
Latent semantic models: A study of probabilistic

models for text in information retrieval

By

Siyabonga Zimozoxolo Mjali

Submitted in partial fulfilment of the requirements for the degree

Magister Scientiae in Mathematical Statistics
in the

In the Department of Statistics
In the Faculty of

Natural and Agricultural Sciences
at the

Univeristy of Pretoria

March 31, 2020

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



I, Siyabonga Zimozoxolo Mjali, declare that this dissertation, which I hereby
submit for the degree Magister Scientiae in Mathematical Statistics at the Uni-
versity of Pretoria, is my own work and has not previously been submitted by
me for a degree at this or any other tertiary institution.

Signature:

Date:

1

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



ABSTRACT

Large volumes of text is being generated every minute which necessitates
effective and robust tools to retrieve relevant information. Supervised learning
approaches have been explored extensively for this task, but it is difficult to
secure large collections of labelled data to train this set of models. Since a
supervised approach is too expensive in terms of annotating data, we consider
unsupervised methods such as topic models and word embeddings in order to
represent corpora in lower dimensional semantic spaces. Furthermore, we inves-
tigate different distance measures to capture similarity between indexed docu-
ments based on their semantic distributions. These include cosine, soft cosine
and Jensen-Shannon similarities. This collection of methods discussed in this
work allows for the unsupervised association of semantic similar texts which has
a wide range of applications such as fake news detection, sociolinguistics and
sentiment analysis.
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Chapter 1

Introduction

In the age of big data, many businesses suffer from collecting large reposito-
ries of data and not being able to structure them in order to retrieve useful
information or generate insight. A common way of representing text data in a
vector format is the Vector Space Model (VSM) [53]. In the Vector Space Model
documents are represented as vectors in a high dimensional vector space [45].
The high dimensional space is a result of the various ways features are gener-
ated for text data namely; words, n-grams, parts-of-speech etc. In many cases
humans can easily understand the intended meaning of a word, however this
is not so simple to do computationally [22]. Take for example words that are
similar for a given context but different enough to be considered different fea-
tures, such as, ‘play’ and ‘game’. They will be indexed as two separate features,
each one represented by its own dimension in the vector space, yet they are
semantically related [53] . In [13], Deerwester (1990) introduced an approach to
automatically index documents, using words as features. The method is aimed
at addressing polysemy and synonymy in the task of Information Retrieval (IR)
by using Singular Vector Decomposition (SVD). The high dimensional structure,
the original document-word matrix, is reduced into a lower dimensional matrix
that represents semantic relatedness of each word to some underlying variable.
The problem with this approach is that the query may have 1) features not
considered in the index, or 2) the user may be using synonyms to index terms.
In both cases if a document is conceptually related to the query this will not be
reflected in the measures of similarity. The most common application of VSM
is the bag-of-words approach [61]. To model semantic relationships, researchers
have resorted to topic models [9, 13] and word embeddings [33, 34] to enhance
document representation [61]. We investigate LDA and word2vec models on a
relevance judgement tasks by observing the performance through similarity mea-
sures namely: cosine similarity, soft cosine similarity and the Jensen-Shannon
divergence measure.
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1.1 Objective

We explore the LDA and word2vec on the task of retrieving relevant document
using semantic similarity. We use soft cosine and Jensen-Shannon divergence
for comparing a query to the corpus. The objective is to determine if the
LDA captures semantic representation comparatively better than the word2vec
on relatively small corpora and this difference can be quantified in semantic
representation terms.

1.2 Motivation

For retrieval purposes we will observe the similarity measures for each of the
different models as well as other evaluation measures for the purpose of identify-
ing a model that will perform well in this task of relevance judgement when we
have taken into account semantic similarity. This will allow for a better retrieval
performance which has many applications in IR and document classification.

1.3 Dissertation structure

The dissertation structure is as follow:

• Chapter 2 is a review of literature in information retrieval and the con-
nection of probabilistic topic models to this task.

• Chapter 3 discusses Vector Space Model frameworks defined to apply mix-
ture models on text data, transformation measures and similarity metrics.

• Chapter 4 Bayesian learning for text analytics where concept learning for
machines is discussed and the derivations for the naive Bayes are made.

• Chapter 5 Latent Variable Models give a discussion the two models im-
plemented for this study namely; Latent Dirichlet Allocation and proba-
bilistic Latent Semantic Indexing.

• Chapter 6 Application reports on results of the two models and discusses
interpretation.

8
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Chapter 2

Literature Review

Today we have been blessed and cursed with an overload of information [2].
The vast amount of text data generated everyday has been growing at alarm-
ing rates. With increasing amounts of data generation over shorts spans of
time, machine learning methods are required to process and analyze these large
volumes of data for insight generation. Across all multimedia, text data oc-
curs in the largest volumes1 through the publication of newspapers, blog posts,
emails, phone texts, social media posts (Tweets, Facebook posts and Instagram
captions), forums, question-answer sites and research articles. These texts are
unstructured, making it difficult to easily process and visualise. The reasons
stated partially motivate the work in this report and contribute in the area of
text analysis. Text analytics, or text mining is the process of deriving insight
and discovering hidden structures from text data. This includes tasks such as
text classification [39], information retrieval [49,50] and topic models [9,12,30].
In machine learning , there are three types of machine learning approaches:

1. supervised,

2. semi-supervised, and

3. unsupervised.

For supervised tasks, the goal is to learn a mapping from inputs x to outputs y.
In layman’s terms, the practitioner deals with labelled data, meaning each ob-
servation in the training set has a known label (or output). Tasks such as text
classification fall in this sphere of machine learning. The challenge, however,
with this approach in the context of semantic similarity is the cost of labelled
data. For supervised learning, data are usually labelled manually, which implies
expensive resources.

Semi-supervised tasks involve data sets which contain small sets of labelled data
and some discovery must be made subsequently. Though this set of approaches

1https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-
every-day-the-mind-blowing-stats-everyone-should-read/#6e8cce2e60ba
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made improvements in semantic role labelling [16], we do not consider them for
this study.

Finally, unsupervised learning can be described as a descriptive or exploratory
method. Here we have some input x and the goal is to elucidate meaningful
patterns [37]. This is also known as knowledge discovery. The problems in the
unsupervised space are less well-defined, since no ground truth exists. Nonethe-
less, these approaches provides us with an array of useful techniques since in
text mining applications, little or no prior knowledge is available about the con-
tent of text data. This calls for unsupervised methods to structure and relate
text sources to each other [12]. We consider this set of methods for the task of
semantic representation of large collections of text, as it is able to retrieve rel-
evant documents based on a query’s semantic similarity to the collection. This
approach was considered in [61], where they identified that document represen-
tation is important for retrieval and proposed the LDA to capture important
relationships between words. However, the consideration made in [61] are in the
language modelling context, where we will observe the statistical properties of
semantic relationships between a query and a reference corpus.

This chapter provides an overview of unsupervised methods relevant to latent
semantic representation and analysis of text data.

2.1 Algebraic Approaches

Latent Semantic Indexing (LSI) [13] and Latent Semantic Analysis (LSA) [25]
were developed to tackle two inherent issues in the information retrieval process,
namely synonymy and polysemy by using singular value decomposition (SVD).
SVD produces a lower dimensional vector space which can be used to determine
semantic properties between documents and words [18]. This method performs
better than term-matching methods [13, 19] like full text scanning which relies
on the sub-string test, a method that goes through all documents to find the
specified string to determine relevance of documents in the retrieval process [15].
The SVD method produces a correlations matrix between words and documents
[31]. As a result semantic relationships are better represented by the LSI than
the lexical matching approaches. These algebraic methods also address issues
such as dimensionality. As a consequence we are able to process large quantities
of data, specifically for text that requires many features to train models. The LSI
is described as a feature extraction method in [44], where linear combinations
of the original features are used instead of the original features. As a result
the number of extracted features will generally be significantly less than the
original feature set. Through these transformations dimensionality and sparsity
are addressed. In this study we consider a probabilistic approach to the study of
semantic similarity and relevance judgement. We discuss these methods next.

10
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2.2 Probabilistic Approaches

Though the LSI and LSA methods have contributed greatly in the introduction
of reduced dimensional spaces for indexing, the task of IR requires more prob-
abilistic approaches to semantic representation than algebraic methods. The
probabilistic approach to semantic representation is reflected in better retrieval
performance over standard raw term frequency approaches and LSI [19]. The
probabilistic foundation in these methods is established by mixture models.
Topic models make use of mixture models and probabilistic generative assump-
tions to introduce underlying thematic structures for each document in a corpus
using latent variables [18]. The distinct advantage of topic models over other
semantic representation methods is the formation of word clusters, since each
topic is a distribution of words, which are often correlated and reveal underlying
themes. Topic models are applicable to many areas of natural language pro-
cessing such as information retrieval [61], collaborative filtering [59], document
classification [48], word sense disambiguation [42], and domain modelling [11].

Topic models are unsupervised, meaning no unique parameterisation exists to
explain the ground truth for some given phenomenon [37]. The probabilistic
latent semantic indexing model (pLSI) [19] is based on the likelihood principle
and defines a generative model for the data using a mixture of Multinomials to
describe word samples for each document. Each of the mixture components can
be thought of as a topic. The model has been criticized for not making assump-
tions about how the mixture weights of a topic are generated for each document.
This lack of generalisations for unseen documents leads to over-fitting and bad
performance on out of sample test data when looking at perplexity. The LDA
(Latent Dirichlet Allocation) [18] corrects this over-fitting problem by attaching
a Dirichlet prior, a conjugate prior to the multinomial, to the topic distributions
for some arbitrary document.

The LDA [9] is a generative model that has seen success in many information
retrieval tasks [60, 61]. In [9] the goal of topic modelling is document gener-
alisation. Document generalisation can be achieved by finding the underlying
semantic context which is represented by the words of a document. As a result
topic models illustrate how using a different representation can provide new in-
sight into statistical modelling of language [18]. We plan to exploit those insights
to represent corpora and use underlying semantic relationships between words
and documents for performance review in our information retrieval exercise.

2.3 Word Embeddings

The two methods above consider the bag-of-words representation of a corpus.
This implies count statistics as the modelling premises as the frequency of a
word represents its occurrence in a document. Count-based methods offer a lot
in terms of simplicity and robustness but discard word order. An alternative

11
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to count-based semantic representations is prediction-based representations. In
these methods, weights in a word vector directly maximize the probability of the
contexts [4, 34]. In [34] a distributed representation approach [20] is considered
by making of a single layer neural network to represent words as high quality
vectors [5]. The basic idea is to train a single layer neural network to be able
to predict a word by the words around it. The word2vec model is an example
of this and has shown to be a state of the art in various NLP tasks. Since this
model captures similarity between words beyond syntactic rules [33] we use this
model to uncover semantic similarity at a word level and compare the retrieval
results to those of the topic models.

2.4 Evaluation

The output of any latent semantic representation is a set of vectors - whether
topic distributions or dense word embeddings. It is important to know if these
latent representations describe the entire corpus. For different approaches, dif-
ferent evaluation methods exist.

2.4.1 Topic Model Evaluation

We must evaluate how well the topic models will perform for various tasks (lan-
guage modelling, classification, etc.) as with all modelling. There are generally
two ways for the evaluation of topic models i) extrinsic methods [61] and ii)
intrinsic methods [35]. A common evaluation method for topic models is the
probability of held-out documents or perplexity, an intrinsic approach to eval-
uating the quality of topic models. This approach uses the language model
framework to dictate how well the topic model performs. Though commonly
used, it is reported in [35] that the perplexity is not always the best predic-
tor for how well topic models results are against human judgment. [10] reports
that topic models that achieve better predictive perplexity often have less in-
terpretable results, they fail against human judgement. Although [38] mentions
that perplexity is useful for model selection and adjusting of parameters. Word
intrusion and topic intrusion are evaluation measures that explicitly evaluate
the quality of the topics inferred and how well the model assigns topics to doc-
uments. A different evaluation method discussed in [35] suggests a coherence
measure that corresponds well with human judgment and makes it possible to
identify problems with topic models without human or external intervention.

2.4.2 Distance Metrics

We need to measure how close two documents are for applications is retrieval,
where similar documents that contain similar information may be regarded as
relevant even if one may contain the query words while the other does not.
The distance between documents allows for us to organise information and as
a consequence we are able to retrieve relevant information with high accuracy.

12
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With a quantitative data this can be done with various distance metrics. With
qualitative data, such as text, it proves to be challenging. ‘Closeness’ in this
regard means both lexical similarity and semantic similarity. In our study
we consider the following measures:

• Cosine.

• Soft cosine.

• Jensen-Shannon divergence.

Cosine Measure for Similarity

The cosine similarity measure is one of the most widely used measures for simi-
larity between term vectors [21,27]. It measures the cosine of the angle between
two vectors projected on a multi-dimensional space. It is highly effective for
sparse terms vectors as only non-zero dimensions need to be considered [27].
We discuss this measure further in section 3.3.1.

Soft Cosine Similarity

The cosine measure of similarity is widely applied and is normally taken for
granted [53]. It has been proposed in [27, 32, 53] that the cosine similarity be
modified, as it has implicit biases in its calculation of similarity as it assumes
there is no similarity between feature, for example the word ‘car’ and ‘drive’ are
different, but are similar in their use and meaning in certain contexts. Thus in
[53] a measure of similarity that takes into account feature similarity is proposed
[53]. When feature similarity is considered for the cosine similarity measure, this
is what is called soft cosine similarity.

Jensen-Shannon divergence

The Jensen-Shannon divergence measures the distance between two or more
continuous or discrete probability distributions [28]. It is closely related to
other divergence measures such at the Kullback-Leibler divergence and mutual
information measure.We use this measure to determining similarity between
two distribution for the LDA model. We discuss this measure further in section
3.3.3. In the next section we discuss the Vector Space Model Framework and
where the similarity measures described above fall in it.

13
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Chapter 3

Vector Space Models

Computers have little understanding of natural language, whether in text or
speech format. This poses a problem for tasks such as information retrieval
and the application of machine learning algorithms. The use of vector space
models to transform text documents to some organised structure that can be
analysed by models requires the use of feature extraction methods, which some-
times referred to as vectorisation. For text analysis, we have full documents or
sentences that may differ in length from quotes or tweets to whole books, but
whose vectors are always of a consistent size [26]. We define terminology and
notation in Table 5.1 which will be used in the rest of the chapter.

Table 3.1: Table of definitions

Term Definition

D Entire document collection or the corpus
X A term-document matrix that captures the frequency of term i

in document j
M Number of documents in a corpus. A corpus is a collection

of documents. A document is a sequence of words and d ∈
{d1, d2, ...., dn}

V Vocabulary size. The vocabulary is a set of unique words that
are present in the corpus

dj Document j in collection of Documents D
wi The i-ith word in vocabulary V : wi ∈ {w1, ..., wV }

For a collection of documents D = (d1, d2, . . . , dM ), such as blog posts, tweets
and news paper article, we must find a way to represent each document dj for
j ∈ {1, 2, . . . ,M} in such a way that we are able to describe each document
with a fixed vocabulary of words (wi with i ∈ {1, 2, . . . , V }) [51]. Each docu-
ment is then a sequence of words dj = (w1, w2, . . . , wV ) in the vocabulary and
is represented by a fixed V -dimensional vector. This process results in the gen-

14
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eration of the term-document matrix X, which in some text is referred to as
the word-document matrix. In this structured form text is represented properly
for machine tasks, e.g. information retrieval [40]. We have described the vector
space framework and the bag-of-words model is a prominent example of this
framework due to its simplicity and has been used to encode semantic space
for our study as well. With the vector space framework of text we are forced
to think of documents as points in a multidimensional space and can measure
how close or far a document from a collection is to another document not in the
collection, referred to as a query.

A query can be represented as a vector, where term qij (0 ≤ i ≤ V ,0 ≤ j ≤M)
is a non-negative value denoting the number of occurrences of term j in query
i. Both the document vectors and the query vector provide the locations of the
objects in the semantic space. By computing the distance between the query
and other objects in the space, objects semantically similar to the content in
the query will be retrieved. There are various vector representations like one-
hot vector encoding, bag-of-words and the terms-frequency inverse document
frequency or TF-IDF approach. We discuss the bag-of-words in the next section.

3.1 Bag of Words

A bag of word (BoW) model is a vector space model that captures the frequency
of the word occurrence wi ∈ V , V is some vocabulary set for some document
dj ∈ D, and D is a collection of documents or a corpus. Here we make the simple
assumption that each one wi ∈ V is sampled independently from one another
from some discrete distribution [37]. It is important to note that information
relating to order and structure is lost due to this method of feature extraction.
In information retrieval, the BoW representation assumes we can estimate the
relevance of documents to a query by representing the documents and the query
as bags of words [57]. The BoW representation is the simplest encoding of
a semantic space, whose primary insight is that meaning and similarity are
captured in vocabulary [56].
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Figure 3.1: Bag-of-words representation

For a set of M documents and a vocabulary of size |V | then the bag of rep-
resentation is illustrated in Figure 3.1. This approach is used in our study of
relevance due to the simple framework it is defined on and easy implementation.

3.2 Term Frequency Inverse Document Frequency

Term frequency inverse document frequency (tf-idf ) is based on BoW, but pro-
vides more detail [6, 7]. In information theory, a rare event provides more in-
formation than an expected event [57], a way to formalize this is the tf-idf
weighting scheme: This weighting scheme shows how important a given word is,
not only by looking at the term frequency, but also analyzing how many times
the word occurs across documents and has shown significant improvement over
raw frequency [57]. The tf-idf also handles length normalisation, since search
engines tend to have biases in favour of longer documents [57]. We break down
the function to better appreciate its result. To discriminate between documents
for the purpose of scoring the use of a document-level statistic, such as the
number of documents containing the term is far better than a collection wide
statistic for the term [52]. The inverse term document is defined as:

idft = log(
M

dft
),

M denotes the total number of documents in our collection and dft is the doc-
ument frequency for term t. This ensures the idf of rare terms is high and the
idfof frequent terms low. This leads to the mathematical formulation of tf-idf :

tf-dft,d = tft,d × idft,d.
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We observe that a term t that occurs frequently in a small number of documents
receives a higher weighting, this is through the fact that tft,d for term t will be
some high number and idft,d will also be high, due to the fact that M

dft
will be

some number greater than 1, therefore log( Mdft ) will also some number bigger

than zero. But for M
dft

larger than 6, we will have a idft score greater than 1,
which translates to a higher tf-idf score for this rare term t. This scheme then
assigns more weight and thus more consideration when determining the rele-
vance of a document. Therefore the terms that occur frequently in a document
and across documents, receive less consideration when it comes to the task of
relevancy. Consider the following example :

‘On this document I will write this symphony’
‘On this I will write that’

‘On this I fear I will not be able to write this nor that’

The term frequencies of each term in the vocabulary across all documents is
represented in Table 3.2 and the tf-idf scores for terms in Table 3.3.

Term Document 1 Document 2 Document 3 Document Frequency
on 1 1 1 3

this 2 2 1 3
document 1 0 0 1

i 1 2 1 3
will 1 1 1 3

write 1 1 1 3
symphony 1 0 0 1

that 0 1 1 2
fear 0 0 1 1
not 0 0 1 1
be 0 0 1 1

able 0 0 1 1
to 0 0 1 1

nor 0 0 1 1

Table 3.2: The table contains the frequency of each word in each document.
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Term Document1 Document2 Document 3
that 0 0.40546511 0.40546511

document 1.09861229 0 0
symphony 1.09861229 0 0

I 0 0 0
fear 0 0 1.09861229
to 0 0 1.09861229

this 0 0 0
nor 0 0 1.09861229
be 0 0 1.09861229
not 0 0 1.09861229

write 0 0 0
will 0 0 0
On 0 0 0
able 0 0 1.09861229

Table 3.3: The table contains tf-ifd transformation of each word in each
document.

In table 3.2 the documents are converted into a bag of words representation,
where each words frequency in each document is the only recorded attribute,
the document frequency is also recorded. Then we calculate the tf-idf score of
each term in all document, words like ”on” and ”this” that were recorded to
appear in all three documents are affected by the idf = log(Mdf ) factor of the
score, where M is the number of documents in the corpus. The closer the dft for
term t the fraction is closer to one, making the log of the expression converge
to 0. This factor allows rare words that occur in a few documents in the corpus
to get a high scores where as words that occur with low high frequency across
the corpus receive scores closer to zero. We interpret the score to mean that
the closer a term’s TF IDF score is to 1, the more informative the term is to
it. The nearer the score is to zero, the less the word is informative [7].

3.3 Similarity

Once the corpus is vectorised into a vector space, we are able to perform math-
ematical calculations and modelling. Certainly one of the most common cal-
culation on vector spaces is that of similarity: To be able to determine the
relatedness between a collections of documents and a query. In this section we
discuss similarity measures in the VSM framework. We discuss the methods on
to measure similarity in the vector space framework.
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3.3.1 Cosine Similarity

When documents are represented as term vectors, the measure of similarity
between them corresponds to their correlation [21]. This correlation is quantified
by the cosine of the angle between these vectors and thus cosine similarity is
defined as the dot product

a · b =
N∑
i=1

aibi,

and the norm is defined as
||x|| =

√
x · x.

