude oil
price leads to an increase in general price levels due to
an increase in transportation and production costs. This
causes negative effects on oil importing countries. There-
fore, there is a positive relationship between oil price and
inflation. Because gold is a unique instrument of inflation
hedging in the long term, investors usually invest in gold
during periods of increased inflation to balance their
portfolio (Ghosh, 2011). The gold price will rise in these
periods of high inflation; thus, positive relationships will
be observed between oil and gold. The World Gold Coun-
cil holds the view that gold has always held itself against
inflation throughout history. A higher oil price, on the
other hand, is likely to fit the bill of countries—net oil‐
importing countries in particular—and this causes an
increase in import costs, which causes a high trade
deficit; this in turn influences the value of the domestic
currency and the money in circulation, and all these
factors lead to inflation—a chain reaction. In this case,
gold will increase in response to inflation, which is
caused by rising oil prices. Gold, on the other hand, might
increase when the goods and financial markets are
strong, proxying the market conditions. Rising markets
will also lead to higher oil demand, inducing an upward
movement in oil prices. As financialized commodities,
such as gold, respond faster than goods markets, this
may generate predictive power from gold to oil. However,
the most significant causality from gold to oil should be
observed when investors shift large amounts of funds
between the gold and oil markets. Such shifts occur dur-
ing large financial crises.

Few studies examine oil and gold prices and their rela-
tionship with macroeconomic and financial variables in
the literature. However, researchers were more interested
in studying the interrelations between oil and gold follow-
ing the new economic crisis due to the increases in the
prices of these commodities and the common use of gold

as a safe haven for their investments. The pioneering
study in this respect was the one conducted by Melvin
and Sultan (1990), in which the researchers found a
strong correlation between oil and gold due to the export
revenue channel. Another study was performed by Kim
and Dilts (2011), where they had similar observations.
Other studies, including Soytas, Sari, Hammoudeh, and
Hacıhasanoglu (2009), Liao and Chen (2008), Sari,
Hammoudeh, and Ewing (2007), Hammoudeh and Yuan
(2008), Narayan et al. (2010), Šimáková (2011), Le and
Chang (2011b), and Lee, Huang, and Yang (2012), how-
ever, did not find evidence of the relationship between the
movement of the prices of oil and gold. Shahbaz, Balcilar,
and Ozdemir (2017), using a nonparametric causality‐in‐
quantiles test, showed that the oil price has weak predic-
tive power for the gold price, and the causality‐in‐variance
tests found strong support for the predictive capacity of oil
for gold market volatility. According to others, the prices
of oil and gold act simultaneously because they are corre-
lated with the movement of their long‐term driving fac-
tors, such as volatility in U.S. dollars and the turmoil in
the international politics (e.g., Bampinas & Panagiotidis,
2015; Le & Chang, 2011a). This simultaneous movement
can generate dynamic causality links between the oil
and gold markets.

With respect to literature's main conclusions
concerning on the investigation of the dynamic nexus
between gold market and oil market, the existing studies
employing the methods fall into two groups: those that
use a linear Granger causality and non‐linear Granger
causality methods and those that use causality‐in‐quantile
method. First group studies examining the causality
between gold market and oil market using these methods
have been conducted by Zhang and Wei (2010), Jain and
Ghosh (2013), Bildirici and Turkmen (2015), Jain and
Biswal (2016), Kumar (2017), Kanjilal and Ghosh (2017),
Gil‐Alana, Yaya, and Awe (2017), Bilgin, Gogolin, Lau,
and Vigne (2018), Sephton and Mann (2018), and Mei‐Se,
Shu‐Jung, and Chien‐Chiang (2018). For instance,
Bildirici and Turkmen (2015), Jain and Biswal (2016),
Kumar (2017), Kanjilal and Ghosh (2017), Mei‐Se et al.
(2018), and Sephton and Mann (2018) show that there is
a bidirectional causality between crude oil prices and gold
prices. But Zhang and Wei (2010) indicate that the crude
oil price change linearly Granger causes the volatility of
gold price, but not vice versa. Second group studies investi-
gating the causality between both markets using causality‐
in‐quantile method have been showed by Shahbaz et al.
(2017) and Das, Kumar, Tiwari, Shahbaz, and Hasim
(2018). Shahbaz et al. show that oil price has a weak pre-
dictive power for the gold price using the nonparametric
causality‐in‐quantiles test. Furthermore, the study indi-
cates strong support for the predictive capacity of oil for
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gold market volatility. Das et al. examined the depen-
dence structure of stocks, gold, and crude oil with finan-
cial stress using the nonparametric causality‐in‐quantile
method. The evidence of study shows that there is an
evidence of bilateral causality in mean and variance for
gold and crude oil with respect to financial stress and
stocks to be influential to financial stress in both mean
and variance.

The findings obtained from the above studies do
significantly vary, and the variation in findings can be
attributed to different country case studies, different data
samples, and employing different types of estimation
approaches. Economic causality has tended to rely on
justifications from economic theory to infer the direction
of dynamic links between variables and to inform empir-
ical testing of causal hypotheses. However, there are no
relevant theoretical bases most of the time in determining
the empirical relationships between variables that appear
jointly determined over time. Thus, there are difficulties
in interpretation, test execution, and handling additional
relevant variables. This is also the case for studies exam-
ining the oil–gold nexus. Because no clear theoretical
economic model exists on the relationship between oil
and gold, previous studies often employed Granger
causality to investigate the dynamic links between oil
and gold prices. Granger causality was popular in those
studies partly because it was not specific to a particular
structural model but instead depended on the stochastic
nature of variables. A Granger causality test may be
sensitive to the time period of estimation (Arora & Shi,
2015; Balcilar & Ozdemir, 2013a; Balcilar, Ozdemir, &
Arslanturk, 2010; Hurn, Phillips, & Shi, 2016; Psaradakis,
Ravn, & Sola, 2005; Shi, Hurn, & Phillips, 2016; Stern,
2000; Stock & Watson, 1989; Swanson, 1998; Thoma,
1994), which is also the case for the studies examining
the Granger causality between the oil and gold prices.
In the literature, various methods have been used to
accommodate the time‐varying nature of the causal
link between series. One is a forward expanding window
version of the Granger causality test (Swanson, 1998;
Thoma, 1994), and the others include a rolling Granger
causality test (Arora & Shi, 2015; Balcilar et al., 2010;
Balcilar & Ozdemir, 2013a; Swanson, 1998), recursive
rolling Granger causality test (Hurn et al., 2016; Shi
et al., 2016), and a Markov‐switching Granger causality
test (Psaradakis et al., 2005). However, none treats the
relationship between oil and gold prices comprehensively
because both the oil and gold markets are subject to
frequent structural breaks. Both oil and gold are globally
traded commodities, and the markets for these commod-
ities are subject to a number of events, such as wars,
demand hikes, financial crises, policy changes, technolog-
ical innovations, and political events, which are likely to

induce shifts in the dynamic links between oil and gold
prices. Previous studies on the dynamic links between
oil and gold prices all assume constant parameters; there-
fore, their findings might be invalid.

