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Abstract

This paper uses the Dynamic Factor Model (DFM) framework, which accommodates a large cross-section

of macroeconomic time series for forecasting the per capita growth rate, inflation, and the nominal short-

term interest rate for the South African economy. The DFM used in this study contains 267 quarterly series

observed over the period 1980Q1-2006Q4. The results, based on the RMSEs of one- to four-quarters-

ahead out of sample forecasts over 2001Q1 to 2006Q4, indicate the DFM outperforms the NKDSGE in

forecasting per capita growth, inflation and the nominal short-term interest rate. Moreover, the DFM

performs no worse compared to the VARs, both classical and Bayesian, indicating the blessing of dimen-

sionality.
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1 Introduction

For a long time policy makers, the general public, and academics have been interested in producing accurate forecasts

economic variables for various reasons. For example, recent economic credit crisis has shown the urgency of predicting

such events ahead of time, instead of being behind the curve. Model builders have exploited the recent development

in computation to write simple and complex models that simulate reality with high degree of accuracy. To mimic

economic relationships there is an increasing need of large information. However, traditional economic models, such

univariate time series, Kalman Filter, and multivariate VAR are limited, in that they cannot accommodate large number

of time series. Although VAR is popular, compared to traditional macroeconomic models for its forecasting ability, its

limitations-the most conspicuous being that it cannot accommodate a large panel of series without the risk of running

short of degrees of freedom. In practice forecasters and policymakers often extract information from many series than

the one included in a VAR. The main problem of small models is the decision regarding the choice of correct variables

to include.

As Bernanke and Boivin (2003) argue eloquently, central banks monitor and analyze literally thousands of data

from various sources. Since central banks pay the costs of analyzing a wide range data to improve their decisions,

econometric models should considerably take into account the marginal benefits that increasing information brings in

forecasting. Progress has been made in last decades to accommodate large panel of time aeries in forecasting through

the use of factor models. The initial contribution in this era comes from the work of Burns and Mitchell (1946) in their

analysis of business cycles. Subsequent works of Sargent and Sims (1977) and Geweke (1977) improved the original

work of Burns and Micthell by introducing the static factor approach through the generalization to the dynamic case.

They exploited the dynamic interrelationship of variables and then reduced the number of common factors even further.

However, the approach followed by Sargent and Sims (1977) and Geweke (1977) is too restrictive, in that, it imposes

orthogonality of idiosyncratic components. Chamberlain (1983) and Chamberlain and Rothschild (1983) admit the

possibility of serial correlation and weakly cross-sectional correlation of idiosyncratic components.

These dynamic factor models have been improved recently through advances in estimation techniques proposed by

Stock and Watson (2002), Forni et al. (2005), and Kapetanios and Marcellino (2004). This progress made in estimation

generates an increasing interest in academia, international organizations, central banks, and the governments as they
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accommodate large panel of time series in forecasting economic variables. However, there still is divergence as to

whether factor models with large cross-section of time series outperform traditional econometric models with limited

number of variables. There are several empirical researches that provide evidence of improvement in forecasting

performance of macroeconomic variables using factor analysis (Giannone and Matheson, 2007; Van Nieuwenhuyze,

2007; Cristadoro et al., 2005; Forni et al., 2005; Schneider and Spitzer, 2004, Kabundi, 2004; Forni et al., 2001;

and Stock and Waston, 2002a, 2002b, 1999, 1991, and 1989). However, recent empirical studies find no or only

minor improvements in forecasting ability (Schumacher, 2006; Schumacher and Dreger, 2004; Gosselin and Tkacz,

2001; Angelini et al., 2001). These conflicting results have been issue of fascinating debate as to whether the victory

proclaimed by proponents of large models was not too early. Some attribute the success of large models to the

different circumstances. Banerjee et al. (2005), for example, find that factor models are relatively good at forecasting

real variables in the US compared to the euro area, while, euro-area nominal variables are easier to predict using factor

models than US nominal variables. Furthermore, Boivin and Ng (2006) claim that the composition of the dataset and

the size of the cross-section dimension matter to produce better forecasts with factor models.

