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Abstract 

Allometry in crustaceans is typically considered growth over several instars primarily 

because crustaceans are presumed to grow only during ecdysis (discontinuous growth). 

Using theoretical distributions of the sizes of two morphometric variables over several 

instars, four theoretical instar allometry models are postulated: continuous allometry 

(indiscrete and discrete); discontinuous allometry (indiscrete and discrete); mixed 

allometry (simple or complex); and two-rate continuous allometry. The estimates of 

proportions of allometry within the instars is determined using Y = f(X) and X = f(Y) for 

variables X and Y. The amount of allometry in each variable is estimated using the mean 

±s.d. on the independent variable. Application of these theoretical instar allometry 

models using carapace and abdomen sizes in six instars indicates Americamysis bahia 

experiences two-rate continuous allometry, rather than “traditional” discontinuous 

allometry, with 85% or more of total growth occurring in the intermolt phase, and with 

the abdomen accounting for about 60% of the expansion.  
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1  |  INTRODUCTION 

During growth it is usual for increase in size of one body region of an organism to be 

proportional to increase in size of another body region (Diaz, Smith, Serafy, and Ault, 

2001; Hartnoll, 1974; Ribeiro, Cascon, and Bezerra, 2013), with the size of each region 

bearing a specific relationship to overall body size (Diaz et al., 2001; Ewo-oboho and 

Abby-kalio, 2006; Stern and Emlen, 1999), a relationship usually described by power 

functions (Agutter andTuszynski, 2011; Hernandez-Llamas and Ratkowsky, 2004; 

Katsanevakis, Thessalou-Legaki, Karlou-Riga, Lefkaditou, Dimitriou, and Verriopoulos, 

2007; Pasternack and Gianutsos, 1969; Stevens, 2009; West and Brown, 2005; Zeng and 

Wan, 2000). It is also common for the body regions under consideration to change during 

different growth phases of the organism. This proportional increase in two or more body 

regions is termed allometric, relative or, occasionally, heterogenic growth (Hartnoll, 

1982). Although allometry or heterogony is actually the relative growth of a part of an 

organism in relation to the entire organism (Gayon, 2000), allometry is frequently used in 

describing the relative growth of two regions (e.g., abdomen, carapace, chela, etc.) of an 

organism. Reviews of crustacean allometry are provided by Teissier (1936), Hartnoll 

(1978, 1982) (and throughout this paper). Teissier’s and Hartnoll’s standard terms, 

particularly their use of allometry to mean the relative growth of any two body regions of 

an organism, will be used. 

Crustacean growth typically involves transitions through multiple instars, thus 

complicating detailed mathematical descriptions of their morphological variation during 

development. Growth curves for crustaceans typically have been determined over several 

instars using an allometric equation that describes the proportional expansion of two 
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morphometric variables (e.g., carapace length and cheliped width) which are usually 

termed variables x and y (Clayton, 1990; Diaz et al., 2001; Hartnoll, 1974, 1978; Huxley, 

1932; Teissier, 1960), allowing the use of allometric equations to describe changes in 

growth that occur as a result of sexual differentiations, puberty or differing environmental 

conditions during large portions of the organisms’ life cycle (Hartnoll, 2001). Typically 

allometry of the two variables is constant over several instars, and then often, presumably 

as a result of changing physiological mechanisms, the allometric proportions are 

described by a different model over the next series of instars (Katsanevakis et al., 2007), 

a situation usually termed phase allometry (Teissier, 1960; Hartnoll, 1982). Chang, Sun, 

Chen, and Yeh, (2012) provide an extensive review of a great number of mathematical 

models that have been developed for modelling the growth of crustaceans. 

Determinations of allometric growth models for crustaceans over several instars 

have been assisted by observations that crustaceans, like other arthropods, appear to 

exhibit discontinuous growth (e.g., Chang et al., 2012; Ewo-oboho and Abby-kalio, 2006; 

Franco, Ferreira and Nobre, 2000; Hoenig and Restrepo, 1989), resulting in distinct 

growth “stanzas,” i.e., a stepwise growth over time (Klingenberg and Zimmermann, 

1992), usually described with regard to the change in size at molt and the duration of the 

intermolt period (Botsford, 1985), with considerable research directed at quantifying the 

relationship between pre-molt and post-molt sizes of individual animals (Chang et al., 

2012; Franco et al., 2000).  

Because of their hard exoskeletons, crustaceans typically remain one size for a 

large portion of an instar (Benetti and Negreiros-Fransozo, 2004). At ecdysis, when the 

animal sheds its exoskeleton and before the new, soft exoskeleton has hardened, there is a 
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rapid uptake of water (or air in terrestrial arthropods) accompanied by a rapid expansion 

in size.  

