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The endemic presence of bovine tuberculosis (BTB) in African buffaloes in South Africa has severe consequences
for BTB control in domestic cattle, buffalo ranching and wildlife conservation, and poses a potential risk to
public health. This study determined the BTB prevalence in free-ranging buffaloes in two game reserves and
assessed the influence of the prevalence of mycobacterial infections on the performance of a commercial cattle-
specific serological assay for BTB (TB ELISA). Buffaloes (n = 997) were tested with the tuberculin skin test and

TB ELISA; a subset (n = 119) was tested longitudinally. Culture, PCR and sequencing were used to confirm
infection with M. bovis and/or non-tuberculous mycobacteria (NTM). Prevalence of BTB, but not NTM, influ-
enced the TB ELISA performance. Multiple testing did not increase test confidence. The findings strongly il-
lustrate the need for development of novel assays that can supplement existing assays for a more comprehensive
testing scheme for BTB in African buffaloes.

1. Introduction

Bovine tuberculosis (BTB) is a chronic infectious respiratory disease
caused by Mycobacterium bovis (M. bovis), affecting a wide range of
mammalian hosts [1]. The presence of BTB in several signature wildlife
species, both free-ranging as well as captive, has been recognized in
different regions of the world for many years [2-6]. The implications of
widespread presence of these wildlife reservoirs are far-reaching: BTB
eradication efforts in domestic animals are compromised [7,8], the
conservation of endangered species may be threatened by further de-
clining populations [9,10] and stifled by movement restrictions, and the
wildlife and livestock trade suffer financial losses and face embargos
[3,11]. In South Africa in particular, where BTB occurs in domestic
cattle and is endemic in some populations of African buffaloes [4,9],

where a vast wildlife-livestock-human interface exists, the burden of
BTB is of great veterinary and also public health concern [7,12,13]. Asa
result, there is a need for reliable detection systems for BTB in wildlife.

The complex pathogenesis of the disease urges for accurate detec-
tion of both early and chronic stages of BTB, but also renders diagnosis
challenging. It is usually based on the detection of the cell-mediated
immune (CMI) response to infection with M. bovis, as assessed by the
tuberculin skin test (TST) or an interferon-gamma release assay (IGRA)
such as the BOVIGAM® test [14-16]. These tests were originally de-
signed and validated for use in cattle and although the test performance
of both assays is known to be variable [14,15], the TST has proven
instrumental in BTB control, and even eradication in cattle, in nu-
merous countries in the past century [17]. In buffaloes, the TST and
BOVIGAM?® assay have also been widely researched [18-20] and form
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part of the national control scheme in South Africa [21,22]. In wildlife,
however, control strategies are faced with additional logistical chal-
lenges such as the need for two immobilizations and boma-confinement
of the animal or limited access to laboratories as required for the re-
spective assays [18,23]. Considering the relative ease of sample col-
lection, serological assays offer a more practical and cost-effective al-
ternative to CMlI-testing [23-25]. Additionally, antibody-based
diagnostic assays for BTB may allow for detection of anergic animals
which otherwise remain undetected [15]. Nevertheless, they are em-
ployed less frequently than CMI-based tests, mostly due to low sensi-
tivity and highly variable overall test performance. Geographical lo-
cation, stage of infection and exposure to and diversity of non-
tuberculous mycobacteria (NTM) have been associated with this in-
consistent test accuracy [13,24-27]. The precise role of these factors is
not well-understood. In South Africa, however, NTM are known to have
a widespread distribution and have previously been isolated from
buffaloes and their environments [28]. Proteomic analysis of the four
most prevalent NTM species revealed the presence of several im-
munogenic antigens of M. bovis, which may be responsible for cross-
reactive immune responses [29].

Despite the fact that the sensitivity (Se) and specificity (Sp) of di-
agnostic tests are traditionally believed to be intrinsic characteristics
[30-32], more recent evidence suggests that they may also be influ-
enced by prevalence of disease [33], as is known to be the case for the
positive and negative predictive value, and likelihood ratios [30,31,34],
which may thus have direct implications for optimum test application.
Longitudinal data on the performance of diagnostic tests for BTB in
wildlife are very scarce [35-37], yet they can provide valuable in-
formation on the usefulness of an assay through multiple application as
it may increase the chance of detecting an infected individual as well as
boost confidence in consecutive negative results, and thus provide ad-
ditional information of the accuracy of a given test.

The purpose of the current study was to first determine the pre-
valence of BTB of buffaloes in the Hluhluwe-iMfolozi Park (HiP) and the
Madikwe Game Reserve (MGR), and to subsequently investigate the
potential influence of BTB prevalence and occurrence and diversity of
NTM on the performance of a commercially available antibody ELISA
for the detection of Mycobacterium bovis infections (TB ELISA). In ad-
dition, in the MGR, multiple testing over a 26-month period was per-
formed to further assess the test performance of the TB ELISA.

2. Materials & methods
2.1. Ethics and regulatory approval

Ethical approval was obtained from the Animal Ethics Committee of
the University of Pretoria, under project numbers V050-16 and V138-
16, in accordance with the South African National Standard 10386 “The
Care and Use of Animals for Scientific Purposes”. A permit under
Section 20 of the Animal Diseases Act 1984 (Act no 35 of 84) was ob-
tained from the Directorate Animal Health of the Department of
Agriculture, Forestry and Fisheries (DAFF) of the Republic of South
Africa.

