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A b s t r a c t

In this paper, we forecast monthly stock returns of eight advanced economies using a time-varying parameter vector autoregressive model (TVP-VAR) with 
mixture innovations. Compared to standard TVP-VARs, our proposed model automatically detects whether time-variation in the parameters is needed through 
the introduction of a latent process. This framework is capable of dynamically detecting whether a given regression coefficient is constant or time-varying during 
distinct time periods. We moreover compare the performance of this model with a wide range of nested alternative time-varying and constant parameter VAR 
models. Our results indicate that our proposed framework outperforms its competitors in terms of point and density forecasts. A portfolio allocation exercise 
confirms the superiority of our proposed model. In addition, a copula-based analysis shows that it pays off to adopt a multivariate modeling framework during 
periods of stress, like the recent financial crisis.

1. Introduction

The existing literature on forecasting international stock returns (for
developed and developing economies alike), based on a wide array of
models and predictors is vast (see, for example, Rapach, Wohar, &
Rangvid, 2005, Rapach & Zhou, 2013, Sousa, Vivian, & Wohar, 2016,
Aye, Balcilar, & Gupta, 2017, Jordan, Vivian, & Wohar, 2017a, Jordan,
Vivian, & Wohar, 2017b, among others). While practitioners in finance
require real-time forecasts of stock returns for asset allocation, aca-
demics are particularly interested in stock return forecasts, since they
have important implications for producing robust measures of market
efficiency, which in turn helps to produce more realistic asset pricing
models (Rapach & Zhou, 2013). However, stock return forecasting is
highly challenging, since it inherently contains a sizable unpredictable
component. The resulting predictive performance therefore usually
strongly depends on the indices, sample periods, models and potential
predictors adopted.

Recent literature has identified at least two common features of
successful models as a means to outperforming standard benchmark
specifications in terms of predictive accuracy. First, a large information
set in terms of a vast number of predictors (i.e. macroeconomic, fi-
nancial, technical indicators; see Bekiros, Gupta, & Majumdar, 2016,

Gupta, Majumdar, & Wohar, 2017, or Gupta, Mwamba, & Wohar, 2017)
appears to be required in order to successfully challenge standard
random walk forecasts. Second, stock return predictions using a-theo-
retical techniques (which tend to exploit information on the recent
behavior of stock prices based on statistical approaches, as well as
machine learning and computational intelligence techniques) typically
tend to perform better than theoretically motivated empirical models
(see, for example, Chen, Leung, & Daouk, 2003; Enke & Thawornwong,
2005).

Against this backdrop, and particularly building on the latter point
mentioned above, the objective of our paper is to forecast stock returns
of eight developed markets (Canada, France, Germany, Italy, Japan,
Switzerland, the United Kingdom, and the United States) based on time-
varying parameter vector autoregressive (TVP-VAR) models. The choice
of these eight equity markets is quite natural given their importance for
the global economy, with these countries representing nearly two-third
of global net wealth, and nearly half of world output. Note that the
decision to look at only the past value of stock returns of the various
economies in the model emanates from the evidence in favor of in-
creased co-movement between asset prices, and stock markets in par-
ticular, due to financial integration across economies (Diebold &
Yilmaz, 2009; Diebold & Yilmaz, 2012). While this regularity has

T



received considerable attention in the academic literature on the dy-
namics of stock markets, for some reason, this has not been exploited to
its fullest in the forecasting literature. An exception to this is the recent
work by Huber, Krisztin, and Piribauer (2017), which advocates the use
of large Bayesian vector autoregressive (BVAR) model specifications
with common stochastic volatility as a means to forecasting monthly
global equity indices. The time-varying specification of the covariance
structure moreover accounts for sudden shifts in the level of volatility.
In an out-of-sample exercise, the proposed model specification is
moreover shown to markedly outperform the random walk for both
point and density forecasts. In addition, it is well-established that stock
market movements serve as a leading indicator for the wider economy
(Stock & Watson, 2003; Gupta & Hartley, 2013; Plakandaras, Cunado,
Gupta, & Wohar, 2017). Hence, we do not incorporate the information
of any other predictors in our multivariate models, barring the lagged
stock returns of the domestic and foreign economies.

Following Huber et al. (2017), but realizing the well-established fact
that stock returns evolve in a nonlinear fashion (McMillan, 2005), we
extend the constant parameter approach of Huber et al. (2017) to a
time-varying framework. Specifically, we use a flexible variant of a
TVP-VAR model. This framework, as recently proposed by Huber,
Kastner, & Feldkircher, 2019, is an approximation to a mixture in-
novation model that allows one to dynamically detect whether a given
regression coefficient is constant or time-varying by using ideas from
the literature on latent threshold models. In particular, this threshold
TVP-VAR (TTVP-VAR) approach introduces a set of latent thresholds
that controls the degree of time-variation separately for each parameter
at each point in time. The proposed framework nests a wide variety of
competing models, like the standard time-varying parameter model, a
change-point model with an unknown number of regimes, mixtures
between different models, and also the simple constant parameter
model. Finally, to assess systematically, in a data-driven fashion, which
predictors should be included in the model, Huber et al., 2019 impose a
set of Normal-Gamma priors on the initial state of the system.

