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Abstract

To forecast the covariance matrix for the returns of crude oil and gold futures, this paper examines the 
effects of leverage, jumps, spillovers, and geopolitical risks by using their respective realized covariance 
matrices. To guarantee the positive definiteness of the forecasts, we consider the full BEKK structure on 
the conditional Wishart model. By the specification, we can flexibly divide the direct and spillover effects 
of volatility feedback, negative returns, and jumps. The empirical analysis indicates the benefits of 
accommodating the spillover effects of negative returns, and the geopolitical risks indicator for modeling 
and forecasting the covariance matrix.

Keywords: Commodity Markets; Co-volatility; Forecasting; Geopolitical Risk; Jump; Leverage
Effects; Spillover Effects; Realized Covariance.
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1 Introduction

Our work is different form Asai, Gupta, and McAleer (2019), as Asai, Gupta, and McAleer (2019)

exclude spillover effects and analysis of geopolitical indicator, which is the main purpose of the

current paper.

Section 2 explains the technique of Koike (2016) for disentangling quadratic covarianton to

continuous part and jump variation, and develop conditional Wishart models for guaranteeing

positive definiteness of forecasts of covariance matrix. Section 2 also discusses the estimation of

the models and tests for the effects of leverage, jump. spillover, and geopolitical risks. Section 3

shows the empirical results using the high frequency data of prices of crude oil and gold futures,

and Section 4 gives some concluding remarks.

2 Econometric Methodology

2.1 Quadratic Covariation and Integrated Co-Volatility

Let X∗
s and Y ∗

s denote latent log-prices at time s for two futures X and Y . Define p∗(s) =

(X∗
s , Y

∗
s )

′, and let W (s) and Q(s) denote bivariate vectors of independent Brownian motions and

counting processes, respectively. Let K(s) be the 2× 2 matrix process controlling the magnitude

and transmission of jumps, such that K(s)dQ(s) is the contribution of the jump process to the

price diffusion. Under the assumption of a Brownian semimartingale with finite-activity jumps

(BSMFAJ), p∗(s) follows the stochastic differential equation:

dp∗(s) = µ(s)ds+ σ(s)dW (s) +K(s)dQ(s), 0 ≤ s ≤ T (1)

where µ(s) is a 2×1 vector of continuous and locally-bounded variation processes, and σ(s) is the

2× 2 matrix, such that Σ(s) = σ(s)σ′(s) is positive definite.

Assume that the observable log-price process is the sum of the latent log-price process in equa-

tion (1) and the microstructure noise process. Denote the log-price process as p(s) = (Xs, Ys)
′.

Consider non-synchronized trading times of the two assets, and let T and Θ be the set of trans-

action times of X and Y , respectively. Denote the counting process governing the number of

observations traded in assets X and Y up to time T as nT and mT , respectively. By definition,

the trades in X and Y occur at times T = {τ1, τ2, . . . , τnT } and Θ = {θ1, θ2, . . . , θmT }, respec-

tively. For convenience, the opening and closing times are set as τ1 = θ1 = 0 and τnT = θmT = T ,

respectively.
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The observable log-price processes are given by:

Xτi = X∗
τi + εXτi and Yθj = Y ∗

θj
+ εYθj , (2)

where εX ∼ iid(0, σ2
εX), εY ∼ iid(0, σ2

εY ), and (εX , εY ) are independent of (X,Y ).

Define the quadratic covariation (QCov) of the log-price process over [0, T ] as:

QCov = plim
∆→∞

⌊T/∆⌋∑
i=1

[p(i∆)− p((i− 1)∆)] [p(i∆)− p((i− 1)∆)]′ . (3)

Then we obtain:

QCov =

∫ T

0
Σ(s)ds+

∑
0<s≤T

K(s)K ′(s). (4)

The first term on the right-hand side of (4) is the integrated co-volatility (ICov) matrix over [0, T ],

while the second term is the matrix of jump variability. We are interested in disentangling these

two components from the estimates of QCov for the purpose of forecasting QCov.

There are several estimators for QCov and Icov (see the survey in Asai and McAleer (2017)).

Among them, we use the estimators of Christensen, Kinnebrock, and Podolskij (2010) for QCov

and Koike (2016) for ICov, respectively. The estimator of Koike (2016) is consistent under non-

synchronized trading times, jumps and microstructure noise for the bivariate process in (2). Note

that the realized kernel (RK) estimator of Barndorff-Nielsen et al. (2011) is positive (semi-)definite

and robust to microstructure noise under non-synchronized trading times. However, the robustness

to jumps is still an open and unresolved issue for the multivariate RK estimator.

As in Asai and McAleer (2017), we also apply thresholding of Bickel and Levina (2008) to

guarantee the positive (semi-)definiteness of the estimators. Denote the estimators of QCov, ICov

and jump component at day t as Ωt, Ct and Jt, respectively. Note that Jt is close to Ωt − Ct,

as it is obtained by thresholding the latter. Thus the thresholding produces a remaining error

matrix, Et = Ωt − Ct − Jt, for the realization of equation (4), where Ωt, Ct and Jt are positive

(semi-)definite. We exclude Et in the empirical analysis.