2.2. Buffalo sampling

2.2.1. Hluhluwe-iMfolozi Park

The Hluhluwe-iMfolozi Park is one of the oldest game reserves in
Africa and is located in the province of KwaZulu-Natal in South Africa
[38]. The HiP is known to be a BTB endemic area and a BTB man-
agement programme was established in 1999 [39]. During 2015-2017,
a total of 766 buffaloes comprising 7 herds (A-H) were mass captured
and skin tested, as previously described [19]. In 2015, the Masinda
section on the iMfolozi side of the park (GPS coordinates 28°15’06”S
31°56’33”E) and in 2016, the Corridor area, on the Hluhluwe side (GPS
coordinates 28°13’09”S 32°00’19”E) were targeted. Lastly, in 2017, the
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Nselweni area on the iMfolozi side of the park was targeted (GPS co-
ordinates 28°18’06.2”S 31°53’29.5”E). Based on previous studies, the
BTB prevalence was expected to be high in Masinda and Nselweni, but
low in the Corridor area [40].

2.2.2. Madikwe Game Reserve

The Madikwe Game Reserve, founded in 1991, is the country’s fifth
largest game reserve (75,000 ha), situated in the North West province of
South Africa [41]. Bovine TB was first detected in the Madikwe buf-
faloes in 2012 [42] and the first interventions in an attempt to curtail
BTB took place in 2016. A BTB management proposal was drafted by
the North West Parks Board and approved by government, describing
the BTB surveillance strategy for the park as well as a buffalo salvage
plan aimed at establishing a disease-free buffalo breeding herd outside
of Madikwe, given the high value of the ‘Madikwe buffalo brand’.
Briefly, a total of 231 buffaloes were captured, using a targeted ap-
proach across all sectors of the park, and transported to a temporary
holding boma in the Madikwe Game Reserve (general GPS coordinates
for the park are 24°76°04”S 26°27°77”E) in early May 2016. Subsequent
to initial testing, test positive animals were culled and 143 test negative
animals were transported to a permanent boma in the MGR (GPS co-
ordinates 24°45'37"S 26°16'35"E). During the acclimatization period 14
animals broke out, 9 animals died in the boma and 1 animal was culled
as it tested positive for brucellosis. A total of 119 animals were enrolled
into the longitudinal testing scheme and were kept in the permanent
boma for the duration of the study. In 8 subsequent rounds over a
period of approximately two years animals were re-tested in September
2016, January 2017, April 2017, August 2017, November 2017, Feb-
ruary 2018 and July 2018. In August 2017, 12 animals that were born
in the boma were enrolled into the programme.

2.3. Blood collection

Blood was collected from the jugular vein of immobilized animals,
either in serum or heparin tubes using a vacutainer system (BD, South
Africa) or collected using a 50 mL syringe without anti-coagulant and
immediately transferred to serum and heparin vacutainer blood tubes.
After clotting, serum tubes were centrifuged at 1500 x g for 10 minutes,
and sera were harvested and immediately assessed in the TB ELISA.
Heparinized blood was processed for and used in the BOVIGAM® assay
within 8 hours. Laboratory assays were carried out on site in a field lab
in the HiP and the initial round of testing in the MGR (thereafter blood
was transported to the Department of Veterinary Tropical Diseases of
the University of Pretoria for analysis).

2.4. Tuberculin skin test

The TST was carried out in accordance with OIE standards [43] by
officials of the Hluhluwe and Zeerust state veterinary offices. The in-
terpretation of the TST and classification of animals as positive, suspect
or negative was performed in both parks as previously described [19]:
the test was considered positive when the skin fold thickness (SFT)
increase at the bovine site was > 4mm and the difference in SFT in-
crease between the bovine and avian injection sites was = 2 mm; sus-
pect when the SFT increase at the bovine site was > 4 mm and the
difference in SFT increase between the bovine and avian injection sites
was 1-2mm; and negative when the difference between the sites
was < 1 mm.

In the HiP, only animals which showed clinical signs at the injection
site as assessed by visual inspection from an elevated platform above
the holding facility or that tested positive on other assays [44], were
immobilized to read and evaluate the TST results. Clinical signs asso-
ciated with a delayed-type hypersensitivity reaction, indicative of
possible M. bovis infection, include edematous swelling, exudation,
necrosis, tenderness and/or heat of the injected area with or without
involvement of the draining lymph node [43]. Due to financial
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constraints, animals that showed no obvious clinical signs and tested
negative on other assays were not immobilized a second time but as-
sumed negative.

2.5. BOVIGAM® assay

During the first round of testing in the Madikwe Game Reserve the
BOVIGAMP® assay (Thermo Fisher Scientific, US) was carried out on site
in a field lab as previously described [18,19]. Supernatants of stimu-
lated whole blood cultures were harvested and used in the BOVIGAM®
assay as per the manufacturer’s protocol. Interpretation was carried out
according to Michel et al. [18].

2.6. IDEXX M. bovis Ab test (TB ELISA)

The TB ELISA (IDEXX Laboratories Inc., US), a test developed for the
detection of M. bovis specific antibodies in cattle, was carried out as per
the manufacturer’s protocol. The only discrepancy to the protocol was
that buffalo sera were used undiluted as per previous optimization in
this species ([19] and unpublished data).

