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Overview

This file provides accompanying ‘R’ code for our paper, “A unified-models analysis of the development of
sexual size dimorphism in Damaraland Mole-rats”. Below we provide code to fit the Unified-sigmoid family
of growth functions to mole-rat skeletal data within a mixed effects modelling framework. Like parameters
estimated with the Unified functions can be directly compared, and each parameter only affects a single
growth curve characteristic, which facilitates comparisons of the form of growth across datasets (as between
the sexes). Before following this code, we recommend that readers are familiar with the following two papers:

• Tjorve, E. & Tjorve, K.M.C. (2010) A unified approach to the Richards-model family for use in growth
analyses: Why we need only two model forms. J. Theoretical Biology, 267, 417-425.

• Tjorve, K.M.C. & Tjorve, E. (2017) A proposed family of Unified models for sigmoidal growth. Eco-
logical Modelling, 359, 117-127.

The non-linear mixed effects models fitted throughout the paper, and in this tutorial, are fitted using the
nlme package in the R environment. For more information on the use of nlme, and the fitting of mixed effects
models in R see the nlme vignette, and https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html. We
also make use of the tidyverse package to manipulate data and model output. Details on the syntax of the
tidyverse, which deviates somewhat from base R, can be found here: http://r4ds.had.co.nz/. Users need to
have installed the following packages in order to run the code that follows:

• nlme4
• tidyverse
• broom
• mgcv
• pracma

The code below consists of two sections. In Section 1, we demonstrate how we modelled growth in captive
mole-rats. For the purposes of this tutorial, we only do so for incisor width (skull size), but the same methods
were employed for body length. Then, in Section 2, we model growth in wild Damaraland mole-rats. As
we do not know the age of wild-caught individuals, we could not use conventional Unified models to do so.
We instead used the ‘interval equations’ outlined in Schoener and Schoener (1978), which model size at time
t+1 ~ size at time t + the interval difference.

Section 1: Modelling sex differences in teeth width (skull size) in captive mole-
rats

Load in the female teeth width dataset. We filter the data to only consider individuals when younger than
1200 days old, when asymptotic size had been reached (~ 3 years old)
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library(nlme)
library(tidyverse)
library(broom)
library(mgcv)

female_teeth <- read.csv("DMR_femaleteeth.csv") %>%
filter(!is.na(teethwidth) & Age < 1200)

str(female_teeth) # look at the dataset to be familar with the contents

Before starting, we first take a look at the raw data. We can fit a GAMM through the raw data to get an
idea of the shape of growth.

gammfem_teeth <- gamm(teethwidth ~ s(Age, k = 6), random = list(AnimalID = ~1),
data = female_teeth)

plx <- data.frame(Age = seq(2, 1200, 1)) # females
plx <- cbind(plx, predict(gammfem_teeth$gam, newdata = plx, se.fit = TRUE))

# set the colour palette
clrs <- colorRampPalette(c("white", "dodgerblue", "orange", "red"), alpha = 0.8)

smoothScatter(female_teeth$Age, female_teeth$teeth, las = 1, xlab = "Age, days",
ylab = "Incisor width, mm", nrpoints = 0, colramp = clrs)

axis(1, at = seq(100, 1200, 100), labels = FALSE) ; axis(2, at = seq(2, 8, 0.5),
labels = FALSE) ; lines(plx$Age,plx$fit, lwd = 3)
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This plot suggest little evidence of an inflection point in growth. To get a better idea if this is the case, we
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can also plot the rate of change in growth with age by calcluating the gradient across the fitted slope using
the pracma function.

# convert the curve to a rate with pracma (gradient across the fitted slope)
plx$teethvelocity <- pracma::gradient(as.vector(plx$fit))*365
plot(plx$Age, plx$teethvelocity, type = "l", las = 1, lwd = 2,

ylab = "Incisor Growth Velocity, mm/year", xlab = "Age, days", col = "dodgerblue",
ylim = c(0, max(plx$teethvelocity)), xlim = c(0, 1200), bty = "l")

axis(1, at = seq(100, 1200, 100), labels = FALSE)
axis(2, at = seq(0, 10, 1), labels = NA)
abline(h = 0, col = "grey", lty = 2)
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This plot seems to confirm the general lack of inflection. But we can check this once we fit the candidate
growth models.