Structural breaks (or regime shifts) are one of the
most challenging issues for time series econometric
methods (Granger, 1996). Hansen (2001) and Perron
(2006) affirm that econometric application estimations
involving time series data should distinctly consider
the effects of structural breaks or regime shifts. In the
presence of structural breaks, the parameters of the
econometric models show time variation, and statistical
tests based on the constant parameter assumption, such
as the Granger causality, are invalid and lead to incorrect
inferences. In this paper, we perform time‐varying
Granger causality tests between oil and gold price series.

To fill the gap in the relevant literature on the unfa-
miliarity of the effect of structural breaks on the oil–gold
relationship, we use a time‐varying Granger causality test
from Balcilar et al. (2010) and Balcilar and Ozdemir
(2013a) and the recursive rolling test from Hurn et al.
(2016) and Shi et al. (2016) to examine the time‐varying
nature of the causal nexus of oil and gold for G‐7 coun-
tries. We use monthly data for the spot and futures prices
of the oil and gold markets ranging between 1‐ and 12‐
month maturities. Because oil market and gold market
began operations at different dates, the data span is differ-
ent for each series of both markets. To the best of our
knowledge, this is the first paper that analyses the time‐
varying causal nexus between oil and gold using the
rolling Granger causality test of Balcilar et al. and Balcilar
and Ozdemir and the recursive rolling Granger causality
test of Hurn et al. and Shi et al.

As we have discussed above, the previous literature
can be primarily grouped into linear or non‐linear
cointegration‐causality type studies and those studies
considering causality‐in‐quantiles approach. All the lin-
ear or non‐linear cointegration‐causality type studies are
based on full sample analysis and asymptotic statistical
inference, except Mei‐Se et al. (2018). Mei‐Se et al. exam-
ines the time‐varying cointegration relationship among
three metals, including gold and oil. Hurn et al. (2016)
and Shi et al. (2016) find that based on Monte Carlo sim-
ulations, recursive approach to exhibit least performance
with reference to both true and false causality detection
rates. Moreover, the cointegration only implies existence
of an at least way causality link among series (Engle &
Granger, 1987) but does not discriminate other type of
causalities. As we discussed in the next section, all of
these asymptotic testing approaches might have series
size and power distortions in finite samples and not
robust to integration–cointegration properties of the data
(Balcilar et al., 2010; Balcilar & Ozdemir, 2013a; Dolado
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& Lütkepohl, 1996; Park & Phillips, 1989; Sims, Stock, &
Watson, 1990; Toda & Phillips, 1993; Toda & Phillips,
1994; Toda & Yamamoto, 1995; and Yamada & Toda,
1998). The causality‐in‐quantiles tests are robust to
misspecification and structural breaks (Balcilar, Bekiros,
& Gupta, 2017a; Balcilar, Gupta, & Pierdzioch, 2017b).
Although, both the nonparametric causality‐in‐quantiles
tests and rolling and recursive rolling tests used in this
study are robust against structural breaks, each one has
certain advantages. The causality‐in‐quantiles approach
is a full sample method. Although, it can consider causal-
ity in various quantiles, it lacks the time perspective
and will not uncover periods when causal links exist
and when they do not. Rolling and recursive rolling
approaches used in this study are not full sample
methods and does not consider a certain quantile over
the whole sample period. They rather look through time
and identify how causality links evolve over the time
window. Thus, by using rolling and recursive rolling
approaches, one can detect the periods where causality
actually may or may not exists. On the other hand, it is
not possible to date‐stamp periods where causality exists
using the causality‐in‐quantiles approach. Rolling and
recursive rolling approaches also allow us to study the
effects of particular events on the causality links. It is
not actually possible to link a particular event to causal
or noncausal periods using the causality‐in‐quantiles
approach. Thus, rolling and causality‐in‐quantiles
approaches, although both are robust methods, provide
different information on the causality links.

The findings obtained from the rolling and the recursive
rolling approaches show that the causality relationship
between oil and gold prices in both the spot and futures
markets displays significant time variation with several
switches from bidirectional causality to unidirectional or
noncausality. We find several periods of bidirectional
causal links between oil prices and gold prices over the
1983–2016 sample period for spot market and futures
market at 1‐ to 12‐month maturities. However, there are
longer periods of noncausality links over the study period.
Indeed, noncausality is more prevalent than causality.

The rest of this study is organized as follows: The next
section provides the methodology; Section 3 evaluates the
data and empirical findings; and the last section presents
the conclusion.

2. Methodology

To test for Granger causality in the presence of structural
breaks, one of the approaches used in the literature is
regime‐switching models, such as the Markov‐switching
model (Hamilton, 1989; Krolzig, 1999) and threshold

autoregression (Granger and Teräsvirta, 1993; Deutsch,
Granger, & Teräsvirta, 1994; Teräsvirta, 1998). Balcilar
and Ozdemir (2013b, 2013c) used two‐regime Markov‐
switching vector autoregressive (VAR) models for a cau-
sality analysis in the presence of Markov switching.
Although regime‐switching models can be used for a
regime‐switching Granger causality analysis, they are
restricted in the sense that there are usually two or three
regimes, and they will not be able to capture multiple
regime changes with varying degrees of regime duration.
As an alternative to regime‐switching models, the recur-
sive estimation approach of Swanson (1998) and Thoma
(1994); the rolling window estimation approach of
Balcilar et al. (2010), Balcilar and Ozdemir (2013a), and
Swanson (1998); and the recursive rolling estimation
approach of Hurn et al. (2016) and Shi et al. (2016) can
be used to conduct time‐varying Granger causality tests.
Each of these approaches have their strengths and weak-
nesses, but they all allow for multiple structural breaks
with possible shifts in parameters in each time period.
For time‐varying Granger causality tests where the sys-
tematic shifts between two or three regimes is not the
dominant feature but parameters are subject to many
shift, the recursive, rolling, or recursive rolling
approaches should be chosen (see Balcilar et al., 2010;
Hurn et al., 2016). In this study, we prefer the rolling
and recursive rolling approaches due to their strengths
in terms of false and true causality detection rates. Hurn
et al. and Shi et al. perform Monte Carlo simulations to
compare the false and successful causality detection rates
of the recursive, rolling, and recursive rolling methods.
They find that the recursive approach has the worst per-
formance in terms of both false and successful detection
rates. The rolling approach using the implementation in
Balcilar et al. and Balcilar and Ozdemir has the highest
successful detection rate, whereas the recursive rolling
approach has a slightly lower false detection rate com-
pared with the rolling approach. Shi et al. find that the
rolling approach has the best overall performance for
integrated time series.

