Surgical resection of a squamous cell carcinoma in the perianal region of a 25-year-old crossbred American Paint gelding using sharp surgical excision, laser excision and chemotherapy

L. Poore†*, Y. Smit†, N. Duncan‡ and J. Williams‡

†The Department of Companion Animal Clinical Studies, and
‡Section of Pathology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa

*Corresponding author email: luke.poore@up.ac.za.

Summary

A 25-year-old American Paint gelding was referred to the Onderstepoort Academic Veterinary Hospital with an ulcerated lesion of nonpigmented skin at the right lateral aspect of the perianal region. An infiltrating squamous cell carcinoma was suspected. Surgical excision and ablation with sharp surgical excision and a diode laser was performed although complete excision was not possible due to the tumour location. Intralesional chemotherapy was performed at the completion of the surgical excision and continued in the post-operative period. Histological examination of the excised lesion confirmed a diagnosis of squamous cell carcinoma and revealed incomplete resection margins at the medial, dorsal and ventral aspects of the surgical site. The surgical site healed uneventfully and a re-examination at 6 months post-surgery revealed the gelding to have normal clinical parameters with no perianal lesions.

Keywords: horse; equus caballus; intralesional chemotherapy; laser excision; neoplasia; papillomavirus 2; perianal; squamous cell carcinoma; surgical excision

Introduction

Tumours of the equine skin represent up to 65% of skin lesions in the horse (Schaffer et al. 2013) and account for 50% of all equine neoplastic lesions in general (Baker and Leyland 1975). Squamous cell carcinomas (SCCs) are malignant neoplasms of epithelial origin and are one of the most commonly diagnosed skin tumours in the horse (Valentine 2006; Schaffer et al. 2013; Knowles et al. 2016). Squamous cell carcinomas occur in various areas of the equine body and are especially common at mucocutaneous junctions (Sundberg et al. 1977; Newkirk et al. 2014). Reported locations in the horse have included the eye, skin, external genitalia, urogenital tract, oesophagus, stomach and nasal cavity (Sundberg et al. 1977; Valentine 2006; Van Den Top et al. 2010; Newkirk et al. 2014). Squamous cell carcinoma in the perianal region of horses has been rarely reported (Wilson 1994; Arnold et al. 2018). In humans, certain papillomaviruses have been identified as the causative agents of SCCs of genital and other mucosal and cutaneous regions (Sykora and Brandt 2017). *Equus caballus* papillomavirus 2 (EcPV2) has relatively recently been associated with most genital squamous cell carcinomas in horses (Sykora and Brandt 2017). A single anal SCC was tested and found to be EcPV2 positive (Bogaert et al. 2012), however, the association of EcPV2 in perianal SCCs is as yet unreported. Treatment of squamous cell carcinoma in horses usually depends on the size and locality of the lesion (Arnold et al. 2018). At easily accessible locations, a sole surgical therapy may allow the entire tumour to be removed (Dietz 2006).
anatomical site is difficult to access, surgery infrequently provides satisfactory results (Hewes and Sullins 2006; Arnold et al. 2018).

Chemotherapy has been described as a suitable treatment for neoplasms of the skin and external genitalia in horses (Fortier and Mac Harg 1994; Paterson 1997; Hewes and Sullins 2006). Successful outcomes have been reported with small lesions or in addition to surgical reduction (Hewes and Sullins 2006; Arnold et al. 2018).

There are few previous reports of perianal squamous cell carcinoma in the horse, with no previous reports of combination therapy using sharp surgical excision, laser excision and intralesional chemotherapy.

This paper reports the successful treatment of a perianal squamous cell carcinoma in a horse with surgical and laser excision and intralesional chemotherapy under standing sedation.

Case details

A 25-year-old American Paint gelding weighing 375 kg was presented to the Onderstepoort Veterinary Academic Teaching Hospital (OVAH), University of Pretoria, for evaluation of an ulcerated mass of non-pigmented skin of the right perianal region. The owner had reported that the mass had increased in size gradually over 12 months (Figs 1 and 2) with ulceration shown in the last 4 weeks of this period, prompting referral. The pony had shown no dyschezia, weight loss or change in demeanour during the previous 12-month period.

Figure 1. The mass approximately 12 months prior to presentation.
General physical examination at presentation revealed normal clinical parameters and mentation with no evidence of right hindlimb regional lymphadenopathy or obvious lymph node metastasis. Palpation of the perianal region revealed a nonpainful, irregular, ulcerated cutaneous mass of 4 cm in diameter in the hairless, nonpigmented skin of the right mid-perianal region. The adjacent skin lateral to the lesion was thickened and the subcutaneous tissue exposed below the ulcer had a granular appearance. A squamous cell carcinoma was suspected and surgical excision was discussed with the owner. In view of the proximity of the medial aspect of the lesion to the right anal wall, a combination of sharp surgical excision, laser excision and chemotherapy was planned, understanding sedation and with epidural anaesthesia.