2.7. Post mortem: bacterial culture, multiplex speciation PCR and
sequencing

Animals positive in the TST were culled, as advised by DAFF [22].
Additionally, any animals that got injured, failed to adapt to boma
conditions or were not deemed suitable for the salvage plan were culled
according to management decisions. All buffalo carcasses were sub-
jected to a detailed post-mortem investigation as previously described
[19,45], and tissues collected were processed according to standard
operating procedures for mycobacterial culture [46]. In the MGR, nasal
swabs collected from 10 randomly selected animals, were processed for
mycobacterial culture as previously described [28]. Cultures were
monitored for a period of 12 weeks. Crude DNA was extracted from
isolates that were identified as rod-shaped and acid-fast, using Ziehl-
Neelsen staining. A multiplex PCR was used for the detection of My-
cobacterium spp. and differentiation of MTBC species, as previously
described [47]. Samples which tested positive for the genus, but could
not be differentiated further, were amplified in a 16S ribosomal RNA
PCR [48]. Amplicons were sequenced at Inqaba Biotechnical Industries
(Pretoria, South Africa) and sequences obtained analyzed using the
NCBI Nucleotide Basic Local Alignment Search Tool (BLAST) [49] for
species identification. Alignments and phylogenetic analysis were per-
formed using the CLC Main Workbench (Qiagen Bioinformatics,
Aarhus, Denmark). Reference sequences of M. bovis, M. asiaticum and M.
moriokaense were retrieved from GenBank [50] and included as an
outgroup species, and representatives of slow- (SGM) and rapid-
growing mycobacteria (RGM), respectively. The phylogenetic tree was
constructed using the neighbor-joining method with 1,000 bootstrap
replicates and validated using the maximum composite likelihood
method.

2.8. Data analysis

Given the lack of a true gold standard test, the TST was used as the
reference test to which the test performance of the TB ELISA was related
[51]. The Se of the TST in African buffaloes was estimated to be 76.5%,
while the Sp was estimated to be 99.5%, based on published and un-
published data from the authors [18]. In order to model the uncertainty
in these estimates, a beta-distribution of the Se and Sp of the TST (SeR
and SpR, respectively) was made using R [52,53]. Calculations of BTB
prevalence (animal-level) and test performance of the TB ELISA were
based on formulas derived from Staquet et al. [51]. Prevalence (P) was
calculated using the formula: ((n * (SpR - 1) + TP+ FN) / (n *
(SeR + SpR -1))) * 100; where n = total number of animals, TP = true
positives and FN = false negatives. The Se of the TB ELISA (SeN) was
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calculated using the formula: (((TP + FP) * SpR - FP) / (n * (SpR- 1) +
TP + FN)) * 100, where FP = false positives. The specificity of the TB
ELISA (SpN) was calculated using the formula: (((FN + TN) * SeR - FN)
/ ((n * SeR) - (TP + FN))) * 100, where TN = true negatives. The po-
sitive predictive value (PPV) of the TB ELISA was calculated using the
formula: (SeN * (TP + FN - n + SpR * n)) / (TP + FP * (SeR + SpR -
1)). The negative predictive value (NPV) of the TB ELISA was calculated
using the formula: (SpN * (n * SeR - TP - FN)) / ((SeR + SpR - 1) *
(FN + TN)). The 95% confidence intervals (95% CI) for Se, Sp, PPV and
NPV were determined using the Stats package of R by calculating the
2.5% and 97.5% quantiles of the calculated beta-distributions [53,54].
Given that the study was conducted in infected herds, estimates for the
SpN and NPV are approximate values. Based on previous work in HiP
[39,40], a prevalence of < 15% was classified as low, whereas a pre-
valence of =15% was classified as high.

3. Results
3.1. Determination of BTB prevalence

During 2015-2017, a total of 766 buffaloes comprising 7 herds (A-
H) were captured in the three targeted areas of the HiP and tested by
the TST. A summary of the results of the HiP testing can be found in
Fig. 1A and Table 1. All TST positive animals were culled. For analyses,
data of animals in herds of the HiP were subsequently grouped together
based on the BTB prevalences found, to form a low prevalence cohort
(herds C-G) and a high prevalence cohort (herds A, B and H) (Table 2).

In May 2016, a total of 231 buffaloes comprising 6 herds (1-6) were
captured in the MGR and tested by TST. A summary of the results is
shown in Fig. 1B and Table 1. All TST positive animals were culled. For
analyses, data of animals in herds of the MGR were subsequently
grouped together based on BTB prevalences found, to form a low pre-
valence cohort (herds 3 and 5) and a high prevalence cohort (herds 1, 2,
4 and 6) (Table 2).

3.2. Results of the BOVIGAM® assay

In the MGR, the BOVIGAM® assay was carried out in parallel to the
TST during the initial testing round. A total of 31/231 (13.4%) animals
were excluded from the analysis as the internal positive control (PWM)
of the assay was invalid. Additionally, the blood sample of one animal
was lacking. In total, 35/199 (17.6%) animals tested positive in the
BOVIGAM® assay. The majority of these animals (28/35) was also po-
sitive in the TST (TST/BOVIGAM positive). Two of the 7 TST negative,
BOVIGAM positive animals were also positive in the TB ELISA
(BOVIGAM/ELISA positive), while the other five were exclusively po-
sitive in the BOVIGAM® assay.

3.3. Results and test performance of the TB ELISA

In the HiP, 101/766 (13.2%) animals tested positive in the TB
ELISA. Of the TB ELISA positive animals, 14/101 (13.9%) were also TST
positive (TST/ELISA positive). The remaining 87/101 (86.1%) were
exclusively positive in the TB ELISA (TB ELISA positive). In the MGR,
48/230 (20.9%) animals tested positive in the TB ELISA. Of the TB
ELISA positive animals, 2/48 (4.2%) were TST/ELISA positives, 2/48
(4.2%) were BOVIGAM/ELISA positive, 7/48 (14.6%) were positive in
all three assays and the remaining 37/48 (77.1%) were exclusively
positive in the TB ELISA.