This paper exploits the sparse of information sets in a large-dimensional dynamic factor model framework, devel-

oped by Forni et al. (2005), that contains 267 quarterly series of South African economy observed over the period

1980Q1-2006Q4. In addition to national variables, the paper uses a set of global variables such as commodity indus-

trial inputs price index and crude oil prices. The data also comprises series of major trading partners such as Germany,

the United Kingdom (UK), and the United States (US) of America. The in-sample period contains data from 1980Q1

to 2000Q4. The rational behind the use of DFM is to extract few common factors that that drive all series included in

the panel. The model estimated here shows in total five common factors explain the maximum variation of series in

South Africa. The DFM is then used to forecast per capita growth (percentage change in real per capita GDP), inflation

(percentage change in the implicit GDP deflator) and a measure of short-tem nominal interest rate (91-days Treasury

bill rate) over the out-of-sample horizon spanning the period of 2001Q1 to 2006Q4. The forecasting performance of

the DFM is evaluated in comparison to three other alternative models, namely, an unrestricted classical VAR, optimal

Bayesian VARs1 (BVARs) and a New-Keynesian Dynamic Stochastic General Equilibrium (NKDSGE), on the basis

of the Root Mean Square Error (RMSE) of the out-of-sample forecasts. Although Kabundi (2007) used the DFM to

1See Section 5 for further details regarding the issue of optimality of BVARs.
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assess the synchronization of South Africa and the US, and the channels through which the US supply and demand

shocks are transmitted, to our knowledge this the first attempt to use a DFM to forecast key macroeconomic variables

in South Africa. Besides, the intorduction and the cnclusions, the remainder of the paper is organized as follows:

Section 2 lays out the DFM, while Section 3 discusses the data use to estimate the DFM. Section 4 outlines the basics

of the VAR, BVAR and the NKDSGE models, and Section 5 presents the results from the forecasting exercise.

2 The Model

This study uses the Dynamic Factor Model (DFM) developed by Forni et al. (2005) to extract common components

between macroeconomics series, and then these common components are used to forecast output growth, inflation rate,

and nominal interest rates. In the VAR models, since all variables are used in forecasting, the number of parameters to

estimate depend on the number of variables n. With such a large information set,n, the estimation of a large number

of parameters leads to a curse of dimensioanlity. The DFM uses information set accounted by few factors q << n,

which transforms the curse of dimensinality into a blessing of dimensinality.

The DFM expresses individual times series as the sum of two unobserved components: a common component

driven by a small number of common factors and an idiosyncratic component, which are specific to each variable. The

relevance of the method is that the DFM is able to extract the few factors that explain the comovement of all South

African macroeconomic variables. Forni et al. (2005) demonstrated that when the number of factors is small relative

to the number of variables and the panel is heterogeneous, the factors can be recovered from the present and past

observations.

Consider an n× 1 covariance stationary process Yt = (y1t, ..., ynt)′. Suppose that Xt is the standardized version

of Yt, i.e. Xt has a mean zero and a variance equal to one. Under DFM proposed by Forni et al. (2005) Xt is described

by a factor model, it can be written as the sum of two orthogonal components:

xit = bi(L)ft + ξit = λiFt + ξit (1)

or, in vecor notation:
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Xit = B(L)ft + ξit = ΛFt + ξit (2)

where ft is a q × 1 vector of dynamic factors, B(L) = B0 + B1L + ... + BsL
S is an n × q matrix of factor

loadings of order s, ξit is an n×1 vector of idiosyncratic components, Ft is r×1 vector of factors, with r = q(s+1).

however, in more general framework r ≥ q, instead of the more restrictive r = q(s + 1). In a DFM, ft and ξit are

mutually orthogonal stationary process, while χit = B(L)ft is the common component.

In factor analysis jargon, Xt = B(L)ft + ξit is referred to as dynamic factor model, and Xt = ΛFt + ξit is

the static factor model. Similarly, ft is regarded as vector of dynamic factors while Ft is the vector of static factors.

Since dynamic common factors are latent, they need to be estimated. Forni et al. (2005) estimate dynamic factors

through the use of dynamic principal component analysis. It involves the estimating the eigenvalues and eigenvactors

decomposition of spectral density matrix of Xt, which is a generalization of orthogonalization process in case of static

principal components. The spectral density matrix of Xt, which is estimated using the frequency −π < θ < pi, can

be decomposed into the spectral densities of the common and the idiosyncratic component:

Σ(θ) = Σχ(θ) + Σξ(θ) (3)

where Σχ(θ) = B(e−iθ)Σf (θ)B(e−iθ)′ is the spectral density matrix of the common component χt and Σξ(θ) is

the spectral density matrix of the idiosyncratic component ξt. The rank Σχ(θ) of is equal to the number of dynamic

factors, q. Similarly, the covariance matrix of Xt can be decomposed as:

Γk = Γχ
k + Γξ

k (4)

where Γχ
k = ΛΓF

k Λ′, ΓF
k is the covariance of Ft at the lag k and Γξ

k is the covariance of ξt. The rank ofΓχ
k is r, the

number of static factors.