While this is our primary proposed framework for forecasting equity
returns of the eight advanced economies, we compare the performance
of this model with a battery of nested alternative models. To the best of
our knowledge, this is the first paper which produces both point and
density forecasts of equity returns using medium-scale time-varying
approaches, and in particular, a threshold time-varying vector auto-
regressive model. In a forecast exercise this applied paper adopts a set
of recent multivariate modeling techniques to produce predictions of
stock returns of developed equity markets. Another key contribution of
this paper is to analyze which model features turn out to be crucial for
obtaining reliable predictive densities over time. We therefore make use
of a copula-based decomposition to quantitatively assess whether using
cross-country information pays off for predictive purposes.

The remainder of the paper is organized as follows: Section 2 out-
lines the main econometric model used in our forecasting exercise,
while Section 3 presents the data and results, with the latter including
also a portfolio exercise. Finally, Section 4 concludes the paper.

2. Econometric framework

2.1. A time-varying parameter VAR for modeling international equity
returns

Our goal is to develop a model that accounts for international lin-
kages in financial markets. To this end, we postulate that the growth
rate of a set of N equity price indices in =y{ }t t

T
1 follows a time-varying

parameter VAR,

= +y I x Q v v H( ) , ~ (0, ),t M t t t t t t (2.1)

with

• xt = (yt−1,…,yt−p,1)′ denoting a M = pN + 1 vector of lagged

endogenous variables as well as an intercept term,1

• βt is a K = NM-dimensional vector of dynamic regression coeffi-
cients. Notice that βt is, in principle, allowed to evolve over time
according to some specific law of motion described in Section 2.2.
• vt is a set of N white noise shocks that follow a multivariate Gaussian
distribution and Qt is a lower uni-triangular (i.e. lower triangular
with unit diagonal) matrix of dimension N × N. We store the v = N
(N − 1)/2 free elements of Qt in a v-dimensional vector qt.
• Finally, = …H e ediag( , , )t

h ht Nt1 is a diagonal matrix that stores the
variance parameters.

The model in Eq. (2.1) is the observation equation of a multivariate
state space model that has been proposed in Primiceri (2005) and
Cogley and Sargent (2005). Notice that the elements in βt,vt and
ht = (h1t,…,hNt) feature a specific law of motion. Typically, researchers
assume that the states evolve according to a random walk with an
unrestricted state innovation variance covariance matrix. This, how-
ever, potentially leads to overfitting issues that might be detrimental for
forecasting accuracy. To circumvent such issues, we follow Huber et al.
(2019) and use a parsimonious law of motion for the latent states.

2.2. A parsimonious law of motion for the coefficients

We complete the model description by outlining a law of motion for
βt,qt and ht. Following Huber et al. (2019), we assume that the elements
of ξt = (βt′,qt′)′, ξjt(j = 1,…,v + K) follow a random walk process,

= + , ~ (0, 1),jt jt jt jt jt1 (2.2)

where θjt is a time-varying process innovation variance that follows
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2
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Eq. (2.4) implies that djt follows a Bernoulli distribution, implying that
the proposed model framework closely resembles a standard mixture
innovation model (for a VAR application, see Koop, Leon-Gonzalez, &
Strachan, 2009). One key advantage of the proposed specification is
that if parameter movements appear to be rather small, we effectively
zero them out while we allow for large swings. This strikes a balance
between using a model with a few regimes as opposed to a model with
many regimes (T − 1 in the case of an unrestricted TVP model). One
shortcoming, however, is that in high dimensions, estimation of such a
model is unfeasible.2

We thus follow Huber et al. (2019) and approximate the indicators
djt during MCMC sampling by using

=
>
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(2.5)

Hereby, we let l denote the lth draw obtained by using our MCMC al-
gorithm (detailed below). Eqs. (2.3) and (2.5) imply that if the absolute
change in the lth draw of ξjt is sufficiently large (i.e. exceeds a threshold
cj), the indicator dj equals unity and a rather large process innovation
variance j t0,

2 is adopted. By contrast, if the change is too small (i.e.
below cj), the process innovation variance is close to zero ( 0j t1,

2 ) and
thus the change in the parameters ξjt is small, i.e. |Δξjt|≈ 0. Introducing
the indicators dj constitutes a flexible means of controlling for model

1 In the empirical application, we include a single lag of yt for computational
reasons.

2 In this paper, we follow Huber et al. (2019) and set = ×10 ^j t jt1,
2 5 2 , with ^jt

2

denoting the OLS variance from a time-invariant VAR model.
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uncertainty by performing a stochastic model specification task. These
indicators allow us to assess whether certain regions of the parameter
space feature time-variation or may be regarded as being constant over
time. This effectively alleviates overfitting issues, making the model
more robust with respect to outlier fitting

For ht, we follow Kastner and Frühwirth-Schnatter (2014) and as-
sume that the log-volatilities follow an AR(1) process,

= + +h µ h µ( ) , ~ (0, ),jt j j jt j jt jt j1
2

(2.6)

for j = 1,…,N. Hereby, we let μj denote the unconditional mean of hjt,ρj
the autoregressive parameter and j

2 is the variance of the log-volatility
process.

2.3. Prior specification

Our prior setup closely follows Hotz-Behofsits, Huber, and Zörner
(2018). More specifically, we use weakly informative Gamma priors on

~ (0.001, 0.001)j t1,
2 and uniform priors on the thresholds,

c | ~ ( , ).j j t j t j t0, 0 0, 1 0, (2.7)

We specify π0 = 0.1 and π1 = 1.5. This prior choice bounds the
thresholds away from zero, implying that high frequency movements in
ξjt are effectively shrunk towards zero.