In addition, we also disentangle the observed return series into continuous and jump compo-

nents by applying the technique of Aı̈t-Sahalia and Jacod (2012). For purposes of notation, define

the return for X as rxt = xt − xt−1. Denote the continuous and jump components of the return

as rcxt and rjxt , respectively. In the empirical analysis, we use returns for examining leverage and

co-leverage effects on volatility and co-volatility, respectively. When the models include the ICov

and jump components, we use the continuous return rather than the observed return itself.
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2.2 Conditional Wishart Model

Let Ωt−h+1:t denote the h-horizon average, defined by:

Ωt−h+1:t =
1

h
(Ωt + · · ·+Ωt−h+1) ,

where h = 5 and h = 22 give the weekly and monthly averages, respectively. In order to examine

the effects of leverage, jump, and spillover effects, we consider the following structure for Ωt−h+1:t

(h = 1, 5, 22):

Ωt−h+1:t = (1/ν)H
1/2
t WtH

1/2
t , Wt ∼ iid W2(ν, I2), (5)

where Ht is an m ×m positive definite matrix, H
1/2
t is a square root of a matrix defined by the

eigenvalue decomposition, and Wm(ν,A) denotes the m-dimensional Wishart distribution with

degrees-of-freedom parameter, ν, and m×m scale matrix, A. By the specification, Ωt−h+1:t|Ht ∼

W2(ν, (1/ν)Ht), which yields E(Ωt−h+1:t|Ht) = Ht and V (Ωij,t−h+1:t|Ht) = (1/ν)(H2
ij,t+Hii,tHjj,t)

(i, j = 1, 2).

For specifying Ht, we accommodate the effects of leverage, jumps, spillovers, and geopolitical

risks. Define ht = vec(Ht), ωt−h:t−1 = vec(Ωt−h:t−1), ct−h:t−1 = vec(Ct−h:t−1) (h = 1, 5, 22), and

jt = vec(Jt). For the structure of Ht, we consider six kinds of specifications:

ht = κ+A∗
dωt−1 +A∗

wωt−5:t−1 +A∗
wωt−22:t−1, (6)

ht = κ+A∗
dωt−1 +A∗

wωt−5:t−1 +A∗
wωt−22:t−1 +A∗

aξt−1, (7)

ht = κ+A∗
dωt−1 +A∗

wωt−5:t−1 +A∗
wωt−22:t−1 +A∗

aξt−1 + λgt−1, (8)

ht = κ+A∗
dct−1 +A∗

wct−5:t−1 +A∗
wct−22:t−1 +A∗

jjt−1, (9)

ht = κ+A∗
dct−1 +A∗

wct−5:t−1 +A∗
wct−22:t−1 +A∗

jjt−1 +A∗
ant−1, (10)

ht = κ+A∗
dct−1 +A∗

wct−5:t−1 +A∗
wct−22:t−1 +A∗

jjt−1 +A∗
ant−1 + λgt−1, (11)

where A∗
i (i = d,w,m, j, a) are 4× 4 matrices of parameters, κ and λ 4× 1 vectors of parameters,

gt is a geopolitical risk indicator, ξt = vec(ζtζ
′
t), ζt = (rxt 1(r

x
t < 0), ryt 1(r

y
t < 0))

′
, nt = vec(ηtη

′
t),

ηt = (rcxt 1(rc
x
t < 0), rcyt 1(rc

y
t < 0))

′
, and 1(z < 0) is the indicator function which takes one if

z < 0, and zero otherwise.

For the parameters, we consider the BEKK (Baba, Engle, Kroner, and Kraft) specification

(see Baba et al. (1985) and Engle and Kroner (1995)) in order to guarantee positive definiteness
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of Ht. We suppress the subscript i of A∗
i (i = d,w,m, j, a). In the BEKK specification, A∗ takes

the following form:

A∗ =

4∑
k=1

(Ak ⊗Ak), A1 =

(
a11,1 a12,1
a21,1 a22,1

)
, A2 =

(
0 0

a21,2 a22,2

)
,

A3 =

(
0 a12,3
0 a22,3

)
, A4 =

(
0 0
0 a22,4

)
,

with a22,k > 0. Proposition 2.3 of Engle and Kroner (1995) shows that there is no equivalent

representation for the set of Ak matrices. For the remaining parameters:

κ = vec(KK ′), K =

(
k11 0
k21 k22

)
, λ = vec(Λ), Λ =

(
λ11 λ21

λ21 λ22

)
,

with k11 > 0. By the specification, we obtain the alternative form of (11):

Ht =KK ′ +AdCt−1A
′
d +AwCt−5:t−1A

′
w +AmCt−22:t−1A

′
m

+AjJt−1A
′
j +Aaηt−1η

′
t−1A

′
a + Λgt.

(12)

The BEKK structure (12) implies that Ht for (6), (7), (9), and (10) is always positive definite.

When gt ≥ 0, the positive definiteness for (8) and (11) depends on the values of Λ. In order to

reserve possibility for the (i, i)th element of Λ to take negative values, we do not impose restrictions

such as Λ = λ̌λ̌′ with a 2× 1 vector λ̌.