The forecast of the ith variable h-steps ahead forecast is not feasible in practice since the common factors are

unobserved. However, if data follow an approximate dynamic factor model, the set of common factors Ft can be con-

sistently estimated by appropriate cross-sectional averages, or aggregators in the terminology of Forni and Reichlin

(1998) and Forni and Lippi (2001). The rational is that using the law of large numbers, only the pervasive common

5



sources survive the aggregation, since the weakly correlated idiosyncratic errors are averaged out. Building on Cham-

berlain and Rothschild (1983), Forni, Hallin, Lippi, and Reichlin (2000) and Stock and Watson (2002) have shown

that principal components of the observed variables Xt, are appropriate averages. That is, the common component

can be approximated by projecting either on the first r principal components of the covariance matrix (see Stock and

Watson (2002)) or on the first q dynamic principal components (see Forni, Hallin, Lippi, and Reichlin (2000)).

Empirically we estimate the autocovariance matrix of standardized data, X̂t = (x̂1t, ..., x̂nt)′ by:

Γk =
1

T −K − 1

T∑

t=k

X̂tX̂
′
t (5)

where T is the sample size. Following Forni et al. (2005) the spectral density matrix will be estimated by averaging

a given number m of autocovariances:

Σ̂(θ) =
1
2π

m∑

k=−m

wkΓ̂ke−iθk (6)

where wk are barlett-lag window estimator weights wk = 1− |k|
m+1 . The consistent estimates are ensured, provided

that m → ∞ and m
T → 0 as T → ∞. In the empirical section we will use m =

√
T , which satisfies the above

asymptotic requirements.

The procedure of by Forni, Hallin, Lippi, and Reichlin (2005) consists of two steps. The first step is the problem

of the spectral density matrix, defined, at a given frequency θ, as:

Σ̂(θ)Vq(θ) = Vq(θ)Dq(θ) (7)

where Dq(θ) is a diagonal matrix having the diagonal on the first q largest eigenvalues of Σ̂(θ) and Vq(θ) is the

n× q matrix whose columns are the corresponding eigenvectors. Let Xt be driven by q dynamic factors, the spectral

density matrix of the common component is given by:

Σ̂χ(θ) = Vq(θ)Dq(θ)Vq(θ)′ (8)

Hence, the spectral density matrix of the idiosyncratic part is estimated as a residual:
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Σ̂ξ(θ) = Σ̂(θ)− Σ̂χ(θ) (9)

The covariance matrices of common and idiosyncratic parts are computed through an inverse Fourier transform of

spectral density matrices:

Σ̂χ
k =

2π

2m + 1

m∑

k=−m

Σ̂χ(θj)eikθj (10)

Σ̂ξ
k =

2π

2m + 1

m∑

k=−m

Σ̂ξ(θj)eikθj (11)

where θj = 2π
2m+1j and j = −m, ..., m

In a second step, the estimated covariance matrix of the common components is used to construct the factor space

by r contemporaneous averages. These r contemporaneous are solutions from the generalized principal components

(GPC) problem:

Γ̂χ
0 Vrg = Γ̂ξ

0VrgDrg (12)

s.t. V ′
rgΓ̂

ξ
0Vrg = Ir

where Drg is a diagonal matrix having on the diagonal the first r largest generalized eigenvalues of the pair

(Γ̂χ
0 , Γ̂ξ

0) and Vrg is the n× r matrix whose columns are the corresponding eigenvectors.

The first r GPCs are defined as:

F̂ g
t = V ′

rgX̂t (13)

The out off-diagonal elements of Γ̂ξ
0 are set to zero to overcome the problem of instability that is common in the

generalized principal component methodology. With such restrictions, the generalized principal components can be

seen as static principal components computed on weighed data, in that these weights are inversely proportional to the

variance of the idiosyncratic components. Such a weighting scheme should provide more efficient estimates of the

common factors.