The test performances of the TB ELISA in the low and high pre-
valence cohorts of the HiP and the MGR are presented in Table 2. In the
HiP, the overall BTB prevalence in the low prevalence cohort was 7.7%
(95% CI = 6.8% - 8.6%), while that in the high prevalence cohort was
24.0% (95%CI = 22.1% - 26.3%). The SeN was significantly lower in
the low prevalence cohort (0%; 95% CI = n/a) as compared to the high
prevalence cohort (27.4%; 95% CI = 27.4 - 27.5%). The SpN, however,
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Fig. 1. Venn diagram reflecting test results of HiP and MGR. Results of the TST, BOVIGAM® assay and TB ELISA for the BTB testing programme (A) in the HiP during
2015-2017 and (B) in the MGR in May 2016. Only positive reactors are shown. A total of 596 and 141 buffaloes tested negative on all assays in the HiP and MGR,
respectively (data not shown). Created using the VennDiagram package version 1.6.20 [76] in R [53].
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Table 1

BTB prevalence in the HiP and MGR. The prevalence of BTB in herds in the HiP and MGR was calculated according to Staquet et al. [51] based on an estimated TST Se of 76.5% and Sp of 99.5%. Estimates and 95%

Madikwe Game Reserve.

confidence intervals (CI) are given for each herd in both reserves as well as an overall estimate for each reserve. HiP = Hluhluwe iMfolozi Park; MGR

Prevalence

Test positive animals (positive/sampled)

Herd

Area and year

MGR

Prevalence

Test positive animals (positive/sampled)

Herd

Area and year

HiP

95% CI (%)
32.6 - 38.6

Estimate (%)

35.3

95% CI (%)
19.9 - 23.7
23.4-27.7

10.4 - 12.7

Estimate (%)

21.6

6/22 (27.3%)

Entire park May 2016

18/106 (17.0%)
18/91 (19.8%)

8/86 (9.3%)

A
B
C
D

Masinda 2015

25.4

26.8 - 31.8

29.1
5.3

7/31 (22.6%)
2/43 (4.7%)

2
3
4
5
6

11.5
5.0

7.1

44-6.1

4.1-5.7
6.1 -8.0

9.1

8/182 (4.4%)
9/150 (6.0%)
3/36 (8.3%)
4/40 (10%)

Corridor 2016

14.0 - 16.9
7.8-9.8
45.5 - 53.7

15.4

8.8

6/49 (12.2%)
3/41 (7.3%)

-11.3

10.2

F

Nselweni 2017

49.2

17/45 (37.8%)

11.2-13.7

23.6 - 28.1

12.4

G
H

25.6

15/75 (20.0%)

20.9 - 24.8

22.7

41/231 (17.7%)

12.3-149 Overall

13.5

83/766 (10.8%)

Overall
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was significantly higher in the low prevalence cohort (94.7%; 95%
Cl = 94.6% - 94.7%) as compared to the high prevalence cohort
(71.9%; 95% CI = 71.9 - 71.9%). The estimates of the PPV and NPV
followed the same trend as the SeN and SpN, respectively (Table 2). In
the MGR, the prevalence in the low prevalence cohort was 5.4% (95%
CI = 4.5% - 6.2%), while that in the high prevalence cohort was 26.2%
(95% CI = 24.1% - 28.6%). In the MGR, the SeN showed an inverse
relationship to the prevalence as compared to that in the HiP: the SeN
was significantly higher in the low prevalence cohort (54.6%; 95%
CI = 51.3% - 60.8%) as compared to the high prevalence cohort
(17.9%; 95% CI = 17.8% - 17.9%). Similar to what was observed in the
HiP, the SpN was significantly higher in the low prevalence cohort
(80.2%; 95% CI = 80.1% - 80.4%) as compared to the high prevalence
cohort (78.3%; 95% CI = 78.1% - 78.4%) in the MGR. While, the NPV
followed the same trend as the SpN in the MGR, the PPV did not follow
that of the SeN (Table 2): the PPV was significantly lower in the low
prevalence cohort (0.14; 95% CI = 0.13 - 0.15) as compared to the high
prevalence cohort (0.30; 95% CI = 0.28 - 0.33). The NPV was sig-
nificantly higher in the low prevalence cohort (0.97; 95% CI = 0.96 -
0.98) as compared to the high prevalence cohort (0.65; 95% CI = 0.61 -
0.67).

3.4. Mycobacterial isolation

During the post-mortem investigations the spectrum of pathological
changes was wide, varying from no visible lesions (NVL) to pinpoint
lesions in one to two organs, to extensive lesions in the lungs and lymph
nodes (LNN). One animal in the MGR presented with miliary tubercu-
losis (Fig. S1). The results of mycobacterial isolation from low and high
prevalence cohorts in the HiP and the initial isolation in the MGR are
presented in Table 2.

In the low prevalence cohort of the HiP, a total of 32 TST positive
animals and 11 TB ELISA positive animals were culled (n = 43), of
which 38 were sampled. No samples were obtained from 4 TST positive
animals and 1 TB ELISA positive animal. Mycobacterium bovis infection
was confirmed in 12/28 (42.9%) TST positive animals and 0/10 (0%)
TB ELISA positive animals. Infection with NTM was confirmed in 7/28
(25.0%) TST positive animals and 3/10 (30.0%) TB ELISA positive
animals. In the high prevalence cohort of the HiP, a total of 37 TST
positive animals, 14 TST/ELISA positive animals, and 7 TB ELISA po-
sitive animals were culled (n = 58). Tissue samples from 46 animals
were processed but no samples were obtained from 10 TST positive
animals, 1 TST/ELISA positive animal, and 1 TB ELISA positive animal.
Mycobacterium bovis infection was confirmed in 23/27 (85.2%) TST
positive animals, 8/13 (61.5%) TST/ELISA positive animals, and 1/6
(16.7%) TB ELISA positive animals. Infection with NTM was confirmed
in 2/27 (7.4%) TST positive animals, 1/13 (7.7%) TST/ELISA positive
animals, and 1/6 (16.7%) TB ELISA positive animals.

