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iv. Summary 

Malaria is a terrible disease caused by a protozoan parasite within the Plasmodium genus, 

claiming the lives of hundreds of thousands of people yearly, the majority of whom are 

children under the age of five. Of the five species of Plasmodium causing malaria in 

humans, P. falciparum is responsible for most of the death toll. An increase in malaria cases 

was detected between the years 2016 to 2017 according to the World Malaria Report of 

2017, despite control efforts. The rapid development of resistance within P. falciparum 

against antimalarials has led to the use of artemisinin combinational therapy as the current 

gold standard for malaria treatment. Yet decreased parasite clearance demonstrates that 

using combination therapy is insufficient in maintaining current antimalarials’ effectiveness 

against these resistant parasites. Hence, novel compounds with a mode of action (MoA) 

different than current antimalarials are required. Though phenotypic screening has 

delivered thousands of promising hit compounds, hit-to-lead optimisation is still one of the 

rate-limiting steps in pre-clinical antimalarial drug development. While knowing the exact 

target or MoA is not required to progress a compound in a medicinal chemistry program, 

identifying the MoA early can accelerate hit prioritization, hit-to-lead optimisation and 

preclinical combination studies in malaria research. In this study, we assessed machine 

learning (ML) approaches for their ability to stratify antimalarials based on transcriptional 

responses associated with the treatments. From our results, we conclude that it is possible 

to identify biomarkers from the transcriptional responses that define the MoA of compounds. 

Moreover, only a limited set of 50 genes was required to build a ML model that can stratify 

compounds with similar MoA with a classification accuracy of 76.6 ± 6.4%. These 

biomarkers will help stratify new compounds with similar MoA to those already defined with 

our strategy. Additionally, the biomarkers can also be used to monitor if the MoA of a 

compound has changed during hit-to-lead optimisation. This work will contribute to 

accelerating antimalarial drug discovery during the hit-to-lead optimisation phase and help 

the identification of compounds with novel MoA. 
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Chapter 1: Introduction 

1.1 Malaria 

Malaria is a disease that has resulted in the deaths of millions of people throughout human 

history [1, 2]. This disease is vector-borne and caused by a protozoan parasite within the 

Plasmodium genus, which is transmitted to humans by the female Anopheles mosquito [3]. 

Only 5 species within this genus are responsible for malaria within humans, namely, P. 

knowlesi, P. vivax, P. ovale, P. falciparum, and P. malariae, where infection with P. 

falciparum is the most severe [4, 5], due to the rapid development and sequestration of this 

species in humans that cause cerebral malaria and result in a coma or death [6, 7]. 

Tremendous progress has been made in decreasing clinical incidences of malaria by 40% 

within Africa from the year 2000 to 2015. This has been achieved through proper 

implementation of control strategies and the effective use of current antimalarial drugs [8]. 

However, according to the WHO Malaria Report of 2019, it has become evident that despite 

these efforts there has been an increase in malaria cases from 2016 to 2018 – 217 million 

cases in 2016 compared to the 228 million cases in 2018 [9]. Together with this, South 

Africa, which forms part of the 21 E-2020 countries that WHO identified as having the 

potential to eliminate malaria by 2020, reported increases in indigenous cases since 2015 

[10]. This increase in malaria cases was also experienced by 10 other countries and there 

is a concern that this trend may derail the progress made in eliminating the disease from 

these countries. 

Most cases and deaths occurred within the African continent and 78% of these deaths were 

children under the age of five [11-13]. Immune-compromised individuals and pregnant 

women also have a larger health risk when acquiring malaria [14]. In pregnant women, 

malaria infection can lead to an increased risk of abortion, stillbirth, pregnancy-related 

complications and low birth weight because of poor nutrient exchange between mother and 

child through the placenta [15, 16]. It is even suggested that malaria may directly contribute 

to almost 25% of all maternal deaths in regions where malaria is endemic [14].  

1.2 The life cycle of the malaria parasite 

Malaria is acquired when an infected female Anopheles mosquito injects her proboscis into 

a human for a blood meal as shown in Figure 1. The sporozoite forms of the parasite, 

present within the mosquito’s salivary glands, are injected into the human bloodstream and 

transported to the liver where they infect hepatocytes [17].  
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Within the hepatocytes, sporozoites undergo asexual exo-erythrocytic schizogony to form 

multiple merozoites, that are released into the bloodstream upon the rupture of the 

hepatocyte [17, 18]. These merozoites invade erythrocytes and initiate intra-erythrocytic 

schizogony, where the parasite develops from ring stages to metabolically and 

transcriptionally active trophozoite stages [19]. During the subsequently schizont stage, 

synchronous nuclear division occurs [20, 21], followed by a single final cell division and 

cytokinesis, that results in the release of multiple daughter merozoites into the bloodstream 

[21-24]. These merozoites reinitiate the intraerythrocytic development cycle by infecting 

uninfected erythrocytes.   

  
Figure 1: The Plasmodium falciparum life cycle.  
P. falciparum infection initiates when sporozoites are released into the human bloodstream from an infected 
female mosquito’s salivary glands during feeding. Sporozoites are then migrated to the liver where they invade 
hepatocytes to form liver schizonts. Infected hepatocytes rupture releasing merozoites into the bloodstream 
that invade erythrocytes and form the ring stage. The ring stage develops into a trophozoite and then a 
schizont during asexual multiplication within the infected erythrocyte. Schizonts rupture releasing merozoites 
that infect erythrocytes. A portion of invading merozoites are sexually committed and develop into the sexual 
blood stages to produce stage V mature male and female gametocytes that are transmitted to a mosquito 
during feeding. Mature gametocytes upon ingestion develop into micro- and macrogametes that fuse to form 
a zygote and develops into an ookinete. This mobile ookinete can penetrate the midgut wall and develop into 
an oocyst. Within the oocyst, the parasite undergoes asexual replication causing the oocyst to rupture and 
release sporozoites that migrate to the mosquito’s salivary gland.  
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The continual rupture of erythrocytes and clearance of infected erythrocytes by the spleen 

in the asexual intra-erythrocytic cycle causes the majority of symptoms of malaria such as 

anaemia [14]. Cerebral malaria, the deadliest form of the disease, results from the 

cytoadherence of erythrocytes to vascular walls causing sequestration of infected 

erythrocytes in small blood vessels [25]. 

A small portion (<10%) of invading merozoites do not develop into the asexual stages, but 

rather are committed to the sexual development of the parasite to form gametocytes with 

five distinctive stages in P. falciparum [18]. Stage V, the final stage of gametocyte 

development, is essential for the transmission of the parasite from an infected human to the 

female Anopheles mosquito. After ingestion of stage V gametocytes by the mosquito, the 

mature gametocytes receive environmental signals and mosquito factors within the 

mosquito midgut. These signals activate the male and female gametocytes to mature into 

male and female gametes in a process known as gametogenesis. The fusion of male and 

female gametes give rise to a zygote [26-28], that develops into a mobile ookinete which 

migrates to the midgut wall that it penetrates to mature into an oocyst. Another asexual 

multiplication occurs within the oocyst to produce sporozoites that are released upon the 

rupture of the oocyst [17]. The released sporozoites travel to the salivary glands of the 

mosquito where it can be transferred during the mosquito’s next blood meal.  

1.3 Current malaria control strategies 

1.3.1 Vector control 

Vector control strategies targeting the Anopheles mosquito include indoor residual spray 

(IRS) and insecticide-treated nets (ITN), as well as the improving environmental or 

urban/rural water irrigation as a form of larva management [13]. Both IRS and ITN are cost-

effective and ITN, in particular, has decreased the incidence of malaria transmission by 

50% and reduced child mortality by 55% in sub-Saharan Africa [29]. Unfortunately, 

resistance emergence within the vector towards the insecticides used in ITN and IRS as 

well as feeding behavior adaptations, threaten the progress made in preventing infection 

[30, 31]. This has spurred the search for novel insecticides and the development of new 

innovative control strategies to combat the change in mosquito feeding behavior [32].  

1.3.2 Vaccines 

One breakthrough for malaria control strategies is the development of a malaria vaccine(s), 

that could prevent the development of the disease within vaccinated individuals and thus 

limit the spread of the disease. The most successful candidate was the RTS, S/AS01 
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Malaria Vaccine which is a pre-blood stage vaccine [33]. Clinical trials phase III results, 

however, showed that the vaccine had very little efficacy and may not yet on its’ own be 

able to be used as a malaria control for the eradication of the disease [34, 35].  

1.3.3 Overview of current antimalarial chemotherapeutics 

Currently, the treatment of malaria is limited to the use of antimalarial drugs and continues 

to be the primary artillery against the parasite while other preventative measures such as 

an effective vaccine are optimized. However, the majority of the historic or currently used 

antimalarials such as antifolates, quinolones, artemisinins [36, 37] are threatened by 

resistance development and their use is currently limited (Table 1). From Table 1, it is 

apparent that most of the current antimalarials’ MoA act on the heme metabolism of the 

parasite, despite our current antimalarials having a chemical space that shows that 

compounds separate into several dominant structural groups [38, 39].  

Table 1: Antimalarial mode of action and parasite’s resistance mode of action 

Class Antimalarial Mode of action Mode of resistance 

Artemisinin Artemisinin 
and derivates 

Production of toxic heme-adducts Kelch13 mutation [40] 

Antimicrobial Tetracycline Inhibition of protein synthesis, but 
antiplasmodial action not clear [41] 

Not known, but there is a number 
of hypothesizes [41] 

Antifolate Pyrimethamine Inhibit plasmodial dihydrofolate-
reductase [42, 43] 

Mutation in dihydrofolate 
reductase binding site [42, 43] 

Sulfadoxine–
pyrimethamine 

Inhibition of plasmodial 
dihydropteroate synthase [44] 

Mutation in dihydropteroate 
synthase gene [44, 45] 

Quinoline 
derivatives 

Halofantrine Inhibit downstream growth of 
parasite [46] 

Not clear [47] 

Atovaquone Inhibits mitochondrial electron 
transport in the cytochrome bc 

complex [48] 

Nucleotide polymorphisms in 
cytochrome B gene [48] 

Mefloquine Cytosolic mode of action and 
production of toxic heme adducts 

[49] 

Amplification of pfmdr 1 gene that 
accumulates drug in digestive 
vacuole away from the cytosol 

site of action [49] 

Quinine Production of toxic heme adducts Amplification of pfmdr 1 gene; 
production of an efflux transporter 

[47] 

Chloroquine 
(CQ) 

Production of toxic heme adducts Use of the PfCRT protein, a 
chloroquine efflux transporter [50, 

51] 

Primaquine Production of reactive oxygen 
species [52] 

Not known 
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Antimalarial resistance development has prompted the use of artemisinin-based 

combination therapies (ACT) as a first-line treatment. With ACTs, antimalarials with a 

different mode of action (MoA) are used in combination to lower the rate of resistance 

emergence and spread [53]. This is because it is less probable to develop two different 

resistance mechanisms rather than one where the mutation or fitness cost won’t be lethal 

to the parasite [54]. Unfortunately, even these precautions have not prevented the 

development of delayed parasite clearance within infected individuals treated with ACTs 

and could be an indicator of resistance formation against ACTs [55]. The current threat of 

resistance even against ACTs has resulted in the continued search for new chemical 

molecules with novel MoA that can be developed into new antimalarials, as discussed 

below. 

1.4 Antimalarial drug discovery in the era of elimination 

The discovery of new antimalarials is guided by target candidate profiles (TCP), which 

describe the ideal type of antiplasmodial molecules needed (Table 2), as identified by the 

Medicines for Malaria Venture [56]. These TCPs can be combined into different target 

product profiles (TPP) to serve as combination therapies for chemoprotection and case 

management that will aid in elimination [57]. TPP-1 for example, which is designed for case 

management, requires a combination of TCP-1 molecules, with the incorporation of TCP-5 

molecules to reduce transmission and TCP-3 molecules to prevent relapse [57]. 

Table 2: Properties of current target candidate profiles 

Type of TCP Activity or intended effect 

TCP-1 Molecules that clear asexual blood-stage parasites 

TCP-3 Molecules active against P. vivax hypnozoites 

TCP-4 Molecules active against hepatic schizonts 

TCP-5 Molecules targeting the transmission of sexual parasite stages 

TCP-6 Molecules targeting insect vector 

 

The one essential factor for all new compounds irrespective of TPP and TCP targeted is 

that the compound has to present a novel MoA [58], such that these compounds do not 

show cross-resistance against currently circulating parasites.  

Additionally, exposing parasites to new compounds with novel MoA should delay 

resistance development. Lastly knowing the MoA of a candidate can provide useful 

information in assessing cross-resistance of a combination as well as help understand and 

predict the combined effect of candidates [59]. With a clear goal set of the type of candidate 

molecules needed in antimalarial drug discovery, the search and identification of such 
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potential candidates need to be quickly identified during the drug discovery process to help 

accelerate drug development. 

1.4.1 Limitations in antimalarial drug discovery  

Although there are two routes of drug discovery, namely target-based and phenotypic 

screening, target-based drug discovery is confounded in malaria research since more than 

half of P. falciparum genes lack functional annotation and few Plasmodium proteins have 

known 3D structures [60-62]. By contrast, phenotypic screening has been highly successful 

and delivered thousands of hit compounds with good cell permeability and nanomolar 

whole-cell activity against multiple life cycle stages of the parasite [63-66].  

With phenotypic screening, a large diverse chemical library is screened against sexual and 

asexual stages of P. falciparum and compounds with activity in the nanomolar range are 

identified as hits (Figure 2). Other assays are conducted to infer the compound’s selectivity 

for the parasite and the parasite stage which the compound acts on to aid in identifying 

promising compounds that belong to the desired TCPs (Table 2). These promising 

compounds undergo hit-to-lead (H2L) optimisation that relies on establishing a structure-

activity relationship (SAR) and subsequent medicinal chemistry guided changes to produce 

potent lead druggable compounds (Figure 2). Resultant lead compounds are modified 

during lead optimisation (LO) to further increase their pharmacodynamics and -kinetic 

properties. From the final leads the most promising candidates are selected to undergo pre-

clinical studies such as combinational studies and in vivo humanized mouse model studies 

that assess blood-stage antiplasmodial compounds.  
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Figure 2: Typical drug discovery pipeline with high-throughput phenotypic screening. 
(A)Thousands of chemically diverse compounds are tested for activity against the sexual and/or asexual 
stages of P. falciparum. (B) Hit compounds are identified which show in vitro nanomolar activity against the 
parasite. After hit identification, the efficiency and the amount of compounds within the pipeline decreases 
substantially. During this phase, other costly biological essays are required to infer the stage activity and 
selectivity of the hit compounds towards the parasite to increase the biological knowledge (bio-content) of the 
hit compounds and aid in identifying promising hit compounds for hit-to-lead optimisation. (C) During hit-to-
lead optimisation, SAR and medicinal chemistry are used to identify chemical modifications of promising hit 
compounds that increase its’ potency/activity against the parasite. During this phase, there is a continuous 
cycle of modifying hit compounds and assessing the in vitro activity of chemically modified derivatives from 
the promising hit compound until the best derivatives are selected as lead compounds. (D) Resultant leads 
of hit-to-lead optimisation are further modified to increase pharmacodynamics and -kinetic properties of the 
lead compounds and undergo time-consuming MoA studies to aid in selecting leads for pre-clinical 
candidates. (E) These candidates undergo pre-clinical studies that further develop the bio-content of 
candidates for clinical trials such as combinational studies and in vivo humanized mouse model studies. 

 

Phenotypic screening has the advantage of identifying multiple hits without any knowledge 

on their MoA or target. Therefore, in the antimalarial drug discovery pipeline, MoA is 

typically determined for compounds during the LO phase to ensure that a compound’s drug 

target or MoA is known before it is evaluated as a preclinical candidate. This is to assist 

downstream combination studies as well as to prevent further investment in leads that have 

a low probability of succeeding in clinical trials. 

In the antimalarial drug discovery pipeline (Figure 2), the rate-limiting steps that decrease 

the efficiency of compounds progressing through the pipeline occur within the H2L and LO 

phase of drug discovery. During H2L optimisation, the medicinal chemist repeatedly 

modifies hits to increase their potency and use SAR to guide them in their chemical 

modifications. However, this process is fraught with the possibility that changes in potency 

resulting from chemical modifications are due to stronger binding of the compound to its’ 

target or alternatively to a change in MoA. Not only this, but compounds with undesired 

A B C D E 



8 
 

MoA may only be discovered during the LO phase whereby the cost invested in such leads 

is already wasted. 

To address these challenges and help accelerate antimalarial drug discovery, a MoA 

identification method is required which is cheap and can be adapted for high-throughput 

applications to be used during the H2L phase. Such a method will help medicinal chemists 

in monitoring change in MoA during the derivatization of hits and define the chemical space 

of hits during H2L optimisation. It will also help reduce costs by eliminating the investment 

in compounds with undesired MoA.  

1.5 Target and MoA identification strategies in drug discovery  

The Malaria Drug Accelerator Consortium (MalDA) is a collection of laboratories in 

academia and industry that are at the forefront of antimalarial drug discovery that aims to 

identify novel assayable drug targets and the MoA of promising leads within the antimalarial 

drug discovery pipeline [67]. To help speed up drug discovery of lead compounds they have 

employed and developed multiple methods for target and MoA identification, some of which 

will be discussed below. 