On the initial state ξj0 we use a Normal-Gamma (NG) shrinkage
prior (see Griffin & Brown, 2010),

n n| ~ (0, ), ~ ( , /2), ~ ( , ).j j j j0
2 2 2

0 1 (2.8)

The scaling parameters j
2 follow a Gamma distribution that depends on

δ and λ. The hyperparameter δ controls the excess kurtosis of the
marginal prior obtained by integrating out the local scaling parameters

j
2. Small values imply a heavy tailed prior that allows for non-zero
values of ξj0 in the presence of a large global shrinkage parameter λ.
The parameter λ pulls all elements in ξ0 to zero. Given its importance,
we use an additional Gamma prior and consequently infer λ from the
data. In what follows we set δ = 0.1 and n0 = n1 = 0.01, introducing
significant amounts of shrinkage but at the same time allow for heavy
tails and thus sufficient flexibility to capture signals.

Finally, we follow Kastner and Frühwirth-Schnatter (2014) and use
a weakly informative Gaussian prior on μj, a Beta prior on (ρj + 1)/2
~ℬ(25,5) and a non-conjugate Gamma prior on ~ (1/2, 1/2)j

2 . This
choice translates into a Gaussian prior on ± ~ (0, 1)j .

Estimation of the model is carried out using Markov chain Monte
Carlo (MCMC) techniques. Our MCMC algorithm simulates the latent
states on an equation-by-equation basis using forward-filtering back-
ward-sampling (FFBS) techniques (Carter & Kohn, 1994; Frühwirth-
Schnatter, 1994). The thresholds are simulated using a Griddy Gibbs
step that is based on constructing an approximation to the cumulative
distribution function of the conditional posterior of cj and then perform
inverse transform sampling. Here, it suffices to say that this is compu-
tationally straightforward since the conditional posterior is propor-
tional to the density of a univariate Gaussian distribution times the
uniform prior. The state innovation variances j t0,

2 are simulated from
an inverted Gamma distribution that takes a standard form. Last, the
log-volatilities and the parameters of the state equation are obtained by
using the algorithm outlined in Kastner and Frühwirth-Schnatter (2014)
and implemented in the R package stochvol (Kastner, 2016).

The algorithm is repeated 20,000 times with the first 15,000 draws
being discarded as burn-in. Convergence appears to be no issue with
average inefficiency factors well below 30 in almost all cases. Repeated
estimation based on randomly initializing certain coefficients also in-
dicates that our algorithm performs well empirically. For further in-
formation and computation time, we refer the reader to Huber et al.
(2017). It suffices to say that estimation of the model can be carried out
using parallel computing techniques that allow estimation of the dif-
ferent equations of the VAR simultaneously. This speeds up

computation considerably, with estimation of the model proposed in
this section taking around 30 min on a Macbook Pro late 2016 with a
3.5 GHz Intel Core i5.

3. Forecasting international equity returns

3.1. Data overview and model specification

The data used in this paper are monthly stock price indices of eight
industrialized economies namely, Canada (S&P TSX 300 Composite
Index), France (CAC All-Tradable Index), Germany (CDAX Composite
Index), Italy (Banca Commerciale Italiana Index), Japan (Nikkei 225
Index), Switzerland (All Share Stock Index), the United Kingdom (FTSE
All Share Index), and the United States (S&P500 Index). The data on the
total returns indices are quoted in US dollars and obtained from the
Global Financial Data database.3 The indices are then converted into
log returns and multiplied by 100 to obtain percentage changes.

The dataset covers the period from May, 1986 (1986:M05) to
February, 2017 (2017:M02). In Appendix A, Table 4 provides basic
summary statistics. Note that there exists significant evidence that re-
turns are non-Gaussian and quite heterogenous across countries. For
instance, Italy displays the highest while Germany the lowest average
returns. Moreover, volatility also strongly differs, with Germany ex-
hibiting the highest and the US the lowest volatility. The non-normality
of the data calls for an appropriate modeling device that allows for
heteroscedasticity and potential changes in the conditional mean of the
involved time series. Our proposed modeling framework is capable of
capturing such features of the involved time series in a flexible manner.

3.2. Competing models and design of the forecasting exercise

Our empirical forecasting design is recursive. This implies that we
specify an initial estimation period that ranges from May 1986 to
February 2002 (i.e., 1986:M05 to 2002:M02), and compute the one-
step-ahead predictive densities for 2002:M03. The initial estimation
period is then subsequently expanded by a single month and this pro-
cedure is repeated until the final observation in the sample (2017:M02)
is reached.

Forecasts are then evaluated using log predictive scores (LPS) mo-
tivated in, for instance, Geweke and Amisano (2010). The LPS of the
one-step-ahead forecast is closely related to the marginal likelihood, a
popular Bayesian model selection criterion. LPS are computed by
summing over the evaluation of the realized values under the predictive
density of a given model specification. Marginal LPS for a given element
in yt, yit, are then computed by integrating out the remaining M − 1
elements of the joint predictive density. This is achieved by exploiting
the fact that, within the MCMC algorithm, we obtain draws from the
predictive distribution from a multivariate Gaussian density. The mar-
ginal LPS are then trivially obtained by selecting the relevant elements
from the mean and variance-covariance of this predictive distribution
(conditional on the draws of the remaining model parameters/states).
More details can be found in Huber et al. (2017).