A peripheral venous blood sample obtained on the day of admission revealed no haematological abnormalities. The gelding was admitted to the hospital and feed withheld for 6 h prior to surgery, but with water allowed ad libitum.

Prior to surgery, faeces were manually removed from as far proximally in the rectum as possible and the perineum was aseptically prepared. An intravenous catheter (Extended Use Milocath, Mila International) was aseptically placed in the left jugular vein and pre-operative medication included intramuscular procaine penicillin (13 mg/kg bwt; Benzyl penicillin), intravenous gentamicin sulphate (6.6 mg/kg bwt; Genta 50) and intravenous flunixin meglumine (1.1 mg/kg bwt; Finadyne).
The gelding was restrained in a metal crush and sedated with intravenous detomidine hydrochloride (10 μg/kg bwt; Domosedan\(^5\)) and butorphanol tartrate (0.1 mg/kg bwt; Torbugesic\(^6\)). An epidural catheter (Epidural pain management kit; Mila International\(^1\)) was placed into the first intercoccygeal space and lignocaine hydrochloride (0.2 mg/kg bwt; 2% Lignocaine\(^7\)) and xylazine (0.2 mg/kg bwt; Rompun\(^7\)) were administered intrathecally.

In preparation for the surgical procedure, all entrances to the surgical suite were locked and laser warning signs placed on doors leading to the surgical suite. Personnel in the surgery room wore dedicated laser safety glasses.

The lateral, ventral and dorsal borders of the lesion were resected using sharp surgical incision with borders of 2 cm achieved. The medial border was resected using a diode laser (980 nm Diode Laser System, Diodevet\(^8\)) due to the proximity to the anal wall. Laser incision was performed with the laser in a continuous mode and 30 W of power. An initial skin incision was completed and traction was placed on the lesion with towel clamps. After removal of the mass, subcutaneous tissue and skin margins, the entire surgical site was ablated in two directions with the diode laser at 90 degrees to each other (Fig 3). Ablation was considered complete when the tissue was dark yellow to brown and appeared dessicated.

![Figure 3](image-url) The surgical site in the immediate post-operative period.

Finally, cisplatin (1 mg of cisplatin per cubic centimetre of tissue; P&U Cisplatin\(^9\)) was injected into the medial, ventral and dorsal borders of the incision site. These injections were conducted according to occupational safety and health administration guidelines. Protective eyewear was worn by all personnel in the surgery room and additional gloves were worn by the clinician administering the cisplatin. Luer-locking syringes were used to minimise spraying of the chemotherapeutic agent through a poorly attached syringe and needle. Sterile
Swabs were held over each injection site to absorb any excess cisplatin. After administration, all syringes, capped needles, remaining drug, swabs and protective clothing were immediately placed in a chemotherapeutic disposal bag.

The excised mass was submitted for histopathological analysis and margin evaluation.

Post-operative treatment with twice daily intramuscular procaine penicillin (13 mg/kg bwt; Depocillin²), once daily intravenous gentamicin sulphate (6.6 mg/kg bwt; Gentacin³) and once daily flunixin meglumine (1.1 mg/kg bwt; Finadyne⁴) was administered for a further 4 days. Intercoccygeal intrathecal morphine sulphate (0.2 mg/kg bwt; Morphine Sulphate⁵) was administered at 12 h intervals for 24 h post-operatively, after which the epidural catheter was removed (Fig 3).

Further intralesional chemotherapy treatment (1 mg of 5-fluorouracil per cubic centimetre tissue; Fluracedyl¹⁰) was performed at 2-week intervals for a total of 4 treatments. Prior to each treatment, flunixin meglumine (1.1 mg/kg bwt; Finadyne⁴) was administered to the patient and a sedation protocol was achieved using intravenous detomidine hydrochloride (10 μg/kg bwt; Domosedan⁵) and butorphanol tartrate (0.1 mg/kg bwt; Torbugesic⁶). The tumour site was clipped, aseptically prepared and infiltrated with 2% lignocaine (20 mg of lignocaine per cubic centimetre tissue; 2% Lignocaine⁷). Using sterile technique, 20 gauge needles were placed in parallel (0.5 cm apart) to provide uniform distribution of 5-fluorouracil at the tumour site and for a 1 cm zone in circumference around the entire surgical site. Five-fluorouracil was administered at 50 mg/cm³ with proper handling and disposal according to occupational safety and health administration guidelines. Two pairs of gloves, protective eyewear and a gown was worn by the clinician administering the 5-fluorouracil to minimise skin and eye exposure. Luer locking syringes were used to minimise leakage of the chemotherapeutic agent and all needles were preplaced prior to injection to avoid overlapping needle tracts and to minimise leakage from the injection sites. Sterile swabs were placed over the injection sites to absorb any excess external 5-fluorouracil. After administration, all syringes, capped needles, swabs, protective clothing and remaining 5-fluorouracil were placed in a chemotherapeutic disposal bag.