To identify the targets of a compound, multiple direct and indirect methods for target 

identification had been developed over the years. Protein-based pull-down assays such as 

affinity chromatography and drug affinity responsive target stability (DARTS) are an 

example of such direct methods which rely on the binding affinity between a compound and 

its’ targets. The limitations of DARTS and affinity chromatography is that low-affinity targets 

or proteins in low abundance are not detected [68, 69]. This is particularly true for target 

identification studies in antimalarial drug discovery where protein abundance within P. 

falciparum varies during the parasite’s development [70, 71]. Alternatively, indirect forward 

genomic methods have also been developed to help identify drug targets. This typically 

includes exposing parasites to sub-lethal concentrations of a compound until the parasite 

develops resistance. Whole-genome sequencing of the resistant mutants is subsequently 

used to identify gene mutations that led to resistance development towards the compound, 

which is typically found within the drug target itself [69, 72]. One major limitation is that not 

every resistance mutation relates to the target [69, 73] but can simply be an indication of 

the resistance mechanism itself. An example of this is the chloroquine and the chloroquine 

resistance transporter that helps in exporting the drug out of the vacuole and is not the 

target of chloroquine action [74].  
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The above target identification strategies are typically not high throughput. Other 

target-based investigative tools (e.g. gene function manipulation through CRISPR Cas for 

instance) are not scalable and will not provide a full descriptor of the global effect of a 

compound on an organism, including identifying ‘off-target’ effects [75]. Additionally, these 

direct and indirect approaches for target identification has only been applied for the asexual 

proliferative stages of the parasite, whereas forward genetics resistance induction would 

not be relevant for other non-proliferative stages like gametocytes.  

In instances where target identification is not possible, a compound’s MoA may still be 

informative to allow progression through the drug discovery pipeline. Additionally, this 

allows evaluation of pluripharmacology where compounds have complex MoA and the 

combined effect of a compound acting on multiple targets play an important part in the MoA 

of a compound that leads to the desired phenotype [75, 76]. Thus, MoA studies of a 

compound aim to highlight the key biochemical pathways affected due to compound 

exposure [77]. MoA provides information on the overall cell processes effected by the 

compound which leads to the observed phenotype, but the actual drug targets are not 

necessarily identified [78]. 

Most MoA characterisation methods rely on -omics approaches to obtain a global 

perspective of a compound action, whereby the MoA footprint of a compound can be 

determined to function as a descriptor of the compound’s induced phenotype. 

Metabolomics, for example, indirectly allows one to infer a compound’s MoA based on the 

principle that if a compound inhibits a metabolic enzyme, the respective substrates would 

accumulate, whereas the opposite is true of the products [69]. Global unbiased approaches 

allow the entire metabolome to be compared between treated and control samples, and this 

is typically performed using mass spectrometry or nuclear magnetic resonance  [69, 79]. 

Deviations from the controls in certain substrates or products can help in identifying 

metabolic pathways that were affected by the treatment. This method is very sensitive and 

has already been used to identify the MoA of 40 antiplasmodial compounds with the highest 

priority in 400 compounds from the Open Access MMV Malaria Box which previously had 

an unknown MoA against P. falciparum [80, 81]. Recently, the targeted pathways of 110 

out of the 169 compounds within the MMV Box were predicted using metabolomic profiling 

[82]. There are, however, limitations to using metabolomics for MoA studies early in the 

drug discovery pipeline, as some compound’s whose MoA is unrelated to metabolism may 

be more difficult to ascertain or detect [69, 80]. Moreover, only a handful of metabolites can 

be quantitatively detected and may only be active during a specific stage within the parasite 

life cycle. This also makes between stage comparison difficult as some stages of the 
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parasite are more metabolically active than others [83]. Lastly, metabolomics is extremely 

time and resource-intensive, which precludes its routine use in guiding the profiling of 

compounds through the drug discovery pipeline. 

Alternatively, the use of transcriptomic data has been successfully used in studies of cancer 

in elucidating the MoA of compounds and some studies have even been able to refine the 

use of transcriptomic data to identify a list of possible targets the compounds may act on. 

The rationale is based on the interaction between the compound and its’ target(s), by 

binding to the target, the activity or function of the target is affected. Ultimately, homeostasis 

and normal cellular functions are affected which influence the expression of genes involved 

with these cellular processes and homeostatic control. As a consequence, the 

transcriptome becomes perturbed and cause particular genes to be differentially expressed 

(DE) [84]. These DE genes may function to help elevate the effect of the compound or be 

a direct effect of the compound on a cellular pathway. Thus the drug perturbed 

transcriptome can be exploited to aid in elucidating the MoA of a compound [85]. 

1.7 The use of transcriptome datasets to identify a drug’s MoA and targets 

Although transcriptomics allows for an intensive global overview of a drug-treated cellular 

state, it also produces gene expression profiles (GEPs) with high dimensionality as a result 

of overviewing a large set of genes. This high dimensionality datasets can complicate the 

determination of patterns for MoA fingerprinting or target identification. To overcome this, 

many methods have been developed to allow one to extract the relevant data from 

transcriptional responses, ranging from hierarchical clustering and gene expression 

correlations to more advanced methods for inferring MoA and targets using network 

analysis and machine learning (ML). 

1.7.1 Gene expression correlations  

Gene expression patterns can be inferred by using correlations tools such as Gene Set 

Enrichment Analysis (GSEA) to highlight corresponding gene sets that are significantly 

different between two different biological conditions [86]. Although this tool is usually used 

to identify differentially expressed genes (DEGs) between control and treatment samples, 

this method can also be applied to different compound treatments to highlight gene sets 

that differ in their gene expression signatures between different compounds. 

Gene expression profiles of cancer cell lines before and after treatment with different 

compounds have been used to identify shared pathways affected by different compounds. 

Using this, compounds that affect similar pathways could be classed together as it is likely 
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that such compounds share similar MoA. This was accomplished by developing a 

computational method called Drug-set Enrichment Analysis (DSEA), that highlights 

significantly modulated pathways within a drug-set, relative to other drugs within the 

database. In this way, transcriptional responses that may not relate to the compound 

induced phenotype are ‘normalized’ so that only pathways that are significantly affected are 

analysed. The significance by which a pathway is affected by a compound is then assessed 

using a similar approach to GSEA, the only difference being that an enrichment score is 

computed for drug ranks to a set of genes in a pathway and not gene ranks. Drugs ranks 

are drugs distributed within a row according to how they affect a pathway, with each row 

representing a different pathway. In this regard, a pathway is defined as a set of genes that 

are functionally related. The drug ranks are compared on how they affect pathways relative 

to other drugs and an enrichment score generated [87]. With DSEA, the analysis becomes 

more powerful and robust as the number of drugs included in the analysis database is 

increased.  

DSEA might be more relevant to MoA prediction of a compound within P. falciparum than 

identifying drug targets since DSEA focuses on highlighting the pathways affected that 

results in a certain phenotype. However, one limitation of using this within P. falciparum is 

that the majority of the parasite’s genome is not functionally annotated and this, in turn, 

limits the number of known pathways within the parasite to investigate. 

1.7.2 Hierarchical clustering  

Clustering can be used to arbitrarily group compounds together based on similar gene 

expression patterns in their GEPs. This is very useful in identifying genes that can function 

as a MoA fingerprint or descriptor. For example, within the TB research field, Murima et al. 

were able to develop a microfluidic medium high-throughput format for transcriptional 

profiling of compounds that used only 90 biomarker genes to effectively stratify and 

deconvolute a compound’s MoA [88]. This was done through hierarchically clustering the 

GEPs of Mycobacterium tuberculosis treated independently with a variety of compounds. 

The GEPs of compounds with very similar transcriptional responses clustered together, as 

it is likely that these compounds target the same pathways which result in similar 

downstream transcriptional responses that led to the phenotype observed. From the 

hierarchical clusters, they identified biomarker genes that represented these clusters which 

were able to aid in MoA stratification of compounds active against M. tuberculosis [88].  

One limitation using hierarchical clustering is that some DEGs may become irrelevant 

during clustering and once a cluster has been merged it is impossible to retrace the steps 
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made during clustering [89]. Although unsupervised clustering may be adequate for 

identifying biomarkers for a MoA fingerprinting, clustering analysis alone has shown to 

produce poor results when trying to predict a condition or class from GEPs [90]. Thus, 

clustering is inadequate for solving classification problems, such as identifying compounds 

with similar MoA. 

1.7.3 Network analysis for MoA fingerprinting and target identification  

Network analysis allows a more contextual overview of gene expression patterns. Networks 

can either be directed (e.g. gene regulatory networks or GRNs) or undirected networks (e.g. 

co-expression networks), where the direction of interaction between two nodes is either 

known or not known, respectively. This is not only limited to genes but can also be applied 

to metabolomics and proteomics and can even allow the integration of these different 

approaches (Figure 3). In the case of GRNs not only are the DEGs analysed in the network 

but also their effect on other genes that they are connected to in the network. Network 

analysis can thus be a powerful tool to analyse the influence of DEGs on other genes and 

highlight affected pathways due to treatment with a compound, thereby helping in MoA and 

target identification.  

 

 

Figure 3: Simplified example of a network. 
This is a combined directed and undirected network, where lines (edges) with arrowheads indicate the 
direction of interaction between the different biological entities (nodes) such as metabolites (triangles) and 
proteins or genes (circles).  

 

As an example of a GRN, in cancer research, Woo et al. applied network analysis to clarify 

the MoA of compounds using transcriptome data as a result of global gene dysregulation 

due to treatment. The resultant DeMAND algorithm evaluates dysregulation between each 
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interacting gene pair within the GRN and produces a probability density before and after 

treatment with a compound. Thus, all perturbations are considered in the transcriptome and 

not only DEGs. The algorithm then gives an output in the form of a ranked list containing 

all the network genes and the statistical significance of their dysregulation. DeMAND 

successfully predicted the possible target proteins of ~70% of compounds with a ~20% 

false discovery rate (FDR) and these targets can be further investigated to identify the MoA 

of a compound [91]. There are, however, some limitations to this DeMAND algorithm as it 

may not be fully utilized or employed within antimalarial drug discovery. This is because 

currently there are only limited GRNs of P. falciparum available and most of these do not 

cover more than half of the parasite’s genome. The DeMAND algorithm is dependent on 

high-quality context-specific GRNs and although the algorithm can still use non-context-

specific networks for analysis this will result in a higher FDR and incorrect predictions. Since 

there isn’t much known of the global GRN during the parasite’s asexual or even sexual 

development, an approach similar to the DeMAND algorithm may not yet be applicable to 

P. falciparum.  

As an alternative to GRNs, protein-protein interaction networks (PPINs) can be used when 

evaluating gene expression perturbations to uncover a compound’s targets and the 

pathways influenced. A study within the cancer field using PPINs was able to predict 22% 

of known targets within the 1st percentile By using direct contacts, genetic interactions, and 

functional relationships, PPINs were used to provide downstream relationships between 

drug targets and other proteins. Pathways affected by the compound was highlighted by 

using a network topological distance measure to extract the shortest path between 

perturbed genes and known targets, as this may explain the phenotype that resulted from 

drug treatment. In the case of P. falciparum, the PPINs available may not be suitable for 

MoA identification, as most information about the parasite’s proteome is less detailed than 

that of the parasite’s transcriptome [92].  

Although network analysis may be an attractive approach, due to the complexity of the 

parasite and that more than 59% of coding genes are differentially expressed when treated 

with compounds, this can lead to generating a very interconnected network [93]. Such 

networks are usually difficult to unravel in order to obtain useful information, especially 

when the majority of the parasite’s genome lacks functional annotation. One alternative 

suggestion is that ML algorithms can be a useful alternative to deconvolute these complex 

transcriptional drug signatures to identify pathways on which a compound act. One benefit 

these algorithms have over network analysis methods is there is no prerequisite to define 

in detail the structure of interaction between genes [94].  
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1.7.4 Machine learning for MoA fingerprinting and classification  

ML is a computational method that uses statistics and mathematics algorithms on large 

datasets to determine imperceptible patterns in the said dataset. Based on the algorithms’ 

training on the dataset, it has the ability to make dependable statistical predictions about 

similar data [95]. There are two types of ML approaches, namely, supervised and 

unsupervised learning (Figure 4). Supervised learning is a type of ML where the algorithm 

is trained with a labelled training dataset whereby the algorithm then can make predictions 

on an unlabelled, unevaluated dataset [96]. With supervised learning, the category/classes 

or properties in the training set need to be predefined/labelled [97].  

 

  
Figure 4: Supervised and Unsupervised machine learning algorithms. 
Supervised learning can be grouped into two sections, classification and regression algorithms such as 
support vector machines and linear regression. Unsupervised learning primarily consists of clustering 
algorithms such as k-means and hierarchical clustering.  

 

In unsupervised ML methods, patterns are found in a dataset without the dataset needing 

to be labelled and is an alternative ML method when a labelled training set isn’t available 

[96]. Unsupervised ML methods, however, perform poorly with classification problems and 

mainly focus on defining or understanding the relationship between data points and makes 

no assumptions about the data structure. As a result, unsupervised learning algorithms may 

identify spectrally similar classes within the data that may be due to the asexual stages of 

the parasite or other factors rather than the MoA of a compound [98]. This, in turn, can 

result in arbitrary MoA classification when using unsupervised learning. In this regard, 

supervised classification algorithms are more suitable for MoA classification. 
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Due to the promising results of ML in complex biological conditions, some pharmaceutical 

companies are employing ML to help drive drug discovery in a cheaper, efficient and more 

effective way [99, 100]. Similarly, some cancer studies employed the use of ML to predict 

drug response using drug-induced gene expression data and/or single-cell phenotype 

images [101, 102]. In fact, ML has already been used in a few studies in the malaria field 

to help identify synergistic compound combinations [103]. However, the use of ML in 

malaria research is relatively new and has not yet been utilized fully in the extent of 

antimalarial drug discovery compared to cancer studies. 

To accelerate antimalarial drug discovery, a ML model that can stratify the MoA of 

compounds based on transcriptional responses will be extremely useful if it can be 

employed during H2L optimisation. It will be very advantageous as this predictive 

stratification model generated for P. falciparum will be able to identify gene expression 

patterns shared between compounds with similar MoA and stratify such compounds 

together. Not only will such a model identify compounds with novel MoA early in preclinical 

development, but it will help monitor any change in MoA of a compound during chemical 

modification in H2L and LO optimisation. Such a model will be beneficial in guiding 

medicinal chemists on how the chemical modifications change the MoA of a compound as 

well as aid in defining the chemical space of such compounds. 

1.8 Rationale using P. falciparum transcriptome for MoA deconvolution 

Prior evidence exists as proof of principle that P. falciparum transcriptome data can be used 

to obtain some differential transcriptional responses to particular compound classes [104]. 

In this study by Siwo et al., they analysed the gene expression of P. falciparum towards 31 

chemically and functionally different compounds that targeted different pathways within the 

parasite. For each compound, they generated a genome-wide response index by 

calculating the response index for each gene after treatment with a compound. To compare 

the global transcriptional response of each compound they correlated the genome-wide 

response index of different compounds and employed hierarchically clustering. From 

clustering, they found that similar transcriptional responses were shared between different 

compounds some of which have similar chemical features (Figure 5). However, not all 

compounds with the same transcriptional responses necessarily shared the same chemical 

features and were more likely to affect the same pathway within a cell. With PCA they 

determined that chemical similarity and the MoA of a compound play a role in evoking 

similar transcriptional responses [104].  
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Figure 5: Gene expression responses to drug treatment related to a compound’s MoA and/or chemical 
structures. 
A genome-wide response indexes was calculated for each compound and used for (A) hierarchical clustering. 
Two classes were observed (red and green). Within both classes, compounds were positively correlated to 
compounds within its class and negatively correlated to compounds in the other class. (B) From PCA it is 
observed that both chemical structural similarity (in red CQ and TQ compounds) and MoA (in red E64, 
Artemisinin, CQ and TQ) are captured within the drug perturbed gene expression of the parasite. Source:[104] 

 

One critique of the Siwo et al. study, is that they used GEPs of different P. falciparum cell 

lines to try to enhance the signal-to-noise ratio. These cell lines differ in compound 

sensitivity to certain antimalarials and may cause increased variation between different cell 

line transcriptomes. Therefore, using different cell lines for averaging may cause skewed 

results.  

Hu et al. also used transcriptional responses of the P. falciparum to integrate co-expression 

of genes together with domain-domain, sequence homology and yeast two-hybrid data in 

order to construct an interaction network able to predict protein function [93]. The authors 

A 

B 
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treated parasites with 20 different compounds and found that gene expression in response 

to chemical stimuli was highly reproducible and dose-dependent. They also found that when 

considering both proteome coverage and positive prediction rate, transcriptomic data 

outperformed all of the three different protein-protein interaction datasets [93]. Although the 

authors were able to identify DEGs for multiple treatments and could observe notable 

expression patterns differences between these treatments, they did not further investigate 

these genes for MoA stratification. 
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Figure 6: Discernible expression patterns across treatments. 
Across different treatments, strong distinguishable expression responses are observed. With a 3-fold change 
in expression criteria for DEGs, a majority (3125) of the coding genes show DE in at least one treatment. 
From chloroquine treatments (white box) it is shown that these responses are reproducible and 
dose-dependent. Source: [93] 
 

From the above two studies, it is evident that the parasite has unique gene expression 

patterns to such an extent that compounds having different MoA or chemical features show 

different transcriptomic responses. Additionally, these responses are reproducible and 
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specific to compounds with similar MoA. This implies that the parasite’s transcriptome can 

be mined to determine MoA or stratify compounds to their MoA in pre-clinical studies but 

doing so on a genome-wide scale may not be feasible in early drug discovery. The current 

challenge is to devise a tool that can be used in a drug discovery program to quickly 

(medium- to high-throughput level), efficiently and economically stratify a compound’s 

potential MoA, without the need to complete full transcriptome analysis of every compound. 

We hypothesise that a small subset of DEGs could be used as representative biomarkers 

of compound MoA to be used to evaluate and stratify compounds at scale. 

 

1.9 Study aim 

This project aimed to develop a ML model that can stratify compounds with similar MoA 

together based on transcriptional responses of a limited number of biomarker genes. This 

model will enable medium through-put MoA elucidation and be useful in guiding preclinical 

decisions to fast-track drug development during H2L optimisation as well as the 

identification of compounds with novel MoA. 