To explain the time‐varying causality tests conducted
for the causality links between oil prices ( y1t) and gold
prices ( y2t), consider the following bivariate VAR(p):

y1t ¼ ϕ10 þ ∑
p

i¼1
ϕ11;iy1t−i þ ∑

p

i¼1
ϕ12;iy2t−i þ ε1t; (1)

y2t ¼ ϕ20 þ ∑
p

i¼1
ϕ21;iy1t−i þ ∑

p

i¼1
ϕ22;iy2t−i þ ε2t; (2)

where p is the lag order, and εit, i = 1, 2 are white noise
error terms. Let us write this VAR(p) in the following
matrix notation:
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yt ¼ Φ0 þ Φ1yt−1 þ Φ2yt−2 þ …þ Φpyt−p þ εt; (3)

with following companion multivariate form:

yt ¼ Πxt þ εt; t ¼ 1; 2; …; T; (4)

whereyt=(y1t, y2t)′,xt ¼ 1; y′t−1; y
′

t−2;…; y
′

−p

� �′

, εt=(ε1t, ε2t)
′,

and Π = [Φ0,Φ1,…,Φp] is a 2 × (2p + 1) matrix.
The Granger noncausality from the gold price to oil

price implies that gold does not have predictive power
for oil ( y2t ↛ y1t), whereas the Granger noncausality from
the oil price to the gold price implies that oil does not
have predictive power for gold ( y1t ↛ y2t). The two
noncausality statements, respectively, lead to the follow-
ing joint restrictions to be tested under the following null
hypotheses:

H0 :y2t↛y1t ⟹ ϕ12;1 ¼ ϕ12;2 ¼ … ¼ ϕ12;p ¼ 0; (5)

H0 :y1t↛y2t ⟹ ϕ21;1 ¼ ϕ21;2 ¼ … ¼ ϕ21;p ¼ 0: (6)

The Granger noncausality restrictions in Equations 5
and 6 can be written concisely as

H0 :Rπ ¼ 0; (7)

where π = vec(Π) is a vector of dimension 2(2p + 1) × 1
using row vectorization and R is the selection matrix of
dimension p × 2(2p + 1).

The rolling estimation approach uses a fixed window
size τw = [rwT], where [·] is the integer part with fraction
rw of the total number of observations. The estimation
starting point is τ1 = [r1T] with fraction r1, and the end
point is τ2 = [r2T] with fraction r2, giving a sequence of
Wald statistics for t = τ1, τ1 + 1, …, τ2. The rolling proce-
dure can be represented with start point τ1 = τ2 − τw + 1
and the sequence of end points τ2 = {τw,…,T}. In this
manner, we obtain the T − τw + 1 sequence of Wald
statistics. We denote the sequence of the rolling statistics
with W τ2

τ1¼τ2−τwþ1

� �
τ2∈ τw;T½ �.

The recursive rolling approach is similar to the rolling
approach and likewise is a fixed window estimation
method with window size τw. Similar to the rolling
estimation, the end point of the regression is the
sequence τ2 = {τw,…,T}. However, the start point of the
estimation considers all possibilities, which is 1 to
τ2 − τw + 1. The recursive rolling procedure combines
the sequence of end points τ2 = {τw,…,T} with the
start point sequence τ1 = {1, τ2 − τw + 1}. The recur-
sive rolling statistics are the sum of the all possible
rolling statistics for the given point and are denoted

with SW τ2
τ1¼τ2−τwþ1

n o
τ2∈ τw;T½ �

¼ supτ2;τs1∈ 1;τ2−τwþ1½ � W τ2
τs1

n oh i
.

In the practical implementation of the rolling and
recursive rolling approaches, we need to calculate Wald
test sequences for a subset of the sample with start point
τ1 and end point τ2. Let the ordinary least squares (OLS)
estimate of the VAR(p) model in Equation (4) estimated

for this subsample be given by bΠτ1;τ2 and its row vec form

by bπτ1;τ2 ¼ vec bΠτ1;τ2

� �
. The sequence of Wald tests is

obtained by imposing the restrictions in Equation (7) on
the subsample estimates; that is, we test the null hypoth-
esis with restrictions Rbπτ1;τ2 ¼ 0. The OLS estimates bπτ1;τ2

are given for each equation i = 1, 2 by

bπi;τ1;τ2 ¼ ∑τ2
t¼τ1yit x

′

t

h i
∑τ2

t¼τ1xt x
′

t

h i−1
. The residuals for

each equation in the subset estimate can be obtained asbε′t ¼ bε1t;bε1t½ � with bεit ¼ yit − bπi;τ1;τ2xt . We can obtain the
corresponding estimate of the residual covariance matrix

Ω as bΩτ1;τ2 ¼ T−1
w ∑τ2

t¼τ1
bεt bε′t, where Tw = τ2 − τ1 + 1.

Given these definitions, the Wald statistics for the
Granger noncausality restrictions for each subsample
can be obtained from

W τ2
τ1 ¼ Rbπτ1;τ2

� �′
R bΩτ1;τ2⊗ ∑τ2

t¼τ1xtx
′

t

� �−1
� 	

R′


 �−1

Rbπτ1;τ2

� �
:

(8)

The Wald test statistics in Equation (8) assume that
homoskedastic errors and Granger causality tests con-
structed in this way may have invalid empirical levels
and could be accompanied by power loss when the
errors are heteroskedastic. To avoid issues due to uncon-
ditional and conditional heteroskedasticity, we also use a
modified Wald test that accounts for the effects of
heteroskedasticity in the residuals. The modified Wald
test is constructed as follows:

W *τ2
τ1 ¼ Tw Rbπτ1;τ2

� �′
R bV−1

τ1;τ2
cW τ1;τ2

bV−1
τ1;τ2

� �
R′

h i−1
Rbπτ1;τ2

� �
;

(9)

where bV τ1;τ2 ¼ I2 ⊗ bQτ1;τ2 , bQτ1;τ2 ¼ T−1
w ∑τ2

t¼τ1 xt x
′

t, andcW τ1;τ2 ¼ T−1
w ∑τ2

t¼τ1 ξ t ξ
′

t with ξ t ¼ bεt ⊗ xt .

The asymptotic distribution of the rolling Wald test is
a chi‐square, and the asymptotic distribution of the
recursive rolling statistic is non‐standard but is given in
Hurn et al. (2016). There is significant evidence (Guilkey
& Salemi, 1982; Toda & Phillips, 1993; Toda & Phillips,
1994) that the Wald tests, including the Granger causality
test used in this study, may suffer from serious size distor-
tions. Moreover, the modified Wald test in Equation (9)

involves the estimation of the matrix cW τ1;τ2 , which is
essentially a matrix of the fourth moment. A fourth
moment estimator will be much more sensitive to high
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variations in small samples. We therefore follow the
bootstrap approach of Balcilar et al. (2010) to obtain the
empirical distributions of the Wald tests.1,2 The bootstrap
procedure is implemented by considering the fact that
under the Granger noncausality null (maintained)
hypothesis restrictions Rbπτ1;τ2 ¼ 0, the VAR(p) model
has constant coefficients Πτ1;τ2 ¼ Π for all (fractional)
subsamples t = τ1, τ1 + 1, …, τ2.