In the low prevalence cohort of the MGR, a total of 2 animals po-
sitive in all three assays, 2 TST positive animals, 1 TST/BOVIGAM
positive animal, and 1 BOVIGAM positive animal were culled (n = 6).
Mycobacterium bovis infection was confirmed in 2/2 (100%) animals
positive in all three assays, 1/2 (50%) TST positive animals and 1/1
(100%) TST/BOVIGAM positive animal. In the high prevalence cohort
of the MGR, a total of 5 animals positive in all three assays, 8 TST
positive animals, 2 TST/ELISA positive animals, 20 TST/BOVIGAM
positive animals, 5 TB ELISA positive animals, 2 BOVIGAM/ELISA po-
sitive animals, 4 BOVIGAM positive animals and 8 test negative animals
(n = 54) were culled. Mycobacterium bovis infection was confirmed in
3/5 (60%) animals positive in all three assays, 5/8 (62.5%) TST positive
animals, 2/2 (100%) TST/ELISA positive animals, 8/20 (40%) TST/
BOVIGAM positive animals, 2/5 (40%) TB ELISA positive animals, and
2/4 (50%) BOVIGAM positive animals.

Of the collected nasal swab samples 6 were collected from animals
in the low prevalence cohort of the MGR, belonging to 3 TB ELISA
positive animals and 3 test negative animals. Non-tuberculous
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Table 2
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Prevalence of BTB, performance of TB ELISA and mycobacterial isolation in low and high prevalence cohorts in the HiP and the MGR. Prevalence of BTB was
calculated according to Staquet et al. [51] based on an estimated TST Se of 76.5% and Sp of 99.5%. Estimates and 95% confidence intervals (CI) are given for each
cohort in both reserves. HiP = Hluhluwe iMfolozi Park; MGR = Madikwe Game Reserve; M. bovis = Mycobacterium bovis; NPV = negative predictive value;
NTM = non-tuberculous mycobacteria; PPV = positive predictive value; P = prevalence; p = proportion; positive/sampled = the ratio of the number of M. bovis or
NTM positive samples out of the total number of samples processed for culture; SeN = sensitivity of the TB ELISA; SpN = specificity of the TB ELISA; T = myco-

bacterial isolation from tissue samples; * = mycobacterial isolation from nasal swabs.
Location Cohort Prevalence TB ELISA test performance Mycobacterial isolation
Estimate (%) 95% CI SeN (%) 95% CI PPV (p) 95% CI SpN (%) 95% CI NPV (p) 95% CI M. bovis (positive/ NTM (positive/
(%) (%) (0)] (%) ()] sampled) sampled)
HiP LowP 7.7 68-86 0 n/a 0 n/a 94.7 94.6 - 0.92 0.91 - 12/38 (31.6%) " 10/38 (26.3%) "
94.7 0.93
High P 24.0 22.1 - 27.4 27.4 - 0.24 0.22 - 71.9 71.9 - 0.76 0.74 - 32/46 (69.6%) " 4/46 (8.7%) T
26.3 27.5 0.26 71.9 0.78
MGR LowP 5.4 45-6.2 546 51.3 - 0.14 0.13 - 80.2 80.1 - 0.97 0.96 - 4/6 (33.3%) * 0/6 (0.0%) *
60.8 0.15 80.4 0.98 0/6 (0.0%) * 4/6 (33.3%) *
High P 26.2 24.1 - 17.9 17.8 - 0.30 0.28 - 78.3 78.1 - 0.65 0.61 - 22/54 (40.7%) * 0/54 (0.0%) *
28.6 17.9 0.33 78.4 0.67 0/4 (0.0%) * 2/4 (50.0%) *

mycobacteria were isolated from 2/3 TB ELISA positive animals and 2/
3 test negative animals. The other 4 nasal swab samples were collected
from animals in the high prevalence cohort of the MGR, belonging to 2
TB ELISA positive animals and 2 test negative animals. Non-tuberculous
mycobacteria were isolated from the 1/2 TB ELISA positive animals and
1/2 test negative animals.

3.5. Longitudinal testing

For the longitudinal testing in the MGR, animals were re-tested in
September 2016, January 2017, April 2017, August 2017, November
2017, February 2018 and July 2018. A summary of the results of the
longitudinal testing in the MGR is shown in Table 3.

3.5.1. Determination of BTB prevalence and mycobacterial isolation

An overall trend of declining BTB prevalence with subsequent
testing rounds and removal of reactor animals was observed (Table 3).
In September 2016, 11/119 (9.2%) animals tested positive in the TST,
and the BTB prevalence was low at 11.7% (95% CI = 10.6% - 12.9%).
The TST positive animals and an additional 26 animals were removed,
but the process did not allow for post mortem (PM) investigation of the
carcasses. A further 5 animals died in the boma during this period. In
January 2017, 0/67 (0%) animals tested positive in the TST, and the
BTB prevalence was reduced to 0% (95% CI = n/a). Eight test negative
animals were removed of which opportunistic PM investigation and
sampling was carried out and NTM were isolated from 4/8 (50%) an-
imals (Table 3). Five animals died in the boma during this period. From
April 2017 until the end of the study, no animals tested positive in the
TST (Table 3) and the BTB prevalence remained 0% (95% CI = n/a). In
August 2017 one animal was removed, another animal was removed in
November 2017 and in February 2018 seven animals were removed of
which opportunistic PM investigation and sampling were carried out.
Infection with Mycobacterium bovis was confirmed in the animal re-
moved in November 2017 and NTM were isolated from 1/7 (14.3%)
animals removed in February 2018 (Table 3).