We rationalise that these biomarker genes can be identified using a rational feature 

selection approach that can select genes representative of drug MoA. We hypothesise that 

we can use this rationale feature selection approach to identify biomarker genes that are 

unique for a MoA and pervasive throughout a compound’s treatment and that these 

biomarkers can be used as predictive features to train a robust MoA stratification model.  

 

Aim 

To use transcriptomic data of drug-treated P. falciparum parasites to identify drug-specific 

biomarkers that with the help of machine learning can generate a predictive model to stratify 

antiplasmodial compounds with a similar mode of action together. 

 

Hypothesis 

The predictive model will be able to robustly group antiplasmodial compounds with a similar 

mode of action together. 

 

Objectives 

• Identify possible biomarker genes that represent a MoA 
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• Evaluate different classification algorithms for their ability to robustly stratifying 

compounds with similar MoA from transcriptomic data 

• Generate a predictive model from biomarker genes  

• Determine the optimal minimal number of biomarkers needed to generate a robust 

predictive model 
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Chapter 2: Methodology 

To build a MoA stratification model that utilizes transcriptional responses, GEPs of 

drug-treated P. falciparum parasites were needed from which the ML models could be 

trained and tested on as well as to help identify biomarker genes representative of 

compound MoA. 

 

2.1 Identifying predictive biomarker genes for mode of action stratification 

A database was generated consisting of GEPs of P. falciparum parasites treated with 

different compounds. These GEPs were obtained from different open sources such as the 

NCBI GEO database and the detailed information on all of these datasets is presented in 

Table 3.  

 

Table 3: P. falciparum compound treated GEP datasets used in this study 

Ref Compound(s) Strain Time 
points 

Stagea Controls [Drug] Replicates GEO no  Date 
accessed 

[105] Thiostrepton~ 3D7 24 h R DMSO IC50 3  GSE28701 2019/02 

Own MMV390048 or 
MMV642943 

3D7 24 or 48 
h 

R UT 10 x 
IC50 

1 GSE100692 2019/02 

[106] Cisplatin, Etoposide, 

Methyl 
methanesulphonate 

(MMS), 
Pyrimethamine ~ 

3D7  6 h R  Reference 
pool  

IC50 
and 
IC90  

3  GSE72580 2019/02 

[107] dihydroartemisinin 
(DHA)* 

K1  1-3 h T Not clear IC50 5 GSE62136 2019/03 

[108] Choline kinase 
inhibitor, 

hexadecyltrimethylam
monium bromide*~ 

K1  72 h R UT IC50 3 GSE54775 2019/03 

[109] Dcompound1, novel 
dihydroorotate 
dehydrogenase 

(DHODH) inhibitor* 

Dd2  Not 
clear 

Not 
clear 

Dd2 IC50 3 GSE35732 
GSE37306 

2019/03 

[110] ACT-213615 3D7 1, 2, 4, 
6, and 8 

h 

T DMSO IC50 Not clear GSE39485 2019/03 

[111] Trichostatin A (TSA), 
suberoylanilide 
hydroxamic acid 
(SAHA) and 2-

aminosuberic acid 
derivative (2-ASA-9)~ 

3D7 2 h T DMSO IC90 2 GSE25642 2019/02 

[112] Pyronaridine, CQ* K1  4 h and 
24 h 

T UT IC50 3 GSE31109 
GSE30867 
GSE30869 

2019/02 

[113] Cyclohexylamine 3D7 18, 25 
and 30 

hpi 

Both UT IC99 2 GSE18075 2019/02 

[63] DL-α-
difluoromethylornithi

ne (DFMO)  

3D7 19, 27 
and 34 

hpi 

Both UT 5x IC50 2 GSE13578 2019/03 

[114] Dehydrobrachylaenoli
de  

3D7 2, 6, and 
12 h 

Both DMSO IC99  2 GSE29874 2019/03 
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A: R= rings, T = trophozoites; S = schizonts; UT= untreated parasites, hpi = hours post invasion, h= hours, min= minutes 

 

2.1.1 Quality control filtering 

Raw GEP data was used which contains a considerable amount of noise and technical 

variability that was introduced during labelling, hybridization, and scanning. Each GEP 

dataset was assessed individually for quality and usefulness using a filtering criterion set 

that was established as outlined in Table 3.  

Table 4: Filtering criteria of GEP datasets 

Criteria Accepted Rejected 

Controls Untreated parasites under 
same conditions as 

compound-treated parasites 

Different conditions 
compared to compound-

treated 

Gene coverage ~75% coverage of 
P.  falciparum genes 

<60% coverage of 
P. falciparum 

Mode of action  Known in P. falciparum Unknown in P. falciparum 

Time series If there are ≥2 time points 
available for comparison to 
other compound treatments 

Compound treatments that 
have no time points or 

replicates 

Concentrations IC50 and higher 
concentrations  

Concentrations below IC50  

Parasite strain Treatments and controls 
need to be the same strain, 

preferably NF54 or 3D7 

Resistant strains or clinical 
isolates will not be 

considered as transcriptional 
responses may vary due to 
strain differences and not 

compound treatments 

To ensure that biomarker genes function as a representative of the compound’s MoA, 

genes were extracted whose expression is perturbed when compared to their expression 

under normal circumstances. Thus, the GEPs needed to have suitable controls that reflect 

the state of the untreated parasite. These controls also needed to be from the same parasite 

population and strain as the compound-treated parasites and under the same conditions to 

ensure that the variances in gene expression were not due to environmental or population 

differences.  

[93] ML7, W7, KN7, 
Staurosporine, KN93, 

Cyclosporine A, 
FK506, Roscovitine A, 
Quinine, Chloroquine, 

Febrifugine, 
artemisinin, Na3VO4, 
Colchicine, Retinol A, 

PMSF, E64, 
Leupeptine, Apicidin, 
Trichostatin A, EGTA 

3D7 1,2,4,6,8 
and 10 h 

Both UT IC50 
and 
IC90 

1 and other 
treatments 

had 2 

GSE19468 2018/06 

[115] Ionomycin 3D7 30 min, 
1, 2, 4 
and 6 h 

S Reference 
pool 

10x 
IC50 

1 GSE33869 2019/02 
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2.1.2 Merging and pre-processing (normalisation) of GEP datasets  

Since normalisation strategies may differ between datasets, the raw GEP data was used 

and each dataset was assessed with regards to standard of quality for comparison. Since 

GEPs measure the expression level of genes using probes poor hybridizations, sample 

quality, and salt concentrations can lead to dry spots where probes for genes show too low 

or no signal [116]. As a result, low probe quality can cause genes to show no signal and 

thereby lower the gene coverage of the GEP of a dataset. Hence, GEPs were filtered for 

gene coverage based on probe quality and GEP datasets which had a gene coverage below 

3180 genes (i.e. below 60%) were rejected. The accepted datasets were merged to form 

our GEP database, but since the GEPs are obtained from different authors and are 

performed on different GEP platforms (e.g. Affymetrix and Illumina), between-array 

normalisation was needed to allow for comparison between datasets.  

Different normalisation methods were assessed for their ability to allow comparisons 

between different GEPs in our database. This was also an essential pre-processing step 

before the data can be used to build a model using machine learning algorithms, as some 

algorithms require the data to be normalized. Different microarray between-array 

normalisation strategies were assessed using the limma package [117].  

For each compound and their respective controls within the database, boxplots were drawn 

before and after normalisation to aid in evaluating each normalisation strategy for the 

acquired data. From this, the best normalisation strategy was selected, and between-array 

normalisation was performed on our database. 

 

2.2 Generating a predictive model 

2.2.1 Employment of machine learning on GEPs 

To build our antiplasmodial MoA stratification model, algorithms that can solve multiclass 

classification problems were identified (Section 2.2.2). These algorithms were then 

investigated for their ability to build a robust and stable MoA stratification model from 

transcriptomic data using the principle explained in Figure 7. For these classification 

algorithms, it was required that the input data used for training to be labelled. Thus, each 

input data, i.e. time points of a compound treatment, were labelled according to that 

compound’s respective MoA. In other words, when training our model on the GEPs, the 
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gene expression within the treatment time point is the input data points, the genes are the 

features and the labels are the compound’s MoA. 

 

Figure 7: Principle of training a compound MoA stratification model using transcriptional responses 
of genes. 
From our treated P. falciparum GEP database, a subset of the database will be used for training the algorithm 
and will thus be called a training dataset. (A) The training dataset will contain genes that function as the 
training features. To ensure a MoA stratification model is built, the compounds used in treatments have to be 
relabelled according to their MoA corresponding to literature. (B) The training dataset is then used to train a 
classifier i.e. model to recognize patterns in gene expression for a specific MoA. (C) Here different 
classification algorithms can be used to build a classifier. (D) The remaining subset of the database is then 
used to assess the accuracy of the classifier. 

 

For downstream applications and analysis, each algorithm had to construct two ML models, 

one using all the genes within our GEP database and the other only using the biomarker 

genes identified from our rational feature selection approach (Figure 8).  
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Figure 8: Method for selecting the best ML algorithm for MoA stratification. 
(A) For each classification algorithm, two models were built, one using all the genes within our database as 
features, the other using the biomarker genes identified as features. During model building, the optimal 
hyperparameters are determined (B) for each model before 10-fold cross validation (C) was implemented on 
the final model using the optimal hyperparameters. (D) Each of the two final models from each algorithm was 
then evaluated for their MoA stratification performance on the test set. (E) The ML algorithm with the best 
accuracy and performance from (C) and (D) was then selected. 

 

During the process of building these ML models, each was optimized and assessed for their 

MoA stratification performance (Figure 8) before the best algorithm was chosen that 

performs well on both the full set of genes in our database as well as our biomarkers. 

 

2.2.2 Selection of ML algorithms to be investigated 

Since the MoA of compound treatments is known within our database, we provided the 

labels to these treatments and used supervised algorithms to help build a model including 

multinomial logistic regression (MLR), support vector machines (SVM), random forest (RF), 

artificial neural networks (ANN) and gradient boosting machines (GBM) to address our MoA 

multiclassification problem (detailed in Appendix A). Before an algorithm’s model can be 

evaluated on its’ performance, the optimal architecture of the model was identified through 
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hyperparameter tuning (Appendix A). Hyperparameters dictate a ML model’s architecture 

and the default hyperparameters used in an algorithm may not be the optimal architecture 

of the model to address our MoA classification problem [118]. Hyperparameters were fine-

tuned individually for each algorithm as explained below and in Appendix A: Table A.1.  

2.2.2.1 Multinomial logistic regression 

Multinomial logistic regression (MLR) solves multiclassification problems by building 

generalized linear models that provide outputs in the form of the estimated probabilities of 

belonging to a category or class [119]. To build a MLR model for multiclassification the h2o 

R package was used by employing the h2o.glm() function, which is abbreviated for 

generalized linear model and can be used for both binary and multiclassification problems 

[120]. There are no hyperparameters for multinomial logistic regression and as such no 

hyperparameter tuning was required when building our MLR models [121].  

2.2.2.2 Support vector classification 

Support vector classification builds classifiers that utilize hyperplanes to separate and help 

distinguish members of different classes. In the case of multiclassification problems, 

multiple classifiers are built and the outcome of each serves as a vote on which class the 

data belong to and the majority vote of the multiple classifiers determines the class. To build 

such a multiclass SVM model the e1071 R package was used to train and fine-tune the 

hyperparameters for our SVM models [122]. With the e1071 R package the performance 

measure used to identify the optimal hyperparameters from the ranges shown in Appendix 

A: Table A.1 was classification error. During hyperparameter tuning, no assumptions were 

made regarding the data space of our database and hence various kernels tricks (sigmoid, 

polynomial, linear and radial) were also investigated for their MoA stratification 

performance. 

2.2.2.3 Random forest 

Random forest (RF) is an ensemble classifier that builds multiple decision trees, where 

within each decision tree the data is repeatedly split by the branches of the tree until a 

decision is made on which class the input data belongs to. From the multiple decision trees, 

multiple votes are obtained on which class the input data belong to and the majority class 

vote becomes the predicted class of the model. RF algorithms are useful as they do not 

require data to be normalised. RF models for multiclassification were built using the 

RandomForest, as well as h2o R packages [120, 123]. Hyperparameter tuning was 

implemented using the e1071 R package for RandomForest and an internal grid search 
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function was used for hyperparameter tuning for the h2o package [122].  Classification error 

was used to identify the optimal hyperparameters, however, for the mtries hyperparameter, 

the out-of-bag error was used to identify the optimal hyperparameter value. Since the 

hyperparameter, mtries, specifies how the data is to be subsampled during bootstrap 

aggregating when training the RF model, a mean prediction error i.e. out-of-bag error, can 

be calculated from samples not included in the training. Hyperparameters which had the 

lowest error was selected as the optimal architecture for the model. With the h2o package, 

hyperparameters were selected according to the Logloss value, also known as logarithmic 

loss. A high Logloss value indicates that the classification accuracy of the model is poor 

and vice versa [124]. Thus, optimal hyperparameters were chosen which had the lowest 

Logloss value. 

2.2.2.4 Gradient boosting machine 

Similar to RF, gradient boosting machines (GBM) builds multiple decision trees, however, 

based on the class vote of the decision tree built the subsequent tree is built to address the 

shortcomings of the previous decision tree and this is repeated until no further improvement 

is obtained or the number of trees specified has been reached. For multiclassification GBM 

models the xgboost R package, as well as the h2o R package was used [120, 125]. 

Hyperparameter tuning was implemented using the caret R package for xgboost and the 

internal grid search function was used for hyperparameter tuning for the h2o package [120, 

126]. The caret package used classification accuracy as a performance measure in 

selecting the optimal hyperparameters, whereas the h2o package used Logloss to select 

the optimal hyperparameters. 

2.2.2.5 Artificial neural networks  

Artificial neural networks (ANN), analyses input data within its’ hidden layers and may apply 

statistical functions within these hidden layers to better make decisions upon the data. The 

output layer of the ANN takes the information from the hidden layers and converts it into 

probabilities of the input data belonging to a class, whereby the highest probability becomes 

the predicted class. The h2o R package with the h2o.deeplearning() function was used to 

develop an ANN capable of multiclassification and a grid search was done to find the 

optimal model hyperparameters using Logloss as a performance measure [120]. Due to 

computational cost and efficiency, not all the ANN hyperparameters and/or large ranges 

could be investigated (see Appendix A: Table A.1). 
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2.2.3 Evaluating different machine learning algorithms in stratifying antiplasmodial 

compounds similar MoA 

When it comes to big data problems and complex data structures it is not always clear 

which ML algorithm will perform the best. Hence, each of the above algorithms was 

assessed in their ability to correctly stratify compounds to their respective MoA using all the 

genes within our database as well as the biomarkers genes identified as predictive features. 

The reason for identifying and using these biomarkers is to enable efficient screening, which 

is the end-goal, by evaluating few genes rather than whole transcriptomes.  

Model overfitting was evaluated by splitting the database into an 80:20 ratio, where 80% of 

the dataset was used to train the model and the 20% used as a test set to analyse the 

performance of the model predictions on untrained data. In parallel, K-fold cross-validation 

(K = 10) was performed except in this case the training data was used and subsampled to 

build the model in order to obtain a more precise estimate of the model’s performance 

(Figure 9). K-fold cross-validation is valuable in that it does an internal validation of the data 

being used to train the model. It also can give an indication of a classifier’s stability whereas 

the test set validation is an external validation and uses data the model has not been trained 

on. Many hyperparameter tuning algorithms use K-fold cross-validation to determine which 

parameters are more accurate. For our model assessment, both K-fold cross validation and 

the test data was used to analyse the performance of ML models in MoA stratification. 
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Figure 9: Assessing model performance using K-fold cross-validation and untrained test data. 
Our GEP database of compound-treated P. falciparum parasites was split into a test and training dataset. 
(A)The training dataset will undergo 10-fold cross-validation whereby the training set is split into 10 sets. One 
set is selected as a validation fold and the remaining sets are the training fold. The training fold trains the 
model (black) using the algorithm and the optimal hyperparameters selected. The model is validated by 
assessing the model’s prediction performance on the validation fold. This is done repeatedly until each set 
was a validation fold. The performance measures give an average accuracy of the final model (purple) trained 
on all the training dataset (all 10 sets). (B)The final model (purple) accuracy is then assessed on the test data 
that the model has not been trained on. 

 

The caret package was used to perform 10-fold cross-validation on the random forest and 

SVM models made using the randomForest and e1071 R packages, respectively [122, 123, 

126]. In instances where the h2o R package was used to make models (such as the ANN, 

MLR, and GBM), the 10-fold cross-validation was done simultaneously without the 

requirement of another RStudio package [120]. The best ML algorithm was then identified 

based on results from the 10-fold cross-validation, model stability and classification 

accuracy on test data. 
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2.2.3 Filtering criteria to identify predictive biomarker genes 

With ML, if the training data contains much noise and variability, the model built on this data 

may recognize this and attach significance to this noise, thereby decreasing accuracy in 

prediction. Therefore, feature selection is an essential part of ML as it helps reduce the 

dimensionality of high dimensionality datasets (HDD) such as GEP data and also improves 

predictive accuracy by focusing on data that is relevant for the model [127].  

To identify features i.e. genes that may be useful for MoA stratification, a rational feature 

selection criterion was developed as shown in Figure 10. Since algorithms can identify non-

informative features or noise as signal, non-informative genes that are not significantly 

differentially expressed after treatment was removed (Figure 10.B). Informative genes with 

strong signals were extracted by identifying genes that had a log fold-change (FC) in the 

upper or lower 5th percentile. Genes that fell within the upper or lower 5th percentile of gene 

expression in the GEP during any time point in a compound treatment were defined as 

differentially expressed (DE). 