Using physiological and physical characteristics of individuals, instars have been 

subdivided into five or more stages (Passano, 1960) of which ecdysis (stage E of Drach’s 

classification; Drach, 1939) per se occupies as little as 0.5% of the time spent in an instar. 

In this treatise, no distinction between the first four stages is made and will be termed the 

intermolt period, with ecdysis or molting the terminal period to any particular instar. As a 

result of discontinuous growth during each instar, allometric studies of crustaceans have 

considered proportional changes in body regions through several instars under the 

assumption that no increase in size is accommodated during the intermolt period 

(Hartnoll, 1978, 1982; Passano 1960; Teissier 1960), consequently, it is adequate to use 

mean values for the sizes of variables under consideration in individuals within the same 

instar or to use pre- and post-molt sizes for individuals in transition from one instar to the 

next. 

However, recent work by Scarfe and Steele (2017) indicates no obvious 

discontinuities in the growth curve of Americamysis bahia (formerly Mysidopsis bahia), 

as usually associated with ecdysis in crustaceans. Apparently the majority of the 

expansion in standard length is accommodated during the intermolt period and not during 

ecdysis. To determine if the expansion is accommodated by abdominal arthroidal 

membrane stretching, as was originally suggested by Mauchline (1973) and Childress and 

Price (1978), or if the intermolt growth is due to continual stretching of the cuticle 

throughout the intermolt period, a series of allometric models within single instars are 

considered here.  
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In this study, we categorize all possible growth patterns of linear dimensions and 

propose a methodological approach to the analysis, which we test with the growth pattern of 

A. bahia, a species where instar and phase allometry differ. Our objective is to offer a 

valuable methodological approach to address crustacean growth and to further understand the 

principles underlying transformation during the crustacean molt. We recognize, however, 

that these details do not have major implications for estimating phase allometry, which 

ultimately controls the most important energetic and ecological aspects of crustaceans. 

   

2  |  METHODS OF MODEL FORMULATION 

We postulate four theoretical instar allometry models for determining intermolt growth 

patterns and for estimating proportional growth during the intermolt and molt periods of 

crustaceans, and possibly other arthropods. What we present is an approach that offers 

new thoughts and insights about “traditional” concepts regarding crustacean growth that 

may reveal more substantive information than the classical discontinuous growth model 

approach. In essence, our proposed allometry models free researchers from the 

limitations of considering only discontinuous growth in crustaceans. The application of 

these models is illustrated with allometric growth data for A. bahia (Scarfe and Steele 

2017). 

 

2.1 Calculations of allometry over several instars 

Much of the early quantitative determinations of allometric growth in crustaceans was 

undertaken by Huxley (1924, 1927, 1932) and his colleagues (Huxley and Callow, 1933; 

Huxley and Richards, 1931; Huxley and Teissier, 1936). As a result, well-accepted 
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methodologies have been developed for estimating different forms of relative growth 

within different instar phases. Because overall growth is often best described by a non-

linear power function of the relationship between two variables (Agutter and Tuszynski, 

2011; Katsanevakis et al., 2007; Klingenberg and Zimmermann, 1992; Pasternack and 

Gianutsos, 1969; Stevens, 2009; West and Brown, 2005), a log-log relationship (log y = 

log a + b log x) of the two variables approximates what Huxley (1931) termed a constant 

differential growth ratio when plotted on log-log axes. 

This linearized model assumes that allometry is constant as body size increases 

(Katsanevakis et al., 2007) and that all parameters are linear (Hernandez-Llamas and 

Ratkowsky, 2004). The relative growth rate or allometric constant can then be described 

by the slope (b) in the relationship (Hartnoll, 1978, 1982; Teissier 1960) and 

consequently four types of allometric growth covering several instars have been 

postulated: A power allometric function Y=aXb is defined as isometry when b=1, positive 

allometry when b>=1, negative allometry when 0=<b<1 and enantiometry when b<0 

(Hartnoll, 1982; Teissier, 1960). Whatever the relationship between the two variables 

(log-log, log-linear or linear) linear transformation produces a constant relationship or 

slope between them. The magnitude, therefore, of the b terms can be used to describe the 

four types of allometric or proportional growth, irrespective of the magnitudes of x and y. 

 

2.2 Alternative allometry within instars 

If the overall development of an organism, or group, can be divided into identifiable, 

distinct stages, such as instars, several alternatives regarding the growth of two variables 

(x and y) within the instars are possible. 
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In biometry, x is considered the independent or reference variable and y the 

dependent variable. Over a series of measurements (within one or over many instars) the 

relationships of y as a function of x can be determined using regression modeling. While 

the true independence of x may be questioned (as below; also Hartnoll, 1982), the study 

of a particular variable (y) relative to another (x) has generally established the a priori 

independence of x. As Gould (1966) suggested: “a model, neither true nor false, whose 

criterion is utility” justifies its use.  