Then the cosine is defined as

cosine(a, b) =
a · b

||a|| · ||b||
,

which can be written as

cosine(a, b) =

∑N
i=1 aibi√∑N

i=1 a
2
i

√∑N
j=1 b

2
j

.

This measure represents how two documents are correlated and is bounded in
the closed set [−1, 1], where −1 means that the two documents are opposed to
each other, 0 is interpreted as the two documents are not similar to one another
and 1 suggests that the two document are perfectly correlated, which translates
to the documents being identical. In the case of IR the cosine similarity will
remain between 0 and 1 since we deal with positive valued vectors.

3.3.2 Soft Cosine Similarity

Cosine similarity is a common measure to compare similarity between two vec-
tors, however some of the assumptions made for this measure do not apply in
the NLP space. In [53] a modified version of the cosine similarity is proposed,
since the cosine similarity is overly biased by features with higher values and
does not care much about how many features are shared by two vectors [31].
Their proposal is a soft cosine measure, which takes into account the similar-
ity between features and as a result relaxes the assumption of independence
between features. Consider the basis vector representation of documents as:

e1 = (1, 0, . . . , 0)

e2 = (0, 1, . . . , 0)

...

e|V | = (0, 0, . . . , 1),

This representation for one word documents or representation of a single feature
in the VSM assumes that words are independent. But this notion is untrue eg:
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‘game’ and ‘play ’ are different words and may be represented that way in the
VSM, but they are similar in terms of meaning. As a result we have that:

cosine(ei, ej) = 0

The assumption made in [53] is that similarity can be modelled using cosine
between features:

cosine(ei, ej) = sij = sim(fi, fj),

where fi and fj are features corresponding to the basis vectors and sim(·) is a
similarity measure such as synonymy. Soft similarity is defined as :

softcosine(a, b) =

∑∑N
i=1 sijaibj√∑∑N

i=1 sijai · aj
√∑∑N

j=1 sijbi · bj
,

where sij = sim(fi, fj) and if there is not similarity between fi and fj , sii = 1
and sij = 0 when i 6= j. This is done using the Levenshtein distance - a string
metric for measuring the difference between two sequences, which is suitable for
NLP tasks, as they deal with text. In their study they consider words, n-grams
and syntactic n-grams as their features. We only consider words as features in
this paper.

Figure 3.2: Illustration of cosine similarity 1

This similarity measure that considers similarity based on semantic closeness is
required and the normal cosine similarity measure assumes terms in a vector
space are independent, regardless of whether they belong to the same topic.
This is where the soft-cosine measure takes into account similarity of features
from the same topic, this is illustrated in 3.2.

3.3.3 Jensen-Shannon Divergence

The Jensen-Shannon divergence is a method of measuring similarity between
probability distributions. It is closely related to the Kullback-Leibler divergence
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but is symmetric. The square root of this measure is a metric and is called
the Jensen-Shannon distance. We state the more mathematical definition of
this measure. Consider the set P (E) of probability distributions where E is a
set provided with some σ-algebra of measurable subsets. The Jensen-Shannon
divergence J(D||Q): P (E)× P (E)→ [0,∞) is defined as

JSD(P ||Q) =
1

2
D(P ||M) +D(Q||M),

where M = 1
2 (P + Q) and D(·||·) is the Kullback-Leibler divergence mea-

sure. This is a symmetric and smoothed version of the Kullback-Leibler di-
vergence. For a more generic version allowing for more than one comparison
we let π1, π2, ..πn where πi ≥ 0 for i ∈ (1, 2, ..n) and π1 + π2 + .. + πn = 1, be
weights for n probability distributions then we define the JSD(·||·) to be :

JSDπ1,π2,...,πn
(P1, P2, ..., Pn) = H(

n∑
i=1

πiPi)−
n∑
i=1

πiH(Pi), (3.1)

where H(P ) is the Shannon entropy and where π1, π2 . . . , πn are weights that
are selected for the probability distributions P1, P2, . . . , Pn.

3.3.4 Conclusion

We have formed a basis for text representation for machine learning algorithms
in the form of the bag-of-words models and have discussed the assumptions asso-
ciated with it. We also discussed measures to measures similarity for the vector
space model framework. This lead us to the discussion of the Jensen-Shannon
measure of divergence since topic models are vectors of distributions. We also
discussed the soft cosine measure for when the assumption of independence can
be replaced by some other similarity measure. Since we have established a ba-
sis for machine learning in text, in the next chapter we discussed supervised
approaches to text categorisation in the form of the naive Bayes classifier.
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Chapter 4

Supervised Text
Classification

Text classification is a machine learning problem found in a variety of fields,
such as email spam detection, due to the need for personal organisation [43].
Classification is commonly addressed by supervised learning approaches. In
supervised learning we are given an input x and a fixed set of M classes, Y =
{y1, y2, . . . , yM}, and we are tasked with predicting a class y ∈ Y [23]. For the
supervised learning environment there is a set of manually labelled training data
and we want a method to accurately classify new, previously unseen documents.
There are various classifications techniques such as logistic regression, decision
trees and support vector machines (SVM). We focus on the naive Bayes classifier
as a procedure to calculate probabilities, as it provides simple implementation
due its assumptions and desirable performance results.

4.1 Introduction

The ability to learn a concept from a few examples is one of the core capacities
of the human mind. An example of concept of learning is when a child learns
what a dog is, they can accurately identify a dog after one positive example.
When a cat is incorrectly identified as dog, corrections provides clarification on
the dog concept. Therefore negative examples are useful, but more to refine
the concept rather than to learn it [55]. For machines, concepts are learned
through features extracted from data, then some function distinguishes what
belongs to a concept and what does not based on the collected features. Feature
selection is influenced by a practitioner’s bias such as, the use of stopword
for certain natural language processing applications, this results in a bias in
results. In supervised learning this collection of methods are called classifiers1.

1A classifier is defined by a deterministic function that assigns a label c for each example
x it is given
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A probabilistic classifier can attach a probability to an observation belonging to
some class c and this is useful for decision making [23]. In supervised learning
there are two approaches to classification i) generative classifiers and ii)
discriminative classifier. A generative classifier models on the assumption
that it can accurately model the input data and can predict the corresponding
class as a result where as discriminative classifiers learn what features from the
input data are most informative to be able to separate classes. The discussion
forms a basis for the next section.

4.2 Naive Bayes

The naive Bayes is a probabilistic classifier, which means that given some doc-
uments dj , classification will be based on the maximum posterior probability
given document dj . We represent this estimation of the correct class with ĉ
using Bayes theorem which is defined as follows [23]:

P (x|y) =
P (y|x)P (x)

P (y)
. (4.1)

We are able to infer the class of the document dj by transforming (4.1) into the
following expression:

ĉ = argmax
c∈C

P (c|dj) = argmax
c∈C

P (dj |c)P (c)

P (dj)
. (4.2)

We calculate the most probable class ĉ by finding the product of the prior
probability of c and the likelihood function P (dj | c). The denominator of
equation 4.2 can be thought of as a normalising constant and can be ignored to
arrive to the following equation:

ĉ = argmax
c∈C

P (dj |c)P (c). (4.3)

4.2.1 Assumptions

Consider a document dj = (w1, w2, . . . , w|V |), with a fixed length of size |V |,
and V is the vocabulary for some corpus D. We consider equation 4.3 with the
consideration of dj to get to the following:

P (dj | c) = P (w1, w2, . . . , w|V | | c) (4.4)

equation 4.4 proves to be difficult to calculate, since it requires the estimation
of all possible combinations of the words and take into account order. We make
assumptions to simplify the modeling constraints that have been discussed. The
first assumption is the bag of words assumption (as discussed in Chapter 3) as
the vector representation of the documents. We assume that order of the words
does not matter, only how many times it occurred in the document. The second
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assumption is that each wi is independent on the condition we are given the class
label c. We have that equation 4.4 becomes :

P (dj |c) =

|V |∏
i=1

P (wi|c). (4.5)

And equation 4.3 is simplifies into the following:

ĉ = argmax
c∈C

|V |∏
i=1

P (wi|c)P (c). (4.6)

The final expression is derived from apply the log-function to equation 4.6. This
transformation speeds up the modelling and caters for underflow2. As a result
of the reasons aforementioned we get the following result:

ĉ = argmax
c∈C

logP (c) +

|V |∑
i=1

P (wi|c). (4.7)

4.2.2 Estimation

We have to calculate the probabilities P (c) and P (wi | c) from our given data,
this is also called training the models. We estimate parameters and the algo-
rithm using these estimated parameters to classify new documents with equation
4.8. The parameters of an individual class follow a multinomial distributions
over words and are the collection of probabilities for a given c, θwi|c = P (wi|c, θ).
We then need to only attach parameter to the weights, θc , where θc = P (c|θ).
We revise equation 4.8 to include the parameters we have introduced:

ĉ = argmax
c∈C

logP (c|θ̂c) +

|V |∑
i=1

P (wi|c, θ̂wi|c) (4.8)

We see that θ is a set of multinomial with prior probabilities over those
multinomials i.e.:

θ = {θwi|c : wi ∈ V ; θc, c ∈ C}

The estimate θ̂wi|c is the number of times word wi appears in c for the training
set over the total number of word occurrences in the the training set which
belong to the class c. And we represent that estimate to be:

θ̂wi|c =
1 +Nwi,c

|V |+Nc
(4.9)

where Nwi,c is the number of times word wi occurs in class c. Nc is the total
number of words in class c and |V | is the size of our vocabulary. Notice that

2Underflow is a condition in a computer program where the result of a calculation is a
number of smaller absolute value than the computer can actually represent in memory on its
CPU.
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there is a 1 added to the numerator value in equation 4.9, this is called Laplace
Smoothing. We consider a scenarios a certain word may not occur in certain
class in our training set. Then for that word wi we will have θ̂wi|c equal to zero,
subsequently this will turn into a zero likelihood considering the conditional
independence assumption made for the naive Bayes. We must then replace
this zero probability, with a small non-zero probability in the form of Laplace
smoothing. There are various other smoothing methods we do not consider our
study. Then we place our focus on the prior probability for c. This is estimated
to be the proportion of documents that have class c over all documents in the
training set:

θ̂cj =
Nc
ND

(4.10)

where Nc is the total number of words in class c and ND is the total number
of documents. We use the results we acquired from training the model and the
Bayes Theorem to get the result above. To classify a document into a class c we
simply find the values of ĉ in equation 4.8 that is a maximum across all θ̂ and
the corresponding class label is chosen. In algorithm 1 the process of estimating
θ̂wi|c and θ̂c is described. We follow this illustration with an example of how

Algorithm 1 Algorithm for Naive Bayes Classifier

1: Nc = 0, Nwi,c = 0
2: D = di
3: for j = 1 : C do
4: c = yi// the ith example’s label

5: Nc := Nc + 1
6: for t = 1 : |V | do
7: if wt = 1 then
8: Nwi,c := Nwi,c + 1
9: end if

10: end for
11: end for
12: return θ̂wi|c =

1+Nwi,c

|V |+Nc
, θ̂c = Nc

ND

the algorithm works.

Example

To illustrate what we have discussed we look at a simple example of classifying
text into two categories; sport and non sport. Given the training data Table
4.1, we calculate the posterior of each of the classes given a test document dtest.
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Index Document Label

1 a great game sports
2 the election was over non sports
3 very clean match sports
4 a clean but forgettable game sports
5 It was a close election non sports

Table 4.1: Multinomial naive Bayes on sports text classification

A basic probability calculation for each word in both classes is done to get the
predictions for the test document.

dtest = a very close game

The Naive Bayes gives us the following scores

P (sport|dtest) P (non sport|dtest)
2.7648 e-05 5.7175e-06

We then decide to classify this document in class sports category. In our example
we have that the posterior probabilities for each class are small quantities. This
is as a result of the naive Bayes assumption of of conditional independence for
each feature given the class. For very large vocabularies we find that these
probabilities become so small they cannot be represented by some computer
programs. This is called numerical underflow and it results in false results
being presented for products of small numbers. A way to solve this is to use the
log and e functions since logea = a. This combined with one of the rules of the
logarithm which is:

log(
N∏
i=1

xi) =
N∑
i=1

log(xi) (4.11)

Note that even with this provision numerical underflow is still a possibility. We
have that any complex multiplication scheme with small numbers becomes a
summation computation and we avoid underflow. This is called the log-sum-
exp trick and it is discussed and derived in [37].

4.3 Applications

We train the multinomial naive Bayes classifier on two datasets namely the
20Newsgroups and the fake news data set, we discuss the data sets in Chapter
6. We use scikit learn version 0.20.1 library in Python 3.7 for the multinomial
naive Bayes and the support vector machine classifiers. We break the data up
into a training and test set, to extract feature and get prediction performance
respectively. We begin our application with the 20Newsgroups data and choose 5
categories, three that are different to each other (religion, politics and computer
hardware) and two that are similar (sports-motorcycle and sports-auto). We
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would like to test how well the classifier can distinguish between classes that
are different and those that are potentially similar. For the multinomial naive
Bayes we observe the following:

Class Precision Recall F-1 score

rec.motorcycles 0.93 0.96 0.95
talk.religion.misc 0.93 0.92 0.92

talk.politics.mideast 0.95 0.95 0.95
rec.autos 0.99 0.97 0.98

comp.sys.ibm.pc.hardware 0.96 0.94 0.95

Table 4.2: Classification report for naive multinomial on 20Newsgroups

We look at the classification report for the prediction performance of the multi-
nomial classifier, with smoothing parameter, alpha, set to 0.01, the class proba-
bilities collected from our training data and we do not set the prior probabilities
for the classifier. We train the classifier on 590 documents from the motorcycle
class, 594 documents from the religion class, 598 from the politics class, 564
from the auto class , and 377 from the computer hardware class. We can see
that there is class imbalance, and the difference is stark between the computer
class and the rest of the other classes. Overall all the naive Bayes classifier
accuracy to identify positive examples in each class, the precision, is above 93%
for all classes or 93 out of 100 positive examples are true positives and the rest
are false positive. We also look at recall as measure of misclassification, here we
measure the number of true positives identified by the classifier against the total
number of positive examples present in our testing, those that were identified
and those that were misclassified as negatives. The recall for the naive Bayes is
also above 92% for all classes. This means on average the classifier per class will
correctly identify above 90% of the examples presented to it it with the features
it has selected, which is measured using the F1-score, a harmonic mean between
the recall and precision. We look at the support vector machine classifier results
in comparison to the naive Bayes classifier.

Class Precision Recall F-1 score

rec.motorcycles 0.93 0.99 0.96
talk.religion.misc 0.94 0.95 0.95

talk.politics.mideast 0.97 0.96 0.97
rec.autos 0.99 0.97 0.98

comp.sys.ibm.pc.hardware 0.99 0.94 0.96

Table 4.3: Classification report for support vector machine on 20Newsgroups

For the support vector machine classifier we notice better precision and re-
call results for the region category with 2% more precision and 3% better
recall than the naive Bayes classifier. This results in 1% overall better per-
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(a) Multinomial naive Bayes classifier (b) Support vector machine classifier

Figure 4.1: Confusion matrix analysis

formance by the vanilla support vector machine where norm-L2 is used in
the penalisation and the squared hinge loss function is used to calculate loss.
Please find default parameterisation for the svm classifier in scikit-learn3. We
also take a look at the confusion matrices for the two classifiers. Where 0-
rec.motorcycles, 1-talk.religion.misc, 2-talk.politics.mideast, 3-rec.autos and 4-
comp.sys.ibm.pc.hardware.

For the fake news data we collect 27812 features from 16640 training documents
to arrive to the following results for both the multinomial naive Bayes classifier
and support vector machine classifier in Table 4.4 and Table 4.5 respectively.

Label Precision Recall F-1 score

Reliable 0.89 0.93 0.91
Unreliable 0.93 0.88 0.90

Table 4.4: Classification results fake news classifier multinomial naive Bayes
classifier

From Table 4.4 we observe that for the naive Bayes classifier has a high precision
score between both class achieving a minimum of 89% on the reliable class, this
means 89% of the documents identified as reliable or unreliable where correctly
identified and only 11% were misclassified. Though the classifier does better
identifying fake documents than real ones. We compare these results to those
of the SVM or support vector machine.

Label Precision Recall F-1 score

Reliable 0.96 0.93 0.95
Unreliable 0.94 0.96 0.95

Table 4.5: Classification results fake news classifier support vector machine

3https://github.com/scikit-learn/scikit-learn/blob/95d4f0841/sklearn/svm/classes.pyL13
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We observe that the SVM classifier does markedly better when compared to
the naive Bayes on the task of classifying documents from the fake news data
set. Using the F1-score we observe that out of 100 examples the SVM classifier
will on average classify more reliable and unreliable documents than the naive
Bayes. We look at the Receiver Operating Characteristic curve or ROC curve
of both the classifier to gather more insight on their performance.

Figure 4.2: ROC Curve: support vector machine against naive Bayes

In Figure 4.2 we observe that the SVM is more accurate than the multinomial
naive Bayes classifier and the accuracy on the test documents reflects this with
the SVM sitting with 99%accuracy while the naive Bayes achieves a 96% accu-
racy on the selected test documents. We take at the confusion matrices next to
inspect the misclassification errors made by each classifier.

(a) Multinomial naive Bayes classifier (b) Support vector machine classifier

Figure 4.3: Confusion matrix analysis
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We have that in Figure 4.3 the label 0 corresponds to the Reliable class and
the label 0 corresponds to the Unreliable class in fake news data. Looking at
the heat-map representation of each of the matrices we can identify that the
SVM suffers less from misclassification between classes. When the document is
from an unreliable source the naive Bayes has more confusion with 251 cases
misclassified as a result, while the SVM does better with 74 misclassified cases.
Aside from this difference test can be conducted to test if the misclassfication
is statistically significant. We discuss the conclusion of the application in the
conclusion section of this chapter. We discuss a more complex version on the
naive Bayes in the next section.

4.3.1 Bayesian Naive Bayes

With the naive Bayes classifier, classification occurs after we have estimated our
θc and θjc , which are the class probability and feature vector j’s probability
given class c. From text it has been discussed that the maximum likelihood can
over-fit (θ̂c, θ̂jc). This leads to cases where the naive Bayes classifier can fail.
To combat this issue a fully Bayesian approach is taken.

4.4 Conclusions

In this chapter, we introduced the naive Bayes classifier as an important building
block in our understanding of latent semantic representations for text for two
reasons: Firstly, it makes use of the bag-of-words vectorisation which takes
into account word frequencies as features. Secondly, it is a generative classifier
which makes assumptions on how the data was generated. In our application we
also discover that even though the naive Bayes vanilla classifier performs worse
when compared to the support vector machine, it still achieves high classification
performance results. This is advantageous in the case of dealing with large data
sets where the classifiers simple assumptions will result in cheaper computation
and parameter tuning. The the next chapter, we investigate unsupervised text
models which follows the same generative assumption than the naive Bayes,
namely that the words are generated from a multinomial distribution.
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Chapter 5

Latent Variable Models for
Discrete Data

In the previous chapter we introduced the Naive Bayes, a supervised approach
to text analysis. The volumes of text being generated daily has created the need
for unsupervised methods in information retrieval. In this chapter we give an
overview of two unsupervised text analysis methods.

Table 5.1: Table of definitions

Term Definition

α Hyper parameter of prior distribution.
X Random variable that represents the observed data.
Z Latent variable, unobserved.
Nd Size or length of document d.
β Word-topic parameter.
wi The i-ith word in vocabulary V : wi ∈ {w1, ..., wV }.
θ Parameter of prior distribution.
d Documents in a collection.

5.1 Latent Semantic Indexing

Human-computer interaction is by means of natural language queries - the user
submits a query, by providing keywords or some free form text [19]. The Latent
Semantic Indexing (LSI) model was designed to address the challenge of match-
ing words in a query with those in the collection of documents to be searched.
The rationale behind this method is to map terms and documents on to the
same space, to create some latent semantic space, where documents that share
co-occurrence counts will have similar representations in the latent semantic
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space even if they have no terms in common [13,19]. This method relies on the
Singular Value Decomposition (SVD) method to perform dimension reduction
on the document ×term matrix. Using matrix representation we illustrate the
SVD method for the LSI in figure 5.1. LSI has been shown to address two
challenging NLP issues, namely polysemy and synonymy by taking advantage
of higher order structures in the association of terms with documents in order
to improve the detection of relevant documents on the basis of terms found
in a query [18]. One advantage of the LSI is that the decomposition provides
an orthonormal basis which is computationally convenient because one decom-
position for T dimensions will simultaneously give all lower level dimensional
approximations as well [18].