 
Figure 10: Feature selection filtering process to identify biomarker genes with unique predictive 
features. 
From our database containing the accepted GEP datasets of compound-treated P. falciparum, individual 
datasets undergo feature selection whereby biomarker genes, i.e. important features for predictive modelling 
are identified. (A) Each dataset is pre-processed to remove gene probes with no signal. (B) After which DEGs 
are identified for each treatment and all their corresponding time points. (C) DEGs identified for each 
compound are filtered to extract DEGs that are pervasively DE across all time points for that compound. (D) 
The extracted DEGs with pervasive DE are then filtered to exclude DEGs shared among compounds with 
different MoA. 
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Although these genes may have a strong signal, this signal may not be continuous 

throughout treatment with a compound and vary across time points. Such genes may not 

function as predictive features as they are non-pervasive throughout various time points of 

a compound’s treatment in a highly perturbed state. Hence, to reduce noise being 

introduced into the model, only genes that were continuously DE across all time points of a 

treatment were selected (Figure 10.C). Genes that were not continuously perturbed 

throughout the time points were thus not considered as strong predictive features. In this 

way, unwanted variability and ‘noisy’ genes were removed. This was done for each time 

point of each compound’s treatment, however, to ensure our filter selection was not biased 

towards immediate transcriptional responses pervasively DEGs that only occurred after of 

treatment were also included. 

Not all pervasive DEGs may be due to a compound and can be the result of general drug 

stress or other factors. Such DEGs are likely to be shared between compound treatments 

and would not be informative or useful in our MoA stratification model. To ensure such 

genes were excluded, the pervasive DEGs extracted were further filtered to obtain 

pervasively DEGs specific for a compound’s treatment that is not shared with other 

compound treatments with different MoA (Figure 10.D).  

 

2.3 Validation of rational feature selection through a comparison to algorithm 

inferred biomarkers 

We subsequently evaluated if the features from our rational feature selection approach 

compare to features objectively identified in an unsupervised fashion by the ML algorithm 

as good features for MoA stratification. Since our feature selection is based on a 

rationalized, subjective criterion that makes assumptions on what a good predictive feature 

for compound MoA should be, potentially good features that do not comply with this criterion 

may be excluded. Hence, we wanted to validate our features by comparing the model built 

from them to a model built from features that the best ML algorithm identified top features 

for MoA stratification.  

For this, the 2463-gene database model was used by the best ML algorithm to produce a 

ranked list of genes that the algorithm gave importance to for MoA stratification when 

determining compound MoA. From these top ML-inferred genes, a model was built using 

the same number of genes/features (174) that was present in our rationally selected 

biomarker model to allow proper computational comparison between the two models. 
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Based on results from the 10-fold cross-validation, model stability and classification 

accuracy on test data the best feature selection approach (ML-inferred vs rational feature 

selection) was identified. 

 

2.4 Optimisation of the minimum number of features for robust MoA stratification 

Since non-informative features can cause lower accuracy and instability within a ML model, 

to be thorough in selecting which feature selection approach was more appropriate, a 

sliding gene-scale method was implemented. This is because as the number of features 

decreases, features that are noisy or redundant will become more apparent in affecting the 

model’s performance by lowering the accuracy of the model, whereas the opposite is true 

for good predictive features. This would also help with the primary goal in identifying a small 

subset of biomarker genes with predictive features regarding a compound’s MoA that can 

generate a robust model with low variability and good performance in stratifying compounds 

together with similar MoA. 

To identify the minimum number of genes most representative of compound MoA without 

compromising on model performance, genes identified from the rational feature selection 

or inferred ML method underwent a sliding gene-scale approach. Genes were ranked 

according to their importance in MoA stratification and from this ‘minimodels’ were made 

with each sequential model containing fewer training features than the previous model. The 

minimodel that performed the best in their classification accuracy, model stability and test 

set (untrained data) using the least number of features determined which approach was 

more suitable for feature selection. From this also the minimum number of features for 

robust MoA stratification was determined. 
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Chapter 3: Results 

3.1 Identifying predictive biomarker genes for MoA stratification 

3.1.1 Data acquisition and quality control filtering 

To build a model that stratifies compounds with similar MoA together, GEPs of compound 

treatments whose MoA is known in P. falciparum were used to train the model. In total, 14 

publicly available datasets were obtained, representative of responses due to 42 compound 

treatments (Figure 11) but filtering for known MoA resulted in the use of only 9 datasets.  

 

Figure 11: Quality control summary of compound-treated P. falciparum GEP datasets acquired. 
GEP datasets of compound-treated P. falciparum parasites were filtered according to criteria in Table 4. During 
each filtering step datasets and compounds were excluded until 6 GEP datasets were obtained containing 20 
compound treatments. In total, these datasets have 15 different MoA. 

 

Subsequently, to ensure that the model will be robust enough to be applied over a broad 

time-frame and not constrained or biased towards a certain stage of the parasite, only 

datasets that contained multiple time points for compound treatments were included. This 

resulted in 2 of the 9 datasets excluded as they only contained one time point each. If, 

however, a compound in a dataset with only one time point had the same MoA as a 

compound in another dataset with multiple time points, these compounds were accepted. 

The reasoning behind this was that broad time-frame biomarkers genes identified for MoA 

would not show a difference in expression and be biased towards different compounds with 

similar MoA in different datasets. Hence, the histone deacetylases (HDA) inhibitors in the 

Andrew et al. dataset (Table 5), despite only having one time point were accepted since 

such inhibitors were also present within the Hu et al. dataset containing multiple time points.  

This resulted in 7 datasets accepted, representative of 21 compound treatments and 17 

different MoAs. These datasets were pre-processed for probe quality since raw GEP data 

Accepted datasets after pre-processing

6 datasets 20 compounds drugs (15 different MoA)

IC50 or IC90 , acceptable controls and  time points available

7 datasets 21 compounds

Relevant MoA and gene coverage (>60%)

9 datasets 26 compounds

Data acquisition

14 datasets 42 compounds
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was used and this resulted in the exclusion of 1 dataset due to the gene coverage falling 

below 60%. The final database used for further analyses was obtained from 6 datasets and 

represented 20 compound treatments, spanning 15 different MoAs (Table 5). 

 

Table 5: Final database generated from 6 datasets spanning 20 compound treatments 

Compound Mode of action Ref Dataset GEO 
No 

Time 
points 

Gene coverage 
after pre-
processing 

W7 Calcium/calmodulin-dependent protein kinase 
inhibitor  

[93, 
110] 

Hu et al., 
2009 

GSE1
9468 

4-5 
time 

points 
per 

treatme
nt 

3705/5400 (69%) 

ML-7 [93, 
128] 

Staurosporine Inhibits serine/threonine kinases, reduces 
merozoite invasion 

[129, 
130] 

Cyclosporin A Has a strong affinity to sphingomyelin in 
membrane environment like parasitized 
erythrocytes membranes, thus aids in inhibiting 
merozoite invasion. Also believed to be a 
calcineurin pathway inhibitor. 

[93, 
131] 

Colchicine Microtubule is the target, inhibits merozoite 
invasion 

[132] 

PMSF Serine protease inhibitor [133] 

Leupeptin A cysteine, serine, and threonine peptidase 
inhibitor which affects haemoglobin degradation 

[134] 

Artemisinin  Partially understood but hypothesized to be 
involved in producing carbon-centered free 
radicals that in turn alkylate heme and proteins 

[135] 

Chloroquine Inhibits the heme polymerase enzyme [74] 

Febrifugine Targets P. falciparum prolyl-tRNA synthetase 
activity 

[136] 

Quinine Partially understood but accumulate in the 
parasite’s digestive vacuole (DV) and may inhibit 
the detoxification of heme 

[137] 

DFMO Inhibits ornithine decarboxylase causing parasite 
arrest 

[138] van 
Brummel
en et al., 
2008 

GSE1
3578 

 3 time 
points 
with 
replicat
es 

4050/5400 (75%) 

MMV 048 and 
MMV 943 

Inhibits Plasmodium phosphatidylinositol 4-
kinase (PI4K) 

[139] Connach
er et al., 
2016 

GSE1
0069
2 

2 time 
points 
each 

4971/5400 (92%) 

ACT-213615
  

Artemisinin derivative that has an unknown MoA 
which is different from other antimalarials based 
different transcriptional responses to that of the 
Hu et al. dataset 

[110] Brunner 
et al., 
2012 

GSE3
9485 

5 time 
points 

4857/5400 (90%) 

Ionomycin  Increases cytoplasmic calcium concentrations [115] Cheema
dan et al., 
2014 

GSE3
3869 

5 time 
points 

4495 /5400 (83%) 

Trichostatin A 
(TSA), 
Suberoylanilide 
hydroxamic 
acid, 2-
aminosuberic 
acid derivative, 
Apicidin 

Histone deacetylase (HDAC) inhibitors that 
perturb the transcriptome 

[111] 
[93] 
[93, 
140] 

Hu et al., 
2009 

GSE1
9468 

4-5 
time 
points 

3705/5400 (69%) 

Andrews 
et al., 
2012 

GSE2
5642 

1 time 
point 

4364/5400 (80%) 

 

Table 5 summarises the 6 datasets (3500-4000 genes each) that were included in our 

transcriptional database for further analyses. The 20 compound treatments included 
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spanned a variety of MoAs, ranging from cell signalling (Ca2+/calmodulin protein kinase 

inhibitors and S/T kinase inhibitors) to heme metabolism and transcription (heme 

polymerase enzyme inhibitors and histone deacetylases inhibitors). Most of the datasets 

had a high gene coverage, except in the case of the Hu et al. dataset (69% gene coverage) 

but since this dataset contained most of the compounds in our database and the gene 

coverage after merging these arrays was still acceptable, it was retained. Most treatments 

in these datasets had 3-5 time points to allow for feature selection of biomarkers present 

over a broad time-frame.  

The database consisting of the 6 datasets (20 compounds) averaged around 3500-4000 

genes each. To allow comparison between datasets, only genes within GEPs shared 

between the datasets were used. This resulted in a reduction of genes in the final database 

to 2463 (Figure 12).  

 

Figure 12: Merging and normalisation of accepted datasets to form our 2463-gene database 
Following data acquisition, accepted datasets containing the whole GEP of these 20 compound treatments 
underwent non-feature selection (pink) to identify genes shared among GEPs that will allow the merging of 
the 6 datasets to form our transcriptional database. Genes not shared between datasets had to be excluded 
as genes lacking in other datasets will impede gene expression comparison between treatments and prevent 
ML model building. After merging the resultant database underwent normalisation to allow comparison 
between datasets. This resulted in our transcriptional database consisting of 2463 genes that were used for 
model building and assessment. 

 

After pre-processing of raw probes and merging of the 6 datasets into the single 2463-gene 

database, different normalisation strategies were investigated to assess which would be 

optimal in allowing proper comparison between treatments of different datasets. As can be 

seen in Figure 13.A, DEG data from compound treated parasites and their controls do not 

have the same distribution and can thus not be compared to other datasets. Some of the 

datasets within our database were more skewed compared to the other datasets and would 

make comparison difficult. This disparity between GEP datasets could be a result of 

artefacts that were introduced from hybridization or washing [141]. Hence, different 

normalisation strategies were investigated for their ability to correct artefacts in the datasets 
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and allow effective comparisons between datasets. This included quantile normalisation 

(Figure 13.B), medium scaling normalisation (Figure 13.C) and cyclic loess normalisation 

(Figure 13.D).  

 

  

 

Figure 13: Normalisation strategies applied to the 2463-gene database 
(A) Unnormalized vs different array normalisation strategies were implemented such as (B) quantile 
normalisation, (C) medium scaling normalisation and (D) cyclic loess normalisation. Data from 6 datasets 
(Table 5) was used, with a total of 200 time points (i.e. treatment and control time points), ranging over 20 
different compound treatments.  
 

The quantile normalisation strategy was very strict and artificially removed any variability 

between datasets enforcing homogeneity which would be inaccurate (Figure 13.B). 

Quantile normalisation makes the overall distribution of expression values for each GEP 

identical to one another. However, it does so by transforming the highest expression value 

in a GEP to the mean of the highest values of all the GEPs. This is repeated until the lowest 

expression value in all the GEPs is transformed into the mean of the lowest values [142]. 

Although this strategy removes the artefact and allows for comparison, it also removes any 

heterogeneity between treatments and controls. By applying such strict normalisation, we 

would run the risk of also removing important expression patterns within compound 

treatments that could be useful during ML for MoA stratification. By contrast, medium 

scaling normalisation (Figure 13.C), which scales GEPs using the median absolute 

deviation was unable to solve artefacts [143]. It also did not aid in allowing comparison to 

other datasets and thus was not a good normalisation strategy. 

 

(A) (B) 

(C) (D) 
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Cyclic loess normalisation relies on the difference in log expression values (M) and the 

average of the log expression values (A) to draw a MA-plot to obtain a loess curve [144]. 

This loess curve is then used to apply a correction factor to the arrays being normalised 

[142]. When cyclic loess normalisation was implemented (Figure 13.D), the datasets are 

transformed in such a way as to allow comparison, including datasets with artefacts which 

had shown a very skewed distribution compared to other treatments in the unnormalized 

data (Figure 13.A). This normalisation strategy helped in correcting the artefact that may 

have been introduced during microarray preparation and reading as well as transformed 

the datasets to allow for cross comparisons. Cyclic Loess normalisation was thus employed 

on the 2463-gene database and the log fold-change of each treatment for each gene 

calculated. The normalised 2463-gene biomarker database (with 253689 individual 

datapoints, spanning the 103 time points) was then used to explore different ML algorithms 

for their efficacy and relevancy for subsequent use in MoA stratification. 

  

3.1.2 Evaluating different machine learning algorithms on the 2463-gene database  

ML models were generated using 202951 (80%) of the data points (defined as the training 

set) within the 2463-gene database after hyperparameter tuning (see Appendix B: Table 

B.1), and the algorithms were compared against one another based on accuracy scores 

from k-fold cross validation and performance on the test set data (the remaining 20% of the 

data points)(Figure 14).  

Amongst the ML algorithms, models generated with both polynomial and linear kernel SVCs 

displayed similar variability within accuracies of 78.2 ± 17.7% and 81.67 ± 14.19%, 

respectively, compared to MLR which showed a lower variability (77.8 ± 11.6%). The 

ensemble classifier set performed slightly poorer with the majority of the models displaying 

accuracies between 73-77%, with GBM (h2o) the most inaccurate at 62%. Models built with 

RF (randomForest) performed comparably well with the MLR model at 77.3 ± 10.6%, with 

the RF (h2o) also displaying very little variability (10.06%) although quite poor accuracy 

(73.35%). Quite a high variability was observed (up to 20%) for the remaining ensemble 

classifiers. The same large variability within classifier accuracy was observed for the h2o 

ANN algorithm (accuracy at 74.77 ± 14.17%).  
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Figure 14: Robustness and accuracy of different ML algorithms ability in stratifying treatments with 
similar MoA within our 2463-gene database. 
The accuracy of MoA class stratification of different ML algorithms is grouped according to whether they 
involve either statistics, ensemble classifiers or deep learning. Algorithms classifiers used all the genes in the 
database (2463) as training features. Classifiers were hyperparameter tuned before undergoing 10-fold cross-
validation. Bars indicate the average accuracy of the classifier obtained from 10-fold cross-validation on the 
training data and the error bars are the standard deviation of performance measures. Triangles indicate the 
accuracy of the classifier in stratifying the MoA of test data. SVC= support vector classification, RF=random 
forest, GBM=gradient boosting machine, ANN= artificial neural networks. R packages are shown in brackets. 

 

During the evaluation of the performance of models on the test set, both the SVC algorithms 

perform poorer than their average accuracy achieved on the training set, indicating that 

these models may have become overfitted to the training set and struggles in stratifying 

untrained data. However, all the other algorithms performed well with the test data. Both 

the MLR and RF algorithms displayed similar efficacy as evaluated by accuracy, variability 

and ability to perform on test data, therefore, these algorithms are useful to generate models 

on larger datasets that are informative to stratify compounds based on specific MoAs.   

As stated before, monitoring the gene expression of 2463 genes per treatment will not allow 

a medium-throughput method for MoA stratification. Not only this, but most of the algorithms 

build models showing high variability within their accuracy (>10%) in MoA stratification. This 

can be resultant of including genes as training features that are ‘noisy’ and non-informative 

for MoA stratification. Including such features can compromise a model’s accuracy and 

stability as models would give weight to such features. Hence, to exclude such non-

informative genes and select biomarker genes representative of a compound’s MoA, we 
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employed a rational feature selection approach to identify a set of biomarkers able to stratify 

a compound’s MoA. 

 

3.1.3 Biomarker gene selection  

The previously accepted 6 datasets underwent individual feature selection to extract the 

minimum informative features to be used as biomarkers and to establish a ‘biomarker’ 

model (Figure 15).  

 

Figure 15: Summary of feature selection and merging of datasets to form the 174-gene biomarker 
database 
Accepted datasets underwent individual feature selection (purple) to identify biomarker genes for each 
compound within each dataset. This yielded 259 genes showcasing unique and continual DE across 
treatments for 20 compounds encompassing 15 different MoA. Thereafter the 6 datasets underwent non-
feature selection (pink) to identify genes shared among GEPs that will allow the merging of the 6 datasets to 
form our biomarker database. Genes not shared between datasets were excluded as genes lacking in other 
datasets will impede gene expression comparison between treatments and prevent ML model building. This 
resulted in our biomarker database consisting of 179 genes out of the 259 biomarker genes that were 
identified.  