To assess the merits of our empirical model we include a wide range
of alternative model specifications. In a addition to our proposed spe-
cification (TTVP) we consider the following benchmark specifications:

(i) TVP: This specification is a variant of the TVP-VAR with SV
proposed in Primiceri (2005). The main differences stem from the
fact that we use shrinkage priors on the initial state of the system
and Gamma priors on the inverse of the state innovation var-
iances. Note that this model is nested within our approach by
setting djt = 1∀j,t.

(ii) TVP NG: Similar to TVP, this specification is also a variant of a

3 http://www.globalfinancialdata.com/.
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TVP-VAR with SV. However, in TVP NG we additionally employ
shrinkage priors on all regions of the parameter space. This model
thus introduces Normal-Gamma shrinkage priors on both the in-
itial state as well as the state innovation variances.4

(iii) Minn-VAR: A constant parameter VAR using a non-conjugate
Minnesota prior where the tuning parameters are integrated out
in a Bayesian fashion.

(iv) NG-VAR: A constant parameter VAR using Normal-Gamma
shrinkage priors (see Huber & Feldkircher, 2017).

(v) SSVS: A constant parameter VAR using stochastic search variable
selection (SSVS) priors (see George, Sun, & Ni, 2008).

(vi) Flat-no-SV: A constant parameter VAR with uninformative prior
structure without SV.

(vii) Flat-SV: A constant parameter VAR with uninformative prior
structure including SV.

(viii) AR-SV: An AR(1) model with stochastic volatility.
(ix) EWMA: A standard exponentially weighted moving average

(EWMA) specification with the forgetting factor set to 0.95.

It is, moreover, worth noting that both point and density predictions
for all model alternatives under scrutiny are calculated relative to the
predictive performance of a random walk with SV (RW-SV) specifica-
tion.

3.3. Forecasting results

Table 1 presents a summary of the out-of-sample predictive per-
formance for the models under consideration. The bottom panel of the
table provides summary metrics for the model-specific forecasting
performance in terms of point forecasts. Specifically, we focus on well-
known root mean-squared forecasting errors (RMSE) as a means to
compare the predictive accuracy among the models considered. For all
the models, we compute point forecasts by considering the median of
the posterior predictive distribution.

Summary metrics for the point predictions provided in the bottom
panel of the table are moreover standardized with respect to random-
walk forecasts. Values below unity thus indicate predictive out-
performance vis-á-vis to the random-walk predictions in terms of point
predictions, while values above one indicate a comparatively weaker
performance of a given model.

The top panel of Table 1 provides summary metrics for the re-
spective out-of-sample forecast performance in terms of marginal LPS.
While standard RMSEs only focus on point forecasts, LPS provide a well
known measure for comparing forecast performance by explicitly ac-
counting for higher order moments of the predictive density. As such,
log predictive scores aim to enrich the comparison of predictive per-
formance by also taking into account a potential bias-variance trade off.
Similar to the point forecasts, Table 1 also shows the respective mea-
sures for the density predictions relative to RW forecasts. Specifically,
negative values indicate underperformance relative to the random-walk
benchmark, and conversely, positive values for the respective density
forecasts indicate outperformance.

Overall results for point predictions show that no-change forecasts
arising from the random walk model are particularly poor as compared
to other specifications. RMSEs of almost all indices considered appear
to be well below unity. Moreover, LPS point towards a relatively poor
predictive performance of the (stochastic volatility-augmented) RW
specifications. The autoregressive model with stochastic volatility (AR-
SV), however, appears to perform much better. The table shows that the
proposed TTVP modeling framework sketched above appears to per-
form particularly well in terms of producing both accurate point as well
as density predictions. For most equity markets considered, the

proposed specification ranks among the best performing approaches.
As expected from prior studies on forecasting with large VARs

(Carriero, Clark, & Marcellino, 2013; Huber & Feldkircher, 2017;
Feldkircher et al., 2017), the estimation framework without shrinkage
yields forecasts which are much more imprecise. This is the well-known
curse of dimensionality that hint towards severe overfitting of the TVP
VAR without shrinkage. This result appears to be quite general and
holds for all equity indices considered.5 This finding holds true for both
RMSEs and LPSs. Accounting for potential structural breaks in the static
and dynamic relations across equity indices thus appears particularly
beneficial.

While a TVP model without proper shrinkage priors seems to per-
form relatively poor due to overfitting problems, the additional use of
Bayesian shrinkage in terms of a Normal-Gamma prior (TVP NG) ap-
pears to markedly improve forecast performance. For all country-spe-
cific indices in the sample, TVP NG produces more precise out-of-
sample forecasts as compared to TVP for RMSEs as well as log pre-
dictive scores. However, comparing results for TVP NG with those of
TTVP shows that TTVP tends to slightly outperform the former. This
outperformance is particularly pronounced when focusing on point
predictions. For all indices considered, TTVP produces slightly lower
overall RMSEs as compared to TVP NG.6 This finding also translates to
density forecasts. Only for the United Kingdom, TVP NG appears to
slightly outperform TTVP in terms of LPS. The joint performance for
density forecasts, however, also identifies TTVP as the best performing
model.

