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We present the notion of set valued (𝛼, 𝜂) − (𝜃, �) rational contractionmappings and then some common fixed point results of such
mappings in the setting of metric spaces are established. Some examples are presented to support the concepts introduced and the
results proved in this paper.These results unify, extend, and refine various results in the literature. Some fixed point results for both
single and multivalued (𝜃, �) rational contractions are also obtained in the framework of a space endowed with partial order. As
application, we establish the existence of solutions of nonlinear elastic beam equations and first-order periodic problem.

1. Introduction and Preliminaries

Let (X, 𝑑) be a metric space. A mapping 𝑇 : X → X is
called a contraction if there exists a constant 𝑐 ∈ [0, 1) such
that, for any 𝑥, 𝑦 ∈ X, we have

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑐𝑑 (𝑥, 𝑦) . (1)

Thewidely known Banach contraction theorem [1] states that
a contraction mapping on a complete metric space X has a
unique fixed point; that is, there exists a point 𝑥 in X such
that 𝑥 = 𝑇𝑥.

In the last few decades, several authors have extended and
generalized this principle in various directions.

Jleli and Samet [2] presented a new type of contractive
mapping, namely 𝜃-contraction mapping and established
an interesting fixed point theorem for such mappings in a
generalized metric space. The concept of generalized metric
spaces was introduced by Branciari [3], where the triangle
inequality is replaced by the inequality 𝑑(𝑤, 𝑧) ≤ 𝑑(𝑤, 𝑥) +𝑑(𝑥, 𝑦)+𝑑(𝑦, 𝑧) for all pairwise distinct points𝑤, 𝑥, 𝑦, 𝑧 ∈ X.

Jleli and Samet [2] considered the set Θ of real valued
functions 𝜃 : (0,∞) → (1,∞) which satisfy the following
conditions:

(𝜃1) 𝜃 is nondecreasing;
(𝜃2) for each sequence {𝑐𝑛} ⊂ (0,∞), lim𝑛→∞𝜃(𝑐𝑛) = 1 if

and only if lim𝑛→∞𝑐𝑛 = 0+;
(𝜃3) there exist 𝑚 ∈ (0, 1) and 𝑙 ∈ (0,∞] such that

lim𝑐→0+((𝜃(𝑐) − 1)/𝑐𝑚) = 𝑙.
Example 1. Define 𝜃𝑖 : (0,∞) → (1,∞) where 𝑖 = 1, 2 by

𝜃1 (𝑡) = 𝑒√𝑡
and 𝜃2 (𝑡) = 𝑒√𝑡𝑒𝑡 . (2)

Then 𝜃1, 𝜃2 ∈ Θ.
Amapping𝑇 : X → X on ametric space (X, 𝑑) is called

a 𝜃−contraction if for any 𝑥, 𝑦 ∈ X and 𝜃 ∈ Θ, we have
𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜃 (𝑑 (𝑥, 𝑦))]𝑐 (3)

whenever 𝑑(𝑇𝑥, 𝑇𝑦) > 0 and 0 ≤ 𝑐 < 1.
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Theorem 2 (see [2]). Let (X, 𝑑) be a complete generalized
metric space and 𝑇 : X → X. If there exist 𝜃 ∈ Θ and0 ≤ 𝑐 < 1 such that

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜃 (𝑑 (𝑥, 𝑦))]𝑐 (4)

holds for any 𝑥, 𝑦 ∈ X whenever 𝑑(𝑇𝑥, 𝑇𝑦) ̸= 0. Then 𝑇 has a
fixed point.

Ahmad et al. [4] modified the class Θ of mappings as
follows:

Ω = {𝜃 : (0,∞) → (1,∞) satisfy 𝜃1, 𝜃2 and 𝜃3} (5)

where (𝜃3) 𝜃 : (0,∞) → (1,∞) is continuous.
Example 3. Define 𝜃𝑖 : (0,∞) → (1,∞) for 𝑖 = 1, 2, 3 by

𝜃1 (𝑡) = 𝑒𝑡,
𝜃2 (𝑡) = 𝑒√𝑡

and 𝜃3 (𝑡) = 𝑒𝑡𝑒𝑡 .
(6)

Then, 𝜃1, 𝜃2, 𝜃3 ∈ Ω.

Authors in [4] considered the following result of Jleli and
Samet [2] with the function 𝜃 ∈ Ω instead of 𝜃 ∈ Θ:
Theorem 4. Let (X, 𝑑) be a complete metric space and 𝑇 :
X → X a 𝜃-contraction, where 𝜃 ∈ Ω. Then 𝑇 has a unique
fixed point 𝑥 ∈ X and for any 𝑥0 ∈ X, the sequence {𝑇𝑛𝑥0}
converges to 𝑥.

Note that the Banach contraction theorem immediately
follows from the above theorem.

Let X be a nonempty set endowed with a metric 𝑑. Let𝑃(X) be the set of all nonempty subsets ofX, 𝐾(X) denotes
the set of all nonempty compact subsets of X, and 𝐶𝐵(X)
denotes the set all nonempty closed and bounded subsets. For𝐴, 𝐵 ∈ 𝐶𝐵(X) and 𝑥 ∈ X, define distance of a point 𝑥 from
the set 𝐴 by

𝑑 (𝑥, 𝐴) = inf
𝑥∈𝐴

𝑑 (𝑥, 𝐴) . (7)

A mapping𝐻 : 𝐶𝐵(X) × 𝐶𝐵(X) → R+ defined by

𝐻(𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} (8)

is called the generalized Pompeiu-Hausdorff distance
induced by 𝑑.

Let 𝑇 : X → 𝐶𝐵(X). A point 𝑥 ∈ X is called a fixed
point of 𝑇 if 𝑥 ∈ 𝑇𝑥.

Nadler [5] obtained the following multivalued version of
Banach contraction principle.

Theorem 5. Let (X, 𝑑) be a complete metric space. If 𝑇 :
X → 𝐶𝐵(X) satisfies

𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑐𝑑 (𝑥, 𝑦) (9)

for any 𝑥, 𝑦 ∈ X and 𝑐 ∈ (0, 1), then 𝑇 has a fixed point.

Afterwards, many researchers have obtained fixed point
results for multivalued mappings satisfying certain gener-
alized contractive conditions. Hançer et al. [6] introduced
multivalued 𝜃− contraction mappings as follows.

Let (X, 𝑑) be a metric space, 𝜃 ∈ Θ, and 𝑇 : X → 𝑃(X).
Then,𝑇 is called amultivalued 𝜃-contraction if, for any 𝑥, 𝑦 ∈
X,

𝜃 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ [𝜃 (𝑑 (𝑥, 𝑦))]𝑐 (10)

holds whenever𝐻(𝑇𝑥, 𝑇𝑦) > 0 where 0 ≤ 𝑐 < 1.
They established the following fixed point results for

multivalued 𝜃-contraction mappings on complete metric
spaces.

Theorem 6. Let (X, 𝑑) be a complete metric space and 𝑇 :
X → 𝐾(X) a multivalued 𝜃-contraction. Then 𝑇 has a fixed
point.

For further results in this direction, we refer to [7–10].
Another variation of contraction mapping that can be

found in literature is 𝛼-contraction mapping.
Asl et al. [11] initiated the concept of 𝛼∗-admissibility

in case of multivalued mappings, whereas Mohammadi et
al. [12] presented the notion of 𝛼-admissibility in case of
multifunctions.

Karapinar et al. [13] presented the idea of a triangular 𝛼-
admissible mapping.

Definition 7. Let 𝛼, 𝜂 : [0,∞)×[0,∞) → R+. A pair (𝛼, 𝜂) is
called triangular if for any 𝑥, 𝑦, 𝑧 ∈ X, 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) and𝛼(𝑦, 𝑧) ≥ 𝜂(𝑦, 𝑧) imply that 𝛼(𝑥, 𝑧) ≥ 𝜂(𝑥, 𝑧).

Recently, Abbas et al. [14] proposed a concept of 𝛼 -closed
mappings for set valued mappings. We present the following
generalization of the definition.

Definition 8. Let𝑇, 𝑆 : X → 𝑃(X) and 𝛼, 𝜂 : X×X → R+.
We say that a pair (𝑇, 𝑆) is triangular (𝛼, 𝜂)-closed if the pair(𝛼, 𝜂) is triangular and for any𝑥, 𝑦 ∈ Xwith𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦)
we have 𝛼(𝑢, V) ≥ 𝜂(𝑢, V) for all 𝑢 ∈ 𝑇𝑥 and V ∈ 𝑆𝑢.

If 𝑆 = 𝑇 then amapping𝑇which is triangular (𝛼, 𝜂) closed
is referred to simply as a 𝑇 triangular (𝛼, 𝜂)-closed mapping.

Example 9. LetX = [0, 1]. Let 𝑇, 𝑆 : X → 𝑃(X) be defined
by

𝑇𝑥 = {1, 𝑥} .
and 𝑆𝑥 = {0, 𝑥2} (11)

Define the mappings 𝛼, 𝜂 : X ×X → [0,∞) by
𝛼 (𝑥, 𝑦) = {{{

𝑒𝑥−𝑦, whenever 𝑥 ≥ 𝑦
0, whenever 𝑥 < 𝑦 (12)

and

𝜂 (𝑥, 𝑦) = 𝑥2 for all 𝑥 ∈ [0, 1] . (13)

It is obvious that the pair (𝑇, 𝑆) is triangular (𝛼, 𝜂)-closed.
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The following lemma is crucial in our results.

Lemma 10. Let 𝑇, 𝑆 : X → 𝑃(X). Suppose that the pairs(𝑇, 𝑆) and (𝑆, 𝑇) are a triangular (𝛼, 𝜂)-closed. Assume that
there exists 𝑥0 ∈ Xwith 𝛼(𝑥0, 𝑥1) ≥ 𝜂(𝑥0, 𝑥1)where 𝑥1 ∈ 𝑇𝑥0.
Define sequences 𝑥2𝑛+1 ∈ 𝑇𝑥2𝑛 and 𝑥2𝑛+2 ∈ 𝑆𝑥2𝑛+1, then𝛼(𝑥𝑚, 𝑥𝑛) ≥ 𝜂(𝑥𝑚, 𝑥𝑛) for all𝑚, 𝑛 ∈ N with𝑚 > 𝑛.
Proof. By assumption, there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 such
that 𝛼(𝑥0, 𝑥1) ≥ 𝜂(𝑥0, 𝑥1). Since (𝑇, 𝑆) is (𝛼, 𝜂)-closed and𝛼(𝑥0, 𝑥1) ≥ 𝜂(𝑥0, 𝑥1) we obtain 𝛼(𝑥1, 𝑥2) ≥ 𝜂(𝑥1, 𝑥2) where𝑥1 ∈ 𝑇𝑥0 and 𝑥2 ∈ 𝑆𝑥1. As (𝑆, 𝑇) is (𝛼, 𝜂)-closed, we have 𝑥3
in 𝑇𝑥2 such that 𝛼(𝑥2, 𝑥3) ≥ 𝜂(𝑥2, 𝑥3). Continuing this way,
we have sequences 𝑥2𝑛+1 ∈ 𝑇𝑥2𝑛 and 𝑥2𝑛+2 ∈ 𝑆𝑥2𝑛+1 with𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1) and 𝛼(𝑥𝑛+1, 𝑥𝑛+2) ≥ 𝜂(𝑥𝑛+1, 𝑥𝑛+2)
for all 𝑛 ∈ N.