One important issue in Granger causality testing is
the integration–cointegration properties of the data. As
shown by Sims et al. (1990), Park and Phillips (1989),
and Toda and Phillips (1993, 1994), the Wald tests of
Granger noncausality in Equations 8 and 9 based on
levels estimation do not usually have standard asymptotic
distribution. Moreover, these Wald tests will also depend
on the nuisance parameters when data have unit roots,
that is, integrated of order one, denoted I(I). Sims et al.
showed that one cannot perform Granger causality tests
by imposing the joint restrictions in Equations 8 and 9
based on standard asymptotic theory using the OLS
estimation of the underlying VAR model in Equations 1
and 2. In the case of I(1) data, there are three alternative
approaches proposed in the literature for preforming
Granger noncausality tests in Equations 5 and 6. First
approach is proposed by Mosconi and Giannini (1992)
and Toda and Phillips (1993) and utilizes the version of
the error correction model (ECM) in Johansen (1988,
1991). In this approach, equivalent restrictions to those
in Equations 5 and 6 on the original VAR model are
imposed on the ECM. The second approach is the fully
modified VAR (FM‐VAR) approach of Phillips (1995).
Analogous to Johansen‐type ECM approach, one can
impose equivalent Granger noncausality restrictions on
the FM‐VAR. The third approach is the lag‐augmented
VAR (LA‐VAR) approach (Dolado & Lütkepohl, 1996;
Toda & Yamamoto, 1995; Yamada & Toda, 1998). In the
LA‐VAR approach, the lag order p of the VAR is extended
as p + dmax , where dmax is the maximum integration
order of the series, and Granger causality restrictions in
Equations 5 and 6 are imposed on the first p lags. In all
three approaches, the Wald test statistics relating to
Equations 5 and 6 follow standard chi‐squared distribu-
tion. In terms of performance, Monte Carlo studies

performed by Yamada and Toda (1998) show that the
LA‐VAR test has better size and stability properties com-
pared with the FM‐VAR and the ECM approaches. In this
paper, we do not use any of these approaches due to their
drawbacks. In the ECM approach, testing the Granger
noncausality hypothesis involves non‐linear restrictions
on the parameter restrictions; and therefore, Wald or like-
lihood ratio tests suffer from size distortions due to the
rank deficiency problem (Toda & Phillips, 1993). Another
problem with the ECM approach is the requirement of
the prior knowledge of cointegrations rank, which leads
to the size distortions due to the pretest bias (Yamada &
Toda, 1998). As pointed out by Yamada and Toda
(1998), LA‐VAR approach uses sample information ineffi-
ciently, which leads to size and power distortions in finite
samples. This may be a serious issue in our case because
the rolling and recursive rolling approaches have rela-
tively smaller sample sizes. The FM‐VAR approach does
not always achieve good asymptotic size and additionally,
depending on the location and number of unit roots in
the system, it may be quite conservative under the null
hypothesis, leading to low power under the alternative
(Yamada & Toda, 1998).

The rolling and recursive rolling Granger causality
tests in our case involves relatively smaller sample sizes.
Therefore, the ECM‐, FM‐VAR‐, and LA‐VAR‐based
Granger noncausality tests are very likely to perform
poorly. In order avoid the size and power distortion issues
in the asymptotic test approaches, we use bootstrap Wald
test approach of Balcilar et al. (2010) and Balcilar and
Ozdemir (2013a). Pioneered by Efron (1979), the boot-
strap method uses critical or p values generated from
the empirical distribution of the Wald tests derived from
the sample data under the null hypotheses in Equations 5
and 6. The bootstrap approach for Granger noncausality
testing obtains valid critical or p values irrespective of
the integration–cointegration properties of the data
because these are obtained from the empirical distribu-
tion derived from the sample data. Horowitz (1994),
Mantalos and Shukur (1998), and Mantalos (2000),
among others, documented the robustness of the boot-
strap approach for testing Granger noncausality. The
Monte Carlo simulations performed by Hacker and
Hatemi‐J (2006) showed that the bootstrap Wald test
has much smaller size distortions compared with the
use of asymptotic tests. On the basis of Monte Carlo sim-
ulations, Mantalos and Shukur and Mantalos showed
that these results hold irrespective of sample sizes, inte-
gration orders, and error‐correction processes (homosce-
dastic or autoregressive conditional heteroskedasticity
[ARCH]). Therefore, we adopt the bootstrap approach
for Granger noncausality testing because of its advan-
tages. The critical values (or the p values) of the Granger

1The details of the bootstrap implementation can be found in Balcilar
et al. (2010).
2For integrated time series data, rolling, and recursive rolling Granger
causality Wald tests can be performed using the LA‐VAR approach of
Toda and Yamamoto (1995). Shi et al. (2016) adopt an LA‐VAR
approach to perform rolling and recursive rolling Granger causality
Wald tests. In this study, we use bootstrap approach in order obtain
the critical or p values of the Wald statistics, which is robust to integra-
tion–cointegration properties of the data (Mantalos, 2000; Mantalos &
Shukur, 1998).
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causality tests are obtained under the restrictions of the
null using the residual‐based bootstrap approach of
Balcilar et al. with 1,000 replications.

3. Data and empirical  f indings

In this paper, we use the monthly U.S. dollar closing
prices of nearby settlement crude oil spot and futures
contracts traded on the New York Mercantile Exchange
and the monthly U.S. dollar prices of gold spot and
futures contracts traded on the London Bullion Market.
Data on gold and oil spots and futures prices are obtained
from DataStream, and we use the data of the gold and oil
markets for spot and futures prices at 1‐ to 12‐month
maturities. The last column of Table 1 shows the oil series
and gold series included in the sample, along with the
beginning date of each series. Accordingly, the data span
is from the date of reporting to August 2016. Time series
plots of the spot and futures prices of oil and gold are
shown in Figure 1.

The theory, as well as empirical evidence, indicates
that different markets are likely to have differing degrees
of sensitivity to oil prices. A price on the gold market, for
instance, would have an averaging effect across markets
and would not perhaps reveal the links between oil and
gold prices. We employ monthly frequency data rather
than daily frequency data because daily data may be
affected by drifts and noise, which probably serve to mask
the dependence relationship and complicate the model-
ling of the marginal distributions in the presence of non-
stationary variances, long memory, or sudden jumps; it
would also be difficult to capture links between oil prices
and gold prices on a daily basis, as high frequency oil and
gold prices are highly volatile. Oil and gold prices are
both nonstationary at log levels, as standard unit root
tests3 suggest. Given that all series are nonstationary,
we additionally check for cointegration between the pairs
of spot and 1‐ to 12‐month futures of oil and gold price
series. The Johansen (1988, 1991) cointegration tests indi-
cate no cointegration for each pair of the series.4 As we
have explained in the previous section, bootstrap Granger
causality tests used in the study are valid irrespective of
the integration–cointegration properties of the data, so
no special treatment of the unit roots and non‐existence
of cointegration are needed.