The models in (5) with (6), (9), and (10) are multivariate extensions of the volatility forecasting

models of Andersen, Bollerslev, and Diebold (2007) and Corsi et al. (2010). The model (5) and

(6) with h = 1 belongs to the conditional autoregressive Wishart (CAW) model of Golosnoy,

Gribisch, and Liesenfeld (2012). As this specification uses the heterogeneous autoregression (HAR)

introduced by Corsi (2009), we refer to equations (5) and (6) as the heterogeneous autoregressive

conditional Wishart (HAR-CW) model. Equation (7) includes the spillovers of asymmetric effects,

as in Kroner and Ng (1997), which we refer to as the HAR-A-CW model. Model (5) with (9)

decomposes the past values of Ωt into those of Ct and Jt, and accommodates the HAR terms of

Ct and the spillover effects of jump variation and co-variation. The specification in (10) adds

to (9) the spillovers of the leverage effects. We refer to equations (5) with (9) and (10) as the

HAR-TCJ-CW and HAR-TCJA-CW models, respectively. Note that we use continuous returns

for the HAR-TCJA-CW model, corresponding to the ICov in its specification. As (8) adds to (7)

the effect of geopolitical risks, we refer to the model in (5) with (8) as the HAR-AG-CW model.

In the same manner, we refer to the model in (5) and (10) as the HAR-TCJAG-CW model.
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Instead of the above specifications, we may consider a regression model for ώt−h+1:t = vech(Ωt−h+1:t)

as:

ώt−h+1:t = κ† +A†
dćt−1 +A†

wćt−5:t−1 +A†
wćt−22:t−1 +A†

j j́t−1 +A†
ańt−1 + et, (13)

where et is the 3× 1 vector of disturbance, ćt−h:t−1 = vech(Ct−h:t−1) (h = 1, 5, 22), j́t = vech(Jt),

ńt = vech(ηtη
′
t), κ

† is the 3× 1 vector, and A†
i (i = d,w,m, j, a) are 3× 3 matrices. The number

of parameters in (13) is the same as the number of free parameters in (10). In other words, the

BEKK structure produces a positive definite matrix using no additional parameters.

2.3 Estimation of CW Models and Tests for Effects of Spillover and Geopolit-
ical Risks

Define θ = (ν, vech(K)′, vec(Ad)
′, vec(Aw)

′, vec(Am)′, vec(Aj)
′, vec(Aa)

′)′ for the HAR-TCJA-CW

model. The log-likelihood function is given by:

L(θ) =
T∑
t=1

lt, (14)

where

lt = − log Γm(ν/2) +
mν

2
log(ν/2)− ν

2
log |Ht|

+
ν −m− 1

2
log |Ωt−h+1:t| −

ν

2
tr
(
H−1

t Ωt−h+1:t

)
with m = 2, and Γm(z) is the multivariate gamma function defined by:

Γm(z) = πm(m−1)/4
m∏
j=1

Γ (z + (1− j)/2) .

We obtain the maximum likelihood estimator, θ̂, by maximizing the log-likelihood function (14).

We can show the asymptotic normality of the maximum likelihood estimator for the condi-

tional Wishart model, by simplifying the results of Zhou, Zhu, and Li (2018) for the matrix-F

distribution. Note that we are unable to use the approach of McAleer et al. (2008) based on the

vector random coefficient (VRC) process for the BEKK-GARCH model, as it is hard to derive

VRC representation for the conditional Wishart model (see also discussions of McAleer (2019)).

For examining the effects of leverage, jumps, spillovers, and a geopolitical indicator, we use

equations (6)-(11). Define the null hypotheses as Hkl,v
0 : a∗k2l2,d = a∗k2l2,w = a∗k2l2,m = 0, Hkl,j

0 :

a∗k2l2,j = 0, Hkl,a
0 : a∗k2l2,a = 0, and Hkl,g

0 : λkl = 0 for k, l = 1, 2. We divide Hkl,v
0 , Hkl,j

0 , and
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Hkl,a
0 (k, l = 1, 2) into two categories: one is the test for the ‘direct effect’ with k = l, while the

other is the test for ‘spillover effects’ with k ̸= l. In each category, we test the effects of volatility

feedback, jumps, and negative returns. For the geopolitical risk, Hkl,g
0 indicates that there is no

effect on the (k, l)th element of Ht.

Table 1 shows the null hypotheses to be tested in our empirical analysis. We carry out Wald

tests for the hypotheses Hkl,v
0 (k, l = 1, 2), while we use t tests for the remaining hypotheses. The

Wald statistics have the asymptotic χ2(3) distribution under the respective null hypotheses.

3 Empirical Analysis

We consider the effects of jumps, leverage, spillovers, and geopolitical risk for two futures contracts

traded on the New York Mercantile Exchange (NYMEX), namely West Texas Intermediate (WTI)

Crude Oil and Gold. The trades at NYMESX cover 24 hours with the CME Globex system. Using

the future prices every 1-minute, we calculate Ωt, Ct, and Jt by the approach of Koike (2016), as

the estimates of the matrices of quadratic co-variation, integrated co-volatility, and the matrix of

jump co-variations, respectively. We also calculate the corresponding open-close returns and their

continuous components, rt and rct, respectively, for the two futures.

The sample period covers September 27, 2009 to May 25, 2017, giving 1978 observations.

Table 2 indicates the descriptive statistics of rt and Ct. The empirical distribution of the returns

is highly leptokurtic, while that of volatility is skewed to the right, with heavy tails. Figures 1

and 2 display the times series plots of returns and the estimates of quadratic variation, integrated

volatility, and jump variation. The values jump variations are relatively small for most days,

but there exist obvious non-negligible variations. Figure 3 illustrates the product of two returns,

the estimates of quadratic co-variation, integrated co-volatility, and jump co-variability. Figure 3

implies the time series dependence on QCov and ICov can be found, especially for the year 2011.