Since the pair (𝛼, 𝜂) is triangular we obtain that

𝛼 (𝑥𝑛, 𝑥𝑛+2) ≥ 𝜂 (𝑥𝑛, 𝑥𝑛+2) . (14)

Thus by induction, we have

𝛼 (𝑥𝑛, 𝑥𝑚) ≥ 𝜂 (𝑥𝑛, 𝑥𝑚) . (15)

for any 𝑚, 𝑛 ∈ N with 𝑚 > 𝑛.
Parvaneh et al. [15] introduced the concept of 𝛼 − 𝐻Θ-

contraction with respect to a family of functions 𝐻 and
obtained some 𝜃−contraction fixed point results in metric
and ordered metric spaces.

They introduced the following family of functions:
Let � denote the set of functions 𝐹 : R4 → R+ satisfying

condition (𝐴∗):
For all 𝑠1, 𝑠2, 𝑠3, 𝑠4 ∈ R+ with 𝑠1.𝑠2.𝑠3.𝑠4 = 0 there exists𝑐 ∈ [0, 1) such that

𝐹 (𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝑐 (16)

Following are some examples of such functions [15].

Example 11. 𝐹(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝐿min(𝑠1, 𝑠2, 𝑠3, 𝑠4) + 𝑐, where𝐿 ∈ R+ and 𝑐 ∈ [0, 1).
Example 12. 𝐹(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝑐𝑒𝐿min(𝑠1 ,𝑠2,𝑠3,𝑠4), where 𝐿 ∈ R+

and 𝑐 ∈ [0, 1).
The following definition which is a generalization of𝛼−continuity [16] is needed in the sequel.

Definition 13. Let (X, 𝑑) be a metric space, 𝛼, 𝜂 : X ×
X → R+ and 𝑇, 𝑆 : X → 𝐶𝐵(X). A pair (𝑇, 𝑆) is (𝛼, 𝜂)-
continuous at the point 𝑥 ∈ X if, for any sequence {𝑥𝑛} in
X, lim𝑛→∞𝑑(𝑥𝑛, 𝑥) = 0 and 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1) for all𝑛 ∈ N implies that lim𝑛→∞𝐻(𝑇𝑥𝑛, 𝑆𝑥) = 0. We say that pair(𝑇, 𝑆) is (𝛼, 𝜂)-continuous on (𝐶𝐵(X),𝐻) if the pair (𝑇, 𝑆) is(𝛼, 𝜂)-continuous on each 𝑥 ∈ X.

In this paper, we introduce multivalued (𝛼, 𝜂)-(𝜃, �) ratio-
nal contraction pair of multivalued mappings and prove the
existence of commonfixed points of the pair in ametric space.
We also obtain some fixed point results for both single and

multivalued (𝜃, �) rational contraction mappings in a space
endowed with a partial order. As application, we establish the
existence of solutions of nonlinear elastic beam equations and
first-order periodic problem.

2. Common Fixed Point Results

Throughout this section we assume that (X, 𝑑) is a metric
space and 𝜃 ∈ Ω where 𝜃 : (0,∞) → (1,∞) satisfies(𝜃1), (𝜃2) and (𝜃3). Let � be a family of continuous and
nondecreasing functions where 𝐹 : R4 → R+ for 𝐹 ∈ �.

We now present the following definitions:

Definition 14. Let 𝛼, 𝜂 : X × X → R+, 𝜃 ∈ Ω, 𝑇, 𝑆 : X →𝑃(X), and 𝐹 : R4 → R+.
(1) A pair (𝑇, 𝑆) is called a multivalued (𝛼, 𝜂) − (𝜃, �)

rational contraction pair if, for any 𝑥, 𝑦 ∈ X with𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) and 𝐻(𝑇𝑥, 𝑆𝑦) > 0, the following
condition holds:

𝜃 (𝐻 (𝑇𝑥, 𝑆𝑦)) ≤ {𝜃 (𝑀𝑇,𝑆 (𝑥, 𝑦) ))}𝐹(𝑁𝑇,𝑆(𝑥,𝑦)) (17)

where

𝑀𝑇,𝑆 (𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑆𝑦) ,
12𝑑 (𝑥, 𝑆𝑦) , 𝑑 (𝑦, 𝑆𝑦) (1 + 𝑑 (𝑥, 𝑇𝑥))

1 + 𝑑 (𝑥, 𝑦) }
(18)

and

𝑁𝑇,𝑆 (𝑥, 𝑦)
= {𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑆𝑦) , 𝑑 (𝑥, 𝑆𝑦) , 𝑑 (𝑦, 𝑇𝑥)} . (19)

(2) A pair (𝑆, 𝑇) is called a multivalued (𝛼, 𝜂) − (𝜃, �)
rational contraction if, for any 𝑥, 𝑦 ∈ X with𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) and 𝐻(𝑆𝑥, 𝑇𝑦) > 0, the following
condition holds:

𝜃 (𝐻 (𝑆𝑥, 𝑇𝑦)) ≤ {𝜃 (𝑀𝑆,𝑇 (𝑥, 𝑦) ))}𝐹(𝑁𝑆,𝑇(𝑥,𝑦)) (20)

where

𝑀𝑆,𝑇 (𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
12𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑦) (1 + 𝑑 (𝑥, 𝑆𝑥))

1 + 𝑑 (𝑥, 𝑦) }
(21)

and

𝑁𝑆,𝑇 (𝑥, 𝑦)
= {𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑆𝑥)} . (22)
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(3) A mapping 𝑇 : X → 𝑃(X) is called a multivalued(𝛼, 𝜂) − (𝜃, �) rational contraction if, for any 𝑥, 𝑦 ∈
X with 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) and 𝐻(𝑇𝑥, 𝑇𝑦) > 0, the
following condition holds:

𝛼 (𝑥, 𝑦) 𝜃 (𝐻 (𝑇𝑥, 𝑇𝑦)) ≤ {𝜃 (𝑀(𝑥, 𝑦))}𝐹(𝑁(𝑥,𝑦)) (23)

where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
12𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑦) (1 + 𝑑 (𝑥, 𝑇𝑥))

1 + 𝑑 (𝑥, 𝑦) }
(24)

and

𝑁(𝑥, 𝑦)
= {𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) , 𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑥)} . (25)

Remark 15.

(1) If 𝛼, 𝜂 : X × X → R+ are defined as 𝛼 = 𝜂(𝑥, 𝑦) =1 for all 𝑥, 𝑦 ∈ X in Definition 14, then the pairs
of mappings (𝑇, 𝑆) and (𝑆, 𝑇) are multivalued (𝜃, �)
generalized rational contractions.

(2) If 𝛼, 𝜂 : X × X → R+ are defined as 𝛼(𝑥, 𝑦) =𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ X in Definition 14, then 𝑇 is
a multivalued (𝜃, �) generalized rational contraction
mapping.

Theorem 16. Let 𝑇, 𝑆 : X → 𝐶𝐵(X). Suppose that the
pairs (𝑇, 𝑆) and (𝑆, 𝑇) are multivalued (𝛼, 𝜂) − (𝜃, �) rational
contractions such that

(C1) the pairs (𝑇, 𝑆) and (𝑆, 𝑇) are triangular (𝛼, 𝜂)-closed;
(C2) there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 with 𝛼(𝑥0, 𝑥1) ≥𝜂(𝑥0, 𝑥1);
(C3) (𝑇, 𝑆) and (𝑆,T) are (𝛼, 𝜂)-continuous.
Then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥 ∩ 𝑆𝑥.

Proof. If 𝑀𝑇,𝑆(𝑥, 𝑦) = 𝑀𝑆,𝑇(𝑥, 𝑦) = 0, for some 𝑥, 𝑦 ∈ X,
then we have our conclusion. Assume that𝑀𝑇,𝑆,𝑀𝑆,𝑇 > 0 for
all 𝑥, 𝑦 ∈ X. By assumption there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0
such that 𝛼(𝑥0, 𝑥1) ≥ 𝜂(𝑥0, 𝑥1). If 𝑥0 = 𝑥1 or 𝑑(𝑥1, 𝑆1) = 0
then the result follows. Assume that 𝑥0 ̸= 𝑥1 and 𝑥1 ∉ 𝑆𝑥1
then

0 < 𝑑 (𝑥1, 𝑆𝑥1) ≤ 𝐻 (𝑇𝑥0, 𝑆𝑥1) . (26)

This implies

1 < 𝜃 (𝑑 (𝑥1, 𝑆𝑥1)) ≤ 𝜃 (𝐻 (𝑇𝑥0, 𝑆𝑥1)) . (27)

Since 𝛼(𝑥0, 𝑥1) ≥ 𝜂(𝑥0, 𝑥1) and (𝑇, 𝑆) is multivalued (𝛼, 𝜂) −(𝜃, �) rational contraction, we obtain that

1 < 𝜃 (𝑑 (𝑥1, 𝑆𝑥1)) ≤ (𝐻 (𝑇𝑥0, 𝑆𝑥1))
≤ {𝜃 (𝑀𝑇,𝑆 (𝑥0, 𝑥1))}𝐹(𝑁𝑇,𝑆(𝑥0,𝑥1)) (28)

where

𝑁𝑇,𝑆 (𝑥0, 𝑥1)
= {𝑑 (𝑥0, 𝑇𝑥0) , 𝑑 (𝑥1, 𝑆𝑥1) , 𝑑 (𝑥0, 𝑆𝑥1) , 𝑑 (𝑥1, 𝑇𝑥0)}
≤ {𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1) , 𝑑 (𝑥0, 𝑆𝑥1) , 𝑑 (𝑥1, 𝑥1)}
= {𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1) , 𝑑 (𝑥0, 𝑆𝑥1) , 0} .