Co-occurrence matrix

documents

w
or

d
s

=

dims

w
or

d
s

U matrix

dims

d
im

s

S matrix

documents

d
im

s

VT matrix

Figure 5.1: Matrix representation of LSI

5.1.1 Probabilistic latent semantic index model

The LSI has been applied with remarkable success in different domains but
it has a lot of deficits, mainly due to its unsatisfactory statistical foundation
[19]. Hofmann(1998) then suggested the probabilistic Latent Semantic indexing
model (pLSI), a novel approach to automated document indexing which is based
on a latent class model for factor analysis of count data. This model has a solid
statistical foundation since it is based on the likelihood principle and defines
a proper generative model for data [19]. The core of the pLSI is model called
the aspect model, a latent variable model for general co-occurrence data which
associates a latent variable z ∈ {z1, z2, ..zK} with each observation of the word
w ∈ {w1, w2, ..wNd

} in document d ∈ {d1, d2, ..dN}. To generate a document-
word pair, we select a document d with probability P (d), then we select a
latent variable z with probability P (z|d) then we are able to generate a word
w with probability p(w|z). The joint probability distribution between word w
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and document d is given by:

P (d,w) = P (d) · P (w|d)
= P (d) ·

∑
z P (w|z) · P (z|d)

= P (d) ·
∑
z P (w|z) · P (d|z)·P (z)

P (d)

=
∑
z P (w|z) · P (d|z) · P (z)

We then have that the probability of generating a new document of length Nd
as a bag of word is:

P (w1, w2, ..wNd
) =

Nd∏
i

K∑
z=1

P (wi|z) · P (z|d)

We look at Figure 5.2 to see a graphical representation of the document gen-
eration process. The shaded circles in the plate model are observed variable,
where as circles with a white background are unobserved.

Figure 5.2: pLSI graphical model

Though the effectiveness of this model was shown to be higher than that of term-
matching and the LSI technique, the effectiveness of mixture models on IR is
not yet established. The pLSI has a problem in that the generative semantics
are not well defined [61] .

5.2 Latent Dirichlet Allocation

A generative model describes how data is generated in terms of a probabilistic
model. Because generative models make assumptions about how the data (doc-
uments in this case) is generated, it allows for sampling from the aforementioned
distributions. The Latent Dirichlet Allocation (LDA) model [9] is a generative
model which makes assumptions about how documents in a corpus are generated
and produces estimates for topic×word and document×topic distributions [12].
The goal of LDA is to find sparse representations of the members of a collection
that enable efficient processing of large collections while preserving the essential
statistical relationships that are useful for task such novelty detection, similarity
and relevance judgment [9].
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The output of LDA is a finite index of hidden topics which describe the un-
derlying documents. LDA is a hierarchical Bayesian model – the hierarchical
part comes from the fact that the generative process is assumed to be broken
up into three levels. The first level being the word level, the next being the
an abstract concept level like a topic and the last being the document level.
The LDA assumes the following generative process for each document di in the
corpus D :

1. Choose N |η ∼ POISSON(η).

2. Choose θ|α ∼ Dir(α).

3. For n ∈ {0, 1, 2, 3, ..N}.

(a) Choose topic Zn|θ ∼Mult(θ).

(b) Choose word Wn|{zn, β1:n} ∼Mult(βzn).

LDA makes the following assumptions:

• Dimensionality of Dirichlet distributions is assumed to fixed and known.

• Word probabilities are treated as fixed quantities that will be estimated.

• The Poisson assumptions is not critical and more realistic document length
can be used.

We note that N is independent of θ and Z.

5.3 Learning algorithms

A central task in the application of probabilistic models is the evaluation of
the posterior distribution of the latent variable and the evaluation of the ex-
pectation computed with respect to this distribution [8]. For many models of
interest the posterior distribution is intractable, this is due to factors such as di-
mensionality of the latent hidden variables and in other cases the problem arises
from the marginal distribution of the observed data X. Two schools of thoughts
currently exist for approximation: Sampling and optimisation. In this section,
we illustrate a sampling method (Gibbs sampling) and an optimisation method
(Variational inference) which are appropriate for LDA parameter estimation.

5.3.1 Gibbs Sampling

Markov Chain Monte Carlo (MCMC) refers to a set of approximate iterative
techniques designed to sample values from complex distributions. Gibbs sam-
pling [17] also known as alternating conditional sampling is a specific form of
MCMC and simulates high dimensional distributions by sampling lower dimen-
sional subsets of variables, where each subset is conditioned on the value of all
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others. The sampling is done sequentially and proceed until the sampled values
approximate the target distribution [18] the target distribution normally refer-
ring to the posterior distribution for approximate inference tasks [63]. Mur-
phy [37] describes it as the MCMC analog of coordinate decent. We adopt
Zeger’s(1991) explanation of the Gibbs sampling process. Assume there are
three random variables U ,V and W of interest. Let P (U |V,W ), P (V |U,W ) and
P (W |U, V ) denote conditional distributions that possess a simpler form when
compared to the joint distribution denoted by P (U, V,W ). We let the joint
distribution be fully determined by the conditional distribution. The aim is to
generate random variate from U ,V and W as follows: It has been shown that

Algorithm 2 Gibbs Sampler

1: initialize U (0), V (0) and W (0)

2: for j = 1 : B do
3: Draw U (j) ∼ P (U |V (j−1),W (j−1))
4: Draw V (j) ∼ P (V |U (j),W (j−1))
5: Draw W (j) ∼ P (W |U (j), V (j))
6: end for
7: return (U (B), V (B),W (B))

as B → ∞ , the joint distribution (U (B), V (B),W (B)) converges to P (U, V,W )
at an exponential rate [63]. Convergence of the Gibbs sampler can be thought
of as the Markov chain reaching the stationary distribution.

5.3.2 Variational Inference

In the previous section we discussed Gibbs sampling [17] which is a Markov
Chain Monte Carlo (MCMC) method. MCMC methods form part of the stochas-
tic route to finding a solution for the posterior distribution of the latent vari-
ables. Variation inference (VI) or variational Bayes falls into the deterministic
solution of inference. The basic idea is to pick an approximation q(z; v) with
variational parameter v from some tractable family, and then try to make this
approximation as close as possible to the true posterior distribution p(z|x), usu-
ally by minimising the Kullback-Leibler divergence KL(q(z; v)||p(z|x)) from the
posterior to the approximate distribution [37]. This is illustrated in Figure 5.3.

35

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



Figure 5.3: Variational inference illustration

5.4 Evaluation Methods

The methods described in this Chapter require metrics to measure their perfor-
mance. However there is no way to measure performance using model param-
eters for topic models on a task . This is a result of having no ground truth
for unstructured text [12]. For specific applications such as IR and document
classification there exist evaluation measures [12,58], these are extrinsic evalua-
tion measures. There are also intrinsic measures of performance, these metrics
are independent of any application and measure the quality of the models based
on held-out data previously unseen to the model. When using perplexity as a
intrinsic evaluation measure for topic models we must think of the topic models
as language models and they are bad language models due to the bag-of words
assumption [37]. In [58] there are other held-out probability estimation meth-
ods that are discussed that can be explored, but are outside of the scope of
this study. Held-out probability methods for evaluating topic models have been
criticised [10] and a coherence measure was proposed to measure human inter-
pretability of topics models automatically. There are also human evaluation
methods that have been described in evaluating topics such as word intrusions
and topic intrusions [10]. For our applications we rely on extrinsic measures
since IR is the application considered for this study. We still discuss perplexity
in the next section.

5.4.1 Perplexity

The perplexity of a language model on a held-out dataset is the inverse prob-
ability of the held-out dataset, normalised by the number of words [24]. For a
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test set dt = {wti}
Ndt
i=1 :

Perplexity(dt) = P (wt1, wt2, . . . , wtNdt
)
− 1

Ndt

= Ndt

√
1

P (wt1,wt2,...,wtNdt
)

(5.1)

Using the chain rule we get:

Perplexity(dt) =
Ndt

√√√√Ndt∏
i

1

P (wti|wt1, . . . , wti−1)
(5.2)

To measure the performance of the models we want to assign a higher probability
to the test set. This means that the model is accurately predicting the test set.
Note that a higher probability means a smaller perplexity value. Therefore
maximising the fit of the model to the test set is the same as minimising the
perplexity of the model [24]. For evaluating topic models, perplexity is useful
for model selection and can measure the relative performance between topic
models as the number of chosen topics [12]. However, heavy criticism has been
place on perplexity as an intrinsic evaluation measure for topic models [10,12].
This is in part due to the perplexity’s dependence on the vocabulary size being
modelled. This means we cannot use it to compare models with different input
features or that have different input languages. We then investigate coherence
and how it differs from the measure we have just discussed.

5.4.2 Coherence

Though perplexity has is useful as a tool to pick parameters for a topic model
or to choose which models to use for a collection. The held-out log-likelihood is
not a good representative for the quality of topic model produced by the model
[35,38,47]. The goal is to develop a measure that will reflect the interpretability
of the topic produced by a topic models when presented to a human. This then
leads to the overall consumption of topic models by the end user. We discuss
the different measures of coherence below which are reviewed in [47]. We start
with a measure introduced in [38] :

CUCI = 2
N(N−1)

∑N−1
i=1

∑N
j=i+1 PMI(wi, wj)

PMI(wi, wj) = log
P (wi,wj)+ε
P (wi)·P (wj)

(5.3)

The measure is based on point-wise mutual information (PMI) and in the re-
sults presented in [38], this measure correlated most with human judgement
of coherent topics. The probabilities are based on word co-occurrence counts.
Another variant of coherence measure was discussed in [35] which accounted
for the ordering of the words in each topic. We measure this coherence in the
following way :

CUMass =
2

N(N − 1)

N−1∑
i=2

i−1∑
j=1

log
P (wi, wj) + ε

P (wj)
(5.4)
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We limit our discussion to these two measures of coherence, we refer to the
reader to [47] for further reading. We have discussed evaluation methods for
topic modelling and move on to the estimation of the latent variable.

5.4.3 Conclusion

In this section we discussed the latent variable models namely; probabilistic
latent semantic index and latent Dirichlet allocation, which are both generative
models. Where the LDA is a Bayesian graphical model in that it places priors
on the hyper parameters. We also describe evaluation methods for the models
in the way of perplexity and coherence. We also touch on the estimation of
parameters using MCMC methods and variational inference. We move on to
discuss how these measures can be used in the application of relevance judgement
and information retrieval.
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Chapter 6

Application

In this chapter we apply both models on datasets in order to assess their ability
to produce appropriate latent semantic representations of corpora. We use two
datasets, namely, the popular baseline 20 newsgroup1 data and a fake news
data sets (https://www.kaggle.com/mrisdal/fake-news). Although our methods
are unsupervised, the labels associated with documents in the datasets provide
a ground truth of semantically relevant and irrelevant documents. We can
therefore assess whether a model is able to identify relevant documents from
irrelevant ones for previously unseen data in an unsupervised fashion.

6.1 Datasets

6.1.1 20 Newsgroup

We use two datasets these are the 20-newsgroup and the fake news data sets.
The 20-newsgroup data2 contains 18846 newsgroup documents split between 20
categories. This data set is broken up into two, the training set for parameter
estimation and development and the test set for model performance evalua-
tion. We access this data set using the sci-kit learn library in Python which
is equipped with functions that make data extraction and loading simple. In
Figure 6.1 we find the distribution of documents in for each of the categories in
the training set.

1http://qwone.com/ jason/20Newsgroups/
2http://archive.ics.uci.edu/ml/datasets/twenty+newsgroups
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Figure 6.1: Category distribution for training data

6.1.2 Fake News

The dataset contains text and metadata from 244 pages, comprising a total of
12,999 comments. The data is collected using the webhose.io API. Each website
was labeled according to the BS Detector. A ’bs‘ tag was applied to data sources
that lacked a label. No real, credible or trustworthy news sources are identified
in this dataset. This BS Detector is a Google Chrome Extension made by Daniel
Sieradski (https://www.kaggle.com/mrisdal/fake-news).
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6.2 Data Preparation

The prepossessing phase of modelling converts the original textual data to a
machine readable format, where the most significant text features that are se-
lected to differentiate between categories are identified [54]. Text data are very
noisy and the preprocessing stage is crucial in order to reduce noise and improve
the quality of the model. The colloquial phrase “Garbage in, garbage out” gives
meaning to why we must first clean our data before any modelling is done. The
following steps constitute the basic functions in data preparation for text:

1. Text normalisation

2. Removal of stopwords

3. Tokenisation

4. Stemming / Lemmatisation

6.2.1 Text normalisation

The process of text normalisation aim to cleans an input word or sentence by
transforming all non-standard lexical or syntactic variation into their standard
dictionary form [36]. This phase of data preparation includes but is not limited
to:

• Converting all letters to lower or uppercase

• Converting numbers into words or removing them

• Removing punctuation, accent marks and other diacritics3

• Removing leading and trailing spaces

6.2.2 Removal of stopwords

Stopwords are frequent words that have been proven to carry no information. In
the context on language specific stopword we refer to functional words such as
pronouns, propositions and conjugations. The impact of stopwords in text pro-
cessing is mainly related to term weighting [14]. This effect to term weighting is
from the frequency difference of stopwords to other words in the corpus. Their
frequency can also cause problems in efficiently processing text since they con-
tribute little information. The removal of stopwords can increase the efficiency
of the indexing process since they form 30 to 50% of tokens in large text [14].
6.2.

3A sign, such as an accent or cedilla, which when written above or below a letter indicates a
difference in pronunciation from the same letter when unmarked or differently marked. Found
in languages such as Setswana and Tshivenda in the South African context
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Figure 6.2: Stopword distribution for 20newsgroup

Other areas of contempt for modelling text are short and empty documents.
We find how many documents are empty in our training set. We find that there
are 218 documents that contain zero characters. This is 1.93% of our training
data. For documents shorter than 150 words we find there are 8027 documents
from the 11314 documents in our training set. We observe the distribution of
short words in figure 6.3.

Figure 6.3: Distribution of short text in training set

For our study we consider documents that have fewer than 30 words as short
documents and remove the 218 empty documents.
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6.2.3 Tokenisation

Tokensation is the process of breaking up a sequence of characters in text by lo-
cating word boundaries, the point where one word ends and another begins [41].
The result is broken up strings, called tokens. This step of data preparation al-
lows the document to be broken down to units that constitute it. With the
removal of stopwords and text normalisation the result of tokenisation is a bag
of words. From this bag we can construct a vector representation of the docu-
ment by using the frequency as a weight for each index term in the document.
The issues of tokenisation are language specific. Thus there are approaches
to tokenisation for space delimited languages and approached for unsegmented
languages [41]. European languages are space delimited languages in which a
space insertion indicates a word boundary. While Japanese, Chinese and Thai
are unsegmented languages and there is a succession of words without spaces
between them. When tokenisation is more challenging and difficult to capture
in a few rules, a machine learning approach can be useful. In this case tokeni-
sation is treated as a character classification problem or a sequential labelling
problem4.

6.2.4 Stemming and Lemmatisation

A stemming algorithm is a computational procedure which reduces all words
of the same root to a common form, usually by stripping each word of its
derivational and inflectional suffixes [29]. While lemmatization refers to the use
of vocabulary and morphological analysis of words to try and remove inflectional
endings and return words to their dictionary form [3]. There are many stemming
algorithms, but in this study Porter’s stemmer is considered since its simple
approach to conflation (mapping similar stems together) seem to work well in
practice and it is applicable to a range of languages [62]. Applying a stemming
algorithm in data preparation ensures that there is a reduction in the number of
words being indexed [3], thus reducing our feature space and this may have an
impact on retrieval performance. Lemmatization on the other hand, analyzes
whether words in the query are nouns or verbs. It also increases the retrieval of
relevant documents through the use of synonyms. Lemmatization also reduces
the feature space and has shown to improve retrieval performance as result
[3]. Further a comparison between stemming and lemmatization reveals that
lemmatization outperforms stemming [3]. This may be a result of limitations
inherent in the stemming algorithm, in that it has no access to information about
grammatical and semantic relation for each word being processed [29]. Where
as lemmatization is more advanced since it considers morphological analysis and
has access to word synonyms unlike stemming [3].
The application of the aforementioned data preparation methods result in a
sparse document × word matrix. An extra step of filtering words based on
minimum and maximum frequency is applied. This step will result in less sparse

4https://uclmr.github.io/stat-nlp-book-scala/01 tasks/00 tokenization.html
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matrix which results in better model performance [30]. The data preparation
coding is done in the NLP package gensim [46] in Python 3.7.

6.3 Document Similarity

We train the LDA and word2vec models on 20 newsgroup data to observe how
each perform in measuring similarity between categories. We use soft cosine
similarity to measure the distance between vectors. We train both models on
the entire training set from different categories and hold out some documents
for testing. We use the gensim library from python to train both models, and
we compare the distance distributions for each models between categories. We
also look at the Kolmogorov-Smirnov test to see whether the two distance dis-
tributions are significantly different or not. Using some of the preprocessing
techniques that have been discussed in Section 6.2, we clean the documents and
filter out for short documents that contain 20 or less words. Figure 6.4 contains
the lengths of the documents in the collection.

Figure 6.4: Distribution for documents lengths

6.3.1 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test or K-S test is a non parametric test that mea-
sures the the maximum distance between distributions. The Kolmogorov- Smirnov
statistic quantifies a distance between the empirical distribution function of the
sample and the cumulative distribution function of the reference distribution,
or between the empirical distribution functions of two sample5. The result is a
statistical approach to determine whether two distributions are generated from
samples coming from the same population. This test makes no assumptions of

5https://towardsdatascience.com/Kolmogorov-Smirnov-test-84c92fb4158d
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normality for the distributions. We formally define this test. Given the cu-
mulative distribution F0(x) of the hypothesized distribution and the empirical
distribution Fdata(x) of the observed data, the Kolmogorov- Smirnov test is
given by,

D = sup
x
|F0(x)− Fdata(x)|

Discussion on the differences on the distribution of this statistic when we are
working with continuous versus when we are working with discrete distributions
[1] which is beyond the scope of this study.

6.4 Experimental Setup

We train the LDA model with paratmeters α =0.001 , β = 0.005 and K =100.
We use the Gensim [45] library in Python 3.7. We choose a reference category
to form a ground truth for our similarity measures. For the LDA we use the
Jensen-Shannon divergence to evaluate similarity. We compare the results of the
LDA to word2vec and use the soft-cosine similarity measure. The word2vec is
also found in the gensim library with a window size of 5 and a variable dimension
size for the word vectors based on the number of documents in the our training
set. We use the continuous bag-of-words [33] or CBOW algorithm for training
the neural network. We then investigate the relevance judgement of each of the
model by measuring the minimum score assigned to the reference corpus and
how many non relevant documents were discarded as a result.

Experiment 1: Investigate average similarity distance measures for
the LDA and word2vec to evaluate semantic relatedness :

We investigate similarity performance of the LDA and compare it to that of the
word2vec with the motorcycle category as the reference topic and the auto and
politics categories as tests. We expect the similarity between the auto category
and the reference to be higher than that of the reference and the politics category
since the latter are compose of completely different vocabularies. We inspect
the average Jensen-Shannon divergence and compare these results to the mean
soft-cosine distances for the word2vec. We inspect the Kolmogorov- Smirnov
test results to see whether the results from Figure 6.5a, Figure 6.5b, Figure 6.6a
and Figure 6.6b are statistically significant. We implement ks-2samp function
from the stats package in the Scipy library in Python 3.7 for the results in Table
6.1.
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(a) Motorcycle vs. politics for LDA (b) Motorcycle vs. politics for word2vec

Figure 6.5: Average distance distribution

Model K-S statistic p-value

LDA(Motorsport v Politics) 04720 6.9400e-68
W2V(Motorsport v Politics) 4.4962e-06 1.0

LDA(Motorsport v Auto) 0.1050 1.2817e-306
W2V(Motorsport v Auto) 4.4720e-06 1.0

LDA(Tech v Religion) 0.3163 0
W2V(Tech v Religion) 6.9283e-06 1

Table 6.1: Kolmogorov-Smirnov Test (Motorsport v. Auto v. Politics)

Looking at the K-S statistic and the p-value for both cases of the LDA, we reject
the null hypothesis that the average similarity between motorsport and politic
is identical. And the average similarity of the auto category is identical to the
motorsport. We can suggest that this may be true since both categories are
not actually identical to the reference though the auto labelled data are similar.
For the word2vec we inspect both the K-S statistic and the p-value and in both
cases we not reject the null hypothesis.

It seems for word embeddings all the categories are represented with similar
word vectors and the soft-cosine distance scores documents from the motorsport
identically to those that come from the politics and auto category.
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(a) Motorcycle vs. Auto for LDA (b) Motorcycle vs. auto for word2vec

Figure 6.6: Distance distribution for similar categories

(a) Technology vs.religion for LDA (b) Technology vs.religion for word2vec

Figure 6.7: Distance distribution for different categories

We observe that if we change the reference category to the technology category
we have Figure 6.7a for the LDA and Figure 6.7b for word2vec. We see that the
LDA in this regard has shorter average distances for the religion category than
it has for the reference category documents. We observe that for the word2vec
these distances are much closer than that of the LDA, but we have that the
religion category still has shorter average similarity distances when compared
to the reference category. We move on to measures of evaluation to tell how
well our models are performing, using more intrinsic evaluation methods.

Experiment 2: Investigating whether semantic similarity is connected
to retrieval of relevant documents

We take an application of relevance judgement or retrieval as the extrinsic
method of evaluation and connect it to the average distances we inspected in
Experiment 1. We aim to be able to form a base line with this analysis of av-
erage distance distributions. For this we look at the fake news data. We start
with Figure 6.8a and Figure 6.13b. These are the average distance pseudo CDFs
for the LDA and word2vec. We observe two different trends, with the reference
category in green(Reliable news sources) and the unreliable news having longer
average distances when compared to the reference.
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In Figure 6.8a we observe that the LDA have shorter average distances for
the reliable news as compared to the unreliable news. The same is true of the
word2vec in Figure 6.13b. We the see if this affects the models ability to pick
those documents that are relevant from the rest of the corpus.

