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Abstract

We establish the existence of a quasi-Hopf algebraic structure underlying the Leigh-Strassler
N = 1 superconformal marginal deformations of the N = 4 Super-Yang-Mills theory. The
scalar-sector R-matrix of these theories, which is related to their one-loop spin chain Hamil-
tonian, does not generically satisfy the Quantum Yang-Baxter Equation. By constructing a
Drinfeld twist which relates this R-matrix to that of the N = 4 SYM theory, but also pro-
duces a non-trivial co-associator, we show that the generic Leigh-Strassler R-matrix satisfies
the quasi-Hopf version of the QYBE. We also use the twist to define a suitable star product
which directly relates the N = 4 SYM superpotential to that of the marginally deformed
gauge theories. We expect our results to be relevant to studies of integrability (and its break-
ing) in these theories, as well as to provide useful input for supergravity solution-generating
techniques.
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1 Introduction

The superconformal N = 4 Super-Yang-Mills (SYM) theory plays a primary role in modern the-
oretical physics. Among its many special features one can highlight its (still conjectural) exact
duality with a string theory via the AdS/CFT correspondence [1] and its all-loop planar integrabil-
ity, which arises by mapping to a spin chain model [2]. One may ask to what extent these features
persist as we deform away from the maximally supersymmetric theory towards models with less
symmetry. In this work we will focus on marginal deformations of N = 4 SYM, which preserve the
conformal invariance of the original theory but reduce the amount of supersymmetry.

It has been known for some time that N = 4 SYM admits a class of N = 1 exactly marginal de-
formations, with a non-perturbative argument provided by Leigh and Strassler [3]. In the formalism
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of N = 1 superspace, the superpotential of these more general theories takes the form

WLS = κ Tr

(
Φ1 [Φ2,Φ3]q +

h

3

(
(Φ1)3 + (Φ2)3 + (Φ3)3

))
, (1.1)

with [X,Y ]q = XY −qY X. The parameters κ, q and h are generically complex, so, together with the
complexified gauge coupling τ =θ/2π+ 4πi/g2, the theory depends on four complex parameters1.
Perturbative superconformal invariance (the order-by-order vanishing of the gauge beta function
and anomalous dimensions for the three scalar fields) imposes a relation f(g, κ, q, h,N) = 0 between
these parameters, which is generically unknown beyond low loop orders in g and where the rank of
the gauge group (taken here to be SU(N)) enters as well. At one loop, the conformal constraint is
[4, 5]

2g2 = κκ̄

[
2

N2
(1 + q)(1 + q̄) +

(
1− 4

N2

)
(1 + qq̄ + hh̄)

]
. (1.2)

Taking q = q̄ = 1, h = h̄ = 0, the constraint becomes κ = g and we recover the N = 4 SYM
superpotential:

WN=4 = gTr
(
Φ1[Φ2,Φ3]

)
. (1.3)

The internal symmetry group of N = 4 SYM is SU(4)R, however the N = 1 superspace formalism
only keeps explicit a SU(3) × U(1)R subgroup, the SU(3) being a rotation of the three chiral
superfields Φi. The Leigh-Strassler deformation preserves the U(1)R symmetry, but generically
breaks the SU(3) to Z3 subgroups, which combine to form a non-abelian group known as ∆27 [6].

Another important special case of the Leigh-Strassler theories arises when h = 0, but q 6= 1.
As the parameter q is often expressed as q = eiβ, this theory has come to be known as the β-
deformation of N = 4 SYM. The β-deformed theory has additional U(1) symmetries compared to
the general case (1.1). This allowed the authors of [7] to construct its supergravity dual through a
combination of T-duality, shift in a U(1) angle, and T-duality back, a procedure known as a TsT
transformation. As the angle through which the β parameter is introduced is a real number, this
procedure applies only to the real-β deformation. However, in [7] the dual background for complex
β was also obtained, by applying the SL(2, R) symmetry of IIB supergravity.