 

Features were defined as DEGs that were identified for each compound treatment using 

the expression profiles for each gene set derived from multiple time points within the 

individual datasets. This was performed on a total of 103 time points in the complete set of 

data for the 20 compounds. The DE criteria enforced for selecting these as features include 

that DE expression had to be present in the upper or lower 5th percentile of a compound’s 

treatment time point(s). This resulted in identifying the majority of genes within the 

parasite’s transcriptome (3146, Figure 16) as potentially DE within all 6 the datasets, 

present in at least one time point. However, to enforce continuity in DE over time, genes 

were only included if their DE profile was maintained during treatment time points for a 

compound. This second filtering step limited the number of DEGs identified for each 
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treatment to a total of only 338 DEGs (Figure 16, orange bars), which show continuity in 

DE throughout all time points for a specific treatment.  

 

Figure 16 : Filtering of DEGs to DEGs pervasive over time. 
Blue bars are the total DEGs obtained from all individual time points of each treatment. Orange bars are the 
genes obtained after filtering DEGs obtained for each treatment to DEGs which are pervasively DE across 
all time points for that treatment. 

 

Only 18 of the 20 compounds in our database are shown in Figure 16 since the two 

excluded compounds (Suberoylanilide hydroxamic acid and 2-aminosuberic acid 

derivative) are within the Andrew et al. dataset which does not have multiple time points to 

implement our feature selection criteria for biomarker genes. However, since these 

compounds share similar MoA to Trichostatin A and Apicidin A, we expect similar 

transcriptional responses from the biomarker genes identified. The inclusion of these 

compounds from the Andrew et al. dataset, will thus assess whether the biomarkers 

identified from our feature selection are biased towards independent datasets containing 

compounds with similar MoA. In contrast to this, the artemisinin derivative ACT-213615, 

was included to test whether the MoA stratification model can correctly discern a compound 

as having a different MoA than others within the database despite ACT-213615 obtaining 

no biomarkers from our feature selection. 
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With this filtering step in selecting DEGs with continuity in DE across treatment time points, 

the number of genes was drastically reduced from the initial number of DEGs obtained and 

allowed a reduction in the dimensionality of our biomarkers that will be used to build our 

ML models. Therefore, the 338 pervasively DEGs were further interrogated to eliminate 

DEGs which were defined as ‘promiscuous’ or non-specific since they were present within 

multiple compound treatments. These DEGs could be indicative of general stress 

responses or other factors, rather than be associated with a specific MoA of individual 

compounds and therefore had to be removed. Amongst compounds with previously 

indicated similar MoAs (chloroquine, quinine, febrifugine, and artemisinin, all supposed to 

interfere with heme degradation and hemozoin formation), surprisingly, only 4 DEGs were 

shared amongst more than two compound treatments (Figure 17) and were therefore 

removed. This included one DEG (PF3D7_1235000) shared between febrifugine, quinine, 

and artemisinin which is a putative gene with a PIH1 domain-containing protein. From this, 

we can see that although the compounds share similar pervasive DEGs, this is not 

necessarily due to similar MoA.  

 

 
Figure 17: Identification of pervasive DEGs unique to individual treatments. 
The number for unique pervasive DEGs were identified for quinine (8), chloroquine (17), febrifugine (12), and 
artemisinin (3). 

 

When the complete 338 DEG dataset was evaluated, the majority of the pervasive DEGs 

identified for a treatment were unique for that treatment (Figure 18). Only 79 DEGs were 

shared between the compound treatments, including genes involved in protein degradation 

(e.g. the ubiquitin-conjugating enzyme E2) and genes involved in transcription and 



42 
 

translation (such as 60S, 40S rRNA and putative zinc finger proteins), which could be 

indicative of general stress. The exclusion of these promiscuous genes resulted in 259 

unique and pervasively DEGs that were further evaluated. 

 

 
Figure 18: Pervasive DEGs compared to pervasive DEGs that are unique to treatments. 
The blue bars represent the pervasive DEGs identified for each treatment, whereas the orange bars are the 
subset of the pervasive DEGs identified for a treatment that is not shared with other treatments. 

 

To allow subsequent use of the biomarker genes in generating a ML model, the 259 genes 

were further interrogated since they have to be present between all 6 datasets to allow 

comparison of GEPs between the different compound treatments in the 6 datasets. 

Therefore, the 259 genes were further reduced to 174 since incomplete gene coverage of 

some datasets resulted in the loss of some biomarker genes during merging (Figure 15). 

These 174 genes are therefore represented in each of the 20 compound treatments in the 

6 datasets and cover all 103 time points in total between the 20 compound treatments. 

Since these genes were already within our 2463-gene database that underwent 

normalisation, these 174 genes and their expression under various treatments were 

extracted and used to form the 174-gene biomarker database. The 174-gene biomarker 
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database (with 17922 individual datapoints, spanning the 103 time points) was then used 

for building the predictive biomarker models. 

 

3.2 Building predictive biomarker models 

3.2.1 Evaluating different machine learning algorithms for the 174-gene biomarker 

database 

Different algorithms were again used as before to generate models on a training set from 

the 174-gene biomarker database. This is to evaluate the performance of the different 

algorithms on a database with 90% fewer features (174) than that found in the previously 

evaluated full 2463-gene database (Figure 19). The training set was again arbitrarily 

generated by using 80% of the data points within the biomarker database. The remaining 

20% was used later as a test set. After hyperparameter tuning (see Appendix B: Table B.1), 

the algorithms were compared against one another based on accuracy scores from 10-fold 

cross validation and performance on the test set data.  

 

Figure 19: Robustness and accuracy of different ML algorithms ability in stratifying treatments with 
similar MoA using the 174-gene biomarker database. 
The accuracy of MoA class stratification of different ML algorithms is grouped according to whether they 
involve either statistics, ensemble classifiers or deep learning. Classifiers were hyperparameter tuned before 
undergoing 10-fold cross-validation. Bars indicate the average accuracy of the classifier obtained from 10-fold 
cross-validation on the training data and the error bars are the standard deviation of performance measures. 
Triangles indicate the accuracy of the classifier in stratifying the MoA of test data. SVC= support vector 
classification, RF=random forest, GBM=gradient boosting machine, ANN= artificial neural networks. R 
packages are shown in brackets. 
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Biomarker models were generated using both polynomial and linear kernel for SVCs 

(Figure 19), with high variability and accuracies of 77 ± 14.31% and 81.8 ± 16.4%, 

respectively. By contrast, the MLR, although slightly less accurate at 70.9%, was very 

robust with very little variability observed (± 8.0%) (Figure 19). Within the ensemble 

classifier set, the majority of the models had fair accuracy ~73%, except for XGBoost at 

63%. However, in all instances, high variability was observed, ranging between 11-21%. 

The same large variability was observed for the h2o ANN algorithm (accuracy at 71.26 ± 

14.33%).  

To evaluate the performance of the models on untrained data, the remaining 20% (3584 

data points) from the 174-gene biomarker database was again used as a test set. From 

this, only the h2o ANN algorithm for deep learning performed poorly, indicating overfitting 

of the model to the training set due to the inability of the model to generalize and recognize 

patterns in untrained data (63%). All the other algorithms performed well with the test data. 

Although ensemble classifiers did very well in predicting the test set, these algorithms do 

not perform well during 10-fold cross validation. Since this cross validation splits the training 

data to get a better estimate of the model’s accuracy, it is shown that these algorithms are 

not reliable when the number of samples is reduced. Considering the lack of GEPs of 

compound-treated P. falciparum parasites, it is unlikely that we would be working with big 

datasets and adequate sample sizes in the future. Because of this, we require an algorithm 

that does not show such high variability in accuracy when presented with low sample 

numbers for testing and training, like that of the MLR algorithm which has shown to be 

better suited in handling such sample constraints. 

Taken together, the MLR algorithm generated the most effective model for the 174-gene 

biomarker database based on its’ good accuracy, combined with low variability and good 

performance on test data. 

 

3.2.2 Validation of feature selection in the biomarker database 

The MLR-based model generated on the biomarker database was therefore considered the 

most effective and was subsequently evaluated and validated for its ability to stratify the 

MoA of antimalarial compounds. However, since this model was based on a minimum 

number of features that were objectively selected to form a rationally selected 174-gene 

biomarker database, we interrogated if the MLR algorithm can extract better predictive 

features than those we selected if applied in an unsupervised fashion on a larger dataset. 
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To address this, the output of the MLR model built on the full 2463-gene database was 

therefore used to rank genes according to their importance in stratifying compounds to their 

MoA (Appendix B: Table B.2). From these, the top 174 genes were selected as a separate 

and new biomarker database, which we define as a ML-inferred biomarker database to 

compare and distinguish it from our rational selected biomarker database. The number of 

genes in these datasets was consciously kept the same to allow comparative computational 

analysis.  

The ML-inferred 174-gene biomarker database was subsequently used to generate a new 

MLR model to compare to the MLR model from the rational selected 174-gene biomarker 

database for accuracy and variability (Figure 20).  

 

 

Figure 20: ML-inferred features vs rationally selected features 
Biomarker MLR models for MoA stratification were generated by using features deemed as important by the 
MLR algorithm for MoA stratification (yellow) or using features identified through our rational feature selection 
criteria (green). Both models were built on 174 training features and underwent 10-fold cross validation and 
evaluation of performance on untrained test data. Bars indicate the average accuracy of the classifier obtained 
from 10-fold cross-validation on the training data and the error bars are the standard deviation of performance 
measures. Triangles indicate the accuracy of the classifier in stratifying the MoA of test data. 
 

Similar accuracies were obtained for both feature selection approaches (Figure 20), 

however, the ML-inferred approach generated a more variable model (76.97 ± 12.32%) 

compared to the rationally selected biomarker model (75.4 ± 5.5%). Together with this, the 

rationally selected biomarker model also performed better by correctly stratifying 

compounds to their MoA of untrained data (83%). From this, we could validate that the 
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rational feature selection approach was appropriate in the selection of features important 

for MoA stratification. This could, however, change if the number of training features used 

to build the model is reduced as non-informative features can be removed and improve 

model performance or persist and reduce model accuracy and stability. Thus, both 

approaches underwent optimisation to identify the minimum number of features that can 

generate a model with robust MoA stratification. 

 

3.2.3 Optimisation of the number of features in our MLR biomarker model 

To further optimise the biomarker models, we used a sliding gene scale approach to build 

smaller models (minimodels) with sequentially fewer features to remove non-informative 

features and obtain the minimum feature model (Figure 21). To do this, biomarker genes 

from both approaches were ranked similar to that which was done with the 2463-gene 

database using the ML-inferred approach (Appendix B: Table B.2 and Table B.3). 

  
Figure 21: Influence of limiting the number of genes used for training on MoA stratification of MLR 
models 
MLR classifiers trained on either ML-inferred features (yellow) or on rationally selected biomarker genes 
(green) were used to extract a list of ranked genes. Using variable importance, genes were ranked according 
to their importance in making classification decisions for the MLR classifier. With the ranked genes a sliding 
gene-scale approach was applied where the top genes were used to make minimodels with each sequential 
model containing a decreasing number of genes/features used to train the MLR classifier. Minimodels 
underwent 10-fold cross-validation and was also assessed in the accuracy of MoA stratification on test data.  
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From Figure 21, the average accuracy of the rationally selected biomarker minimodels is 

either maintained or increased above 70%, even when lowering the number of training 

features to 50. The variability within the minimodels seems to decrease as the number of 

training features are reduced, with the minimodel using the top 75 biomarker genes being 

an exception (76.0 ± 8.29%). When evaluating the performance of these minimodels on the 

test set, the minimodels obtain an accuracy of 75% or above. The opposite is observed for 

the ML-inferred biomarker minimodels, as the variability of the minimodels increases with 

reduced features (10.9% increased to 12.0%) and a decline in performance on test data is 

seen which indicates overfitting. This again reaffirms that the features from our rational 

feature selection approach are more suitable for MoA stratification than that of ML-inferred 

features. Although a gradual decline in performance on the test set is observed as the 

number of features is reduced for our rationally selected biomarker minimodels (75%), it is 

not to the extent as that within the ML-inferred biomarker minimodels (63%).  

Based on the test set performance, as well as accuracy, model variability and the least 

number of training features used, the rationally selected 50-gene biomarker minimodel 

(76.6 ± 6.4%) was selected as the optimal minimum number of features for robust MoA 

stratification of compounds. This minimodel obtained good accuracy with the lowest 

variability within the model as well as used the least number of features without resulting in 

model overfitting to training data. 

 

3.2.4 Interrogation of the top 50 features from the MLR biomarker model as indicators 

of MoA 

The 50-feature minimodel from the rationally selected MLR biomarker model was 

subsequently manually interrogated (Figure 22). These top 50 genes are biomarker genes 

identified from 14 of the 20 compounds which account for 12 of the 15 MoAs of all the 

compounds in our database. Within these top 50 biomarker genes, no biomarkers for 

compounds such as colchicine, leupeptine, apicidin A, two HDA and ACT-213615 were 

present, though this did not decrease the model’s accuracy in MoA stratification.  

Interestingly, some compounds contribute more to the overall features used in the MLR 

model than others. For example, from the artemisinin treatment, only two biomarker genes 

are utilized, whereas for the trichostatin A treatment five biomarker genes are utilized. The 

majority of the compound biomarkers which contribute much to the overall features of the 

model are inhibitors to proteins that serve important and global functions within a cell, such 

as kinases and deacetylases as we can see from Figure 22.  
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Figure 22: Compound origin of the top 50 biomarker genes used in the final MLR model for MoA 
stratification. 
The contribution of each compound’s biomarker genes to the overall 50 features that aids in MoA stratification 
of the MLR model. Genes are highlighted according to the compound the genes were identified from using 
our feature selection as well as which MoA they represent (Table 5). 

 
Of the top 50 biomarker genes, 42% have putative protein products ascribed to them and 

30% encode a novel unknown protein to which no function can be described (Table 6). This 

indicates that these genes are involved in important unknown cellular processes of the 

parasite which make them useful for biomarkers in MoA stratification. Of the top 50 

biomarker genes that were annotated, 11 are involved in ATP or DNA binding, and 8 seem 

to be involved in translation and transcription processes within the parasite. 

 

 

 

 

 

 

 



49 
 

Table 6: Top 50 biomarker genes encoded product 

Gene ID Gene product description according to PlasmoDB GO Functions 

PF3D7_0108700 secreted ookinete protein, putative N/A 

PF3D7_0203700 protein MAK16, putative N/A 

PF3D7_0206700 adenylosuccinate lyase N6-(1,2-dicarboxyethyl)AMP AMP-lyase (fumarate-
forming) activity;catalytic activity 

PF3D7_0508700 pre-mRNA-processing ATP-dependent RNA helicase PRP5, 
putative 

ATP binding;nucleic acid binding 

PF3D7_0618100 conserved Plasmodium protein, unknown function N/A 

PF3D7_1308500 conserved Plasmodium protein, unknown function ATP binding;kinase activity;phosphotransferase activity, 
carboxyl group as acceptor 

PF3D7_0322100 mRNA-capping enzyme subunit beta polynucleotide 5'-phosphatase activity 

PF3D7_0614300 major facilitator superfamily-related transporter, putative N/A 

PF3D7_1015500 nucleotidyltransferase, putative RNA binding;nucleotidyltransferase activity;polynucleotide 
adenylyltransferase activity 

PF3D7_1039000 serine/threonine protein kinase, FIKK family ATP binding;protein kinase activity 

PF3D7_1112700 conserved Plasmodium protein, unknown function ATP binding;binding 

PF3D7_1323800 vacuolar protein sorting-associated protein 52, putative N/A 

PF3D7_1438000 eukaryotic translation initiation factor eIF2A, putative translation initiation factor activity 

PF3D7_0623900 ribonuclease H2 subunit A, putative RNA-DNA hybrid ribonuclease activity 

PF3D7_1030600 tRNA N6-adenosine threonylcarbamoyltransferase N/A  

PF3D7_1467400 50S ribosomal protein L22, apicoplast, putative structural constituent of ribosome 

PF3D7_0206100 cysteine desulfuration protein SufE N/A 

PF3D7_0619800 conserved Plasmodium membrane protein, unknown function protein binding 

PF3D7_0806600 kinesin-like protein, putative ATP binding;microtubule binding;microtubule motor activity 

PF3D7_1220400 debranching enzyme-associated ribonuclease, putative N/A 

PF3D7_1317100 DNA replication licensing factor MCM4 ATP binding;DNA binding;DNA helicase activity 

PF3D7_1325400 conserved Plasmodium protein, unknown function ATP binding;actin binding;calmodulin binding;motor activity 

PF3D7_1475100 conserved Plasmodium protein, unknown function N/A 

PF3D7_0503400 actin-depolymerizing factor 1 actin binding 

PF3D7_0509100 structural maintenance of chromosomes protein 4, putative ATP binding;protein binding 

PF3D7_1019800 tRNA methyltransferase, putative N/A 

PF3D7_1242700 40S ribosomal protein S17, putative structural constituent of ribosome 

PF3D7_1425800 conserved Plasmodium protein, unknown function nucleotide-binding 

PF3D7_1440500 allantoicase, putative allantoicase activity 

PF3D7_0317300 conserved Plasmodium protein, unknown function N/A 

PF3D7_1013500 phosphoinositide-specific phospholipase C phosphatidylinositol phospholipase C activity;phospholipid 
binding;phosphoric diester hydrolase activity;protein 
binding 

PF3D7_1127900 conserved Plasmodium protein, unknown function motor activity 

PF3D7_1352000 GTP-binding protein, putative GTP binding 

PF3D7_1474500 splicing factor 3A subunit 1, putative RNA binding 

PF3D7_0612600 cytoplasmic tRNA 2-thiolation protein 1, putative tRNA binding 
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PF3D7_0704500 serine/threonine protein kinase, putative ATP binding;protein kinase activity 

PF3D7_1324000 conserved Plasmodium protein, unknown function asparagine synthase (glutamine-hydrolyzing) activity 

PF3D7_0604100 AP2 domain transcription factor N/A 

PF3D7_1322200 conserved Plasmodium protein, unknown function binding;microtubule binding 

PF3D7_1427000 conserved Plasmodium protein, unknown function ATP binding 

PF3D7_0511800 inositol-3-phosphate synthase inositol-3-phosphate synthase activity 

PF3D7_0717800 conserved Plasmodium protein, unknown function ATP binding 

PF3D7_0823800 DnaJ protein, putative DNA-directed DNA polymerase activity;nucleic acid 
binding;nucleotide binding 

PF3D7_1115400 cysteine proteinase falcipain 3 cysteine-type peptidase activity 

PF3D7_1458900 golgi apparatus membrane protein TVP23, putative N/A 

PF3D7_1038400 gametocyte-specific protein N/A 

PF3D7_0213000 conserved protein, unknown function N/A 

PF3D7_0301800 Plasmodium exported protein, unknown function N/A 

PF3D7_1340900 sodium-dependent phosphate transporter inorganic phosphate transmembrane transporter activity 

PF3D7_1404400 ribosomal protein L16, mitochondrial, putative structural constituent of ribosome 

* Source: PlasmoDB (www.plasmodb.org) 

 

To evaluate the novelty of the top 50 biomarker genes associated to specific MoAs, they 

were compared to genes identified by Siwo et al. and Hu et al., as associated with specific 

MoAs (Figure 23). No overlap was observed for the 50 biomarkers from our study compared 

to the Siwo dataset, and only 13% (14) of the biomarkers we identified associated with the 

same compound MoA in the Hu dataset.  Hu et al, however, had used a 3 FC to define 

DEGs, whereas we defined DEGs as those within the upper or lower 5th percentile of gene 

expression, allowing us to identify more DEGs.  