(29)

Since 𝑑(𝑥0, 𝑥1).𝑑(𝑥1, 𝑆𝑥1).𝑑(𝑥0, 𝑆𝑥1).0 = 0, by (𝐴∗) there
exists 𝑐 ∈ [0, 1) such that

𝐹 (𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1) , 𝑑 (𝑥0, 𝑆𝑥1) , 0) = 𝑐. (30)

Therefore, from (29) and using the fact that 𝐹 is nondecreas-
ing we obtain

𝐹 (𝑁𝑇,𝑆 (𝑥0, 𝑥1))
≤ 𝐹 (𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1) , 𝑑 (𝑥0, 𝑆𝑥1) , 0) = 𝑐. (31)

Also,

𝑀𝑇,𝑆 (𝑥0, 𝑥1) = max{𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥0, 𝑇𝑥0) ,
𝑑 (𝑥1, 𝑆𝑥1) , 12𝑑 (𝑥0, 𝑆𝑥1) ,
𝑑 (𝑥1, 𝑆𝑥1) (1 + 𝑑 (𝑥0, 𝑇𝑥0))1 + 𝑑 (𝑥0, 𝑥1) } ≤ max{𝑑 (𝑥0, 𝑥1) ,
𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1) , 12𝑑 (𝑥0, 𝑆𝑥1) ,
𝑑 (𝑥1, 𝑆𝑥1) (1 + 𝑑 (𝑥0, 𝑥1))1 + 𝑑 (𝑥0, 𝑥1) } = max{𝑑 (𝑥0, 𝑥1) ,
𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1) , 12𝑑 (𝑥0, 𝑆𝑥1) ,
𝑑 (𝑥1, 𝑆𝑥1) (1 + 𝑑 (𝑥0, 𝑥1))1 + 𝑑 (𝑥0, 𝑥1) } ,

(32)

since
12𝑑 (𝑥0, 𝑆𝑥1) ≤ 12𝑑 (𝑥0, 𝑥1) + 12𝑑 (𝑥1, 𝑆𝑥1)

≤ max {𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1)} .
(33)

Thus,

𝑀𝑇,𝑆 (𝑥0, 𝑥1) ≤ max {𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1)} . (34)

Replacing (31) and (34) in (28) we get

𝜃 (𝑑 (𝑥1, 𝑆𝑥1))
≤ {𝜃 (max {𝑑 (𝑥0, 𝑥1) , 𝑑 (𝑥1, 𝑆𝑥1)})}𝑐 . (35)

If max{𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑆𝑥1))} = 𝑑(𝑥1, 𝑆𝑥1), then
𝜃 (𝑑 (𝑥1, 𝑆𝑥1)) ≤ (𝑑 (𝑥1, 𝑆𝑥1) ))𝑐 , (36)
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a contradiction. Hence max{𝑑(𝑥0, 𝑥1), 𝑑(𝑥1, 𝑆𝑥1))} =𝑑(𝑥0, 𝑥1). Therefore,

1 ≤ 𝜃 (𝑑 (𝑥1, 𝑆𝑥1)) ≤ (𝜃 (𝑑 (𝑥0, 𝑥1)))𝑐 . (37)

By (𝜃3) we have
𝜃 (𝑑 (𝑥1, 𝑆𝑥1)) = inf

𝑦∈𝑆𝑥1
𝜃 (𝑑 (𝑥1, 𝑦)) . (38)

Thus, there exists 𝑥2 ∈ 𝑆𝑥1 such that

𝜃 (𝑑 (𝑥1, 𝑆𝑥1)) = 𝜃 (𝑑 (𝑥1, 𝑥2)) . (39)

Then from (37) we have

𝜃 (𝑑 (𝑥1, 𝑥2)) ≤ (𝜃 (𝑑 (𝑥0, 𝑥1)))𝑐 . (40)

Since 𝑥1 ∈ 𝑇𝑥0, 𝑥2 ∈ 𝑆𝑥1, 𝛼(𝑥0, 𝑥1) ≥ 𝜂(𝑥0, 𝑥1), and (𝑇, 𝑆)
is (𝛼, 𝜂)-closed, we have 𝛼(𝑥1, 𝑥2) ≥ 𝜂(𝑥1, 𝑥2). If 𝑥1 = 𝑥2 or𝑑(𝑥2, 𝑇𝑥2) = 0 then the result follows. Suppose that 𝑥1 ̸= 𝑥2
and 𝑥2 ∉ 𝑇𝑥2. Thus

1 < 𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) ≤ 𝜃 (𝐻 (𝑆𝑥1, 𝑇𝑥2)) . (41)

As 𝛼(𝑥1, 𝑥2) ≥ 𝜂(𝑥1, 𝑥2), we have
1 < 𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) ≤ 𝜃 (𝐻 (𝑆𝑥1, 𝑇𝑥2))
≤ {𝜃 (𝑀𝑆,𝑇 (𝑥1, 𝑥2))}𝐹(𝑁𝑇,𝑆(𝑥1,𝑥2)) (42)

where

𝑁𝑇,𝑆 (𝑥1, 𝑥2)
= {𝑑 (𝑥1, 𝑇𝑥1) , 𝑑 (𝑥2, 𝑆𝑥2) , 𝑑 (𝑥1, 𝑆𝑥2) , 𝑑 (𝑥2, 𝑇𝑥1)}
≤ {𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑆𝑥2) , 𝑑 (𝑥1, 𝑆𝑥2) , 𝑑 (𝑥2, 𝑥2)}
= {𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑆𝑥2) , 𝑑 (𝑥1, 𝑆𝑥2) , 0} .

(43)

Since 𝑑(𝑥1, 𝑥2).𝑑(𝑥2, 𝑆𝑥2).𝑑(𝑥1, 𝑆𝑥2).0 = 0, by (𝐴∗) there
exists 𝑐 ∈ [0, 1) such that

𝐹 (𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑆𝑥2) , 𝑑 (𝑥1, 𝑆𝑥2) , 0) = 𝑐 (44)

Therefore, from (43) and using the fact that 𝐹 is nondecreas-
ing we have

𝐹 (𝑁𝑇,𝑆 (𝑥0, 𝑥1))
≤ 𝐹 (𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑆𝑥2) , 𝑑 (𝑥1, 𝑆𝑥2) , 0) = 𝑐. (45)

Further,

𝑀𝑆,𝑇 (𝑥1, 𝑥2) = max{𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥1, 𝑆𝑥1) ,
𝑑 (𝑥2, 𝑇𝑥2) , 12𝑑 (𝑥1, 𝑇𝑥2) ,
𝑑 (𝑥2, 𝑇𝑥2) (1 + 𝑑 (𝑥1, 𝑆𝑥1))1 + 𝑑 (𝑥1, 𝑥2) } ≤ max{𝑑 (𝑥1, 𝑥2) ,
𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑇𝑥2) , 12𝑑 (𝑥1, 𝑇𝑥2) ,
𝑑 (𝑥2, 𝑇𝑥2) (1 + 𝑑 (𝑥1, 𝑥2))1 + 𝑑 (𝑥1, 𝑥2) } = max{𝑑 (𝑥1, 𝑥2) ,
𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑇𝑥2) , 12𝑑 (𝑥1, 𝑇𝑥2) ,
𝑑 (𝑥2, 𝑇𝑥2) (1 + 𝑑 (𝑥1, 𝑥2))1 + 𝑑 (𝑥1, 𝑥2) } .

(46)

Since
12𝑑 (𝑥1, 𝑇𝑥2) ≤ 12𝑑 (𝑥1, 𝑥2) + 12𝑑 (𝑥2, 𝑇𝑥2)

≤ max {𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑇𝑥2)} ,
(47)

we get

𝑀𝑆,𝑇 (𝑥1, 𝑥2) ≤ max {𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑇𝑥2)} . (48)

Replacing (45) and (48) in (42) we have

𝜃 (𝑑 (𝑥2, 𝑇𝑥2))
≤ {𝜃 (max {𝑑 (𝑥1, 𝑥2) , 𝑑 (𝑥2, 𝑇𝑥2)})}𝑐 . (49)

If max{𝑑(𝑥1, 𝑥2), 𝑑(𝑥2, 𝑇𝑥2))} = 𝑑(𝑥2, 𝑇𝑥2), then
𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) ≤ (𝜃 (𝑑 (𝑥2, 𝑇𝑥2)))𝑐 , (50)

a contradiction. Hence max{𝑑(𝑥1, 𝑥2), 𝑑(𝑥2, 𝑇𝑥2))} =𝑑(𝑥1, 𝑥2). Therefore,

1 ≤ (𝑑 (𝑥2, 𝑇𝑥2)) ≤ (𝜃𝑑 (𝑥1, 𝑥2) ))𝑐 . (51)

By (𝜃3) we have
𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) = inf

𝑦∈𝑇𝑥2
𝜃 (𝑑 (𝑥2, 𝑦)) . (52)

Thus, there exists 𝑥3 ∈ 𝑇𝑥2 such that

𝜃 (𝑑 (𝑥2, 𝑇𝑥2)) = (𝑑 (𝑥2, 𝑥3)) . (53)

Therefore, from (51) we have

𝜃 (𝑑 (𝑥2, 𝑥3)) ≤ (𝜃 (𝑑 (𝑥1, 𝑥2)))𝑐 . (54)

Furthermore, from (40) we have

𝜃 (𝑑 (𝑥2, 𝑥3)) ≤ (𝜃 (𝑑 (𝑥1, 𝑥2)))𝑐 ≤ (𝜃 (𝑑 (𝑥0, 𝑥1)))𝑐2 . (55)
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Proceeding in the same manner, we obtain a sequence {𝑥𝑖} in
X such that 𝑥2𝑖 ̸= 𝑥2𝑖+1, 𝑥2𝑖 ∉ 𝑇𝑥2𝑖, 𝑥2𝑖+1 ∉ 𝑆𝑥2𝑖+1, 𝑥2𝑖+1 ∈𝑇𝑥2𝑖, and 𝑥2𝑖+2 ∈ 𝑆𝑥2𝑖+1 with 𝛼(𝑥2𝑖, 𝑥2𝑖+1) ≥ 𝜂(𝑥2𝑖, 𝑥2𝑖+1) and
it satisfies

𝜃 (𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2)) ≤ (𝜃 (𝑑 (𝑥0, 𝑥1)))𝑐2𝑖+1 , (56)

for each 𝑖 ∈ N0. As 𝑥2𝑖+1 ∈ 𝑇𝑥2𝑖, 𝑥2𝑖+2 ∈ 𝑆𝑥2𝑖+1,
and 𝛼(𝑥2𝑖, 𝑥2𝑖+1) ≥ 𝜂(𝑥2𝑖, 𝑥2𝑖+1), we have 𝛼(𝑥2𝑖+1, 𝑥2𝑖+2) ≥𝜂(𝑥2𝑖+1, 𝑥2𝑖+2). Then,

0 < 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2) ≤ 𝐻 (𝑆𝑥2𝑖+1, 𝑇𝑥2𝑖+2) . (57)

Therefore,

𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)) ≤ 𝜃 (𝐻 (𝑆𝑥2𝑖+1, 𝑇𝑥2𝑖+2))
≤ 𝛼 (𝑥2𝑖+1, 𝑥2𝑖+2) 𝜃 (𝐻 (𝑆𝑥2𝑖+1, 𝑇𝑥2𝑖+2))
≤ (𝜃 (𝑀𝑆,𝑇 (𝑥2𝑖+1, 𝑥2𝑖+2)))𝐹(𝑁𝑆,𝑇(𝑥2𝑖+1,𝑥2𝑖+2)) .

(58)

Thus,

𝑁𝑆,𝑇 (𝑥2𝑖+1, 𝑥2𝑖+2) {𝑑 (𝑥2𝑖+1, 𝑆𝑥2𝑖+1) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2) ,
𝑑 (𝑥2𝑖+1, 𝑇𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑆𝑥2𝑖+1)}
≤ {𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2) ,
𝑑 (𝑥2𝑖+1, 𝑇𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑥2𝑖+2)}
= {𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2) ,
𝑑 (𝑥2𝑖+1, 𝑇𝑥2𝑖+2) , 0} .