For the geopolitical risk, we use the daily share of the geopolitical risk indicator suggested by

Caldara and Iacviello (2018). Figure 4 shows the time series plot of the geopolitical risk indicator.

In the following, we consider two kinds of periods for estimation and forecasting. Period 1

starts on October 27, 2009 and ends on August 18, 2015, with 1500 observations, while Period 2

covers October 4, 2011 to May 25, 2017, with 1456 observations. The first 1000 observations for

each period are used for estimation, while the remaining observations are retained for forecasting.

We treat crude oil futures as the first variable, and gold futures as the second.
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Table 3 reports AIC and BIC for six models with respect to six kinds of covariance matrices

over 2 periods. For the daily covariance model, AIC chose the HAR-TCJA (HAR-TCJAG) model

for Period 1 (Period 2), while the HAR-A-CW model has the smallest BIC. Regarding the weekly

covariance model, AIC selected HAR-A-CW, and HAR-CW has the smallest BIC for both peri-

ods. For the monthly covariance model, the HAR-A-CW has the smallest AIC and BIC for the

both periods. The results indicate that including leverage effects often improves the information

criterion, and that accommodating the geopolitical risk indicator can improve the daily covariance

model.

Among the hypotheses listed in Table 1, we first examine the direct effects on volatility from its

past volatility, jumps, and negative returns. The null hypotheses are Hkk,v
0 : a∗k2k2,d = a∗k2k2,w =

a∗k2k2,m = 0, Hkk,j
0 : a∗k2k2,j = 0 and Hkk,a

0 : a∗k2k2,a = 0 (k = 1, 2), with the parameters defined in

equations (6)-(11). Table 4 shows the results for the direct tests for the daily covariance model.

While the direct effects from past volatility and returns are significant at the five percent level,

the effects of past jumps are insignificant. The result is against the findings by Asai, Gupta, and

McAleer (2019), and might be caused by the structure for guaranteeing positive definiteness of the

covariance matrix. The sign of the t statistics for testing Hkk,a
0 : a∗k2k2,a = 0 (k = 1, 2) indicates

that a negative return increases future volatility, showing the existence of leverage effects.

Tables 5 and 6 report the results for the direct tests for the weekly and monthly covariance

models, respectively. All test statistics reject the null hypotheses of no effects at the five percent

level, except for a∗44,a = 0 for the second period of the monthly covariance models with jumps. Note

that, even for this case, a∗44,a is significant for the models without jumps. The results indicate

that the effects of jumps and negative returns are positive and significant in explaining future

volatility.

Second, we examine the spillover effects. Tables 7-9 show the results for the tests for spillover

effects for the daily, weekly, and monthly covariance models, respectively. For most of the cases,

the test statistics are insignificant at the five percent level. The exceptions are found in several

cases for the null hypothesis H12,a
0 : a∗14,a = 0. The result that a∗14,a > 0 shows that a negative

return of gold futures increases the one-step-ahead volatility of crude oil futures. When the

fluctuations in returns of the gold futures are high, the negative returns may affect the volatility

of crude oil futures.

Third, we investigate the effects of geopolitical risks based on the HAR-AG-CW and HAR-
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TCJAG-CW models. Table 9 shows the t-test statistics and P -values. For the daily covariance

model, λ11 is significant for three of four cases, but the sign is indeterminate. Regarding the weekly

covariance model, λ11 is significant for the HAR-AG-CW model. For the monthly covariance

model, γ11 is significant for three of four cases, and λ12 is significant in one case. In Table 9, λ22

is insignificant in all cases. The result λ11 ̸= 0 indicates that the geopolitical risk tends to affect

the future volatility of crude oil.

For in-sample estimation, there is no spillover effects from volatility and jumps. Instead,

we often found spillovers from negative returns of gold futures to volatility of crude oil futures.

Regarding the geopolitical risk indicator, the empirical results show that part of the variation of

the future volatility of crude oil futures can be explained by the indicator.

We compare out-of-sample forecasts of six kinds of CW models. We estimate each model

using the first 1000 observations, and obtain a forecast, Ω̂f
1001 We re-estimate each model fixing

the sample size at 1000, and obtain new forecasts based on the updated parameter estimates.

For comparing the out-of-sample forecasts, we extend the idea of Patton (2011) for univariate

volatility models. Patton (2011) examined the functional form of the loss function for comparing

volatility forecasts using imperfect volatility proxies, such that the forecasts are robust to the

presence of noise in the proxies.

As an extension of Patton (2011), we state that a loss function is “robust” if the ranking of any

two forecasts of the co-volatility matrix, Ω̂
(1)
T+j and Ω̂

(2)
T+j , by expected loss is the same whether

the ranking is performed using the true covariance matrix or an unbiased volatility proxy, Ώt. In

the univariate case, Patton (2011) showed that squared forecast error and quasi-likelihood type

loss functions are robust to the forecast error and the standardized forecast error, respectively.

We consider their multivariate counterparts, as follows:

MSFE : L(Ώt, Ω̂
(i)
T+j) = tr

[(
Ω̂
(i)
T+j − Ώt

)2
]
, (15)

QLIKE : L(Ώt, Ω̂
(i)
T+j) = tr

(
Ώ−1
t Ω̂

(i)
T+j

)
− log

∣∣∣Ώ−1
t Ω̂

(i)
T+j

∣∣∣−m, (16)

which are expected to be robust to the forecast error, Ω̂
(i)
T+j − Ώt, and the standardized forecast

error, Ώ−1
t Ω̂

(i)
T+j , respectively.