(a) (b)

Figure 6.8: Distance distribution between models

In Figure 6.9 we have the framework which will inform us of how each of the
models tested on a data set perform

Figure 6.9: Relevance plot for fake news data LDA

For Figure 6.10 we have that though this model has a steeper average distance
for documents in the reliable class, the minimum score given for the true relevant
documents only allows for 30 true irrelevant documents to be discarded from
1919. This is equivalent to 1.56% documents automatically discarded based on
the score allocated by the LDA. The word2vec does a better job.
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Figure 6.10: Relevance plot for fake news data LDA

As can be seen in Figure 6.11 the word2vec does a better job separating relevant
documents from that are irrelevant. It manages to discard 60 true irrelevant
documents from 2050 documents. This means 2.98% of irrelevant documents
are discarded automatically based on the score given by the word2vec.

Figure 6.11: Relevance plot for fake news data word2vec

Experiment 3: Investigating the effect K on semantic similarity and
to retrieval of relevant documents:

We observe the the effect of the number of topics chosen for the LDA model on
the fake news data set, we have 12999 documents and we remove any documents
that have less that 30 tokens and we remain with 11340 documents that we split
90/10 into the training and test set. We set a seed value to keep consistent results
and keep all the corpus parameters α and β fixed. We then get the average
Jensen-Shannon divergence minus 1 as the similarity measure and observe the
difference in distance between the ‘Bias’ category and the ‘BS’ category in the
data set.
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(a) (b)

Figure 6.12: Distance distribution for LDA

There are 34 Bias documents in the entire corpus, significantly less to those of
the BS documents. But for both K values we have that the Bias distances are
relatively smaller than those of the BS when compared to the training corpus.
We observe whether this has any effect on the retrieval of relevant documents
in our corpus using the 1157 test documents. We observe the following results:

(a) (b)

Figure 6.13: Distance distribution for LDA

For both models we have a zero percent dicarding of true irrelevant or in
this case BS documents. We look at the more interesting case of K = 250 and
K = 300 in the following:

(a) (b)

Figure 6.14: Distance distribution for LDA

In this case we observe the BS and Bias categories to be much closer than in
6.12. But let us observe what this means in terms of retrieval in the following:
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(a) (b)

Figure 6.15: Distance distribution for LDA

We observe that for K = 250 the LDA has a better performance than when
we have K = 300, but we cannot observe from 6.14 a distinguishable way to
deduce the results in 6.15. We move on to conclude the results presented in this
work and would be possible next steps.
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Chapter 7

Conclusion

7.1 Evaluation and outcomes

We investigate the performance of LDA - a probabilistic representation and
word2vec - a prediction-based representation on the task of semantic represen-
tation. The objective of these experiments is to evaluate the respective model’s
ability to capture the latent semantic space of a corpus. We implement the LDA
and word2vec models on 20newsgroups and fake news data. In experiment 1,
we visualise the cumulative semantic distances. It seems from the final set of
experiments (represented in Figure 6.7a) that LDA produces shorter distances
between the training and test sets for the same category than between different
categories. Both datasets are labelled, which enables us to use a ground truth:
The observations (documents in our case) are labelled as relevant (blue) and not
relevant (red). We introduce a relevance graph based on a minimum threshold
value for what we label as the true relevant data. The threshold value acts as
a decision boundary in order to determine the predicted labels of the test doc-
uments. Our results prove that the word2vec model have a better classification
rate than the LDA.

7.2 Contribution

High dimensional data such as text are often labelled as big data, not only be-
cause of high volumes, but also because of veracity and velocity. It is for these
reasons that unsupervised representations are becoming more in demand in or-
der to project the data onto a lower dimensional space that is more manageable.
In this work, we packaged a well known topic model, LDA as a distributional
semantic model. We compare LDA’s ability to model a corpus’ semantics and
to distinguish between corpora to a a well established model - word2vec. LDA
shows promise in the task of dimensionality reduction and semantic represen-
tation of a corpus. It is clear from experiments that LDA performs better in
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scenarios where the categories are decisively different as oppose to where the
differences are more subtle.

7.3 Future Work

We recommend the following considerations be made on any future work based
on this study:

• Even though perplexity is a point of contention in the topic modelling
community as an intrinsic measure, it maybe of value to explore it as an
intrinsic evaluation measure for both models

• The use of the pLSI in search engine optimisation may suggest it being
suitable in a comparative study to observe whether the result provided by
the LDA model can be relied on.

• Parameter tunning for both models: By this we mean using the best
estimates for both models on the training data that is available to the
model. This can provide more insight as to which model performs the
best.

• Exploring the effect of the chosen number of topics on the performance
when compared to the word2vec.

• Lastly, exploring models such as the Hierarchical Latent Dirichlet model
on the same task could be of benefit since this remove the influence on
modelling as a result if the number of topics chosen by the practitioner.

7.4 Conclusion

In the task of retrieval we seek automated solutions to cut down on costs and
improve efficiency. This can be achieved by the use of machine learning al-
gorithms. With this work we explored a generative, probabilistic approach to
achieve this objective. We illustrated that LDA achieve satisfactory results in
this task when semantics between a relevant corpus and irrelevant query are
significantly different. The results encourages further investigation into this
topic.
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[40] Vı́t Novotnỳ. Implementation notes for the soft cosine measure. In Pro-
ceedings of the 27th ACM International Conference on Information and
Knowledge Management, pages 1639–1642. ACM, 2018.

[41] David D Palmer. Tokenisation and sentence segmentation. Handbook of
natural language processing, pages 11–35, 2000.

[42] Siddharth Patwardhan, Satanjeev Banerjee, and Ted Pedersen. Using mea-
sures of semantic relatedness for word sense disambiguation. In Interna-
tional conference on intelligent text processing and computational linguis-
tics, pages 241–257. Springer, 2003.

[43] Jefferson Provost. Naıve-bayes vs. rule-learning in classification of email.
University of Texas at Austin, 1999.

[44] GN Ramadevi and K Usharani. Study on dimensionality reduction tech-
niques and applications. Publications of Problems & Application in Engi-
neering Research–Paper, 4, 2013.

[45] Radim Rehurek and Petr Sojka. Software framework for topic modelling
with large corpora. In In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. Citeseer, 2010.
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.1 Code: Fake News Classifier Application

1 import numpy as np

2 import pandas as pd

3 from sklearn.model_selection import train_test_split

4 from googletrans import Translator

5 from simplejson import JSONDecodeError

6 import re

7 from sklearn import metrics

8 import matplotlib.pyplot as plt

9 %matplotlib inline

10 #import the data

11 fake_news = pd.read_csv('/home/szmjali/Desktop/Research Code/Code for research/fake newstrain.csv')

12 fake_news_data=fake_news[['text','label']]

13 fake_news_data['text']=fake_news_data['text'].map(lambda x: re.sub('[^A-Za-z]+', ' ',str(x)))

14 fake_news_data=fake_news_data.dropna()

15 X_train,X_test,y_train,y_test = train_test_split(fake_news_data['text'],fake_news_data['label'],test_size = 0.2)

16 #from sklearn.feature_extraction.text import TfidfVectorizer

17 from sklearn.feature_extraction.text import CountVectorizer

18 cvec = CountVectorizer(stop_words='english',min_df=10)

19 bag_of_words = cvec.fit_transform(X_train)

20 feature_names = cvec.get_feature_names()

21 bag_of_words_test=cvec.transform(X_test)

22 vectorized_text =pd.DataFrame(bag_of_words.A,

23 columns=cvec.get_feature_names())

24 vectorized_text_test =pd.DataFrame(bag_of_words_test.A,

25 columns=cvec.get_feature_names())

26

27 from sklearn.naive_bayes import MultinomialNB

28 nb = MultinomialNB()

29 nb_model = nb.fit(vectorized_text, y_train)

30 acc = nb_model.score(vectorized_text, y_train)

31 ratio_class1 = y_train.mean()

32 from sklearn import svm

33 clf=svm.LinearSVC()

34 svm_model=clf.fit(vectorized_text,y_train)

35 res= svm_model._predict_proba_lr(vectorized_text_test)

36 mnb_predicted = nb_model.predict(vectorized_text_test)

37 svm_predicted= svm_model.predict(vectorized_text_test)

38 mnb_probs = nb_model.predict_proba(vectorized_text_test)

39 mnb_acc_score = metrics.accuracy_score(y_test, mnb_predicted)

40 svm_acc_score = metrics.accuracy_score(y_test, svm_predicted)
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41 mnb_auc_score = metrics.roc_auc_score(y_test, mnb_probs[:, 1])

42 svm_auc_score = metrics.roc_auc_score(y_test, res[:, 1])

43 print(metrics.classification_report(y_test, mnb_predicted))

44 print(metrics.classification_report(y_test, svm_predicted))

45

46 fpr, tpr, thresholds = metrics.roc_curve(y_test, mnb_probs[:, 1], pos_label=1)

47 fpr2, tpr2, thresholds2 = metrics.roc_curve(y_test, res[:, 1], pos_label=1)

48

49 plt.figure()

50 lw = 2

51 plt.plot(fpr, tpr, color='red',

52 lw=lw, label='MNB ROC curve (area = %0.2f)' % metrics.roc_auc_score(y_test, mnb_probs[:, 1]))

53 plt.plot(fpr2, tpr2, color='green',

54 lw=lw, label='SVM ROC curve (area = %0.2f)' % metrics.roc_auc_score(y_test, res[:, 1]))

55

56 plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

57 plt.xlim([0.0, 1.0])

58 plt.ylim([0.0, 1.05])

59 plt.xlabel('False Positive Rate')

60 plt.ylabel('True Positive Rate')

61 plt.title('ROC Curve of SVM v. MNB')

62 plt.legend(loc="lower right")

63 plt.show()

64

65 def plot_confusion_matrix(y_true, y_pred, classes,

66 normalize=False,

67 title=None,

68 cmap=plt.cm.Blues):

69 """

70 This function prints and plots the confusion matrix.

71 Normalization can be applied by setting `normalize=True`.

72 """

73 if not title:

74 if normalize:

75 title = 'Normalized confusion matrix'

76 else:

77 title = 'Confusion matrix, without normalization'

78

79 # Compute confusion matrix

80 cm = metrics.confusion_matrix(y_true, y_pred)

81 # Only use the labels that appear in the data

82 if normalize:

83 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

84 print("Normalized confusion matrix")

85 else:

86 print('Confusion matrix, without normalization')

87

88 print(cm)
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89

90 fig, ax = plt.subplots()

91 im = ax.imshow(cm, interpolation='nearest', cmap=cmap)

92 ax.figure.colorbar(im, ax=ax)

93 # We want to show all ticks...

94 ax.set(xticks=np.arange(cm.shape[1]),

95 yticks=np.arange(cm.shape[0]),

96 # ... and label them with the respective list entries

97 xticklabels=classes, yticklabels=classes,

98 title=title,

99 ylabel='True label',

100 xlabel='Predicted label')

101

102 # Rotate the tick labels and set their alignment.

103 plt.setp(ax.get_xticklabels(), rotation=45, ha="right",

104 rotation_mode="anchor")

105

106 # Loop over data dimensions and create text annotations.

107 fmt = '.2f' if normalize else 'd'

108 thresh = cm.max() / 2.

109 for i in range(cm.shape[0]):

110 for j in range(cm.shape[1]):

111 ax.text(j, i, format(cm[i, j], fmt),

112 ha="center", va="center",

113 color="white" if cm[i, j] > thresh else "black")

114 fig.tight_layout()

115 return ax

116

117 mnb_cm = metrics.confusion_matrix(y_test, mnb_predicted)

118 svm_cm = metrics.confusion_matrix(y_test, svm_predicted)

119

120 plot_confusion_matrix(y_test, mnb_predicted, classes=[0,1],

121 title='Confusion matrix(MNB), without normalization')

122

123 plot_confusion_matrix(y_test, svm_predicted, classes=[0,1],

124 title='Confusion matrix(SVM), without normalization')

Code: 20Newsgroups multi-class classification Ap-
plication

1 from sklearn.datasets import fetch_20newsgroups

2 from sklearn.feature_extraction.text import TfidfVectorizer,CountVectorizer

3 import numpy as np

4 from sklearn.naive_bayes import MultinomialNB

5 from sklearn import metrics
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6 from sklearn import svm

7 newsgroups_train = fetch_20newsgroups(subset='train')

8 categories = ['rec.motorcycles', 'talk.religion.misc','talk.politics.mideast','rec.autos','comp.sys.ibm.pc.hardware',]

9 newsgroups_train = fetch_20newsgroups(subset='train',categories=categories)

10 newsgroups_test = fetch_20newsgroups(subset='test',categories=categories)

11 cvec = CountVectorizer(stop_words='english',min_df=10)

12 bag_of_words=cvec.fit_transform(newsgroups_train.data)

13 vectorizer = TfidfVectorizer(max_df=0.5,min_df=2,

14 ngram_range=(1,2),

15 stop_words='english',

16 token_pattern=r'\b[^\d\W]+\b')

17

18 vectors = vectorizer.fit_transform(newsgroups_train.data)

19 bag_of_words_test=cvec.transform(newsgroups_test.data)

20 vectors_test = vectorizer.transform(newsgroups_test.data)

21 nbm_clf = MultinomialNB(alpha=.01)

22 y_score=nbm_clf.fit(vectors, newsgroups_train.target)

23 nbm_pred = nbm_clf.predict(vectors_test)

24 probs = nbm_clf.predict_proba(vectors_test)

25 clf=svm.LinearSVC()

26 svm_model=clf.fit(vectors,newsgroups_train.target)

27 svm_pred = clf.predict(vectors_test)

28 print(metrics.classification_report(newsgroups_test.target, nbm_pred, target_names=categories))

29 print(metrics.classification_report(newsgroups_test.target, svm_pred))

30 import matplotlib.pyplot as plt

31 from sklearn import svm, datasets

32 from sklearn.model_selection import train_test_split

33 from sklearn.preprocessing import label_binarize

34 from sklearn.metrics import roc_curve, auc

35 from sklearn.multiclass import OneVsRestClassifier

36 plt.figure()

37 lw = 2

38 n_classes=len(categories)

39 fpr = dict()

40 tpr = dict()

41 roc_auc = dict()

42 for i in range(n_classes):

43 fpr[i], tpr[i], _ = metrics.roc_curve(newsgroups_test.target, probs[:,i],pos_label=1)

44 roc_auc[i] = metrics.auc(fpr[i], tpr[i])

45 colors = ['blue', 'red', 'green','yellow','purple','navy']

46 for i, color in zip(range(n_classes), colors):

47 plt.plot(fpr[i], tpr[i], color=color, lw=lw,

48 label='{0} (area = {1:0.2f})'

49 ''.format(categories[i], roc_auc[i]))

50 plt.plot([0, 1], [0, 1], 'k--', lw=lw)

51 plt.xlim([-0.05, 1.0])

52 plt.ylim([0.0, 1.05])

53 plt.xlabel('False Positive Rate')
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54 plt.ylabel('True Positive Rate')

55 plt.title('Receiver operating characteristic for multi-class data')

56 plt.legend(loc="lower right")

57 plt.show()

58 def plot_confusion_matrix(y_true, y_pred, classes,

59 normalize=False,

60 title=None,

61 cmap=plt.cm.Blues):

62 """

63 This function prints and plots the confusion matrix.

64 Normalization can be applied by setting `normalize=True`.

65 """

66 if not title:

67 if normalize:

68 title = 'Normalized confusion matrix'

69 else:

70 title = 'Confusion matrix, without normalization'

71

72 # Compute confusion matrix

73 cm = metrics.confusion_matrix(y_true, y_pred)

74 # Only use the labels that appear in the data

75 if normalize:

76 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]

77 print("Normalized confusion matrix")

78 else:

79 print('Confusion matrix, without normalization')

80

81 #print(cm)

82

83 fig, ax = plt.subplots()

84 im = ax.imshow(cm, interpolation='nearest', cmap=cmap)

85 ax.figure.colorbar(im, ax=ax)

86 # We want to show all ticks...

87 ax.set(xticks=np.arange(cm.shape[1]),

88 yticks=np.arange(cm.shape[0]),

89 # ... and label them with the respective list entries

90 xticklabels=classes, yticklabels=classes,

91 title=title,

92 ylabel='True label',

93 xlabel='Predicted label')

94

95 # Rotate the tick labels and set their alignment.

96 plt.setp(ax.get_xticklabels(), rotation=45, ha="right",

97 rotation_mode="anchor")

98

99 # Loop over data dimensions and create text annotations.

100 fmt = '.2f' if normalize else 'd'

101 thresh = cm.max() / 2.
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102 for i in range(cm.shape[0]):

103 for j in range(cm.shape[1]):

104 ax.text(j, i, format(cm[i, j], fmt),

105 ha="center", va="center",

106 color="white" if cm[i, j] > thresh else "black")

107 fig.tight_layout()

108 return ax

109 import numpy as np

110 from sklearn.utils.multiclass import unique_labels

111 plot_confusion_matrix(newsgroups_test.target, nbm_pred, classes=[0,1,2,3,4],

112 title='Confusion matrix, without normalization for Multinomial naive Bayes'

113 plot_confusion_matrix(newsgroups_test.target, svm_pred, classes=[0,1,2,3,4],

114 title='Confusion matrix, without normalization for Support Vector Machine')

Fake News LDA Implementation

1 #import the required libraries for the experiment

2 import pandas as pd

3 import numpy as np

4 import nltk

5 from nltk.corpus import stopwords

6 import gensim

7 from gensim.models import LdaModel

8 from gensim import models, corpora, similarities

9 import re

10 from nltk.stem.porter import PorterStemmer

11 import time

12 from nltk import FreqDist

13 from scipy.stats import entropy

14 import matplotlib.pyplot as plt

15 %matplotlib inline

16 import seaborn as sns

17 sns.set_style("darkgrid")

18 from sklearn.datasets import fetch_20newsgroups

19 from nltk.stem import WordNetLemmatize

20 df1 = pd.read_csv('fake.csv')

21 fake_data=df1[['text','type']]

22 def initial_clean(text):

23 """

24 Function to clean text of websites, email addresess and any punctuation

25 We also lower case the text

26 """

27 text = re.sub('\s+', ' ', str(text))

28 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

29 text = re.sub("[^a-zA-Z ]", "", text)
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30 text = text.lower() # lower case the text

31 text = nltk.word_tokenize(text)

32 return text

33

34 stop_words = stopwords.words('english')

35 def remove_stop_words(text):

36 """

37 Function that removes all stopwords from text

38 """

39 return [word for word in text if word not in stop_words]

40

41 lmtzr = WordNetLemmatizer()

42 def stem_words(text):

43 """

44 Function to stem words, so plural and singular are treated the same

45 """

46

47 text = [lmtzr.lemmatize(word) for word in text]

48 text = [word for word in text if len(word) > 1] # make sure we have no 1 letter words

49 return text

50

51 def apply_all(text):

52 """

53 This function applies all the functions above into one

54 """

55 return stem_words(remove_stop_words(initial_clean(text)))

56

57 def jensen_shannon(query, matrix):

58 """

59 This function implements a Jensen-Shannon similarity

60 between the input query (an LDA topic distribution for a document)

61 and the entire corpus of topic distributions.