 

Figure 23: Novelty of top 50 rationally selected biomarker genes 
The top 50 biomarkers (green) from the rationally selected biomarker minimodel were compared to DEGs 
associated with MoA as identified by the Hu et al. (dark grey) and Siwo et al. (blue) studies. Biomarker genes 
that were also identified for the same compound and MoA within these two studies are shown as stacked 
bars. 
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Chapter 4: Discussion 

The progression of new antimalarial compounds is reliant on the ability to assign MoA to 

the compounds. Moreover, medicinal chemistry programs require an easy tracing of the 

MoA of a compound during H2L and LO campaigns, to correlate increased potency with 

the compounds’ ability to still target the same drug target, or conversely, where the loss in 

potency is observed, to indicate if this is due to a change in MoA. Addressing this 

uncertainty will accelerate H2L optimisation by guiding and defining the chemical space for 

medicinal chemists. It is already known that P. falciparum has a unique just-in-time gene 

expression pattern when progressing through the intra-erythrocytic cycle [145]. Previous 

studies have revealed that the parasite’s perturbed transcriptome resultant from compound 

treatment is highly reproducible and similar transcriptional responses are shared between 

antimalarials with similar chemical structure and MoA [93, 104]. The stringent control over 

the parasite’s gene expression and the dysregulation of this expression due to compound 

treatments may be used to determine the MoA early in antimalarial drug discovery [146].  

In this study, we investigated the use of ML and compound-induced transcriptional 

responses of the parasite to develop a ML model with robust accuracy in stratifying 

antiplasmodial compounds to their respective MoA. To accomplish this biomarker genes 

representative of compound MoA were needed. To our knowledge, however, there was no 

guideline on how to identify such genes, except by relying on algorithms for feature 

selection that may identify genes with no biological logic or linkage to our MoA stratification 

problem. Hence, we developed our own rational feature selection criteria using 

transcriptional response characteristics we deemed as important for good predictors of 

compound MoA. Using our feature selection criteria for DE we obtained 491 additional 

DEGs within the Hu dataset compared to what Hu et al. obtained using a 3-fold change cut-

off limit [93]. From the rational feature selection, that we implemented to identify biomarkers 

representative of compound’s MoA, we found that not all DEGs are pervasively expressed 

throughout a compound’s treatment. Interestingly, the majority of the DEGs that are 

continually DE throughout a compound’s treatment are unique to that compound treatment 

and can function as predictive features that represent a compound’s MoA to help build a 

MoA stratification ML model. 

The majority of the multiclassification algorithms investigated reached an average accuracy 

above 60% to correctly stratify compounds to their respective MoA. Most models trained on 

the 2463-gene database showed high variability in their accuracy of stratifying compounds 

to their MoA, indicating that these models are unstable for MoA stratification. 
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Interestingly, advanced ML algorithms employing ensemble classifiers or deep learning 

showed high variability within their K-fold cross validation accuracies when compared to the 

MLR algorithm, despite showing good performance for multiclassification problems utilizing 

gene expression in other cancer studies [147, 148]. One of the possible reasons for this 

could be that the number of hyperparameters investigated and the ranges we screened for 

the optimal architecture of the model was not sufficient. If the architecture of the model is 

not optimal, the results in MoA classification accuracy will be poor and unstable for different 

datasets with different perturbations.  

Alternative explanations are associated with the limited features and samples within our 

dataset. Algorithms such as ANN and ensemble classifiers were adapted to handle ‘big 

data’ such as that in CMap which contains about 1.5 M expression profiles of over 5000 

compounds treated on different cancer cell types [149]. Some algorithms are dependent on 

large labelled datasets for training to allow for generalization when exposed to new data in 

order to improve prediction accuracy as well as limit misclassification [150, 151]. In the case 

of our ensemble classifiers, which rely on bagging and boosting, this can lead to creating 

unstable classifiers since modifying or improving the model during training, through 

subsampling a small dataset, may not give a real representation of the data or the 

distribution thereof [152]. Similarly, with deep learning, such as ANN when training on small 

datasets can result in overfitting the network to examples in the training data, leading to the 

ANN performing poorly on new untrained data [153]. It is then no surprise why our GEP 

database, having high dimensionality as a result of the number of genes/features, but only 

103 observations (time points containing 253689 data points) for training and testing, 

resulted in poor performance by algorithms which employed ensemble classifiers or deep 

learning. Not only this but using a small sample size and a large number of features, as is 

common with GEPs can lead to generating a classification model with faulty generalization 

and poor classification accuracy on untrained data [154]. By contrast, traditional ML 

algorithms such as MLR that rely on statistical techniques performed better on our small 

dataset. Preferentially, more in silico validations on the models would be needed but due 

to size constraints of our dataset, our concern was that repeated subsampling of our dataset 

for training and testing purposes would result in an inaccurate representation of the data. 

In fact, this was already observed within our random forest models, which uses 

subsampling, and resulted in poor generalization. 

Although GEPs are useful in providing a global overview of how the parasite is affected by 

a compound, they contain high dimensionality within them with irrelevant and/or redundant 

features that limit the efficiency and generalization of ML algorithms [155]. By applying our 
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rational feature selection approach, we reduced the number of genes used as training 

features within our MoA stratification MLR model to ~7% of the genes within our 2463-gene 

database and obtained similar accuracy with reduced variability attributed to noisy features. 

This highlights that even with the best ML algorithm available to build our model, i.e. the 

MLR algorithm, if the training data used doesn’t resemble the data it will be tested on or 

contains irrelevant features, the model performs poorly [156]. This is known as the ‘garbage 

in, garbage out’ ML principle, where if noisy input data is used to train a ML model this will 

influence the model’s prediction accuracy [157, 158]. 

We also validated our rational feature selection approach by comparing our features to 

features identified by the MLR algorithm as important predictive features. Based on the 

accuracy measures from both the test data and 10-fold cross validation, our rational 

approach for feature selection selected genes that contributed more to our model’s stability 

compared to the ML-inferred approach. When optimising for the minimal number of training 

features the inferred approach increased the model’s variability and caused the model to 

become overfitted as the number of features used decreased. This indicates that genes 

which the MLR algorithm identifies as important may be noise or non-informative genes that 

are not suitable as predictive features for MoA model building. As such, it is more useful to 

first implement a rational approach for feature selection before using an inferred ML 

approach or alternative algorithms for feature selection. Since a ML model maps input data 

to a specific MoA class the stability of the model relies on the input data and training 

features.  

Since this project aims to use this ML classification model in a medium-throughput manner 

early in drug discovery, the optimal minimum number of genes that still allow for robust 

prediction were identified. The results conclude that the top 50 rationally selected biomarker 

genes, ranked by their percent feature importance, was the optimal minimal number of 

genes that could be used to train our MoA stratification model. This top 50 biomarker genes 

aided in building a final MLR model with the most stability and highest estimated average 

accuracy (76.6 ± 6.4%) as well as showed good accuracy in predicting the MoA class of 

test data. 

When comparing our final MoA stratification model to the small molecule-GO network that 

Siwo et al. used by correctly identifying the MoA of 72 % of antiplasmodial compounds, our 

model obtained a similar accuracy. Their small molecule-GO network contained 31 

compounds with a total of 16 different MoA compared to our model which was built on the 

GEPs of 20 compounds with 15 different MoA [104]. Although this small molecule-GO 
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network had similar accuracy to our ML model, it would not be feasible to use this network 

in a high or even medium-throughput manner in early antimalarial drug discovery. This is 

because their network requires the top 100 perturbed genes to be identified per compound 

treatment. Their method relies on a global view of the parasite’s transcriptome to identify 

biological pathways through GO enrichment using these top 100 genes to identifying the 

MoA of compounds. Our final MoA stratification model, however, is able to obtain similar 

accuracy in identifying the MoA of compounds using only 50 biomarker genes and does not 

require the whole GEP to be analysed, making it more suitable for application in early 

antimalarial drug discovery.  

Additionally, by using the top 100 compound induced genes to build their small 

molecule-GO network, as we have seen with both the Hu et al. and within our database, 

not all the DEGs caused by compound treatment is relevant to the compound’s MoA or 

even unique. The inclusion of such DEGs, which may be resultant of general drug stress, 

is likely the reason why some of the compounds obtained a high false discovery rate within 

their small molecule-GO network. One advantage of our rational feature selection approach 

is that we were able to eliminate such genes from being incorporated into our model.  

Interestingly, the most of the genes used as features within our final MoA model were novel 

and had been identified from compounds that target proteins affecting multiple cellular 

processes such as kinases and histone deacetylases. This would indicate that the 

biomarker genes pervasively affected by these compound treatments are genes that are 

involved in multiple cellular processes. From Table 6, it is highlighted that most of the top 

50 biomarker genes used as features in our MoA model are in some way or another 

involved in ATP binding, transcription or translation while other biomarker genes have 

unknown functions.  

Within our database, there are several histone deacetylase inhibitors present and this over-

representation of a particular MoA may cause our model to be biased towards compounds 

with such a MoA. This can be overcome by including more chemically diverse compounds 

to increase the MoA diversity within the model. Nonetheless, at the beginning of this study 

during data acquisition, such data was lacking. Since we currently lack an abundance of 

GEPs for compounds with diverse MoA, we hope to in the future determine whether our 

MoA classification model has any class imbalances which affect the accuracy of stratifying 

certain MoAs and address this. 

There are some limitations regarding our MoA stratification model. This MoA classification 

model might be biased towards slow-acting compounds as most of the time points fall within 
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10 h of treatment. One way to compensate this is to include additional time points that would 

capture responses of slow-acting compounds. However, one can also contend that 

compounds are constantly in a mobile cell environment and are constantly interacting with 

biological components and although the phenotypic response is delayed the transcriptional 

response may be immediate. 

Lastly, the MoA classification ML model we built still requires to be validated in vitro before 

this model can be used in antimalarial drug discovery. Although this model will not define 

the MoA directly, it can be used as a steppingstone to help accelerate H2L optimisation by 

monitoring any change in MoA and guide combinational studies. Not only will such a model 

help in selecting compound candidates against asexuals early in drug discovery it will also 

reduce costs associated with H2L optimisation and MoA studies. This MoA classification 

model if validated in vitro, will be a very advantageous asset to the antimalarial community 

in driving antimalarial drug discovery. 
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Appendix A 

A.1 Machine learning theory 

Hyperparameter testing 

  
Figure 24: Principle of hyperparameter tuning. 
A hyperparameter range or grid is given to the ML algorithm, whereby the ML algorithm trains on the training fold 
and builds a model/classifier using a hyperparameter value within the range or grid to define the model’s 
architecture. For each hyperparameter value given a model is built and the performance of the model assessed. 
This can also be done to assess different combinations of different hyperparameter values. The hyperparameter 
values which gives the model the best accuracy is then identified. 

 

A.1.1 Principle of multiclassification support vector machines 

In machine learning, SVM is a supervised algorithm and can be separated into two categories, 

namely Support Vector Regression (SVR) and Support Vector Classification (SVC) [159]. For 

the purpose of this study which addresses a classification problem, only SVCs will be 

considered. SVMs were originally developed to solve binary problems by identifying the 

optimal separating linear hyperplane that can separate and differentiate between members 

and non-members of a given class in an abstract space as shown in Figure 20 [160].  
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As seen in Figure 25, there can be multiple hyperplanes that can separate the two classes, 

but not all hyperplanes will perform as well in classifying members of the circle class that are 

situated close to members of the square class. The SVM algorithm thus selects the optimal 

hyperplane which has the maximum margin i.e. distance from observations of each class 

[159]. 

 

Figure 25: Principle of SVM classification 
The squares and dots are spread onto a 2D feature space (not restricted to 2D) based on their respective 
properties. The SVM algorithm then produces multiple hyperplanes (A, H, B) to help separate the two classes 
(dots and squares). SVM then assesses each hyperplane in their ability to separate the two classes with the 
maximum distance between the two classes. Source: [161] 

 

Not all observations, however, are linearly separable, e.g. Figure 26, and thus one solution 

SVM uses is to create a nonlinear feature space by applying a “kernel trick,” whereby the 

observations of the two classes can then be separated by the hyperplane [162, 163]. This 

kernel is a statistical mapping function which allows nonlinear data to be transformed into a 

higher dimension that will allow separation of different classes by a hyperplane [164]. 

 Although SVC had been developed to address binary classification problems, real-life 

classification problems are multi-class and thus the algorithm has been adapted to address 

these problems as well [163].  

The ‘one-against-one’ approach is an example such of a method developed by Knerr et al. 

which is used to implement a multi-class SVM, where several classifiers are combined [165]. 

Each classifier is binary and is built based on its’ training on two of the n classes, thereby 

resulting in n(n-1)/2 classifiers [163, 165]. For new data, each of these classifiers is applied 

and classification is made for each classifier resulting in a vector of individual classifications 

being created, e.g. AAB. From these individual classifications, the final class is identified by 
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majority vote, which in this case is class A. SVCs models using the polynomial and linear 

kernel performed the best compared to alternative kernels (see Appendix B). 

 

Figure 26: Support vector machine kernel function to separate nonlinear data 
Support vector machines apply a kernel function to transform the data into a higher-dimensional space whereby 
the nonlinear data of two groups (red and blue) can be separated with a hyperplane whereas this would not have 
been accomplished linearly [166]. 

 

A.1.2 Principle of multinomial logistic regression 

Machine learning extensively uses statistics and mathematic tools to help build a model from 

the training data it is given so it can predict or classify new data. Logistic regression (LR) is an 

example of such statistical tools used in ML and is similar to linear regression. With linear 

regression a linear relationship is assumed between the input variables and the output variable 

and a generalized linear model (GLM) is built that describes this linear relation [167]. However, 

in cases where the data is not linearly correlated and/or the output variable is discontinuous 

or categorical in nature, it is more beneficial to use logistic regression than linear regression 

[168]. Since our problem is categorical classification and we cannot assume that the GEP data 

are linearly correlated, LR is more useful. 

The principle behind the LR algorithm is that it uses a sigmoid function to calculate the 

probability of whether an object belongs to a class or not [167, 168]. It does this by estimating 

the coefficients (parameter/beta weights) that link the input variables to the outcome variable 

using a maximum likelihood estimation approach [167].  Yet few real-world classification 

problems are binary but rather multi-class, such as ours. 

The multinomial logistic regression approach was developed to address such multiclass 

problems, in which log odds of outcomes (logit values as shown in Figure 27) are modelled as 
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a linear combination of the input variables [169]. A logit value is the natural logarithmic 

probability of an event, such as belonging to a class. However, these values as seen in Figure 

27, do not add up to one. Hence a softmax function is used to transform these values into 

probability distributions of a list of potential classes/ outcomes [170]. To help identify the 

predicted class the cross-entropy function is applied, which measures the distance of these 

probabilities for each class and the list of classes within the model and selects the one which 

has the shortest distance. 

 

  
Figure 27: Multinomial logistic regression algorithm 
The multinomial logistic algorithm analyses each input i.e. feature and builds a linear model for each input so 
that each input has its own weight (w) which is applied to a feature during the training phase of the algorithm. 
Each model will produce a logit score that with the help of a softmax function can convert the score into the 
probability of belonging to a class. Cross entropy calculates the distance between the probabilities for each class 
and selects the class with the shortest distance as the output. Source:[171] 

 

A.1.3 Principle of random forest 

Random forest is an ensemble classifier that employs decision trees and bootstrap 

aggregating [172]. Ensemble classifiers is a machine learning technique that combines 

several base models to build an optimal model with better performance [173]. Random forests 

(RF), for example, create multiple decision trees and the output from these decision trees 

helps it make a classification as shown in Figure 28 and is much more powerful and accurate 

than a single decision tree [174]. In principle of decision trees, the training dataset is 

repeatedly partitioned until the data can no longer be split. At the root of the decision tree, 

which contains the whole dataset, a feature is identified and a decision rule made that will 

employ a splitting criterion [173].  

At this node the data will be partitioned into subsets, wherewith each subset a feature is again 

selected and a split criterion implemented until the data is no longer able to be split [174]. With 
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RF, multiple trees are made, but the algorithm does not select the data points or variables in 

each of the decision trees. Rather it randomly samples the data points and variables from 

each of these trees that it creates and combines the output and makes a vote on the class 

[175].  