Table 11 shows the results of MSFE and QLIKE for the six models for 2 periods and the total

period. For forecasting the future covariance matrices, MSFE and QLIKE selected the models

without jumps. For forecasts of the daily and weekly covariance models, the HAR-A-CW model
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often has the smallest MSFE and QLIKE. Regarding the monthly covariance model, the HAR-CW

and HAR-A-CW models are competitive, but the differences are negligible.

4 Concluding Remarks

In this paper, we investigated the effects of leverage, jumps, spillovers, and geopolitical risks on

forecasting the covariance matrix for the returns of crude oil and gold futures. For this purpose,

we considered the Conditional Wishart (CW) model with a full BEKK specification to guarantee

positive definiteness of the covariance matrix and flexibility of the parameters simultaneously.

The specification enables us to distinguish the direct and spillover effects of volatility feedbacks,

negative returns, and jumps. In the empirical analysis, we used five-minute data of crude oil

and gold futures to estimate the quadratic covariation, the continuous covariance matrix, and the

matrix of variations of jumps.

It was found that: (i) there is no spillover effects from volatility and jumps; (ii) negative

returns of gold increase the future volatility of crude oil, (iii) it is better to use previous values of

the quadratic covariation than its continuous and jump components for forecasting the covariance

matrix; and (iv) accommodating the geopolitical risk indicator often improves the forecasts of the

future volatility of crude oil. The CW model can be improved by combining the structures of the

full BEKK model and the diagonal GARCH model of Ding and Engle (2001). In other words, we

may use the structure of the diagonal GARCH model for volatility feedbacks (and jumps), while

we consider the full BEKK specification for the spillover effects arising from the negative returns.

This remains a topic for future research.
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Table 1: Null Hypotheses for Testing the Direct, Spillover, and Geopolitical Risk Effects

H11,v
0 No direct effects from volatility of X to volatility of X

H22,v
0 No direct effects from volatility of Y to volatility of Y

H11,j
0 No direct effects from jump variation of X to volatility of X

H22,j
0 No direct effects from jump variation of Y to volatility of Y

H11,a
0 No direct effects from negative return of X to volatility of X

H22,a
0 No direct effects from negative return of Y to volatility of Y

H12,v
0 No spillover effects from volatility of Y to volatility of X

H21,v
0 No spillover effects from volatility of X to volatility of Y

H12,j
0 No spillover effects from jump variation of Y to volatility of X

H21,j
0 No spillover effects from jump variation of X to volatility of Y

H12,a
0 No spillover effects from negative return of Y to volatility of X

H21,a
0 No spillover effects from negative return of X to volatility of Y

H11,g
0 No effect from geopolitical risk index to volatility of X

H22,g
0 No effect from geopolitical risk index to volatility of Y

H12,g
0 No effect from geopolitical risk index to co-volatility of (X,Y )

Table 2: Descriptive Statistics of Returns, Volatility and Co-Volatility

Stock Mean Std.Dev. Skew. Kurt.

Return
Crude Oil 0.0256 0.6824 −0.4784 8.0378
Gold 0.0185 1.4887 −0.0573 5.0225
Volatility
Crude Oil 0.4238 0.5070 7.2211 90.688
Gold 1.5152 1.6510 3.3689 19.071
Co-Volatility
(Crude Oil, Gold) 0.1368 0.2844 −0.7851 37.359

Note: The sample period is from September 27, 2009 to May 25, 2017.
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Table 3: Model Selection via Information Criteria

Daily Cov. Weekly Cov. Monthly Cov.
Model AIC BIC AIC BIC AIC BIC
Period 1: 10/27/2009 – 09/10/2013
HAR-CW −355.78 10.49 −7437.03 −7070.75† −14182.25 −13815.97
HAR-A-CW −481.63 −9.01† −7531.33† −7058.71 −14388.47† −13915.85†

HAR-AG-CW −475.56 32.51 −7526.20 −7018.13 −14382.64 −13874.57
HAR-TCJ-CW −418.77 53.85 −6280.54 −5807.92 −10136.50 −9663.88
HAR-TCJA-CW −521.07† 57.89 −6312.06 −5733.10 −10161.00 −9582.04
HAR-TCJAG-CW −515.07 99.33 −6306.92 −5692.51 −10156.13 −9541.72
Period 2: 10/04/2011 – 08/15/2015
HAR-CW −1467.93 −1101.65 −8299.37 −7933.09† −15325.34 −14959.06
HAR-A-CW −1582.16 −1109.54† −8376.23† −7903.61 −15556.15† −15083.53†

HAR-AG-CW −1589.47 −1081.40 −8374.82 −7866.75 −15551.21 −15043.14
HAR-TCJ-CW −1524.57 −1051.95 −7177.73 −6705.11 −10899.95 −10427.33
HAR-TCJA-CW −1614.63 −1035.67 −7202.43 −6623.47 −10921.92 −10342.96
HAR-TCJAG-CW −1621.66† −1007.25 −7199.68 −6585.27 −10919.24 −10304.83
Note: ‘†’ denotes the model selected by AIC and BIC among the six models.
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Table 4: Tests of Direct Effects on the Daily Covariance Models

Model H11,v
0 H22,v

0 H11,j
0 H22,j

0 H11,a
0 H22,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 1244.6 598.80

[0.0000] [0.0000]
HAR-A-CW 976.96 486.47 6.5807 5.0878

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-AG-CW 973.80 472.28 6.6953 5.0695

