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Abstract. Vanadium produces the hardest carbides and can influence wear 

properties positively. However, due to the minerals’ price fluctuations as a result 

of the current economic climate, vanadium is currently expensive and seldom 

used in wear resistant materials despite its valuable properties. Nevertheless, it is 

still important to study the effects of vanadium carbides on wear properties and 

later compare the cost/durability ratio to the other currently used industrial alloys.  

Vanadium has been used as a secondary alloying element in high chromium cast 

iron and has produced positive results through the influence of orientation and 

morphology of the eutectic carbide M7C3. Vanadium carbides are known to be 

discontinuous, which is helpful with regards to impact properties. Vanadium 

carbides alone cannot maintain high macro-hardness values and for improved 

results carbon is needed to increase the strength of the matrix. In this paper, the 

influence of the soaking and tempering temperatures on hardness and wear 

properties in a high vanadium alloy, 1.91C-0.82Mn-0.96Si-0.90Ni-1.35Cr-

0.25Mo-6.12V, were investigated. The soaking temperatures were 1150 and 

1250°C while the tempering temperatures were varied at 100°C interval from 300 

°C to 600 °C. It was found that soaking at 1250°C increased the amount of 

retained austenite, but at the same time also improved the wear resistance in as 

quenched condition as well as after tempering up to 500 °C. 

1. Introduction 

Abrasive wear is a combination of indentation and scratching. It is often referred to as ploughing or 

micro plaguing of the contact surface. Restricting indentation of abrasive particles by hardening has 

proved to improve wear resistance. The main factors which have considerable effect on strengthening 

materials are heat treatment, alloying addition, influence of carbon content, the effects of carbides and 

work hardening. For improved wear properties, the hardness of the surface must be between 0.5 and 1.3 

times the hardness of the abrasive [1]. Most common abrasives are hard and to produce a surface 

hardness that matches 1.3 times their hardness values may introduce brittleness. 

The use of multi-alloy phase systems where the microstructure comprises of the matrix and a carbide 

phase are widely used in abrasive applications. The hard secondary phases improves the macro-hardness 

whilst the matrix maintains the toughness of the material. From literature V produces the hardest 

carbides (MC). Similar to Cr, V can also ensure the stability of a carbide phase. In addition to their 

hardness, VC precipitates are generally discontinuous and spherical and, therefore, are less detrimental 

to strength and toughness. The VC precipitates are also known to have a good cohesion to the matrix 
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owing to a cubic lattice which matches the austenitic lattice [2]. To promote their spheroisity, many 

authors have reported the addition of rare earths metals to the melts. The rare earth metals scavenges 

sulphur (S) and phosphorus (P) which segregates on the corners of the solidifying VC particles to 

promote dendritic growth through heterogeneous nucleation [1-3]. The dendritic carbide structures 

increase with C and V content as indicated Figure 1 [4]. Furthermore, the hardness increases with an 

increase in the volume fraction of the carbide phase to a point beyond which it declines due to increased 

volume fraction of the retained austenite (RA), Figure 2 [4]. 

   

Figure 1. Micrographs of HVGM_alloys etched with Le-Pera’s etchant showing martensite (M), V 

carbides (VC) and retained austenite (RA). (a) 1.70 mass% C, 6.74 mass% V, (b) 2.14 mass% C, 9.14 

mass% V, (c) 2.91 mass% C, 11.0 mass% V [4], micrograph scale = 40um. 

 
Figure 2. Photographs showing the relationship between carbide phase volume fraction, hardness and 

retained austenite [4]. 

Vanadium carbides form as VC, although a large degree of non-stoichiometry has been reported 

between VC0.74 and VC0.91 [5]. For the reaction: V + C = VC, the ratio of V to C is 4.2413:1 and for V 

+ 0.74C = VC0.74 and the ratio becomes 3.1412:1. For equilibrium conditions, the C needs to be in excess 

to strengthen the martensitic matrix. In this work the influence of soaking and tempering temperature in 

the high V alloy (HVGM-1) on the evolution of the microstructures and their subsequence influence on 

wear behaviour was investigated. 

2. Experimental procedure 

The experimental high HVGM-1 was produced in a 150 kg induction furnace fitted with an alumina 

crucible. The alloy was produced using scrap metal and ferro-alloys. The alloy was heated gradually 
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until 1550 °C where it was fully molten and tapped into a transfer ladle. The metal was cast into sand 

moulds made from silica sand and sodium silicate gel dried with CO2.  

The spark analysis chemical composition was as follow: 1.91C-0.82Mn-0.96Si-0.90Ni-1.35Cr-0.25Mo-

6.12V. C and high amount of V was deliberately added to form the VC carbides for abrasion resistance. 

Cr, Mo and Ni were added for hardenability, toughness and strength of the matrix. Cr and V were also 

added to suppress graphitisation by utilising most of the C for carbide formation. Si was added to aid 

castability by improving fluidity. 

The alloy was solution treated at 1150 and 1250 °C to allow for the dissolution of VC, after which it 

was quenched in oil. The solution treatment temperatures were based on the simultaneous thermal 

analyser (STA) results which indicated that the dissolution temperatures of VC are just below 1100°C 

[4]. The alloy was tempered between 300 and 600 °C at 100 °C intervals to study the effects of tempering 

temperature of the wear behaviour of the material. 