 
 
Figure 28: Random forest employing bootstrap aggregation and multiple decision trees. 
A) From the training data, the algorithm applies bootstrap aggregating whereby subsets of the training data are 
used to build a decision tree. B) To predict the class of new input data, the algorithm takes the decision of all 
decision trees into account and uses a majority vote to identify the class (green and red), which in this case is 
the red class. For each new input data (X), the algorithm starts at the root of the tree and based on intrinsic 
properties of the data selects a branch to transverse down the tree until a leaf is reached whereby the class 

decision is made. This is done simultaneously for several decision trees. Source:[176] 

 

A.1.4 Principle of gradient boosting machines 

Another ensemble classifier, called gradient boosting machines (GBM), has gained wide 

interest in recent years in their ability to efficiently identify patterns for multiclassification 

problems. GBMs have been successfully applied in face detection, iris recognition, speech 

and multiclass text categorization [177].  

Gradient boosting machines are similar random forest trees in that it also combines several 

simple base models to obtain a model with better accuracy, but how this is done differs. GBM 

builds an initial tree-based model and the next consecutive tree-model is built in such a way 

as to mitigate the faults of the previous tree-model [178]. This self-correction will continue until 
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an additive model which minimizes the error is found, or the number of trees specified is 

reached [179]. 

 

A.1.5 Principle of artificial neural networks 

Artificial neural networks (ANN) has gained a lot of popularity in recent years as it has shown 

a remarkable ability to process information of biological systems that are prone to nonlinearity, 

noise, high parallelism and their ability to generalize [180]. 

ANN is a deep machine learning approach that is more advanced than the previously stated 

algorithms, in that it can gradually extract higher-level features from raw data using multi-

layered processing units [181]. An ANN in its’ simplest form contains an input layer, hidden 

layer, and output layer as illustrated in Figure 29. Within these layers are nodes that can be 

fully or partially connected to nodes in other layers [100].  

The input layer contains nodes that represent the input variables of the model and these input 

variables are transformed using an activation function as they pass through to the hidden 

nodes. As these transformed variables are fed into the output nodes, output values are 

calculated that help in making a classification or prediction [182]. The number of output nodes 

corresponds to the number of classes or prediction variables. 

 

Figure 29: Simple artificial neural network 
Neural networks have input nodes where data (X) are fed into a hidden layer where hidden nodes can assess 
information from the input nodes. This hidden layer can be extended to multiple layers and the hidden nodes 
(processing units) can also be increased. This hidden layer then connects to output nodes which can be 
increased to the number of classes or events. The hidden nodes give to each output node/class a probability of 
being true based on the input information fed into the input layer. 
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ANNs are powerful in that each node in the hidden layer functions as a processing unit that 

can consider all the variables or only a subset and analyse the relationships between these 

variables [100]. Not only this, but ANNs can also add weights to links connecting nodes as 

well as self-correct themselves during their training phase by using backpropagation. The 

ANNs do this self-correction by comparing the output values to the actual values and then 

adjust the weights on connecting links of nodes accordingly and reassesses the error between 

the output to actual values [183]. This is done repeatedly until the ANNs predictive and/or 

classification performance is optimized. 
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Table A.1: Optimal Hyperparameter tuning ranges for algorithms 
Algorithm Hyperparameter Tuning 

range 
Interval Category R tuning 

package 

Support vector 
machine 

• Polynomial 
kernel (P) 

• Sigmoid 
kernel (S0 

• Linear kernel 
(L) 

• Radial kernel 
(R) 

Gamma  P= (0, 0.1, 
0.3, 0.5, 1, 2, 
4, 8, 10) 
 
S= (0, 0.1, 
0.3, 0.5, 1, 2, 
4, 8, 10) 
 
L= (0, 0.1, 
0.3, 0.5, 1, 2, 
4, 8, 10) 
 
R= (0.5,1,2) 

 e1071 

Degrees  
 

P= (1, 2, 3, 4, 
5, 6) 
 
L= (1, 2, 3, 4, 
5, 6) 

 

Cost  P=10-3:1010 

S= 10-3:1010 
L= 10-3:1010 
R= 10-1:102 

 

Multinomial 
logistic regression 

N/A - - - - 

Random Forest 
(RandomForest) 

Number of trees  1,10,100, 
500,1000, 
5000 

 e1071 

Mtries  6, 10, 20  

Random Forest 
(h2o package) 

ntrees                                    100,250, 
500,1000, 
5000 

 h2o 

Mtry  1,5,10,15,20  

Max depth  2,3,4,5,6  

Gradient boosting 
machine (h2o) 

Number of trees 
 

100-
4000 

100,200,300, 
400,500, 
1000,4000 

- h2o, 

col_sample_rate 0.3-1 0.3, 0.7, 1.0 - 

max_depth 4-20 4,6,8,12, 
16, 20 

- 

Gradient boosting 
machine 
(Xgboost) 

Col sample rate 0.1:1   caret 

Max depth  2, 3, 4, 5, 6 

Subsample 0.1:1  

nrounds  50, 100, 150 

Eta  0.025, 0.05, 
0.1, 0.3 

Artificial neural 
network 

Activation function - - Rectifier, RectifierWithDropout 
Maxout, MaxoutWithDropout 

h2o 

Hidden drop out 
ratio 

0-0.3 (0,0), 
(0.15,0.15), 
(0.3,0.3) 

- 

Input drop out ratio 0-0.3 0, 0.15, 0.3 - 

L1 and L2 
regularization 

0-0.1 0,0.00001, 
0.0001, 
0.001,  
0.01, 0.1 

- 

Adaptive rate 0.005-
0.02 

0.005, 
0.01, 0.015, 
0.02 

- 

Loss function - - Automatic, CrossEntropy, 
Quadratic, Huber, Absolute, 
Quantile 
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Table A.2: Accepted and rejected datasets 
compound Mode of action Reference Dataset GEO 

accession 
Time points 
per treatment 

Gene coverage 
after pre-
processing 

Accepted 

W7 Calcium/calmodulin-dependent protein kinase inhibitor  [93, 110] 

Hu et al., 
2009 

GSE19468 4-5 time points  3705/5400 (69%) 

√  

ML-7 [93, 128] √  

Staurosporine Inhibits serine/threonine kinases, reduces merozoite invasion [129, 130] √  

Cyclosporin A It has a strong affinity to sphingomyelin in membrane environment like 
parasitized erythrocytes membranes, thus aids in inhibiting merozoite 
invasion. Also believed to be a calcineurin pathway inhibitor. 

[93, 131] √ 

Colchicine Microtubule is the target, inhibits merozoite invasion [132] √ 

PMSF Serine protease inhibitor [133] √ 

Leupeptin A cysteine, serine, and threonine peptidase inhibitor which affects 
haemoglobin degradation 

[134] √ 

Artemisinin  Partially understood but hypothesized to be involved in producing carbon-
centered free radicals that in turn alkylate heme and proteins 

[135] √ 

Chloroquine Inhibits the heme polymerase enzyme [74] √ 

Febrifugine Targets P. falciparum prolyl-tRNA synthetase activity [136] √ 

Quinine Partially understood but accumulate in the parasite’s digestive vacuole (DV) 
and may inhibit the detoxification of heme 

[137] √ 

DFMO Inhibits ornithine decarboxylase causing parasite arrest [138] van 
Brummelen 
et al., 2008 

GSE13578  3 time points 
with replicates 

4050/5400 (75%) √ 

MMV 048 and MMV 943 Inhibits Plasmodium phosphatidylinositol 4-kinase (PI4K) [139] Connacher et 
al., 2016 

GSE100692 2 time points 
each 

4971/5400 (92%) √ 

ACT-213615  Artemisinin derivative that has an unknown MoA which is different from 
other antimalarials based different transcriptional responses to that of the 
Hu et al. dataset 

[110] Brunner et 
al., 2012 

GSE39485 5 time points 4857/5400 (90%) √ 

Ionomycin  Increases cytoplasmic calcium concentrations [115] Cheemadan 
et al., 2014 

GSE33869 5 time points 4495 /5400 (83%) √ 

Trichostatin A (TSA), 
Suberoylanilide 
hydroxamic acid, 2-
aminosuberic acid 
derivative, Apicidin 

Histone deacetylase (HDAC) inhibitors that perturb the transcriptome [111] [93] 
[93, 140] 

Hu et al., 
2009 

GSE19468 4-5 time points 3705/5400 (69%) √ 

Andrews et 
al., 2012 

GSE25642 1 time point 4364/5400 (80%) 

Cyclohexamine * Inhibition of P. falciparum spermidine synthase causing perturbations in 
transcript, protein and metabolite levels 

[113] Becker et al., 
2010 

GSE18075 3 time points 2595 (48%) X 

Methyl 
methanesulphonate* 

Alkylates DNA bases and causes strand breaks [106] Gupta et al. 
2016 

GSE72580 

1 time point 

Not further 
investigated due to 
lack of multiple time 
points 

X 

Etoposide * A topoisomerase II inhibitor [184] X 

Pyrimethamine * Competitive inhibitor of dihydrofolate reductase [185] X 

Thiostrepton Inhibits plastid protein synthesis through binding to apicoplast ribosomes [186] Tarr et al. 
2011 

GSE28701 1 time point X 

*Note: Compounds not shown from this table were filtered out due to the criteria in Table 4: Methods section regarding controls, concentration and parasite strains used or lack of time 

points and unknown MoA 
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Appendix B 

Table B.1: Optimal hyperparameters identified from hyperparameter tuning 

Algorithm Hyperparameter Optimal 
Hyperparameter 
for biomarkers 

Optimal 
Hyperparameter 
for database 

Logloss 
 

Classification 
error 
 

Out-of-bag 
error 

Accuracy 
 

R tuning 
package 

Support vector machine 

• Polynomial kernel 
(P) 

• Sigmoid kernel (S) 

• Linear kernel (L) 

• Radial kernel (R) 

Gamma P=0.1 
S=0.1 
L=0 
R=0 

P=0.1 
S=0.1 
L=0 
R=0 

N/A B: 
P= 0.14 
S= 0.5 
L= 0.15 
R= 0.8 
 
D: 
P= 0.25 
S= 0.7 
L= 0.17 
R= 0.8 

N/A N/A e1071 

Degrees P=1 
L=1 
 

P=1 
L=1 
 

Cost P=1 
S=1000 
L=0.1 
R=0.001 

P=0.1 
S=0.1 
L=0.01 
R=0.001 

Multinomial logistic 
regression 

N/A N/A N/A N/A N/A N/A N/A N/A 

RandomForest Number of trees 460 4000 N/A B= 0.26 
D= 0.29 

N/A N/A e1071, 
RandomForest 

Mtries 6 6 N/A N/A B= 29.27% 
D= 23.17% 

N/A 

Random Forest (h2o) ntrees                                     500 1000 B= 0.957 
D= 0.995 

N/A N/A N/A h2o 

Mtry 6 6 

Max depth 20 20 

Xgboost Col sample rate 0.6 0.6 N/A N/A N/A B= 78.87% 
D= 77.24% 

caret 

Max depth 1 2 

Subsample 0.75 0.75 

Nrounds 50 50 

Min child weight 1 1 

Eta 0.4 0.4 

Gradient Boosting 
Machine 

col_sample_rate 0.3 0.3 B= 2.30x 10 
-8 

D= 1.15x 10 -6 

N/A N/A N/A h2o 

max_depth 6 4 

Ntrees 500 100 

Artificial neural network Activation function MaxoutWithDropout MaxoutWithDropout B= 0.001 
D= 0.001 

N/A N/A N/A h2o 

Hidden drop out ratio 0.15 0.3 

Input drop out ratio 0.3 0.3 

L1 regularization 1.0x 10 -5  0.01  

L2 regularization 0 0.001 

Adaptive rate false false 

Loss function Automatic Automatic 

Note: D= database model, B= biomarker model 
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Figure 30: Performance of algorithms investigated for MoA classification built using either biomarker genes or all genes in the database. 
The different algorithms investigated are shown on the x-axis and each consists of a classifier built on either the 175 biomarker genes (blue) or the 2463 genes within 
the database (orange). K-fold cross-validation is shown in a lighter colour whereas performance  on the test set is shown in a darker colour.
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Figure 31: Performance in MoA accuracy of minimodels made from biomarker or database genes using random forest and multinomial logistic regression 
algorithms (h20  R package). 
Bars indicate the accuracy obtained from 10-fold cross-validation with error bars indicating the standard deviation/ variability of the classifier. Triangles indicate the 
classifier's accuracy in classifying the test set. On the x-axis, the number of top genes used to build the classifier is indicated for each minimodel. These top genes 
are identified by the algorithm as genes that had importance in stratification decisions. 
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Table B. 2: Top 200 genes ranked according to importance in MoA stratification from the 
2463-gene database 

Rank Feature 
Relative 

importance 
Scaled importance Percentage 

1 PF10_0374 0,509002 1 0,011241 

2 PF10_0215 0,422073 0,829218 0,009321 

3 PFF0875w 0,390202 0,766603 0,008617 

4 PF14_0512 0,349927 0,687478 0,007728 

5 PFL1240c 0,341779 0,67147 0,007548 

6 PF14_0642 0,332423 0,653088 0,007341 

7 PFF1580c 0,319261 0,627229 0,007051 

8 PF10_0321 0,318752 0,626229 0,007039 

9 PFL1125w 0,301269 0,591882 0,006653 

10 PFC0090w 0,299878 0,589149 0,006623 

11 PF13_0081 0,29466 0,578897 0,006507 

12 PFD0625c 0,264675 0,519988 0,005845 

13 PFB0530c 0,254792 0,500572 0,005627 

14 PF07_0049 0,251232 0,493577 0,005548 

15 PFI1770w 0,227414 0,446784 0,005022 

16 PFB0655c 0,224483 0,441026 0,004958 

17 PF14_0598 0,217328 0,426968 0,0048 

18 PFC0960c 0,211083 0,4147 0,004662 

19 PFB0161c 0,20664 0,405971 0,004564 

20 PFL2235w 0,205782 0,404286 0,004545 

21 PFC0885c 0,200706 0,394312 0,004432 

22 PF10_0142 0,199621 0,392182 0,004409 

23 MAL7P1.137 0,194386 0,381896 0,004293 

24 PFF0610c 0,193942 0,381025 0,004283 

25 MAL13P1.301 0,193498 0,380151 0,004273 

26 PF11_0276 0,190392 0,374049 0,004205 

27 PFF0940c 0,189277 0,371859 0,00418 

28 PF11_0527 0,18066 0,35493 0,00399 

29 PFF1315w 0,176455 0,346668 0,003897 

30 PF14_0507 0,174924 0,343661 0,003863 

31 PF14_0139 0,174244 0,342325 0,003848 

32 MAL8P1.55 0,172921 0,339725 0,003819 

33 PFL1815c 0,170604 0,335174 0,003768 

34 PFL0175c 0,169753 0,333502 0,003749 

35 PF14_0062 0,15999 0,314321 0,003533 

36 PFF1150w 0,158806 0,311995 0,003507 

37 PF11_0471 0,158472 0,311339 0,0035 

38 PFF0200c 0,158002 0,310416 0,003489 

39 PF14_0238 0,154881 0,304284 0,00342 

40 PF13_0107 0,154192 0,30293 0,003405 

41 PF11_0354 0,153966 0,302487 0,0034 

42 PFL0585w 0,150614 0,295901 0,003326 

43 PF11_0396 0,149923 0,294543 0,003311 
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44 PFE1320w 0,145711 0,286268 0,003218 

45 PF14_0736 0,144421 0,283733 0,003189 

46 PFE0830c 0,138169 0,271452 0,003051 

47 PFI1020c 0,13735 0,269842 0,003033 

48 MAL7P1.18 0,137081 0,269314 0,003027 

49 PFB0745w 0,134038 0,263336 0,00296 

50 PFI1580c 0,133592 0,262459 0,00295 

51 PF14_0719 0,133422 0,262125 0,002947 

52 PF14_0013 0,130965 0,257298 0,002892 

53 PF13_0120 0,129367 0,254158 0,002857 

54 PF11_0146 0,128553 0,252559 0,002839 

55 PF08_0054 0,126241 0,248017 0,002788 

56 MAL7P1.122 0,12552 0,2466 0,002772 

57 PF11_0141 0,125036 0,24565 0,002761 

58 PF07_0125 0,12424 0,244085 0,002744 

59 PF11_0184 0,123747 0,243118 0,002733 

60 PFI0915w 0,123046 0,24174 0,002717 

61 PFE1520c 0,122804 0,241264 0,002712 

62 PF13_0131 0,122659 0,24098 0,002709 

63 PF08_0057 0,12179 0,239272 0,00269 

64 PFF1370w 0,119804 0,235371 0,002646 

65 PF14_0519 0,118918 0,23363 0,002626 

66 PF14_0041 0,11816 0,23214 0,002609 

67 PF11_0170 0,117714 0,231264 0,0026 

68 PF14_0133 0,11478 0,2255 0,002535 

69 PF10_0060 0,113209 0,222415 0,0025 

70 MAL13P1.82 0,113191 0,222379 0,0025 

71 PFI1175c 0,111241 0,218547 0,002457 

72 PFI1410c 0,106307 0,208854 0,002348 

73 PFD1050w 0,10289 0,202141 0,002272 

74 PFE0285c 0,100142 0,196742 0,002212 

75 PF11_0108 0,099931 0,196327 0,002207 

76 PF14_0021 0,099 0,194499 0,002186 

77 PF11_0210 0,098982 0,194463 0,002186 

78 MAL8P1.4 0,097342 0,191241 0,00215 

79 PF10_0309 0,09614 0,18888 0,002123 

80 PF11_0129 0,09503 0,186699 0,002099 

81 PFD0400w 0,094979 0,186598 0,002098 

82 MAL13P1.127 0,091082 0,178943 0,002011 

83 PF14_0644 0,090486 0,177771 0,001998 

84 PF14_0454 0,085098 0,167186 0,001879 

85 PF10_0182 0,083011 0,163085 0,001833 

86 PFF0625w 0,081541 0,160198 0,001801 

87 PF10_0203 0,081296 0,159717 0,001795 

88 MAL8P1.65 0,07922 0,155638 0,00175 

89 PF14_0117 0,079134 0,15547 0,001748 

90 PF13_0166 0,078842 0,154895 0,001741 
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91 PFL2230c 0,078315 0,15386 0,00173 