(59)

Since 𝑑(𝑥2𝑖+1, 𝑥2𝑖+2).𝑑(𝑥2𝑖+2, 𝑇𝑥2𝑖+2).𝑑(𝑥2𝑖+1, 𝑇𝑥2𝑖+2).0 = 0
by (𝐴∗) there exists 𝑐 ∈ [0, 1) such that 𝐹(𝑑(𝑥2𝑖+1, 𝑥2𝑖+2),𝑑(𝑥2𝑖+2, 𝑇𝑥2𝑖+2), 𝑑(𝑥2𝑖+1, 𝑇𝑥2𝑖+2), 0) = 𝑐.Thus, from definition
of 𝐹 and (59) we obtain

𝐹 (𝑁𝑆,𝑇 (𝑥2𝑖+1, 𝑥2𝑖+2)) ≤ 𝑐. (60)

Also,

12𝑑 (𝑥2𝑖+1, 𝑇𝑥2𝑖+2)
≤ 12𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) + 12𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)
≤ max {𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)} .

(61)

Then

𝑀𝑆,𝑇 (𝑥2𝑖+1, 𝑥2𝑖+2) = max{𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+1,
𝑆𝑥2𝑖+1) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2) , 12𝑑 (𝑥2𝑖+1,
𝑇𝑥2𝑖+2) 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2) 1 + 𝑑 (𝑥2𝑖+1, 𝑆𝑥2𝑖+1)1 + 𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) }
≤ max{𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2,
𝑇𝑥2𝑖+2) 12𝑑 (𝑥2𝑖+1, 𝑇𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)
⋅ 1 + 𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2)1 + 𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2)} ≤ max {𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) ,
𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)} .

(62)

Therefore, replacing (60) and (62) in (58) we obtain

𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2))
≤ (𝜃max {𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2) , 𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)} ))𝑐 . (63)

If max{𝑑(𝑥2𝑖+1, 𝑥2𝑖+2), 𝑑(𝑥2𝑖+2, 𝑇𝑥2𝑖+2)} = 𝑑(𝑥2𝑖+2, 𝑇𝑥2𝑖+2)
then

𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)) ≤ (𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)))𝑐 (64)

a contradiction. Further,

𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)) ≤ (𝜃(𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2))c . (65)

Again, using (𝜃3) we have
𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)) = inf

𝑦∈𝑇𝑥2𝑖+2
𝜃 (𝑑 (𝑥2𝑖+2, 𝑦)) . (66)

Therefore, there exists 𝑥2𝑖+3 ∈ 𝑇𝑥2𝑖+2 such that

𝜃 (𝑑 (𝑥2𝑖+2, 𝑇𝑥2𝑖+2)) = 𝜃 (𝑑 (𝑥2𝑖+2, 𝑥2𝑖+3)) . (67)

Thus, we have

𝜃 (𝑑 (𝑥2𝑖+2, 𝑥2𝑖+3)) ≤ (𝜃 (𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2)))𝑐 . (68)

From (56), we have

𝜃 (𝑑 (𝑥2𝑖+2, 𝑥2𝑖+3)) ≤ 𝜃( (𝑑 (𝑥2𝑖+1, 𝑥2𝑖+2))𝑐
≤ 𝜃( (𝑑 (𝑥0, 𝑥1))𝑐2𝑖+2 .

(69)

Hence, we have a sequence {𝑥𝑛} in X and 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥𝜂(𝑥𝑛, 𝑥𝑛+1) such that

𝜃 (𝑑 (𝑥𝑛+1, 𝑥𝑛+2)) ≤ (𝜃 (𝑑 (𝑥0, 𝑥1)))𝑐𝑛+1 , (70)

for all 𝑛 ∈ N0. On taking limit as 𝑛 → ∞, we obtain

1 < lim
𝑛→∞

𝜃 (𝑑 (𝑥𝑛+1, 𝑥𝑛+2)) ≤ 1 (71)
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which implies that lim𝑛→∞𝜃(𝑑(𝑥𝑛+1, 𝑥𝑛+2)) = 1.Then by (𝜃2)
we obtain

lim
𝑛→∞

𝑑 (𝑥𝑛+1, 𝑥𝑛+2) = 0. (72)

Now, we show that {𝑥𝑛} is a Cauchy sequence. If {𝑥𝑛} is not
Cauchy, then there exist 𝜖 > 0 and 𝑚(𝑖) > 𝑛(𝑖) > 𝑖 for all𝑖 ∈ N0 such that

𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ≥ 𝜖
and 𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)−1) < 𝜖. (73)

Thus,

𝜖 ≤ 𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖))
≤ 𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑘)−1) + 𝑑 (𝑥𝑚(𝑖)−1, 𝑥𝑚(𝑖))
< 𝜖 + 𝑑 (𝑥𝑚(𝑖)−1, 𝑥𝑚(𝑖)) .

(74)

Therefore, from the above inequality and (72), we obtain

lim
𝑘→∞

𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) = 𝜖. (75)

Also,

𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ≤ 𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖)+1) + 𝑑 (𝑥𝑛(𝑖)+1, 𝑥𝑚(𝑖)) (76)

and

𝑑 (𝑥𝑛(𝑖)+1, 𝑥𝑚(𝑖)) ≤ 𝑑 (𝑥𝑛(𝑖)+1, 𝑥𝑛(𝑖)) + 𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) . (77)

On taking limit as 𝑖 → ∞ in (76) and using (75) (77), we
have

𝜖 ≤ lim
𝑖→∞

𝑑 (𝑥𝑛(𝑖)+1, 𝑥𝑚(𝑖)) ≤ 𝜖. (78)

Therefore,

lim
𝑖→∞

𝑑 (𝑥𝑛(𝑖)+1, 𝑥𝑚(𝑖)) = 𝜖. (79)

Similarly, we obtain that

lim
𝑖→∞

𝑑 (𝑥𝑛(𝑖)+1, 𝑥𝑚(𝑖)+1) = lim
𝑘→∞

𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑘)+1)
= lim
𝑖→∞

𝑑 (𝑥𝑛(𝑖)+1, 𝑇𝑥𝑚(𝑖)) = 𝜖. (80)

By Lemma 10, we have

𝛼 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ≥ 𝜂 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) . (81)

If 𝑑(𝑥𝑛(𝑖)+1, 𝑇𝑥𝑚(𝑖)) = 0, we have
𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ≤ 𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖+1)) + 𝑑 (𝑥𝑛(𝑖+1), 𝑇𝑥𝑚(𝑖))

+ 𝑑 (𝑇𝑥𝑚(𝑖), 𝑥𝑚(𝑖))
≤ 𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖+1)) + 𝑑 (𝑥𝑛(𝑖+1), 𝑇𝑥𝑚(𝑖))

+ 𝑑 (𝑥𝑚(𝑖)+1, 𝑥𝑚(𝑖))
≤ 𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖)+1) + 𝑑 (𝑥𝑚(𝑖)+1, 𝑥𝑚(𝑖)) .

(82)

Taking limit 𝑖 → ∞ we have

lim
𝑖→∞

𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) = 0 (83)

a contradiction to our assumption. Thus, assume that𝑑(𝑥𝑛(𝑖)+1, 𝑇𝑥𝑚(𝑖)) > 0. Therefore, we have

𝜃 (𝑑 (𝑥𝑛(𝑖)+1, 𝑇𝑥𝑚(𝑖))) ≤ 𝜃 (𝑑 (𝑆𝑥𝑛(𝑖), 𝑇𝑥𝑚(𝑖)))
≤ (𝜃 (𝑀𝑆,𝑇 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖))))𝐹(𝑁𝑆,𝑇(𝑥𝑛(𝑖),𝑥𝑚(𝑖))) (84)

where

𝑁𝑆,𝑇 (𝑥n(𝑖), 𝑥𝑚(𝑖)) = {𝑑 (𝑥𝑛(𝑖), 𝑆𝑥𝑛(𝑖)) , 𝑑 (𝑥𝑚(𝑖), 𝑇𝑥𝑚(𝑖)) ,
𝑑 (𝑥𝑛(𝑖), 𝑇𝑥𝑚(𝑖)) , 𝑑 (𝑥𝑚(𝑖), 𝑆𝑥𝑛(𝑖))}
≤ {𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖)+1) , 𝑑 (𝑥𝑚(𝑖), 𝑥𝑚(𝑖)+1) ,
𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)+1) , 𝑑 (𝑥𝑚(𝑖), 𝑥𝑛(𝑖)+1)} .

(85)

Taking limit 𝑖 → ∞ in (85),

lim
𝑖→∞

𝑁𝑆,𝑇 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ≤ { lim
𝑖→∞

(𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖)+1)) ,
lim
𝑖→∞

(𝑑 (𝑥𝑚(𝑖), 𝑥𝑚(𝑘)+1)) ,
lim
𝑖→∞

(𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)+1)) , lim
𝑖→∞

(𝑑 (𝑥𝑚(𝑖), 𝑥𝑛(𝑖)+1))}
= {0, 0, 0, 0} .

(86)

Now, by (𝐴∗) there exists 𝑐 ∈ [0, 1) such that 𝐹(0, 0, 0, 0) = 𝑐.
Thus, using the continuity of 𝐹 and (86),

𝐹( lim
𝑖→∞

𝑁𝑆,𝑇 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖))) ≤ 𝑐. (87)

Moreover,

𝑀𝑆,𝑇 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) = max{𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ,
𝑑 (𝑥𝑛(𝑖), 𝑆𝑥𝑛(𝑖)) , 𝑑 (𝑥𝑚(𝑖), 𝑇𝑥𝑚(𝑖)) , 12𝑑 (𝑥𝑛(𝑖), 𝑇𝑥𝑚(𝑖)) ,
𝑑 (𝑥𝑚(𝑖), 𝑇𝑥𝑚(𝑖)) (1 + 𝑑 (𝑥𝑛(𝑖), 𝑆𝑥𝑛(𝑖)))1 + 𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) }

≤ max{𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) , 𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖)+1) ,
𝑑 (𝑥𝑚(𝑖), 𝑥𝑚(𝑖)+1) , 12𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑘)+1) ,
𝑑 (𝑥𝑚(𝑖), 𝑥𝑚(𝑖)+1) )(1 + 𝑑 (𝑥𝑛(𝑖), 𝑥𝑛(𝑖)+1)1 + 𝑑 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) } .

(88)

Taking limits as 𝑖 → ∞ and using (72) and (80) we obtain
that

lim
𝑖→∞

𝑀𝑆,𝑇 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖)) ≤ 𝜖. (89)
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Thus, using (84) and the continuity of 𝜃 we have
𝜃 ( lim
𝑖→∞

𝑑 (𝑥𝑛(𝑘)+1, 𝑇𝑥𝑚(𝑖)) )) ≤ (𝜃
⋅ lim
𝑖→∞

(𝑀𝑆,𝑇 (𝑥𝑛(𝑖), 𝑥𝑚(𝑖))) ))𝐹(lim𝑖→∞𝑁𝑆,𝑇(𝑥𝑛(𝑖),𝑥𝑚(𝑖))) .
(90)

From (89), we obtain

𝜃 (𝜖) ≤ (𝜃 (𝜖))𝑐 < 𝜃 (𝜖) (91)

a contradiction. Hence, {𝑥𝑛} is a Cauchy. Since X is a
complete metric space, there exists 𝑥 ∈ X such that
lim𝑛→∞𝑑(𝑥𝑛, 𝑥) = 0. As the pair (𝑇, 𝑆) is (𝛼, 𝜂)-continuous,
we have lim𝑛→∞𝐻(𝑇𝑥2𝑛, 𝑆𝑥) = 0.