Turning attention to the remaining constant-parameter VAR speci-
fications (Minn-VAR, NG-VAR, SSVS, Flat-no-SSVS, and Flat-SV) shows
that all of these appear to outperform the standard TVP specification
both in terms of point as well as density predictions. With some
country-specific exceptions, the vector autoregressive model using a
Minnesota prior specification (Minn-VAR) produces the most precise
forecasts among these specifications. The constant-parameter VAR
specification with Normal-Gamma shrinkage priors (NG-VAR), as well
as those using SSVS priors only slightly underperform relative to the
Minnesota specification. A much more notable drop in forecast per-
formance relative to the Minnesota specification can be seen in the
predictive summary metrics for the VAR specification using non-in-
formative prior setups (Flat-no-SV and Flat-SV). Among these, Table 1
shows that the setup using a SV specifications (Flat-SV) appears to
slightly outperform the variant without SV (Flat-no-SV) both in terms of
point and density prediction.

Comparing the Normal-Gamma shrinkage setting with time-varia-
tion in the parameters (TVP NG), with its constant-parameter coun-
terpart (NG-VAR) reveals that the former slightly outperforms the latter
in terms of joint LPS. However, inspection of the index-specific pre-
dictive performances in terms of log predictive scores reveals that the
constant parameter setting slightly outperforms TVP NG in almost all
cases. Looking at the metrics on point predictions corroborate these
findings. NG-VAR produces lower RMSEs as compared to TVP NG for all
indices under scrutiny.

Table 1, moreover, suggests that the autoregressive process with SV
(AR-SV) produces rather precise country-specific predictions. However,
joint predictive performance of AR-SV appears markedly weaker. The
EWMA model, on the other hand, produces rather moderate out-of-
sample predictions both in terms of country-specific as well as joint

4 For a detailed description of the model and the prior setup, see Feldkircher,
Huber, and Kastner (2017) and Hotz-Behofsits et al. (2018).

5 Based on the Diebold and Mariano (1995) test as reported in Table 5 in
Appendix A, the null hypothesis of equal forecast errors is overwhelmingly
rejected at the highest level of significance between the TTVP and TVP models.

6 In Table 5, we find that while the TTVP outperforms the RW and TVP
models, its performance is equally as good as the TVP NG model. This statement
is based on carrying out Diebold-Mariano tests to test accuracy differences
between the TTVP and the TVP NG specification. Nevertheless, from a decision
theoretic perspective, the optimal choice would still be the model that yields
the highest LPS.
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performance.
While Table 1 presents overall metrics for out-of-sample forecast

performance, Fig. 1 depicts the evolution of the cumulative LPS for the
specifications under scrutiny over time. The model-specific cumulative
LPS are measured relative to the random-walk benchmark, which is
given by the zero line. Country-specific performance profiles are pro-
vided in the Appendix. Fig. 1 corroborates the overall finding of
Table 1, hinting towards a clear outperformance of the proposed model
framework (TTVP) as compared to the alternative specifications. In the
beginning of the sampling period, a time-varying parameter specifica-
tion with a Normal-Gamma shrinkage prior (TVP NG) produces a si-
milar predictive performance as compared to TTVP. However, around
the year 2009, TTVP appears to supersede the alternative specifications
in terms of forecast performance. During the economic and financial
turmoils (2003/2004 and 2008/2009), the modeling framework
without the threshold specification (TVP) performs particularly well in
terms of density predictions. This is mainly due to the overall larger
variance in the predictive densities of this model, resulting in a less

severe penalization of large forecast errors as compared to competing
specifications.7

3.4. Dissecting the log predictive likelihood

The previous section highlighted sustained predictive gains for most
multivariate models considered. One additional question that typically
arises centers on whether the gains stem from a positive feedback on
the univariate marginal predictive densities or arise from joint mod-
eling all elements in yt simultaneously. To this end, we follow Dovern,
Feldkircher, and Huber (2016) and decompose the joint log predictive
likelihood of model j as follows,

Table 1
Evaluation of point and density forecasts.

TTVP TVP TVP NG Minn-VAR NG-VAR SSVS Flat-no-SV Flat-SV AR-SV EWMA

Log predictive scores
Joint 774.593 311.458 650.631 639.294 630.625 631.966 530.636 537.553 406.095 544.810
UK 27.991 −16.812 28.293 40.246 37.624 40.142 24.443 34.456 36.797 27.943
CA 47.283 −9.371 46.907 47.618 47.486 43.990 52.624 45.519 50.564 45.258
FR 62.280 12.192 58.153 60.542 58.912 59.206 65.384 56.203 65.620 54.051
JP 50.883 −1.012 47.285 48.972 50.877 47.789 42.735 45.703 54.153 47.628
DE 66.972 14.706 47.888 62.608 62.697 64.259 10.983 61.625 55.989 61.791
IT 57.147 10.255 38.962 30.521 41.295 38.934 43.633 37.110 46.380 45.930
US 37.727 −26.596 33.194 28.591 28.288 26.950 32.893 24.201 40.829 27.531
CH 46.966 −15.535 46.768 45.382 44.029 39.767 45.202 40.990 50.837 37.089