Table 1 presents selected descriptive key features of
the data series, the mean, standard deviation, kurtosis,

skewness, the Jarque–Bera normality test, the Ljung–
Box first Q([1]) and the fifth Q([5]) autocorrelation tests,
and the first‐ [ARCH(1)] and the fifth‐ [ARCH(5)] order
Lagrange multiplier tests for the ARCH for oil and gold
spots and futures prices series in natural logarithms. As
is clear from the table, the mean for oil market prices is
the lowest for the futures price, but it increases slightly
for spot prices, with the longest maturity of a 12‐month
contract having the lowest average price of approximately
3.49. The mean of gold market prices is highest at the
12‐month maturity contract for the futures price but then
slightly decreases to the spot price and maturity of
1 month for the futures price contract with an average
price of 6.23. We also observe from the table that oil
markets are more volatile than gold markets. The positive
values of the skewness statistic suggest a lower probabil-
ity of large decreases in prices. The return distributions
have thin tails, as indicated by negative values for the
kurtosis statistic. Both variables are skewed to the right
with negative kurtosis, resulting in non‐normal distribu-
tions. The values of the Ljung–Box statistic show that
there is serial correlation in oil market prices and the gold
market prices. Finally, the autoregressive conditional
heteroskedasticity–Lagrange multiplier statistics indicate
that ARCH effects exist in all price series.

Even though we aim to analyse the time‐varying
nature of the causal nexus between oil and gold, we also
performed the linear Granger causality test based on a full
sample VAR model for completeness and comparability.5

The results of the linear Granger causality tests are
reported in Table 2. The second column of Table 2 shows
the linear Granger causality test results for testing the null
hypothesis that oil prices do not Granger cause gold
prices, whereas the third column of Table 2 reports the
linear Granger causality test results for testing the null
hypothesis that gold prices do not Granger cause oil
prices. The evidence from column 2 of Table 2 indicates
that the null hypothesis that oil prices do not Granger
cause gold prices is not rejected at the 5% level of
significance. The F ‐test results from column 3 of
Table 2 do not reject the null hypothesis that gold prices
do not Granger cause oil prices at a 5% level of signifi-
cance. In sum, the results of the linear Granger causality
test show that there is no evidence of predictability
emanating between oil and gold markets at the 5% level
of significance.

The results reported in Table 2 for examining the
causal link between oil and gold prices in spot and
futures markets are based on restrictions imposed in a

3Complete details of the unit root tests are available upon request from
the authors. See also Shahbaz et al. (2017).
4Details of the cointegration tests are not reported to preserve space but
available from the authors upon request.

5Due to the nonstationarity of all series, all full sample Granger causality
tests are performed using the LA‐VAR approach of Toda and Yamamoto
(1995).
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Table 1. Descriptive statistics for the oil and gold price series in natural logarithms

n Mean SD Min Max Skewness Kurtosis JB Q(1) Q(4) ARCH(1) ARCH(4) Starting period

Panel A: Oil price series

Spot 368 3.53 0.67 2.42 4.98 0.41 −1.27 34.42*** 362.69*** 1,390.31*** 326.45*** 327.48***

1 month 401 3.51 0.65 2.42 4.98 0.48 −1.09 35.13*** 395.01*** 1,516.86*** 361.59*** 359.80***

2 months 401 3.51 0.65 2.43 4.98 0.49 −1.13 36.69*** 396.04*** 1,528.10*** 363.68*** 361.81***

3 months 401 3.51 0.65 2.44 4.98 0.49 −1.15 38.16*** 396.88*** 1,536.87*** 365.84*** 364.03***

4 months 401 3.51 0.66 2.45 4.99 0.50 −1.17 39.52*** 397.55*** 1,543.97*** 367.65*** 365.91***

5 months 401 3.51 0.66 2.46 4.99 0.51 −1.19 40.77*** 398.08*** 1,549.79*** 369.12*** 367.42***

6 months 401 3.50 0.66 2.46 4.99 0.52 −1.20 41.84*** 398.49*** 1,554.54*** 370.33*** 368.65***

7 months 401 3.50 0.66 2.47 4.99 0.52 −1.21 42.77*** 398.85*** 1,558.47*** 371.41*** 369.76***

8 months 393 3.50 0.67 2.48 4.99 0.52 −1.26 43.45*** 391.28*** 1,531.16*** 364.09*** 362.47***

9 months 393 3.50 0.67 2.48 4.99 0.52 −1.27 44.16*** 391.52*** 1,533.97*** 364.94*** 363.32***

10 months 393 3.50 0.67 2.49 4.99 0.53 −1.28 44.80*** 391.73*** 1,536.46*** 365.66*** 364.05***

11 months 393 3.50 0.67 2.50 4.99 0.53 −1.29 45.19*** 391.84*** 1,538.38*** 365.96*** 364.16***

12 months 392 3.49 0.68 2.46 4.98 0.51 −1.29 43.76*** 390.78*** 1,533.86*** 365.13*** 363.50***

Dec. 1985–Aug. 2016 

Apr. 1983–Aug. 2016 

Apr. 1983–Aug. 2016 

Apr. 1983–Aug. 2016 

Apr. 1983‐Aug. 2016 

Apr. 1983–Aug. 2016 

Apr. 1983–Aug. 2016 

Apr. 1983–Aug. 2016 

Nov. 1983–Aug.2016 

Nov. 1983–Aug.2016 

Nov. 1983–Aug.2016 

Nov. 1983–Aug.2016 

Dec. 1983–Aug. 2016

Panel B: Gold price series

Spot 401 6.23 0.57 5.54 7.54 0.90 −0.68 61.56*** 398.44*** 1,571.60*** 390.63*** 388.06*** Apr. 1983–Aug. 2016

1 month 401 6.23 0.57 5.54 7.54 0.90 −0.68 61.56*** 398.44*** 1,571.58*** 390.79*** 388.22*** Apr. 1983–Aug. 2016

2 months 401 6.24 0.57 5.54 7.54 0.89 −0.68 61.40*** 398.43*** 1,571.44*** 390.74*** 388.17*** Apr. 1983–Aug. 2016

3 months 401 6.24 0.57 5.54 7.54 0.89 −0.68 61.14*** 398.41*** 1,571.29*** 390.66*** 388.09*** Apr. 1983‐Aug. 2016

4 month 401 6.24 0.56 5.54 7.54 0.89 −0.68 60.70*** 398.34*** 1,570.99*** 390.54*** 387.97*** Apr. 1983–Aug. 2016