Female teeth width in captivity: U-von Bertalanffy model

St = A.

(
1 − 1

3 .e− 9
4 .k(t−Ti)

)3

• where St is the size (incisor width) at age t; a fitted value
• A is the upper asymptote (adult size value) to be estimated
• k ia the relative maximum growth to be estimated
• Ti is the time of inflection to estimated

Before running the non-linear mixed effects model, it is often advisable to fit a straightforward non-linear
model using nonlinear least-squares. nls is more forgiving in locating sensible estimates that lme, which is
more likely to face convergence issues converge. The nls estimates can then be plugged into lme.
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nls.vb.fteeth <- nls(teethwidth ~ A*(1-((1/3)*exp(-(9/4)*k*(Age-Ti))))^3,
data=female_teeth,
start = c(A=6,k=0.003,Ti=5))

summary(nls.vb.fteeth) # A = 6.63, k = 0.00194; T= 3.90

We can use the output from this model to now inform the non-linear mixed effects model. In this model, we
include random effects at the level of the individual on each of the three parameter values.

femteeth.vb.nlmm <- nlme(teethwidth ~ A*(1-((1/3)*exp(-(9/4)*k*(Age-Ti))))^3,
fixed=A+k+Ti~1, random= list(AnimalID = pdDiag(A + k + Ti~ 1)),
data=female_teeth,
weights = varPower(1),
start = c(A=6.63,k=0.002,Ti=3.75),
correlation = corAR1(form = ~1|AnimalID))

summary(femteeth.vb.nlmm) # A = 6.59, k = 0.00195; T= 4.63

• We also include a power function to account for the increased variance with increasing age, using nlme’s
‘varPower’ function

• And an AR-1 auto-correlation structure, correlation = corAR1(form = ~1|AnimalID), to estimate
temporal autocorrelation on observations from individuals

• pdDiag specifies that the random effects are uncorrelated.

In order to determine the appropriate parameters on which to estimate individual level variation, we also
code a number of additional models that differ in the combination of the random effects.

femteeth.vb.nlmm2 <- update(femteeth.vb.nlmm, random= list(AnimalID = pdDiag(k + Ti~ 1)))
femteeth.vb.nlmm3 <- update(femteeth.vb.nlmm, random= list(AnimalID = pdDiag(A + k~ 1)))
femteeth.vb.nlmm4 <- update(femteeth.vb.nlmm, random= list(AnimalID = pdDiag(A + Ti~ 1)))
# we also specified single combinations but not shown here

Comparing the models by AIC shows that for the U-von Bertalanffy model, the best fitting random effects
structure includes an individual-level random effect for the Asymptote A and the growth rate constant k.

AIC(femteeth.vb.nlmm, femteeth.vb.nlmm2, femteeth.vb.nlmm3, femteeth.vb.nlmm4) %>%
mutate(delta = AIC - min(AIC)) # compare models with Akaike's Information Criterion

summary(femteeth.vb.nlmm3) # 'Best' model as judged by lowest AIC (where -2 < delta < 2)

And check the fit of the best fitting model

# par(mfrow = c(2,1))
plot(femteeth.vb.nlmm3, pch = 16,

col = adjustcolor("dodgerblue", alpha.f = 0.6))
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Fitted values
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plot(female_teeth$Age, resid(femteeth.vb.nlmm3, type = c("normalized")),
ylab = "Normalized residuals", xlab = "FemaleAge",
col = adjustcolor("dodgerblue", alpha.f = 0.6))

abline(h = 0,col = "dodgerblue")
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We can replicate this procedure on the other three-parameter models.

