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Abstract. Consider the following still open problem: For any Banach space
X, ordered by a closed generating cone C ⊆ X, does there always exist Lips-
chitz functions (·)± : X → C satisfying x = x+ − x− for every x ∈ X?

We discuss the connections of this problem to a large number of other
branches of mathematics: set-valued analysis, selection theorems, the non-
linear geometry of Banach spaces, Ramsey theory, Lipschitz function spaces,
duality theory, and tensor products of Banach spaces. We give equivalent
reformulations of the problem, and, through known examples, provide circum-
stantial evidence that the above question could be answered in the negative.

1. Introduction

This paper is a brief survey on what we will term the Lipschitz decomposition
problem in general ordered Banach spaces. To the author's knowledge, the following
problem is unsolved and has remained open for number of years. The problem came
to the author's attention in 2013, but may well be older.

Problem 1.1. Which one of the following mutually exclusive statements is true?

(1) For every Banach space X, ordered by a closed generating cone C ⊆ X,
there exist Lipschitz functions (·)± : X → C satisfying x = x+ − x− for
every x ∈ X.

(2) There exists a Banach space X, ordered by a closed generating cone C ⊆
X, for which there exist no Lipschitz functions (·)± : X → C satisfying
x = x+ − x− for every x ∈ X.

We will say the Lipschitz decomposition problem is solved positively if the state-
ment (1) in Problem 1.1 is true. It is known that certain ordered Banach spaces
do admit such Lipschitz functions (cf. Section 3), hence we introduce the following
terminology.

De�nition 1.2 (Lipschitz decomposition property). We will say that a Banach
space X, ordered by closed generating cone C ⊆ X, has the Lipschitz decomposition
property, if there exist Lipschitz functions (·)± : X → C satisfying x = x+−x− for
every x ∈ X.

The Lipschitz decomposition problem has connections to a large number of other
branches of mathematics: set-valued analysis, selection theorems, the Lipschitz�
and uniform geometry of Banach spaces, Ramsey theory, Lipschitz function spaces,
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duality theory, and tensor products of Banach spaces. Discussing the relevance of
each of these subjects to the problem at hand, including some very recent develop-
ments, is the main aim of this paper.

After some brief preliminaries in Section 2, we �rst establish the trivial cases of
the Lipschitz decomposition problem in Section 3: Banach lattices and order unit
spaces all have the Lipschitz decomposition property.

In Section 4, we show, similarly to modern proofs of the Bartle-Graves Theorem
(cf. [3, Corollary 17.67]) as an application of Michael's Selection Theorem (Theo-
rem 4.2), how the general problem may be translated into the language of set-valued
analysis and selection theorems. A positive solution of the problem is equivalent to
the existence of Lipschitz right inverses of a speci�c quotient map from a complete
metric cone onto a Banach space (cf. Proposition 4.3).

This question, of the existence of Lipschitz right inverses of quotient maps, is
discussed in Section 5 and is intimately related to the uniform� and Lipschitz geom-
etry of Banach spaces and in particular the Lipschitz isomorphism problem: �Are
Lipschitz isomorphic Banach spaces necessarily linearly isomorphic?� The existence
of Lipschitz right inverses of quotient maps is a crucial part in constructing exam-
ples of Banach spaces that are Lipschitz isomorphic but not linearly isomorphic
(cf. [1] and [15]). On the other hand, of particular interest are two previously
known examples, one due to Lindenstrauss and Aharoni [1], and one due to Kalton
[21], (in this paper: Examples 5.3 and 5.4) of quotient maps of Banach spaces that
do not admit uniform� or Lipschitz right inverses. These two examples are the
only such examples known to the author and provide some circumstantial evidence
that the Lipschitz decomposition problem might be resolved negatively, perhaps by
employing similar constructions. As such, these examples are presented in some
detail. Apart from the mentioned relevance to the Lipschitz decomposition prob-
lem, the techniques employed in these examples are of independent interest. Both
(arguably) employ some form of Ramsey theory.

In Section 6 we introduce Lipschitz function spaces and Banach space valued Lip-
schitz function spaces. Through an easy observation, we show that the Lipschitz
decomposition property can be transferred to equivalent statements on such func-
tion spaces. It has long been known that scalar-valued Lipschitz function spaces
are dual Banach spaces, with the Free Lipschitz space (also called the Arens-Eels
space) as a predual [33]. Very recently in [17], dual-Banach-space valued Lipschitz
function spaces were also shown to be dual Banach spaces, and furthermore, hav-
ing a projective tensor product (with the Free Lipschitz space as tensor factor) as
predual.

The observation that dual-Banach-space-valued Lipschitz function spaces have
projective tensor products as preduals, connects the Lipschitz decomposition prob-
lem to tensor products and the geometric duality theory of ordered Banach spaces.
In Section 7 we show that the Lipschitz decomposition property for dual Banach
spaces transfers in general to an equivalent statements regarding the geometry of
the projective tensor cone in a projective tensor product (having the Free Lipschitz
space as tensor factor). This raises further questions about the structure of pro-
jective tensor cones in projective tensor products having a Free Lipschitz space as
tensor factor, and for general projective tensor products of ordered Banach spaces,
which are of relevance to the Lipschitz decomposition problem.
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2. Preliminaries

We will assume that all vector spaces are over R. Let V be a vector space. A
set C ⊆ V will be called a cone if both C + C ⊆ C and λC ⊆ C hold for all
λ ≥ 0. A standard exercise establishes a bijection between cones and translation�
and positive homogeneous pre-orders on V , cf. [3, Section 1.1]. We will say that C
is generating in V , if V = C − C. For a subset S ⊆ V we de�ne the conical span
of S, denoted cspanS, as the set of all elements of the form

∑n
j=1 λjsj for n ∈ N

and for all j ∈ {1, . . . , n}, having λj ≥ 0 and sj ∈ S. For a topological vector
space W with Hausdor� topology τ , we denote the topological dual of W by W ∗,
or (W, τ)∗ if confusion may arise. The closure of a set S ⊆ W will be denoted by

S , or S
τ
if confusion may arise. If W is a normed space with norm ‖·‖, we will use

the symbol ‖·‖ as stand in for the norm-topology. For a cone C ⊆ W , we de�ne
the dual cone C∗ := {φ ∈W ∗ | ∀c ∈ C, φ(c) ≥ 0} . Let X and Y be Banach spaces.
Unless indicated otherwise, Banach spaces are assumed to be endowed with their
norm topology. We denote the open unit ball, closed unit ball and unit sphere of X
respectively by BX , BX and SX . The bounded linear operators from X to Y will
be denoted B(X,Y ) and endowed with the usual operator norm.