Note that

𝑑 (𝑥, 𝑆𝑥) ≤ 𝑑 (𝑥, 𝑥2𝑛+1) + 𝑑 (𝑥2𝑛+1, 𝑆𝑥)
≤ 𝑑 (𝑥, 𝑥2𝑛+1) + 𝐻 (𝑇𝑥2𝑛, 𝑆𝑥) . (92)

On taking limit as 𝑛 → ∞ on both sides of the above
inequality, we obtain that 𝑑(𝑥, 𝑆𝑥) = 0 and hence 𝑥 ∈ 𝑆𝑥. As(𝑆, 𝑇) is (𝛼, 𝜂)-continuous, we have lim𝑛→∞𝐻(𝑆𝑥2𝑛+1, 𝑇𝑥) =0. Also,

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑥2𝑛+2) + 𝑑 (𝑥2𝑛+2, 𝑇𝑥)
≤ 𝑑 (𝑥, 𝑥2𝑛+2) + 𝐻 (𝑆𝑥2𝑛+1, 𝑇𝑥) . (93)

On taking limit as 𝑛 → ∞ on both sides of the above
inequality, we obtain that 𝑑(𝑥, 𝑇𝑥) = 0 and hence 𝑥 ∈ 𝑇𝑥.
Thus there exists 𝑥 such that 𝑥 ∈ 𝑇𝑥 ∩ 𝑆𝑥.

Wemay omit the (𝛼, 𝜂)-continuity condition in the above
theorem by condition (H).

If {𝑥𝑛} is a sequence in X with 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1)
for all 𝑛 ∈ N and lim𝑛→∞𝑑(𝑥𝑛, 𝑥) = 0 for some 𝑥 ∈ X, then𝛼(𝑥𝑛, 𝑥) ≥ 𝜂(𝑥𝑛, 𝑥) for all 𝑛 ∈ N.

Theorem 17. Let 𝑇, 𝑆 : X → 𝐶𝐵(X). Suppose that the
pairs (𝑇, 𝑆) and (𝑆, 𝑇) are multivalued (𝛼, 𝜂) − (𝜃, �) rational
contractions such that

(C1) (𝑇, 𝑆) and (𝑆, 𝑇) are triangular (𝛼, 𝜂)-closed mapping;
(C2) there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 with 𝛼(𝑥0, 𝑥1) ≥𝜂(𝑥0, 𝑥1);
(C3) the pair (𝛼, 𝜂) satisfies condition (H).

Then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥 ∩ 𝑆𝑥.
Proof. As in Theorem 16, we obtain a Cauchy sequence {𝑥𝑛}
in the complete metric space X with lim𝑛→∞𝑑(𝑥2𝑛, 𝑥) = 0
where 𝑥 ∈ X and 𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1). As the pair (𝛼, 𝜂)
satisfies condition (H), 𝛼(𝑥𝑛, 𝑥) ≥ 𝜂(𝑥𝑛, 𝑥) for all 𝑛 ∈ N0. We
need to show that 𝑥 is the common fixed point. Suppose on
the contrary that 𝑥 ∉ 𝑆𝑥.

From condition (H), we obtain 𝛼(𝑥2𝑛, 𝑥) ≥ 𝜂(𝑥2𝑛, 𝑥) as𝛼(𝑥2𝑛, 𝑥2𝑛+1) ≥ 𝜂(𝑥2𝑛, 𝑥2𝑛+1) and lim𝑛→∞𝑑(𝑥2𝑛, 𝑥) = 0. If𝑑(𝑥2𝑛+1, 𝑆𝑥) = 0 then
𝑑 (𝑥, 𝑆𝑥) ≤ 𝑑 (𝑥, 𝑥2𝑛+1) + 𝑑 (𝑥2𝑛+1, 𝑆𝑥) ≤ 𝑑 (𝑥, 𝑥2𝑛+1) (94)

Taking limit 𝑘 → ∞ in the above equation we obtain

𝑑 (𝑥, 𝑆𝑥) = 0 (95)

a contradiction to our assumption. Thus, we assume𝑑(𝑥2𝑛+1, 𝑆𝑥) > 0. Then,

0 < 𝑑 (𝑥2𝑛+1, 𝑆𝑥) ≤ 𝐻 (𝑇2𝑛, 𝑆𝑥) . (96)

Further,

𝜃 (𝑑 (𝑥2𝑛+1, 𝑆𝑥)) ≤ 𝜃 (𝐻 (𝑇2𝑛, 𝑆𝑥))
≤ 𝛼 (𝑥2𝑛, 𝑥) 𝜃 (𝐻 (𝑇2𝑛, 𝑆𝑥))
≤ (𝜃 (𝑀𝑇,𝑆 (𝑥2𝑛, 𝑥)))𝐹(𝑁𝑇,𝑆(𝑥2𝑛,𝑥)

(97)

where

𝑁𝑇,𝑆 (𝑥2𝑛, 𝑥) = {𝑑 (𝑥2𝑛, 𝑇𝑥2𝑛) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑥, 𝑇𝑥2𝑛) ,
𝑑 (𝑥2𝑛, 𝑆𝑥)} ≤ {𝑑 (𝑥2𝑛, 𝑥2𝑛+1) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑥, 𝑥2𝑛+1) ,
𝑑 (𝑥2𝑛, 𝑆𝑥)} .

(98)

Taking 𝑛 → ∞ in the above inequality we have

lim
𝑛→∞

𝑁𝑇,𝑆 (𝑥2𝑛, 𝑥) ≤ { lim
𝑛→∞

(𝑑 (𝑥2𝑛, 𝑥2𝑛+1)) ,
lim
𝑛→∞

(𝑑 (𝑥, 𝑆𝑥)) ,
lim
𝑛→∞

(𝑑 (𝑥, 𝑥2𝑛+1)) ) , lim
𝑛→∞

(𝑑 (𝑥2𝑛, 𝑆𝑥))} = {0,
𝑑 (𝑥, 𝑆𝑥) , 0, lim

𝑛→∞
(𝑑 (𝑥2𝑛, 𝑆𝑥))} .

(99)

Thus, as previously shown, by (𝐴∗) and continuity of 𝐹 we
have

lim
𝑛→∞

𝐹 (𝑁𝑇,𝑆 (𝑥2𝑛, 𝑥)) ≤ 𝑐. (100)

Also,

𝑀𝑇,𝑆 (𝑥2𝑛, 𝑥) = max{𝑑 (𝑥2𝑛, 𝑥) , 𝑑 (𝑥2𝑛, 𝑇𝑥2𝑛) ,
𝑑 (𝑥, 𝑆𝑥) , 12𝑑 (𝑥2𝑛, 𝑆𝑥) ,
𝑑 (𝑥, 𝑆𝑥) (1 + 𝑑 (𝑥2𝑛, 𝑇𝑥2𝑛))1 + 𝑑 (𝑥2𝑛, 𝑥) } ≤ max{𝑑 (𝑥2𝑛, 𝑥) ,
𝑑 (𝑥2𝑛, 𝑥2𝑛+1) , 𝑑 (𝑥, 𝑆𝑥) , 12𝑑 (𝑥2𝑛, 𝑆𝑥) ,
𝑑 (𝑥, 𝑆𝑥) (1 + 𝑑 (𝑥2𝑛, 𝑥2𝑛+1))1 + 𝑑 (𝑥2𝑛, 𝑥) } .

(101)

Hence

lim
𝑛→∞

𝑀𝑇,𝑆 (𝑥2𝑛, 𝑥) ≤ 𝑑 (𝑥, 𝑆𝑥) . (102)



Journal of Mathematics 9

Moreover, from (97) we have

𝜃 (𝑑 (𝑥2𝑛+1, 𝑆𝑥)) ≤ {𝜃 (𝑀𝑇,𝑆 (𝑥2𝑛, 𝑥))}𝐹(𝑁𝑇,𝑆(𝑥2𝑛,𝑥)) (103)

On taking limit as 𝑛 → ∞ in the above inequality and using(𝜃3), we obtain that

𝜃 ( lim
𝑛→∞

𝑑 (𝑥2𝑛+1, 𝑆𝑥))
≤ (𝜃 ( lim

𝑛→∞
𝑀𝑇,𝑆 (𝑥2𝑛, 𝑥)))lim𝑛→∞𝐹(𝑁𝑇,𝑆(𝑥2𝑛 ,𝑥)

≤ (𝜃 (𝑑 (𝑥, 𝑆𝑥)))𝑐 < 𝜃 (𝑑 (𝑥, 𝑆𝑥)) .
(104)

It follows from (𝜃1) that
lim
𝑛→∞

𝑑 (𝑥2𝑛+1, 𝑆𝑥) < 𝑑 (𝑥, 𝑆𝑥) . (105)

That is,

𝑑 (𝑥, 𝑆𝑥) < 𝑑 (𝑥, 𝑆𝑥) , (106)

a contradiction. Hence, 𝑑(𝑥, 𝑆𝑥) = 0. Similarly, we can show𝑑(𝑥, 𝑇𝑥) = 0. Hence, 𝑥 ∈ 𝑆𝑥 ∩ 𝑇𝑥
Example 18. LetX = R+ and

𝑑 (𝑥, 𝑦) = {{{
max {𝑥, 𝑦} , 𝑥 ̸= 𝑦
0, 𝑥 = 𝑦. (107)

Define the mappings 𝑆, 𝑇 : X → 𝐶𝐵(X) by
𝑆𝑥 = {{{{{

{𝑥 − 1, 𝑥 + 1} , 𝑥 > 1
{0, 𝑥16} , 0 ≤ 𝑥 ≤ 1. (108)

and

𝑇𝑥 = {{{{{
{1, 𝑥 + 1} , 𝑥 > 1
{0, 𝑥8 } , 0 ≤ 𝑥 ≤ 1. (109)

Define 𝛼, 𝜂 : X ×X and𝐻 : R4 → R+ by

𝛼 (𝑥, 𝑦) = {{{
1, 0 ≤ 𝑥, 𝑦 ≤ 1
0, either 𝑥 or 𝑦 ∉ [0, 1] , (110)

𝜂 (𝑥, 𝑦) = 𝑥2 for all 𝑥 ∈ X (111)

and

𝐹 (𝑠1, 𝑠2, 𝑠3, 𝑠4) = √18. (112)

It is evident that both the pairs (𝑇, 𝑆) and (𝑆, 𝑇) are triangular𝛼−𝜂-closed.Now,we show that the pair (𝑇, 𝑆) is a (𝛼, 𝜂)−(𝜃, �)
rational contraction for 𝜃(𝑡) = 𝑒√𝑡. That is, we need to show
that

√𝐻(𝑇𝑥, 𝑆𝑦)
𝑀𝑇,𝑆 (𝑥, 𝑦) ≤ 𝐹 (𝑁𝑇,𝑆 (𝑥, 𝑦)) (113)

for all 𝑥, 𝑦 ∈ X.