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJ-CW 890.37 469.33 0.1037 1.1754

[0.0000] [0.0000] [0.9173] [0.2398]
HAR-TCJA-CW 108.05 406.33 0.0874 1.1021 5.6778 5.0523

[0.0000] [0.0000] [0.9304] [0.2704] [0.0000] [0.0000]
HAR-TCJAG-CW 701.14 396.18 0.0785 1.0578 5.6843 5.1483

[0.0000] [0.0000] [0.9374] [0.2901] [0.0000] [0.0000]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 1308.3 809.83

[0.0000] [0.0000]
HAR-A-CW 994.18 712.48 6.7084 3.1948

[0.0000] [0.0000] [0.0000] [0.0014]
HAR-AG-CW 992.24 697.83 6.7504 3.1691

[0.0000] [0.0000] [0.0000] [0.0015]
HAR-A-CW 947.57 577.37 0.1068 1.3661

[0.0000] [0.0000] [0.9149] [0.1719]
HAR-TCJ-CW 788.02 484.08 0.0874 1.4859 6.1482 3.0904

[0.0000] [0.0000] [0.9303] [0.1373] [0.0000] [0.0020]
HAR-TCJA-CW 789.73 480.60 0.0005 1.5404 6.2133 3.0167

[0.0000] [0.0000] [0.9996] [0.1235] [0.0000] [0.0026]
Note: We perform Wald tests for the hypotheses H11,v

0 and H22,v
0 , while we use t

tests for remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 5: Tests of Direct Effects on the Weekly Covariance Models

Model H11,v
0 H22,v

0 H11,j
0 H22,j

0 H11,a
0 H22,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 15126 6935.9

[0.0000] [0.0000]
HAR-A-CW 14204 6336.3 6.9584 4.9890

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-AG-CW 14844 6374.4 7.0026 4.9485

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJ-CW 6530.8 3788.2 12.458 5.8031

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJA-CW 6162.2 3478.1 9.1037 5.7926 4.8802 3.3982

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0007]
HAR-TCJAG-CW 5935.0 3376.1 8.9475 5.7807 4.8987 3.0912

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0020]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 15758 6513.5

[0.0000] [0.0000]
HAR-A-CW 14206 6160.3 8.2330 2.7083

[0.0000] [0.0000] [0.0000] [0.0068]
HAR-AG-CW 14233 6159.3 8.3836 2.7029

[0.0000] [0.0000] [0.0000] [0.0069]
HAR-TCJ-CW 8379.4 3371.1 12.463 5.2151

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJA-CW 7523.8 2825.2 10.659 5.1418 6.6795 2.0230

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0431]
HAR-TCJAG-CW 7594.6 2944.0 10.583 5.1519 6.2988 2.0000

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0455]
Note: We perform Wald tests for the hypotheses H11,v

0 and H22,v
0 , while we use t

tests for remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 6: Tests of Direct Effects on the Monthly Covariance Models

Model H11,v
0 H22,v

0 H11,j
0 H22,j

0 H11,a
0 H22,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 97492 53456

[0.0000] [0.0000]
HAR-A-CW 98506 56199 10.168 5.8479

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-AG-CW 98289 54744 10.225 5.8021

[0.0000] [0.0000] [0.0000] [0.0000]
HAR-TCJ-CW 18805 10757 13.124 3.6226

[0.0000] [0.0000] [0.0000] [0.0003]
HAR-TCJA-CW 17301 10450 9.8033 3.7172 5.0165 2.6162

[0.0000] [0.0000] [0.0000] [0.0002] [0.0000] [0.0089]
HAR-TCJAG-CW 17547 10105 9.5076 3.8152 4.3201 2.4460

[0.0000] [0.0000] [0.0000] [0.0001] [0.0000] [0.0144]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 105989 53583

[0.0000] [0.0000]
HAR-A-CW 114102 60018 10.299 2.3873

[0.0000] [0.0000] [0.0000] [0.0170]
HAR-AG-CW 114587 60043 10.235 2.3892

[0.0000] [0.0000] [0.0000] [0.0170]
HAR-TCJ-CW 26702 7637.8 12.906 2.4480

[0.0000] [0.0000] [0.0000] [0.0144]
HAR-TCJA-CW 26840 6730.2 11.090 2.5625 3.1839 1.2732

[0.0000] [0.0000] [0.0000] [0.0104] [0.0015] [0.2029]
HAR-TCJAG-CW 27427 7512.0 11.128 2.5828 3.1186 1.3508

[0.0000] [0.0000] [0.0000] [0.0098] [0.0018] [0.1768]
Note: We perform Wald tests for the hypotheses H11,v

0 and H22,v
0 , while we use t

tests for remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 7: Tests of Spillover Effects on the Daily Covariance Models

Model H21,v
0 H12,v

0 H21,j
0 H12,j

0 H21,a
0 H12,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 0.2681 0.7538

[0.9659] [0.8605]
HAR-A-CW 0.0009 0.6086 1.4674 5.5389

[1.0000] [0.8945] [0.1423] [0.0000]
HAR-AG-CW 0.0003 0.3501 1.4585 5.0694

[1.0000] [0.9504] [0.1447] [0.0000]
HAR-TCJ-CW 0.0132 0.3111 0.2061 0.1892

[0.9996] [0.9579] [0.8367] [0.8499]
HAR-TCJA-CW 0.0008 0.4262 0.0874 0.0798 0.7934 3.3141

[1.0000] [0.9348] [0.9364] [0.8450] [0.4275] [0.0009]
HAR-TCJAG-CW 0.0008 0.3532 0.0785 0.0721 0.8914 3.2252

[1.0000] [0.9497] [0.9426] [0.8602] [0.3727] [0.0013]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 0.0026 0.20520