For (M,d) a metric space and X a Banach space, a function f : M → X is
will be said to be Lipschitz if there exists some K > 0, so that for all a, b ∈ M ,
‖f(a)− f(b)‖ ≤ Kd(a, b). For a Lipschitz function f : M → X, we de�ne the
Lipschitz constant of f by

L(f) := inf {K | ∀a, b ∈M, ‖f(a)− f(b)‖ ≤ Kd(a, b)} .

3. The trivial solutions

We point out the trivial solutions to the Lipschitz decomposition problem.

Proposition 3.1. Every Banach lattice has the Lipschitz decomposition property.

Proof. An easy exercise will show that the canonical maps (·)± : X → X de�ned
by x+ := x ∨ 0 and x− := (−x) ∨ 0 are Lipschitz [32, Theorem II.5.2]. �

Proposition 3.2. For X a Banach space and C ⊆ X a closed generating cone, if
there exists some u ∈ C so that for every x ∈ X there exists some λ ≥ 0 so that
x ∈ (−λu+ C) ∩ (λu− C), then X has the Lipschitz decomposition property.

Proof. This follows from the fact that order units are interior points of C [4, Theo-
rem 2.8]. Since X =

⋃
n∈N(−nu+C) ∩ (nu−C), by the Baire Category Theorem,

the order interval (−u + C) ∩ (u − C) has a non-empty interior. Let α > 0 and
v ∈ X be such that

2−1αSX ⊆ αBX ⊆ (v − u+ C) ∩ (v + u− C) ⊆ (v + u− C).

Set w := 2α−1(v + u), and since 0 ∈ BX we have w ∈ C. For every x ∈ SX , we
have x ∈ w − C and hence de�ne x+ := w ∈ C and x− := w − x ∈ C. Clearly x =
x+−x−. Furthermore, it is easily seen that the maps x 7→ x± are Lipschitz on SX .
By applying the reverse triangle inequality, the positive homogeneous extensions
de�ned as X 3 x 7→ ‖x‖ (x/ ‖x‖)± can be seen to be Lipschitz on all of X. �

In particular, the previous result shows that all �nite dimensional spaces ordered
by closed generating cones have the Lipschitz decomposition property.
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4. Set-valued analysis and selection theorems

A naive approach to solving the Lipschitz decomposition problem positively in
general would be to mimic the proof of the following theorem.

Theorem 4.1. Let X be a Banach space and C ⊆ X a closed cone. The following
are equivalent:

(1) The cone C is generating in X.

(2) There exists a constant α > 0 so that, for every x ∈ X, there exist a, b ∈ C
so that x = a− b and ‖a‖+ ‖b‖ ≤ α ‖x‖ .

(3) There exists a constant α > 0 and continuous positively homogeneous func-
tions (·)± : X → C so that x = x+ − x− and ‖x+‖+ ‖x−‖ ≤ α ‖x‖ .

(4) For every topological space T , the closed cone of all continuous functions
on T taking values in C is generating in the Banach space C(T,X) of all
continuous X-valued functions on T with the uniform norm.

Proof outline. It is clear that (4)⇔ (3)⇒ (2)⇒ (1). That (1) implies (4) is quite
remarkable. The implication (1) ⇒ (2) is the Klee-Andô Theorem [23, (3.2)], [5,
Lemma 3], which is in essence a generalization of the usual open mapping theorem
for Banach spaces, cf. [10][26]. That (2) ⇒ (3) follows from Michael's Selection
Theorem (stated below) [10, Corollary 4.2, Theorem 4.5], [26, Corollary 5.6]. �

Theorem 4.2 (Michael's Selection Theorem). [3, Theorem 17.66] Let P be a para-
compact space and X a Banach space. If the set-valued map Φ : P → 2X is
closed�, convex�, and non-empty-valued and is lower hemi-continuous, then Φ has
a continuous selection, i.e., there exists a continuous function f : P → X so that
f(a) ∈ Φ(a) for all a ∈ P.

The approach to proving (2) ⇒ (3) in Theorem 4.1 is to consider C × C as
a subset of the `1-direct sum X ⊕ X and the continuous additive and positively
homogeneous surjection Σ : C × C → X de�ned as Σ(c, d) := c − d for c, d ∈ C.
The set valued map x 7→ Σ−1{x} can then be shown to satisfy the hypothesis of
Michael's Selection Theorem. This idea is directly related to modern proofs of the
Bartle-Graves Theorem, stating that continuous linear surjections (read quotient
maps) between Banach spaces always have continuous (not necessarily linear) right
inverses [3, Corollary 17.67].

The Lipschitz decomposition problem can then easily be rephrased as �Does the
map Σ always have a Lipschitz right inverse?�:

Proposition 4.3. Let X be a Banach space, ordered by a closed generating cone
C ⊆ X. The following are equivalent:

(1) The space X has the Lipschitz decomposition property.

(2) The continuous additive positively homogeneous map Σ : C × C → X, as
de�ned above, has a Lipschitz right inverse.

(3) The set-valued map X 3 x 7→ Σ−1{x} has a Lipschitz selection.
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We note here that the surjection Σ : C × C → X is a in essence quotient map
from the complete metric cone1 C × C onto X, prompting the question �When
do quotients of complete metric cones onto Banach spaces have Lipschitz right
inverses?� (Not always, cf. Remark 5.5 below). Since every Banach space is a
complete metric cone in its own right, this is a more general question than �When
do quotient maps from Banach spaces onto Banach spaces have Lipschitz right
inverses?� (Also, not always, cf. Examples 5.3 and 5.4 below).

One seemingly reasonable (but doomed) approach to solving the Lipschitz de-
composition problem positively, would be to attempt to prove a Lipschitz version
of Michael's Selection Theorem by replacing the word �paracompact� with �metric
space� and making suitable adjustments. An observation that lends support to this
idea is the appealing Lipschitz-like properties possessed by set valued maps like
x 7→ Σ−1{x} (cf. [25]). It is however known that no general Lipschitz version of
Michael's Selection can exist [37], but it is possible to do better than mere conti-
nuity, but only negligibly [25, Corollary 4.5]. The existence of a general Lipschitz
version of Michael's Selection would contradict Examples 5.3 and 5.4 presented in
the next section. Hence, if this approach is to be successful in resolving the Lips-
chitz decomposition problem positively, then it must leverage speci�c properties of
the map Σ as de�ned above.

5. Non-linear geometry of Banach spaces and Ramsey theory

In this section we indicate some of the connections of the Lipschitz decomposi-
tion problem to the the nonlinear geometry of Banach spaces. This is a vast and
highly active research subject and we will restrict ourselves to material relevant to
the Lipschitz decomposition problem. We refer the reader to Lindenstrauss and
Benyamini's book [8], and Chapter 14 of the recent second edition of Albiac and
Kalton's book [2] for a more thorough treatment of the subject.