Let 𝑥, 𝑦 ∈ [0, 1]. Without any loss of generality, we may
assume that 𝑦 ≤ 𝑥. Thus,

√𝐻(𝑇𝑥, 𝑆𝑦)
𝑀𝑇,𝑆 (𝑥, 𝑦) = √𝑥/8𝑥 = √𝑥/8𝑥 = √18 . (114)

Thus, the pair (𝑇, 𝑆) is a (𝛼, 𝜂) − (𝜃, �). Similarly, (𝑆, 𝑇) is(𝛼, 𝜂) − (𝜃, �) rational for 𝐹 as defined above. If 𝑥0 = 1,𝑇1 = {0, 1/8} then 𝛼(1, 0) = 1 = 𝜂(1, 0). For any sequence𝛼(𝑥𝑛, 𝑥𝑛+1) ≥ 𝜂(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ∈ N, we have {𝑥𝑛} ∈ [0, 1]
and {𝑥𝑛} converges to some 𝑥 ∈ [0, 1]. Thus 𝛼(𝑥𝑛, 𝑥) ≥𝜂(𝑥𝑛, 𝑥). All the conditions of Theorem 17 are satisfied and𝑥 = 0 is the common fixed point of 𝑆 and 𝑇.
Corollary 19. Let 𝑇, 𝑆 : X → 𝐶𝐵(X). Suppose that the pairs(𝑇, 𝑆) and (𝑆, 𝑇) are continuous multivalued (𝜃, �) rational
contractions, then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥 ∩ 𝑆𝑥.
Proof. Define 𝛼(𝑥, 𝑦) = 𝜂(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ X. Then the
result follows fromTheorem 16.

Theorem 20. Let 𝑇 : X → 𝐶𝐵(X) be a multivalued (𝛼, 𝜂) −(𝜃, �) rational contraction mapping such that

(C1) 𝑇 is a triangular (𝛼, 𝜂)-closed mapping;
(C2) there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 with 𝛼(𝑥0, 𝑥1) ≥𝜂(𝑥0, 𝑥1);
(C3) 𝑇 is (𝛼, 𝜂)-continuous.
Then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥.

Proof. By choosing 𝑇 = 𝑆 in Theorem 16 the result follows.

Theorem 21. Let 𝑇 : X → 𝐶𝐵(X) be a multivalued (𝛼, 𝜂) −(𝜃, �) rational contraction mapping such that

(C1) 𝑇 is a triangular (𝛼, 𝜂)-closed mapping;
(C2) there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 with 𝛼(𝑥0, 𝑥1) ≥𝜂(𝑥0, 𝑥1);
(C3) the pair (𝛼, 𝜂) satisfies condition (H).

Then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥.
Proof. By choosing 𝑇 = 𝑆 in Theorem 17 the result follows.

Theorem 22. Let 𝑇 : X → 𝐶𝐵(X) be a multivalued
mapping. Suppose that 𝑇 satisfies the following conditions:

(C1) For any 𝑥, 𝑦 ∈ X such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦) and 0 ≤𝑐 < 1, we have
𝐻(𝑇𝑥, 𝑇𝑦) ≤ 𝑐𝑀(𝑥, 𝑦) (115)

where

𝑀(𝑥, 𝑦) = max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,
12𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑇𝑦) (1 + 𝑑 (𝑥, 𝑇𝑥))

1 + 𝑑 (𝑥, 𝑦) } ;
(116)
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(C2) 𝑇 is a triangular (𝛼, 𝜂)-closed mapping;
(C3) there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 with 𝛼(𝑥0, 𝑥1) ≥𝜂(𝑥0, 𝑥1);
(C4) 𝑇 is (𝛼, 𝜂)-continuous or (𝛼, 𝜂) satisfies condition (H).

Then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥.
Proof. Taking 𝜃(𝑡) = 𝑒𝑡 and 𝐹(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝑐 where 𝑐 ∈[0, 1) in Theorems 20 and 21, the result follows.

Example 23. LetX = [0,∞) and
𝑑 (𝑥, 𝑦) = {{{

𝑥 + 𝑦, 𝑥 ̸= 𝑦
0, 𝑥 = 𝑦 (117)

Define the mapping 𝑇 : X → 𝐶𝐵(X) by
𝑇𝑥 = {{{{{

{𝑥6 , 𝑥9 } ; 0 ≤ 𝑥 ≤ 1
{ 2𝑥𝑥 + 1} ; 𝑥 > 1 (118)

Define 𝛼, 𝜂 : X ×X → R+ as

𝛼 (𝑥, 𝑦) = {{{{{
1; 0 ≤ 𝑥, 𝑦 ≤ 1
18 ; otherwise

(119)

and

𝜂 (𝑥, 𝑦) = 14 for all 𝑥, 𝑦 ∈ X. (120)

Clearly, 𝑇 is a triangular (𝛼, 𝜂)-closed mapping. If 𝑥0 = 1
and 𝑥1 = 1/6, then 𝛼(𝑥0, 𝑥1) = 1 > 1/4 = 𝜂(𝑥, 𝑦). Note
that (C(3)) is also satisfied. Let 𝑥, 𝑦 ∈ X, then 𝛼(𝑥, 𝑦) ≥ 1 if0 ≤ 𝑥, 𝑦 ≤ 1. Assume that 𝑥 ̸= 𝑦, then

𝑒√𝐻(𝑇𝑥,𝑇𝑦) = 𝑒√max{𝛿(𝑇𝑥,𝑇𝑦),𝛿(𝑇𝑦,𝑇𝑥)}

= 𝑒√max{𝑥/6+𝑦/9,𝑥/9+𝑦/6} ≤ 𝑒√(𝑥+𝑦)/4
≤ 𝑒√𝑀(𝑥,𝑦)/4 = (𝑒√𝑀(𝑥,𝑦)))1/2 .

(121)

Therefore, 𝑇 is a multivalued (𝛼, 𝜂) − (𝜃, �) rational contrac-
tion with 𝜃(𝑡) = 𝑒√𝑡 and 𝐹(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 1/2. Thus, all the
conditions of Theorem 21 are satisfied and 𝑥 = 0 is a fixed
point of 𝑇.
Corollary 24. Let 𝑇, 𝑆 : X → 𝐶𝐵(X). Suppose that, for any𝑥, 𝑦 ∈ X such that 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑦), and 0 ≤ 𝑐 < 1, the pairs(𝑇, 𝑆) and (𝑆, 𝑇) satisfy

𝜃 (𝐻 (𝑇𝑥, 𝑆𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝑐 (122)

whenever (𝐻(𝑇𝑥, 𝑆𝑦)) > 0 and
𝜃 (𝐻 (𝑆𝑥, 𝑇𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝑐 (123)

whenever (𝐻(𝑆𝑥, 𝑇𝑦)) > 0. If the following conditions also
hold:

(C1) (𝑇, 𝑆) and (𝑆, 𝑇) are triangular (𝛼, 𝜂)-closed mappings;
(C2) there exist 𝑥0 ∈ X and 𝑥1 ∈ 𝑇𝑥0 with 𝛼(𝑥0, 𝑥1) ≥𝜂(𝑥0, 𝑥1);
(C3) (𝑇, 𝑆) and (𝑆, 𝑇) are (𝛼, 𝜂)-continuous.
Then there exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥 ∩ 𝑆𝑥.
Now, we apply the results for the existence of common

fixed points of single valued mappings on a complete metric
space.

Definition 25. Let 𝑓, 𝑔 : X → X be two mappings on a
nonempty set X and 𝛼, 𝜂 : X × X → R+. A pair (𝑓, 𝑔) is
called (𝛼, 𝜂) -admissible if for any 𝑥, 𝑦 ∈ X, with 𝛼(𝑥, 𝑦) ≥𝜂(𝑥, 𝑦), we have 𝛼(𝑓𝑥, 𝑔𝑦) ≥ 𝜂(𝑓𝑥, 𝑔𝑦).

Denote the set of fixed points of𝑓 and𝑔 by𝐹(𝑓) and𝐹(𝑔),
respectively.

Theorem26. Let𝑓, 𝑔 : X → X. Suppose that the pairs (𝑓, 𝑔)
and (𝑔, 𝑓) are (𝛼, 𝜂) − (𝜃, �) rational contractions such that
(C1) the pairs (𝑓, 𝑔) and (𝑔, 𝑓) are triangular (𝛼, 𝜂)-

admissible mappings;
(C2) there exists 𝑥0 ∈ X such that 𝛼(𝑥0, 𝑓𝑥0) ≥ 𝜂(𝑥0, 𝑓𝑥0);
(C3) (𝑓, 𝑔) and (𝑔, 𝑓) are (𝛼, 𝜂)-continuous.
Then 𝐹(𝑓) ∩ 𝐹(𝑔) ̸= 𝜙.

Proof. Define 𝑇, 𝑆 : X → 𝐶𝐵(X) as 𝑇𝑥 = {𝑓𝑥} and 𝑆𝑥 ={𝑔𝑥}. ThenTheorem 16 implies the result.

Theorem27. Let𝑓, 𝑔 : X → X. Suppose that the pairs (𝑓, 𝑔)
and (𝑔, 𝑓) are (𝛼, 𝜂) − (𝜃, �) rational contractions such that
(C1) (𝑓, 𝑔) and (𝑔, 𝑓) are triangular (𝛼, 𝜂)-admissible map-

ping;
(C2) there exists 𝑥0 ∈ X such that 𝛼(𝑥0, 𝑓𝑥0) ≥ 𝜂(𝑥0, 𝑓𝑥0);
(C3) the pair (𝛼, 𝜂) satisfies condition (H).

Then 𝐹(𝑓) ∩ 𝐹(𝑔) ̸= 𝜙.
Proof. Define 𝑇, 𝑆 : X → 𝐶𝐵(X) as 𝑇𝑥 = {𝑓𝑥} and 𝑆𝑥 ={𝑔𝑥}. ThenTheorem 17 implies the result.

Example 28. LetX = [0,∞) and
𝑑 (𝑥, 𝑦) = {{{

𝑥 + 𝑦, 𝑥 ̸= 𝑦
0, 𝑥 = 𝑦 (124)

Define 𝑓, 𝑔 : X → X by

𝑓𝑥 = {{{{{

𝑥10 , 0 ≤ 𝑥 ≤ 1
(1 − 𝑥)2 + 110 , 𝑥 > 1

and 𝑔𝑥 = {{{{{

𝑥10 , 0 ≤ 𝑥 ≤ 1
(2𝑥 − 1)210 , 𝑥 > 1

(125)
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Define 𝛼, 𝜂 : X ×X → [0,∞) by

𝛼 (𝑥, 𝑦) = {{{{{
1, 0 ≤ 𝑥, 𝑦 ≤ 1
110 , 𝑥 > 1 (126)

and

𝜂 (𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ X. (127)

Clearly, (𝑓, 𝑔) and (𝑔, 𝑓) are triangular (𝛼, 𝜂)-admissible
mappings.

Define 𝐹 : R4 → R+ as

𝐹 (𝑠1, 𝑠2, 𝑠3, 𝑠4) = 12 . (128)

Note that pairs (𝑓, 𝑔) and (𝑔, 𝑓) are (𝛼, 𝜂)-continuous. Also,(𝑓, 𝑔) and (𝑔, 𝑓) are (𝛼, 𝜂) − (𝜃, �) rational contractions for𝜃(𝑡) = √𝑡. If 𝑥0 = 0 and 𝑓𝑥0 = 0, then 𝛼(0, 0) =1 = 𝜂(0, 0). Thus all the conditions of Theorem 26 are
satisfied. Thus, 𝑓 and 𝑔 have a common fixed point 𝑥 = 0 in
X.