Female teeth width in captivity: U-Gompertz model

St = A.e−e−e.k.(t−Ti)

femteeth.gomp.nlmm <- nlme(teethwidth ~ A*(exp(-exp(-exp(1)*k*(Age-Ti)))),
fixed=A+k+Ti~1, random= list(AnimalID = pdDiag(A + k + Ti ~ 1)),
data=female_teeth,
weights = varPower(1),
start = c(A=6.59,k=0.002,Ti=33.4),
correlation = corAR1(form = ~1|AnimalID))

summary(femteeth.gomp.nlmm) # A = 6.55, k = 0.00175, Ti = 34.49

femteeth.gomp.nlmm2 <- update(femteeth.gomp.nlmm,
random= list(AnimalID = pdDiag(k + Ti~ 1)))

femteeth.gomp.nlmm3 <- update(femteeth.gomp.nlmm,
random= list(AnimalID = pdDiag(A + k~ 1)))

femteeth.gomp.nlmm4 <- update(femteeth.gomp.nlmm,
random= list(AnimalID = pdDiag(A + Ti~ 1)))

AIC(femteeth.gomp.nlmm, femteeth.gomp.nlmm2, femteeth.gomp.nlmm3, femteeth.gomp.nlmm4)
# model checks carried out separately

Female teeth width in captivity: U-Logistic model

St = A

1 + e−4.k.(t−Ti)
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femteeth.log.nlmm <- nlme(teethwidth ~ A/(1+exp(-4*k*(Age-Ti))),
fixed=A+k+Ti~1, random= list(AnimalID = pdDiag(A + k + Ti ~ 1)),
data=female_teeth,
weights = varPower(1),
start = c(A=6.51,k=0.001,Ti=102),
correlation = corAR1(form = ~1|AnimalID))

summary(femteeth.log.nlmm) # A = 6.48, k = 0.00147, Ti = 101.79

femteeth.log.nlmm2 <- update(femteeth.log.nlmm,
random= list(AnimalID = pdDiag(k + Ti~ 1)))

femteeth.log.nlmm3 <- update(femteeth.log.nlmm,
random= list(AnimalID = pdDiag(A + k~ 1)))

femteeth.log.nlmm4 <- update(femteeth.log.nlmm,
random= list(AnimalID = pdDiag(A + Ti~ 1)))

AIC(femteeth.log.nlmm, femteeth.log.nlmm2, femteeth.log.nlmm3, femteeth.log.nlmm4)

Female teeth width in captivity: U4 model

St = A.

(
1 + 3.e−4

4
3 .k.(t− Ti)

)− 1
3

femteeth.U4.nlmm <- nlme(teethwidth ~ A*(1+(3*exp(-(4^(4/3))*k*(Age-Ti))))^(-1/3),
fixed=A+k+Ti~1, random= list(AnimalID = pdDiag(A + k + Ti ~ 1)),
data=female_teeth,
weights = varPower(1),
start = c(A=6.42,k=0.001,Ti=187),
correlation = corAR1(form = ~1|AnimalID))

summary(femteeth.U4.nlmm) # A = 6.45, k = 0.00121, Ti = 189.07

femteeth.U4.nlmm2 <- update(femteeth.U4.nlmm,
random= list(AnimalID = pdDiag(k + Ti~ 1)))

femteeth.U4.nlmm3 <- update(femteeth.U4.nlmm,
random= list(AnimalID = pdDiag(A + k~ 1)))

femteeth.U4.nlmm4 <- update(femteeth.U4.nlmm,
random= list(AnimalID = pdDiag(A + Ti~ 1)))

AIC(femteeth.U4.nlmm, femteeth.U4.nlmm2, femteeth.U4.nlmm3, femteeth.U4.nlmm4)

Female teeth width in captivity: U-Richards model

St = A.

1 + (d − 1) .e

(
−k.(t−Ti)

d
d

1−d

)
1

1−d

The standard version of the U-Richards model did not converge, irrespective of using parameter estimates
from an initial nls model. To overcome this issue, we manually optimized the shape parameter d.

Richards.mod <- function(A,k,Ti,Age){
temp <- Age*0
temp <- A*(1+(d-1)*exp((-k*(Age-Ti))/(d^(d/(1-d)))))^(1/(1-d))
temp[d<0][is.na(temp[d<0])] <- 0
return(temp)
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}

richards.negLL = function(D) {
d <<- D
modR <<- nlme(teethwidth ~ Richards.mod(A=A,k=k,Ti=Ti,Age=Age),

fixed=A+k+Ti~1, random= list(AnimalID = pdDiag(A + k + Ti ~ 1)),
data = female_teeth,
start =c(A=6.63,k=0.002,Ti=100),
correlation = corAR1(form = ~1|AnimalID),
na.action = na.pass, method = "ML",
weights = varPower(1)