5 months 401 6.25 0.56 5.55 7.54 0.88 −0.69 60.02*** 398.31*** 1,570.62*** 390.44*** 387.86*** Apr. 1983–Aug. 2016

6 months 401 6.26 0.56 5.55 7.54 0.88 −0.69 59.44*** 398.31*** 1,570.75*** 390.37*** 387.79*** Apr. 1983–Aug. 2016

7 month 401 6.26 0.56 5.56 7.54 0.87 −0.69 58.75*** 398.30*** 1,570.65*** 390.30*** 387.72*** Apr. 1983–Aug. 2016

8 months 401 6.27 0.55 5.56 7.54 0.86 −0.70 58.02*** 398.28*** 1,570.55*** 390.23*** 387.65*** Apr. 1983–Aug. 2016

9 months 401 6.28 0.55 5.57 7.54 0.86 −0.70 57.28*** 398.27*** 1,570.45*** 390.16*** 387.59*** Apr. 1983–Aug. 2016

10 months 401 6.28 0.55 5.57 7.54 0.85 −0.70 56.51*** 398.25*** 1,570.34*** 390.10*** 387.52*** Apr. 1983–Aug. 2016

11 months 401 6.29 0.55 5.58 7.54 0.84 −0.71 55.71*** 398.24*** 1,570.24*** 390.03*** 387.45*** Apr. 1983–Aug. 2016

12 months 401 6.30 0.54 5.59 7.55 0.83 −0.71 54.89*** 398.23*** 1,570.15*** 389.97*** 387.39*** Apr. 1983–Aug. 2016

Note. ARCH: autoregressive conditional heteroskedasticity; JB: Jarque–Bera normality test; SD: standard deviation. The table reports the descriptive statistics for the spot and futures (1 to 12 month) prices for the oil
(Panel A) and gold (Panel B) markets. Data have n observations and are reported monthly with the sample periods in the last column of the table. In addition to the mean, the SD, minimum (min), maximum (max),
skewness, and kurtosis statistics, the table reports the JB, the Ljung–Box first Q([1]) and the fourth Q([4]) autocorrelation tests, and the first‐ [ARCH(1)] and the fourth‐ [ARCH(4)] order Lagrange multiplier tests for
the ARCH.

*Significance at 10% level. **Significance at 5% level. ***Significance at 1% level.
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Figure 1. Time series plots of the spot and futures prices for the oil and gold markets 
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linear VAR model estimated for the full sample. This full
sample VAR model assumes that no structural breaks
exist in the sample and that parameters are constant over
the entire sample period. However, structural changes
may shift the parameter values, and the patterns of causal
relationships may vary over time. That is, structural
changes may influence the temporal (Granger) causality
links, being sensitive to the sample period adopted.
Several tests are available to investigate the stability of
VAR models (Andrews & Ploberger, 1994). When the
estimated parameters come from unstable relationships
that are undetected, problems are likely to arise. It is clear
that such parameter estimates stemming from unstable
relationships can lead to serious consequences (Hansen,
1992) due to biased inferences as well as inaccurate fore-
casts (Zeileis, Leisch, Hornik, & Kleiber, 2005). We test
the stability of the VAR model parameters to examine
the temporal stability of the coefficients of the VAR
model composed of oil and gold prices. We employ three
different statistics (Sup‐F, Mean‐F, and Exp‐F) suggested
by Andrews (1993) and Andrews and Ploberger (1994).
All three tests require trimming from the ends of the
sample for the stability of short‐term parameters.
Table 3 shows the results of the parameter stability test
performed for oil and gold prices. We derive the critical
values and the p values using the parametric bootstrap

Table 2. Linear Granger causality tests

H0: Oil prices
do not Granger
cause gold
prices

H0: Gold prices
do not Granger
cause oil
prices

Order of
the VAR
(p)

Spot 0.5423 0.6567 1

1 month 0.4049 0.5325 1

2 months 0.5508 0.6378 1

3 months 0.6186 0.7961 1

4 months 0.6535 1.0948 1

5 months 0.5251 1.4874 1

6 months 0.6844 0.9659 1

7 months 0.5917 0.8455 1

8 months 0.5951 0.7968 1

9 months 0.6388 0.723 1

10 months 0.501 0.5093 1

11 months 1.4843 0.3241 1

12 months 0.6522 0.4597 1

Note. VAR: vector autoregressive. The table reports the F statistic for the no‐
Granger causality restrictions imposed on a lag‐augmented linear VAR
model under the null hypotheses H0. The order (p) of the VAR is selected
by the Bayesian Information Criterion. ***, **, and * indicate rejection of the

null of no Granger causality at a 1%, 5%, and 10% level of significance,
respectively.

Table 3. Parameter stability tests

Oil equation Gold equation VAR system

Sup‐F Mean‐F Exp‐F Sup‐F Mean‐F Exp‐F Sup‐F Mean‐F Exp‐F

Spot 16.499** 6.643** 5.352** 17.741*** 8.259** 5.682** 23.994** 14.274*** 8.361**

1 month 16.996** 6.064* 5.212** 22.330*** 13.026*** 8.291*** 25.264*** 13.003*** 8.303**

2 months 16.807** 5.700* 5.079** 21.958*** 13.108*** 8.143*** 26.081*** 13.056*** 8.385**

3 months 17.193** 5.564* 5.070** 21.592*** 13.072*** 7.996*** 27.217*** 13.008*** 8.620**

4 months 17.466** 5.567* 5.085** 21.756*** 13.457*** 8.151*** 28.284*** 13.158*** 8.955***

5 month 17.724** 5.629* 5.132** 21.033*** 13.213*** 7.937*** 29.422*** 13.171*** 9.371***

6 months 17.995*** 5.751* 5.209** 20.575*** 12.807*** 7.715*** 30.463*** 13.080*** 9.796***

7 months 18.137*** 5.749* 5.219** 20.161*** 12.586*** 7.574*** 31.451*** 13.067*** 10.229***

8 months 18.802*** 6.124** 5.478** 18.666*** 11.184*** 6.738*** 31.870*** 13.608*** 10.442***

9 months 18.979*** 6.173** 5.533** 18.364*** 10.957*** 6.611*** 32.514*** 13.551*** 10.734***

10 months 19.218*** 6.319** 5.631** 18.176*** 11.001*** 6.633*** 32.972*** 13.693*** 10.949***

11 months 19.400*** 6.579** 5.794** 17.667** 10.152*** 6.150** 32.685*** 13.485*** 10.805***

12 months 16.666** 5.446* 4.668** 16.773** 8.594*** 5.314** 31.144*** 12.747** 10.060***

Note. VAR: vector autoregressive. The parameter stability tests exhibit non‐standard asymptotic distributions. With the parametric bootstrap procedure,
Andrews (1993) and Andrews and Ploberger (1994) report the critical values and p values for the non‐standard asymptotic distributions of these tests. Addition-

ally, according to Andrews (1993), trimming from both ends of the sample is required for the Sup‐F, Mean‐F, and Exp‐F. Hence, the tests are applied to the
fraction of the sample in (0.15, 0.85), that is, a 15% trimming from each end of the sample. We calculate the critical values of the tests using 2,000 bootstrap
replications.