The samples cross sections were mounted, ground with silicon carbide papers and polished to 1mm. The 

polished surfaces were etched with Le-Pera’s etcant [6] (a mixture of 4% picric acid in ethanol and 1% 

potassium metabisulphide in water) to reveal the microstructures. The samples were further etched with 

6% potassium metabisulphide and 2% sulphamic acid [6] in water to prepare for carbide phase 

quantification. The carbide phase was identified, quantified and ten measurements were made from each 

as quenched sample. The carbides were analysed using high resolution scanning electron microscope 

equipped with EDX (HRSEM-EDX). 

Abrasion wear was evaluated under a three-body abrasion test rig as shown in Figure 3. Prior to testing 

the samples were cleaned ultrasonically. The initial mass of each sample was determined using an 

analytical balance. After each test was completed the samples were cleaned ultrasonically and the final 

sample mass determined. The wear rates of the samples were calculated using material mass loss as a 

function of time. The specimens were pressed under a constant load of 130N against the rim of a rotating 

wheel for 30 minutes. The average sand flow rate between the specimen and the rubber wheel was 350 

g/min according to ASTM G65. 

 
Figure-3: Schematic diagram of the dry sand/rubber wheel abrasion testing, DSRWAT, (adopted from 

ASTM G65) 

XRD was used in order to determine the amount of the RA. The specimens were polished to 1mm and 

thereafter were electropolished in a 20% HClO4-ethanol solution for XRD preparation to eliminate any 

strain induced martensite. The phase analysis was performed using a Bruker D8 equipped with a 

Sample 



Conference of the South African Advanced Materials Initiative (CoSAAMI 2019)

IOP Conf. Series: Materials Science and Engineering 655 (2019) 012005

IOP Publishing

doi:10.1088/1757-899X/655/1/012005

4

LynxEye detector and Fe-filtered Co-Kα radiation. The phases were identified using EVA software. The 

relative phase amounts (wt%) was estimated using the Rietveld method (Topas program). 

3. Results and Discussion 

3.1. Microstructural Analysis 

The as-cast microstructure is shown in Figure 4. As may be seen, the alloy, HVGM-1, consisted of 

pearlite and VC precipitates.

is sh

es. 

 

Figure-4: Micrograph of the as-cast microstructures of HVGM-1, micrograph scale = 40um. 

After heat treatment, the alloy consisted of VC in a martensitic matrix. The smaller carbide structures 

were mostly spherical particles. The larger carbides also nucleated as spherical particles and grew 

heterogeneously by dendritic growth to form flower-like structures, Figure 5 (a). When the solution 

treatment was increased to 1250°C, the larger flower-like carbide structures dissolved partially and 

became spherical again as they reduced their surface energy, Figures 5 (b). The average carbide volume 

fractions of the as-quenched 1150°C and 1250°C was found to be 9.88 and 8.72% respectively when 

analysed by optical microscopy phase analysis software. Figure 6 shows the backscatter micrograph and 

EDX spectrum to confirm the composition of the vanadium carbides and they were found to be VC. 

  
Figure-5: Micrograph of the as-quenched alloy, HVGM-1, solution treated at (a) 1150 °C and (b) 1250 

°C. Micrograph scale = 40um. 
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Figure-6: (a) Micrograph showing back scatter image of HVGM-1 1150°C and (a) EDX spectrum. 

3.2. Hardness Measurements 

The HRC hardness values of the alloy are graphically plotted in Figure 7. After solution treating at 1150 

°C, the as-quenched hardness was higher. The relatively lower as-quenched hardness value after solution 

treating at 1250 °C was attributed to an increased amount of RA. After tempering at 300 °C the hardness 

drops significantly as a result of tempering and the hardness values were found to be similar. For both 

solution temperatures, the secondary peak hardness was observed at 400 °C. This was attributed to the 

precipitation of fine, coherent vanadium carbides. The matrix hardness dropped after tempering beyond 

500 °C as the fine precipitates began to coarsen and lose their strengthening effect.  

 
Figure-7: Rockwell hardness values as a function of the tempering temperature 

3.3. Three Body Abrasion Wear Testing 

The amount of RA as well as the Three Body Abrasion (TBA) wear resistance as a function of the 

tempering temperature are shown in Figure 8. As expected the RA increased with soaking temperature 

and decreased with an increase in tempering temperature. The RA only drastically reduced after 

tempering at 600 °C as a result of reduced stabilization of the austenite. However, as may be seen from 
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Fig 8, the reduction in the RA did not generally contribute to improved wear resistance because of the 

trade-off with coarsening of carbides. In other words, the increased wear rate at 600 °C simply meant 

that wear properties were best when the V precipitates were still fine. It would appear that in as-

quenched condition, the combination of the hard carbide, hard martensitic and soft austenitic phases in 

both solution heat treatments of 1150 and 1250 °C was the optimum condition for wear resistance. 

Figure 9 (a) of as-quenched HVGM-1 shows less scratching from the three body abrasion test. After 

tempering at 600 °C, the scratches become deeper, and the softer martensitic matrix allows for the 

abrasion wear to plough out the carbides, Figure 9 (b). 

 

Figure-8: Three body abrasion wear rate and percentage retained austenite (RA) plotted as a function 

of the tempering temperature 

  
Figure-9: Dry sand/rubber wheel abrasion testing wear surfaces (a) HVGM-1 in as-quenched 

condition and (b) after tempering at 600 °C 
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4. Conclusions 

· The alloy solution treated at 1250 °C with higher amount of RA exhibited better wear resistance. 

· The combination of the hard carbide, hard martensitic and soft austenitic phases in both solution 

heat treatments of 1150 and 1250 °C was found to be optimum condition for wear resistance.  
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