Multiple measurements of the variables over the range of x under study must be 

obtained for one or many individuals and these data then subjected to regression analysis 

using the least squares method. These analytical relationships are valid under the 

assumptions that the individuals measured belong to the population, the selection of 

individuals is random, and the populations of measurements are normally distributed with 

a common variance (Sokal and Rohlf, 1995). Theoretically, these assumptions apply only 

to x. The relationships of y on x for each instar population can have several alternative 

allometric growth patterns, which may or may not coincide with the growth pattern over 

several instars. 

For crustaceans and other arthropods, each instar can have up to five stages 

(Passano, 1960). The most easily identifiable stage is ecdysis, which also has the shortest 

duration (< 0.5% of the total instar time). The other stages are separated physiologically 

and are therefore sometimes difficult to distinguish without refined biochemical or 

histological techniques; these four stages together may be referred to as the intermolt 

period (anecdysis). Because the intermolt typically occupies 99.5% of the time spent in 

any instar, it is more likely that random sampling of individuals in any instar population 
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will produce 99% or more of the individuals in the intermolt period. In addition, because 

molting individuals are so readily identifiable, 100% intermolt observations can be 

achieved by an a priori decision to eliminate individuals that are molting. 

 

2.3 Proposed theoretical allometry models 

2.3.1 General considerations 

The following theoretical allometric growth alternatives consider that, from the relative 

proportions of two variables measured from individuals in a specific stage or period of 

each instar (in these examples, the intermolt period), the relative allometry during the 

intermolt and molt (period or stage allometry) of each instar can be determined. 

Allometric growth over several instars (phase allometry) can be estimated from these 

instar populations. It is theoretically possible that these analyses could apply to all five 

stages of an instar provided that individuals can reliably be assigned to each stage. If so, 

allometric growth during all stages of an instar could be determined and may add 

substantially to the physiological understanding of the growth process in Crustacea. 

Each of the theoretical allometry models discussed considers the relative growth 

of two variables within three instars in which individuals would have been randomly 

sampled and in the intermolt period of a specific instar, and the data normally distributed. 

Two alternative situations arise in each case. In one alternative, the sizes of one or both 

variables of one intermolt population are discrete and do not overlap with the sizes of the 

variables of the next population. In the other alternative, sizes do overlap and the instar 

populations are indiscrete.  
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Within each instar the size limits of expansion for each variable during the 

intermolt period can be estimated from the minimum to the maximum values of each 

variable for that particular intermolt population. The molt expansion in turn can be 

estimated from the maximum values for that particular instar to the minimum intermolt 

value of the succeeding instar. Estimations of the intermolt population limits will be 

discussed later. Alternative allometric models are illustrated in Figures 1 through 5 

considering the sizes of two variables (x and y) for 10 individuals within each intermolt 

population. 

 
 

FIGURE 1  Theoretical distributions of individuals in three intermolt populations (● = instar 1; ▲= instar 2; ■ = 

instar 3) showing two types of continuous allometric growth in two body regions (X and Y). In each population, a 

significant regression can be fitted and all have the same slope and intercept. A. Indiscrete continuous allometry 

with overlapping X, Y sizes in which no molt allometry is discernible. B. Discrete continuous allometry in which a 

line between maximum and minimum limits of sequential populations (having the same slope as intermolt 

populations) describes the molt allometry (+ indicates population means; –––––– indicates intermolt allometric 

expansion; bars perpendicular to regression lines approximate maximum and minimum limits of each population) 
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FIGURE 2  Theoretical distributions of individuals in three intermolt populations (● = instar 1; ▲= instar 2; ■ = 

instar 3) showing two types of discontinuous allometry. Within each population no correlation exists between X 

and Y (i.e., r = 0; b = 0) and no intermolt expansion occurs. Molt expansion, best approximated by the change from 

the X, Y mean of the population to the X, Y mean of the next population accommodates all the expansion. A. 

Indiscrete discontinuous allometry. B. Discrete discontinuous allometry (+ indicates population means; ------- 

indicates molt allometric expansion) 
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FIGURE 3  Theoretical distributions of individuals in three intermolt populations (● = instar 1; ▲= instar 2; ■ 

= instar 3) showing simple mixed allometric growth. One variable (X) grows continuously, with the other 

variable (Y) having no growth, during the intermolt. The reverse situation occurs during the molt period, in 

which Y expands during molt and X remains the same size (+ indicates population means; –––––– indicates 

intermolt allometric expansion; -------- indicates molt allometric expansion; — — — indicates phase allometry; 

bars perpendicular to regression lines approximate maximum and minimum limits of each population) 
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FIGURE 4  Theoretical distributions of individuals in three intermolt populations (● = instar 1; ▲= instar 2; ■ 