62 It returns an array of length M where M is the number of documents in the corpus

63 """

64 # lets keep with the p,q notation above

65 p = query[None,:].T # take transpose

66 q = matrix.T # transpose matrix

67 m = 0.5*(p + q)

68 return np.sqrt(0.5*(entropy(p,m) + entropy(q,m)))

69

70 def get_most_similar_documents(query,matrix,k=10):

71 """

72 This function implements the Jensen-Shannon distance above

73 and retruns the top k indices of the smallest jensen shannon distances

74 """

75 sims = jensen_shannon(query,matrix) # list of jensen shannon distances

76 return sims.argsort()[:k] # the top k positional index of the smallest Jensen Shannon distances

77
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78 def keep_top_k_words(text):

79 return [word for word in text if word in top_k_words]

80

81 def train_lda(data):

82 """

83 This function trains the lda model

84 We setup parameters like number of topics, the chunksize to use in Hoffman method

85 We also do 2 passes of the data since this is a small dataset, so we want the distributions to stabilize

86 """

87 num_topics = 100

88 chunksize = 300

89 dictionary = corpora.Dictionary(data['tokenized'])

90 corpus = [dictionary.doc2bow(doc) for doc in data['tokenized']]

91 t1 = time.time()

92 # low alpha means each document is only represented by a small number of topics, and vice versa

93 # low eta means each topic is only represented by a small number of words, and vice versa

94 lda = LdaModel(corpus=corpus, num_topics=num_topics, id2word=dictionary,

95 alpha=1e-2, eta=0.5e-2, chunksize=chunksize, minimum_probability=0.0, passes=2)

96 t2 = time.time()

97 print("Time to train LDA model on ", len(df), "articles: ", (t2-t1)/60, "min")

98 return dictionary,corpus,lda

99

100 df['tokenized'] = df['text'].apply(apply_all)

101 all_words = [word for item in list(df['tokenized']) for word in item]

102 fdist = FreqDist(all_words)

103 k = 17000

104 top_k_words = fdist.most_common(k)

105 top_k_words[-10:]

106 top_k_words,_ = zip(*fdist.most_common(k))

107 top_k_words = set(top_k_words)

108 df['doc_len'] = df['tokenized'].apply(lambda x: len(x))

109 doc_lengths = list(df['doc_len'])

110 df.drop(labels='doc_len', axis=1, inplace=True)

111 num_bins = 1000

112 fig, ax = plt.subplots(figsize=(12,6));

113 # the histogram of the data

114 n, bins, patches = ax.hist(doc_lengths, num_bins, normed=1)

115 ax.set_xlabel('Document Length (tokens)', fontsize=15)

116 ax.set_ylabel('Normed Frequency', fontsize=15)

117 ax.grid()

118 ax.set_xticks(np.logspace(start=np.log10(50),stop=np.log10(2000),num=8, base=10.0))

119 plt.xlim(0,2000)

120 ax.plot([np.average(doc_lengths) for i in np.linspace(0.0,0.0035,100)], np.linspace(0.0,0.0035,100), '-',

121 label='average doc length')

122 ax.legend()

123 ax.grid()

124 fig.tight_layout()

125 plt.show()
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126 df = df[df['tokenized'].map(len) >= 30]

127 # make sure all tokenized items are lists

128 df = df[df['tokenized'].map(type) == list]

129 df.reset_index(drop=True,inplace=True)

130 msk = np.random.rand(len(df)) < 0.9

131 train_df = df[msk]

132 train_df.reset_index(drop=True,inplace=True)

133

134 test_df = df[~msk]

135 test_df.reset_index(drop=True,inplace=True)

136 #%%LDA train function

137 #%% Apply model

138

139 #dictionary,corpus,lda = train_lda(train_df)

140 #lda.save('lda_fakenews.model')

141 #dictionary.save('fakenews_dictionary')

142 dictionary = corpora.Dictionary.load('fakenews_dictionary')

143 lda=LdaModel.load('lda_fakenews.model')

144 # select and article at random from train_df

145 random_article_index = int(np.random.randint(len(train_df)))

146

147 bow = dictionary.doc2bow(train_df.iloc[random_article_index,5])

148 # get the topic contributions for the document chosen at random above

149 doc_distribution = np.array([tup[1] for tup in lda.get_document_topics(bow=bow)])

150 # bar plot of topic distribution for this document

151 fig, ax = plt.subplots(figsize=(12,6));

152 # the histogram of the data

153 patches = ax.bar(np.arange(len(doc_distribution)), doc_distribution)

154 ax.set_xlabel('Topic ID', fontsize=15)

155 ax.set_ylabel('Topic Contribution', fontsize=15)

156 ax.set_title("Topic Distribution for Article " + str(random_article_index), fontsize=20)

157 ax.set_xticks(np.linspace(10,100,10))

158 fig.tight_layout()

159 plt.show()

160

161 for i in doc_distribution.argsort()[-5:][::-1]:

162 print(i, lda.show_topic(topicid=i, topn=10), "\n")

163 tm = test_df[test_df.label == 1]

164 dictionary_tm = corpora.Dictionary(tm['tokenized'])

165 new_bow = [dictionary.doc2bow(doc) for doc in tm['tokenized']]

166 new_doc_distribution_tm = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

167 tp = test_df[test_df.label == 0]

168 dictionary_tp = corpora.Dictionary(tp['tokenized'])

169 new_bow = [dictionary.doc2bow(doc) for doc in tp['tokenized']]

170 new_doc_distribution_tp = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

171 corpus_motor_train = [dictionary.doc2bow(doc) for doc in train_df['tokenized']]

172 doc_topic_dist = np.array([[tup[1] for tup in lst] for lst in lda[corpus_motor_train]])

173 doc_topic_dist.shape
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174 all_sims_tm = []

175 for i in range(len(new_doc_distribution_tm)):

176 doc_sims = jensen_shannon(new_doc_distribution_tm[i],doc_topic_dist)

177 all_sims_tm.append(doc_sims)

178

179 tm = [item for sublist in all_sims_tm for item in sublist]

180 all_sims_tp = []

181 for i in range(len(new_doc_distribution_tp)):

182 doc_sims = jensen_shannon(new_doc_distribution_tp[i],doc_topic_dist)

183 all_sims_tp.append(doc_sims)

184 tp = [item for sublist in all_sims_tp for item in sublist]

185 plt.hist(tm, bins = 1000, lw = 0)

186 plt.show

187 plt.hist(tp, bins = 1000, lw = 0)

188 plt.show

189 tm.sort()

190 tp.sort()

191 cdf_tm= 1. * np.arange(len(tm)) / (len(tm) - 1)

192 cdf_tp= 1. * np.arange(len(tp)) / (len(tp) - 1)

193 tm = np.array(tm)

194 tp = np.array(tp)

195

196 plt.scatter(tm,cdf_tm, s = 0.5, color = 'g', label = 'Training motorcycles against test motorcycles')

197 plt.scatter(tp,cdf_tp, s = 0.5, color = 'r', label = 'Training motorcycles against politics')

198

199 plt.legend()

200 plt.show

201

202 from scipy import stats

203 x = stats.ks_2samp(tm, tp)

204 print(x)

Fake news with median LDA scores on test data-
Relevance

1 import pandas as pd

2 import numpy as np

3 import nltk

4 from tqdm import tqdm

5 from nltk.corpus import stopwords

6 import gensim

7 from gensim.models import LdaModel

8 from gensim import models, corpora, similarities

9 import re

10 from scipy import stats
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11 from nltk.stem.porter import PorterStemmer

12 import time

13 from nltk import FreqDist

14 from scipy.stats import entropy

15 import matplotlib.pyplot as plt

16 get_ipython().run_line_magic('matplotlib', 'inline')

17 import seaborn as sns

18 sns.set_style("darkgrid")

19 from sklearn.datasets import fetch_20newsgroups

20 from nltk.stem import WordNetLemmatizer

21

22

23 # ## Source of Data

24 # https://www.kaggle.com/c/fake-news/data

25

26 # In[2]:

27

28

29 #%% Download data

30 df = pd.read_csv('fake newstrain.csv')

31 df = df[df['text'].map(type) == str]

32 df['title'].fillna(value="", inplace=True)

33 df.dropna(axis=0, inplace=True, subset=['text'])

34 # shuffle the data

35 df = df.sample(frac=1.0)

36 df.reset_index(drop=True,inplace=True)

37

38

39 # In[3]:

40

41

42 def initial_clean(text):

43 """

44 Function to clean text of websites, email addresess and any punctuation

45 We also lower case the text

46 """

47 text = re.sub('\s+', ' ', str(text))

48 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

49 text = re.sub("[^a-zA-Z ]", "", text)

50 text = text.lower() # lower case the text

51 text = nltk.word_tokenize(text)

52 return text

53

54 stop_words = stopwords.words('english')

55 def remove_stop_words(text):

56 """

57 Function that removes all stopwords from text

58 """
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59 return [word for word in text if word not in stop_words]

60

61 lmtzr = WordNetLemmatizer()

62 def stem_words(text):

63 """

64 Function to stem words, so plural and singular are treated the same

65 """

66

67 text = [lmtzr.lemmatize(word) for word in text]

68 text = [word for word in text if len(word) > 1] # make sure we have no 1 letter words

69 return text

70

71 def apply_all(text):

72 """

73 This function applies all the functions above into one

74 """

75 return stem_words(remove_stop_words(initial_clean(text)))

76

77 def jensen_shannon(query, matrix):

78 """

79 This function implements a Jensen-Shannon similarity

80 between the input query (an LDA topic distribution for a document)

81 and the entire corpus of topic distributions.

82 It returns an array of length M where M is the number of documents in the corpus

83 """

84 # lets keep with the p,q notation above

85 p = query[None,:].T # take transpose

86 q = matrix.T # transpose matrix

87 m = 0.5*(p + q)

88 return np.sqrt(0.5*(entropy(p,m) + entropy(q,m)))

89

90 def get_most_similar_documents(query,matrix,k=10):

91 """

92 This function implements the Jensen-Shannon distance above

93 and retruns the top k indices of the smallest jensen shannon distances

94 """

95 sims = jensen_shannon(query,matrix) # list of jensen shannon distances

96 return sims.argsort()[:k] # the top k positional index of the smallest Jensen Shannon distances

97

98

99 # In[4]:

100

101

102 df['tokenized'] = df['text'].apply(apply_all)

103

104

105 # In[5]:

106
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107

108 # only keep articles with more than 30 tokens, otherwise too short

109 df = df[df['tokenized'].map(len) >= 40]

110 # make sure all tokenized items are lists

111 df = df[df['tokenized'].map(type) == list]

112 df.reset_index(drop=True,inplace=True)

113 print("After cleaning and excluding short aticles, the dataframe now has:", len(df), "articles")

114

115

116 # We decide to use the the training data as both training and test as we have easily accessible labelled data

117

118 # In[6]:

119

120

121 msk = np.random.rand(len(df)) < 0.9

122 train_df = df[msk]

123 train_df.reset_index(drop=True,inplace=True)

124

125 test_df = df[~msk]

126 test_df.reset_index(drop=True,inplace=True)

127

128

129 # In[7]:

130

131

132 train_df.shape

133

134

135 # ## Load saved model and dictionary

136

137 # In[8]:

138

139

140 dictionary = corpora.Dictionary.load('fakenews_dictionary_clean')

141

142

143 # In[9]:

144

145

146 lda=LdaModel.load('lda_fakenews_clean.mode')

147

148

149 # We decide to to test our models performance on how well it can discriminate between reliable and unreliable data.

150

151 # label: a label that marks the article as potentially unreliable

152 # 1: unreliable

153 # 0: reliable

154
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155 # In[10]:

156

157

158 #%%tUnreliable data

159 tm = test_df[test_df.label == 1]

160

161

162 # In[11]:

163

164

165 dictionary_tm = corpora.Dictionary(tm['tokenized'])

166 new_bow = [dictionary.doc2bow(doc) for doc in tm['tokenized']]

167 new_doc_distribution_tm = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

168

169

170 # In[12]:

171

172

173 #Reliable data

174 tp = test_df[test_df.label == 0]

175

176

177 # In[13]:

178

179

180 #%%

181 dictionary_tp = corpora.Dictionary(tp['tokenized'])

182 new_bow = [dictionary.doc2bow(doc) for doc in tp['tokenized']]

183 new_doc_distribution_tp = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

184

185

186 # In[14]:

187

188

189 corpus_motor_train = [dictionary.doc2bow(doc) for doc in train_df['tokenized']]

190

191

192 # In[15]:

193

194

195 doc_topic_dist = np.array([[tup[1] for tup in lst] for lst in lda[corpus_motor_train]])

196 doc_topic_dist.shape

197

198

199 # In[ ]:

200

201

202
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203

204

205 # In[33]:

206

207

208 all_sims_tm = []

209 for i in tqdm(range(len(new_doc_distribution_tm))):

210 doc_sims = jensen_shannon(new_doc_distribution_tm[i],doc_topic_dist)

211 all_sims_tm.append(1-np.median(doc_sims))

212

213

214 # In[34]:

215

216

217 all_sims_tm=[x for x in all_sims_tm if str(x) != 'nan']

218

219

220 # In[35]:

221

222

223 #%% this is surprisingly fast

224 #most_sim_ids = get_most_similar_documents(new_doc_distribution,doc_topic_dist)

225 all_sims_tp = []

226 for i in tqdm(range(len(new_doc_distribution_tp))):

227 doc_sims = jensen_shannon(new_doc_distribution_tp[i],doc_topic_dist)

228 all_sims_tp.append(1-np.median(doc_sims))

229 #most_similar_df['title']

230

231

232 # In[36]:

233

234

235 all_sims_tp=[x for x in all_sims_tp if str(x) != 'nan']

236

237

238 # In[37]:

239

240

241 all_sims=all_sims_tm+all_sims_tp

242

243

244 # In[38]:

245

246

247 tm_label=['r']*len(all_sims_tm)

248

249

250 # In[39]:
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251

252

253 tp_label=['b']*len(all_sims_tp)

254

255

256 # In[40]:

257

258

259 labels=tm_label+tp_label

260

261

262 # In[41]:

263

264

265 len(labels)

266

267

268 # In[42]:

269

270

271 # create dataframe of rel_index and label

272 df_original = pd.DataFrame({'label': labels,

273 'rel_index': all_sims})

274

275 df = df_original.sort_values('rel_index', ascending=False)

276 # find threshold (minimum relevance index of relevant articles)

277 threshold = df.loc[df['label'] == 'b']['rel_index'].min()

278

279 # true relevant (relevant articles above threshold)

280 true_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] > threshold)]

281 false_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] < threshold)]

282

283 # true irrelevant (irrelevant articles below threshold)

284 true_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] < threshold)]

285 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] > threshold)]

286

287 perc_ignore = float(len(true_irrelevant)) / (len(df)) * 100

288 precision = float(len(true_irrelevant)) / float(len(false_irrelevant)+len(true_irrelevant))

289 accuracy=(len(true_relevant)+len(true_irrelevant))/ len(df)

290 try:

291 recall=float(len(true_irrelevant)) / float(len(false_relevant)+len(true_irrelevant))

292 except ZeroDivisionError:

293 recall =0

294 # false irrelevant (irrelevant articles above threshold)

295 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] >= threshold)]

296

297 plt.figure(figsize=(25, 10))

298 plt.ylim([-1,max(df['rel_index']+1)])
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299 plt.xlim([0, len(labels)])

300 plt.scatter(range(len(df)), df['rel_index'], c=df['label'], s=30,alpha=0.7)

301 # plot threshold

302 plt.axhline(threshold, c='black', linewidth=1.5)

303 plt.ylabel('relevance index')

304 plt.text(1000, 1.0, r'True irrelevant: ' + str(len(true_irrelevant)) + '\n' + 'From total of: ' + str(

305 len(df)) + ' (' + "%.2f" % perc_ignore + '%)', verticalalignment='bottom', horizontalalignment='left')

306

307

308 #

Fake news with median LDA scores on test data
relevance plot

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # In[5]:

5

6

7 import pandas as pd

8 import numpy as np

9 import nltk

10 from tqdm import tqdm

11 from nltk.corpus import stopwords

12 import gensim

13 from gensim.models import LdaModel

14 from gensim import models, corpora, similarities

15 import re

16 from scipy import stats

17 from nltk.stem.porter import PorterStemmer

18 import time

19 from nltk import FreqDist

20 from scipy.stats import entropy

21 import matplotlib.pyplot as plt

22 get_ipython().run_line_magic('matplotlib', 'inline')

23 import seaborn as sns

24 sns.set_style("darkgrid")

25 from sklearn.datasets import fetch_20newsgroups

26 from nltk.stem import WordNetLemmatizer

27

28

29 # ## Source of Data

30 # https://www.kaggle.com/c/fake-news/data

31

75

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



32 # In[2]:

33

34

35 #%% Download data

36 df = pd.read_csv('fake newstrain.csv')

37 df = df[df['text'].map(type) == str]

38 df['title'].fillna(value="", inplace=True)

39 df.dropna(axis=0, inplace=True, subset=['text'])

40 # shuffle the data

41 df = df.sample(frac=1.0)

42 df.reset_index(drop=True,inplace=True)

43 df.head()

44

45

46 # In[3]:

47

48

49 def initial_clean(text):

50 """

51 Function to clean text of websites, email addresess and any punctuation

52 We also lower case the text

53 """

54 text = re.sub('\s+', ' ', str(text))

55 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

56 text = re.sub("[^a-zA-Z ]", "", text)

57 text = text.lower() # lower case the text

58 text = nltk.word_tokenize(text)

59 return text

60

61 stop_words = stopwords.words('english')

62 def remove_stop_words(text):

63 """

64 Function that removes all stopwords from text

65 """

66 return [word for word in text if word not in stop_words]

67

68 lmtzr = WordNetLemmatizer()

69 def stem_words(text):

70 """

71 Function to stem words, so plural and singular are treated the same

72 """

73

74 text = [lmtzr.lemmatize(word) for word in text]

75 text = [word for word in text if len(word) > 1] # make sure we have no 1 letter words

76 return text

77

78 def apply_all(text):

79 """
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80 This function applies all the functions above into one

81 """

82 return stem_words(remove_stop_words(initial_clean(text)))

83

84 def jensen_shannon(query, matrix):

85 """

86 This function implements a Jensen-Shannon similarity

87 between the input query (an LDA topic distribution for a document)

88 and the entire corpus of topic distributions.

89 It returns an array of length M where M is the number of documents in the corpus

90 """

91 # lets keep with the p,q notation above

92 p = query[None,:].T # take transpose

93 q = matrix.T # transpose matrix

94 m = 0.5*(p + q)

95 return np.sqrt(0.5*(entropy(p,m) + entropy(q,m)))

96

97 def get_most_similar_documents(query,matrix,k=10):

98 """

99 This function implements the Jensen-Shannon distance above

100 and retruns the top k indices of the smallest jensen shannon distances

101 """

102 sims = jensen_shannon(query,matrix) # list of jensen shannon distances

103 return sims.argsort()[:k] # the top k positional index of the smallest Jensen Shannon distances

104

105 def keep_top_k_words(text):

106 return [word for word in text if word in top_k_words]

107

108 def train_lda(data):

109 """

110 This function trains the lda model

111 We setup parameters like number of topics, the chunksize to use in Hoffman method

112 We also do 2 passes of the data since this is a small dataset, so we want the distributions to stabilize

113 """

114 num_topics = 100

115 chunksize = 300

116 dictionary = corpora.Dictionary(data['tokenized'])

117 corpus = [dictionary.doc2bow(doc) for doc in data['tokenized']]

118 t1 = time.time()

119 # low alpha means each document is only represented by a small number of topics, and vice versa

120 # low eta means each topic is only represented by a small number of words, and vice versa

121 lda = LdaModel(corpus=corpus, num_topics=num_topics, id2word=dictionary,

122 alpha=1e-2, eta=0.5e-2, chunksize=chunksize, minimum_probability=0.0, passes=2)

123 t2 = time.time()

124 print("Time to train LDA model on ", len(df), "articles: ", (t2-t1)/60, "min")

125 return dictionary,corpus,lda

126

127
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128

129

130 # In[4]:

131

132

133 df['tokenized'] = df['text'].apply(apply_all)

134

135

136 # In[6]:

137

138

139 # only keep articles with more than 30 tokens, otherwise too short

140 df = df[df['tokenized'].map(len) >= 40]

141 # make sure all tokenized items are lists

142 df = df[df['tokenized'].map(type) == list]

143 df.reset_index(drop=True,inplace=True)

144 print("After cleaning and excluding short aticles, the dataframe now has:", len(df), "articles")

145

146

147 # We decide to use the the training data as both training and test as we have easily accessible labelled data

148

149 # In[7]:

150

151

152 msk = np.random.rand(len(df)) < 0.9

153 train_df = df[msk]

154 train_df.reset_index(drop=True,inplace=True)

155

156 test_df = df[~msk]

157 test_df.reset_index(drop=True,inplace=True)

158

159

160 # In[8]:

161

162

163 train_df.shape

164

165

166 # ## Load saved model and dictionary

167

168 # In[9]:

169

170

171 dictionary = corpora.Dictionary.load('fakenews_dictionary_clean')

172

173

174 # In[10]:

175
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176

177 lda=LdaModel.load('lda_fakenews_clean.mode')

178

179

180 # We decide to to test our models performance on how well it can discriminate between reliable and unreliable data.