The progress of the surgical site was assessed at 2, 5 and 26 weeks post-operatively and photographic records obtained (Figs 4-6).
Figure 4. The surgical site at 2 weeks post-operatively.

Figure 5. The surgical site at 5 weeks post-operatively.
At re-examination 26 weeks post-surgery the pony was clinically healthy with no visible lesions of the anus and perianal region (Fig 6). The owner reported that the horse had not had difficulty defecating, had appeared normal in the post-operative period and had not shown weight loss.

Histopathological examination

Histological examination was performed on routinely prepared, labelled sections of surgical edges and the centre of the excised mass, stained with haematoxylin and eosin, using light microscopy. Central and some margin sections revealed invading cords of neoplastic epithelial cells with large nuclei and finely granular chromatin. Abnormal keratinisation and keratin pearl formation were present within the invading cords (Fig 7). There was an associated perivascular reaction consisting mainly of lymphocytes and plasma cells with a scattering of eosinophils. Overlying necrosis and ulceration were evident in some sections and had elicited an inflammatory reaction zone of degenerated leucocytes (neutrophils and macrophages) at the necrotic edge where there were scattered bacterial colonies. Adjacent skin showed carcinoma in situ featuring epidermal hyperplasia, acanthosis, variable basal cell atypia, dyskeratosis and superficial dermal fibrosis (Fig 7). Characteristics that differentiated this lesion from granulation tissue, papilloma, sarcoids and other neoplasms included the histological features of adjacent skin carcinoma in situ, central infiltrative basaloid-type pleomorphic to anaplastic epithelial cells (Fig 8) with abnormal mitotic figures and overlying ulceration.
Figure 7. Infiltrating SCC with keratin pearl (upper left of image), basal cell atypia and pleomorphism (Haematoxylin and eosin; magnification 400×).

Figure 8. Carcinoma in situ at one of the surgical margins of the excised squamous cell carcinoma (H&E; magnification ×200).

A diagnosis of squamous cell carcinoma was made with incomplete resection at the medial, ventral and dorsal margins.
Discussion

Squamous cell carcinomas are malignant neoplasms of epithelial origin commonly arising in skin or in organs with stratified epithelium (Garma-Avina 1994; Perrier et al. 2010; Gibbons et al. 2015). Following equine sarcoid, SCC is the second most common tumour type found in the horse (Scott and Miller 2003) and the most common malignant skin tumour of horses (Sykora and Brandt 2017).

Squamous cell carcinomas commonly occur at the eyelids and external genitalia with only rare reports as primary tumours in other locations (Perrier et al. 2010). The location of SCC in this case in the perianal region is extremely unusual with few previous reports (Wilson 1994; Arnold et al. 2018). The difficulty in treating squamous cell carcinomas of the perianal region has been reported, with proximity to the anus and difficulties in performing complete excision emphasised (Arnold et al. 2018). Alternative treatment with immunotherapy and permanent colostomy have been advocated instead of surgical resection (Wilson 1994; Arnold et al. 2018).

Squamous cell carcinoma is common in older horses, as in this case (Howarth et al. 1991; Mair et al. 2000; Van den Top et al. 2008; Knowles et al. 2016), with the mean age of horses with vulva, perianal and anal skin SCCs reported as 19 years (Valentine 2006).

The aetiology of squamous cell carcinoma has been shown to be multi-factorial with genetics of skin pigmentation, ultraviolet light exposure, trauma, chronic irritation, smegma, *Equus caballus* papilloma virus 2 (EcPV-2) infection and age implicated (Wilson 1994; Elce 2009; Reid 2009; Sykora and Brandt 2017). There were several possible aetiological factors in the current case, with ultraviolet light exposure of the unpigmented skin at the site being the main suspected causative factor although the age and the American Paint breed of the gelding may also have been contributing factors (Valentine 2006; Schaffer et al. 2013). Unfortunately we did not have access to testing of tumour tissue by either PCR or in situ hybridisation for viral DNA of EcPV2, nor antibody for immunohistochemistry for PV. One anal SCC which was tested for DNA was positive for EcPV2 in another study (Bogaert et al. 2012).