)
print(paste(d, "negLL:", -modR$logLik))
return(-modR$logLik)

}
optimize(f=richards.negLL, interval=c(0.5,4)) # d = 0.82
femteeth.richards.nlmm <- modR
summary(femteeth.richards.nlmm) # A = 6.49, k = 0.001, Ti = 92.51

femteeth.richards.nlmm2 <- update(femteeth.richards.nlmm,
random= list(AnimalID = pdDiag(k + Ti~ 1)))

femteeth.richards.nlmm3 <- update(femteeth.richards.nlmm,
random= list(AnimalID = pdDiag(A + k~ 1)))

femteeth.richards.nlmm4 <- update(femteeth.richards.nlmm,
random= list(AnimalID = pdDiag(A + Ti~ 1)))

AIC(femteeth.richards.nlmm, femteeth.richards.nlmm2,
femteeth.richards.nlmm3, femteeth.richards.nlmm4)

# Because of optmising manually, we need to correct for the estimation of the extra parameter in this latter model when comparing to other forms (see below), which will not be taken account of if we call AIC on femteeth.richards.nlmm directly.
2*10 - 2*logLik(femteeth.richards.nlmm3) # AIc = -84.52115

We can now draw up a summary of the model outputs

femaleteethmodels <- data.frame(Model = c("vb", "gomp", "logistic", "U4", "Richards"),
k = c(AIC(femteeth.vb.nlmm3, femteeth.gomp.nlmm3, femteeth.log.nlmm,

femteeth.U4.nlmm)$df, 9),
AIC = c(AIC(femteeth.vb.nlmm3, femteeth.gomp.nlmm3, femteeth.log.nlmm,

femteeth.U4.nlmm)$AIC, 2*9 - 2*logLik(femteeth.richards.nlmm3))) %>%
mutate(DeltaAIC = AIC - min(AIC))

This suggests that the U-von Bertalanffy model is the best fitting model for female teeth (though the evidence
that it is superior to the Gompertz is not strong given Delta AIC). We can now plot the predictions for each
of the models in femaleteethmodels. To do so we simply write a function for each model, into which the
output values can be plugged.

vonbertfunc <- function(A, k, Ti, x){
Weight <- A*(1-((1/3)*exp(-(9/4)*k*(x-Ti))))^3
return(Weight)

}

gompertzfunc <- function(A, k, Ti, x){
Weight <- A*(exp(-exp(-exp(1)*k*(x-Ti))))
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return(Weight)
}

logisticfunc <- function(A, k, Ti, x){
Weight <- A/(1+exp(-4*k*(x-Ti)))
return(Weight)

}

U4func <- function(A, k, Ti, x){
Weight <- A*(1+(3*exp(-(4^(4/3))*k*(x-Ti))))^(-1/3)
return(Weight)

}

richardsfunc <- function(A, k, Ti, d, x){
Weight <- A*(1+(d-1)*exp((-k*(x-Ti))/(d^(d/(1-d)))))^(1/(1-d))
return(Weight)

}

plot(teethwidth ~ Age, data = female_teeth, las = 1, xlab = "Age (days)",
ylab = "Incisor width (mm)", pch = 16, cex = 0.3,
col = adjustcolor("dodgerblue", alpha.f = 0.6), bty = "l", cex.axis = 1.1,
cex.lab = 1.2, xaxt = "n")

axis(1, at = seq(100, 1200, 100), labels = FALSE)
axis(1, at = seq(200, 1000,200), labels = seq(200, 1000, 200))
axis(2, at = seq(2, 8, 0.5), labels = FALSE)
clip(50, 100000,2.5, 10000)
curve(gompertzfunc(x, A = 6.56546 , k = 0.00172, Ti = 32.04279),

from = 0, to = 1200, add = TRUE, lwd = 2, lty = 1, col = "darkgrey")
curve(logisticfunc(x, A = 6.47652 , k = 0.00147, Ti = 101.78897),

from = 0, to = 1200, add = TRUE, lwd = 2, lty = 1, col = "darkgrey")
curve(U4func(x, A = 6.45176 , k = 0.00121, Ti = 189.07690),

from = 0, to = 1200, add = TRUE, lwd = 2, lty = 1, col = "darkgrey")
curve(richardsfunc(x, A = 6.580587, k = 0.001824, Ti = 17.407050, d = 0.82),

from = 0, to = 1200, add = TRUE, lwd = 2, lty = 1, col = "darkgrey")
curve(vonbertfunc(x, A = 6.595021 , k = 0.001936, Ti = 3.645181),

from = 0, to = 1200, add = TRUE, lwd = 3, lty = 1, col = "black")
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In the code above, the best fitting U-von Bertalanffy is in black. The other U-forms are plotted as grey lines.
Lastly, we can re-plot the growth curves as Instantaneous growth rates, by taking the the first derivative of
the each predicted fit. Practically, we can just assess the gradient of the curve using pracma.