181

182 # label: a label that marks the article as potentially unreliable

183 # 1: unreliable

184 # 0: reliable

185

186 # In[11]:

187

188

189 #%%tUnreliable data

190 tm = test_df[test_df.label == 1]

191

192

193 # In[12]:

194

195

196 dictionary_tm = corpora.Dictionary(tm['tokenized'])

197 new_bow = [dictionary.doc2bow(doc) for doc in tm['tokenized']]

198 new_doc_distribution_tm = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

199

200

201 # In[13]:

202

203

204 #Reliable data

205 tp = test_df[test_df.label == 0]

206

207

208 # In[14]:

209

210

211 #%%

212 dictionary_tp = corpora.Dictionary(tp['tokenized'])

213 new_bow = [dictionary.doc2bow(doc) for doc in tp['tokenized']]

214 new_doc_distribution_tp = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

215

216

217 # In[15]:

218

219

220 corpus_motor_train = [dictionary.doc2bow(doc) for doc in train_df['tokenized']]

221

222

223 # In[16]:
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224

225

226 doc_topic_dist = np.array([[tup[1] for tup in lst] for lst in lda[corpus_motor_train]])

227 doc_topic_dist.shape

228

229

230 # In[18]:

231

232

233

234

235

236 # In[101]:

237

238

239 all_sims_tm = []

240 for i in tqdm(range(len(new_doc_distribution_tm))):

241 doc_sims = jensen_shannon(new_doc_distribution_tm[i],doc_topic_dist)

242 all_sims_tm.append(np.median(doc_sims))

243

244

245 # In[111]:

246

247

248 all_sims_tm=[x for x in all_sims_tm if str(x) != 'nan']

249

250

251 # In[100]:

252

253

254 #%% this is surprisingly fast

255 #most_sim_ids = get_most_similar_documents(new_doc_distribution,doc_topic_dist)

256 all_sims_tp = []

257 for i in tqdm(range(len(new_doc_distribution_tp))):

258 doc_sims = jensen_shannon(new_doc_distribution_tp[i],doc_topic_dist)

259 all_sims_tp.append(np.median(doc_sims))

260 #most_similar_df['title']

261

262

263 # In[102]:

264

265

266 all_sims_tp=[x for x in all_sims_tp if str(x) != 'nan']

267

268

269 # In[104]:

270

271
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272 get_ipython().run_line_magic('matplotlib', 'inline')

273

274

275 # In[112]:

276

277

278 all_sims_tm.sort()

279 all_sims_tp.sort()

280

281

282 # In[113]:

283

284

285 cdf_tm= 1. * np.arange(len(all_sims_tm)) / (len(all_sims_tm) - 1)

286 cdf_tp= 1. * np.arange(len(all_sims_tp)) / (len(all_sims_tp) - 1)

287

288

289 # In[145]:

290

291

292 plt.title('Reliable v Unreliable CDF distance distributions')

293 plt.scatter(all_sims_tm,cdf_tm,s=0.7, color = 'r', label = 'Lda model on unreliable test data ')

294 plt.scatter(all_sims_tp,cdf_tp,s=0.7, color = 'g', label = 'LDA model on reliable test data')

295 plt.legend()

296 plt.show

297

298

299 # KS intepretation

300 # https://towardsdatascience.com/kolmogorov-smirnov-test-84c92fb4158d

301

302 # In[118]:

303

304

305 x = stats.ks_2samp(all_sims_tm, all_sims_tp)

306

307

308 # In[119]:

309

310

311 print(x)

312

313

314 # In[120]:

315

316

317 x.statistic

318

319
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320 # In[121]:

321

322

323 x.pvalue

324

325

326 # In[128]:

327

328

329 all_sims_tm = np.array(all_sims_tm)

330 all_sims_tp = np.array(all_sims_tp)

331

332

333 # For intepretation of the Anderson-Darling test.

334 # https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.anderson_ksamp.html

335

336 # In[136]:

337

338

339 y=stats.anderson_ksamp([all_sims_tp,all_sims_tm])

340

341

342 # In[137]:

343

344

345 print(y)

346

347

348 # In[146]:

349

350

351 z=stats.ttest_ind(all_sims_tp,all_sims_tm,equal_var = False)

352

353

354 # In[147]:

355

356

357 print(z)

Word2vec Fakenews

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # In[1]:
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5

6

7 import pandas as pd

8 import numpy as np

9 import gensim

10 import time

11 import re

12 import nltk

13 import matplotlib.pyplot as plt

14 import seaborn as sns

15 from nltk.corpus import stopwords

16 sns.set_style("darkgrid")

17 from sklearn.datasets import fetch_20newsgroups

18 from nltk.stem import WordNetLemmatizer

19 from gensim.models import Word2Vec,KeyedVectors

20 from gensim.test.utils import common_texts

21 from gensim.corpora import Dictionary

22 from gensim.models import Word2Vec, WordEmbeddingSimilarityIndex

23 from gensim.similarities import SoftCosineSimilarity, SparseTermSimilarityMatrix

24 import seaborn as sns

25 from gensim.corpora import Dictionary

26 import gensim

27 # upgrade gensim if you can't import softcossim

28 from gensim.matutils import softcossim

29 from gensim import corpora

30 from gensim.utils import simple_preprocess

31

32

33 # In[2]:

34

35

36 import logging # Setting up the loggings to monitor gensim

37 logging.basicConfig(format="%(levelname)s - %(asctime)s: %(message)s", datefmt= '%H:%M:%S', level=logging.INFO)

38

39

40 # In[3]:

41

42

43 def initial_clean(text):

44 """

45 Function to clean text of websites, email addresess and any punctuation

46 We also lower case the text

47 """

48 text = re.sub('\s+', ' ', str(text))

49 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

50 text = re.sub("[^a-zA-Z ]", "", text)

51 text = text.lower() # lower case the text

52 text = nltk.word_tokenize(text)
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53 return text

54

55

56 # In[4]:

57

58

59 #%% Download data

60 df = pd.read_csv('fake newstrain.csv')

61 df = df[df['text'].map(type) == str]

62 df['title'].fillna(value="", inplace=True)

63

64

65 # In[5]:

66

67

68 df.isnull().sum()

69

70

71 # In[6]:

72

73

74 df.dropna(axis=0, inplace=True, subset=['text'])

75 # shuffle the data

76 df = df.sample(frac=1.0)

77 df.reset_index(drop=True,inplace=True)

78

79

80 # In[7]:

81

82

83 df.isnull().sum()

84

85

86 # In[8]:

87

88

89 df['tokenized'] = df['text'].apply(initial_clean)

90

91

92 # In[9]:

93

94

95 # only keep articles with more than 30 tokens, otherwise too short

96 df = df[df['tokenized'].map(len) >= 2]

97 # changed from 30 to 2 for word2vec as a result of https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial

98 # make sure all tokenized items are lists

99

100
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101 # In[10]:

102

103

104 df = df[df['tokenized'].map(type) == list]

105 df.reset_index(drop=True,inplace=True)

106 print("After cleaning and excluding short aticles, the dataframe now has:", len(df), "articles")

107

108

109 # In[11]:

110

111

112 df['tokenized'] = df['tokenized'].apply(' '.join)

113

114

115 # In[12]:

116

117

118 df.dropna(axis=0, inplace=True, subset=['tokenized'])

119

120

121 # In[13]:

122

123

124 msk = np.random.rand(len(df)) < 0.9

125 train_df = df[msk]

126 train_df.reset_index(drop=True,inplace=True)

127

128 test_df = df[~msk]

129 test_df.reset_index(drop=True,inplace=True)

130

131

132 # In[14]:

133

134

135 #%%word2vec train function

136 def train_w2v(data):

137 """

138 This function trains the word2vec model

139 """

140 t1 = time.time()

141 word2vec = Word2Vec(sentences=data, size=len(data), window=5, min_count=5, workers=4, sg=0)

142 #index the words

143 index2word_set = list(word2vec.wv.index2word)

144 word_vectors = word2vec.wv #all information is stored in word vectors

145 del word2vec #delete model to trim unneeded model state

146

147 t2 = time.time()

148 print("Time to train word2vec model on ", len(df), "articles: ", (t2-t1)/60, "min")
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149 return word_vectors, index2word_set

150

151 #%%cossim function

152 def create_soft_cossim_matrix(docsim_index, query_corpus, dictionary):

153 all_soft_cossim = []

154 for i in query_corpus:

155 if len(i) > 0:

156 sims = list(docsim_index[i])

157 all_soft_cossim.extend(sims)

158 return all_soft_cossim

159

160

161 # In[15]:

162

163

164 #word2vec = Word2Vec(sentences=df['tokenized'], size=300,window=5, min_count=5, workers=4, sg=0)

165

166

167 # In[16]:

168

169

170 #word2vec.init_sims(replace=True)

171

172

173 # In[17]:

174

175

176 #word_vectors=KeyedVectors.load('w2v fake_news')

177

178

179 # In[18]:

180

181

182

183 """

184 #%% Apply model

185 word_vectors, index2word_set = train_w2v([apply_all(doc) for doc in df['text']])

186 #%%

187 termsim_index = WordEmbeddingSimilarityIndex(word_vectors)

188 #To compute soft cosines, you need the dictionary (a map of word to unique id),

189 #the corpus (word counts) for each sentence and the similarity matrix

190

191 # Prepare a dictionary and a corpus.

192 dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in df['Data']])

193

194 # Prepare the similarity matrix

195 similarity_matrix = SparseTermSimilarityMatrix(termsim_index, dictionary) # construct similarity matrix

196 """
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197

198

199 # In[19]:

200

201

202 #word_vectors.save('w2v fake_news')

203 #dictionary.save('w2v fake news dictionary')

204 #similarity_matrix.save("w2v fakenews similarity")

205

206

207 # In[20]:

208

209

210 len(df['tokenized'])

211

212

213 # In[21]:

214

215

216 word_vectors=KeyedVectors.load('w2v fake_news')

217

218

219 # In[22]:

220

221

222 #word_vectors = word2vec.wv

223

224

225 # In[23]:

226

227

228 #word_vectors=KeyedVectors.load('word2vec.model')

229

230

231 # In[24]:

232

233

234 len(word_vectors.wv.vocab)

235

236

237 # In[25]:

238

239

240 termsim_index = WordEmbeddingSimilarityIndex(word_vectors)

241

242

243 # In[26]:

244
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245

246 dictionary = corpora.Dictionary.load('w2v fake news dictionary')

247

248

249 # In[27]:

250

251

252 #dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in df['tokenized']])

253

254

255 # In[28]:

256

257

258 similarity_matrix = SparseTermSimilarityMatrix(termsim_index, dictionary) # construct similarity matrix

259

260

261 # ### train_set we get the softcosine similarity for one set

262

263 # In[73]:

264

265

266 #Now we are ready to calculate softcossim.

267 #What we testing against (Convert the train docs into bow)

268 #%%

269 train_set = [dictionary.doc2bow(simple_preprocess(doc)) for doc in train_df.loc[train_df.label == 1]['tokenized']]

270 train_set2 = [dictionary.doc2bow(simple_preprocess(doc)) for doc in train_df.loc[train_df.label == 0]['tokenized']]

271 train_set = train_set+train_set2

272 docsim_index = SoftCosineSimilarity(train_set, similarity_matrix)

273

274

275 # In[74]:

276

277

278 len(train_set)

279

280

281 # In[32]:

282

283

284 tm = [dictionary.doc2bow(simple_preprocess(doc)) for doc in test_df[test_df.label == 1]['tokenized']]

285 tp = [dictionary.doc2bow(simple_preprocess(doc)) for doc in test_df[test_df.label == 0]['tokenized']]

286

287

288 # In[37]:

289

290

291 test_doc=tm+tp

292
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293

294 # In[38]:

295

296

297 unrel_labels=['r']*len(tm)

298

299

300 # In[39]:

301

302

303 rel_labels=['b']*len(tm)

304

305

306 # In[40]:

307

308

309 labels= unrel_labels+rel_labels

310

311

312 # In[69]:

313

314

315 len(labels)

316

317

318 # In[43]:

319

320

321 def chunks(l, n):

322 # For item i in a range that is a length of l,

323 for i in range(0, len(l), n):

324 # Create an index range for l of n items:

325 yield l[i:i+n]

326

327

328 # In[44]:

329

330

331 import statistics

332 import scipy.stats

333

334

335 # In[45]:

336

337

338

339 def mean_confidence_interval(data, confidence=0.95):

340 a = 1.0 * np.array(data)
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341 n = len(a)

342 m, se = np.mean(a), scipy.stats.sem(a)

343 h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1)

344 return m, m-h, m+h

345

346

347 # In[78]:

348

349

350 def create_soft_cossim_median_matrix(docsim_index, query_corpus, dictionary):

351 statslist = []

352 for i in query_corpus:

353 if len(i) > 0:

354 sims = docsim_index[i]

355 sims_array=np.array(sims)

356 med=np.median(sims_array)

357 statslist.extend([med])

358 return statslist

359

360

361 # In[76]:

362

363

364 def create_soft_cossim_ci_matrix(docsim_index, query_corpus, dictionary):

365 statslist = []

366 for i in query_corpus:

367 print(i)

368 if len(i) > 0:

369 sims = docsim_index[i]

370 mean,lu,up=mean_confidence_interval(sims)

371 median=np.median(sims)

372 stats=[lu,median,mean,up]

373 statslist.append([stats])

374 return statslist

375

376

377 # In[52]:

378

379

380 tm_chunks=list(chunks(tm,300))

381

382

383 # In[53]:

384

385

386 tp_chunks=list(chunks(tp,300))

387

388
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389 # In[47]:

390

391

392 for i in tm_chunks:

393 all_sims_tm = create_soft_cossim_matrix(docsim_index, i, dictionary)

394

395

396 # In[48]:

397

398

399 for i in tp_chunks:

400 all_sims_tp = create_soft_cossim_matrix(docsim_index, i, dictionary)

401

402

403 # In[79]:

404

405

406 all_sims = create_soft_cossim_median_matrix(docsim_index, test_doc, dictionary)

407

408

409 # In[80]:

410

411

412 len(all_sims)

413

414

415 # In[81]:

416

417

418 all_sims=all_sims[:2050]

419

420

421 # In[49]:

422

423

424 #%% cdf

425 all_sims_tm.sort()

426 all_sims_tp.sort()

427

428

429 # In[50]:

430

431

432 cdf_tm= 1. * np.arange(len(all_sims_tm)) / (len(all_sims_tm) - 1)

433 cdf_tp= 1. * np.arange(len(all_sims_tp)) / (len(all_sims_tp) - 1)

434

435

436 # In[51]:
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437

438

439 all_sims_tm_array = np.array(all_sims_tm)

440 all_sims_tp_array = np.array(all_sims_tp)

441

442

443 # In[63]:

444

445

446 plt.scatter(all_sims_tm_array,cdf_tm, s = 0.5, color = 'green', label = 'Word2vec on unreliable test data ')

447 plt.scatter(all_sims_tp_array,cdf_tp, s = 0.5, color = 'red', label = 'Word2vec on reliable test data')

448 plt.title("Word2Vec similarity curve")

449

450

451 plt.legend()

452 plt.show

453

454

455 # In[53]:

456

457

458 from scipy import stats

459

460

461 # In[56]:

462

463

464 x = stats.ks_2samp(all_sims_tm_array, all_sims_tp_array)

465

466

467 # In[57]:

468

469

470 print(x)

471

472

473 # In[58]:

474

475

476 x.statistic

477

478

479 # In[20]:

480

481

482 x.pvalue

483

484
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485 # In[59]:

486

487

488 y=stats.anderson_ksamp([all_sims_tp,all_sims_tm])

489

490

491 # In[60]:

492

493

494 y

495

496

497 # In[61]:

498

499

500 z=stats.ttest_ind(all_sims_tp,all_sims_tm,equal_var = False)

501

502

503 # In[62]:

504

505

506 z

507

508

509 # In[82]:

510

511

512 len(labels)

513

514

515 # In[83]:

516

517

518 len(all_sims)

519

520

521 # In[84]:

522

523

524 # create dataframe of rel_index and label

525 df_original = pd.DataFrame({'label': labels,

526 'rel_index': all_sims})

527

528

529 # In[85]:

530

531

532 df = df_original.sort_values('rel_index', ascending=False)
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533

534

535 # In[110]:

536

537

538 # find threshold (minimum relevance index of relevant articles)

539 threshold = df.loc[df['label'] == 'b']['rel_index'].min()

540

541 # true relevant (relevant articles above threshold)

542 true_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] > threshold)]

543 false_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] < threshold)]

544

545 # true irrelevant (irrelevant articles below threshold)

546 true_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] < threshold)]

547 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] > threshold)]

548

549 perc_ignore = float(len(true_irrelevant)) / (len(df)) * 100

550 precision = float(len(true_irrelevant)) / float(len(false_irrelevant)+len(true_irrelevant))

551 accuracy=(len(true_relevant)+len(true_irrelevant))/ len(df)

552 recall=float(len(true_irrelevant)) / float(len(false_relevant)+len(true_irrelevant))

553 # false irrelevant (irrelevant articles above threshold)

554 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] >= threshold)]

555

556 plt.figure(figsize=(25, 10))

557 plt.ylim([-1,max(df['rel_index']+1)])

558 plt.xlim([0, len(labels)])

559 plt.scatter(range(len(df)), df['rel_index'], c=df['label'], s=30,alpha=0.7)

560 # plot threshold

561 plt.axhline(threshold, c='black', linewidth=1.5)

562 plt.title(

563 'Case Study: capeunimart' + '\n' +

564 'Blue - relevant, Red - irrelevant' + '\n' +

565 'Frame length: 20, 50 topics, metric - max')

566 plt.ylabel('relevance index')

567 plt.text(1000, 1.0, r'True irrelevant: ' + str(len(true_irrelevant)) + '\n' + 'From total of: ' + str(

568 len(df)) + ' (' + "%.2f" % perc_ignore + '%)', verticalalignment='bottom', horizontalalignment='left')

569

570

571 # In[94]:

572

573

574 precision

575

576

577 # In[95]:

578

579

580 recall

94

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



581

582

583 # In[96]:

584

585

586 accuracy

Word2vec Fakenews-Relevance Plot

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # In[1]:

5

6

7 import pandas as pd

8 import numpy as np

9 import gensim

10 import time

11 import re

12 import nltk

13 import matplotlib.pyplot as plt

14 import seaborn as sns

15 from nltk.corpus import stopwords

16 sns.set_style("darkgrid")

17 from sklearn.datasets import fetch_20newsgroups

18 from nltk.stem import WordNetLemmatizer

19 from gensim.models import Word2Vec,KeyedVectors

20 from gensim.test.utils import common_texts

21 from gensim.corpora import Dictionary

22 from gensim.models import Word2Vec, WordEmbeddingSimilarityIndex

23 from gensim.similarities import SoftCosineSimilarity, SparseTermSimilarityMatrix

24 import seaborn as sns

25 from gensim.corpora import Dictionary

26 import gensim

27 # upgrade gensim if you can't import softcossim

28 from gensim.matutils import softcossim

29 from gensim import corpora

30 from gensim.utils import simple_preprocess

31

32

33 # In[2]:

34

35

36 import logging # Setting up the loggings to monitor gensim
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37 logging.basicConfig(format="%(levelname)s - %(asctime)s: %(message)s", datefmt= '%H:%M:%S', level=logging.INFO)

38

39

40 # In[3]:

41

42

43 def initial_clean(text):

44 """

45 Function to clean text of websites, email addresess and any punctuation

46 We also lower case the text

47 """

48 text = re.sub('\s+', ' ', str(text))

49 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

50 text = re.sub("[^a-zA-Z ]", "", text)

51 text = text.lower() # lower case the text

52 text = nltk.word_tokenize(text)

53 return text

54

55

56 # In[4]:

57

58

59 #%% Download data

60 df = pd.read_csv('fake newstrain.csv')

61 df = df[df['text'].map(type) == str]

62 df['title'].fillna(value="", inplace=True)

63

64

65 # In[5]:

66

67

68 df.isnull().sum()

69

70

71 # In[6]:

72

73

74 df.dropna(axis=0, inplace=True, subset=['text'])

75 # shuffle the data

76 df = df.sample(frac=1.0)

77 df.reset_index(drop=True,inplace=True)

78

79

80 # In[7]:

81

82

83 df.isnull().sum()

84
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85

86 # In[8]:

87

88

89 df['tokenized'] = df['text'].apply(initial_clean)

90

91

92 # In[9]:

93

94

95 # only keep articles with more than 30 tokens, otherwise too short

96 df = df[df['tokenized'].map(len) >= 2]

97 # changed from 30 to 2 for word2vec as a result of https://www.kaggle.com/pierremegret/gensim-word2vec-tutorial

98 # make sure all tokenized items are lists

99

100

101 # In[10]:

102

103

104 df = df[df['tokenized'].map(type) == list]

105 df.reset_index(drop=True,inplace=True)

106 print("After cleaning and excluding short aticles, the dataframe now has:", len(df), "articles")

107

108

109 # In[11]:

110

111

112 df['tokenized'] = df['tokenized'].apply(' '.join)

113

114

115 # In[12]:

116

117

118 df.dropna(axis=0, inplace=True, subset=['tokenized'])

119

120

121 # In[13]:

122

123

124 msk = np.random.rand(len(df)) < 0.9

125 train_df = df[msk]

126 train_df.reset_index(drop=True,inplace=True)

127

128 test_df = df[~msk]

129 test_df.reset_index(drop=True,inplace=True)

130

131

132 # In[14]:
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133

134

135 word_vectors=KeyedVectors.load('w2v fake_news')

136

137

138 # In[15]:

139

140

141 len(word_vectors.wv.vocab)

142

143

144 # In[16]:

145

146

147 termsim_index = WordEmbeddingSimilarityIndex(word_vectors)

148

149

150 # In[17]:

151

152

153 dictionary = corpora.Dictionary.load('w2v fake news dictionary')

154

155

156 # In[18]:

157

158

159 #dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in df['tokenized']])

160

161

162 # In[19]:

163

164

165 similarity_matrix = SparseTermSimilarityMatrix(termsim_index, dictionary) # construct similarity matrix

166

167

168 # ### train_set we get the softcosine similarity for one set

169

170 # In[20]:

171

172

173 #Now we are ready to calculate softcossim.

