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SUBALGEBRA OF Mn(F ) OF INDEX m
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Abstract. The main result of this paper is the following: if F is any field
and R any F -subalgebra of the algebra Mn(F ) of n× n matrices over F with
Lie nilpotence index m, then

dimFR � M(m+ 1, n),

where M(m+ 1, n) is the maximum of 1
2

(
n2 −

∑m+1
i=1 k2i

)
+ 1 subject to the

constraint
∑m+1

i=1 ki = n and k1, k2, . . . , km+1 nonnegative integers. This
answers in the affirmative a conjecture by the first and third authors. The
case m = 1 reduces to a classical theorem of Schur (1905), later generalized by
Jacobson (1944) to all fields, which asserts that if F is an algebraically closed
field of characteristic zero and R is any commutative F -subalgebra of Mn(F ),

then dimFR �
⌊
n2

4

⌋
+ 1. Examples constructed from block upper triangular

matrices show that the upper bound of M(m+1, n) cannot be lowered for any
choice of m and n. An explicit formula for M(m+ 1, n) is also derived.
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1. Introduction

In 1905 Schur [15, Satz I, p. 67] proved that the dimension over the field of

complex numbers C of any commutative subalgebra of Mn(C) is at most
⌊
n2

4

⌋
+1,

where � � denotes the integer floor function. Some forty years later, Jacobson
[8, Theorems 1 and 2, p. 434] extended Schur’s result by showing that the upper
bound holds for commutative subalgebras of Mn(F ) for all fields F .

In a subsequent further improvement, Gustafson [7, Section 2, p. 558] showed
that Schur’s theorem in its most general form could be proved with much greater
efficiency using module theoretic methods. We record here that Gustafson’s elegant
arguments are the inspiration for a key proposition in this paper.

There have also appeared in the literature a number of papers offering alternative
proofs of Schur’s theorem and its subsequent extensions. In this regard, we refer
the reader to [18], [11] and [9].

In response to a question posed in [7, Section 5, Open problem (a), p. 562] Cowsik
[2] has proved a version of Schur’s theorem for artinian rings that are not algebras,
in which the module length of a faithful module substitutes for the dimension of
the F -space on which the matrices act.

The common approach to establishing Schur’s upper bound has been to show
that if F is a field and R a commutative F -subalgebra of Mn(F ), then there exist
positive integers k1 and k2 such that k1 + k2 = n and

dimFR � k1k2 + 1.

An application of rudimentary calculus then shows that

max{k1k2 + 1 : (k1, k2) ∈ N× N and k1 + k2 = n} =
⌊
n2

4

⌋
+ 1,

whence dimFR �
⌊
n2

4

⌋
+ 1.

The upper bound of
⌊
n2

4

⌋
+ 1 is, moreover, easily seen to be optimal. Indeed,

let F be any field and (k1, k2) any pair of positive integers satisfying k1 + k2 = n.
Define rectangular array B by

B
def
= {(i, j) ∈ N× N : 1 � i � k1 < j � n}

and subset J of Mn(F ) by

J
def
=

{ ∑
(i,j)∈B

bijE(i,j) : bij ∈ F ∀(i, j) ∈ B
}
,(1)

where E(i,j) denotes the matrix unit in Mn(F ) associated with position (i, j). Ob-
serve that J comprises the set of all block upper triangular matrices that correspond
with B; it has the following illuminating pictorial representation (the unshaded re-
gion in Figure 1 below corresponds with zero entries):
Denote by

FIn
def
= {aIn : a ∈ F} (In is the n× n identity matrix)
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J =

k1

k2

Figure 1

the set of all n× n scalar matrices over F , and define

R
def
= FIn + J.(2)

It is easily seen that R is a local F -subalgebra of Mn(F ) with (Jacobson) radical
J(R) = J such that J2 = 0. This entails that R is commutative. It is clear too
that

dimFR = k1k2 + 1.

The above simple construction shows that the upper bound⌊
n2

4

⌋
+ 1 = max{k1k2 + 1 : (k1, k2) ∈ N× N and k1 + k2 = n}

cannot be lowered for any n � 2 and is thus optimal, as claimed.
We construct now an F -subalgebra R of Mn(F ) similar to the one constructed

above, but whose radical J comprises m blocks rather than a single block. We
require first a compact notation for the description of such rings. To this end, let
k1, k2, . . . , km+1 be a sequence of positive integers such that k1+k2+· · ·+km+1 = n.
For each p ∈ {1, 2, . . . ,m}, define the rectangular array

Bp
def
=

⎧⎪⎪⎨
⎪⎪⎩
{(i, j) ∈ N× N : 1 � i � k1 < j � n} if p = 1,

{(i, j) ∈ N× N : k1 + k2 + · · ·+ kp−1 < i � k1 + k2 + · · ·+ kp

< j � n} if p > 1.

Put

B
def
=

m⋃
p=1

Bp.(3)
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Define J as in (1) but with B defined as in (3) above. The pictorial representation
of J shown in Figure 2 reveals a stack of m blocks.

··
··
··

··
··
··
··
·

J =

k1

k2

km

km+1

Figure 2

We shall call the F -algebra R defined as in (2) the algebra of n × n matrices
over F of type (k1, k2, . . . , km+1). We see that R is again a local F -subalgebra of
Mn(F ) with radical J(R) = J such that Jm+1 = 0 and

dimFR = k1(n− k1) + k2(n− k1 − k2) + · · ·
+ km(n− k1 − k2 − · · · − km) + 1

=
m∑
j=1

kj

(
n−

j∑
i=1

ki

)
+ 1.(4)

A routine inductive argument shows that the expression (less 1) appearing on the
right-hand side of (4) simplifies as

m∑
j=1

kj

(
n−

j∑
i=1

ki

)
=

1

2

(
n2 −

m+1∑
i=1

k2i

)
=

m+1∑
i,j=1, i<j

kikj ,

so that (4) becomes

dimFR =
1

2

(
n2 −

m+1∑
i=1

k2i

)
+ 1 =

m+1∑
i,j=1, i<j

kikj + 1.(5)

The algebra of n × n matrices over F of type (k1, k2, . . . , km+1) is clearly not
commutative (unless m = 1), but it does satisfy a weak form of commutativity
called Lie nilpotence. To put this notion in context, we first recall some basic facts
about Lie algebras.
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Let g be a Lie algebra1 and x1, x2, . . . , xm a finite sequence of elements in g. We
define element [x1, x2, . . . , xm]∗ of g recursively as follows:

[x1]
∗ def
= x1, and

[x1, x2, . . . , xm]∗
def
= [[x1, x2, . . . , xm−1]

∗, xm], for m > 1.

Recall that if h is any ideal of g, then the Lower Central Series {h[m]}m∈N of h is
defined by

h[m]
def
= {[x1, x2, . . . , xm]∗ : xi ∈ h for 1 � i � m}.

We say g is nilpotent if g[m] = 0 for some m ∈ N, m > 1, and more specifically,
nilpotent of index m if g[m+1] = 0.

Every ring R may be endowed with the structure of a Lie algebra (over the center
of R), by choosing as bracket the commutator defined by

∀r, s ∈ R, [r, s]
def
= rs− sr.

Following [17, p. 4785], we call a ring R Lie nilpotent [resp. Lie nilpotent of index
m] if R, considered as a Lie algebra via the commutator, is nilpotent [resp. nilpotent
of index m]. The reader will observe that the commutative rings are precisely the
rings that are Lie nilpotent of index 1.

A ring R is said to satisfy the Engel condition of index m if the identity

[x,

m times︷ ︸︸ ︷
y, . . . , y]∗ = 0

holds in R. A ring is said to satisfy the Engel condition if it satisfies the Engel
condition of index m for some m ∈ N. Clearly a ring that is Lie nilpotent of index
m satisfies the Engel condition of index m. The following result of Riley and Wilson
[14, p. 974] establishes a partial converse.

Proposition 1. If F is any field and R is an F -algebra that is generated by a finite
number d of elements and R satisfies the Engel condition of index m, then R is Lie
nilpotent of index f(d,m) � m, where the index f(d,m) depends only on d and m.