fem.IGR <- data.frame(Age = seq(0,1200, 1),
vb.fit = vonbertfunc(x = seq(0, 1200, 1), A = 6.60 , k = 0.001936, Ti = 4))

fem.IGR$vb.IGR <- pracma::gradient(as.vector(fem.IGR$vb.fit))

fem.IGR$gomp.fit <- gompertzfunc(x = seq(0, 1200, 1), A = 6.57, k = 0.00172, Ti = 32)
fem.IGR$gomp.IGR <- pracma::gradient(as.vector(fem.IGR$gomp.fit))

fem.IGR$log.fit <- logisticfunc(x = seq(0, 1200, 1), A = 6.48 , k = 0.00147, Ti = 102)
fem.IGR$log.IGR <- pracma::gradient(as.vector(fem.IGR$log.fit))

fem.IGR$U4.fit <- U4func(x = seq(0, 1200, 1), A = 6.45 , k = 0.001, Ti = 189)
fem.IGR$U4.IGR <- pracma::gradient(as.vector(fem.IGR$U4.fit))

fem.IGR$richards.fit <- richardsfunc(x = seq(0, 1200, 1),
A = 6.580966 , k = 0.001827, Ti = 17.041730, d = 0.82)

fem.IGR$richards.IGR <- pracma::gradient(as.vector(fem.IGR$richards.fit))

Can then generate the plot:
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Section 2: Modelling sex differences in incisor width growth in wild Damaraland
mole-rats

As mole-rat captured in the wild are of unknown age, we cannot use conventional growth models. Instead,
we comply an interval equation modelling approach, as outlined in: Schoener, T.W. & Schoener, A. (1978)
Estimating and Interpreting Body-Size Growth in Some Anolis Lizards. Copeia, 1978, 390-405.

Load in the female teeth width dataset.

femteethwild <- read.csv("TeethWidthWild.csv") %>%
filter(Sex == "F" & StatusCapt2 != "Q") %>%
mutate(teethchange = teethwidth2 - teethwidth) %>%
filter(!is.na(teethchange)) %>%
arrange(teethwidth)

One way of visualising this data is to plot the time between recaptures. i.e. Tooth width for each capture
(time t1) and recapture (time t2) within an individual is represented by a single slope. When represented
this way, we notice a convergence of points towards the predicted asymptote, which is provided in the code
that subsequently follows.

plot(teethwidth2 ~ timediff, data = femteethwild, type = "n", las = 1, bty = "l",
ylim = c(2, 7.5), xlim = c(0, 800), ylab = "Incisor width (mm)",
xlab = c("Time between successive measures \n per individual (days)"))

axis(2, at = seq(2,7, 0.5), labels = NA)
for (i in 1:nrow(femteethwild))
{

with(femteethwild[i,],
lines(x = c(0, timediff), y = c(teethwidth, teethwidth2),
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col = adjustcolor("dodgerblue", alpha.f = 0.4))
)

}
clip(0, 2000, -1000, 1000)
abline(h = 6.25, lty = 1, lwd = 2, col = "black")
text(600, 6.5, "A = 6.25mm", cex = 0.8)
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So how do we model data that looks this like this? Well, we can ue the interval equations outlined in
Schoener and Schener (1978). We take two specific interval equations from this paper, a von Bertalanffy
and a Logistic interval equation. Note that in these models, the growth constant parameter k is not Unifed
in the same sense as in Section 1; the models are nonetheless useful to compare estimate asymptotic mass
in the wild compared to captivity, and for making qualitative comparisons about differences in growth rate
between males and females (.