***, **, and * indicate significance at a 1%, 5%, and 10% level, respectively.
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distribution obtained using 2,000 replications generated
from a VAR model with constant parameters (Andrews,
1993). A 15% trimming from each end of the sample
is used.

Although all three tests proposed by Andrews and
Ploberger (1994) test the same null hypothesis, they differ
in their choice of alternative hypotheses. The choice of
which test to apply depends on the purpose of the test
(see Andrews, 1993 and Andrews & Ploberger, 1994 for
details). The results of the Sup‐F, Mean‐F, and Exp‐F
are shown in Table 3. According to the results reported in
Table 3, all tests reject the null hypothesis of parameter
constancy at the 5% level (at 10% only in one case) for
the oil price equation, gold price equation, and the VAR
system. Considering all the above‐mentioned factors, it
may be stated that Granger causality tests based on the
VAR model estimated for oil prices and gold prices are
not reliable because the parameters in the VAR model
do not stay constant over the sample period.

The parameter instability tests reported in Table 3
establish a strong case for considering time‐varying
Granger causality tests because the parameters of all
estimated VAR models show significant instability.
Figure 2 displays the time‐varying Wald test statistical
results for causal effects from oil price to gold price,
whereas Figure 3 shows the heteroskedasticity‐consistent
time‐varying Wald test statistics results for causal effects
running from oil price to gold price.6 In Figure 4, we
report the time‐varying Wald test statistics results for
causal effects running from gold price to oil price. Last,
the heteroskedasticity‐consistent Wald test results for
Granger causality running from gold price to oil price
are reported in Figure 5. In Figures 2–5, we report the
bootstrap p values of the rolling and recursive rolling
Wald tests obtained from a VAR model with a varying
lag order and a minimum window size of 40. For each
subsample, we select the optimal lag orders with a
maximum lag order of 12 using the Bayesian Information
Criterion. The p values of the tests are obtained using
1,000 bootstrap replications. The bootstrap p values of
the rolling and recursive rolling Wald tests reported in
Figures 2 and 4 are obtained under the assumption of
homoskedastic residuals, whereas the bootstrap p values
given in Figures 3 and 5 assume heteroskedastic resid-
uals. Because the residuals of the estimated VAR models
show heteroscedasticity (see Table 1), there might be
differences between the standard Wald test results

(Figures 2 and 4) and the heteroskedasticity‐consistent
Wald test results (Figures 3 and 5).

We will assess the noncausality tests at the 5% signif-
icance level; however, 10% critical values can also be
considered to exercise caution against low test power
due to the sample size in each rolling and recursive
rolling subsample estimate. According to the results
shown in Figures 2–5, the p values change substantially
over the sample, indicating sharp structural breaks. The
evidence from Figure 2 for the 13 cases—namely, at the
spot and futures contracts at 1‐ to 12‐month maturities—
shows that the null hypothesis in which oil prices do not
have predictive power for gold prices cannot be rejected
at the 5% significance level for most of the sample, but
there are subperiods where p values, particularly those
of the rolling tests, fall below 5% and more frequently
below 10%. The periods where there is causality from
the oil price to gold price mostly fall between the 1990–
2005 and 2012–2015 subperiods. The causality link from
oil to gold markets were particularly prevalent approxi-
mately in the 1990–1992, 1994, 1997–1998, 2001–2002,
2004–2005, and 2012–2015 subperiods. In Figure 2, the
rolling statistics indicates causal links more frequently
than the recursive rolling statistics. Similar to the
evidence given in Figure 2, the results from the
heteroskedastic versions of the tests reported in Figure 3
indicate that the null hypothesis in which oil prices do
not Granger causes gold prices for all cases cannot be
rejected at the 5%significance level for most of the
sample. However, like the homoskedastic Wald tests,
heteroskedastic Wald tests indicate strong causality from
oil markets to gold markets during the 1990–1992, 1994,
1997–1998, and 2001–2002 subperiods. Compared with
the homoskedastic versions of the rolling and recursive
rolling Wald causality tests, the heteroskedastic versions
are in better agreement about the rejection periods of
the noncausality hypotheses. Because the homoskedastic
version of the recursive rolling test differs significantly
from its heteroskedastic version compared with the
rolling tests, we conclude that recursive rolling tests are
more sensitive to heteroskedasticity, particularly in terms
of its lower success rate in detecting causality links.

The bootstrap p values of the rolling and recursive
rolling Wald tests statistics for the causal link from gold
prices to oil prices in Figure 4 indicate that gold prices
appear to have predictive power for oil prices only during
the periods of 1997–1998 and 2007–2008. Parallel to the
evidence in Figure 3, the bootstrap p values of the rolling
and recursive rolling heteroskedasticity‐consistent Wald
tests statistics from Figure 5 do not reject the null hypoth-
esis at the 5% significance level for almost all of the sam-
ple apart from two subperiods, where the null of Granger
noncausality is rejected in the 1997–1998 and 2007–2008

6In this study, all rolling and recursive rolling Granger causality tests are
performed using the using the bootstrap approach of Balcilar et al.
(2010) to obtain the p values of the Wald statistics. Bootstrap approach
is robust to small samples and integration–cointegration properties of
the data (Mantalos, 2000; Mantalos & Shukur, 1998).
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Figure 2. Wald tests for Granger causality running from the oil price to gold price 
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Figure 3. Heteroskedasticity‐consistent Wald tests for Granger causality running from the oil price to gold price 
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Figure 4. Wald tests for Granger causality running from the gold price to oil price 
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Figure 5. Heteroskedasticity‐consistent Wald tests for Granger causality running from the gold price to oil price
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subperiods. As for the Wald tests of Granger causality
from oil to gold, heteroskedasticity‐consistent rolling
and recursive rolling tests are more consistent for
the periods where they reject the null. Moreover, the
recursive rolling approach appears more sensitive to
heteroskedasticity than the rolling approach. The periods
where there are causality links from gold price to oil price
are around the late 1990s for 3‐ to 12‐month maturity
futures markets and the U.S. sub‐prime mortgage crisis
period from 2007 to 2008 for the spot and 1‐ to 3‐month
maturity futures markets. In addition to these subperiods,
heteroskedasticity‐consistent rolling tests in Figure 5
indicate two subperiods during which gold prices appear
to have predictive power for oil prices for spot and 1‐ to
3‐month maturity futures markets. These periods consist
of the 2012–2013 and 2015 subperiods. Hurn et al. (2016)
and Shi et al. (2016) state that the rolling method of
Balcilar et al. (2010) and Balcilar and Ozdemir (2013a) is
better at detecting structural breaks compared with the
recursive rolling of Hurn et al. and Shi et al. The official
National Bureau of Economic Research (NBER) recession
period coincides with the U.S. sub‐prime mortgage crisis
period covering 2007–2008. Figures 2–5 show that the
results from the rolling method of Balcilar et al. and
Balcilar and Ozdemir detect structural breaks better than
the recursive rolling of Hurn et al. and Shi et al.