The previous section reduced the Lipschitz decomposition problem to the follow-
ing question �When do quotient maps from complete metric cones/Banach spaces
onto Banach spaces have Lipschitz right inverses?� This question is closely related
to the Lipschitz/uniform isomorphism problem for Banach spaces and its partial
resolution:

Problem 5.1. Let X and Y be Banach spaces and A : X → Y a non-linear
Lipschitz (uniformly continuous) bijection with Lipschitz (uniformly continuous)
inverse. Are X and Y necessarily linearly isomorphic?

There exist Banach spaces (like `p-spaces [20]) for which the above question is
answered a�rmatively. However, examples exist of non-separable Banach spaces
that are Lipschitz isomorphic, but not linearly isomorphic. Currently, the only
known method for constructing such spaces, revolves around constructing a space
X with closed non-complemented subspace E so that X/E is non-separable and the
quotient map q : X → X/E has a Lipschitz right inverse. The �rst such example
was constructed by Lindenstrauss and Aharoni in [1] and the argument is closely
related to that of showing the non-complementability of c0 in `∞ (see [35]). In
a more systematic fashion, Kalton and Godefroy used this method to show that
every weakly compactly generated non-separable Banach space will give rise to a

1For our current purpose a closed cone inside a Banach space is su�cient. See the more general
de�nitions: [10, De�nitions 2.2 and 2.3].
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pair of Lipschitz isomorphic Banach spaces that are not linearly isomorphic [15,
Corollary 4.4].

At present it is not not known whether there exist separable Banach spaces
that are Lipschitz isomorphic but not linearly isomorphic. By proving the follow-
ing theorem, Kalton and Godefroy also eliminated the method described above in
attacking in the problem in the separable case:

Theorem 5.2. [15, Corollary 3.2] Let X be a Banach space with E ⊆ X a closed
subspace with X/E separable. Then the quotient map q : X → X/E has a Lipschitz
right inverse if and only if E is complemented in X.

Keeping in mind the relevance of the existence/non-existence of Lipschitz right
inverses to quotient maps, as discussed in the previous section, below we present two
examples of linear quotient maps that do not have admit Lipschitz right inverses (or
even uniformly continuous right inverses). Although interesting in their own right,
these examples provide some circumstantial evidence toward a negative solution
to the Lipschitz decomposition problem. We therefore present these examples in
quite some detail, but, in the interest of �ow, will favor rather informal language
to describe some of the most technical details.

Example 5.4 below, due to Kalton, relies on a Ramsey-type graph coloring the-
orem. Arguably Example 5.3 below, due to Lindenstrauss and Aharoni, also relies
on Ramsey theoretic ideas in a broader sense of the term: For some �xed notion
of regularity and some large collection of objects, for any choice of object made
from the large collection of objects, there necessarily exists a related object (often
sub-object) with the mentioned notion of regularity.

We begin with Aharoni and Lindenstrauss' example. Let DQ[0, 1] be the càdlàg
space of all bounded R-valued functions on [0, 1] with the uniform norm that only
admit discontinuities at rational points in [0, 1], are right continuous everywhere,
and with left limits existing everywhere on [0, 1]. We note that for every ε > 0,
an element in f ∈ DQ[0, 1] can have only �nitely many discontinuities larger than
ε, else, by the Bolzano-Weierstrass Theorem, there would exist a point where f is
not right continuous. Therefore, with C[0, 1] denoting the closed subspace of all
continuous R-valued functions on [0, 1], the quotient DQ[0, 1]/C[0, 1] is isomorphic
to c0([0, 1] ∩Q), with the coordinates of q(f) ∈ c0([0, 1] ∩Q) measuring (half) the
size of the discontinuities of f ∈ DQ[0, 1].

Example 5.3 (Aharoni-Lindenstrauss). [1][8, Example 1.2] The quotient map q :
DQ[0, 1]→ c0([0, 1] ∩Q) does not admit a Lipschitz right inverse.

Sketch of proof. Two Ramsey theoretic ideas are employed; both are straightfor-
ward:

The �rst Ramsey Thoeretic idea is: For every f ∈ DQ[0, 1], around every irra-
tional number in [0, 1] there exists an open set U on which f �varies very little� and
necessarily has only �small� discontinuities on U .

The second Ramsey Theoretic idea is: For distinct elements x, y ∈ c0([0, 1] ∩Q)
and every non-empty open set U ⊆ [0, 1] and α ∈ (0, 1), there exists some r ∈ Q∩U
so that ‖x− y±α‖x− y‖er‖ = ‖x− y‖. I.e., no matter the open set U , there exists
a rational number in U where a rather �large� perturbation of x− y does not a�ect
the the norm.
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Assuming the existence of a Lipschitz right inverse τ : c0([0, 1] ∩ Q) → DQ[0, 1]
of the quotient q, for every ε > 0, there exist distinct elements x, y ∈ c0([0, 1] ∩Q)
so that ‖τ(x)− τ(y)‖∞ > (L(τ) − ε) ‖x− y‖. Hence there exists a point (which,
by right continuity, we may assume to be irrational) in [0, 1] at which τ(x) and
τ(y) take on values that are �far apart� (at least (L(τ) − ε) ‖x− y‖). By the �rst
Ramsey Theoretic idea above, there exists open set U , on which both τ(x) and
τ(y) ∈ DQ[0, 1] �vary very little� on U , and by construction take on values that
are �far apart� on U . In particular their average 2−1(τ(x) + τ(y)) also �varies very
little� on U .

By the second Ramsey theoretic idea, there exists a rational number r ∈ U ∩Q,
which allows the construction of a metric midpoint z ∈ c0([0, 1] ∩ Q) through a
�large� perturbation at r, so that ‖x− z‖ = ‖y− z‖ = 2−1‖x− y‖. This necessarily
implies that τ(z) ∈ DQ[0, 1] has a �large� discontinuity at r.

At the same time, using the Lipschitz-ness of τ , we obtain both the following
inequalities:

‖τ(y)− τ(z)‖∞ ≤ 2−1L(τ) ‖x− y‖∞ and ‖τ(x)− τ(z)‖∞ ≤ 2−1L(τ) ‖x− y‖∞ .