The time before referral by the owner, 12 months, was longer than that in the majority of case reports (Scheck 2005; Tornago et al. 2017). Interestingly, however, the two other reports of perianal squamous cell carcinoma had been identified for 12 months and 3 years, respectively, before referral (Wilson 1994; Arnold et al. 2018). The time delay in the current case was due to lack of owner recognition of the lesion as being possibly neoplastic, despite the age of the pony. The under-recognition by owners of neoplastic disease in older horses, has been previously identified and reported (Ireland et al. 2012). Despite the delay between tumour occurrence and recognition, there was no evidence of metastasis and SCCs have been reported to show slowly progressive development (Howarth et al. 1991; Head et al. 2002).

The histopathological diagnosis in this case was consistent with the clinical presentation and surgical findings. However, whilst the lack of a clean resection margin at the medial aspect of the surgical site was anticipated, the lack of resection margins at the ventral and dorsal aspects of the incision site did not correlate with the surgical findings.

Various treatments of cutaneous SCC have been described, with surgical excision, cryotherapy with or without excision, hyperthermia, laser ablation, radiotherapy, immunotherapy, chemotherapy and electrochemotherapy reported (Strafuss 1976;
Surgical excision of squamous cell carcinoma has been recommended at easily accessible sites (Johnson 1998; Dietz 2006). However, in cutaneous locations that are difficult to access, surgical excision alone often does not provide satisfactory results (Hewes and Sullins 2006; Arnold et al. 2018). Tumour recurrence after incomplete tumour removal is a common complication (Théon et al. 1994). Treatment failure has also been shown to alter the biological behaviour of some tumours resulting in more aggressive growth and an increased potential for local extension or metastasis following recurrence (Gunduz et al. 1979; Théon et al. 1994). In view of the location of the tumour in this case, surgical excision alone was not felt to be justified.

Laser excision has been widely reported in the treatment of cutaneous neoplasia in horses (Carstanjen et al. 1997; Martens et al. 2001; McCauley et al. 2002; Mair and Fews 2016). Advantages of this therapeutic modality include reduced damage to the surrounding tissue as laser light is associated with minimal transmission of heat, and therefore little latent thermal necrosis (Palmer 1989, 1990, 1996; Leffell and Thompson 1992; Carstanjen et al. 1997; McCauley et al. 2002). Additionally, coagulation of small blood vessels, lymphatic vessels and nerves by the laser results in reduced intra-operative haemorrhage, post-operative oedema and pain (Palmer 1989, 1990, 1996; Leffell and Thompson 1992; McCauley et al. 2002). These specific advantages were clearly evident in this case.

A further advantage of laser excision is the reduced spread of malignant cells to surrounding tissue when compared with conventional surgery (Carstanjen et al. 1997; McCauley et al. 2002). It was felt that this property of laser excision was particularly important for excision of the medial border of the tumour in this case as obtaining a tumour-free resection margin was not possible.

Chemotherapeutic treatment has been described as a suitable method to treat neoplasms in horses (Théon et al. 1993, 1994; Fortier and Mac Harg 1994; Paterson 1997). Intralesional administration of various chemotherapeutic agents has been reported as an adjunct or alternative to excision of cutaneous neoplasia in horses (Théon et al. 1993, 1994) and was used in this case in conjunction with laser application on the medial margin where a tumour-free resection margin was not possible. Electrochemotherapy has been reported to have been used successfully in a squamous cell carcinoma of an equine foot that was difficult to access and has been recommended when incomplete excision of tumours in horses is not possible (Spugnini et al. 2017). Electrochemotherapy was considered in this case but was not utilised due to lack of availability of a clinical electroporator.

The benefits of intralesional administration of chemotherapeutic agents include minimising adverse systemic effects while providing exposure of tumour cells to high concentrations of the agent (Hewes and Sullins 2006).

Intralesional administration of cisplatin and 5-flurouracil has been commonly used for treatment of cutaneous tumours in horses and found to be effective against a variety of solid tumours (Loehrer and Einhorn 1984; Théon et al. 1993, 1994, 1997, 1999; Stewart et al.)
Reported protocols include multiple treatments, for instance, four treatments administered at 2 week intervals (Théon et al. 1993), which was adopted in this case.