3.5.2. Results and test performance of the TB ELISA

An overall trend of decreasing numbers of test positive animals with
subsequent testing rounds was observed, with the exception of February
2018. The proportions of TB ELISA positive animals in each testing
round between September 2016 and July 2018 are presented in Table 3.
All animals testing positive in the TB ELISA, were negative in the TST.
The SeN could not be determined from January 2017 until the end of
the study as the estimated BTB prevalence was 0% at each of the
sampling occasions during that period. The test performance of the TB
ELISA from September 2016 to July 2018 is shown in Table 3. An

inverse relationship was observed between the SeN and SpN: the SeN
had a median of 0% (range = 0% - 0%), while the SpN had a median of
94.3% (range = 88.8 - 98.4). The PPV of the TB ELISA was 0
(range = n/a) throughout the longitudinal study. The NPV on the other
hand had a median of 1 (range = 0.74 - 1).

3.6. 16S ribosomal RNA sequence analysis

In total, DNA samples from bacterial isolates from 3 nasal swabs and
20 tissue samples from the HiP and MGR that were identified as NTM
DNA in the multiplex PCR (Figs. S2 and S3), were sequenced. Sequences
alignments are shown in Fig. S4. Results of the BLAST analysis [49] are
presented in Table 4. In total, 18/23 isolates, could be differentiated to
the species level and the following NTM were identified: M. brasiliensis,
M. flavescens, M. moriokaense, M. holsaticum, M. agri, M. asiaticum, M.
celatum, M. avium complex and M. rhodesiae (Table 4). Other species
that were identified in isolates that could not be differentiated to the
species level include M. smegmatis/M. goodii, M. moriokaense/M. bar-
rassiae, M. colombiense/M. bouchedurhonense and M. vulneris/M. in-
tracellulare. In one animal, two different species of NTM were found, M.
holsaticum and M. brasiliensis (Table 4). The identified species of NTM
included both SGM [55-57], and RGM [56-59], as well as species be-
longing to the Mycobacterium avium complex (MAC) [60] and Myco-
bacterium moriokaense group [60,61]. A phylogenetic tree of all isolates
is presented in Fig. S5.

4. Discussion

The purpose of the present study was to determine the BTB pre-
valence in different free-ranging African buffalo herds in two game
reserves and to use these data to investigate whether the BTB pre-
valence affects the performance of a commercially available cattle-
specific TB antibody assay (TB ELISA). In addition, the impact of the
occurrence and diversity of infections with NTM on the performance of
the TB ELISA was evaluated. Finally, the contribution of multiple ser-
ological testing on the test performance of the TB ELISA was examined
in a longitudinal study.

4.1. BTB prevalence

Overall, the BTB prevalence in the HiP was found to be 13.5% (95%
CI = 12.3% - 14.9%) in this study, which was classified as low. Le Roex
et al. [40] previously determined that the BTB prevalence (outside
disease ‘hot spots’) in the HiP remained low at 10% - 15% over a period
of 7 years (1999 - 2006). In their study, the prevalence of BTB was
based on the TST only, without correction for the test performance.
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Table 3

The test performance of TB ELISA and mycobacterial isolation results for the longitudinal study of the MGR. Prevalence of BTB was calculated according to Staquet et al. [51], based on an estimated TST Se of 76.5% and

positive predictive

proportion; positive/sampled = the ratio of the number of M. bovis or NTM positive samples out of the total number of samples processed for culture; SeN = sensitivity of the TB ELISA;

= Mycobacterium bovis; NPV = negative predictive value; NTM = non-tuberculous mycobacteria; PPV

Sp of 99.5%. Estimates and 95% confidence intervals (CI) are given for all time points. M. bovis

value; P = prevalence; p

SpN = specificity of the TB ELISA; ND = not done. No serum was received from 1 animal in April 2017 and 4 animals in July 2018.

Mycobacterial isolation

TB ELISA test performance

Proportion of TB ELISA positives (positive /

tested)

Prevalence

Time point

NTM (positive/
sampled)

SpN (%) 95% CI (%) NPV (p) 95% CI(p) M. bovis (positive/

95% CI (p)

SeN (%) 95% CI (%) PPV (p)

Total (%) 95% CI (%)

. van der Heijden, et al.

sampled)

ND

0.86 - 0.89 ND

0.88
1

1
1

95.1 95.0 - 95.1

n/a
n/a
n/a
n/a
n/a
n/a
n/a

n/a
n/a
n/a
n/a
n/a
n/a
n/a

10.6 - 12.9 5/119 (4.2%)

11.7
0
0
0
0
0
0

Sept 2016
Jan 2017
Apr 2017
Aug 2017
Nov 2017
Feb 2018
Jul 2018

4/8 (50.0%)

n/a

0/8 (0.0%)

n/a

n/a
n/a
n/a
n/a
n/a
n/a

94.0 - 94.0

94.0
94.3

n/a
n/a
n/a
n/a
n/a
n/a

4/67 (6.0%)

n/a
n/a
n/a
n/a
n/a
n/a

94.3 - 94.3

3/53 (5.7%)

0/1 (0.0%)
0/1 (0.0%)

0/1 (0.0%)

98.5 - 98.5

98.5

1/66 (1.5%)

1/1 (100.0%)
0/7 (0.0%)

n/a

98.5 - 98.5

98.5
89.1

1/65 (1.5%)