Corollary 29. Let 𝑓 : X → X be an (𝛼, 𝜂)-continuous(𝛼, 𝜂) − (𝜃, �) rational contraction. Then 𝑓 has a fixed point

in X if there exists 𝑥0 ∈ X such that 𝛼(𝑥0, 𝑓𝑥0) ≥ 𝜂(𝑥0, 𝑓𝑥0)
and 𝑓 is triangular (𝛼, 𝜂)-admissible. Furthermore, the fixed
point is unique if 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑥).
Corollary 30. Let 𝑓 : X → X be a triangular (𝛼, 𝜂)-
admissible (𝛼, 𝜂) − (𝜃, �) rational contraction. Then 𝑓 has a
fixed point in X provided that there exists 𝑥0 ∈ X such that𝛼(𝑥0, 𝑓𝑥0) ≥ 𝜂(𝑥0, 𝑓𝑥0) and (𝛼, 𝜂) satisfies condition (H).
Furthermore, the fixed point is unique if 𝛼(𝑥, 𝑦) ≥ 𝜂(𝑥, 𝑥).
Example 31. LetX = {0, 1/4, 1/2}. Note that

𝑑 (𝑥, 𝑦) = {{{
𝑥 + 𝑦2 , 𝑥 ̸= 𝑦
0, 𝑥 = 𝑦 (129)

defines the metric onX. Define 𝑇 : X → X by

𝑇𝑥 = {{{{{
𝑥2, 𝑥 = 0, 12
0, 𝑥 = 14 .

(130)

Define 𝛼, 𝜂 : X ×X → R+ and

𝛼 (𝑥, 𝑦) = {{{{{
cosh (𝑥 + 𝑦4 ) , if (𝑥, 𝑦) ∈ {(0, 0) , (14 , 14) , (12 , 12) , (0, 14) , (0, 12)}14 , otherwise, (131)

and

𝜂 (𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ X. (132)

Clearly, 𝑇 is (𝛼, 𝜂)-continuous. Define 𝐹 : R4 → R+ as

𝐹 (𝑠1, 𝑠2, 𝑠3, 𝑠4) = 910𝑒4min{𝑠1 ,𝑠2,𝑠3,𝑠4}. (133)

Let 𝜃(𝑡) = 1 + 𝑡. We only consider the case where (𝑥, 𝑦) =(0, 1/2); all other cases are trivial. Note that
𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) = (1 + 𝑑 (𝑇𝑥, 𝑇𝑦)) = (1 + 18)

≤ (1 + 38)
9/10 ≤ (1 +𝑀(𝑥, 𝑦))9/10

≤ 𝜃 (𝑀(𝑥, 𝑦) ))𝐻(𝑁(𝑥,𝑦)) .
(134)

Thus, 𝑇 is an (𝛼, 𝜂) − (𝜃, �) rational contraction. Also, 𝑇
is triangular (𝛼, 𝜂)-admissible. Let 𝑥0 = 0, then 𝛼(𝑥0, 𝑇𝑥0) ≥1 = 𝜂(𝑥0, 𝑇𝑥0). All the conditions of Corollary 29 are satisfied
and 𝑥 = 0 is a fixed point of 𝑇.

3. Application to Nonlinear Elastic
Beam Equations

We study the existence of solutions of fourth-order two-point
boundary value problem given by

𝜇(4) (𝑡) = 𝑓 (𝑡, 𝜇 (𝑡)) , 𝑡 ∈ [0, 1] ,
𝜇 (0) = 𝜇 (1) = 𝜇 (0) = 𝜇 (1) = 0, (135)

which represents the bending of an elastic beam clamped
at both ends. The boundary value problem in (135) can be
written as [17]

𝜇 (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜇 (𝑠)) 𝑑𝑠 for 𝑡 ∈ [0, 1] , (136)

where theGreen function associatedwith the given boundary
value problem is given by

𝐺 (𝑡, 𝑠) = 16
⋅ {{{

𝑡2 (1 − 𝑠)2 [(𝑠 − 𝑡) + 2 (1 − 𝑡) 𝑠] , 0 ≤ 𝑡 ≤ 𝑠 ≤ 1
𝑠2 (1 − 𝑡)2 [(𝑡 − 𝑠) + 2 (1 − 𝑠) 𝑡] , 0 ≤ 𝑠 ≤ 𝑡 ≤ 1

(137)

where sup𝑡∈𝐼 ∫10 𝐺(𝑡, 𝑠) = 1/384 (see [18]).
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Let X = (C[0, 1], [0,∞)) be the space of all continuous
functions defined on [0, 1]. The metric onX is given by

𝑑 (𝑥, 𝑦) = max
𝑡∈[0,1]

𝑥 (𝑡) − 𝑦 (𝑡) (138)

for all 𝑡 ∈ [0, 1]. Note that the space X = (C([0, 1]), 𝑑) is
complete metric space.

Theorem 32. Suppose that the following hypotheses are satis-
fied:

(1) 𝑓 : [0, 1] × [0,∞) → [0,∞) is continuous;
(2) 𝑓(𝑠, .) : [0,∞) → [0,∞) is nondecreasing for each𝑠 ∈ [0, 1];
(3) for 𝜇(𝑠) ≤ ](𝑠) for 𝜇, ] ∈ X, we have

𝑓 (𝑠, 𝜇 (𝑠)) − 𝑓 (𝑠, ] (𝑠)) ≤ 𝑀(𝜇 (𝑠) , ] (𝑠)) , (139)

for any 𝑠 ∈ [0, 1], where
𝑀(𝜇 (𝑠) , ] (𝑠)) = max{𝑑 (𝜇 (𝑠) , ] (𝑠)) ,

𝑑 (𝜇 (𝑠) , 𝑓 (𝑠, 𝜇 (𝑠))) , 𝑑 (] (𝑠) , 𝑓 (𝑠, ] (𝑠))) ,
12𝑑 (𝜇 (𝑠) , 𝑓 (𝑠, ] (𝑠))) ,
𝑑 (] (𝑠) , 𝑓 (𝑠, ] (𝑠))) (1 + 𝑑 (𝜇 (𝑠) , 𝑓 (𝑠, 𝜇 (𝑠))))

1 + 𝑑 (𝜇 (𝑠) , ] (𝑠)) } ;

(140)

(4) there exists 𝜇0 ∈ X such that, for all 𝑡 ∈ [0, 1],
𝜇0 (𝑡) ≤ ∫1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜇0 (𝑠)) 𝑑𝑠. (141)

Then problem (135) has a solution inX.

Proof. Let 𝜇 ∈ X. Define the operator 𝑇 : X → X by

(𝑇𝜇) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜇 (𝑠)) 𝑑𝑠 for 𝑡 ∈ [0, 1] . (142)

Clearly, 𝑇 is continuous. Define 𝛼, 𝜂 : X ×X → [0,∞) as
𝛼 (𝜇, ]) = {{{

1, 𝜇 (𝑡) ≤ ] (𝑡) , 𝑡 ∈ [0, 1]
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (143)

and

𝜂 (𝜇, ]) = 1 for all 𝜇, ] ∈ X. (144)

Clearly, (𝛼, 𝜂) is triangular. Also, since 𝑓(𝑠, .) is nondecreas-
ing, then for any𝜇, ] ∈ X such that𝜇(𝑡) ≤ ](𝑡) for all 𝑡 ∈ [0, 1]
we obtain

(𝑇𝜇) (𝑡) = ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜇 (𝑠)) 𝑑𝑠

≤ ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, ] (𝑠)) 𝑑𝑠 = (𝑇]) (𝑡) .

(145)

Hence, 𝛼(𝑇𝜇, 𝑇]) ≥ 1. Since 𝛼(𝜇, ]) ≥ 1, 𝑇 is (𝛼, 𝜂)-
admissible. Now, for all 𝜇, ] ∈ X such that 𝜇(𝑠) ≤ ](𝑠) for
all 𝑠 ∈ [0, 1] we have

(𝑇𝜇) (𝑡) − (𝑇]) (𝑡) =
∫
1

0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜇 (𝑠)) 𝑑𝑠

− ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, ] (𝑠)) 𝑑𝑠

≤ ∫1
0
𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝜇 (𝑠)) − 𝑓 (𝑠, ] (𝑠)) 𝑑𝑠

≤ ∫1
0
𝐺 (𝑡, 𝑠)𝑀 (𝜇 (𝑠) , ] (𝑠)) 𝑑𝑠

= 𝑀(𝜇 (𝑠) , ] (𝑠)) ∫1
0
𝐺 (𝑡, 𝑠) 𝑑𝑠

(146)

where 𝑡 ∈ [0, 1]. Using the fact that sup𝑡∈[0,1] ∫10 𝐺(𝑡, 𝑠)𝑑𝑠 =1/384 we have
𝑑 (𝑇𝜇, 𝑇]) ≤ 1384𝑀 (𝜇, ]) . (147)

Now,

𝑑 (𝑇𝜇, 𝑇]) 𝑒𝑑(𝑇𝜇,𝑇]) ≤ 1384𝑀 (𝜇, ]) 𝑒(1/384)𝑀(𝜇,])
≤ 1384𝑀 (𝜇, ]) 𝑒𝑀(𝜇,])

(148)

Now, passing through exponential we obtain

𝑒𝑑(𝑇𝜇,𝑇])𝑒𝑑(𝑇𝜇,𝑇]) ≤ 𝑒(1/384)𝑀(𝜇,])𝑒𝑀(𝜇,])
≤ (𝑒𝑀(𝜇,])(𝑒𝑀(𝜇,])))1/384 . (149)

Thus, 𝑇 satisfies

𝜃 (𝑑 (𝑇𝜇, 𝑇])) ≤ (𝜃)𝑀(𝜇, ]) ))𝐹(𝑁(𝜇,])) (150)

with 𝜃(𝑡) = 𝑒𝑡𝑒𝑡 and 𝐹(𝑁(𝜇, ])) = 1/384 < 1. Since all the
conditions of Corollary 29 are satisfied, then problem (135)
has a solution inX.

4. An Application to First-Order
Periodic Problem

In this section, we establish the necessary conditions for
existence of a fixed point of a mapping in the setting of a
partially ordered metric space. Throughout this section, we
assume that (X, 𝑑, ≼) is a partially ordered metric space.

Definition 33. A sequence {𝑥𝑛} ⊂ X is called ≼-preserving if𝑥𝑛 ≼ 𝑥𝑛+1 for all 𝑛 ∈ N0.

Definition 34. Amapping 𝑇 : X → 𝑃(X) is called ≼-closed
if, for any 𝑥, 𝑦 ∈ X with 𝑥 ≼ 𝑢, 𝑢 ≼ V for all 𝑢 ∈ 𝑇𝑥 and
V ∈ 𝑇𝑦.
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Definition 35. A mapping 𝑇 : X → 𝐶𝐵(X) is called≼-continuous at a point 𝑥 ∈ X if, for any sequence {𝑥𝑛}
in X, 𝑥𝑛 ≼ 𝑥𝑛+1 and lim𝑛→∞𝑑(𝑥𝑛, 𝑥) = 0 implies that
lim𝑛→∞𝐻(𝑇𝑥𝑛, 𝑇𝑥) = 0 for all 𝑛 ∈ N0. We say that the
mapping 𝑇 is ≼-continuous onX if 𝑇 ≼ -continuous at every𝑥 ∈ X.