= instar 3) showing complex mixed allometric growth in which only one variable expands during the intermolt 

and both expand during the molt period. A. Intermolt discontinuous, molt continuous or where both variables 

expand during the intermolt and only one variable expands during the molt period. B. Intermolt continuous, 

molt discontinuous (+ indicates population means; –––––– indicates intermolt allometric expansion; -------- 

indicates molt allometric expansion; — — — indicates phase allometry; bars perpendicular to regression lines 

approximate maximum and minimum limits of each population) 
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FIGURE 5  Theoretical distributions of individuals in three intermolt populations (● = instar 1; ▲= instar 2; ■ 

= instar 3) showing two-rate continuous allometric growth. Both variables are growing during both intermolt 

and molt periods, but at different proportional rates (+ indicates population means; –––––– indicates intermolt 

allometric expansion; -------- indicates molt allometric expansion; — — — indicates phase allometry; bars 

perpendicular to regression lines approximate maximum and minimum limits of each population) 

 

2.3.2 Continuous allometric growth 

If, within each instar, the increase in the size of x is accompanied by a constant 

proportional increase in the size of y, such that the slope, b, and the intercept, a, are the 

same for more than one instar (Figure 1), then the relative growth of both variables can 

be described by a single regression model for all instars. Within each instar, and over all 

instars, statistical tests are available to determine if b ≠ 0 and a < 0 < a, and if bi  = bj = bn 

and ai = aj = an (for regressions i…n) (see Neter and Wasserman,1974). 

Two variations of continuous allometric growth are possible depending on the 

discreteness of each intermolt population. If the intermolt populations are indiscrete such 
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that the population limits overlap (Figure 1A) then no molt allometry (i.e., expansion 

during the molt period) occurs because no separation of sizes of individuals leaving one 

intermolt and entering the next intermolt is discernible. This pattern of growth is more 

typical of soft-bodied organisms in which any distinction between stages (instars) is 

artificial (e.g., age classes) and does not necessarily have a physiological basis. In this 

case, allometry is best described by a single regression over all slopes, periods or, in 

Crustacea, instars. 

If the intermolt populations are discrete and have no overlap (Figure 1B) and the 

regressions of each are identical in terms of slopes and intercepts, it can be assumed that 

the slope of the molt allometry is identical to intermolt allometry. The intermolt allometry 

for each instar would then be described by the regression characteristics between the 

upper and lower intermolt population limits. A line fitted between the maximum 

population limits for the intermolt population of that instar and the minimum limits for 

the next intermolt population would describe molt allometry. 

 

2.3.3 Discontinuous allometric growth 

If no correlation exists between the variables within intermolt populations (r = 0) and b = 

0, then the statistical inference is that there is no proportional change in one variable 

relative to the other during each instar. In this case no intermolt allometry exists, inferring 

wide variation of both variables about their means within each intermolt population and 

that an individual, having a proportion x1, y1 in intermolt 1, will maintain that proportion 

throughout that intermolt period. Similarly during intermolt 2, the same individual will be 

x2, y2. The best estimates of each intermolt population will then be 1X , 1Y ; 2X , 2Y , etc. 
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With no intermolt expansion, the change from intermolt 1 to intermolt 2 must be 

accommodated by the molt. The molt allometry is calculated as X 2 – 1X , 2Y – 1Y for 

instar 1; 3X – 2X , 3Y – 2Y for instar 2, etc., and intermolt allometry will be zero, meaning 

that all expansion during an instar is accomplished during the molt period and is the 

typical view of crustacean growth. Usually pre-molt (instar i) and post-molt (instar i + 1) 

individuals are sampled and the regression between the means of these populations, 

representing molt expansion, is considered the allometric growth of the population. If 

regressions through several such population comparisons are similar (in terms of slope 

and intercept) a single regression line through all points adequately describes overall 

allometry (phase allometry), the traditional approach to allometry in Crustacea. These 

considerations would apply equally to indiscrete (Figure 2A) or discrete intermolt 

populations (Figure 2B). 

 

2.3.4 Mixed allometric growth 

Depending on physiological processes working within different body regions under 

consideration, it is possible that during the different periods or stages within an instar, 

combinations of continuous and discontinuous growth may occur. Any combination of 

continuous and discontinuous growth within the intermolt and molt periods of an instar is 

here referred to as mixed allometry. Two types of mixed allometry are considered: simple 

mixed allometry in which only one variable grows discontinuously during each instar 

period; and complex mixed allometry in which one variable grows discontinuously in one 

period and both variables grow continuously in another period. 
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2.3.4.1 Simple mixed allometric growth 