Difficulties associated with intralesional injection of cisplatin include leakage of the cisplatin solution following injection, unpredictability in the stability and consistency of the solution and risk of accidental injection of the veterinarian performing the injection (Hewes and Sullins 2006). None of these difficulties were encountered in this case. The concerns regarding stability of the cisplatin solution were raised by authors using cisplatin in an oil emulsion whilst we used undiluted cisplatin (P&U Cisplatin9). The risks of self-injection were judged to be low in this case as the pony had an excellent temperament and was restrained both physically and chemically during each administration. The first injection was performed under epidural anaesthesia and subsequent injections were performed using standing sedation. Epidural anaesthesia has been widely utilised in surgical conditions of the equine perineum (LeBlanc and Caron 1990; DeRossi et al. 2004; Climent et al. 2009). The placement and use of an epidural catheter in this case was an important component of both the anaesthetic and analgesic components in the intra- and post-operative periods, respectively.

Complications associated with intralesional cisplatin have included tissue oedema, erythema and crusting (Théon et al. 2007). None of these complications occurred in this case.

To avoid the potential complications with intralesional injection of cisplatin, various slow release delivery systems have been implanted at tumour sites (Ike et al. 1992; Suzuki et al. 1995; Ehrhart et al. 1999; Lana et al. 2004; Marr et al. 2004; Withrow et al. 2004). Biodegradable cisplatin-containing beads have been shown to be an effective treatment with or without tumour debulking for cutaneous neoplasms in horses (Hewes and Sullins 2006). Such a slow release system could have been utilised in this case if the temperament of the horse had been challenging or difficulties in administration had been encountered.

The decision to use 5-flurouracil in the post-operative period was made as it is inexpensive, has relatively few adverse effects and can provide beneficial macroscopic cyto-reduction (Pucket and Gilmour 2014). It is an alternative to other intralesional chemotherapy drugs and does not require specialised preparation or equipment to deliver (Pucket and Gilmour 2014). The use of intralesional 5-flurouracil has been described for treatment of dermatological neoplasia in human patients (Kraus et al. 1998; Longley et al. 2003; Good et al. 2010; Kirby and Miller 2010).

Other potential therapeutic treatment options for this case were radiotherapy and immunotherapy. Radiotherapy as a treatment for equine tumours, has been previously reported (Frauenfelder et al. 1982a, b; Wyn-Jones 1983; Byam-Cook et al. 2006; Montgomery 2014; Hollis 2019) but is infrequently used due to the necessity for special equipment and concerns regarding management of patients receiving radiotherapy (Van Den Top et al. 2010; Hollis 2019). This technique was not available for the current case and would have been cost-prohibitive. Immunotherapy has successfully treated cutaneous neoplasms in horses (Lavach et al. 1985; Vanselow et al. 1988) with autologous dendritic cells reportedly used for perianal SCC (Arnold et al. 2018). Immunotherapeutic techniques would be of benefit to cases similar to the current horse with advantages of safe administration and reduced side effects compared with chemotherapeutic agents (Arnold et al. 2018).
Clinical relevance

To our knowledge, there are no previous reports of a combined treatment approach to perianal squamous cell carcinoma in the horse. Squamous cell carcinoma should be considered in the differential diagnosis of perianal lesions in horses. A combined treatment approach with surgical excision using conventional surgical technique and laser excision with intralesional chemotherapy enabled a full resolution of the squamous cell carcinoma in this case report and is recommended in the treatment of perianal carcinomas in horses where complete excision is difficult or not possible.

Authors' declaration of interests

No conflicts of interest have been declared.

Ethical animal research

No ethical review was required as this is a case study. The owners of the mare described in the present case gave their consent for publication.

Source of funding

None.

Antimicrobial stewardship policy

The mare in this case report did not receive quinolones, extended spectrum beta lactam antimicrobials or macrolides.

Acknowledgements

The authors thank Professor Gareth Zeiler from the Department of Anaesthesia, University of Pretoria for assistance with the sedation and analgesia protocols in this case.

Authorship

L. Poore and Y. Smit were responsible for the surgical aspects of this case and post-operative management. N. Duncan and J. Williams were responsible for the pathological assessment and production of the images. All authors gave their final approval of the manuscript.

Manufacturers' addresses

1MILA International, Florence, Kentucky, USA.
2Fresinus Kabi, Midrand, South Africa.
3Virbac, Centurion, South Africa.
4MSD Animal Health, Kempton Park, South Africa.
5Pfizer Animal Health, Sandton, South Africa.

6Fort Dodge Animal Health, Midrand, South Africa.

7Bayer, Isando, South Africa.

8Diodevet, Newark, Delaware, USA.

9Pfizer Laboratories, Sandton, South Africa.

10Teva Pharmaceuticals, Roodeport, South Africa.

References

Withrow, S.J., Liptak, J.M., Straw, R.C., Dernell, W.S., Jameson, V.J., Powers, B.E.,