1/7 (14.3%)

n/a

1
1

89.1 - 89.1

7/64 (10.9%)
1/52 (1.9%)

98.1 - 98.1

98.1
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Considering that the estimated Se of the TST in buffaloes is 76.5%, it is
reasonable to assume that the BTB prevalence had in fact been con-
siderably higher at the time of their study. As such, the finding that the
overall BTB prevalence was low more than a decade later, confirms that
the programme is effective at keeping the disease at bay [40]. Con-
sidering that the infection in the HiP is an established, endemic infec-
tion, first detected in the park in 1986 in a buffalo [39], but most likely
present much longer, this finding is especially pertinent. The fact that
the BTB prevalence in the much more recent BTB epidemic in the MGR,
where no control measures had taken place up to 2016, was sig-
nificantly higher (22.7%; 95% CI = 20.9% - 24.8%), corroborates that
the approach taken in HiP is effective. Although eradication of BTB
from an endemically infected reserve is unlikely to be achieved, it is
important to intervene in order to reduce transmission and prevent
spill-over into endangered wildlife species or spillback to livestock.

4.2. Test performance of the TB ELISA

The test performance of the TB ELISA was highly variable in the two
reserves, but also when assessed in and compared between cohorts of
low and high BTB prevalence. The SeN varied between 0% (95%
CI = n/a) and 54.6% (95% CI = 51.3% - 60.8%), whilst the SpN varied
between 71.9% (95% CI=71.9% - 71.9%) and 94.7% (95%
CI = 94.6% - 94.7%). The PPV of the TB ELISA varied between 0 (95%
CI = n/a) and 0.30 (95% CI = 0.28 - 0.33), whilst the NPV varied be-
tween 0.65 (95% CI = 0.61 - 0.67) and 1 (95% CI = n/a).

During the course of the longitudinal study the test performance
showed less variability, but it is important to note that there were in-
creasingly fewer infected animals in the study due to removal of TST
positive animals. The SeN was 0% or uninterpretable during the course
of the longitudinal study, but a gradual increase in the SpN was ob-
served over time (Table 3). The PPV and NPV clearly reflect the in-
creasingly lower prevalence in this cohort of animals as the PPV was 0
for the duration of the longitudinal study, while the NPV changed from
0.88 (95% CI = 0.86 - 0.89) in September 2016 to 1 (95% CI = n/a)
thereafter.

Of an exceptionally large number of TB ELISA positive animals
(negative on other assays) (n = 37) detected in May 2016, 29/30
(96.7%) animals enrolled in the longitudinal study subsequently tested
negative 3 months later. Twelve of these animals remained in the study
for the entire duration and while 6/12 (50.0%) were consistently ne-
gative, 5/12 (41.7%) had erratic positive results and 1/12 (8.3%) was
consistently positive, in the TB ELISA. In the TST, all of these animals
were consistently negative. True disease status was not assessed in these
animals, and it is thus not possible to know for certain whether these
animals were true or false positive in the TB ELISA.

4.3. Factors influencing the test performance of the TB ELISA

The observed relationship between BTB prevalence and the PPV and
NPV was to be expected as it is inherent to their definitions [31,34].
Sensitivity and specificity, however, are usually not linked to disease
prevalence as they are considered attributes of the test [31,32]. In the
present study, however, the SeN and SpN were found to vary with
prevalence (Table 2). Interestingly, the effect of the BTB prevalence on
the SeN and SpN was not unidirectional. In the HiP, low prevalence was
associated with a low SeN, but acceptable SpN, while high prevalence
was associated with a higher SeN, but lower SpN. The opposite was
demonstrated for the SeN in the MGR. This lack of a systematic, uni-
directional, effect of prevalence on test performance has been reported
previously [33]. Underlying factors can be divided into clinical (i.e.
related to the epidemiological setting) versus artefactual variability (i.e.
related to study design) [33]. In this study, the fluctuation of test per-
formance may partly be attributed to the latter, given that the calcu-
lations of SeR and SpR might have been affected by verification bias
[31]. The gold standard test for M. bovis diagnosis is culture of tissue
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samples collected during post mortem [9], but since the decision to cull
is usually based on a positive TST result, confirmation of the disease is
often only attempted in a subset of animals biased towards false posi-
tives, while ignoring false negatives. This factor could be exacerbated in
both very early and exceedingly chronic infections, as the TST is known
to have a lower sensitivity in those stages of disease [14]. However, as
every attempt was made in this study to estimate the test performance
of the TST as accurately as possible, we believe that artefactual varia-
bility was kept to a minimum and the findings are most likely a result of
the history and epidemiology of these herds. In fact, the considerably
disparate endemicity and chronicity of the infection in the two study
populations might play a role in this. Another explanation for the
variability in performance of the TB ELISA might be exposure to NTM,
that is known to interfere with diagnosis of BTB due to eliciting cross-
reactive immune responsiveness [28,62]. Cross-reactivity is believed to
occur due to immune recognition of mycobacterial antigens that are
shared between species of the Mycobacterium tuberculosis complex
(MTBC) and certain NTM [62]. The occurrence of NTM may vary in
geographically distinct areas and a high diversity of NTM has pre-
viously been reported in South Africa [26,28]. In the present study, a
high and comparable degree of diversity of NTM was detected in buf-
faloes from the HiP and the MGR. Phylogenetic relatedness of the iso-
lated species of NTM and their closeness to M. bovis is depicted in Fig.
S5. Most of the species isolated in this study have previously been de-
scribed to occur in South African wildlife species and their environment
[26,28], with the exception of M. agri, M. barrassiae (although not
differentiated to the species level in this study) and M. celatum. The
species of NTM identified in this study have been linked to (opportu-
nistic) infections in humans [59-61,63], excluding M. agri which ap-
pears to be associated mainly with soil [64]. The most frequently iso-
lated NTM species was M. brasiliensis. Interestingly, the same species
was consistently isolated from milk samples from cattle on communal
farms surrounding the HiP [65]. In that study, however, the diversity of
NTM was very low. Despite the high diversity of NTM in the present
study, and the fact that NTM were isolated from several TB ELISA po-
sitive animals (Table 4), an effect on the test performance of the TB
ELISA could not be demonstrated. It is important to note, however, that
due to the low confidence in the TB ELISA, the majority of TB ELISA
positive animals were not culled, making it difficult to assess the true
disease status of these animals.