Corollary 36. Let 𝑇 : X → 𝐶𝐵(X) be ≼ −(𝜃, �) rational
contraction such that 𝑇 is a ≼-closed mapping and 𝑇 is ≼-
continuous. If there exists 𝑥0 such that 𝑥0 ≼ 𝑇𝑥0, then there
exists 𝑥 ∈ X such that 𝑥 ∈ 𝑇𝑥.
Proof. Define 𝛼, 𝜂 : X ×X → R+ by 𝛼(𝑥, 𝑦) = 1 whenever𝑥 ≼ 𝑦 and 𝛼(𝑥, 𝑦) = 0 whenever 𝑥  𝑦 and 𝜂(𝑥, 𝑦) = 1
whenever 𝑥 ≼ 𝑦. Thus, the result follows from Theorem 21.

Example 37. LetX = {0, 1, 2}. Define a metric 𝑑 onX by

𝑑 (0, 1) = 𝑑 (1, 0) = 7,
𝑑 (0, 2) = 𝑑 (2, 0) = 3,
𝑑 (1, 2) = 𝑑 (2, 1) = 4

(151)

Define 𝑥 ≼ 𝑦 by

≼fl {(0, 0) , (1, 1) , (2, 2) , (0, 1) , (0, 2)} . (152)

Note that X is a partially ordered metric space. Define the
mapping 𝑇 : X → 𝐶𝐵(X) by 𝑇0 = 𝑇2 = {0} and 𝑇1 = {2}.
It can easily be shown that 𝑇 is ≼-closed, ≼-continuous, and≼ −(𝜃, �) rational contraction for 𝜃(𝑡) = 𝑒√𝑡 and 𝑐 = 9/10. If𝑥0 = 0 and 𝑥1 = 1 ∈ 𝑇𝑥0, then we have 𝑥0 ≼ 𝑥1. Note that
all the conditions of Corollary 36 are satisfied and {0, 2} is the
set of fixed points of 𝑇.
Corollary 38. Suppose 𝑓 : X → X is a ≼ −(𝜃, �) rational
contraction. If 𝑓 is ≼-closed and ≼-continuous and there exists𝑥0 ∈ X such that 𝑥0 ≼ 𝑓𝑥0, then 𝑓 has a fixed point inX.

Corollary 39. Suppose 𝑓 : X → X is a ≼-closed and ≼-
continuous mapping that satisfies

𝜃 (𝑑 (𝑇𝑥, 𝑇𝑦)) ≤ (𝜃 (𝑑 (𝑥, 𝑦)))𝐻(𝑁(𝑥,𝑦)) (153)

for any 𝑥, 𝑦 ∈ X with 𝑥 ≼ 𝑦. Then 𝑓 has a fixed point inX.

We now apply the Corollary 38 in proving the existence
of solution of the first-order periodic problem.

Let X = (C[0,𝑊],R) be the space of all continuous
functions defined on [0,𝑊]. The metric onX is given by

𝑑 (𝑥, 𝑦) = max
𝑡∈[0,𝑊]

𝑥 (𝑡) − 𝑦 (𝑡) . (154)

Define the partial order onX by

𝑥 ≼ 𝑦 if and only if 𝑥 (𝑡) ≤ 𝑦 (𝑡) (155)

for all 𝑡 ∈ [0,𝑊]. Note that the space X = (C([0,𝑊]), 𝑑) is
partially ordered complete metric space. The following first-
order periodic problem is given by

𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0,𝑊]
𝜇 (0) = 𝜇 (𝑊) , (156)

where 𝑊 > 0 and 𝑓 : [0,𝑊] × R → R is a continuous
function. The problem in (156) can be written as

𝜇 (𝑡) + 𝜆𝜇 (𝑡) = 𝑓 (𝑡, 𝜇 (𝑡)) + 𝜆𝜇 (𝑡) ,
𝑡 ∈ [0,𝑊] and 𝜆 > 0

𝜇 (0) = 𝜇 (𝑊) .
(157)

Problem (157) is equivalent to

𝜇 (𝑡) = ∫𝑊
0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝜇 (𝑠) + 𝜆𝜇 (𝑠))] 𝑑𝑠 (158)

where 𝐺 : [0,𝑊] × [0,𝑊] → R is defined by

𝐺 (𝑡, 𝑠) = {{{{{{{

𝑒𝜆(𝑊+𝑠−𝑡)𝑒𝜆𝑊−1 , 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑊
𝑒𝜆(𝑠−𝑡)𝑒𝜆𝑊−1 , 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑊. (159)

Note that

∫𝑊
0

𝐺 (𝑡, 𝑠) 𝑑𝑠 = 1𝜆 . (160)

The following definition will be used in our theorem.

Definition 40. A lower solution for (156) is a function 𝛽 ∈𝐶([0,𝑊],R) differentiable on [0,𝑊] such that

𝛽 (𝑡) ≤ 𝑓 (𝑡, 𝛽 (𝑡)) , for all 𝑡 ∈ [0,𝑊] ,
𝛽 (0) ≤ 𝛽 (𝑊) . (161)

Theorem 41. Suppose that following conditions hold:

(1) 𝑓 : [0,𝑊] ×R → R is a continuous function;
(2) 𝑓(𝑠, .) : R → R is a nondecreasing function for each𝑠 ∈ [0,𝑊];
(3) there exists 𝑘 ∈ R+ where 𝑘/𝜆 < 1 such that𝑓 (𝑠, 𝜇 (𝑠)) + 𝜆𝜇 (𝑠) − 𝑓 (𝑠, ] (𝑠)) + 𝜆V (𝑠)≤ 𝑘𝑀(𝜇 (𝑠) , V (𝑠)) (162)

where

𝑀(𝜇 (𝑠) , ] (𝑠)) = max{𝑑 (𝜇 (𝑠) , ] (𝑠)) ,
𝑑 (𝜇 (𝑠) , 𝑓 (𝑠, 𝜇 (𝑠))) , 𝑑 (] (𝑠) , 𝑓 (𝑠, ] (𝑠))) ,
12𝑑 (𝜇 (𝑠) , 𝑓 (𝑠, ] (𝑠))) ,
𝑑 (] (𝑠) , 𝑓 (𝑠, ] (𝑠))) (1 + 𝑑 (𝜇 (𝑠) , 𝑓 (𝑠, 𝜇 (𝑠))))

1 + 𝑑 (𝜇 (𝑠) , ] (𝑠)) }

(163)

holds for all 𝜇 ≼ ] and 𝑠 ∈ [0,𝑊];
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(4) there exists a lower solution of problem (156).

Then problem (156) has a solution inX.

Proof. Let 𝜇 ∈ X. Define the integral operator 𝑇 : X → X
as

𝑇𝜇 (𝑡) = ∫𝑊
0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝜇 (𝑠)) + 𝜆𝜇 (𝑠)] 𝑑𝑠
for 𝑡 ∈ [0,𝑊] .

(164)

Clearly, 𝑇 is continuous. For any 𝜇, ] ∈ X such that 𝜇 ≼ ] we
obtain

𝑑 (𝑇𝜇, 𝑇]) = sup
𝑡∈[0,𝑊]

𝑇𝜇 (𝑡) − 𝑇] (𝑡)
≤ sup
𝑡∈[0,𝑊]

∫𝑊
0

𝐺 (𝑡, 𝑠)
⋅ 𝑓 (𝑠, 𝜇 (𝑠)) − 𝜆𝜇 (𝑠) − 𝑓 (𝑠, ] (𝑠)) − 𝜆] (𝑠) 𝑑𝑠
≤ sup
𝑡∈[0,𝑊]

∫𝑊
0

𝐺 (𝑡, 𝑠) 𝑘𝑀(𝜇 (𝑠) , ] (𝑠)) 𝑑𝑠
≤ 𝑘𝑀 (𝜇, ]) sup

𝑡∈[0,𝑊]
∫𝑊
0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ≤ 𝑘𝑀(𝜇, ])
𝜆 .

(165)

Since 𝑘/𝜆 < 1 we obtain
𝑑 (𝑇𝜇, 𝑇]) 𝑒𝑑(𝑇𝜇,𝑇]) ≤ 𝑘𝑀(𝜇, ])

𝜆 𝑒𝑘𝑀(𝜇,])/𝜆

≤ 𝑘𝑀(𝜇, ])
𝜆 𝑒𝑀(𝜇,]).

(166)

Passing through exponential, we have

𝑒𝑑(𝑇𝜇,𝑇])𝑒𝑑(𝑇𝜇,𝑇]) ≤ 𝑒(𝑘𝑀(𝜇,])/𝜆)𝑒𝑀(𝜇,]) = (𝑒𝑀(𝜇,])𝑒𝑀(𝜇,]))𝑘/𝜆 . (167)

Setting 𝑘/𝜆 = 𝑐, we obtain that

𝑒𝑑(𝑇𝜇,𝑇])𝑒𝑑(𝑇𝜇,𝑇]) ≤ (𝑒𝑀(𝜇,]))𝑒𝑀(𝜇,]))𝑐 . (168)

Thus,

𝜃 (𝑑 (𝑇𝜇, 𝑇])) ≤ (𝜃 (𝑀 (𝜇, ])))𝐹(𝑁(𝜇,])) (169)

for 𝜃(𝑡) = 𝑒𝑡𝑒𝑡 , 𝐹(𝑠1, 𝑠2, 𝑠3, 𝑠4) = 𝑐 where 𝑐 < 1 and 𝜇 ≼ ].
Since 𝑓(𝑠, .) is nondecreasing then for any 𝜇, ] ∈ X such that𝜇(𝑡) ≤ ](𝑡) for all 𝑡 ∈ [0,𝑊], we have

𝑇𝜇 (𝑡) = ∫𝑇
0
𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝜇 (𝑠)) + 𝜆𝜇 (𝑠)] 𝑑𝑠

≤ ∫𝑊
0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, ] (𝑠)) + 𝜆] (𝑠)] 𝑑𝑠
= 𝑇] (𝑡) .

(170)

Therefore, 𝑇 is ≼-closed. If 𝛽 ∈ X is a lower solution of (156),
then by simple calculations we have

𝛽 (𝑡) ≤ ∫𝑊
0

𝐺 (𝑡, 𝑠) [𝑓 (𝑠, 𝛽 (𝑠)) + 𝜆𝛽 (𝑠)] 𝑑𝑠
≤ (𝑇𝛽) (𝑡) .

(171)

Hence, by the Corollary 38, problem (156) has a solution in
X.

Remark 42. Our results generalize, extend, and refine several
results in the literature.

(1) Our results dealing with single valued mappings can
be viewed as an extension and generalization of
Banach fixed point theorem [1]. It is worth mention-
ing that the results in [15] are not a generalization of
the Banach fixed point theorem.

(2) Theorems 20 and 21 extend Nadler’s theorem [5],
Bianchini’s Theorem [19], and Hancer’s theorem [6].

(3) Corollaries 29 and 30 generalizeTheorems 2.3 and 2.4
in [4] and refine Theorems 2.5 and 2.7 in [15].
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