[1.0000] [0.5617]
HAR-A-CW 0.0059 0.9392 0.1416 1.0107

[0.9999] [0.8160] [0.8874] [0.3122]
HAR-AG-CW 0.0065 0.2656 0.1551 0.9495

[0.9999] [0.9664] [0.8767] [0.3423]
HAR-TCJ-CW 0.0003 3.0456 0.0488 0.0441

[1.0000] [0.3846] [0.9611] [0.9648]
HAR-TCJA-CW 0.0018 0.7205 0.0324 0.3588 0.0970 0.7887

[1.0000] [0.8684] [0.9742] [0.7197] [0.9228] [0.4303]
HAR-TCJAG-CW 0.0021 0.3652 0.0081 0.1053 0.0886 0.7227

[1.0000] [0.9473] [0.9935] [0.9161] [0.9294] [0.4699]
Note: We perform Wald tests for the hypotheses H12,v

0 and H21,v
0 , while we use t

tests for remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 8: Tests of Spillover Effects on the Weekly Covariance Models

Model H21,v
0 H12,v

0 H21,j
0 H12,j

0 H21,a
0 H12,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 0.1869 0.3117

[0.9797] [0.9578]
HAR-A-CW 0.0018 0.7844 0.1133 1.8145

[1.0000] [0.8532] [0.9098] [0.0696]
HAR-AG-CW 0.0028 0.3619 0.1108 1.8895

[1.0000] [0.9480] [0.9117] [0.0588]
HAR-TCJ-CW 0.0016 0.0034 0.0128 0.0722

[1.0000] [0.9999] [0.9898] [0.9424]
HAR-TCJA-CW 0.0011 0.0084 0.0035 0.1386 0.0497 1.5286

[1.0000] [0.9998] [0.9972] [0.8959] [0.9604] [0.1264]
HAR-TCJAG-CW 0.0011 0.0075 0.0015 0.1684 0.0064 1.5488

[1.0000] [0.9998] [0.9988] [0.8663] [0.9949] [0.1214]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 0.0477 3.8799

[0.9973] [0.2747]
HAR-A-CW 0.0038 1.6697 0.0556 1.1598

[0.9999] [0.6437] [0.9557] [0.2461]
HAR-AG-CW 0.0078 0.6179 0.0505 1.1107

[0.9998] [0.8923] [0.9597] [0.2685]
HAR-TCJ-CW 0.0005 1.0131 0.0226 0.0152

[1.0000] [0.7981] [0.9820] [0.9878]
HAR-TCJA-CW 0.0021 0.3899 0.0094 0.0344 0.0091 1.3441

[1.0000] [0.9423] [0.9925] [0.9725] [0.9927] [0.1789]
HAR-TCJAG-CW 0.0017 0.3589 0.0083 0.0801 0.0060 1.3533

[1.0000] [0.9486] [0.9934] [0.9361] [0.9952] [0.1760]
Note: We perform Wald tests for the hypotheses H12,v

0 and H21,v
0 , while we use t

tests for remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 9: Tests of Spillover Effects on the Monthly Covariance Models

Model H21,v
0 H12,v

0 H21,j
0 H12,j

0 H21,a
0 H12,a

0

Period 1: 10/27/2009 – 09/10/2013
HAR-CW 0.0956 0.9043

[0.9924] [0.8244]
HAR-A-CW 0.0236 6.1819 0.0912 0.9857

[0.9990] [0.1031] [0.9273] [0.3243]
HAR-AG-CW 0.0330 5.4193 0.0948 1.0266

[0.9984] [0.1435] [0.9245] [0.3046]
HAR-TCJ-CW 0.0277 0.0011 0.0069 0.9459

[0.9988] [1.0000] [0.9945] [0.3442]
HAR-TCJA-CW 0.0091 0.0032 0.0000 1.0269 0.0514 1.1392

[0.9998] [1.0000] [1.0000] [0.3044] [0.9590] [0.2546]
HAR-TCJAG-CW 0.0062 0.0015 0.0007 1.0266 0.0095 1.1370

[0.9999] [1.0000] [0.9995] [0.3046] [0.9924] [0.2555]
Period 2: 10/04/2011 – 08/15/2015
HAR-CW 0.0062 0.3542

[0.9999] [0.9495]
HAR-A-CW 0.0320 0.0052 0.1126 2.5827

[0.9985] [0.9999] [0.9104] [0.0098]
HAR-AG-CW 0.0297 0.0046 0.1167 2.4502

[0.9986] [0.9999] [0.9071] [0.0143]
HAR-TCJ-CW 0.0053 0.0403 0.0059 0.0649

[0.9999] [0.9979] [0.9695] [0.5160]
HAR-TCJA-CW 0.0073 0.0272 0.0005 0.6696 0.0052 1.1204

[0.9998] [0.9988] [1.0000] [0.5031] [0.9958] [0.2626]
HAR-TCJAG-CW 0.0087 0.0339 0.0002 0.8350 0.0519 1.2969

[0.9998] [0.9984] [0.9998] [0.4037] [0.9586] [0.1947]
Note: We perform Wald tests for the hypotheses H12,v