Lie nilpotent rings have been shown to play an important role in the proofs
of certain classical results about polynomial and trace identities in the F -algebra
Mn(F ) (see [5] and [6]). For fields F of characteristic zero, Kemer’s [10] pioneering
work on the T-ideals of associative algebras has revealed the importance of identities
satisfied by n× n matrices over the Grassmann (exterior) algebra

E = F 〈{xi : i ∈ N} : xixj + xjxi = 0, � i � j〉
generated by an infinite family {xi : i ∈ N} of anticommutative indeterminates. For
n× n matrices over a Lie nilpotent ring of index m, a Cayley-Hamilton identity of
degree nm (with left- or right-sided scalar coefficients) was found in [16]. Since the
Grassmann algebra E is Lie nilpotent of index m = 2, the aforementioned Cayley-
Hamilton identity for matrices in Mn(E) is of degree n2. In [3], Domokos presents
a slightly modified version of this identity in which the coefficients are invariant
under the conjugation action of GLn(F ).

1Our Lie algebras are over a commutative ring that is not necessarily a field. No harm shall
come of this more general interpretation since in the few instances where results about standard
Lie algebras are used, the underlying commutative ring is a field.
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This paper is an attempt to answer a conjecture posed in [17, p. 4785]. The
statement of this conjecture is rendered less cumbersome if expressed in terms of a
function M(�, n) of positive integer arguments � and n, defined as follows:

M(�, n)
def
= max

{
1

2

(
n2 −

�∑
i=1

k2i

)
+ 1 : k1, k2, . . . , k� are

nonnegative integers such that
�∑

i=1

ki = n

}
.(6)

Conjecture. Let F be any field, m and n positive integers, and R an F -subalgebra
of Mn(F ) with Lie nilpotence index m. Then

dimFR � M(m+ 1, n).(7)

We shall henceforth refer to the above as “the Conjecture”. More specifically, if F
is any fixed field, we shall say that “the Conjecture holds in respect of F” if (7)
holds for all positive integers m and n and F -subalgebras R of Mn(F ) with Lie
nilpotence index m.

If R is any algebra over a field F , then a module V over R is precisely a repre-
sentation of R via action on the underlying F -space structure on V . If the module
is faithful, then this representation is faithful, thus yielding an embedding of R
into EndF V , the F -algebra of F -space endomorphisms on V . If V is also finite
dimensional over F , say dimFV = n, then EndF V is isomorphic to Mn(F ), and
so we have an F -algebra embedding of R into Mn(F ). (We point out that such a
finite dimensional V is certain to exist if R is finite dimensional, for V can always
be chosen to be R itself.) Thus, seen through a representation theoretic lens, in-
equality (7) sheds light on a possible lower bound for the dimension of a faithful
module over a given Lie nilpotent algebra.

In the same spirit, Domokos [4, Theorem 1, p. 156] derives a lower bound for
the dimension of a faithful module over a finite dimensional algebra satisfying the
polynomial identity [x1, y1][x2, y2] · · · [xm, ym] = 0, in terms of m.

Our initial task, which is easily accomplished, shall be to argue that the upper
bound (7) is optimal for all choices of m and n.

Suppose first that m + 1 � n. It is proven in Corollary 27(a) that for such m

and n, M(m+1, n) = 1
2

(
n2 −

∑m+1
i=1 k2i

)
+1 for some sequence of positive integers

k1, k2, . . . , km+1 satisfying
∑m+1

i=1 ki = n. Let F be any field and R the algebra
of n × n matrices over F of type (k1, k2, . . . , km+1). As noted earlier, R has the
form R = FIn + J with radical J satisfying Jm+1 = 0. Since the set FIn of scalar
matrices is central in R, it can be shown that the kth terms of the Lower Central
Series for R (interpreted as a Lie algebra via the commutator) and J coincide, that
is to say, R[k] = J[k] for k > 1. It is also evident that J[k] ⊆ Jk for every k ∈ N.

Thus R[m+1] = J[m+1] ⊆ Jm+1 = 0, so R is Lie nilpotent of index m. It follows

from (5) that dimFR = 1
2

[
n2 −

∑m+1
i=1 k2i

]
+ 1 = M(m+ 1, n).

Now suppose m+1 > n. No generality is lost if we suppose n > 1. It is proven in
Corollary 27(b) that for such m and n, M(m+1, n) = M(n, n) = 1

2 (n
2−n)+1, and

this, by (5), is equal to dimFR where R is the algebra of n× n matrices over field
F of type (k1, k2, . . . , kn) with k1 = k2 = · · · = kn = 1. (The reader will see that
in this instance, R is just the algebra of all upper triangular matrices over F with
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constant main diagonal.) As shown in the previous paragraph, such an algebra R
is Lie nilpotent of index n− 1 and thus Lie nilpotent of index m, since m � n− 1.

The theorem below collects together the conclusions drawn above.

Theorem 2. Let F be any field, and m and n arbitrary positive integers. Then
there exists an F -subalgebra R of Mn(F ) with Lie nilpotence index m such that

dimFR = M(m+ 1, n).

The main body of theory in this paper is developed in Sections 5 and 6 with
module theoretic methods our primary tools. Sections 3 and 4 show that the Con-
jecture reduces to a consideration of local subalgebras of upper triangular matrix
rings over an algebraically closed field. Section 7, which can be read independently
of earlier sections, establishes important properties of the function M(�, n) required
in earlier theory. An explicit formula for M(�, n) is also derived which is then shown
to have a more simplified form for small values of �. In Section 8 the algebra of
n× n matrices of type (d1, d2, . . . , d�) is used to provide a pictorial representation
of the objects introduced in earlier theory. The content of Section 9, which is titled
“Open questions”, is self-evident.

2. Preliminaries

The symbol ⊆ denotes containment and ⊂ proper containment for sets.
If X is any set, then Xn denotes the cartesian product of n copies of X.
N and N0 will denote the sets of positive integers and nonnegative integers,

respectively.
All rings are associative and possess identity, and all modules are unital.
Let R be a ring and V a right R-module. We write W � V to indicate that W

is a submodule of V . If X is a nonempty subset of V and I is a right ideal of R,
then

(0 :I X)
def
= {a ∈ I : Xa = 0} = I ∩ (0 :R X).

Observe that (0 :I X) is always a right ideal of R.
Let F be a field. For each n ∈ N, Mn(F ) (resp. Un(F )) (resp. U∗

n(F )) shall
denote the F -algebra of all n × n matrices over F (resp. upper triangular n × n
matrices over F ) (resp. upper triangular n×n matrices over F with constant main
diagonal).

3. The passage to local algebras

over an algebraically closed field

In this section we show that the Conjecture reduces to a consideration of local
algebras over an algebraically closed field.

Lemma 3. Let F be a subfield of field K and R an F -algebra. Let r1 ⊗ b1, r2 ⊗
b2, . . . , rm ⊗ bm ∈ R⊗F K with ri ∈ R and bi ∈ K for i ∈ {1, 2, . . . ,m}. Then

[r1 ⊗ b1, r2 ⊗ b2, . . . , rm ⊗ bm]∗ = [r1, r2, . . . , rm]∗ ⊗ (b1b2 · · · bm).

Proof. We provide only a proof of the inductive step.
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Putting r = [r1, r2, . . . , rm]∗ and b = b1b2 · · · bm we see that

[r1 ⊗ b1, r2 ⊗ b2, . . . , rm+1 ⊗ bm+1]
∗

= [r ⊗ b, rm+1 ⊗ bm+1] [by the inductive hypothesis]

= (r ⊗ b)(rm+1 ⊗ bm+1)− (rm+1 ⊗ bm+1)(r ⊗ b)

= (rrm+1)⊗ (bbm+1)− (rm+1r)⊗ (bm+1b)

= (rrm+1)⊗ (bbm+1)− (rm+1r)⊗ (bbm+1) [because K is a field

so bm+1b = bbm+1]

= (rrm+1 − rm+1r)⊗ (bbm+1)

= [r1, r2, . . . , rm+1]
∗ ⊗ (b1b2 · · · bm+1). �

Proposition 4. Let F be a subfield of field K and R an F -subalgebra of Mn(F ).
Then:

(a) dimFR = dimK(R⊗F K).
(b) R ⊗F K is isomorphic to a K-subalgebra of Mn(K).
(c) If R is Lie nilpotent of index m, then so is R ⊗F K.

Proof. (a) is standard theory; see for example [1, Exercise 19.3, p. 231].
(b) The hypothesis entails that R⊗F K is a K-subalgebra of Mn(F )⊗F K. The

result follows noting that Mn(F )⊗F K ∼= Mn(K) as K-algebras (see [12, Chapter
9, Exercise 10, p. 94]).