χ̂ iT+r|T = Γ̂χ
i.,rVrg(V ′

rgΓ̂0Vrg)−1V ′
rgX̂T (14)
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and

ξ̂ iT+r|T =
[
Γ̂ξ

ii,r, ..., Γ̂
ξ
ii,r+p

]
W−1

i,k [x̂iT , ..., x̂iT−p]
′ (15)

where

Wi,k =




Γ̂ii,0 · · · Γ̂ii,−(k−1)

· · · · · · · · ·

Γ̂ii,k−1 · · · Γ̂ii,0




The forecast of yi, T+h|T is computed as follows:

ŷi, T+h|T = σ̂i(χ̂i, T+k|T + ξ̂i, T+k|T ) + µ̂i (16)

3 Data

It is imperative in factor analysis framework to extract common components from a data rich environment. After

extracting common components of output growth, inflation rate, and nominal interest rates, we make out-of-sample

forecast for one, two, three, and four quarters ahead.

The data set contains 267 quarterly series of South Africa, ranging from real, nominal, and financial sectors. We

also have intangible variables, such as confidence indices, and survey variables. In addition to national variables, the

paper uses a set of global variables such as commodity industrial inputs price index and crude oil prices. The data

also comprises series of major trading partners such as Germany, the United Kingdom (UK), and the United States

(US) of America. The in-sample period contains data from 1980Q1 to 2000Q4. All series are seasonally adjusted

and covariance stationary. The more powerful DFGLS test of Elliott, Rothenberg, and Stock (1996), instead of the

most popular ADF test, is used to assess the degree of integration of all series. All nonstationary series are made

stationary through differencing. The Schwarz information criterion is used in the selecting the appropriate lag length

in such a way that no serial correction is left in the stochastic error term. Where there were doubts about the presence

of unit root, the KPSS test proposed by Kwiatowski, Phillips, Schmidt, and Shin (1992), with the null hypothesis of

stationarity, was applied. All series are standardized to have a mean of zero and a constant variance. The Appendix
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A to this paper contains details about the statistical treatment of all data. The in-sample period contains data from

1980Q1 to 2000Q4, while the out-of-sample set is 2001Q1-2006Q4.2

There are various statistical approaches in determining the number of factors in the DFM. For example, Bai and

Ng (2002) developed some criteria guiding the selection of the number of factors in large dimensional panels. The

principal component analysis (PCA) can also be used in establishing the number of factors in the DFM. The PCA

suggests that the selection of a number of factors q be based on the first eigenvalues of the spectral density matrix of

Xt. Then, the principal components are added until the increase in the explained variance is less than a specific α =

0.05. The Bai and Ng (2002) approach proposes five static factors, while Bai and Ng (2006) suggests two primitive

or dynamic factors. Similar to the latter method, the principal component technique, as proposed by Forni et al.

(2000) suggests two dynamic factors. The first two dynamic principal components explain approximately 99 percent

of variation, while the eigenvalue of the third component is 0.005 < 0.05.

4 Alternative Forecasting Models

In this study, the DFM is our benchmark model. However, to evaluate the forecasting performance of the DFM, we

require alternative models. In our case these are namely, the unrestricted classical VAR, BVARs, and a NKDSGE

model, developed recently by Liu et al. (2007) for forecasting the South African economy. This section outlines the

basics of the above-mentioned competing models.

An unrestricted VAR model, as suggested by Sims (1980), can be written as follows:

χt = C + λ(L)χt + εt (17)

where χ is a (n × 1) vector of variables being forecasted; λ(L) is a (n × n) polynominal matrix in the backshift

operator L with lag lenth p, i.e., λ(L) = λ1L + λ2L
2 + ... + λpL

p; C is a (n× 1) vector of constant terms; and ε is a

(n× 1) vector of white-noise error terms. The VAR model, thus, posits a set of relationships between the past lagged

values of all variables and the current value of each variable in the model.

One drawback of VAR models is that many parameters are needed to be estimated, some of which may be in-

2A detailed list of variables and statistical treatment of all data is available upon request.
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significant. This problem of overparameterization, resulting in multicollinearity and a loss of degrees of freedom,

leads to inefficient estimates and possibly large out-of-sample forecasting errors. A popular approach to overcom-

ing this overparameterization, as described in Litterman (1981,1986a, 1986b), Doan et al. (1984), Todd (1984), and

Spencer (1993), is to use a Bayesian VAR (BVAR) model. Instead of eliminating longer lags, the Bayesian method

imposes restrictions on these coefficients by assuming that they are more likely to be near zero than the coefficients on

shorter lags. However, if there are strong effects from less important variables, the data can override this assumption.