As with the examples of discontinuous growth, an intermolt population can have both b 

and r = 0, but at the same time can have a distinctively different scatter population of x, y 

sizes (Figure 3). For each intermolt population, r = 0, b = 0, Y = a ≠ 0 and, unlike that for 

pure discontinuous allometry, the variance of xi’s about X would be greater than the 

variance of yi’s about Y  (i.e., σx
2 > σy

2). The inference is that within the intermolt 

population, variable X is growing continuously while Y is not expanding. (The reciprocal 

situation in which the x, y scatter of the degree of association created a vertical 

distribution, i.e., Y was continuous and X discontinuous, is possible, but in this case “Y” 

would become the independent variable plotted on the abscissa.) The final qualifying 

criterion for simple mixed allometry would be that the intermolt populations for two 

sequential instars were not discrete and overlapped to a greater or lesser degree on the 

abscissa only (Figure 3). Within an instar, therefore, the expansion during the intermolt 

would be accommodated by continuous growth in variable X and no growth in Y, while 

during the molt, Y would account for the remainder of the instar growth. 

 

2.3.4.2 Complex mixed allometric growth  

Two forms of complex mixed allometry are possible and depend upon the discreteness of 

intermolt populations and the statistical significance of regression of each intermolt 

population: intermolt discontinuous-molt continuous allometry (Figure 4A) and intermolt 

continuous-molt discontinuous allometry (Figure 4B). 

Intermolt discontinuous-molt continuous allometry produces intermolt 

populations similar to simple mixed allometry, except that the sequential intermolt 
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populations are discrete and do not overlap along the abscissa. Intermolt expansion 

within each instar would only be accommodated by the X variable, none by the Y, and the 

slope of a line between the maximum values of one intermolt population to the minimum 

values of the next sequential intermolt population would describe the proportional 

increases of X and Y during the molt. The slope of molt allometry would not be the same 

as that described over all instars. 

Intermolt continuous-molt discontinuous allometry would be produced by 

intermolt populations that had positive correlations, significant regressions (i.e., b ≠ 0, Y 

≠ a), had indiscrete populations, and the slopes of each population differed significantly 

from the slope described by a regression over all populations (Figure 4B). Intermolt 

expansion would be continuous for both variables, but during the molt, expansion would 

occur only within the body region described by Y. The molt expansion would be 

calculated by the difference between the minimum Y-value described by the next 

sequential intermolt regression and the maximum Y-value for the intermolt regression 

belonging to the same instar as the molt under consideration. 

 

2.3.5 Two-rate continuous allometry 

This instar growth pattern combines aspects of the discrete continuous allometry and the 

intermolt continuous-molt discontinuous allometry, complex mixed allometry cases. 

Intermolt regressions would be significant (i.e., b ≠ 0; a ≠ 0) and intermolt populations 

would be discrete, but the intermolt regressions would have slopes and intercepts 

different from the regression through all instars (Figure 5). Both variables would grow 

continuously during both the intermolt and molt periods but at different rates. The slope 
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of the intermolt regression would describe the intermolt allometry and the slope of a line 

between the maximum and minimum sizes of two sequential intermolt molt periods 

would describe the molt allometry. 

 

2.4 Overall allometric growth rate through several instars 

In all cases described above, the allometry over all instars (phase allometry) considered is 

identical. Irrespective of the type of instar (or instar period) allometry, the phase 

allometry can adequately be calculated from the mean X, Y values of each intermolt 

population. This situation is not dissimilar to the allometry described for other 

crustaceans (e.g., Hartnoll, 1978; Teissier, 1960;). The most frequently used method to 

calculate the sizes of each instar is to measure variables in pre- and post-molt individuals 

(i.e., non-molt individuals) through several instars. Assuming these organisms do not 

change size during the intermolt, the post-molt sizes will be the same as the pre-molt 

sizes for individuals in the same instar, and the best estimate of the size of any variable 

during any particular instar is represented by the mean of that variable for each instar 

population. Using the methods described previously to examine instar allometry, there 

would be no inconsistencies with methods of previous studies. 

The concept of instar allometry is not new. Mayrat (1965, 1967), for example, in 

developing his growth increment hypothesis considers growth-allometry as the rate of 

relative growth of each individual (within the same population) over several instars 

within a phase, which corresponds to the slope of the regression over the entire phase. 

Thus, the proportion exhibited by the entire population within the phase is termed the 

phase allometry. Because often not all individuals shift during identical instars from one 
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phase of growth to another, Mayrat suggested another parameter of growth: stage 

allometry. 

Stage allometry, which is the allometry exhibited by each instar within a 

particular phase (and which may or may not coincide with the phase allometry), was used 

by Mayrat to describe variation in instar phase shifts. The stage allometry suggested by 

Mayrat is somewhat similar to what is termed instar allometry in this paper, in that the 

allometry within periods of an instar may or may not coincide with phase allometry 

(allometry through the means of several instars). 