(c) Suppose R is Lie nilpotent of index m. Take x1, x2, . . . , xm+1 ∈ R ⊗F K.
Since the expression [x1, x2, . . . , xm+1]

∗ is additive in each of its m+ 1 arguments,
[x1, x2, . . . , xm+1]

∗ is expressible as a sum of elements of the form [r1 ⊗ b1, r2 ⊗
b2, . . . , rm+1 ⊗ bm+1]

∗ where ri ∈ R and bi ∈ K for i ∈ {1, 2, . . . ,m + 1}. By
Lemma 3

[r1 ⊗ b1, r2 ⊗ b2, . . . , rm+1 ⊗ bm+1]
∗

= [r1, r2, . . . , rm+1]
∗ ⊗ (b1b2 · · · bm+1)

= 0⊗ (b1b2 · · · bm+1) [because R is Lie nilpotent of index m]

= 0.

It follows that [x1, x2, . . . , xm+1]
∗ = 0, so R ⊗F K is Lie nilpotent of index m. �

Theorem 5. Let C be a nonempty class of fields and C the class of all subfields of
fields in C. The following statements are equivalent:

(a) The Conjecture holds in respect of all fields in C;
(b) The Conjecture holds in respect of all fields in C.

Proof. (b)⇒(a) is obvious since C ⊆ C.
(a)⇒(b): Let m and n be positive integers, F ∈ C, and R an F -subalgebra of

Mn(F ) with Lie nilpotence index m. We must show that dimFR � M(m+ 1, n).
Choose field extension K of F such that K ∈ C. By Proposition 4(b) and (c), the

K-algebra R⊗F K is Lie nilpotent of index m and is isomorphic to a K-subalgebra



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE MAXIMUM DIMENSION OF A LIE NILPOTENT SUBALGEBRA 4561

of Mn(K). By part (a) of this theorem, dimK(R⊗F K) � M(m+ 1, n). Hence by
Proposition 4(a),

dimFR = dimK(R⊗F K) � M(m+ 1, n),

as required. �

It follows from Theorem 5 that the Conjecture will hold for a given field F if it
can be shown to hold for the algebraic closure of F . We shall exploit this fact in
the next section.

Proposition 6. Every idempotent in a ring satisfying the Engel condition is cen-
tral.

Proof. If R is an arbitrary ring and e = e2 ∈ R, then a routine calculation shows
that for each a ∈ R,

[[1− e, (1− e)a], e] = (1− e)ae.

Putting α = (1 − e)ae we see that αe = α and eα = 0, from which it follows that
[α, e] = α. Iterating, we obtain

[[α, e], e] = α,

[[[α, e], e], e] = α, and in general

[α,

m︷ ︸︸ ︷
e, e, . . . , e]∗ = α, for each m ∈ N.

If R satisfies the Engel condition of index m, then we have

α = [α,

m︷ ︸︸ ︷
e, e, . . . , e]∗ = 0,

and so

(1− e)ae = 0.(8)

Interchanging the roles of e and 1− e in the above argument yields

ea(1− e) = 0.(9)

Equations (8) and (9) imply that ae− eae = 0 and ea− eae = 0, whence ea = ae.
We conclude that e is central. �

Proposition 7. Every right artinian ring satisfying the Engel condition is isomor-
phic to a finite direct product of local rings.

Proof. It is known (see [1, Theorem 27.6, p. 304] or [12, Theorem 5.9, p. 49])
that every right artinian ring R contains a complete set of primitive orthogonal
idempotents {e1, e2, . . . , ek} such that R decomposes as

RR
∼= e1R⊕ e2R⊕ · · · ⊕ ekR,

where each eiR has unique maximal proper submodule eiJ(R). If R satisfies the
Engel condition, then each idempotent ei is central by Proposition 6, so the above
decomposition is a decomposition of (two-sided) ideals with each eiR = eiRei a
local ring. �

Lemma 8. Let F be a field and e an idempotent of Mn(F ). If rank e = r, then
eMn(F )e ∼= Mr(F ) as F -algebras.
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Proof. Since rank e = r, F (n)e has dimension r as an F -space, so F (n)e ∼= F (r) as
F -spaces. Then

eMn(F )e ∼= EndF

(
F (n)e

)
∼= EndF

(
F (r)

)
∼= Mr(F ).

�

The following theorem tells us that for a given field F , the Conjecture will hold
for all F -subalgebras of Mn(F ) if it can be shown to hold for all local F -subalgebras
of Mn(F ).

Theorem 9. The following statements are equivalent for a field F :

(a) The Conjecture holds in respect of F ;
(b) for all positive integers m and n, if R is any local F -subalgebra of Mn(F )
with Lie nilpotence index m, then

dimFR � M(m+ 1, n).

Proof. (a)⇒(b) is obvious.
(b)⇒(a): Let m and n be positive integers and R an F -subalgebra of Mn(F )

with Lie nilpotence index m. Note that R satisfies the Engel condition of index
m. Since R is a finite dimensional F -algebra, it is right (and left) artinian, and so
by Proposition 7, R ∼= R1 × R2 × · · · × Rk where each Ri is a local right artinian
ring. This entails the existence of a complete set of central primitive orthogonal
idempotents {e1, e2, . . . , ek} in R such that

RR
∼= e1R⊕ e2R⊕ · · · ⊕ ekR(10)

with eiR = eiRei ∼= Ri for each i ∈ {1, 2, . . . , k}. For each i ∈ {1, 2, . . . , k} put

ri
def
= rank ei.(11)

The equation 1R = In = e1 + e2 + · · ·+ ek induces the F -space decomposition

F (n) = F (n)e1 ⊕ F (n)e2 ⊕ · · · ⊕ F (n)ek.

Thus

n = dimFF
(n)

= dimF (F
(n)e1) + dimF (F

(n)e2) + · · ·+ dimF (F
(n)ek)

= r1 + r2 + · · ·+ rk [by (11)].(12)

Observe that each local ring eiR is an F -subalgebra of eiMn(F )ei and that
eiMn(F )ei ∼= Mri(F ) for each i ∈ {1, 2, . . . , k} by Lemma 8. It is clear too that
each eiR must be Lie nilpotent of index m, since R has the same property and
eiR ⊆ R.

The aforementioned facts, together with (b), imply that

dimF (eiR) � M(m+ 1, ri)

for each i ∈ {1, 2, . . . , k}.
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Then

dimFR =
k∑

i=1

dimF (eiR) [by (10)]

�
k∑

i=1

M(m+ 1, ri)

� M

(
m+ 1,

k∑
i=1

ri

)
[by Proposition 28]

= M(m+ 1, n) [by (12)].

�

4. Simultaneous triangularization and the passage to

upper triangular matrix rings

The main result of this section (Theorem 12) shows that for algebraically closed
fields F , the Conjecture reduces to a consideration of F -subalgebras of U∗

n(F ), the
algebra of upper triangular matrices over F with constant main diagonal.

Recall that an F -subalgebra R of Mn(F ) is said to be simultaneously upper tri-
angularizable in Mn(F ) if there exists an invertible U ∈ Mn(F ) such that U−1RU ⊆
Un(F ).

A key result is the following. Although implicit in [8, Theorem 1, p. 434] we
shall provide a proof in the absence of a suitable reference.

Proposition 10. Let F be an algebraically closed field.

(a) If R is a finite dimensional local F -algebra, then R has F -space decom-
position R = F · 1R ⊕ J(R).
(b) If R is a local F -subalgebra of Mn(F ), then there exists an invertible
U ∈ Mn(F ) such that U−1RU ⊆ U∗

n(F ). Thus, R is isomorphic to an
F -subalgebra of U∗

n(F ).

Proof. (a) Since R is local, it follows that R/J(R) is a division algebra that is finite
dimensional over F . Since F is algebraically closed this implies that R/J(R) ∼= F .
Inasmuch as F · 1R ∩ J(R) = 0, the equation

dimF (F · 1R + J(R)) = 1 + dimFJ(R)

= dimF (R/J(R)) + dimFJ(R)

= dimFR

entails that R = F · 1R ⊕ J(R).
(b) It is known (see [13, Theorem 1.4.6, p. 12]) that for an algebraically closed

field F , a necessary and sufficient condition for an F -subalgebra R of Mn(F ) to be
simultaneously upper triangularizable in Mn(F ) is that R/J(R) is commutative, a
condition that is clearly met in our case. Hence U−1RU ⊆ Un(F ) for some invertible
U ∈ Mn(F ). Putting S = U−1RU we note that since S is local, S = FIn ⊕ J(S)
by (a). Since every element of J(S) is a nilpotent matrix in Un(F ), and a nilpotent
upper triangular matrix is strictly upper triangular, we have

U−1RU = S = FIn ⊕ J(S) ⊆ U
∗
n(F ). �
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Remark 11.
(a) The observation that the factor ring R/J(R) is commutative is key in the

proof of Proposition 10(b). We point out that this property is possessed by all
Lie nilpotent rings. Indeed, [17, Proposition 3.1(3), p. 4790] asserts that if rad(R)
denotes the prime radical of a Lie nilpotent ring R, then R/ rad(R) is commutative.
Since rad(R) ⊆ J(R), the commutativity of R/J(R) follows.