Root mean square errors
UK 0.720 0.941 0.726 0.719 0.720 0.721 0.728 0.723 0.721 0.731
CA 0.727 1.013 0.733 0.722 0.722 0.726 0.726 0.725 0.727 0.723
FR 0.711 0.905 0.721 0.701 0.705 0.703 0.709 0.711 0.700 0.715
JP 0.728 1.040 0.743 0.720 0.723 0.723 0.728 0.726 0.723 0.722
DE 0.710 0.905 0.711 0.696 0.696 0.697 0.755 0.702 0.702 0.703
IT 0.730 0.917 0.735 0.715 0.732 0.742 0.738 0.735 0.732 0.717
US 0.745 1.023 0.752 0.739 0.740 0.740 0.755 0.752 0.748 0.747
CH 0.697 0.936 0.700 0.687 0.692 0.692 0.695 0.697 0.694 0.699

0
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0

TTVP
TVP
TVP NG
Minn−VAR
NG−VAR
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Flat−SV
RW−SV
AR−SV
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2002−02 2003−05 2004−08 2005−11 2007−02 2008−05 2009−08 2010−11 2012−02 2013−05 2014−08 2015−11 2017−02

Fig. 1. Joint log predictive scores relative to the RW-SV model.

7 In this discussion, we exclusively focus on point and density predictions.
Another option would be to consider directional forecasts or evaluate com-
peting techniques by considering hit rates. Here, we focus on traditional eva-
luation criteria first and then, in Section 3.5, we undertake a portfolio exercise
that provides further insights beyond considering point and density forecasts.
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Fig. 2. Contribution of the copula term to the joint predictive likelihood.
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Herewith, we let p(yt+1|y1:t,ℳj) denote the predictive likelihood of
model j, ℳj, evaluated at the outcome +yt

o
1, p(yjt+1|y1:t,ℳj) are the N

univariate marginal predictive likelihoods, P(yjt+1) is the corresponding
cdf and c(•) denotes the probability density function of a Gaussian co-
pula. Eq. (3.1) indicates that the joint LPS can be decomposed in terms
of a sequence of univariate marginal log scores and a copula term that
establishes the covariance structure of the predictive density.

Fig. 2 provides a graphical representation of Eq. (3.1) for the three
top performing models over time. A few findings are worth mentioning.
First, notice that across the (multivariate) models, we observe a pro-
nounced degree of time variation in the contribution of the copula term
to the overall predictive likelihood. Especially during periods that are
characterized by economic stress such as the recent financial crisis, it
seems to pay off to adopt a multivariate model and to exploit in-
formation from the cross section in an effective manner. This effect is
especially pronounced during the recent financial crisis, where the
marginal LPS have been grossly negative and the copula term con-
tributed positively to the joint predictive performance of the model.
Second, we also observe some periods with a negative contribution,
especially during the first part of the sample. This hints towards periods
where most multivariate models fail to adequately recover the pre-
dictive covariance structure. Third, and finally, the strong overall pre-
dictive performance of the TTVP specification is complemented by a
particularly accurate modeling of the predictive covariance structure.

3.5. A portfolio exercise

Next, we assess whether using our multivariate models also leads to
better economic performance, as measured by (annualized) Sharpe ra-
tios. More specifically, we assume that the models considered are used
to guide the behavior of an investor who aims to invest in all N markets
considered. To this end, we consider different trading strategies.

The first strategy, labeled ‘Equal weights', implies that we weight all
N markets equally. This equal weights strategy translates into an N-
dimensional model-specific weight vector wit = (1/N,…,1/N)′. Our
second strategy consists of weighting the different markets according to
their historical variances while the third strategy is based on splitting
the predicted returns across markets into tertiles and investing in the
(historically) best performing markets (defined as the markets be-
longing to the top tertile) while shorting markets that belong to the
bottom tertile.

The next strategy is based on the well-known global minimum-
variance portfolio (GMV) strategy that aims to minimize the portfolio
variance. Let pit|t−1 denote the mean of the one-step-ahead predictive
density of model i and Pit|t−1 the corresponding predictive variance (all
quantities condition on information up to time t − 1. The optimization
problem is

=
=

w P w

w

minimize

subject to 1.

w
it it t it

j

N

it

| 1

1

it

(3.2)

The final strategy, labeled the target global minimum variance portfolio
(TGMV) augments Eq. (3.2) by an additional constraint. This constraint
states that the weights are chosen such that the portfolio variance is
minimized subject to a pre-specified target return τ*. In what follows,
we choose three target returns * { , , }10%

12
15%
12

20%
12 .

Table 2 shows annualized Sharpe ratios across models and

strategies. In general, using economic evaluation criteria corroborate
the findings based on LPS described above. For most strategies, we find
that the majority of models yield positive Sharpe ratios, indicating a
positive porfolio return (for a full list of portfolio returns, see the top
panel of Table 6). Across all models and strategies considered, the TVP
NG specification yields the highest Sharpe ratio for the GMV strategy.
Within strategies, we also find model performance to be quite hetero-
geneous, with some models showing a strong performance (see, for
instance, the Flat-no-SV specification) on average while some models
appear to be inferior (for instance, the Flat-SV specification for the
tertile strategy).

Notice that, consistent with the findings based on LPS, the uni-
variate and EWMA models seem to display an inferior performance
across the space of different portfolio allocation schemes. When we look
at the results for different target returns, we find comparable insights,
except that for =* 20%

12 , we observe that the Flat-no-SV yields the
highest Sharpe ratio and outperforms all remaining models by quite
large margins. Considering our proposed TTVP model shows that it
tends to perform well for most strategies adopted (except for the tertile
strategy), always appearing to be among the top performing models.