174 #What we testing against (Convert the train docs into bow)

175 #%%

176 train_set = [dictionary.doc2bow(simple_preprocess(doc)) for doc in train_df['tokenized']]

177 docsim_index = SoftCosineSimilarity(train_set, similarity_matrix)

178

179

180 # In[21]:
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181

182

183 tm = [dictionary.doc2bow(simple_preprocess(doc)) for doc in test_df[test_df.label == 1]['tokenized']]

184 tp = [dictionary.doc2bow(simple_preprocess(doc)) for doc in test_df[test_df.label == 0]['tokenized']]

185

186

187 # In[23]:

188

189

190 def chunks(l, n):

191 # For item i in a range that is a length of l,

192 for i in range(0, len(l), n):

193 # Create an index range for l of n items:

194 yield l[i:i+n]

195

196

197 # In[24]:

198

199

200 import statistics

201 import scipy.stats

202

203

204 # In[25]:

205

206

207

208 def mean_confidence_interval(data, confidence=0.95):

209 a = 1.0 * np.array(data)

210 n = len(a)

211 m, se = np.mean(a), scipy.stats.sem(a)

212 h = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1)

213 return m, m-h, m+h

214

215

216 # In[26]:

217

218

219 def create_soft_cossim_median_matrix(docsim_index, query_corpus, dictionary):

220 statslist = []

221 for i in query_corpus:

222 if len(i) > 0:

223 sims = docsim_index[i]

224 sims_array=np.array(sims)

225 med=np.median(sims_array)

226 statslist.extend([med])

227 return statslist

228
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229

230 # In[27]:

231

232

233 def create_soft_cossim_ci_matrix(docsim_index, query_corpus, dictionary):

234 statslist = []

235 for i in query_corpus:

236 print(i)

237 if len(i) > 0:

238 sims = docsim_index[i]

239 mean,lu,up=mean_confidence_interval(sims)

240 median=np.median(sims)

241 stats=[lu,median,mean,up]

242 statslist.append([stats])

243 return statslist

244

245

246 # In[28]:

247

248

249 tm_chunks=list(chunks(tm,300))

250

251

252 # In[29]:

253

254

255 tp_chunks=list(chunks(tp,300))

256

257

258 # In[30]:

259

260

261 for i in tm_chunks:

262 all_sims_tm = create_soft_cossim_median_matrix(docsim_index, i, dictionary)

263

264

265 # In[31]:

266

267

268 for i in tp_chunks:

269 all_sims_tp = create_soft_cossim_median_matrix(docsim_index, i, dictionary)

270

271

272 # In[32]:

273

274

275 unrel_labels=['r']*len(all_sims_tm)

276
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277

278 # In[33]:

279

280

281 rel_labels=['b']*len(all_sims_tp)

282

283

284 # In[34]:

285

286

287 labels= unrel_labels+rel_labels

288

289

290 # In[35]:

291

292

293 all_sims = all_sims_tm+all_sims_tp

294

295

296 # In[36]:

297

298

299 # create dataframe of rel_index and label

300 df_original = pd.DataFrame({'label': labels,

301 'rel_index': all_sims})

302

303

304 # In[37]:

305

306

307 df = df_original.sort_values('rel_index', ascending=False)

308

309

310 # In[38]:

311

312

313 # find threshold (minimum relevance index of relevant articles)

314 threshold = df.loc[df['label'] == 'b']['rel_index'].min()

315

316 # true relevant (relevant articles above threshold)

317 true_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] > threshold)]

318 false_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] < threshold)]

319

320 # true irrelevant (irrelevant articles below threshold)

321 true_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] < threshold)]

322 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] > threshold)]

323

324 perc_ignore = float(len(true_irrelevant)) / (len(df)) * 100
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325 precision = float(len(true_irrelevant)) / float(len(false_irrelevant)+len(true_irrelevant))

326 accuracy=(len(true_relevant)+len(true_irrelevant))/ len(df)

327 recall=float(len(true_irrelevant)) / float(len(false_relevant)+len(true_irrelevant))

328 # false irrelevant (irrelevant articles above threshold)

329 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] >= threshold)]

330

331 plt.figure(figsize=(25, 10))

332 plt.ylim([-1,max(df['rel_index']+1)])

333 plt.xlim([0, len(labels)])

334 plt.scatter(range(len(df)), df['rel_index'], c=df['label'], s=30,alpha=0.7)

335 # plot threshold

336 plt.axhline(threshold, c='black', linewidth=1.5)

337 plt.title(

338 'Case Study: capeunimart' + '\n' +

339 'Blue - relevant, Red - irrelevant' + '\n' +

340 'Frame length: 20, 50 topics, metric - max')

341 plt.ylabel('relevance index')

342 plt.text(1000, 1.0, r'True irrelevant: ' + str(len(true_irrelevant)) + '\n' + 'From total of: ' + str(

343 len(df)) + ' (' + "%.2f" % perc_ignore + '%)', verticalalignment='bottom', horizontalalignment='left')

344

345

346 # In[94]:

347

348

349 precision

350

351

352 # In[95]:

353

354

355 recall

356

357

358 # In[96]:

359

360

361 accuracy

362

363

364 # In[ ]:
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Motorcycle/Auto sports Similarity Analysis for
LDA

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # In[1]:

5

6

7 import pandas as pd

8 import numpy as np

9 import nltk

10 from nltk.corpus import stopwords

11 import gensim

12 from gensim.models import LdaModel

13 from gensim import models, corpora, similarities

14 import re

15 from nltk.stem.porter import PorterStemmer

16 import time

17 from nltk import FreqDist

18 from scipy.stats import entropy

19 import matplotlib.pyplot as plt

20 import seaborn as sns

21 sns.set_style("darkgrid")

22 from sklearn.datasets import fetch_20newsgroups

23 from nltk.stem import WordNetLemmatizer

24

25

26 # In[2]:

27

28

29 #%% Download data

30 newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'))

31 sections = list(newsgroups_train.target_names)

32

33

34 df = pd.DataFrame(columns = ['Type', 'Data'])

35

36 data = []

37 names = []

38 for i in range(len(sections)):

39 d = fetch_20newsgroups(shuffle=True, random_state=1,subset = 'train', remove=('headers', 'footers', 'quotes'), categories = [sections[i]])

40 data.append(d.data)

41 n = [sections[i]]*len(d.data)

42 names.append(n)

43
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44

45 # In[3]:

46

47

48 together_data = [item for sublist in data for item in sublist]

49 together_name = [item for sublist in names for item in sublist]

50

51 df = df.assign(Type = together_name, Data = together_data)

52

53

54 # In[4]:

55

56

57 def initial_clean(text):

58 """

59 Function to clean text of websites, email addresess and any punctuation

60 We also lower case the text

61 """

62 text = re.sub('\s+', ' ', text)

63 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

64 text = re.sub("[^a-zA-Z ]", "", text)

65 text = text.lower() # lower case the text

66 text = nltk.word_tokenize(text)

67 return text

68

69 stop_words = stopwords.words('english')

70 def remove_stop_words(text):

71 """

72 Function that removes all stopwords from text

73 """

74 return [word for word in text if word not in stop_words]

75

76 lmtzr = WordNetLemmatizer()

77 def stem_words(text):

78 """

79 Function to stem words, so plural and singular are treated the same

80 """

81

82 text = [lmtzr.lemmatize(word) for word in text]

83 text = [word for word in text if len(word) > 1] # make sure we have no 1 letter words

84 return text

85

86 def apply_all(text):

87 """

88 This function applies all the functions above into one

89 """

90 return stem_words(remove_stop_words(initial_clean(text)))

91
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92 def jensen_shannon(query, matrix):

93 """

94 This function implements a Jensen-Shannon similarity

95 between the input query (an LDA topic distribution for a document)

96 and the entire corpus of topic distributions.

97 It returns an array of length M where M is the number of documents in the corpus

98 """

99 # lets keep with the p,q notation above

100 p = query[None,:].T # take transpose

101 q = matrix.T # transpose matrix

102 m = 0.5*(p + q)

103 return np.sqrt(0.5*(entropy(p,m) + entropy(q,m)))

104

105 def get_most_similar_documents(query,matrix,k=10):

106 """

107 This function implements the Jensen-Shannon distance above

108 and retruns the top k indices of the smallest jensen shannon distances

109 """

110 sims = jensen_shannon(query,matrix) # list of jensen shannon distances

111 return sims.argsort()[:k] # the top k positional index of the smallest Jensen Shannon distances

112

113 def train_lda(data):

114 """

115 This function trains the lda model

116 We setup parameters like number of topics, the chunksize to use in Hoffman method

117 We also do 2 passes of the data since this is a small dataset, so we want the distributions to stabilize

118 """

119 num_topics = 100

120 chunksize = 300

121 dictionary = corpora.Dictionary(data['tokenized'])

122 corpus = [dictionary.doc2bow(doc) for doc in data['tokenized']]

123 t1 = time.time()

124 # low alpha means each document is only represented by a small number of topics, and vice versa

125 # low eta means each topic is only represented by a small number of words, and vice versa

126 lda = LdaModel(corpus=corpus, num_topics=num_topics, id2word=dictionary,

127 alpha=1e-2, eta=0.5e-2, chunksize=chunksize, minimum_probability=0.0, passes=2)

128 t2 = time.time()

129 print("Time to train LDA model on ", len(df), "articles: ", (t2-t1)/60, "min")

130 return dictionary,corpus,lda

131

132

133 # In[5]:

134

135

136 df['tokenized'] = df['Data'].apply(apply_all)

137

138

139 # In[10]:
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140

141

142 print("length of list:",len(doc_lengths),

143 "\naverage document length", np.average(doc_lengths),

144 "\nminimum document length", min(doc_lengths),

145 "\nmaximum document length", max(doc_lengths))

146

147

148 # In[11]:

149

150

151 # plot a histogram of document length

152 num_bins = 1000

153 fig, ax = plt.subplots(figsize=(12,6));

154 # the histogram of the data

155 n, bins, patches = ax.hist(doc_lengths, num_bins, normed=1)

156 ax.set_xlabel('Document Length (tokens)', fontsize=15)

157 ax.set_ylabel('Normed Frequency', fontsize=15)

158 ax.grid()

159 ax.set_xticks(np.logspace(start=np.log10(50),stop=np.log10(2000),num=8, base=10.0))

160 plt.xlim(0,2000)

161 ax.plot([np.average(doc_lengths) for i in np.linspace(0.0,0.0035,100)], np.linspace(0.0,0.0035,100), '-',

162 label='average doc length')

163 ax.legend()

164 ax.grid()

165 fig.tight_layout()

166 plt.show()

167

168

169 # In[12]:

170

171

172 #%% only keep articles with more than 20 tokens, otherwise too short

173 # only keep articles with more than 30 tokens, otherwise too short

174 df = df[df['tokenized'].map(len) >= 30]

175 # make sure all tokenized items are lists

176 df = df[df['tokenized'].map(type) == list]

177 df.reset_index(drop=True,inplace=True)

178 print("After cleaning and excluding short aticles, the dataframe now has:", len(df), "articles")

179 df.head()

180

181

182 # In[13]:

183

184

185 lda=models.LdaModel.load('lda.model')

186 dictionary= corpora.Dictionary.load('dictionary.dict')

187
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188

189 # In[45]:

190

191

192 #%%What we testing against

193 train_set = df[df.Type == 'rec.motorcycles']

194

195 corpus_motor_train = [dictionary.doc2bow(doc) for doc in train_set['tokenized']]

196

197

198 # In[46]:

199

200

201 #%%SIMILARITIES greate data stuff

202

203 newsgroups_test = fetch_20newsgroups(subset='test', remove=('headers', 'footers', 'quotes'))

204 sections = list(newsgroups_train.target_names)

205

206

207 df_test = pd.DataFrame(columns = ['Type', 'Data'])

208

209 data = []

210 names = []

211 for i in range(len(sections)):

212 d = fetch_20newsgroups(shuffle=True, random_state=1,subset = 'test', remove=('headers', 'footers', 'quotes'), categories = [sections[i]])

213 data.append(d.data)

214 n = [sections[i]]*len(d.data)

215 names.append(n)

216

217

218 # In[47]:

219

220

221

222 together_data = [item for sublist in data for item in sublist]

223 together_name = [item for sublist in names for item in sublist]

224

225 df_test = df_test.assign(Type = together_name, Data = together_data)

226

227 df_test['tokenized'] = df_test['Data'].apply(apply_all)

228

229

230 # In[49]:

231

232

233 #%% choose k and visually inspect the bottom 10 words of the top k

234 k = 17000

235 top_k_words_test = fdist_test.most_common(k)
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236 top_k_words_test[-10:]

237 def keep_top_k_words(text):

238 return [word for word in text if word in top_k_words_test]

239

240

241 # In[50]:

242

243

244 df['tokenized'] = df['tokenized'].apply(keep_top_k_words)

245

246

247 # In[51]:

248

249

250 #%% define a function only to keep words in the top k words

251 top_k_words_test,_ = zip(*fdist_test.most_common(k))

252 top_k_words_test = set(top_k_words_test)

253 df_test['tokenized'] = df_test['tokenized'].apply(keep_top_k_words)

254

255

256 # In[52]:

257

258

259 #%% document length

260 df_test['doc_len'] = df_test['tokenized'].apply(lambda x: len(x))

261 doc_lengths_test = list(df_test['doc_len'])

262 df_test.drop(labels='doc_len', axis=1, inplace=True)

263

264

265 # In[53]:

266

267

268 #%% only keep articles with more than 20 tokens, otherwise too short

269 df_test = df_test[df_test['tokenized'].map(len) >= 30]

270

271

272 # In[54]:

273

274

275 # make sure all tokenized items are lists

276 df_test = df_test[df_test['tokenized'].map(type) == list]

277 df_test.reset_index(drop=True,inplace=True)

278 print("After cleaning and excluding short aticles, the dataframe now has:", len(df_test), "articles")

279 df_test.head()

280

281

282 # In[55]:

283
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284

285 #%%test motor

286 tm = df_test[df_test.Type == 'rec.motorcycles']

287

288

289 # In[56]:

290

291

292 #%%

293 dictionary_tm = corpora.Dictionary(tm['tokenized'])

294 new_bow = [dictionary.doc2bow(doc) for doc in tm['tokenized']]

295 new_doc_distribution_tm = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

296

297

298 # In[58]:

299

300

301 #%% we need to use nested list comprehension here

302 # this may take 1-2 minutes...

303 doc_topic_dist = np.array([[tup[1] for tup in lst] for lst in lda[corpus_motor_train]])

304 doc_topic_dist.shape

305

306

307 # In[59]:

308

309

310 #%% this is surprisingly fast

311 #most_sim_ids = get_most_similar_documents(new_doc_distribution,doc_topic_dist)

312 all_sims_tm = []

313 for i in range(len(new_doc_distribution_tm)):

314 doc_sims = jensen_shannon(new_doc_distribution_tm[i],doc_topic_dist)

315 all_sims_tm.append(doc_sims)

316 #most_similar_df['title']

317

318 tm = [item for sublist in all_sims_tm for item in sublist]

319

320

321 # In[61]:

322

323

324 #%%SIMILARITIES TP

325

326 tp = df_test[df_test.Type == 'rec.autos']

327

328

329 # In[62]:

330

331
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332 #%%

333 dictionary_tp = corpora.Dictionary(tp['tokenized'])

334 new_bow = [dictionary.doc2bow(doc) for doc in tp['tokenized']]

335 new_doc_distribution_tp = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

336

337

338 # In[63]:

339

340

341 #%% this is surprisingly fast

342 #most_sim_ids = get_most_similar_documents(new_doc_distribution,doc_topic_dist)

343 all_sims_tp = []

344 for i in range(len(new_doc_distribution_tp)):

345 doc_sims = jensen_shannon(new_doc_distribution_tp[i],doc_topic_dist)

346 all_sims_tp.append(doc_sims)

347 #most_similar_df['title']

348

349

350 # In[64]:

351

352

353 tp = [item for sublist in all_sims_tp for item in sublist]

354

355

356 # In[66]:

357

358

359 #%% cdf

360 tm.sort()

361 tp.sort()

362 cdf_tm= 1. * np.arange(len(tm)) / (len(tm) - 1)

363 cdf_tp= 1. * np.arange(len(tp)) / (len(tp) - 1)

364 tm = np.array(tm)

365 tp = np.array(tp)

366

367 plt.scatter(tm,cdf_tm, s = 0.5, color = 'g', label = 'moto(train) v moto(test)')

368 plt.scatter(tp,cdf_tp, s = 0.5, color = 'r', label = 'moto(train) v auto(test)')

369

370 plt.legend()

371 plt.show

372

373

374 # In[67]:

375

376

377 from scipy import stats

378

379
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380 # In[68]:

381

382

383 x = stats.ks_2samp(tm, tp)

384

385

386 # In[69]:

387

388

389 print(x)

390

391

392 # In[70]:

393

394

395 x.statistic

396

397

398 # In[71]:

399

400

401 x.pvalue

Motorcycle/ Politics Similarity Analysis Word2vec

1 #!/usr/bin/env python

2 # coding: utf-8

3 import pandas as pd

4 import numpy as np

5 import gensim

6 import time

7 import matplotlib.pyplot as plt

8 import seaborn as sns

9 sns.set_style("darkgrid")

10 from sklearn.datasets import fetch_20newsgroups

11 from nltk.stem import WordNetLemmatizer

12 from gensim.models import Word2Vec,KeyedVectors

13 from gensim.test.utils import common_texts

14 from gensim.corpora import Dictionary

15 from gensim.models import Word2Vec, WordEmbeddingSimilarityIndex

16 from gensim.similarities import SoftCosineSimilarity, SparseTermSimilarityMatrix

17 import seaborn as sns

18 from gensim.corpora import Dictionary

19 import gensim

20 # upgrade gensim if you can't import softcossim
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21 from gensim.matutils import softcossim

22 from gensim import corpora

23 from gensim.utils import simple_preprocess

24

25

26 # In[2]:

27

28

29 #%% Download data

30 newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'))

31 sections = list(newsgroups_train.target_names)

32

33

34 df = pd.DataFrame(columns = ['Type', 'Data'])

35

36 data = []

37 names = []

38 for i in range(len(sections)):

39 d = fetch_20newsgroups(shuffle=True, random_state=1,subset = 'train', remove=('headers', 'footers', 'quotes'), categories = [sections[i]])

40 data.append(d.data)

41 n = [sections[i]]*len(d.data)

42 names.append(n)

43

44

45 # In[3]:

46

47

48 together_data = [item for sublist in data for item in sublist]

49 together_name = [item for sublist in names for item in sublist]

50

51 df = df.assign(Type = together_name, Data = together_data)

52

53

54 # In[4]:

55

56

57 len(df['Data'])

58

59

60 # In[5]:

61

62

63 #%%word2vec train function

64 def train_w2v(data):

65 """

66 This function trains the word2vec model

67 """

68 t1 = time.time()
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69 word2vec = Word2Vec(sentences=data, size=len(data), window=5, min_count=5, workers=4, sg=0)

70 #index the words

71 index2word_set = list(word2vec.wv.index2word)

72 word_vectors = word2vec.wv #all information is stored in word vectors

73 del word2vec #delete model to trim unneeded model state

74

75 t2 = time.time()

76 print("Time to train word2vec model on ", len(df), "articles: ", (t2-t1)/60, "min")

77 return word_vectors, index2word_set

78

79 #%%cossim function

80 def create_soft_cossim_matrix(docsim_index, query_corpus, dictionary):

81 all_soft_cossim = []

82 for i in query_corpus:

83 if len(i) > 0:

84 sims = list(docsim_index[i])

85 all_soft_cossim.extend(sims)

86 return all_soft_cossim

87

88

89 # In[6]:

90

91

92 '''

93 #%% Apply model

94 word_vectors, index2word_set = train_w2v([simple_preprocess(doc) for doc in df['Data']])

95 #%%

96 termsim_index = WordEmbeddingSimilarityIndex(word_vectors)

97 #To compute soft cosines, you need the dictionary (a map of word to unique id),

98 #the corpus (word counts) for each sentence and the similarity matrix

99

100 # Prepare a dictionary and a corpus.

101 dictionary = corpora.Dictionary([simple_preprocess(doc) for doc in df['Data']])

102

103 # Prepare the similarity matrix

104 similarity_matrix = SparseTermSimilarityMatrix(termsim_index, dictionary) # construct similarity matrix

105 '''

106

107

108 # In[7]:

109

110

111 word_vectors=KeyedVectors.load('word2vec.model')

112

113

114 # In[8]:

115

116
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117 len(word_vectors.wv.vocab)

118

119

120 # In[9]:

121

122

123 dictionary = corpora.Dictionary.load('data_dictionary')

124

125

126 # In[10]:

127

128

129 similarity_matrix =SparseTermSimilarityMatrix.load('similarity_matrix')

130

131

132 # In[11]:

133

134

135 train_set = [dictionary.doc2bow(simple_preprocess(doc)) for doc in df[df.Type == 'rec.motorcycles']['Data']]

136 docsim_index = SoftCosineSimilarity(train_set, similarity_matrix)

137

138

139 # In[12]:

140

141

142 len(train_set)

143

144

145 # In[31]:

146

147

148 docsim_index[[(0,1),(6,2)]].shape

149

150

151 # In[32]:

152

153

154 #Now we are ready to calculate softcossim.