(b) If F is an algebraically closed field of characteristic zero (the latter assump-
tion is not made in Proposition 10) and R is any Lie nilpotent F -subalgebra of
Mn(F ), then R can be shown to be simultaneously upper triangularizable in Mn(F )
as a consequence of Lie’s theorem, which asserts that if g is a finite dimensional
solvable Lie algebra with representation Mn(F ), then g is simultaneously upper
triangularizable in Mn(F ). Lie’s theorem applies inasmuch as every Lie nilpotent
ring is a nilpotent Lie algebra with respect to the commutator, and nilpotent Lie
algebras are solvable. (This latter fact is explained in the second open question of
Section 9.)

Theorem 12. The following statements are equivalent for an algebraically closed
field F :

(a) The Conjecture holds in respect of F ;
(b) for all positive integers m and n, if R is any local F -subalgebra of Mn(F )
with Lie nilpotence index m, then

dimFR � M(m+ 1, n);

(c) for all positive integers m and n, if R is any F -subalgebra of U∗
n(F ) with

Lie nilpotence index m, then

dimFR � M(m+ 1, n).

Proof. (a) and (b) are equivalent by Theorem 9 without any restriction on the field
F .

The equivalence of (b) and (c) is a consequence of Proposition 10(b), which tells
us that up to isomorphism, the local F -subalgebras of Mn(F ) are precisely the
F -subalgebras of U∗

n(F ). �

5. Subalgebras of U∗
n(F )

The main body of theory is developed in this section.
Throughout this section and unless otherwise stated, F shall denote a field and

R an F -subalgebra of U∗
n(F ).

Let V be a faithful right R-module. We define a sequence {Rk}k∈N of F -
subalgebras of R, a sequence {Jk}k∈N where each Jk is an ideal of Rk, and a
sequence {Uk}k∈N of F -subspaces of V as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
R1

def
= R,

J1
def
= J(R1), and

U1
def
= any F -subspace complement of V J1 in V .
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For k ∈ N, k � 2, define⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Rk
def
= FIn + (0 :Rk−1 Uk−1),

Jk
def
= J(Rk), and

Uk
def
= any F -subspace complement of V J1J2 · · ·Jk in

V J1J2 · · ·Jk−1.

(13)

It follows from the definition of Uk that

V J1J2 · · ·Jk−1 = Uk ⊕ V J1J2 · · ·Jk(14)

as F -spaces.
For convenience we put J0 = R.
Since (0 :Rk−1 Uk−1) ⊆ Rk−1 and since every F -subalgebra of U∗

n(F ) contains
FIn, it is clear from the definition of Rk in (13) that Rk−1 ⊇ Rk for every k ∈ N,
k � 2. We thus have

R1 ⊇ R2 ⊇ · · · .(15)

It is easily shown that if S and T are any F -subalgebras of U∗
n(F ), then S ⊆ T if

and only if J(S) ⊆ J(T ). In the light of this observation, (15) implies that

J1 ⊇ J2 ⊇ · · · .(16)

Since Jk ⊆ J1 for all k ∈ N and J1 is nilpotent, we must have J0J1 · · ·Jk = 0 for k
sufficiently large. Define

�
def
= min{k ∈ N : J0J1 · · · Jk = 0}.(17)

It follows from (16) that J0J1 · · ·Jk−1 ⊇ J0J1 · · ·Jk for each k ∈ N. We thus have
the descending chain

R = J0 ⊇ J0J1 ⊇ · · · ⊇ J0J1 · · · J�−1 ⊇ J0J1 · · ·J� = 0.

This, in turn, induces a descending chain

V = V J0 ⊇ V J0J1 ⊇ · · · ⊇ V J0J1 · · ·J�−1 ⊇ 0.(18)

Note that V J0J1 · · ·J�−1 �= 0 since J0J1 · · ·J�−1 �= 0 and V is a faithful right
R-module.

Recall that if R is an arbitrary ring, then a submodule N of a right R-module
M is said to be superfluous if

∀L � M, N + L = M ⇒ L = M.

Lemma 13. If I is a nilpotent ideal of an arbitrary ring R and M is any right
R-module, then MI is a superfluous submodule of M .

Proof. Suppose MI+L = M with L � M . Multiplying by I we obtain MI2+LI =
MI, so MI2 + LI + L = MI + L = M . Continuing in this way, we obtain
MIk +L = M for all k ∈ N. Since I is nilpotent this yields, for k sufficiently large,
the equation MIk + L = M · 0 + L = L = M . �

Important properties of the chain (18) are established in the next lemma.
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Lemma 14. Let the sequences {Rk}k∈N, {Jk}k∈N and {Uk}k∈N be defined as in
(13), and let positive integer � be defined as in (17). Let k ∈ {1, 2, . . . , �}. Then:

(a) V J0J1 · · ·Jk is a superfluous Rk-submodule of V J0J1 · · · Jk−1;
(b) UkRk = V J0J1 · · · Jk−1 = Uk ⊕ · · · ⊕ U�;
(c) Jk+1 = (0 :Rk Uk);
(d) V J0J1 · · ·Jk−1 is a faithful right Rk-module.

Proof. (a) That V J0J1 · · · Jk is a right Rk-module is a consequence of the fact
that J0J1 · · · Jk is an F -subspace of R that is closed under right multiplication by
elements from Rk.

Since Rk ⊆ Rk−1, every right Rk−1-module is canonically a right Rk-module. In
particular, V J0J1 · · ·Jk−1 is a right Rk-module.

It remains to show that V J0J1 · · · Jk is superfluous in V J0J1 · · ·Jk−1. Put U =
V J0J1 · · · Jk−1. Since Jk ⊆ J1 and J1 is nilpotent, Jk must also be nilpotent. It
follows from Lemma 13 that UJk is a superfluous submodule of U , as required.

(b) Since UkRk ⊇ Uk, it follows from (14) that

V J0J1 · · ·Jk−1 = UkRk + V J0J1 · · · Jk,

where the right-hand side of the above equation is a sum of Rk-submodules of
V J0J1 · · · Jk−1. Since V J0J1 · · ·Jk is a superfluous Rk-submodule of V J0J1 · · ·Jk−1

by (a), we must have UkRk = V J0J1 · · · Jk−1.
To establish the equation V J0J1 · · ·Jk−1 = Uk ⊕ · · · ⊕ U�, we note first that the

Ui constitute an independent family of F -subspaces of V . This is clear from the
definition of the Ui in (13). This means that the sum Uk ⊕ · · · ⊕ U� is indeed a
direct sum of F -subspaces. It remains to establish equality.

Since, by (13), U� is an F -subspace complement of V J0J1 · · ·J� in V J0J1 · · ·J�−1,
and since V J0J1 · · ·J� = 0 by definition of �, we must have

V J0J1 · · ·J�−1 = U�.

Repeated application of the formula for Uk in (13) shows that

V J0J1 · · ·J�−2 = U�−1 ⊕ U�

and, more generally, that

V J0J1 · · · Jk−1 = Uk ⊕ · · · ⊕ U�,

as required.
(c) Since k − 1 < �, it follows from (b) and the minimality of � that UkRk =

V J0J1 · · · Jk−1 �= 0, whence Uk �= 0. This means that (0 :Rk Uk) must be a
proper right ideal of Rk and so cannot contain any units of Rk. Inasmuch as Rk

is an F -subalgebra of U∗
n(F ), (0 :Rk Uk) must therefore comprise strictly upper

triangular matrices. Since, by (13), Rk+1 = FIn + (0 :Rk Uk), we must have
Jk+1 = J(Rk+1) = (0 :Rk Uk).

(d) We use induction on k. Take k = 1. Then V J0J1 · · ·Jk−1 = V J0 = V , which
is a faithful R1-module by hypothesis. This establishes the base case.