The restrictions are imposed by specifying normal prior distributions with zero means and small standard deviations

for all coefficients with the standard deviation decreasing as the lags increase. The exception to this is, however, the

coefficient on the first own lag of a variable, which has a mean of unity. Litterman (1981) used a diffuse prior for the

constant. This is popularly referred to as the “Minnesota prior” due to its development at the University of Minnesota

and the Federal Reserve Bank at Minneapolis.

Formally, as discussed above, the Minnesota prior means take the following form:

βi ∼ N(1, σ2
βi

)

βj ∼ N(0, σ2
βj

)

(18)

where βi represents the coefficients associated with the lagged dependent variables in each equation of the VAR, while

βj represents coefficients other than βi. The prior variances σ2
βi

and σ2
βj

, specify the uncertainty of the prior means,

βi = 1 and βj = 0, respectively.

The specification of the standard deviation of the distribution of the prior imposed on variable j in equation i at

lag m, for all i, j and m, S(i, j,m), is given as follows:

S(i, j, m) = [w × g(m)× f(i, j)]
σ̂i

σ̂j
(19)

where:

f(i, j) =





1 if i = j

kij otherwise, 0 ≤ kij ≤ 1

g(m) = m−d, d > 0
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The term w is the measurement of standard deviation on the first own lag, and also indicates the overall tightness. A

decrease in the value of w results in a tighter prior. The function g(m) measures the tightness on lag m relative to lag

1, and is assumed to have a harmonic shape with a decay of d. An increas in d, tightens the prior as the number of

lag increases. 3 The parameter f(i, j) represents the tightness of variable j in equation i relative to variable i, thus,

reducing the interaction parameter kij tightens the prior. σ̂i and σ̂j are the estimated standard errors of the univariate

autoregression for variable i and j respectively. In the case of i 6= j, the standard deviations of the coefficients on

lags are not scale invariant (Litterman, 1986b: 30). The ratio, σ̂i

σ̂j
in (19), scales the variables so as to account for

differences in the units of magnitudes of the variables.

The motivation to also use a NKDSGE model, besides the VAR and the BVARs, as a competing forecasting model

to the DFM, emanates from a recent study by Liu et al. (2007b). In this paper, the authors used a NKDSGE model4,

along the lines of Ireland (2004), and forecasted the growth rate, inflation, and the 91-days Treasury bill rate for the

South African economy over the period of 2001Q1 to 2006Q4. The results indicated that, in terms of out-of-sample

forecasting, the NKDSGE model outperformed both the Classical and the Bayesian VARs for inflation, but not for pre

capita growth and the nominal short-term interest rate. However, the differences in the RMSEs were not significantly

different across the models. Given, that South Africa has moved to an inflation targeting framework, the ability of the

NKDSGE model to outperform the VAR and the BVARs in terms of forecasting inflation, gave the model tremendous

economic importance. Given this, we decided to incorporate the same NKDSGE model used by Liu et al. (2007b), as

one of the alternative models to the DFM. Note, unlike the author, we, however, use a different period of estimation.

While Liu et al. (2007b) used 1970Q1 to 2000Q4, we started from the period of 1980Q1, which is understandably the

same as that for the DFM.
3In this paper, we set the overall tightness parameter (w) equal to 0.3, 0.2, and 0.1, and the harmonic lag decay parameter (d) equal to 0.5, 1,

and 2. These parameter values are chosen so that they are consistent with the ones used by Liu et al. (2007).
4See also Liu and Gupta (2007) and Liu et al. (2007a) for usage of calibrated and estimated versions of the Hansen (1985) Real Business Cycle

model in forecasting the South African economy.
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Formally, the NKDSGE model is described by the following eight equations5:

x̂t = Etx̂t+1 − (r̂t − Etπ̂t+1) +
(
1− 1

η

)
(1− ρa)ât (20)

π̂ = βEtπ̂t+1 + ψx̂t − θ̂t/φ, ψ = η
(θ − 1

φ

)
(21)

r̂t = ρr r̂t−1 + ρππ̂t + ρg ĝt + ρxx̂t + εrt εrt ∼ i.i.d.(0, σ2
r) (22)

x̂t = ŷt − 1
η
ât (23)