Hartnoll (1978) discussed Mayrat’s growth-increment and Huxley’s (1932) size-

equilibrium hypotheses in relation to phase shifts. As Hartnoll (1978) was more 

concerned with the determination of proportional growth than the amount of growth 

during any instar or phase, he concluded that “there is no reason to postulate a series of 

stage allometries corresponding to each instar within a phase and differing from the 

overall phase-allometry” (Hartnoll, 1978, p. 283). The fact that intermolt growth, which 

previously has been assumed to not be present, has been observed in crustaceans 

(Childress and Price, 1978; Mauchline, 1973; and this treatise) negate this assumption, 

and any of the theoretical instar allometries proposed earlier which have intermolt growth 

(realizing that instar allometry does not require growth within a particular instar, but may 

merely express the relationship between different sized specimens within an instar) are 

possible. In these proposals, both the determinations of the proportional growth and the 

amount of growth during each instar and instar periods are important.  
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2.5 Determination of proportions and amounts of allometry within instars 

If within an instar two or more periods or stages are present, in which physiologically 

distinct actions occur, the amount of growth during that instar is represented by the sum 

of the growth of all periods or stages. In other words, instar growth equals intermolt plus 

molt growth. It is important, therefore, to estimate the minimum size limits of individuals 

entering and the maximum size of individuals leaving that instar and the periods within 

the instar. Proportional growth of two body regions under consideration during these 

periods is estimated by the correlation and regression between the two variables which in 

turn determines the type of allometry, making it necessary to estimate not only the 

regression relationship between the two variables but also the sizes of animals entering 

and leaving each substage (Figure 6). 

 

The simplest and most direct way to determine both the proportion and amount of 

allometric growth is by measuring the appropriate body regions of the same individuals at 

regular intervals during an instar, knowing when the individual enters and leaves each 

period, which has apparently not as yet been attempted, although continuous 

measurements of total and standard lengths of individuals has been done for a few 

crustaceans (Meixner, 1969). It is most common for populations of organisms within 

known instar periods to be sampled and estimates made from population regression 

relationships and minimum and maximum sizes of individuals within each period. 
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FIGURE 6  Proportion and amount of allometry calculated for two periods (IM = intermolt; M = molt) of 

an instar. Proportional allometry in each period is represented, respectively, by the regressions between X1, 

Y1 and X2, Y2 and X2, Y2 and X3, Y3. The amount of growth is represented by a shift in each variable from the 

minimum to the maximum sizes during each period (> IMx, > IMy for the intermolt and > IMx, > My for the 

molt) (● = instar 1; ▲= instar 2; + indicates population means; –––––– indicates intermolt allometric 

expansion; -------- indicates molt allometric expansion) 

 

In establishing regression models that quantitatively describe the proportional 

relationship between two variables, in which a functional relationship is represented by a 

statistical relationship (“best fit model”), establishment of the independence of one 

variable is paramount (the selection of independent variables is discussed by Neter and 

Wasserman, 1974). This functional relationship does not, however, necessarily imply a 
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causal relationship. For example, there is no implication that Y casually depends on X in 

any given instance. A statistical requirement for a regression, whether it is used for 

descriptive, control or prediction purposes, is that X is chosen a priori and the xi’s are 

measured without error. In practice these requirements are not always met (Lovett and 

Felder, 1989) because as Katsanevakis et al. (2007) point out: “…with morphological 

measurements … the functional relationship between two … morphological variables … 

are subject to natural variability and measurement errors.” 

In studies of crustacean allometry, it is not always mentioned why one or another 

variable was designated as the independent variable. Hartnoll (1982) criticized this failing 

by suggesting that “X can seldom be considered as a genuine independent variable.” He 

concluded that if Y is a measure of a relatively small body region and X is a measure of a 

relatively large one, designating X as the independent variable is satisfactory. He insists, 

however, that if the two body regions are of “essentially the same order” (e.g., length and 

width of carapace), neither is strictly dependent or independent, and “it may be more 

theoretically appropriate to calculate the major axis or the reduced major axis,” i.e., a 

Model II regression (see Katsanevakis et al., 2007). 

In cases where intermolt allometry has been examined (Childress and Price 1978; 

Mauchline 1973), the carapace has been considered as independent, presumably under 

the assumption that it did not expand during the intermolt. Consequently these authors 

neglected several alternative overall functional relationships between abdomen and 

carapace allometry and concluded that all expansion occurred in the abdomen, with no 

carapace expansion. 
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In dealing with unknown functional dependency of two variables and because 

allometric relationships are based on population estimates, it may be more appropriate, 

therefore, to use both Y = f(X) and X = f(Y) to estimate the limits of proportional 

allometry in any instar population. This consideration is particularly true if the criteria of 

errorless measurements of xi’s or multiple measures of Y around set values of X cannot be 

made (Eisenhart, 1939; Winsor, 1946). As with all population estimates, the “real” 

relationship usually lies within these limits. When a calculated regression of Y on X is 

fitted it will, except in the case of an isometric relationship, produce a model with 

different values (Figure 7). A case of positive allometry between two variables can, 

therefore, become one of negative allometry depending upon which variable is 

considered as statistically independent. The descriptive terms of positive and negative 

allometry may, in some cases, lose functional meaning unless the independence of one 

variable is either functionally established or defined. 