To establish the inductive step, take t ∈ Rk with k � 2 and suppose that

(19) (V J0J1 · · ·Jk−1)t = 0.
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Since V J0J1 · · ·Jk−1 �= 0, t cannot be a unit of Rk, and since Rk is local, we must
have t ∈ Jk. By (c), Jk = (0 :Rk−1 Uk−1), so

Uk−1t = 0.(20)

We thus have

(V J0J1 · · ·Jk−2)t = (Uk−1 + V J0J1 · · ·Jk−1)t [by (14)]

= 0 [by (19) and (20)].

By the inductive hypothesis, V J0J1 · · · Jk−2 is a faithful right Rk−1-module. Since
t ∈ Jk ⊆ Rk ⊆ Rk−1, the above equation entails t = 0. We conclude that
V J0J1 · · · Jk−1 is a faithful Rk-module. �

Remark 15.
(a) Taking k = 1 in Lemma 14(b) yields the F -subspace decomposition

V = U1 ⊕ U2 ⊕ · · · ⊕ U�.(21)

Substituting the equation V J0J1 · · ·Jk−1 = Uk ⊕· · ·⊕U� of Lemma 14(b) into (21)
yields

V = U1 ⊕ · · · ⊕ Uk−1 ⊕ V J0J1 . . . Jk−1.(22)

(b) The faithfulness of V J0J1 · · · Jk−1 proved in Lemma 14(d) means that
(V J0J1 · · ·Jk−1)Jk = 0 if and only if Jk = 0. Moreover, since V is faithful as
a right R-module, we have that

V J0J1 · · ·Jk = 0 ⇔ J0J1 · · ·Jk = 0.

It follows that

J0J1 · · ·Jk = 0 ⇔ Jk = 0.

This has the consequence that

� = min{k ∈ N : J0J1 · · · Jk = 0} = min{k ∈ N : Jk = 0}.

Proposition 16. Let the sequences {Rk}k∈N, {Jk}k∈N and {Uk}k∈N be defined as
in (13), and let positive integer � be defined as in (17). Then

R = R1 ⊃ R2 ⊃ · · · ⊃ R� = R�+1 = · · ·
is a strictly descending chain of F -subalgebras of U∗

n(F ) that stabilizes at R�. More-
over, J� = 0, so that R� = FIn.

Proof. Suppose Rk = Rk+1 for some k � �. Note that we cannot have Uk = 0 since
this would imply, by Lemma 14(b), that V J0J1 · · ·Jk−1 = 0, which contradicts the
fact that V J0J1 · · · Jk−1 ⊇ V J0J1 · · · J�−1 �= 0. Now

0 = UkJk+1 [because Jk+1 = (0 :Rk Uk) by Lemma 14(c)]

= UkJk [because Jk = J(Rk) = J(Rk+1) = Jk+1 by hypothesis]

= (UkRk)Jk [because Jk is an ideal of Rk]

= (V J0J1 · · ·Jk−1)Jk [by Lemma 14(b)].

Since k � � it follows from the minimality of � that k = �. We have thus proven
that Rk ⊃ Rk+1 for k ∈ {1, 2, . . . , �− 1}.
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In Remark 15(b) we noted that J� = 0. Since R� ⊆ U∗
n(F ), this entails that R� =

FIn. However, since every F -subalgebra of U∗
n(F ) contains FIn, the descending

chain of F -subalgebras must stabilize at R�. �

Let the sequences {Rk}k∈N, {Jk}k∈N and {Uk}k∈N be defined as in (13), and let
positive integer � be defined as in (17). For each k ∈ {1, 2, . . . , �} define

dk
def
= dimFUk.(23)

A key step in the proof of Theorem 17(c) below is inspired by [7, Section 2.
Proof of Schur’s Inequality, p. 558].

Theorem 17. Let the sequences {Rk}k∈N, {Jk}k∈N and {Uk}k∈N be defined as in
(13), positive integer � defined as in (17), and {dk : 1 � k � �} defined as in (23).
Then:

(a) dimF (UkJk) = dimFV −
k∑

i=1

di for each k ∈ {1, 2, . . . , �}.

(b) dimFV =

�∑
i=1

di.

(c) dimFR � M(�, dimFV ).

Proof. (a) Inasmuch as

V = U1 ⊕ · · · ⊕ Uk ⊕ V J0J1 · · · Jk [by (22)]

= U1 ⊕ · · · ⊕ Uk ⊕ (V J0J1 · · ·Jk−1)Jk

= U1 ⊕ · · · ⊕ Uk ⊕ (UkRk)Jk [by Lemma 14(b)]

= U1 ⊕ · · · ⊕ Uk ⊕ UkJk [because Jk is an ideal of Rk],

we have dimFV = d1 + · · ·+ dk + dimF (UkJk), from which (a) follows.
(b) is an immediate consequence of (21) and (23).
(c) If � = 1, then J = J� = 0, so dimFR = 1 = M(1, dimFV ), and there is

nothing further to prove. Suppose � � 2.
We next derive the recursive formula

dimFJk � dk

(
dimFV −

k∑
i=1

di

)
+ dimFJk+1 (1 � k � �).(24)

To this end, take k ∈ {1, 2, . . . , �}, X ∈ Jk, and let ρX : Uk → UkJk be the right
multiplication by X map. Observe that ρX is an F -linear map and thus a member
of HomF (Uk, UkJk).
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Define the map Θ : Jk → HomF (Uk, UkJk) by Θ(X) = ρX . It is also easily seen
that Θ is an F -linear map. Note that

Ker Θ = {X ∈ Jk : ρX = 0}
= {X ∈ Jk : UkX = 0}

= (0 :Jk Uk)

= Jk ∩ (0 :Rk Uk)

= Jk ∩ Jk+1 [by Lemma 14(c)]

= Jk+1 [because Jk ⊇ Jk+1].(25)

We thus have

dimFJk = rankΘ + nullityΘ

� dimF (HomF (Uk, UkJk)) + dimFJk+1 [by (25)]

= dimFUk · dimF (UkJk) + dimFJk+1

= dk

(
dimFV −

k∑
i=1

di

)
+ dimFJk+1 [by (a)],

which is (24).
Letting k take on the values from 1 to �− 1 in (24), we see that

dimFJ1 �
�−1∑
j=1

dj

(
dimFV −

j∑
i=1

di

)
+ dimFJ�

=
�−1∑
j=1

dj

(
dimFV −

j∑
i=1

di

)
[because J� = 0]

=
1

2

(
(dimFV )2 −

�∑
i=1

d2i

)
[because dimFV =

�∑
i=1

di by (b)]

� M(�, dimFV )− 1 [by the definition of M(�, dimFV )

noting that dimFV =
∑�

i=1 di].(26)

Since R has F -space decomposition R = FIn ⊕ J , we have

dimFR = 1 + dimFJ

= 1 + dimFJ1 [because J = J1]

� 1 +M(�, dimFV )− 1 [by (26)]

= M(�, dimFV ).

�

In Proposition 29 it is shown that M(�, n) is an increasing function in both
arguments. This means, with reference to Theorem 17(c), that the smaller the
value of �, the lower the upper bound M(�, dimFV ) for dimFR.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

4570 J. SZIGETI, J. VAN DEN BERG, L. VAN WYK, AND M. ZIEMBOWSKI

We shall show presently that if the F -subalgebra R of U∗
n(F ) has radical J

satisfying Jm = 0 for some m ∈ N, then the value of � cannot exceed m, and so

dimFR � M(m, dimFV ).

In the next section we shall strengthen the above by proving that if R has Lie
nilpotence index m (this is the case if Jm+1 = 0), then the value of � cannot exceed
m+ 1, from which we may deduce that

dimFR � M(m+ 1, dimFV ).

Since the di are positive in Theorem 17(b), we must have � � dimFV . A combi-
nation of Theorem 17(c), the fact that M(�, n) is increasing in its first argument
(Proposition 29), and the formula for M(n, n) derived in Corollary 27(a) yields:

Corollary 18. If R is an F -subalgebra of U∗
n(F ) and V is any faithful right R-

module, then

dimFR � M(dimFV, dimFV ) = 1
2

(
(dimFV )2 − dimFV

)
+ 1.

Remark 19. If V = Fn =

n times︷ ︸︸ ︷
F × F × · · · × F is interpreted as a 1× n matrix over F ,

then it has the canonical structure of a faithful right module with respect to any
F -subalgebra of the matrix algebra Mn(F ). For such a module V , we have

dimFV = n.