However, on U , the functions τ(y) and τ(x) take on values that are �far apart�,
(at least a distance of (L(τ) − ε) ‖x− y‖). So the only way that the above two
inequalities can hold is with τ(z) taking on values that are �very close�2 (within
2−1ε ‖x− y‖) to the average 2−1(τ(x) + τ(y)) on U . But since 2−1(τ(x) + τ(y))
�varies very little� on U , so does τ(z), which contradicts τ(z) having a �large�
discontinuity at r ∈ U . �

The next example, due to Kalton, proceeds through showing that every Banach
lattice X whose unit ball embeds uniform continuously into `∞ with uniform con-
tinuous inverse, must necessarily have the property that every increasing trans�nite
sequence (meaning: indexed by the �rst uncountable ordinal) in X must eventu-
ally be constant (cf. Theorem 5.7). Kalton called this property The Monotone
Trans�nite Sequence Property. This is proven through a Lipschitz-Ramsey Theo-
rem (stated as Theorem 5.6 below), its proof proceeding through an argument in
ordinal combinatorics. Once this done, by showing that `∞/c0 does not have The
Monotone Trans�nite Sequence Property [21, Theorem 4.2] (again using similar
methods to usual techniques employed in showing the non-complementibility of c0
in `∞), one arrives at:

Example 5.4 (Kalton). [21, Theorem 4.2] The quotient map q : `∞ → `∞/c0 has
no uniformly continuous right inverse.

Remark 5.5. This also provides an example of a continuous additive positively
homogenous surjection from a complete metric cone onto a Banach space that has
no uniform continuous right inverse. Since Σ as de�ned in the previous section
is Lipschitz, the surjection q ◦ Σ : `∞+ × `∞+ → `∞/c0 cannot have a uniformly
continuous right inverse, as that would contradict Example 5.4. We note however
that the quotient `∞/c0 is actually a Banach lattice by [32, Proposition II.5.4], and
so does have the Lipschitz decomposition property.

2Although very seldomly used in analysis, this is purely an observation about real numbers:
For distinct real numbers a, b ∈ R. With K, ε > 0 satisfying 0 < (K − ε) < |a− b| ≤ K. If c ∈ R
satis�es |a− c| ≤ 2−1K and |b− c| ≤ 2−1K , then

∣∣c− 2−1(a+ b)
∣∣ ≤ 2−1ε.
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We sketch the essentials of the proof of Kalton's Monotone Trans�nite Sequence
Theorem (Theorem 5.7). Let I be any set. For n ∈ N, by I [n] we denote the set
of all n-element subsets of I. Let Ω be the �rst uncountable ordinal. The set Ω[n]

is made into a graph, by de�ning the set of edges as all pairs of distinct elements
a, b ∈ Ω[n] which interlace: for which either a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . an ≤ bn or
b1 ≤ a1 ≤ b2 ≤ . . . bn ≤ an, (where we write a = {a1, a2, . . . , an} with a1 < a2 <
. . . < an). With the least path length metric, the graph Ω[n] is a bounded metric
space with diameter n.

Theorem 5.6 (Kalton's Lipschitz-Ramsey Theorem). [21, Theorem 3.6] For any

n ∈ N, let c : Ω[n] → `∞ be Lipschitz, with Lipschitz constant L. Then there exists
some ξ ∈ `∞ and uncountable set Θ ⊆ Ω, so that, for all a ∈ Θ[n], ‖c(a)− ξ‖∞ ≤
L/2.

Translating into coloring language, one may interpret the previous result as fol-
lows: Coloring the vertices of the graph Ω[n] by elements in `∞ through a Lipschitz
map c : Ω[n] → `∞ with Lipschitz constant L, in general any subset of vertices
A ⊆ Ω[n] with diameter n has a color diameter, diam c(A), of at most nL (read:
�can have rather large variations in color: of the order of the diameter of the graph
Ω[n]�). However, by the previous theorem, one is assured of an uncountable set of
ordinals Θ ⊆ Ω, so that the color diameter, diam c(Θ[n]), of Θ[n] ⊆ Ω[n] is at most
the Lipschitz constant L of the coloring c (read: �has not so large variations in
color, and is independent of the diameter of Θ[n]�). It is important to notice here
that Θ[n] has diameter n, since Θ ⊆ Ω is an uncountable set of countable ordinals.

Theorem 5.7 (Kalton's Monotone Trans�nite Sequence Theorem). [21, Theo-
rem 4.1] If the closed unit ball BX of a Banach lattice X embeds uniform contin-
uously (with uniformly continuous inverse) into `∞, then X has The Monotone
Trans�nite Sequence Property.

Sketch of proof. Let f : BX → `∞ be a uniformly continuous embedding with
uniformly continuous inverse g : f(BX)→ BX . Let (xµ)µ∈Ω ⊆ X be an increasing
trans�nite sequence. Since trans�nite increasing sequences are always bounded, we
may assume (xµ)µ∈Ω ⊆ BX without loss.

Let n ∈ N be arbitrary and de�ne the averaging map An : Ω[n] → BX by
An({a1, . . . an}) := 1

n

∑n
j=1 xaj . The coloring map cn := f ◦An : Ω[n] → `∞ can be

veri�ed to be Lipschitz (we omit the details), and we denote its Lipschitz constant
by Ln. Furthermore it can be veri�ed that the sequence (Ln) converges to zero
as n → ∞. By Kalton's Lipschitz-Ramsey Theorem (Theorem 5.6), there exists

some uncountable set of ordinals Θn ⊆ Ω, so that, for all a, b ∈ Θ
[n]
n we have

‖cn(a)− cn(b)‖∞ ≤ Ln.
Now, for any n ∈ N, �x any a ∈ Θ

[n]
n . There exists µn ∈ Ω with max a < µn. For

all ν ∈ Ω satisfying max a < µn < ν, since Θn is an uncountable set, there exists

b ∈ Θ
[n]
n so that max a < µn < ν < min b. Using the monotonicity of the norm of

the Banach lattice X, we obtain

‖xν − xµn‖ ≤

∥∥∥∥∥∥ 1

n

n∑
j=1

xbj −
1

n

n∑
j=1

xaj

∥∥∥∥∥∥ = ‖g ◦ cn(b)− g ◦ cn(a)‖ .
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However sup
a,b∈Θ

[n]
n
‖cn(a)− cn(b)‖∞ ≤ Ln → 0 as n → ∞, and, since g is uni-

formly continuous, we have sup
a,b∈Θ

[n]
n
‖g ◦ cn(b)− g ◦ cn(a)‖ → 0 as n→∞. Tak-

ing µ0 := supn∈N µn ∈ Ω, we see, for all ν ∈ Ω with µ0 < ν, again by monotonic-
ity of the norm of X, that ‖xν − xµ0

‖ ≤ ‖xν − xµn
‖ → 0 as n → ∞. Therefore

‖xν − xµ0‖ = 0 for all µ0 < ν, and hence the increasing trans�nite sequence (xµ)µ∈Ω

is eventually constant. �

Remark 5.8. We point out that only the monotonicity of the norm of the Banach
lattice was used in the above result. By a straightforward adaptation of the proof,
the same is true if we replace the Banach lattice X by an ordered Banach space
X for which there exists a constant α > 0, so that for all a, b ∈ X, the inequality
0 ≤ a ≤ b implies ‖a‖ ≤ α ‖b‖.