ĝt = ŷt − ŷt−1 + ẑt (24)

ât = ρaât−1 + εat 0 ≤ ρa < 1, εat ∼ i.i.d.(0, σ2
a) (25)

θ̂t = ρθ θ̂t−1 + εθt 0 ≤ ρθ < 1, εθt ∼ i.i.d.(0, σ2
θ) (26)

ẑt = εzt εzt ∼ i.i.d.(0, σ2
z) (27)

Equations (20) and (21) models the the expectational IS curve and the New Keynesian Phillips curve, respectively,

while (22) presents the interest rate rule pursued by the monetary authority. Following Ireland (2004) and Liu et al.

(2007b), the terms of the NKDSGE model is defined as follows6: yt measures the output; xt is the output gap; rt is

the nominal short-term interest rate; πt is the inflation rate; gt output growth; η (≥1) captures the degree of marginal

disutility from labor; at is the preference shock; 0< β <1 is the discount factor; θt is the cost-push shock; φ governs

the magnitude of the cost of price adjustment; ψ = η
(

θ−1
φ

)
; εrt captures the monetary policy shock; ρi, i = a, r, x, π,

g, and θ, captures the persistence parameters, and; zt is the technology shock.

As far as estimation is concerned, the BVAR model is estimated using Theil’s (1971) mixed estimation technique,

which involves supplementing the data with prior information on the distribution of the coefficients. For each restric-

tion imposed on the parameter estimated, the number of observations and degrees of freedom are increased by one in

an artificial way. Therefore, the loss of degrees of freedom associated with the unrestricted VAR is not a concern in

the BVAR. On the other hand, the NKDSGE model is in a state-pace form and can be estimated via the maximum

likelihood approach.7

5See Ireland (2004) and Liu et al. (2007b) for details regarding the microfoundations of the model.
6A letter with a hat above indicates its deviation from its steady-state.
7For further details, please refer to Ireland (2004) and Liu et al. (2007b).
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5 Results

In this section, we compare the one- to four-quarters-ahead RMSEs of the alternative models in relation to the DFM for

the out-of-sample forecast horizon of 2001Q1 to 2006Q4. Before we proceed, three points must be emphasized: First,

unike the DFM, the VAR, BVAR and the NKDSGE are estimated using data8 on only the three variables of interest,

with all the data obtained from the Quarterly Bulletins of the South African Reserve Bank (SARB), except for the

population size, which is obtained from the World Development Indicators of the World Bank; Second, even though

the DFM incorporates global variables, given that the NKDSGE model is based on closed-economy, we, as in Liu et

al. (2007b), use the percentage change in the GDP deflator as an appropriate measure of inflation rather than the CPI,

simply to ensure consistency of comparison between the alternative models; Third, the stableStability was ensured, as

no roots were found to lie outside the unit circle. VAR and the BVARs were estimated with four lags, as determined by

the unanimity of the sequential modified LR test statistic, Final Prediction Error (FPE), Akaike Information Criterion

(AIC), Schwarz Information Criterion (SIC), and the Hannan-Quinn Information (HQIC) criterion, and; Fourth, the

optimality of the BVARs is based on the minimum average RMSEs9 for the one- to four-quarters-ahead forecasts,

produced by the combination of the values of the hyperparameters defining the overall weight (w) and tightness (d).

The main results, as reported in Tables 1 to 3, can be summarized as follows:

• Except for the one-quarter-ahead forecasts of the inflation rate and the interest rate, the DFM outperforms the

NKDSGE model, in terms of lower RMSEs for all the variables;

• Except for the inflation rate over all the steps and the interest rate for the one-quarter-ahead forecast, the DFM

8Note to be consistent with the NKDSGE model, we estimate the VAR and the BVARs using demeaned data for the three variables of interest,

and, hence, stationarity is not an issueThe same was also vindicated by the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), Dickey-Fuller

with GLS detrending (DF-GLS) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests of staionarity. Besides, given that the Bayesian approach is

entirely based on the likelihood function, the associated inference does not need to take special account of nonstationarity (Sims et al. (1990)).
9Zellner (1986: 494) pointed out that “the optimal Bayesian forecasts will differ depending upon the loss function employed and the form

of predictive probability density function”. In other words, Bayesian forecasts are sensitive to the choice of the measure used to evaluate the

out-of-sample forecast errors. However, Zellner (1986) also indicated that the use of the mean of the predictive probability density function for a

series, is optimal relative to a squared error loss function, and the Mean Squared Error (MSE), and, hence, the RMSE is an appropriate measure to

evaluate performance of forecasts, when the mean of the predictive probability density function is used. Thus, the paper uses RMSEs to evaluate

out-of-sample forecasting performances of alternative models.
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outperforms the VAR in forecasting the growth rate and the Treasury bill rate;