92 PFC0925w 0,07694 0,151159 0,001699 

93 PFC0455w 0,073966 0,145316 0,001633 

94 PF14_0249 0,073801 0,144991 0,00163 

95 PFE1000c 0,073082 0,143579 0,001614 

96 PF14_0461 0,072939 0,143298 0,001611 

97 PFE0585c 0,07234 0,142121 0,001598 

98 PF13_0073 0,0723 0,142044 0,001597 

99 PFE0810c 0,072288 0,142019 0,001596 

100 PFC0390w 0,071707 0,140878 0,001584 

101 PF14_0123 0,07057 0,138645 0,001559 

102 PF13_0036 0,07004 0,137602 0,001547 

103 MAL13P1.183 0,069778 0,137089 0,001541 

104 PF14_0368 0,068717 0,135004 0,001518 

105 PFI0170w 0,067976 0,133547 0,001501 

106 PFE0400w 0,067281 0,132183 0,001486 

107 PFD0830w 0,067029 0,131687 0,00148 

108 PF14_0380 0,066332 0,130318 0,001465 

109 PF08_0068 0,065564 0,128809 0,001448 

110 PF11_0321 0,065539 0,12876 0,001447 

111 PF13_0137 0,065437 0,12856 0,001445 

112 MAL13P1.229 0,065102 0,1279 0,001438 

113 MAL13P1.137 0,064722 0,127155 0,001429 

114 PFL1335w 0,062691 0,123164 0,001384 

115 PF14_0346 0,062526 0,12284 0,001381 

116 PFF1335c 0,062497 0,122784 0,00138 

117 PFE0715w 0,059331 0,116563 0,00131 

118 PFI1105w 0,05901 0,115933 0,001303 

119 PFE1510c 0,058852 0,115622 0,0013 

120 MAL8P1.86 0,057822 0,113599 0,001277 

121 PFB0125c 0,057652 0,113265 0,001273 

122 PFI1650w 0,056791 0,111574 0,001254 

123 PFC0570c 0,05628 0,110569 0,001243 

124 MAL7P1.134 0,055424 0,108888 0,001224 

125 PFI1280c 0,055076 0,108204 0,001216 

126 PF14_0392 0,054665 0,107396 0,001207 

127 PF07_0037 0,054534 0,10714 0,001204 

128 PFF0950w 0,054271 0,106622 0,001199 

129 PF13_0077 0,053472 0,105052 0,001181 

130 PF10_0046 0,05273 0,103594 0,001165 

131 PFI0420c 0,051472 0,101124 0,001137 

132 PFE1445c 0,051094 0,100381 0,001128 

133 PF07_0020 0,050693 0,099593 0,00112 

134 PF14_0038 0,04942 0,097093 0,001091 

135 PFF1080w 0,049099 0,096461 0,001084 

136 PFF0690c 0,048927 0,096124 0,001081 

137 PF14_0559 0,048871 0,096013 0,001079 
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138 PFB0410c 0,048343 0,094976 0,001068 

139 PF08_0012 0,047897 0,0941 0,001058 

140 PFL1700c 0,047391 0,093106 0,001047 

141 PF14_0565 0,047374 0,093073 0,001046 

142 PFL1245w 0,046832 0,092007 0,001034 

143 PF14_0231 0,046253 0,09087 0,001021 

144 PFE0515w 0,045991 0,090355 0,001016 

145 MAL13P1.165 0,045811 0,090002 0,001012 

146 PFA0130c 0,04491 0,088232 0,000992 

147 PF14_0248 0,04428 0,086994 0,000978 

148 PF14_0564 0,044276 0,086986 0,000978 

149 PF14_0433 0,04368 0,085814 0,000965 

150 PFC0070c 0,043057 0,08459 0,000951 

151 PFC0970w 0,043018 0,084514 0,00095 

152 PF10_0030 0,042535 0,083565 0,000939 

153 PFF0720w 0,042472 0,083443 0,000938 

154 PFL0695c 0,042165 0,082839 0,000931 

155 PF10_0280 0,04131 0,08116 0,000912 

156 PFI0230c 0,039485 0,077574 0,000872 

157 PFE0335w 0,039448 0,077501 0,000871 

158 PFC0980c 0,039073 0,076764 0,000863 

159 PF11_0140 0,038587 0,07581 0,000852 

160 PF07_0015 0,038352 0,075348 0,000847 

161 PF13_0261 0,038112 0,074877 0,000842 

162 PF14_0633 0,037964 0,074586 0,000838 

163 PFL2280w 0,037846 0,074354 0,000836 

164 MAL13P1.124 0,037744 0,074153 0,000834 

165 PF14_0063 0,037234 0,073151 0,000822 

166 PFB0820c 0,037197 0,073079 0,000821 

167 PF10_0293 0,037074 0,072836 0,000819 

168 PFL0930w 0,035675 0,070087 0,000788 

169 PF11_0083 0,035659 0,070056 0,000788 

170 MAL8P1.30 0,034697 0,068166 0,000766 

171 PFI0155c 0,03469 0,068153 0,000766 

172 PFE0865c 0,034532 0,067842 0,000763 

173 PFE1010w 0,033859 0,066521 0,000748 

174 PF14_0084 0,033285 0,065393 0,000735 

175 PF08_0117 0,033203 0,065232 0,000733 

176 PF11_0258 0,033159 0,065145 0,000732 

177 PFL1410c 0,032576 0,064 0,000719 

178 PF13_0310 0,032564 0,063977 0,000719 

179 PF10_0152 0,031999 0,062866 0,000707 

180 PFA0590w 0,031419 0,061727 0,000694 

181 PF14_0100 0,031035 0,060973 0,000685 

182 PF11_0438 0,030807 0,060524 0,00068 

183 PF11_0294 0,030424 0,059772 0,000672 

184 PF07_0090 0,029506 0,057968 0,000652 
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185 PFE1275c 0,029254 0,057474 0,000646 

186 PF13_0347 0,029121 0,057212 0,000643 

187 PF11_0206 0,028804 0,056589 0,000636 

188 PFI0590c 0,028626 0,056239 0,000632 

189 PF14_0612 0,02817 0,055343 0,000622 

190 PFE0310c 0,028083 0,055172 0,00062 

191 PF13_0279 0,02808 0,055167 0,00062 

192 PF10_0191 0,027547 0,05412 0,000608 

193 PFF0805c 0,0274 0,053832 0,000605 

194 PF14_0282 0,026962 0,05297 0,000595 

195 PFF1440w 0,026843 0,052736 0,000593 

196 PFF0105w 0,026098 0,051274 0,000576 

197 PFL1930w 0,025623 0,050339 0,000566 

198 MAL13P1.337 0,024924 0,048967 0,00055 

199 PFB0520w 0,024522 0,048177 0,000542 

200 PFF0685c 0,024404 0,047944 0,000539 

 

 

Table B. 3: Top 174 genes ranked according to importance in MoA stratification from the 
174-gene database 

Rank Feature Relative 
importance 

Scaled importance Percentage 

1 PF14_0642 1,170794385 1 0,04044429 

2 PF10_0374 0,6596918 0,56345658 0,022788601 

3 PFF1150w 0,640443679 0,547016357 0,022123688 

4 PF14_0238 0,635361205 0,54267531 0,021948118 

5 MAL7P1,18 0,632863021 0,540541558 0,02186182 

6 PF13_0137 0,627244547 0,535742702 0,021667733 

7 PFB0590w 0,59132845 0,505066011 0,020427036 

8 PF14_0719 0,570275387 0,487084149 0,019699773 

9 PFF0200c 0,564798262 0,482406022 0,019510569 

10 PFF0875w 0,559871002 0,478197546 0,01934036 

11 PF11_0527 0,556120806 0,474994425 0,019210812 

12 PF11_0290 0,539762062 0,46102208 0,018645711 

13 PFB0295w 0,52283989 0,446568498 0,018061146 

14 PFF0965c 0,50905151 0,434791554 0,017584836 

15 PFC0090w 0,508153347 0,434024414 0,017553809 

16 PF10_0132 0,496192579 0,423808472 0,017140633 

17 PF10_0191 0,487648556 0,416510843 0,016845485 

18 PFE0585c 0,475323862 0,405984064 0,016419737 

19 MAL13P1,124 0,473562628 0,404479757 0,016358897 

20 PF07_0074 0,467524303 0,399322297 0,016150307 

21 PFE0165w 0,427000834 0,364710353 0,014750451 

22 PF14_0249 0,425756787 0,363647787 0,014707477 

23 PFE0430w 0,402624458 0,343889981 0,013908386 
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24 PF14_0713 0,382754165 0,326918346 0,013221981 

25 PFF0690c 0,382659815 0,32683776 0,013218721 

26 PFB0270w 0,377027517 0,322027097 0,013024157 

27 PF08_0032 0,376272929 0,321382587 0,012998091 

28 MAL13P1,262 0,364396803 0,31123894 0,012587838 

29 PFC0760c 0,35366006 0,302068462 0,012216945 

30 PF14_0041 0,352275013 0,300885465 0,012169099 

31 PF10_0299 0,352076068 0,300715542 0,012162227 

32 MAL13P1,206 0,351600438 0,300309296 0,012145796 

33 PFF0610c 0,345773791 0,295332635 0,011944519 

34 PFL2055w 0,33335515 0,284725614 0,011515525 

35 PF14_0562 0,31143001 0,265998892 0,010758136 

36 PFL0980w 0,309747694 0,264561991 0,010700022 

37 PF13_0095 0,30775753 0,262862151 0,010631273 

38 PF13_0135 0,304230441 0,25984959 0,010509432 

39 PFA0430c 0,293773819 0,25091837 0,010148215 

40 PF10_0380 0,282256359 0,241081066 0,009750353 

41 MAL13P1,40 0,275011403 0,234892997 0,009500081 

42 PF10_0152 0,268429886 0,229271586 0,009272727 

43 MAL8P1,132 0,26197581 0,223759025 0,009049775 

44 PFC0980c 0,255234759 0,218001352 0,00881691 

45 PF14_0360 0,251632286 0,214924404 0,008692465 

46 PFE0450w 0,247351703 0,211268269 0,008544595 

47 PF14_0384 0,246396172 0,21045213 0,008511587 

48 MAL13P1,137 0,245780177 0,209925996 0,008490308 

49 PF11_0162 0,243095583 0,207633028 0,00839757 

50 PFB0175c 0,241068726 0,205901847 0,008327554 

51 PF10_0307 0,240789033 0,205662955 0,008317892 

52 PF14_0214 0,240551394 0,205459983 0,008309683 

53 PFC0375c 0,238424582 0,203643428 0,008236214 

54 PF13_0170 0,22892863 0,195532737 0,007908183 

55 MAL8P1,105 0,226774838 0,193693137 0,007833781 

56 PFL0625c 0,223433676 0,190839381 0,007718363 

57 PFC0440c 0,221573178 0,189250291 0,007654094 

58 PF14_0138 0,219449798 0,187436668 0,007580743 

59 PFL1135c 0,212090019 0,181150526 0,007326504 

60 PFA0180w 0,204200343 0,174411789 0,007053961 

61 MAL13P1,135 0,195065735 0,166609729 0,006738412 

62 PF10_0111 0,194943857 0,166505631 0,006734202 

63 PF14_0112 0,192912587 0,16477068 0,006664033 

64 PF14_0499 0,19243797 0,1643653 0,006647638 

65 PFI0965w 0,191508119 0,163571095 0,006615517 

66 PF11_0090 0,185638845 0,158558025 0,006412767 

67 PF10_0020 0,182795059 0,156129087 0,00631453 

68 PFE0815w 0,182520333 0,155894439 0,00630504 

69 PF10_0136 0,170876019 0,145948786 0,005902795 

70 PF10_0085 0,170702234 0,145800352 0,005896792 
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71 PFE1340w 0,169213042 0,144528402 0,005845349 

72 MAL8P1,91 0,169047206 0,144386758 0,00583962 

73 PFI0500w 0,168901816 0,144262578 0,005834598 

74 MAL13P1,338 0,163052487 0,139266544 0,005632537 

75 PFC0400w 0,159712871 0,136414108 0,005517172 

76 PF10_0243 0,150404154 0,128463337 0,005195609 

77 PFL2200w 0,130709634 0,111641835 0,004515275 

78 PF13_0032 0,130209928 0,111215026 0,004498013 

79 PF08_0069 0,128724875 0,109946611 0,004446713 

80 PFD0470c 0,124259113 0,10613231 0,004292446 

81 PFF1280w 0,114307442 0,09763238 0,003948672 

82 PFI1425w 0,114014473 0,097382148 0,003938552 

83 PFL1680w 0,111120469 0,094910319 0,003838581 

84 PF11_0435 0,107609583 0,091911598 0,003717299 

85 PFL0580w 0,105190805 0,089845669 0,003633744 

86 PFL2485c 0,097515266 0,08328983 0,003368598 

87 PFL0685w 0,096890279 0,082756016 0,003347008 

88 PFI0905w 0,08688386 0,074209324 0,003001343 

89 PFL1270w 0,086296732 0,073707846 0,002981062 

90 PF11_0214 0,079144047 0,067598588 0,002733977 

91 PFB0923c 0,078907322 0,067396396 0,002725799 

92 PF14_0593 0,078713159 0,067230557 0,002719092 

93 PFC0100c 0,076991507 0,065760059 0,002659619 

94 PF13_0042 0,069084694 0,059006684 0,002386483 

95 PF13_0350 0,068193155 0,058245202 0,002355686 

96 PF07_0079 0,065599591 0,056029984 0,002266093 

97 PF10_0163 0,058553163 0,050011482 0,002022679 

98 PF11_0348 0,057670455 0,049257543 0,001992186 

99 PFE1280w 0,05156611 0,044043694 0,001781316 

100 MAL13P1,322 0,046987156 0,040132714 0,001623139 

101 PF11_0260 0,042054613 0,035919725 0,001452748 

102 PF14_0552 0,041797955 0,035700509 0,001443882 

103 PF13_0023 0,041743771 0,035654229 0,00144201 

104 PF11_0079 0,039624547 0,033844155 0,001368803 

105 MAL7P1,94 0,036010514 0,030757334 0,001243959 

106 PF13_0219 0,035827487 0,030601007 0,001237636 

107 PFF1155w 0,029193031 0,024934379 0,001008453 

108 MAL13P1,321 0,028800495 0,024599106 0,000994893 

109 PF14_0455 0,027506026 0,023493473 0,000950177 

110 PFA0490w 0,021995817 0,018787087 0,00075983 

111 PFC0965w 0,020674435 0,017658468 0,000714184 

112 MAL8P1,108 0,014640583 0,012504829 0,000505749 

113 MAL7P1,75 0,011687204 0,009982285 0,000403726 

114 PFD0285c 0,010983744 0,009381445 0,000379426 

115 PFE1390w 0,010904277 0,009313571 0,000376681 

116 MAL13P1,179 0,007488856 0,006396389 0,000258697 

117 PF14_0730 0,005041678 0,004306203 0,000174161 
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118 PFE0745w 0 0 0 

119 PFB0915w 0 0 0 

120 PFC0230c 0 0 0 

121 PF14_0540 0 0 0 

122 PFL2370c 0 0 0 

123 MAL8P1,96 0 0 0 

124 PF14_0419 0 0 0 

125 PFE0205w 0 0 0 

126 MAL7P1,29 0 0 0 

127 MAL13P1,293 0 0 0 

128 PF08_0018 0 0 0 

129 MAL8P1,92 0 0 0 

130 PF14_0327 0 0 0 

131 PFI1185c 0 0 0 

132 PF13_0208 0 0 0 

133 PFD0785c 0 0 0 

134 PFL1715w 0 0 0 

135 PFE1255w 0 0 0 

136 MAL8P1,123 0 0 0 

137 PF13_0228 0 0 0 

138 PFL0925w 0 0 0 

139 PFA0330w 0 0 0 

140 PFL2120w 0 0 0 

141 PFF0715c 0 0 0 

142 PFL1490w 0 0 0 

143 PFL0885w 0 0 0 

144 PFF0150c 0 0 0 

145 PF14_0071 0 0 0 

146 PF14_0350 0 0 0 

147 PFB0395w 0 0 0 

148 PFI0855w 0 0 0 

149 PFF1390w 0 0 0 

150 PF11_0329 0 0 0 

151 PF14_0140 0 0 0 

152 PFF0325c 0 0 0 

153 PFL0865w 0 0 0 

154 PF11_0252 0 0 0 

155 PF14_0372 0 0 0 

156 PF07_0047 0 0 0 

157 PFI0710c 0 0 0 

158 PF13_0087 0 0 0 

159 MAL7P1,171 0 0 0 

160 PF11_0438 0 0 0 

161 PF11_0087 0 0 0 

162 PFB0920w 0 0 0 

163 PFF0490w 0 0 0 

164 MAL13P1,256 0 0 0 
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165 PFE0260w 0 0 0 

166 PF14_0286 0 0 0 

167 PFD0545w 0 0 0 

168 PFL2520w 0 0 0 

169 PF10_0084 0 0 0 

170 MAL8P1,153 0 0 0 

171 PF14_0606 0 0 0 

172 PFF0595c 0 0 0 

173 MAL7P1,65 0 0 0 

174 PF13_0090 0 0 0 

 

 