155 #What we testing against (Convert the train docs into bow)

156 #%%

157

158 #Get the test sets

159 df_test = pd.DataFrame(columns = ['Type', 'Data'])

160

161 data = []

162 names = []

163 for i in range(len(sections)):

164 d = fetch_20newsgroups(shuffle=True, random_state=1,subset = 'test', remove=('headers', 'footers', 'quotes'), categories = [sections[i]])

114

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



165 data.append(d.data)

166 n = [sections[i]]*len(d.data)

167 names.append(n)

168

169

170

171 # In[33]:

172

173

174 together_data = [item for sublist in data for item in sublist]

175 together_name = [item for sublist in names for item in sublist]

176

177 df_test = df_test.assign(Type = together_name, Data = together_data)

178 #Convert the test docs into bow

179 #bow_tm = [dictionary.doc2bow(simple_preprocess(doc)) for doc in df_test[df_test.Type == 'rec.motorcycles']['Data']]

180 #bow_tp = [dictionary.doc2bow(simple_preprocess(doc)) for doc in df_test[df_test.Type == 'talk.politics.mideast']['Data']]

181 tm = [dictionary.doc2bow(simple_preprocess(doc)) for doc in df_test[df_test.Type == 'rec.motorcycles']['Data']]

182 tp = [dictionary.doc2bow(simple_preprocess(doc)) for doc in df_test[df_test.Type == 'talk.politics.mideast']['Data']]

183

184

185 # In[34]:

186

187

188 len(tm)

189

190

191 # In[35]:

192

193

194 len(tp)

195

196

197 # In[11]:

198

199

200 all_sims_tm = create_soft_cossim_matrix(docsim_index, tm, dictionary)

201 #%%

202 all_sims_tp = create_soft_cossim_matrix(docsim_index, tp, dictionary)

203

204

205 # In[15]:

206

207

208 #%% Hist

209 sns.distplot(all_sims_tm,hist=True, kde=True,label = 'Training motorcycles against test motorcycles')

210

211 sns.distplot(all_sims_tp,hist=True, kde=True, label = 'motorcycles against politics')

212 plt.title("Word2Vec similarity histogram")
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213 plt.legend()

214 plt.show

215

216

217 # In[13]:

218

219

220 #%%

221 sns.distplot(all_sims_tm,hist_kws=dict(cumulative=True),

222 kde_kws=dict(cumulative=True),label = 'Training motorcycles against test motorcycles')

223 sns.distplot(all_sims_tp,hist_kws=dict(cumulative=True),

224 kde_kws=dict(cumulative=True), label = 'Training motorcycles against politics')

225 plt.title("CDF similarity histogram")

226 plt.legend()

227 plt.show

228

229

230 # In[21]:

231

232

233 #%% cdf

234 all_sims_tm.sort()

235 all_sims_tp.sort()

236

237 cdf_tm= 1. * np.arange(len(all_sims_tm)) / (len(all_sims_tm) - 1)

238 cdf_tp= 1. * np.arange(len(all_sims_tp)) / (len(all_sims_tp) - 1)

239 all_sims_tm_array = np.array(all_sims_tm)

240 all_sims_tp_array = np.array(all_sims_tp)

241

242

243 plt.scatter(all_sims_tm_array,cdf_tm, s = 0.5, color = 'green', label = 'Motorcycles(train) vs. motorcycles(test)')

244 plt.scatter(all_sims_tp_array,cdf_tp, s = 0.5, color = 'red', label = 'Motorcycles(train) vs. politics(test)')

245 plt.title("Word2Vec similarity curve")

246

247

248 plt.legend()

249 plt.show

250

251

252 # In[16]:

253

254

255 from scipy import stats

256

257

258 # In[17]:

259

260
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261 x = stats.ks_2samp(cdf_tm, cdf_tp)

262

263

264 # In[18]:

265

266

267 print(x)

268

269

270 # In[19]:

271

272

273 x.statistic

274

275

276 # In[20]:

277

278

279 x.pvalue

LDA Performance for different K values

1 #!/usr/bin/env python

2 # coding: utf-8

3

4 # # Fake News LDA Notebook

5

6 # In this notebook we explore the performance of the LDA on the task of relevance judgement. For this taks we use the fake news data set.

7

8 # In[298]:

9

10

11 #import the required libraries for the experiment

12 import pandas as pd

13 import numpy as np

14 import nltk

15 from nltk.corpus import stopwords

16 import gensim

17 from gensim.models import LdaModel

18 from gensim import models, corpora, similarities

19 import re

20 from nltk.stem.porter import PorterStemmer

21 import time

22 from nltk import FreqDist

23 from scipy.stats import entropy
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24 import matplotlib.pyplot as plt

25 get_ipython().run_line_magic('matplotlotlib', 'inline')

26 import seaborn as sns

27 sns.set_style("darkgrid")

28 from sklearn.datasets import fetch_20newsgroups

29 from nltk.stem import WordNetLemmatizer

30

31

32 # In[ ]:

33

34

35 #Import the fake news data

36 fake_data = pd.read_csv('fake.csv')

37

38

39 # In[ ]:

40

41

42 fake_data.head()

43

44

45 # In[ ]:

46

47

48 fake_data.tail()

49

50

51 # In[299]:

52

53

54 #Choose columns to train the model on the correct Fake news data set found at httest_bss://www.kaggle.com/mrisdal/fake-news

55 fake_data=fake_data[['text','type']]

56

57

58 # In[300]:

59

60

61 #Dimensions of data

62 print(fake_data.shape)

63

64

65 # ### Function definition

66

67 # In[301]:

68

69

70 def initial_clean(text):

71 """

118

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



72 Function to clean text of websites, email addresess and any punctuation

73 We also lower case the text

74 """

75 text = re.sub('\s+https://www.kaggle.com/mrisdal/fake-news', ' ', str(text))

76 text = re.sub("((\S+)?(http(s)?)(\S+))|((\S+)?(www)(\S+))|((\S+)?(\@)(\S+)?)", " ", text)

77 text = re.sub("[^a-zA-Z ]", "", text)

78 text = text.lower() # lower case the text

79 text = nltk.word_tokenize(text)

80 return text

81

82 #import stopwords from nltk

83 stop_words = stopwords.words('english')

84 def remove_stop_words(text):

85 """

86 Function that removes all stopwords from text

87 """

88 return [word for word in text if word not in stop_words]

89

90 #Create lemmmayizer instance from WordNet

91 lmtzr = WordNetLemmatizer()

92 def stem_words(text):

93 """

94 Function to stem words, so plural and singular are treated the same

95 """

96

97 text = [lmtzr.lemmatize(word) for word in text]

98 text = [word for word in text if len(word) > 1] # make sure we have no 1 letter words

99 return text

100

101 def apply_all(text):

102 """

103 This function applies all the functions above into one

104 """

105 return stem_words(remove_stop_words(initial_clean(text)))

106

107 def jensen_shannon(query, matrix):

108 """

109 This function implements a Jensen-Shannon similarity

110 between the input query (an LDA topic distribution for a document)

111 and the entire corpus of topic distributions.

112 It returns an array of length M where M is the number of documents in the corpus

113 """

114 # lets keep with the p,q notation above

115 p = query[None,:].T # take transpose

116 q = matrix.T # transpose matrix

117 m = 0.5*(p + q)

118 return np.sqrt(0.5*(entropy(p,m) + entropy(q,m)))

119
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120 def get_most_similar_documents(query,matrix,k=10):

121 """

122 This function implements the Jensen-Shannon distance above

123 and retruns the top k indices of the smallest jensen shannon distances

124 """

125 sims = jensen_shannon(query,matrix) # list of jensen shannon distances

126 return sims.argsort()[:k] # the top k positional index of the smallest Jensen Shannon distances

127

128 def keep_top_k_words(text):

129 return [word for word in text if word in top_k_words]

130

131

132

133

134 # In[302]:

135

136

137 fake_data['tokenized'] = fake_data['text'].apply(apply_all)

138

139

140 # In[303]:

141

142

143 #%%

144 # first get a list of all words

145 all_words = [word for item in list(fake_data['tokenized']) for word in item]

146 # use nltk fdist to get a frequency distribution of all words

147 fdist = FreqDist(all_words)

148

149

150 # In[304]:

151

152

153 #%% choose k and visually inspect the bottom 10 words of the top k

154 k = 17000

155 top_k_words = fdist.most_common(k)

156 top_k_words[-10:]

157

158

159 # In[305]:

160

161

162 #%% define a function only to keep words in the top k words

163 top_k_words,_ = zip(*fdist.most_common(k))

164 top_k_words = set(top_k_words)

165

166

167 # In[306]:
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168

169

170 #%% document length

171 fake_data['doc_len'] = fake_data['tokenized'].apply(lambda x: len(x))

172 doc_lengths = list(fake_data['doc_len'])

173 fake_data.drop(labels='doc_len', axis=1, inplace=True)

174

175

176 # In[307]:

177

178

179 print("length of list:",len(doc_lengths),

180 "\naverage document length", np.average(doc_lengths),

181 "\nminimum document length", min(doc_lengths),

182 "\nmaximum document length", max(doc_lengths))

183

184

185 # In[308]:

186

187

188 # plot a histogram of document length

189 num_bins = 1000

190 fig, ax = plt.subplots(figsize=(12,6));

191 # the histogram of the data

192 n, bins, patches = ax.hist(doc_lengths, num_bins, normed=1)

193 ax.set_xlabel('Document Length (tokens)', fontsize=15)

194 ax.set_ylabel('Normed Frequency', fontsize=15)

195 ax.grid()

196 ax.set_xticks(np.logspace(start=np.log10(50),stop=np.log10(2000),num=8, base=10.0))

197 plt.xlim(0,2000)

198 ax.plot([np.average(doc_lengths) for i in np.linspace(0.0,0.0035,100)], np.linspace(0.0,0.0035,100), '-',

199 label='average doc length')

200 ax.legend()

201 ax.grid()

202 fig.tight_layout()

203 plt.show()

204

205

206 # ## Filtering Data for non empty documents

207

208 # In[309]:

209

210

211 #%% only keep articles with more than 20 tokens, otherwise too short

212 # only keep articles with more than 30 tokens, otherwise too short

213 fake_data = fake_data[fake_data['tokenized'].map(len) >= 30]

214 # make sure all tokenized items are lists

215 fake_data = fake_data[fake_data['tokenized'].map(type) == list]
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216 fake_data.reset_index(drop=True,inplace=True)

217 print("After cleaning and excluding short aticles, the dataframe now has:", len(fake_data), "articles")

218 fake_data.head()

219

220

221 # ## Manual Train and test split

222 # We retain 90% if the 11349 documents fro training and the 10% is to test the performance of each model

223

224 # In[310]:

225

226

227 msk = np.random.rand(len(fake_data)) < 0.9

228 train_fake_data = fake_data[msk]

229 train_fake_data.reset_index(drop=True,inplace=True)

230

231 test_fake_data = fake_data[~msk]

232 test_fake_data.reset_index(drop=True,inplace=True)

233

234

235 # We have that there are 10201 documents for training

236

237 # In[311]:

238

239

240 train_fake_data.shape

241

242

243 # We seth the seed to 4 to get consisent results for the different topic models

244

245 # In[312]:

246

247

248 np.random.seed(4)

249

250

251 # In[313]:

252

253

254 def train_lda(data,corpus,dictionary,K):

255 """

256 This function trains the lda model

257 We setup parameters like number of topics, the chunksize to use in Hoffman method

258 We also do 2 passes of the data since this is a small dataset, so we want the distributions to stabilize

259 """

260 num_topics = K

261 chunksize = 300

262 t1 = time.time()

263 # low alpha means each document is only represented by a small number of topics, and vice versa
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264 # low eta means each topic is only represented by a small number of words, and vice versa

265 lda = LdaModel(corpus=corpus, num_topics=num_topics, id2word=dictionary,

266 alpha=1e-2, eta=0.5e-2, chunksize=chunksize, minimum_probability=0.0, passes=2)

267 t2 = time.time()

268 print("Time to train LDA model on ", len(data), "articles: ", (t2-t1)/60, "min")

269 return lda

270

271

272 # Topic Sizes we will consider

273

274 # In[314]:

275

276

277 num_of_topics=[50,100,200,250,300]

278

279

280 # In[315]:

281

282

283 #The dictionaryand corpus are kept constant

284 fake_dictionary = corpora.Dictionary(train_fake_data['tokenized'])

285 fake_corpus = [fake_dictionary.doc2bow(doc) for doc in train_fake_data['tokenized']]

286

287

288 # In[316]:

289

290

291 #%%LDA train function

292 #%% Apply model for different topic sizes

293 for k in num_of_topics:

294 lda = train_lda(train_fake_data,fake_corpus,fake_dictionary,k)

295 lda.save('lda_fakenews'+str(k)+'.model')

296

297

298

299 # In[317]:

300

301

302 #fake_dictionary.save('fakenews_dictionary')

303

304

305 # In[318]:

306

307

308 #dictionary = corpora.Dictionary.load('fakenews_dictionary')

309

310

311 # In[319]:
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312

313

314 #lda=LdaModel.load('lda_fakenews.model')

315

316

317 # In[320]:

318

319

320 #Number of documents in our test set

321

322

323 # In[321]:

324

325

326 test_fake_data.shape

327

328

329 # In[322]:

330

331

332 #%%text documents for t``````ype bias

333 test_bias = test_fake_data[test_fake_data.type == 'bias']

334

335

336 # In[323]:

337

338

339 test_bias.head(20)

340

341

342 # Topic K=50,100,200,250,300

343

344 # In[324]:

345

346

347 lda=LdaModel.load('lda_fakenews250.model')

348

349

350 # In[325]:

351

352

353 dictionary_test_bias = corpora.Dictionary(test_bias['tokenized'])

354 new_bow = [dictionary_test_bias.doc2bow(doc) for doc in test_bias['tokenized']]

355 new_doc_distribution_test_bias = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

356

357

358 # In[326]:

359
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360

361 test_bs = test_fake_data[test_fake_data.type == 'bs']

362

363

364 # In[327]:

365

366

367 #%%

368 dictionary_test_bs = corpora.Dictionary(test_bs['tokenized'])

369 new_bow = [dictionary_test_bs.doc2bow(doc) for doc in test_bs['tokenized']]

370 new_doc_distribution_test_bs = np.array([[tup[1] for tup in lst] for lst in lda[new_bow]])

371

372

373 # In[328]:

374

375

376 doc_topic_dist = np.array([[tup[1] for tup in lst] for lst in lda[fake_corpus]])

377 doc_topic_dist.shape

378

379

380 # In[329]:

381

382

383 all_sims_test_bias = []

384 doc_sims_bias=[]

385 for i in range(len(new_doc_distribution_test_bias)):

386 doc_sims = jensen_shannon(new_doc_distribution_test_bias[i],doc_topic_dist)

387 all_sims_test_bias.append(1-np.mean(doc_sims))

388 doc_sims_bias.append(doc_sims)

389

390 all_sims_test_bias=[x for x in all_sims_test_bias if str(x) != 'nan']

391 #test_bias = [item for sublist in all_sims_test_bias for item in sublist]

392

393

394 # In[330]:

395

396

397 #%% this is surprisingly fast

398 #most_sim_ids = get_most_similar_documents(new_doc_distribution,doc_topic_dist)

399 doc_sim_test_bs=[]

400 all_sims_test_bs = []

401 for i in range(len(new_doc_distribution_test_bs)):

402 doc_sims = jensen_shannon(new_doc_distribution_test_bs[i],doc_topic_dist)

403 all_sims_test_bs.append(1-np.mean(doc_sims))

404 doc_sim_test_bs.append(doc_sims)

405

406 all_sims_test_bs=[x for x in all_sims_test_bs if str(x) != 'nan']

407 #test_bs = [item for sublist in all_sims_test_bs for item in sublist]
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408

409

410 # In[331]:

411

412

413 #%% cdf

414 all_sims_test_bias.sort()

415 all_sims_test_bs.sort()

416 cdf_tm= 1. * np.arange(len(all_sims_test_bias)) / (len(all_sims_test_bias) - 1)

417 cdf_tp= 1. * np.arange(len(all_sims_test_bs)) / (len(all_sims_test_bs) - 1)

418 all_sims_test_bias = np.array(all_sims_test_bias)

419 all_sims_test_bs = np.array(all_sims_test_bs)

420

421 plt.scatter(all_sims_test_bias,cdf_tm, s = 0.9, color = 'g', label = 'Bias')

422 plt.scatter(all_sims_test_bs,cdf_tp, s = 0.9,color = 'r', label = 'Bs')

423

424 plt.legend()

425 plt.show

426

427

428 # In[332]:

429

430

431

432 all_sims_test_bs.shape

433

434

435 # In[333]:

436

437

438 all_sims=list(all_sims_test_bias)+list(all_sims_test_bs)

439

440

441 # In[334]:

442

443

444 test_bias_label=['b']*len(all_sims_test_bias)

445 test_bs_label=['r']*len(all_sims_test_bs)

446

447

448 # In[335]:

449

450

451 labels=test_bias_label+test_bs_label

452

453

454 # In[336]:

455
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456

457 len(all_sims)

458

459

460 # In[337]:

461

462

463 # create dataframe of rel_index and label

464 df_original = pd.DataFrame({'label': labels,

465 'rel_index': all_sims})

466

467

468 # In[338]:

469

470

471 df_original.head()

472

473

474 # In[339]:

475

476

477 df=df_original.sort_values('rel_index',ascending=False)

478

479

480 # In[340]:

481

482

483 # find threshold (minimum relevance index of relevant articles)

484 threshold = df.loc[df['label'] == 'b']['rel_index'].min()

485

486 # true relevant (relevant articles above threshold)

487 true_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] > threshold)]

488 false_relevant = df.loc[(df["label"] == 'b') & (df["rel_index"] < threshold)]

489

490 # true irrelevant (irrelevant articles below threshold)

491 true_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] < threshold)]

492 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] > threshold)]

493

494 perc_ignore = float(len(true_irrelevant)) / (len(df)) * 100

495

496 accuracy=(len(true_relevant)+len(true_irrelevant))/ len(df)

497 try:

498 recall=float(len(true_irrelevant)) / float(len(false_relevant)+len(true_irrelevant))

499 except ZeroDivisionError:

500 recall =0

501 # false irrelevant (irrelevant articles above threshold)

502 false_irrelevant = df.loc[(df["label"] == 'r') & (df["rel_index"] >= threshold)]

503
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504 plt.figure(figsize=(25, 10))

505 plt.ylim([-1,max(df['rel_index']+1)])

506 plt.xlim([0, len(labels)])

507 plt.scatter(range(len(df)), df['rel_index'], c=df['label'], s=30,alpha=0.7)

508 # plot threshold

509 plt.axhline(threshold, c='black', linewidth=1.5)

510 plt.xlabel('Number of Documents',fontsize=20)

511 plt.ylabel('Relevance index',fontsize=20)

512 plt.title('Relevance Jugdement for LDA K=250',fontsize=20)

513 plt.text(500, 1.0, r'True irrelevant: ' + str(len(true_irrelevant)) + '\n' + 'From total of: ' + str(

514 len(df)) + ' (' + "%.2f" % perc_ignore + '%)', verticalalignment='bottom', horizontalalignment='left')

515

516

517 # In[341]:

518

519

520 from scipy import stats

521

522

523 # In[342]:

524

525

526 x = stats.ks_2samp(all_sims_test_bias, all_sims_test_bs)

527

528

529 # In[ ]:

530

531

532 print(x)

533

534

535 # In[ ]:

536

537

538 x.statistic

539

540

541 # In[ ]:

542

543

544 x.pvalue

545

546

547 # # Coherence

548

549 # In[ ]:

550

551
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552 from gensim.models.coherencemodel import CoherenceModel

553

554

555 # In[ ]:

556

557

558 m1=LdaModel.load('lda_fakenews50.model')

559 m2=LdaModel.load('lda_fakenews100.model')

560 m3=LdaModel.load('lda_fakenews200.model')

561 m4=LdaModel.load('lda_fakenews250.model')

562 m5=LdaModel.load('lda_fakenews300.model')

563

564

565 # In[ ]:

566

567

568

569 cm1 = CoherenceModel.for_models([m1, m2], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

570 cm1.get_coherence()

571

572

573 # In[ ]:

574

575

576 cm2 = CoherenceModel.for_models([m1, m3], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

577 cm2.get_coherence()

578

579

580 # In[ ]:

581

582

583 cm3 = CoherenceModel.for_models([m1, m3], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

584 cm3.get_coherence()

585

586

587 # In[ ]:

588

589

590 cm4 = CoherenceModel.for_models([m1, m4], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

591 cm4.get_coherence()

592

593

594 # In[ ]:

595

596

597 cm5 = CoherenceModel.for_models([m1, m5], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

598 cm5.get_coherence()

599
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600

601 # In[ ]:

602

603

604 cm23 = CoherenceModel.for_models([m2, m3], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

605 cm23.get_coherence()

606

607

608 # In[ ]:

609

610

611 cm24 = CoherenceModel.for_models([m2, m4], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

612 cm24.get_coherence()

613

614

615 # In[ ]:

616

617

618 cm25 = CoherenceModel.for_models([m2, m5], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

619 cm25.get_coherence()

620

621

622 # In[ ]:

623

624

625 cm34 = CoherenceModel.for_models([m3, m4], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

626 cm34.get_coherence()

627

628

629 # In[ ]:

630

631

632 cm35 = CoherenceModel.for_models([m3, m5], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

633 cm35.get_coherence()

634

635

636 # In[ ]:

637

638

639 cm45 = CoherenceModel.for_models([m4, m5], fake_dictionary, corpus=fake_corpus, coherence='u_mass')

640 cm45.get_coherence()
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