6. Lipschitz function spaces

We begin with some basic de�nitions.
Let X be a Banach space and (M,d) be a metric space. We will assume M to

be pointed with some point in M �xed and labeled as 0M ∈ M . Viewing X as
a metric space, we will always take 0X := 0 ∈ X. The X-valued Lipschitz space
Lip0(M,X) is de�ned as the set of all Lipschitz functions f : M → X satisfying
f(0M ) = 0. The map L(·), as de�ned in Section 2, is a norm on Lip0(M,X). A
standard exercise will show Lip0(M,X) endowed with L(·) is again Banach space.
As usual, if X = R, then we will write Lip0(M) for Lip0(M,R). For a closed cone
C ⊆ X we will de�ne Lip0(M,C) := Lip0(M,X) ∩ CM . This cone is certainly
non-empty as for every c ∈ C, the map M 3 a 7→ d(0M , a)c is in Lip0(M,C).

We refer the reader to Weaver's book [33] for a treatment of scalar-valued Lip-
schitz function spaces. Of note is the order structure of Lip0(M) when ordered
by the standard cone Lip0(M)+ := {f ∈ Lip0(M) | ∀a ∈M, f(a) ≥ 0}. The space
Lip0(M) is then lattice ordered [33, Proposition 1.5.5]. However, depending on the
structure of the metric space M , the space Lip0(M) need not be a Banach lattice
in general, as order intervals need not be norm-bounded. E.g., For any α > 0, one
can easily construct a (say piecewise a�ne) function g ∈ Lip0([0, 1]) so that, with
f(x) := x, the function g satis�es 0 ≤ g ≤ f , while L(f) < αL(g).

The following easy observation connects the Lipschitz decomposition property
to the structure of Lipschitz function spaces:

Theorem 6.1. Let X be a Banach space, ordered by a closed generating cone
C ⊆ X. The following are equivalent:

(1) The space X has the Lipschitz decomposition property.

(2) The cone Lip0(X,C) is generating in Lip0(X,X).

(3) The cone Lip0(SX ∪ {0}, C) is generating in Lip0(SX ∪ {0}, X).

(4) For every metric spaceM , the cone Lip0(M,C) is generating in Lip0(M,X).

Proof. It is clear that (4) implies (1), (2) and (3).
We prove (1) implies (4). Let (·)± : X → C be Lipschitz maps such that

x = x+ − x− for all x ∈ X. By considering the positive homogeneous extension
of the restrictions (·)±|S

X
, we may assume that 0± = 0. Hence, for any f ∈

Lip0(M,X), by de�ning f± ∈ Lip0(M,C) as f±(a) := f(a)± for all a ∈ M , we
obtain f± ∈ Lip0(M,C) and f = f+ − f−. �
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A classical result in the scalar valued case, due to de Leeuw, is that Lip0(M) is
always a dual Banach space (�rst proven in [11] for M = R. See [33, Chapter 2] for
a general treatment). Very recently, Weaver showed that, under mild conditions on
the metric space M , preduals of Lip0(M) are unique up to isometric isomorphism
[34].

One construction of a predual of Lip0(M) by Kalton and Godefroy [15], is
through the Dixmier-Ng Theorem [28, Theorem 1] as the closed linear span of the
evaluation maps {δa : a ∈ M} in Lip0(M)∗, with norm inherited from Lip0(M)∗.
Denoted by F (M), this space is called the Free Lipschitz space (or often Lips-
chitz free-space). We de�ne the standard cone in F (M) as the norm-closure of
cspan {δa | a ∈M} and denote it by F (M)+. It is straightforward to verify that
F (M)∗+ = Lip0(M)+.

The name Free Lipschitz space is apt. The Free Lipschitz space mimics the
universal property of the free group over a set of symbols of, from any function
from the set of symbols into any group G, inducing a homomorphism from the free
group into the group G. Here, from any Lipschitz map from M into a Banach
space X, a linear map is induced, mapping the Free Lipschitz space F (M) into the
Banach space X. Explicitly:

Theorem 6.2. Let M be a metric space. For every Banach space X and for every
f ∈ Lip0(M,X), there exists a unique bounded linear operator Tf : F (M) → X
with ‖Tf‖ = L(f) making the following diagram commute:

M X

F (M)

f

δ(·)
Tf

Furthermore, the map f 7→ Tf is an isometric isomorphism from Lip0(M,X) onto
B(F (M), X).

The previous result is straightforward, and has been proven independently a
number of times, cf. [30, Theorem 1], [33, Theorem 2.2.4], [22, Lemma 3.2].

An elementary veri�cation will also show, if C ⊆ X is a norm-closed cone,
then the isometric isomorphism from Lip0(M,X) onto B(F (M), X) maps the cone
Lip0(M,C) onto the cone {T ∈ B(F (M), X) | TF (M)+ ⊆ C} .

Vector-valued Lipschitz spaces has seen much recent developments. Of interest
here is the observation by Guerrero, Lopez-Perez and Ruedo Zoca that, as in the
scalar case, with X a Banach space, the space Lip0(M,X∗) is always a dual Banach
space, having a vector-valued version of the Free Lipschitz space as predual [17].
Explicitly, with δa ⊗ x(f) := f(a)(x) for all a ∈ M , x ∈ X and f ∈ Lip0(M,X∗),
the X-valued Free Lipschitz space F (M,X) is de�ned as the closed linear span
of {δa ⊗ x | a ∈M, x ∈ X} in Lip0(M,X∗)∗. Moreover, viewing B(F (M), X∗) as
the dual of the projective tensor product F (M)⊗πX [31, Section 2.2], the isometric
isomorphism between the spaces Lip0(M,X∗) and B(F (M), X∗) from Theorem 6.2
is wk∗-to-wk∗ continuous, so that by [14, Exercise 3.60], the space F (M,X) is iso-
metrically isomorphic to the projective tensor product F (M)⊗πX, cf. [17, Propo-
sition 1.1].

Through the geometric duality theory of cones in Banach spaces, this last ob-
servation allows the for the Lipschitz decomposition property to be characterized
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by the geometry of a polar cone in projective tensor products with a Free Lipschitz
space as tensor factor. This is discussed in the next section.