In general, the heteroskedasticity‐consistent version of
the recursive rolling test appears to detect the same causal-
ity links as the rolling test, and the recursive rolling test
shows greater sensitivity to heteroskedasticity. Because
all our data show unconditional and conditional
heteroskedasticity, it is more reasonable to consider the
heteroskedasticity‐consistent versions of tests to date
stamp the periods of Granger causality. Both tests detect
Granger causality from oil prices to gold prices in the
1990–1992, 1994, 1997–1998, and 2001–2002 subperiods.
Each of these periods corresponds to significant oil price
changes in crude oil due to influential events that had
global impacts. In the 1990–1992 period, Iraq invaded
Kuwait, leading to the first Persian Gulf War, which took
place from August 1990 to February 1991. During this
period, crude and other oil product prices rose signifi-
cantly, exchange markets reacted wildly to any Middle
East news events, and jet fuel prices increased to record
spreads over other products due to increased defence
demand. In 1994, oil prices likely increased due to three
events. First, institutional investment funds in the United
States shifted from equity and bond markets to cash and
commodities. Second, oil production in Nigeria was
disrupted because of the oil workers' strike. Third, led by
Saudi Arabia, oil began to be traded in exchange for gold
in the Middle East around 1994. The period 1997–1998
corresponds to East Asian crises that placed a strong

downward pressure on oil prices. The crude oil price fell
to $12 by the end of 1998, which was the lowest price since
1972. The East Asian rises were short lived, and strong
growth due to new industrialization, particularly in China
and India, caused a 38% rise in oil prices between Novem-
ber 1999 and November 2000. Oil prices continued to rise
sharply until 2002. Analogously, the significant causality
periods of 1997–1998 and 2007–2008 from gold to oil corre-
spond to two large financial crises: the East Asian crisis in
1997–1998 and the sub‐prime mortgage crisis in 2007–
2008. The type of events correspond to the periods where
causality links between the oil and gold markets indicate
that the causality from oil to gold is related to large oil
price changes, whereas the causality from gold to oil corre-
sponds to financial crises where a huge amount of invest-
ment shifts took place between the gold and oil markets.

The empirical evidence for the relationship between
gold and oil has been mixed and frequently disputed by
economists until now. The first direct trade link between
these commodities was established with selling oil in the
Middle East in return for gold. In 1933, Saudi Arabia
stated that it would sell oil only in return for gold, and
this was an important turning point in terms of the rela-
tionship between gold and oil. The frequently repeated
view concerning the gold–oil relationship is that there is
a direct proportion between the prices of both commodi-
ties. Even though the rule does not hold under all condi-
tions, the fact that there was a positive correlation
between the Brent crude oil prices and the price of gold
in the period between 1987 and 2012 can be regarded as
an indicator confirming the generalization. Therefore,
the tendency for the two prices to move jointly in
recent years has aroused interest again to examine the
links between the corresponding markets based on the
assumption that gold and oil are major commodities
and that the fluctuations in their prices have important
implications for the real economy and financial markets.
Huge increases in oil prices have been attributed to eco-
nomic expansions, trade deficits, high inflation, high
uncertainty in investments, and low stock and bond
values. Gold, however, is considered a hedge against the
risk of inflation and increasing financial market risks
and is thus traded. The two commodities—oil and gold—
can also influence the price of other commodities
(see, e.g., Sari et al., 2010). The crude oil prices of West
Texas Intermediate climbed to $135 in mid‐July 2008,
which was approximately $25 in the early 2000s, as seen
in Figure 1. The increase in the price of gold also occurred
until the first half of 2008. Such a joint movement was
also observed in crude oil and gold prices during the
financial crisis. Therefore, we empirically investigate the
dynamic linkages between these markets. The evidence
from the rolling method of Balcilar et al. (2010) and
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Balcilar and Ozdemir (2013a) and the recursive rolling of
Hurn et al. (2016) and Shi et al. (2016) used in this study
shows that there is a bidirectional causal link between
oil prices and gold prices for several subperiods for spot
and futures prices at of 1‐ to 12‐month maturities. Our
findings provide valuable information on the causes of
the oil–gold nexus by date stamping the periods of causal-
ity, showing that oil influences gold when there are large
oil price changes and gold influences oil when there are
large financial crises. Our results indicate that both the
rolling and the recursive rolling methods show good per-
formance in situations where there are multiple dual
changes in the causal relationship between oil prices
and gold prices over the sample period.

4.  Conclusion

This study examined the causal nexus between oil prices
and gold prices with the rolling and recursive rolling
estimation approaches. The rolling and recursive rolling
approaches are useful for investigating time‐varying
causal links. These approaches allow us to model param-
eter time variation to reflect changes in Granger causality
without any assumptions of the change mechanism. The
data series used in this article are monthly time series of
oil prices and gold prices. What is novel in this study is
the use of both a rolling Granger causality test and a
recursive rolling Granger causality test. We first investi-
gate the linear Granger causality between oil prices and
gold prices. The findings from this test indicate that there
is no predictive power between oil prices and gold prices.
Next, we apply a battery of stability tests to the models
from which the findings of full sample Granger causality
tests are obtained. The results from the stability test show
that the VAR models do not have stable parameters.
Thus, Granger causality test results from the full sample
VAR model estimated for the oil prices and gold prices
series are not reliable. Taking into account this issue,
we analyse the evaluation of the causal link between oil
prices and gold prices over the study period using
rolling and recursive rolling methods, the evidence from
this paper shows two main conclusions. First, there is a
bidirectional causal link between the series for all cases
considered during several subperiods. Second, the
rolling method proposed by Balcilar et al. (2010) and
Balcilar and Ozdemir (2013a) is more robust in detecting
the structural breaks in this context than the findings
from recursive rolling method of Hurn et al. (2016) and
Shi et al. (2016). Overall, the results from this study show
that the dynamic relationships between oil price and gold
price series will be sensitive to the frequency of the oil
and gold series, time span, and method used. Therefore,

the suggestion from this study is that it is very important
that further studies be conducted on the causal relation-
ships between oil prices and gold prices, as well as other
cases, allowing policy changes and significant shifts in oil
and gold and volatile periods caused by recessions and
financial crises. Oil as commodity has been becomingmore
financialized over the last three decades. Like its role as a
safe haven hedge instrument against the stock market
risks, gold could be considered in hedging oil price risks.
Our findings indicate that assuming noncausality between
oil and goldmight lead to dangers in using gold as an hedge
instrument against the oil price risk.
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