This allows us to replace dimFV with n in each of the results in this, and subsequent,
sections. In particular, taking dimFV = n in the previous corollary yields the upper
bound

dimFR � 1
2 (n

2 − n) + 1,

an observation that has little value, since the expression 1
2 (n

2 − n) + 1 coincides
with the dimension of the overlying F -algebra U

∗
n(F ).

Proposition 20. Let the sequences {Rk}k∈N, {Jk}k∈N and {Uk}k∈N be defined as
in (13), and let positive integer � be defined as in (17). If Jm = 0 for some m ∈ N,
then � � m.

Proof. Inasmuch as J0J1 · · ·Jm ⊆ Jm = 0, it follows from the definition of � in (17)
that � � m. �

Corollary 21. If R is an F -subalgebra of U∗
n(F ) satisfying Jm = 0 and V is any

faithful right R-module, then

dimFR � M(m, dimFV ).

Proof. It follows from Theorem 17(c) and Proposition 20 that there exists a positive
integer � � m such that dimFR � M(�, dimFV ). By Proposition 29, M(�, dimFV )
� M(m, dimFV ), whence dimFR � M(m, dimFV ). �
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6. Lie nilpotent subalgebras of U∗
n(F ): The main theorem

A routine inductive argument establishes the following.

Lemma 22. Let R be an arbitrary ring and {ri : 1 � i � m} ⊆ R. Then

[r1, r2, . . . , rm]∗ =
∑

σ∈Sm

cσrσ(1)rσ(2) · · · rσ(m),

where cσ ∈ {−1, 0, 1} for all σ ∈ Sm and {σ ∈ Sm : cσ �= 0 and σ(1) = 1} is a
singleton comprising the identity permutation.

Proposition 23. Let the sequences {Rk}k∈N, {Jk}k∈N and {Uk}k∈N be defined as
in (13), and positive integer � defined as in (17). If R is Lie nilpotent of index m,
then � � m+ 1.

Proof. By Lemma 14(c), we have J2 = (0 :R U1). Pick arbitrary r ∈ R and
bk ∈ Jk for each k ∈ {2, . . . ,m + 1}. Since U1J2 = 0 and J2 ⊇ J3 ⊇ · · · ⊇ Jm+1,
we have U1bk = 0 for all k ∈ {2, . . . ,m + 1}. Thus, using Lemma 22, we see
that U1[r, b2, . . . , bm+1]

∗ = U1rb2 · · · bm+1. But R is Lie nilpotent of index m, so
[r, b2, . . . , bm+1]

∗ = 0, whence U1rb2 · · · bm+1 = 0. Since r is arbitrary, we get

0 = (U1R)b2 · · · bm+1

= V b2 · · · bm+1 [because U1R = V by Lemma 14(b)],

from which we infer that b2 · · · bm+1 = 0 since V is faithful. It follows that
J2 · · ·Jm+1 = 0, so � � m+ 1 by definition of �. �

Theorem 24. For all positive integers m and n and fields F , if R is any F -
subalgebra of U∗

n(F ) with Lie nilpotence index m, then

dimFR � M(m+ 1, n).

Proof. Let m and n be arbitrary positive integers, and F an arbitrary field. Let R
be an F -subalgebra of U∗

n(F ) with Lie nilpotence index m. If sequences {Rk}k∈N,
{Jk}k∈N and {Uk}k∈N are defined as in (13) and positive integer � is defined as in
(17), then it follows from Theorem 17(c) that

dimFR � M(�, dimFV ).

Choose V to be Fn, so that dimFV = n (see Remark 19). By Proposition 23,
� � m + 1. Since M(�, n) is increasing in its first argument by Proposition 29, we
have

dimFR � M(�, dimFV ) = M(�, n) � M(m+ 1, n).

�

Remark 25. Let R be any F -subalgebra of U∗
n(F ) satisfying the polynomial identity

f(x1, x2, . . . , xm) =
∑

σ∈Sm

cσxσ(1)xσ(2) · · ·xσ(m) = 0,

where cσ ∈ F for all σ ∈ Sm and {σ ∈ Sm : cσ �= 0 and σ(1) = 1} is a singleton
comprising the identity permutation.

Arguments similar to those used earlier in this section show that

dimFR � M(m+ 1, n).

We are finally in a position to complete the proof of the Conjecture.
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Proof of Conjecture. Let F be any field with algebraic closure K. Taking the field
F of Theorems 12 and 24 to be K, we see that the latter is just statement (c) of
the former. It thus follows from Theorem 12 (c)⇒(a) that the Conjecture holds in
respect of field K.

Taking the class of fields C in Theorem 5 to be the singleton C = {K} and noting
that F is a subfield of K, we conclude that the Conjecture holds in respect of field
F . Since F was chosen arbitrarily, the proof is complete. �

7. The function M(�, n)

The purpose of this section is twofold: First, to establish a number of important
properties of the function M(�, n) that are required in earlier theory, and second
to obtain an explicit description of M(�, n); without which, the important results
of this paper remain somewhat opaque. This task will involve the solution of an
integer-variable optimization problem. Our methods, however, are first principled
and require no background knowledge of integer optimization techniques.

We shall make use of the following notation: if k = (k1, k2, . . . , k�) ∈ N�
0, then:

� supp k
def
= {i ∈ {1, 2, . . . , �} : ki > 0} and

� |k| def
=

(
�∑

i=1

k2i

)1/2

so that |k|2 =
�∑

i=1

k2i .

Proposition 26. Let � and n be positive integers. The following statements are

equivalent for k = (k1, k2, . . . , k�) ∈ N
�
0 such that

∑�
i=1 ki = n:

(a) M(�, n) = 1
2

(
n2 − |k|2

)
+ 1;

(b) |ki − kj | � 1 for all i, j ∈ {1, 2, . . . , �}.

Proof. (a)⇒(b): Suppose (a) holds, but |kp − kq| � 2 for some p, q ∈ {1, 2, . . . , �}.
Without loss of generality, we may suppose that kp � kq + 2. Define k′ =
(k′1, k

′
2, . . . , k

′
�) ∈ N�

0 by

k′i
def
=

⎧⎪⎪⎨
⎪⎪⎩
ki if i /∈ {p, q},

kp − 1 if i = p,

kq + 1 if i = q.

Note that
∑�

i=1 k
′
i =
∑�

i=1 ki = n. Then

1
2

(
n2 − |k′|2

)
+ 1−M(�, n)

= 1
2

(
n2 − |k′|2

)
+ 1−

(
1
2

(
n2 − |k|2

)
+ 1
)

=
1

2

(
�∑

i=1

(
k2i − (k′i)

2
))

= 1
2

(
k2p + k2q − (k′p)

2 − (k′q)
2
)

= 1
2

(
k2p + k2q − (kp − 1)2 − (kq + 1)2

)
= 1

2 (2kp − 2kq − 2)

= kp − kq − 1 > 0 [because kp � kq + 2].

This implies that 1
2

(
n2 − |k′|2

)
+ 1 > M(�, n), a contradiction.
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(b)⇒(a): Suppose k = (k1, k2, . . . , k�) ∈ N�
0 is such that

∑�
i=1 ki = n and

|ki − kj | � 1 for all i, j ∈ {1, 2, . . . , �}. Inasmuch as each ki is nonnegative this
implies the existence of some r ∈ N such that

ki ∈ {r − 1, r} ∀i ∈ {1, 2, . . . , �}.(27)

Now suppose that M(�, n) = 1
2

(
n2 − |k′|2

)
+1 with k′ = (k′1, k

′
2, . . . , k

′
�) ∈ N

�
0 such

that
∑�

i=1 k
′
i = n. It follows from implication (a)⇒(b) that |k′i − k′j | � 1 for all

i, j ∈ {1, 2, . . . , �}, so there must exist some s ∈ N such that

k′i ∈ {s− 1, s} ∀i ∈ {1, 2, . . . , �}.(28)

If r < s, then it follows from (27) and (28) that

ki � r � s− 1 � k′i ∀i ∈ {1, 2, . . . , �}.