To provide further insights on portfolio returns, variances, and
metrics such as value at risk (VaR), Table 6 provides additional details.
It is interesting to notice that for the TGMV strategies, the annualized
portfolio variance tends to increase with the target return. Moreover,
and in general, models that perform well in terms of Sharpe ratios also
tend to display a more favorable VaR metric.

Finally, one interesting aspect of this analysis is how different
strategies and models lead to a diversified portfolio from a country-wise

Table 2
Annualized Sharpe ratios across different portfolio allocation strategies.

TGMV

Inv. var Tertile GMV =* 10%
12 =* 15%

12 =* 20%
12

TTVP 0.780 0.072 0.782 0.856 0.808 0.538
TVP 0.797 0.105 0.813 0.724 0.726 0.715
TVP NG 0.788 0.150 0.843 0.866 0.857 0.585
Minn-VAR 0.779 −0.295 0.801 0.805 0.820 0.476
NG-VAR 0.783 −0.078 0.829 0.836 0.828 0.569
SSVS 0.787 −0.105 0.828 0.863 0.872 0.628
Flat-no-SV 0.783 0.787 0.787 0.787 0.787 0.787
Flat-SV 0.779 −0.205 0.800 0.846 0.826 0.549
RW-SV 0.781 −0.099 0.771 0.695 0.687 0.649
AR-SV 0.775 0.150 0.760 0.751 0.800 0.648
EWMA 0.774 −0.134 0.568 0.038 0.009 −0.019
Equal weights 0.780

Notes: GMV stands for global minimum-variance portfolio. Target global
minimum variance portfolios (TGMV) additionally involve a minimization of
the portfolio variance subject to a pre-specified target return τ*.

Table 3
“Optimal” weights across portfolio allocation strategies.

UK CA FR JP DE IT US CH

GMV 0.17 −0.02 0.04 0.18 0.08 0.10 0.32 0.14

=* 10%
12

0.19 −0.04 0.04 0.20 0.07 0.05 0.36 0.12

=* 10%
12

0.17 −0.06 0.11 0.17 0.04 0.02 0.39 0.16

=* 10%
12

0.10 −0.15 0.33 0.10 −0.04 −0.09 0.47 0.28

Notes: GMV stands for global minimum-variance portfolio. Target global
minimum variance portfolios (TGMV) additionally involve a minimization of
the portfolio variance subject to a pre-specified target return τ*.
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perspective. To shed some light on this question, Table 3 shows optimal
portfolio weights for the two strategies that are based on optimizing
some target function (i.e. GMV and TGMV). We observe that across
different strategies, an optimal strategy consists in holding a consider-
able share of wealth in the US and UK stock markets while maintaining
small short positions in Canada. Among European markets, the results
indicate that money is also invested in France and Germany. Interest-
ingly, using portfolio optimization techniques suggests that only small
amounts of capital are moved into Italy.

4. Concluding remarks

The empirical regularity of increased co-movement between stock
markets due to financial integration across economies has not been
exploited to its fullest in the forecasting literature. Against this back-
drop, this paper forecasts stock returns of eight developed markets
namely, Canada, France, Germany, Italy, Japan, Switzerland, the
United Kingdom, and the United States using time-varying parameter
vector autoregressive models.

To alleviate concerns of overparameterization, this paper applies a
recent approach to estimate time-varying parameter models. This
Bayesian framework is an approximation to a high dimensional mixture
innovation model that allows for flexible testing whether time variation
in the VAR coefficients is necessary. This model, labeled threshold time-
varying parameter vector autoregression (TTVP-VAR), nests a wide
array of competing models such as structural break models, standard
TVP models as well as the linear case.

In the empirical forecasting application, we use this approach to

forecast equity returns for eight advanced economies and compare its
performance to a wide range of nested alternative time-varying and
constant parameter vector autoregressive models. Our results indicate
that the TTVP-VAR outperforms its competitors for both point and
density forecasts. We moreover observe sustained predictive gains for
most multivariate models considered. Given this, and the fact that the
joint log predictive scores can be decomposed in terms of a sequence of
univariate marginal log scores and a copula term, we confirm that it
pays off to adopt a multivariate modeling approach to exploit cross-
sectional information in an effective manner. This observation, in turn,
validates our decision to utilize a multivariate framework under the
premise of increased co-movement between stock markets due to fi-
nancial integration.

As a potential avenue of further research, one could extend our
analysis to other financial markets like bonds and currencies, as well as
to commodity markets. Given spillovers across asset classes, it would
make sense to incorporate the various asset classes together using the
model proposed in this paper, and then conduct a forecasting exercise.
Note that, given that the focus of the paper is primarily to exploit the
existing evidence of pronounced linkages across international equity
markets for forecasting purposes, we only consider lagged values of
equity returns of a particular country and that of other countries in our
vector autoregressions. To assess whether other factors impact equity
price returns within a dynamic framework, it would be interesting to
extend our analysis by including popular predictors (such as mo-
mentum, reversals, valuation ratios, dividend yield, capitalization, beta,
idiosyncratic volatility, trend, seasonality, etc.) used in the stock market
literature into our framework.

Appendix A

Table 4
Summary statistics.