7. Duality of ordered Banach spaces and tensor products

We introduce the following preliminaries to describe the geometric duality theory
of ordered Banach spaces. Let V and W be vector spaces and 〈· | ·〉 : V ×W → R
a bilinear map. If { 〈· | w〉 | w ∈W} and { 〈v | ·〉 | v ∈ V } separate the points
of V and W respectively, we call (V,W ) a dual pair and 〈· | ·〉 a duality. By
σ(V,W ) and σ(W,V ) we denote the smallest topologies for which all elements of
{ 〈· | w〉 | w ∈W} and { 〈v | ·〉 | v ∈ V } continuous functionals respectively. For
A ⊆ V and B ⊆ W we de�ne the one-sided polars of A and B with respect
to the dual pair (V,W ) by A� := {w ∈W | ∀a ∈ A, 〈a | w〉 ≤ 1} and B� :=
{v ∈ V | ∀b ∈ B, 〈v | b〉 ≤ 1} respectively.

The following lemma forms the basis of geometric duality theory of ordered
Banach spaces. Its proof is an elementary exercise in applications of the Hahn-
Banach Spearation Theorem.

Lemma 7.1. [24, Lemmas 2.1 and 2.4]. Let (V,W ) be a dual pair. Let A,B ⊆ V
and C ⊆ V a cone and {Ai}i∈I a collection of nonempty subsets of V . Then

(1) The set A� contains zero, is convex and is σ(W,V )-closed in W .
(2) If A ⊆ B, then B� ⊆ A�.
(3) For λ > 0, we have (λA)� = λ−1(A�).
(4) The set (

⋃
i∈I Ai)

� equals
⋂
i∈I A

�
i .

(5) The set A�� equals the σ(V,W )-closed convex hull of {0} ∪A.
(6) If, for every i ∈ I, the set Ai is σ(V,W )-closed, convex and contains zero,

then
(⋂

i∈I Ai
)�

equals the σ(W,V )-closed convex hull of
⋃
i∈I A

�
i .

(7) The set C� ⊆W is a σ(W,V )-closed cone and C� = −C∗.
(8) If A is convex and contains zero, then (A ∩ C)� ⊆ (A� + C�)

σ(W,V )
.

(9) If A is σ(V,W )-closed, convex and contains zero and C is σ(V,W )-closed,

then (A ∩ C)� = (A� + C�)
σ(W,V )

.
(10) If A is convex and contains zero, then (A+ C)� = A� ∩ C�.
(11) If A is σ(V,W )-closed, convex and contains zero, then A =

⋂
λ>1 λA.

Typical of the geometric duality theory of ordered Banach spaces are theorems
like Theorem 7.2, below, which relate the geometry of a cone with that of its dual
cone. This result, and results that are closely related to it, are well-known and have
long been studied by many authors. See for example the following list of references,
which is not claimed to be exhaustive: [16], [13], [9], [27], [19], [6], [7], [29].

The oldest references that the author is aware of are that of Grosberg and Krein
from 1939 [16], and of Ellis from 1964 [13, Theorem 8] which assert the following:

Theorem 7.2. Let α > 0, X be a Banach space and C ⊆ X a norm closed cone.

(1) The following are equivalent:

(a) For every v, w ∈ X, if x ∈ (v+C)∩(w−C), then ‖x‖ ≤ αmax{‖v‖ , ‖w‖}.
(b) For every η ∈ X∗, there exist ψ, φ ∈ C∗ so that η = ψ − φ and
‖φ‖+ ‖ψ‖ ≤ α ‖η‖ .

(2) The following are equivalent:
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(a) For every ε > 0 and x ∈ X, there exist a, b ∈ C so that x = a− b and
‖a‖+ ‖b‖ ≤ (α+ ε) ‖x‖ .

(b) For every φ, ψ ∈ X∗, if η ∈ (φ + C∗) ∩ (ψ − C∗), then ‖η‖ ≤
αmax{‖φ‖ , ‖ψ‖}.

As indicated by the list of references above, Theorem 7.2 and similar results have
been rediscovered quite a few times, and the terminology employed by di�erent
authors tend to be quite fragmented. Also proofs of results like Theorem 7.2,
analogues to the implication (2)(b) to (2)(a) tend to become somewhat involved,
relying on technical results (see for example the proof of [13, Theorem 8]; proof
of [27, Proposition 6]; Lemmas 1.1.3 and 1.1.5 and Theorem 1.1.4 from [7], and
Proposition 1.3.1, Lemma 1.3.2 and Theorem 2.1.5 from [6]). These results do
require some investment to verify and understand. We will prove Theorem 7.2,
as a special case of a result from [24]. Our reason for providing this sketch is
that we hope, in our presentation, to abstract out the main features to the more
casual reader and make clear that the reason for these mentioned technicalities are,
when boiled down, the �wanting to erase a weak-closure� in a certain set inclusion
(see the proof of Theorem 7.2 below). Crucial in performing this �closure erasure�
successfully are Lemmas 7.3 and 7.4 below.

Before stating these lemmas, we introduce some further terminology from Jame-
son [19, Appendix]: For a topological vector space (V, τ) we say a set A ⊆ V is τ -
cs-compact if, for any sequences (xn) ⊆ A and (λn) ⊆ [0, 1] satisfying

∑∞
n=1 λn = 1,

the series
∑∞
j=1 λnxn converges with respect to the τ -topology and its limit is an

element of A. We say a set A ⊆ V is τ -cs-closed if for any sequences (xn) ⊆ A
and (λn) ⊆ [0, 1] satisfying

∑∞
n=1 λn = 1, if the series

∑∞
j=1 λnxn converges with

respect to the τ -topology, then its limit is an element of A.
The �rst lemma is a characterization of Banach spaces as having exactly norm-

cs-compact closed unit balls and proof is an easy exercise in using the absolute
convergence characterization of Banach spaces, cf. [14, Lemma 1.22].

Lemma 7.3. A normed space is a Banach space if and only if its closed unit ball
is norm-cs-compact.

The second lemma is the main tool in �closure erasure�. We note explicitly that
the reader should notice in Lemma 7.4 the erasure of the weak-closure by paying
an arbitrarily small price in scaling up the set A.

Lemma 7.4. Let X be a Banach space, D ⊆ X and A ⊆ X a σ(X,X∗)-cs-closed

set. Let G ⊆ X be a weak-cs-compact set. If G ⊆ D ⊆ Aσ(X,X∗)
and, for all r > 0

and d ∈ D, we have (d+ rG) ∩A 6= ∅, then D ⊆ λA for all λ > 1.

To the author's knowledge, this lemma is originally due to Batty and Robinson
[7, Lemma 1.1.3], and proven in a slightly more general form in [24, Lemma 2.3].