Since
∑�

i=1 ki =
∑�

i=1 k
′
i, the above inequalities can only be satisfied if ki = k′i for

all i ∈ {1, 2, . . . , �}, whence k = k′.
A similar argument shows that k = k′ whenever r > s. Thus if r �= s, then

k = k′, whence 1
2

(
n2 − |k|2

)
+ 1 = 1

2

(
n2 − |k′|2

)
+ 1 = M(�, n), and the proof is

complete.
Now suppose that r = s. Since ki, k

′
i ∈ {r, r − 1} for each i ∈ {1, 2, . . . , �}

and since
∑�

i=1 ki =
∑�

i=1 k
′
i, it is easily seen that k and k′ are equal to within

permutation of their coordinates; that is to say, there exists a permutation σ ∈ S�

such that k′i = kσ(i) for all i ∈ {1, 2, . . . , �}. Clearly, in such a situation |k| = |k′|
and 1

2

(
n2 − |k|2

)
+ 1 = 1

2

(
n2 − |k′|2

)
+ 1 = M(�, n). �

Corollary 27. Let � and n be positive integers. Then:

(a) If ��n, then M(�, n)= 1
2

(
n2−|k|2

)
+1 for some k = (k1, k2, . . . , k�) ∈ N�

0

with ki � 1 for all i ∈ {1, 2, . . . , �}. In particular, M(n, n) = 1
2

(
n2 − n

)
+1.

(b) If � > n, then M(�, n) = M(n, n) = 1
2

(
n2 − n

)
+ 1.

Proof. By Proposition 26, we can choose k = (k1, k2, . . . , k�) ∈ N
�
0 such that∑�

i=1 ki = n, M(�, n) = 1
2

(
n2 − |k|2

)
+1, and |ki−kj | � 1 for all i, j ∈ {1, 2, . . . , �}.

(a) Suppose � � n. If kj = 0 for some j ∈ {1, 2, . . . , �}, then ki ∈ {0, 1} for all

i ∈ {1, 2, . . . , �}, whence n =
∑�

i=1 ki < � � n, a contradiction.
If � = n, then clearly ki = 1 for all i ∈ {1, 2, . . . , �}, so |k|2 = n and M(�, n) =

M(n, n) = 1
2

(
n2 − n

)
+ 1.

(b) Suppose � > n. Since n =
∑�

i=1 ki, we must have kj = 0 for some j ∈
{1, 2, . . . , �}. Thus ki ∈ {0, 1} for all i ∈ {1, 2, . . . , �}, so |k|2 = n and M(�, n) =
M(n, n). �
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Proposition 28. Let � be an integer satisfying � � 2 and n1, n2, . . . , nk any se-
quence of positive integers. Then

M

(
�,

k∑
i=1

ni

)
�

k∑
i=1

M(�, ni).

Proof. We provide a proof in the case k = 2; the arguments used can be applied
mutatis-mutandis to establish the inductive step in a proof by induction on k.
Choose k = (k1, k2, . . . , k�) ∈ N�

0 such that

�∑
i=1

ki = n1(29)

and

M(�, n1) =
1
2

(
n2
1 − |k|2

)
+ 1,(30)

and choose k = (k̄1, k̄2, . . . , k̄�) ∈ N
�
0 such that

�∑
i=1

k̄i = n2(31)

and

M(�, n2) =
1
2

(
n2
2 − |k|2

)
+ 1.(32)

If | supp k|= | supp k|=1, then it follows from (29) that M(�, n1) =
1
2

(
n2
1 − n2

1

)
+1 = 1 and from (31) that M(�, n2) =

1
2

(
n2
2 − n2

2

)
+ 1 = 1. Since �, n1 + n2 � 2,

it is clear that we can choose k∗ = (k∗1 , k
∗
2 , . . . , k

∗
� ) ∈ N�

0 such that | supp k∗| � 2

and
∑�

i=1 k
∗
i = n1 + n2. Then

M(�, n1 + n2) � 1
2

(
(n1 + n2)

2 − |k∗|2
)
+ 1

=
1

2

⎛
⎝( �∑

i=1

k∗i

)2

−
�∑

i=1

(k∗i )
2

⎞
⎠+ 1

=
�∑

i,j=1, i<j

k∗i k
∗
j + 1

� 2 = M(�, n1) +M(�, n2),

as required.
Now suppose | supp k| � 2 or | supp k| � 2.

Put k = (¯̄k1,
¯̄k2, . . . ,

¯̄k�) = k+ k. By (29) and (31)

�∑
i=1

¯̄ki = n1 + n2.(33)
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Then

M(�, n1 + n2) � 1

2

(
(n1 + n2)

2 − |k|2
)
+ 1 [by (33) and the definition of

M(�, n1 + n2)]

= 1
2

(
n2
1 + n2

2 − |k|2 − |k|2
)
+ n1n2 −

�∑
i=1

kik̄i + 1

= M(�, n1) +M(�, n2) + n1n2 −
�∑

i=1

kik̄i − 1 [by (30), (32)]

= M(�, n1) +M(�, n2) +

(
�∑

i=1

ki

)(
�∑

i=1

k̄i

)
−

�∑
i=1

kik̄i − 1

[by (29), (31)]

= M(�, n1) +M(�, n2) +

�∑
i,j=1, i �=j

kik̄j − 1.(34)

Since, by hypothesis, | supp k| � 2 or | supp k| � 2, we must have
∑�

i,j=1, i �=j kik̄j �
1. Hence by (34), M(�, n1 + n2) � M(�, n1) +M(�, n2), as required. �

Proposition 29. The function M(�, n) is increasing in both its arguments.

Proof. That M(�, n) is increasing in its second argument is an immediate conse-
quence of Proposition 28.

To show that M(�, n) is increasing in its first argument, it suffices to show that

M(�, n) � M(�+1, n). Choose k = (k1, k2, . . . , k�) ∈ N�
0 such that

∑�
i=1 ki = n and

M(�, n) = 1
2

(
n2 − |k|2

)
+ 1. Putting k′ = (k1, k2, . . . , k�, 0) ∈ N

�+1
0 , we see that

M(�, n) = 1
2

(
n2 − |k|2

)
+ 1 = 1

2

(
n2 − |k′|2

)
+ 1 � M(�+ 1, n), as required. �

We attempt now an explicit description of the function M(�, n). This is achieved
in Theorem 31. If � and n are positive integers with � � n, then Corollary 27
exhibits the simple formula M(�, n) = 1

2

(
n2 − n

)
+ 1. We shall therefore restrict

our attention to the case � � n. For such integers � and n we denote by n (mod �)
the nonnegative remainder on dividing n by �, that is, the unique integer r < � that
satisfies

n =
⌊n
�

⌋
�+ r.

Let r = n (mod �) and define d = (d1, d2, . . . , d�) ∈ N�
0 by

di
def
=

⎧⎨
⎩
⌊
n
�

⌋
for 1 � i � �− r,⌊

n
�

⌋
+ 1 for �− r < i � �.

(35)

We omit the proof of the following routine lemma.

Lemma 30. Let � and n be positive integers with � � n and r = n (mod �). If d
is defined as in (35), then

|d|2 = (�− r)
⌊n
�

⌋2
+ r
(⌊n

�

⌋
+ 1
)2

=
n2 − r2

�
+ r.
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Theorem 31. Let � and n be positive integers with � � n and r = n (mod �). If d
is defined as in (35), then

M(�, n) = 1
2

(
n2 − |d|2

)
+ 1

=
1

2

(
n2 − (�− r)

⌊n
�

⌋2
− r
(⌊n

�

⌋
+ 1
)2)

+ 1

=
n2(�− 1)

2�
+

1

2

(
r2

�
− r

)
+ 1.

Proof. It is clear from the definition of d in (35) that
∑�

i=1 di = n and |di−dj | � 1
for all i, j ∈ {1, 2, . . . , �}. Hence, by Proposition 26 (b)⇒(a),

M(�, n) = 1
2

(
n2 − |d|2

)
+ 1

=
1

2

(
n2 − (�− r)

⌊n
�

⌋2
− r
(⌊n

�

⌋
+ 1
)2)

+ 1 [by Lemma 30]

=
1

2

(
n2 −

(
n2 − r2

�
+ r

))
+ 1 [by Lemma 30]

=
1

2

(
n2 − n2

�
+

r2

�
− r

)
+ 1

=
n2(�− 1)

2�
+

1

2

(
r2

�
− r

)
+ 1.

�

Suppose F is any field and R is the algebra of n× n matrices over F of type

d = (

(�−r) times︷ ︸︸ ︷⌊
n
�

⌋
,
⌊
n
�

⌋
, . . . ,

⌊
n
�

⌋
,

r times︷ ︸︸ ︷⌊
n
�

⌋
+ 1,

⌊
n
�

⌋
+ 1, . . . ,

⌊
n
�

⌋
+ 1),

with n � � � 2.
Figure 3 is a pictorial representation of the radical J of R. Inasmuch as R has

the form R = FIn+J with J satisfying J� = 0, it follows that R is Lie nilpotent of
index � − 1. (This assertion is explained in more detail in the discussion following
the statement of the Conjecture (7).) Moreover,

dimFR =

�−1∑
j=1

dj

(
n−

j∑
i=1

di

)
+ 1

= 1
2

(
n2 − |d|2

)
+ 1

= M(�, n) [by Theorem 31].