Female teeth width in the wild: The von-Bertalanffy interval equation

S2 = A − (A − S1)e−k.D

• where S1 and S2 are the size (incisor width) at time 1 (capture 1) and time 2 (capture 2), respectively
• D is the time difference between the two capture events
• A is the upper asymptote to be estimated
• k is the growth rate constant to be estimated

Again we specify the model in nlme, setting uncorrelated random effects at the level of the individual for A
and k
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vonbertwild.teeth.female <- nlme(teethwidth2 ~ A - (A - teethwidth)*exp(-k*timediff),
fixed=A+k~1, random= list(AnimalID = pdDiag(A + k ~ 1)),
data= femteethwild,
start=c(A=6.35,k=0.004),
na.action = na.omit)

summary(vonbertwild.teeth.female) # Asymptote = 6.25; k = 0.004604

Female teeth width in the wild: The Logistic interval equation

S2 = A.S1/(S1 + (A − S1) .e−k.D)

logisticwild.teeth.female <- nlme(teethwidth2~
(A*teethwidth)/(teethwidth + (A - teethwidth)*exp(-k*timediff)),

fixed=A+k~1, random= list(AnimalID = pdDiag(A + k ~ 1)),
data= femteethwild,
start=c(A=6,k=0.005),
na.action = na.omit)

summary(logisticwild.teeth.female) # Asymptote = 6.18; k = 0.00678
AIC(vonbertwild.teeth.female, logisticwild.teeth.female)
# AIC vonbert = 433.62; AIC logistic = 483.67.

Simple AIC comparisons show that the von-Bertanlanffy intervals equation does a far better job of modelling
incremental change in incisor width in Damaraland mole-rats in the wild. We can plot the predicted model
in terms of the rates of change, given that we have estimated how much an individual of size S1 will increase
in size over a given time period D, e.g. 180 days; this output then just needs scaling to recover growth/day.

# and can also plot the rates of change
femteethwild <- femteethwild %>%

mutate(rate = teethchange/timediff)

plot(rate ~ teethwidth, data = femteethwild, pch = 16,
col = adjustcolor("dodgerblue", alpha.f = 0.6), xlab = "Incisor width (mm)",
ylab = "Rate of change in incisor width (mm/day)", bty = "l", las = 1)

axis(1, at = seq(2, 7, 0.5), labels = NA) ; axis(2, at = seq(0, 0.015, 0.0025), labels = NA)
abline(h = 0, lty =2, col = adjustcolor("grey", alpha.f = 0.6))

# get the normal von bertalanffy model and predict with these parameters
summary(vonbertwild.teeth.female)

## Nonlinear mixed-effects model fit by maximum likelihood
## Model: teethwidth2 ~ A - (A - teethwidth) * exp(-k * timediff)
## Data: femteethwild
## AIC BIC logLik
## 84.53913 101.2984 -37.26957
##
## Random effects:
## Formula: list(A ~ 1, k ~ 1)
## Level: AnimalID
## Structure: Diagonal
## A k Residual
## StdDev: 0.4494831 0.001132899 0.157768
##
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## Fixed effects: A + k ~ 1
## Value Std.Error DF t-value p-value
## A 6.048223 0.05959104 86 101.49551 0
## k 0.004049 0.00024622 86 16.44526 0
## Correlation:
## A
## k -0.559
##
## Standardized Within-Group Residuals:
## Min Q1 Med Q3 Max
## -2.55231176 -0.50162660 -0.04691431 0.45099647 1.93145739
##
## Number of Observations: 211
## Number of Groups: 124

vonbertratefunc <- function(x, A, k) {
time2 = A- (A - x)*exp(-k*180)
return(time2)

}

predfemteeth <- data.frame(time1 = seq(2.4, 6.25, 0.05),
time2 = vonbertratefunc(x = seq(2.4, 6.25, 0.05), A = 6.246551, k = 0.004604)) %>%
mutate(rate = (time2 - time1)/180)

points(rate ~ time1, data= predfemteeth, type = "l", lwd = 3, lty = 1)
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We can see the the estimated asymptote in the wild is only slightly less than that in captivity. The same is
true of the males. Thus one can use the models in the captive population and the wild to fully examine the
ontogeny of size dimorphism in mole-rats.
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All the above code was carried out in R v 3.5.2
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