We now turn to a proof Theorem 7.2, here adapted as a special case from [24,
Theorem 3.4]. The main idea is to reformulate the statements into equivalent
statements involving speci�c set inclusions. The proof then becomes an exercise
in the one-sided polar calculus (cf. Lemma 7.1) and �closure erasure� by applying
Lemma 7.4.

Proof of Theorem 7.2. With �⊕p� denoting the usual `p-direct sum for 1 ≤ p ≤ ∞,
we consider the canonical duality of the spaces X ⊕∞X and X∗ ⊕1 X

∗. We de�ne
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the following sets

Ξ∞ := {(a, b) ∈ X ⊕∞ X | a = b} ,
Ξ1 := Ξ∞ ∩BX⊕∞X ,

C ⊕∞ (−C) := {(a, b) ∈ X ⊕∞ X | −b, a ∈ C} ,

and

Σ1 := {(φ, ψ) ∈ X∗ ⊕1 X
∗ | ‖φ+ ψ‖ ≤ 1} ,

Σ0 := {(φ, ψ) ∈ X∗ ⊕1 X
∗ | φ+ ψ = 0} ,

(−C∗)⊕1 C
∗ := {(φ, ψ) ∈ X ⊕1 X | −φ, ψ ∈ C∗} .

We prove (1). Assume (1)(a). This is equivalent to

(BX⊕∞X + C ⊕∞ (−C)) ∩ Ξ∞ ⊆ αΞ1.

With wk := σ(X ⊕∞ X,X∗ ⊕1 X
∗), the above inclusion implies3

(BX⊕∞X + C ⊕∞ (−C))
wk

∩ Ξ∞ ⊆ αΞ1.

Now, by taking one-sided polars (cf. Lemma 7.1), with wk∗ := σ(X∗⊕1X
∗, X⊕∞

X), we obtain

Σ1 ⊆ α
(
BX⊕∞X + C ⊕∞ (−C)

wk
)�

+ Σ0

wk
∗

⊆ α(BX⊕∞X + C ⊕∞ (−C))� + Σ0
wk
∗

= (αBX∗⊕1X∗ ∩ (−C∗)⊕1 C∗) + Σ0
wk
∗

.

Since BX∗⊕1X∗ is wk
∗-compact, the set (αBX∗⊕1X∗ ∩ (−C∗) ⊕1 C

∗) + Σ0 can be
seen to already be wk∗-closed, so that taking the closure is redundant and we erase
it. Hence Σ1 ⊆ (αBX∗⊕1X∗ ∩ (−C∗)⊕1 C

∗) + Σ0, which is equivalent to (1)(b).
Assume (1)(b), which is equivalent to Σ1 ⊆ (αBX∗⊕1X∗ ∩ (−C∗) ⊕1 C

∗) + Σ0.
Taking one-sided polars (cf. Lemma 7.1) with wk := σ(X ⊕∞ X,X∗ ⊕1 X

∗), we
obtain

(BX⊕∞X + C ⊕∞ (−C)) ∩ Ξ∞ ⊆ BX⊕∞X + C ⊕∞ (−C)
wk

∩ Ξ∞ ⊆ αΞ1,

which is equivalent to (1)(a).
We adjust the de�nitions of Σ(·) and Ξ(·) appropriately, and prove (2).
Assume (2)(a). This is equivalent to, for every ε > 0, that Σ1 ⊆ (α+ε)BX⊕1X ∩

C ⊕1 (−C) + Σ0. Taking one-sided polars (cf. Lemma 7.1) with wk∗ := σ(X∗ ⊕∞
X∗, X ⊕1 X), yields

(BX∗⊕∞X∗ + (−C∗)⊕∞ C∗) ∩ Ξ∞ ⊆ (BX∗⊕∞X∗ + (−C∗)⊕∞ C∗)
wk
∗

∩ Ξ∞

3Let (x, x) ∈ (BX⊕∞X + C ⊕∞ (−C))
‖·‖∞ ∩ Ξ∞. Then there exists sequences ((an, bn)) ⊆

BX⊕∞X and ((cn,−dn)) ⊆ C⊕∞ (−C) so that (an, bn)+(cn,−dn)→ (x, x) as n→∞. For every
n ∈ N, let pn := (an+cn)−(bn−dn) and consider the sequence S := ((an, bn + pn) + (cn,−dn)) =
((an + cn, an + cn)) ⊆ Ξ∞. This sequence S converges to (x, x) and, since pn → 0 as n → ∞,
for every ε > 0 the tail of S eventually lies in ((1 + ε/α)BX⊕∞X + C ⊕∞ (−C)) ∩ Ξ∞ ⊆
(1 + ε/α)αΞ1, and hence ‖(x, x)‖∞ ≤ (α + ε). But this holds for every ε > 0, so ‖(x, x)‖∞ ≤ α
and therefore (x, x) ∈ αΞ1. Because the wk-closure and ‖·‖∞-closure of convex sets coincide, we

obtain (BX⊕∞X + C ⊕∞ (−C))
wk ∩ Ξ∞ ⊆ αΞ1.
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⊆
⋂
ε>0

(α+ ε)Ξ1 = αΞ1.

Conversely, assume (2)(b), which is equivalent to (BX∗⊕∞X∗ + (−C∗)⊕∞ C∗)∩
Ξ∞ ⊆ αΞ1. With wk∗ := σ(X∗⊕∞X∗, X⊕1X), the set BX∗⊕∞X∗ is wk

∗-compact,
so that (BX∗⊕∞X∗ + (−C∗) ⊕∞ C∗) is wk∗-closed. Taking one-sided polars (cf.
Lemma 7.1) with wk := σ(X ⊕1 X,X

∗ ⊕∞ X∗), yields

Σ1 ⊆ (αBX⊕1X ∩ (C ⊕1 (−C)) + Σ0
wk

.

We note that since BX⊕1X is not necessarily wk-compact, the argument employed
in the previous paragraph to erase the closure is unavailable here. By Lemma 7.3,
BX⊕1X is norm-cs-compact, hence also wk-cs-compact. We note that the wk-
closure and norm-closure of convex sets coincide, and that the sum (αBX⊕1X ∩
C ⊕1 (−C)) + Σ0 is wk-cs-closed, being the sum of a wk-cs-compact set and a
wk-cs-compact set. Applying Lemma 7.4 to the inclusion below,

BX⊕1X ⊆ Σ1 ⊆ (αBX⊕1X ∩ C ⊕1 (−C)) + Σ0
wk

,

we obtain, for every ε > 0 that Σ1 ⊆ (C ⊕1 (−C) ∩ (α + ε)BX⊕1X) + Σ0. This is
equivalent to (2)(a). �

Theorem 7.2 and the duality (F (M)⊗πX)∗ = B(F (M), X∗) ' Lip0(M,X∗) ob-
served in Section 6, suggests that it is possible to characterize the Lipschitz decom-
position property in terms of the geometry of cones in projective tensor products
with Free Lipschitz spaces. The remainder of the current section will be devoted
to this.