Thus R is an F -subalgebra of Mn(F ) whose dimension is maximal amongst F -
subalgebras of Mn(F ) with Lie nilpotence index �− 1.

If 1
2

(
n2 − |k|2

)
+ 1 is interpreted as a real-valued function of real variables k =

(k1, k2, . . . , k�) ∈ R�, the methods of multivariable calculus show that the function
1
2

(
n2 − |k|2

)
+ 1, subject to the constraint

∑�
i=1 ki = n, attains a maximum of
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··
·

··
··
··
··
·

··
·

··
··
··
··
··
·J =

d1 =
⌊
n
�

⌋

d2 =
⌊
n
�

⌋

d�−r =
⌊
n
�

⌋

d�−r+1 =
⌊
n
�

⌋
+ 1

d�−r+2 =
⌊
n
�

⌋
+ 1

d�−1 =
⌊
n
�

⌋
+ 1

d� =
⌊
n
�

⌋
+ 1

Figure 3. Pictorial representation of the radical J of R

n2(�−1)
2� + 1 at k = (n� ,

n
� , . . . ,

n
� ) ∈ R�. Thus⌊
n2(�− 1)

2�

⌋
+ 1 ≥ M(�, n).(36)

We explore now instances in which (36) is an equation, a situation that arises
precisely when D < 1, where

D
def
=

n2(�− 1)

2�
+ 1−M(�, n).

It follows from Theorem 31 that

D =
1

2

(
r − r2

�

)
,(37)

where r = n (mod �). Observe that D = D(r, �) is a function only of r and �.
Figure 4 is a sketch of the level curve D(r, �) = 1 in the r�-plane, interpreting

r and � as real-valued variables. A simple calculation shows that the curve has
equation

� =
r2

r − 2
.

Its essential features are obtained using elementary calculus.
The shaded region is

S def
= {(r, �) ∈ R

2 : 0 � r � �− 1 and D(r, �) < 1}.
The content of Theorem 32 below is easily gleaned from Figure 4 by assembling
together points (r, �) belonging to S that have integral coordinates.
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Figure 4. The level curve D(r, �) = 1

S

� = r + 1

� = r + 2

2 4

1

2

8

r

�

Theorem 32. Let � and n be positive integers with � � n and r = n (mod �). Then
the following statements are equivalent:

(a) M(�, n) =

⌊
n2(�− 1)

2�

⌋
+ 1;

(b) (r, �) belongs to one of the following (disjoint) sets:
(i) {(r, �) : 0 � r � �− 1 and 1 � � � 7};
(ii) {(r, �) : 0 � r � 2 and � � 8};
(iii) {(r, r + 1) : r � 7} ∪ {(r, r + 2) : r � 7};
(iv) {(3, 8), (5, 8)}.

Remark 33. The reader will observe with reference to Theorem 32(b)(i) that if,
amongst others, 1 � � � 7, we have the simplified formula

M(�, n) =

⌊
n2(�− 1)

2�

⌋
+ 1.

In particular, if � = 2, then

M(2, n) =

⌊
n2

4

⌋
+ 1,

which corresponds with the upper bound in Schur’s classical result.

8. An illustrative example

The main body of theory developed in Section 5 is based on the triple of sequences
{Rk}k∈N, {Jk}k∈N and {Uk}k∈N defined in (13). In this section we show that the
terms in these sequences are easily visualized in the case where R is the algebra of
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n×n matrices over field F of type (d1, d2, . . . , d�). Indeed, this special case provides
the germ for our proof strategy.

Let F be any field and (d1, d2, . . . , d�) any sequence of positive integers satisfying∑�
i=1 di = n with � � 2. Let R be the algebra of n × n matrices over F of

type (d1, d2, . . . , d�). We saw in Section 1 that the radical J of R has pictorial
representation as shown in Figure 5.

··
··
··

··
··
··
··
·

J1 = J =

d1

d2

d�−1

d�

Figure 5

Observe that dimFJ1 corresponds with the sum of the dimensions (to be visu-
alized as areas) of each of the �− 1 blocks that make up J1. With this perspective
we see that

dimFJ1 =

1st block︷ ︸︸ ︷
d1(n− d1)+

2nd block︷ ︸︸ ︷
d2(n− d1 − d2)+ · · ·+

(�−1)th block︷ ︸︸ ︷
d�−1(n− d1 − · · · − d�−1) .

Note also that
J�
1 = 0,

from which we infer that R1 is Lie nilpotent of index � − 1. (This inference is
explained in the discussion following the statement of the Conjecture (7).)

Take V = Fn, which in this context is to be visualized as a 1× n block thus:

V =

We infer from the pictorial representations of V and J1 (Figure 5), that

V J1 =

d1 (zero entries)

Choosing

U1 =

d1

yields the representation shown in Figure 6.
Here:

� dimFJ2 =

2nd block︷ ︸︸ ︷
d2(n− d1 − d2)+ · · ·+

(�−1)th block︷ ︸︸ ︷
d�−1(n− d1 − · · · − d�−1);

� J�−1
2 = 0;
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··
··
··

··
··
··
··
·

J2 = (0 :R1 U1) =

d1 (zero rows)

d2

d�−1

d�

Figure 6

� R2 is Lie nilpotent of index �− 2;

� V J1J2 =

d1 + d2

;

� U2 =

d1 d2

.

Continuing in this manner, we arrive at a smallest F -subalgebra of R properly
containing FIn, namely R�−1, and this has radical comprising a single block:

··
··
··
··
·

J�−1 =

d1 (zero rows)

d2 (zero rows)

d�−1

d�

Figure 7

Here:

� dimFJ�−1 =

(�−1)th block︷ ︸︸ ︷
d�−1(n− d1 − · · · − d�−1);

� J2
�−1 = 0;



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THE MAXIMUM DIMENSION OF A LIE NILPOTENT SUBALGEBRA 4581

� R�−1 is Lie nilpotent of index 1 and is thus commutative;

� V J1J2 · · · J�−1 =

d1 + d2 + · · ·+ d�−1

;

� U�−1 =

d�−1 d�

.

9. Open questions

(1) The sequence {Uk}k∈N of F -subspace complements defined in (13) is not
unique. This has the consequence that the sequence {Rk}k∈N of F -sub-algebras
of R is not uniquely determined by R. Are the Rk unique to within isomorphism
perhaps? Or failing this, are the dimensions (over F ) of the Rk unique?

(2) Recall that if g is a Lie algebra, then the Derived Series {g[m]}m∈N for g is
defined recursively as follows:

g
[1] def

= g, and

g
[m] def

= [g[m−1], g[m−1]] for m > 1.

We say g is solvable if g[m] = 0 for some m ∈ N, m > 1, and more specifically,
solvable of index m if g[m+1] = 0. We call a ring R Lie solvable (resp. Lie solv-
able of index m) if R, considered as a Lie algebra via the commutator, is solvable
(resp. solvable of index m). If {g[m]}m∈N denotes the Lower Central Series for g,

it is easily seen that g[m] ⊆ g[m] for all m ∈ N, from which it follows that every
ring R that is Lie nilpotent of index m is also Lie solvable of index m. This being
so, it is natural to ask whether the main theorems of this paper remain valid if the
condition “Lie nilpotent of index m” is substituted with the weaker “Lie solvable
of index m”.

(3) Expressed in terms that make no explicit reference to the overlying matrix
ring, a key result in this paper asserts that if R is an F -algebra with Lie nilpotence
index m and V is any faithful right R-module, then dimFR � M(m + 1, dimFV ).
(This is Theorem 24 with dimFV in place of n.) We ask whether the same inequality
holds if the requirement that R be a finite dimensional F -algebra is weakened to R
being merely a (two-sided) artinian ring. In such a situation, “R-module length”
takes the place of “F -dimension”, thus yielding the conjecture

If R is a (two-sided) artinian ring with Lie nilpotence index m and
V is any faithful right R-module with finite composition length, then

length RR � M(m+ 1, length VR).

In the case where m = 1, the above reduces to the question [7, Section 5, Open
problem (a), p. 562] that is answered in [2].2
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