0 and H21,v
0 , while we use t

tests for remaining hypotheses. The entries show the test statistics. P -values are
given in brackets.
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Table 10: Tests for Effects of Geopolitical Risks

Period 1: 10/27/2009 – 09/10/2013 Period 2: 10/04/2011 – 08/15/2015
Model λ11 λ12 λ22 λ11 λ12 λ22

HAR-AG-CW
Daily Cov. 0.2569 0.3636 −0.1652 3.3611∗ −0.6431 0.0625

[0.7973] [0.7162] [0.8688] [0.0008] [0.5202] [0.9501]
Weekly Cov. −0.7679 0.0202 −0.1481 2.0644∗ −0.1869 0.0161

[0.4425] [0.9838] [0.8823] [0.0390] [0.8518] [0.9872]
Monthly Cov. −0.1878 0.1751 −0.1118 0.4956 −0.3039 0.0950

[0.8510] [0.8610] [0.9110] [0.6202] [0.7612] [0.9243]
HAR-TCJAG-CW

Daily Cov. 0.0553 0.0235 0.0156 3.0660∗ −0.7036 0.1839
[0.9559] [0.9812] [0.9876] [0.0022] [0.4817] [0.8541]

Weekly Cov. −0.5571 −0.3855 0.1332 0.8548 −0.6374 0.2211
[0.5774] [0.6998] [0.8941] [0.3926] [0.5238] [0.8250]

Monthly Cov. −0.1617 −0.4181 0.4538 0.0895 −0.6652 −0.1907
[0.8715] [0.6758] [0.6500] [0.9287] [0.5059] [0.8488]

Note: The entries show the t test statistics. P -values are given in brackets. ‘∗’ denotes significance
at the 5% level.
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Table 11: Out-of-Sample Forecast Evaluation

MSFE QLIKE
Model Period 1 Period 2 Total Period 1 Period 2 Total
Daily Covarinace Models
HAR-CW 1.4880 0.8856∗ 2.1486 0.4592 0.5484 0.3614
HAR-A-CW 1.4457 0.8914 2.0535∗ 0.4382 0.5145 0.3545
HAR-AG-CW 1.4455∗ 0.8906 2.0539 0.4348∗ 0.5084∗ 0.3541∗

HAR-TCJ-CW 1.8906 1.0748 2.7851 0.7607 0.8739 0.6366
HAR-TCJA-CW 1.7518 1.0202 2.5540 0.7114 0.8076 0.6058
HAR-TCJAG-CW 1.7501 1.0170 2.5539 0.7063 0.7965 0.6074
Weekly Covarinace Models
HAR-CW 0.0970 0.0569 0.1410 0.0253∗ 0.0231∗ 0.0279∗

HAR-A-CW 0.0939 0.0561 0.1354 0.0257 0.0234 0.0281
HAR-AG-CW 0.0938∗ 0.0560∗ 0.1352∗ 0.0257 0.0234 0.0282
HAR-TCJ-CW 0.4489 0.2390 0.6789 0.1250 0.1150 0.1360
HAR-TCJA-CW 0.4317 0.2294 0.6536 0.1232 0.1133 0.1340
HAR-TCJAG-CW 0.4317 0.2287 0.6543 0.1231 0.1132 0.1339
Monthly Covarinace Models
HAR-CW 0.0069 0.0045∗ 0.0095 0.0022∗ 0.0019 0.0025∗

HAR-A-CW 0.0068∗ 0.0046 0.0093∗ 0.0022 0.0019∗ 0.0026
HAR-AG-CW 0.0068 0.0046 0.0093 0.0022 0.0019 0.0027
HAR-TCJ-CW 0.3028 0.1571 0.4626 0.0922 0.0833 0.1019
HAR-TCJA-CW 0.3013 0.1556 0.4610 0.0916 0.0825 0.1016
HAR-TCJAG-CW 0.3000 0.1541 0.4600 0.0913 0.0820 0.1015
Note: The table reports the mean squared forecast error (MFSE) and quasi-likelihood-based
measure (QLIKE), defined by (15) and (16), respectively. The values in Total are not
necessarily the same as the sums of those of Periods 1 and 2 due to rounding errors. Period
1 indicates 09/11/2013 – 08/18/2015, while Period 2 is 08/19/2015 – 05/25/2017. ‘∗’ denotes
the model which has the smallest value of the six models in the corresponding period.
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Figure 1: Return and Estimates of Quadratic Variation, Integrated Volatility, and Jump Variabil-
ity for Crude Oil Futures

Note: Figure 1 shows the (1, 1)-elements of Ωt, Ct, and Jt.
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Figure 2: Return and Estimates of Quadratic Variation, Integrated Volatility, and Jump Variabil-
ity for Gold Futures

Note: Figure 2 shows the (2, 2)-elements of Ωt, Ct, and Jt.
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Figure 3: Product of Returns and Estimates of Quadratic Covariation, Integrated Covolatility,
and Jump Co-variability for Crude Oil and Gold Futures

Note: Figure 3 shows the (2, 1)-elements of Ωt, Ct, and Jt.
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Figure 4: Geopolitical Risk Indicator

Note: Figure 4 shows the share of the daily geopolitical risk indicator suggested by Carldara and Iacoviello (2018).
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