Following Ryan's [31] and Wittstock's [36], we introduce the following terminol-
ogy and notation for projective tensor products and projective tensor cones. For
Banach spaces X and Y , we denote the projective tensor norm by π (cf. [31, Chap-
ter 2]) and denote the projective tensor product of X and Y by X⊗πY . Let C ⊆ X
and D ⊆ Y be norm-closed cones. We de�ne the projective tensor cone C⊗πD as
the norm closure of cspan {c⊗ d | (c, d) ∈ C ×D} ⊆ X⊗πY.We will view B(X,Y ∗)
as the dual of X⊗πY through the duality 〈

∑∞
i=1 xi ⊗ φi | T 〉 :=

∑∞
i=1 φi(Txi) for

T ∈ B(X,Y ∗) and
∑∞
i=1 xi ⊗ φi ∈ X⊗πY (cf. [31, Section 2.2]). Using that d ∈ D

if and only if φ(d) ≥ 0 for all φ ∈ D∗ [4, Theorem 2.13], it can be seen that
(C⊗πD)∗ = {T ∈ B(X,Y ∗) | TC ⊆ D∗} .

The following is an immediate consequence of Theorem 7.2 and the observation
(X⊗πY )∗ = B(X,Y ∗).

Corollary 7.5. Let α > 0 and X and Y be Banach spaces and C ⊆ X and D ⊆ Y
norm-closed cones. The following are equivalent:

(a) For v, w ∈ X⊗πY , if u ∈ (v + C⊗πD) ∩ (w − C⊗πD)), then π(u) ≤
αmax{π(v), π(w)}.

(b) For every T ∈ B(X,Y ∗), there exist operators R,S ∈ {T ∈ B(X,Y ∗) | TC ⊆ D∗}
so that T = R− S and ‖R‖+ ‖S‖ ≤ α ‖T‖ .

Proof. Since (X⊗πY )∗ = B(X,Y ∗) (cf. [31, Section 2.2]) and since (C⊗πD)∗ =
{T ∈ B(X,Y ∗) | TC ⊆ D∗}, the equivalence follows immediately from Theorem 7.2(1).

�
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Let M be any metric space and X a Banach space. In Section 6 we have ob-
served that Lip0(M,X∗) is isometrically isomorphic to B(F (M), X∗). Now ap-
plying Corollary 7.5, the Lipschitz decomposition property can be transferred to
statements on the geometry of the projective tensor cone F (M)+⊗πC in the pro-
jective tensor product F (M)⊗πX.

Corollary 7.6. Let X be a Banach space with C ⊆ X a closed cone. The following
are equivalent:

(a) The dual space X∗ (ordered by the dual cone C∗) has the Lipschitz decom-
position property.

(b) There exists some α > 0, so that for every w, v ∈ F (X)⊗πX, if u ∈
(w + F (X)+⊗πC) ∩ (v − F (X)+⊗πC), then π(u) ≤ αmax{π(v), π(w)}.

(c) For every metric space M , there exists some α > 0, so that for every
w, v ∈ F (M)⊗πX, if u ∈ (w + F (M)+⊗πC) ∩ (v − F (M)+⊗πC), then
π(u) ≤ αmax{π(v), π(w)}.

Proof. This follows from Theorems 6.1, 4.1, 6.2 and 7.5. �

We end this section by raising some �nal questions that are relevant to the
current discussion.

LetX be a Banach space ordered by a closed cone C ⊆ X. Since Lip0(X)+ is gen-
erating in Lip0(X), by Theorems 4.1 and 7.2, there exists a constant α > 0 so that,
for v, w ∈ F (X), if u ∈ (v+F (X)+)∩ (w−F (X)+), then ‖u‖ ≤ αmax{‖v‖ , ‖w‖}.
This property is usually called normality in the literature. Similarly, by Theo-
rems 4.1 and 7.2, if C∗ is generating X∗, then X also has such a normality prop-
erty. Therefore, using Corollary 7.6, the Lipschitz decomposition problem can be
resolved for dual Banach spaces if one can answer the question: �If X is normal, is
the projective tensor product F (X)⊗πX necessarily also normal, when ordered by
the projective tensor cone F (X)+⊗πC?�; or more generally: �Do projective tensor
products ordered by projective tensor cones always preserve normality of its tensor
factors?�

By Theorem 6.2, we have Lip0(X,X) is isometrically isomorphic to B(F (X), X).
If X is not a dual Banach space, Corollary 7.6 is not available. Certainly one
may apply the general duality result, Theorem 7.2, to B(F (X), X) and its dual
B(F (X), X)∗, but this observation is not of use without knowledge of the struc-
ture of B(F (X), X)∗ that could be exploited to show that B(F (X), X)∗ is nor-
mal when ordered by the dual cone {T ∈ B(F (X), X) | TF (X)+ ⊆ C}∗. Since
B(F (X), X) ⊆ B(F (X), X∗∗) = (F (X)⊗πX∗)∗, one is tempted to consider the
pair (B(F (X), X), F (X)⊗πX∗) with the duality de�ned by restriction. However,
the space B(F (X), X) need not separate the points of F (X)⊗πX∗ in general (cf.
[18]).

Assume further that either X∗ or F (X) has the approximation property4. Then
the space B(F (X), X) does separate the points of F (X)⊗πX∗ (cf. [12, Corollary 3
p. 65]), and B(F (X), X) lies wk∗-dense (read σ(B(F (X), X∗∗), (F (X)⊗πX∗))-
dense) in B(F (X), X∗∗) (cf. [18, Proposition 2.2]). If C is generating in X, then so
is C∗∗ in X∗∗ (cf. Theorems 4.1 and 7.2). Keeping Theorem 6.2 in mind, brings us

4Of some relevance here is Kalton and Godefroy's result [15, Theorem 5.3] showing that
bounded approximation properties transfer between X and F (X).
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into the situation described in the previous paragraph with X∗∗ being a dual Ba-
nach space, while introducing the further question: �When, if ever, does the cone
{T ∈ B(F (X), X∗∗) | TF (X)+ ⊆ C∗∗} being generating in B(F (X), X∗∗), imply
that the cone {T ∈ B(F (X), X) | TF (X)+ ⊆ X} is generating in the wk∗-dense
subspace B(F (X), X)?�
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