Country

Statistic UK CA FR JP DE IT US CH

Mean 0.840 0.671 1.174 0.793 0.557 0.931 0.708 0.825
Median 1.125 1.020 1.418 0.652 1.017 0.639 1.114 1.038
Std. Dev. 5.136 4.742 5.857 6.666 10.085 8.113 4.416 4.832
Skewness 0.407 −0.912 −0.215 1.496 −8.560 0.829 −1.677 −0.262
Kurtosis 18.808 6.681 4.812 14.967 123.384 8.326 11.079 9.841
Jarque-Bera 3862.577 260.142 53.496 2345.874 227,942.9 479.626 1179.740 725.753
p-Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Observations 370

Table 5
Diebold-Mariano test of equal point forecast accuracy between TTVP and selected alternatives.

UK CA FR JP DE IT US CH

TVP 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
TVP NG 0.3212 0.1549 0.1194 0.2899 0.8929 0.3441 0.2942 0.5485
RW-SV 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000
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Table 6
Portfolio allocation exercise.

1/N Inv. var. Tertile GMV =* 10%
12 =* 15%

12 =* 20%
12

Mean annualized returns TTVP 0.104 0.102 0.003 0.099 0.113 0.117 0.128
TVP 0.104 0.105 0.004 0.112 0.103 0.104 0.105
TVP NG 0.104 0.103 0.006 0.108 0.112 0.110 0.106
Minn-VAR 0.104 0.102 −0.012 0.106 0.109 0.117 0.138
NG-VAR 0.104 0.102 −0.003 0.107 0.109 0.117 0.140
SSVS 0.104 0.102 −0.004 0.106 0.113 0.119 0.135
Flat-no-SV 0.104 0.104 0.104 0.104 0.104 0.104 0.104
Flat-SV 0.104 0.102 −0.008 0.105 0.113 0.112 0.109
RW-SV 0.104 0.100 −0.004 0.097 0.087 0.086 0.085
AR-SV 0.104 0.09 0.006 0.096 0.096 0.101 0.116
EWMA 0.104 0.100 −0.006 0.068 0.024 0.009 −0.037

Annualized portfolio s.d. TTVP 0.133 0.130 0.044 0.127 0.132 0.145 0.238
TVP 0.133 0.132 0.042 0.138 0.143 0.143 0.147
TVP NG 0.133 0.131 0.043 0.128 0.129 0.129 0.181
Minn-VAR 0.133 0.131 0.041 0.133 0.136 0.142 0.291
NG-VAR 0.133 0.130 0.041 0.129 0.130 0.141 0.246
SSVS 0.133 0.130 0.043 0.128 0.131 0.136 0.215
Flat-no-SV 0.133 0.133 0.133 0.133 0.133 0.133 0.133
Flat-SV 0.133 0.131 0.040 0.132 0.134 0.136 0.199
RW-SV 0.133 0.128 0.044 0.126 0.125 0.126 0.131
AR-SV 0.133 0.122 0.043 0.126 0.128 0.126 0.180
EWMA 0.133 0.129 0.043 0.119 0.634 0.952 1.913

Sharpe ratios TTVP 0.787 0.780 0.072 0.782 0.856 0.808 0.538
TVP 0.787 0.797 0.105 0.813 0.724 0.726 0.715
TVP NG 0.787 0.788 0.150 0.843 0.866 0.857 0.585
Minn-VAR 0.787 0.779 −0.295 0.801 0.805 0.820 0.476
NG-VAR 0.787 0.783 −0.078 0.829 0.836 0.828 0.569
SSVS 0.787 0.787 −0.105 0.828 0.863 0.872 0.628
Flat-no-SV 0.787 0.787 0.787 0.787 0.787 0.787 0.787
Flat-SV 0.787 0.779 −0.205 0.800 0.846 0.826 0.549
RW-SV 0.787 0.781 −0.099 0.771 0.695 0.687 0.649
AR-SV 0.787 0.775 0.150 0.760 0.751 0.800 0.648
EWMA 0.787 0.774 −0.134 0.568 0.038 0.009 −0.019

Value at risk TTVP −0.054 −0.053 −0.020 −0.052 −0.053 −0.059 −0.102
TVP −0.054 −0.054 −0.020 −0.056 −0.059 −0.059 −0.061
TVP NG −0.054 −0.053 −0.020 −0.052 −0.052 −0.052 −0.077
Minn−VAR −0.054 −0.053 −0.020 −0.054 −0.055 −0.058 −0.126
NG VAR −0.054 −0.053 −0.020 −0.052 −0.053 −0.057 −0.105
SSVS −0.054 −0.053 −0.021 −0.052 −0.053 −0.055 −0.091
Flat-no-SV −0.054 −0.054 −0.054 −0.054 −0.054 −0.054 −0.054
Flat-SV −0.054 −0.053 −0.020 −0.054 −0.054 −0.055 −0.085
RW-SV −0.054 −0.052 −0.021 −0.052 −0.052 −0.052 −0.055
AR-SV −0.054 −0.057 −0.020 −0.052 −0.053 −0.051 −0.075
EWMA −0.054 −0.053 −0.021 −0.051 −0.298 −0.450 −0.909
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(c) United States

Fig. 3. Marginal log-predictive scores for Canada, Germany and the United States.
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(b) Switzerland

Fig. 4. Marginal log-predictive scores for the United Kingdom and Switzerland.
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(b) Italy

Fig. 5. Marginal log-predictive scores for France and Italy.
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