• When compared to the optimal BVARs, the DFM can only do better in terms of predicting the short-term interest

rate;

• Within the VAR models, both classical and Bayesian, the BVARs with w 0.1, d = 1.0, and w = 0.2 and d = 1.0,

respectively, outperforms the VAR in terms of forecasting the growth rate and the interest rate, however, the

optimal BVAR with w = 0.1 and d = 2.0, is outperformed by the classical unrestricted VAR;

• Overall, a relatively tight BVAR with w = 0.1 and d = 1.0 is best suited for forecasting the growth rate of

the economy. While, the classical unrestricted VAR and the DFM are the preferred models for forecasting the

inflation rate and interest rate, respectively. The NKDSGE model, unlike, in Liu et al. (2007b) is found to be

outperformed by all the models for all three variables.10

Table 1. RMSE (2001Q1-2006Q4): Per capita Growth

QA 1 2 3 4 Average

DFM 0.4556 0.4856 0.5219 0.7869 0.5625

VAR (4) 0.4791 0.54076 0.6190 0.7348 0.5935

BVAR (w = 0.1, d = 2.0) 0.3851 0.4027 0.4951 0.6408 0.4809

NKDSGE 0.9894 1.1259 1.7950 1.2081 1.2796

QA: Quarter Ahead; RMSE: Root Mean Squared Error in %.

Table 2. RMSE (2001Q1-2006Q4): Inflation

QA 1 2 3 4 Average

DFM 0.4158 0.3345 0.4551 0.5830 0.4471

VAR (4) 0.2617 0.3134 0.3703 0.4342 0.3449

BVAR (w = 0.1, d = 1.0) 0.2608 0.3105 0.3747 0.4649 0.3527

NKDSGE 0.2973 0.4212 0.5770 0.6954 0.4977

QA: Quarter Ahead; RMSE: Root Mean Squared Error in %.

10This result should not be surprising, given the sensitiveness of forecasts to the choice of sample period.
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Table 3. RMSE (2001Q1-2006Q4): Treasury bill

QA 1 2 3 4 Average

DFM 1.6913 1.2054 1.1597 1.0351 1.2729

VAR (4) 0.9213 1.7685 2.5054 3.1125 2.0769

BVAR (w = 0.2, d = 1.0) 0.9183 1.6988 2.3432 2.8648 1.9563

NKDSGE 1.1301 1.9785 2.6223 3.9910 2.4305

QA: Quarter Ahead; RMSE: Root Mean Squared Error in %.

In order to evaluate the models’ forecast accuracy, we perform the across-model test between the benchmark DFM

with that of the VAR, optimal BVARs and the NKDSGE model. The across-model test is based on the statistic

proposed by Diebold and Mariano (1995). The test statistic is defined as the following. For instance, let {ei
t}T

t=1,

with i = VAR, BVARs, and NKDSGE, denote the associated forecast errors from the alternative models and {ed
t }T

t=1

denote the forecast errors from the DFM. The test statistic is then defined as s = l
σl

, where l is the sample mean of

the “loss differentials” with {lt}T
t=1 obtained by using lt = (ei

t)
2 − (ed

t )
2 for all t = 1, 2, 3, ..., T , and where σl is

the standard error of l. The s statistic is asymptotically distributed as a standard normal random variable and can be

estimated under the null hypothesis of equal forecast accuracy, i.e. l = 0. Therefore, in this case, a positive value

of s would suggest that the DFM outperforms the specific alternative model the comparison is made against in terms

of out-of-sample forecasting. Results are reported in Table 4. In general, the DFM performs significantly better than

the NKDSGE model in predicting the three variables of our concern. Moreover, the DFM performs no worse than the

VARs, both classical and Bayesian, since most of the test statistics, except for the fourth quarter of the inflation rate,

are insignificant.
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Table 4. Across-Model Test Statistics