Of all isolates, those belonging to the MAC were most closely related
to M. bovis (Fig. S5). The inclusion of the purified protein derivative of
M. avium in the TST and BOVIGAM® assay as a representative NTM
would thus appear to remain relevant in this setting, as these species
would be expected to cause the most interference. Furthermore, while a
large proportion of NTM were isolated from animals that were TST
positive (10 samples from the HiP) (Table 4), it is unlikely that all these
were false positive reactors. Given the estimated Sp of 99.5% for the
TST, a maximum of 5 false positive TST reactors would be expected
from the total number of buffaloes (n = 997) tested in this study. It is
possible that co-infections with M. bovis and NTM species were missed
in this study, as NTM are known to outcompete slow-growing patho-
genic mycobacteria.

Lastly, besides the geographical differences in the distribution of
NTM, there might be other factors related to the environment that could
impact test performance. Trost et al. [13] postulated that sequence
variation in the genes of MPB70 and MPB83 of M. bovis, or the genes
that regulate their expression, sigK and rskA, might explain geo-
graphical differences, as the TB ELISA measures antibody (Ab) levels
against proteins encoded by these genes [13]. Although this hypothesis
remains to be proven, similar processes could occur in different species
of NTM, potentially giving rise to irregularities in test performance.

In a study by Mhongovoyo [66] of the BTB prevalence of a popu-
lation of buffaloes in Botswana previously believed to be free of BTB
[67], all animals tested (n = 60) were positive in the TB ELISA, while
the entire cohort was negative in the BOVIGAM® assay. The conclusion
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was drawn that these animals were in fact false positive, demonstrating
an exceptionally poor specificity of the TB ELISA. The underlying
reason for this is unknown, but may be (partly) attributed either to
cross-reactive responsiveness due to NTM exposure, as was suggested
by Mhongovoyo [66]. While this initially seemed plausible in the MGR,
due to observed plentiful rains which could have created conditions
favorable to NTM [55], it was deemed unlikely to be the sole cause,
given that similar results were never repeated despite the study having
been conducted over a period of two years. Potential non-specific re-
actions relating to the test platform might include e.g. i) drug combi-
nations used for the immobilization of these animals; ii) the test kit
batch; or iii) sample. The true underlying reason remains unclear but
warrants further investigation.

It is furthermore important to note that the humoral immune re-
sponse in bovine TB, while not fully understood, is thought to com-
mence in later stages of infection [68] and appears to be correlated with
pathology in several species [69-71]. As such, disparate stages of in-
fection of the study animals may have contributed to the erratic test
performance of the TB ELISA as demonstrated in this study. Considering
the variability, these findings show that the TB ELISA is of limited di-
agnostic value in free-ranging buffalo populations and is not re-
commended for use as a stand-alone test, which is in agreement with
the general recommendation to only employ serological assays for BTB
in a parallel testing scheme with CMI-based diagnostics [19,43,72].
Similar results were obtained when the test performance of two rapid
serological tests was evaluated in buffalo [73]. Although the specificity
of the TB ELISA had a more acceptable range, the previously reported
specificity of the assay in buffaloes of 100% could not be confirmed
[19]. The test performance of the TB ELISA in cattle, although the Se is
also variable, is much greater [13], suggesting that perhaps the assay is
not optimal for use in buffaloes. In fact, the TB ELISA was developed for
use in cattle specifically and makes use of an anti-bovine conjugate
[24]. Cloete [74] recently demonstrated that the reactivity of an anti-
bovine conjugate is significantly reduced in serum of African buffaloes
as compared to cattle serum, which could explain the poor sensitivity of
the assay shown in this study. As such, development of assays using
either a species-specific or a broadly cross-reactive conjugate, such as
protein A/G [74], would be recommended.

5. Conclusion

The impact of a long term BTB monitoring programme with removal
of test positive animals in game reserves, such as in the HiP [40], was
once more demonstrated by the significant difference in prevalence
detected between the two parks and is key in order to reduce spill-over
and spillback. This study has furthermore shown that the BTB pre-
valence affects the test performance of the TB ELISA in African buffa-
loes. This finding has direct implications for inclusion of this assay in
testing strategies, since the sensitivities and specificities found in this
study cannot be directly extrapolated to other epidemiological settings.
As the test was found to have a high NPV in low prevalence herds, it
could have merit if used to rule-out disease in known negative herds.
However, the overall test performance of the TB ELISA in buffaloes was
poor in this study, confirming it is not fit for purpose as a stand-alone
test and suggesting it may not be suitable for use in this species. The
findings of this study strongly point to the need for development of
novel assays that can supplement existing assays for a more compre-
hensive testing scheme for BTB in African buffaloes. The potential de-
velopment of a species-specific assay measuring HI and CMI simulta-
neously in a test platform suitable for the field (such as that described
by Corstjens et al. [75]) would be highly valuable and warrants further
investigation.
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