Determination of the amount of allometry within an intermolt population is also 

necessary to estimate how much expansion in both variables occurs during each period of 

an instar. Several estimates of population limits for one-variable populations exist (e.g., 

confidence intervals or limits) and these have been adapted for bivariate populations to 

produce confidence belts around a regression (Sokal and Rohlf, 1995). These bivariate 

estimates neither satisfy the determination of maximum or minimum limits of the 

population nor do they meet the criterion of individual (x, y) values of one variable, say 

X, and subsequently measuring the corresponding values of Y. These requirements are 

necessary for variance estimates of Y on specified X values (Winsor, 1946).  
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FIGURE 7  Fitted linear regressions of two variables (x and y), using X and Y separately as the 

independent variable (+ indicates population means) 

 

In most allometric studies, the (x, y) values of body sizes of individuals are 

obtained by random sampling from a large population of individuals in the same instar. A 

simple way to estimate X, Y maximum/minimum limits of a randomly selected instar 

population would involve measures of dispersion around the mean of the independent 

variable, assuming the independent variable values are normally distributed about this 

mean, and using the regression model as a predictor for the corresponding values of the 

dependent variable. A measure of dispersion frequently used is the standard deviation (σ) 

with X ± 2σ = 95% of the population. Using the mean of the independent variable ± 2σ 

and the regression model, therefore, the X, Y minimum and maximum values for an 

intermolt population can be estimated (Figure 8). Using this measure of dispersion also 
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allows ready comparison with many other studies that use standard deviations for 

describing populations. 

 
 

FIGURE 8  Population estimates of the size limits of two variables based on the regression of Y on X and the 

mean (indicated by +) ± standard deviation (σ) of the independent variable population (bars perpendicular to 

regression lines approximate maximum and minimum limits of each population) 

 

By using reciprocal regressions (Y on X and X on Y) and simultaneously using 

measures of dispersion on the independent variables the estimates of the limits of 

allometric proportions and the amounts of allometry, within an intermolt population, can 

be determined. Similar estimates can be made of the molt period within an instar (Figure 

6) using the difference between the maximum intermolt size estimate for one instar and 

the minimum intermolt size estimate for the next sequential instar. 
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The case of discrete intermolt populations (Figure 6) presents less problem than 

indiscrete populations which may have an overlap in the values of either variable. In this 

case, providing the slopes of the two populations were not similar (see the case of 

Indiscrete Continuous Allometry, Figure 1A), no molt expansion can be adequately 

estimated on the axis that overlaps (increase of the variable on this axis is ≤ 0), but the 

molt expansion of the other variable can be estimated (Figure 9). 

 
 

FIGURE 9  Estimation of molt increase between two sequential intermolt populations (A and B) that have 

indiscrete (overlapping) distributions. Figure utilizes the regressions of Y on X and X on Y, as well as the mean 

(indicated by +) ± 2 standard deviations of the independent variable to estimate the molt expansion in the 

dependent variable (i.e., molt increase of Y, using Y on X = By – Ay; molt increase of X, using X on Y = Bx – Ax) 
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3  |  RESULTS OF MODEL APPLICATION 

3.1 Determining instar allometry  

The general requirements for determining the type of instar allometry, as well as the 

allometric proportions and amounts of growth within periods of instar populations are: 1) 

Individuals must be sampled from known instar periods (or stages) of two or more 

sequential instars; 2) Individuals must belong to the same genetic and environmental 

population exposed to the same environmental conditions; 3) Each period (stage) 

population is randomly sampled to include a full range of proportional sizes for each 

instar; and 4) Expansion (growth) is known to occur in one or more periods (stages) of 

the instars. To establish one or more forms of continuous or mixed (continuous-

discontinuous) allometry, as earlier defined, an additional criterion should be met: 5) All, 

or part, of the organism expands during all or part of the intermolt (anecdysis) period/s. 

 

3.2 Instar allometry growth data for Americamysis bahia 

All of the above criteria for determining type of instar allometry, allometric proportions 

and amounts of growth within periods of instar populations are met in a study by Scarfe 

and Steele (2017) that examined the theoretical allometric approaches discussed earlier 

and determined the proportion and amount of allometry through several post-larval 

instars of A. bahia by sampling individuals in the intermolt stage of instars 1 through 6 

and measuring several body regions of each individual. Of primary importance here are 

abdomen and carapace lengths (mm) because of an observed substantial intermolt 

expansion in the standard lengths, SL (mm), and because it was necessary to determine 

whether intermolt expansion occurred in either the abdomen or carapace or both. Scarfe 
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and Steele (2017) also determined the type of instar allometry exhibited by A. bahia and 

an estimation of the proportion and amounts of period allometry (molt/intermolt 

allometry) in the abdomen and carapace. 