Quarters Ahead 1 2 3 4

(A) Per capita growth

DFM vs. VAR 0.0302 0.5017 1.1355 -1.0868

DFM vs. BVAR -0.3360 -0.3070 -0.0954 -0.7406

DFM vs. NKDSGE 3.2364∗∗∗ 2.4632∗∗∗ 1.8891∗∗ 1.7622∗∗

(B) Inflation

DFM vs. VAR -0.8479 -0.2026 -0.7181 -1.5884∗

DFM vs. BVAR -1.2773 -0.1654 -0.5788 -1.5020∗

DFM vs. NKDSGE -2.0645∗∗∗ 1.2602 0.7863 0.8469

(C) Treasury bill

DFM vs. VAR -0.3373 0.4463 1.005 1.7291∗∗

DFM vs. BVAR -0.4083 0.1809 0.3960 0.5662

DFM vs. NKDSGE -0.8068 1.3774∗ 1.5184∗ 1.4960∗

Note:∗∗∗(∗∗)[∗] indicates significance at 1%(5%)[10%] level of significance.

6 Conclusions

This paper assesses the forecasting performance of Dynamic Factor Model in a large panel time series in comparison

to the classical VAR and the Bayesian VAR. The DFM accommodates 267 quarterly series of South Africa, a set of

global variables, and some series of South Africa series of major trading partners. The model extracts five static factors

and two dynamic factors that explain the most of variation in the entire panel. These factors are used to forecast output

growth, inflation rate and the nominal interest rate. The three models are evaluated based on the minimum average

RMSEs for the one- to four-quarters-ahead forecasts. Overall, the results show that the DFM performs significantly

better than the NKDSGE model in predicting the three variables of our concern. The DFM outperforms VAR in
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forecasting output and the nominal interest rate, while it only beats the BVAR in predicting the nominal interest rate.

But, the statistical tests show that DFM performs no worse than the VARs, both classical and Bayesian, since most of

the results are insignificant, indicating the blessing of dimensionality.

Note, even though the VAR and the “optimal” BVAR outperforms the DFM in terms of forecasting inflation

and per capita growth respectively, based on the RMSEs, it is important to stress the following facts: (i) Practically

speaking, a central bank, or for that matter any forecaster, would ideally want to include a large number of variables,

into the forecasting model, to obtain forecasts for the variables of key interest. In this regard, the VAR estimation

is disadvantaged due to the curse of dimensionality. The BVAR though, can be considered a valid alternative to

DFM as it can equally accommodate large number of variables, given that its estimation is based on the Theil’s (1971)

mixed estimation technique, which amounts to supplementing the data with prior information on the distribution of the

coefficients, therefore, the loss of degrees of freedom associated with the unrestricted VAR is no longer a concern. (ii)

In addition, due to fact that the problem associated with the degrees of freedom is no longer valid for the DFM and the

BVAR, these models are also capable of forecasting simultaneously a large number of time series, beyond the possible

key variables of interest; (iii) There are, however, limitations to using the Bayesian approach. Firstly, the forecast

accuracy depends critically on the specification of the prior, and secondly, the selection of the prior based on some

objective function for the out-of-sample forecasts may not be “optimal” for the time period beyond the period chosen

to produce the out-of-sample forecasts, and; (iv) Finally, general to any traditional statistically estimated models,

for example the DFM, VAR, and BVAR used for forecasting at the business cycle frequencies, there are couple of

other concerns. Such procedures perform reasonably well as long there are no structural changes experienced in the

economy, but changes of this nature, whether in or out of the sample, would then render the models inappropriate.

Alternatively, these models are not immune to the ’Lucas Critique’. Furthermore, the estimation procedures used here

are linear in nature, and, hence, they fail to take into account of nonlinearities in the data. In this regard, the role of

microfounded DSGE models cannot be disregarded. The fact that the NKDSGE, based on the sample period used, is

outperformed by all the other models, mainly calls for better modeling of the South African economy, by extending the

current model to incorporate facts like inflation persistence, role of capital in the production process, habit persistence,

and, perhaps, more importantly the role of external shocks, given South Africa’s small open economy structure.

But, whatever the limitations of the DFM, as we show in this paper, one cannot gainsay the importance of this kind
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of modeling strategy in forecasting three key variables, namely, per capita growth rate, inflation and the short-term

interest rate for South Africa over the period of 2001Q1 to 2006Q4. Clearly, the DFM stands in great stead, relative to

alternative popular forecasting methods, in predicting the South African economy.
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