The overall growth pattern of A. bahia in the first few post-larval instars is one in 

which about 85% of the expansion occurs in the intermolt period, with the remainder at 

ecdysis. Of the intermolt growth, about 60% is accomplished in the abdomen and about 

40% in the carapace, while ecdysis accounts for the remaining 15% of the total 

expansion, in which either abdomen or carapace can account for 40% to 100% of this 

expansion. The slopes of the intermolt regressions have intercepts different from the 

regression through all instars (Scarfe and Steele, 2017). Average molt:intermolt ratio in 

the carapace expansion is 1:3.16, and in the abdomen, 1:3.71, indicating that proportional 

growth between the carapace and the abdomen is continuous during both the intermolt 

and molt phases, but occur at different rates and proportions during the two periods 

(Scarfe and Steele, 2017), thus indicating two-rate continuous allometry (see Figure 5). 

 

4  |  DISCUSSION 

Discontinuous growth at ecdysis in which either of the body regions expanded far more 

rapidly than the other, perhaps to the extent of no growth occurring in the other variable, 

would also allow for synchrony in the overall sizes of individuals moving from instar to 

instar. This situation has been examined by Hartnoll and Dalley (1981) in several 

crustaceans by comparing the variation in the size of individuals in several sequential 

instars. They suggest “the reduction of the coefficient of variation implies a negative 

feedback at the molts concerned, whereby specimens which are large for that instar 
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experience a smaller than normal molt increment and vice versa” (Hartnoll and Dalley. 

1981, p. 237).  

The observed trend in the reduction of the coefficient of variation of abdomen, 

carapace and SL is similar in A. bahia (Scarfe and Steele 2017). If Hartnoll and Dalley’s 

(1981) explanation is correct, then for A. bahia a negative feedback mechanism (of 

extrinsic or intrinsic nature) is functioning through the instars under consideration and the 

molt at the end of each instar tends to synchronize the size at which individuals enter the 

subsequent instar. The synchronization of overall body size (SL) is more-greatly- 

negatively correlated with instar than either abdomen or carapace lengths (Scarfe and 

Steele, 2017). Apparently, different body regions differentially accommodate 

synchronization of overall body size at different stages (instars) of growth, again 

indicating two-rate continuous allometry (Figure 5). Knowing that intermolt expansion 

occurs in A. bahia, apparently in variable amounts among individuals, differential 

molting between individuals and between body regions would permit resynchronization 

of the sizes of individuals to enter the subsequent instar. Consequently, when individuals 

in a similar population reach the same stage in development, most will be similar in size. 

Instar allometry, as discussed herein, does not negate the overall growth allometry 

over several instars, such as has been more traditionally examined (Hartnoll, 1978, 1982; 

Teissier 1960). Americamysis bahia has two distinctive phases of allometry (Scarfe and 

Steele, 2017). The first, which would be represented by a straight line plotted through the 

mean sizes of instars 1, 2 and 3, is different from the second allometric phase during 

instars 4, 5 and, possibly, 6. This disjunction or phase discontinuity (as opposed to instar 

or intermolt discontinuities) occurs at molt 3, and it is during instar 4 when the first 
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physical signs of sexual differentiation appear. Allometry during instars 1, 2 and 3 can, 

therefore, be considered as pre-pubital allometric growth, and that during instars 4, 5 and, 

possibly, 6 as pubital allometry. 

In addition, something of a discontinuity in the variation of the carapace-abdomen 

sizes of individuals is seen between instars 3 and 4 (Scarfe and Steele, 2017). In this case 

the coefficients of variation drop dramatically in instar 4, suggesting a distinct 

resynchronization of sizes of individuals entering the pubertal phase (pubertal molt; see 

Hartnell, 1985; Hartnoll and Dalley, 1981). If correct, this observation infers that not only 

is the amount of growth regulated during each phase but that there is also a regulation of 

the proportional growth within these body regions over each phase. These results 

somewhat combine Mayrat’s growth increment hypothesis (Mayrat, 1965, 1967) and 

Huxley’s size-equilibrium hypothesis (Huxley, 1932). Hartnoll (1978, 1982) provides 

extensive discussion of both hypotheses. While proportional allometry within instars and 

over phases of growth covering several instars may assist in determining the 

physiological mechanisms controlling allometric growth, the amount of growth within 

the instars and phases can also assist in these aims. 
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