The real-β case has been extensively studied in the context of planar integrability, starting with
[8], and its integrability properties turn out to be very similar to N = 4 SYM. For more details
and a guide to the literature, we refer the reader to [9, 10]. On the other hand, the one-loop spin-
chain Hamiltonian corresponding to the complex-β deformation does not appear to be integrable
[11]. In agreement with this expectation, string motion on the dual complex-β background of [7]
was shown to be non-integrable [12]. Furthermore, the one-loop R-matrix for the general (q, h)
theory was derived and studied in [13] and found not to satisfy the Yang-Baxter equation (YBE),
apart from special cases which can mostly be related to the real-β deformation through unitary
transformations. Since this R-matrix will be the central object of our study, we reproduce it here,
in the conventions of [14]:

R =
1

1+qq̄+hh̄



1+qq̄−hh̄ 0 0 0 0 −2h̄ 0 2h̄q 0
0 2q̄ 0 1−qq̄+hh̄ 0 0 0 0 2hq̄
0 0 2q 0 −2h 0 qq̄+hh̄−1 0 0
0 qq̄+hh̄−1 0 2q 0 0 0 0 −2h
0 0 2h̄q 0 1+qq̄−hh̄ 0 −2h̄ 0 0

2hq̄ 0 0 0 0 2q̄ 0 1−qq̄+hh̄ 0
0 0 1−qq̄+hh̄ 0 2hq̄ 0 2q̄ 0 0
−2h 0 0 0 0 qq̄+hh̄−1 0 2q 0

0 −2h̄ 0 2h̄q 0 0 0 0 1+qq̄−hh̄


. (1.4)

This R-matrix acts on two copies of the vector space spanned by the three chiral superfields Φi,
and is written in the basis {11, 12, 13, 21, 22, 23, 31, 32, 33}. We emphasise that this is the R-matrix

1However, we will set the θ-angle to zero from now on and focus on the real gauge coupling g.
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corresponding to just the holomorphic SU(3) sector, and not the full (SU(4) ' SO(6)) scalar sector
which would also include the antichiral Φi fields.

For N = 4 SYM, which corresponds to q= q̄= 1, h= h̄= 0, the R-matrix reduces to the 9×9
identity matrix and leads to the XXX Hamiltonian of the schematic form Hi,i+1 = Ii⊗ Ii+1−Pi,i+1,
where I is the 3×3 identity matrix and P is the permutation matrix. For real-β, the R-matrix
derived in [8] (as a special case of the more general γi deformations [15] considered in that work)
reduces to the one above in the “quantum group” limit of infinite spectral parameter.

Early on, it became clear that the Leigh-Strassler marginal deformations can be thought of
as noncommutative deformations. The work [16] discussed the noncommutative structure of the
moduli space, with the focus mainly being on non-generic points when q is a root of unity. In the
context of twistor strings, it was shown in [17] that a suitable non-anticommutative star product
correctly reproduces the amplitudes of the (q, h)-deformed theories at first order in the deformation.
However, for generic (q, h) that star product was problematic at higher orders because of issues
with non-associativity. For the real-β case, non-associativity is not an issue and the star product
of [17] was extended to all orders in [18].

In [7], Lunin and Maldacena expressed the real-β superpotential in terms of a star product
depending on the U(1) charges of the chiral superfields. The relation to non-commutativity was
an important element in the aforementioned construction of the dual background. The Lunin-
Maldacena star product has found many applications, for instance in relating (planar) N = 4 SYM
amplitudes to those in the deformed theory [19] and twisting the N = 4 SYM Bethe ansatz to its
β-deformed version [8].

Similarly to the twistor-string star product, the extension of the Lunin-Maldacena star product
to cases beyond the real-β deformation has proven difficult, again because of issues with non-
associativity. For the (q, h) cases which happen to be integrable (in the sense of the R-matrix
satisfying the YBE) by virtue of their relation to the β-deformation through unitary transforma-
tions, the gauge-theory star product was constructed in [20]. A particular such case, termed the
w-deformation, was further studied in [21], which constructed the star product in terms of a Drin-
feld twist (to be reviewed below) and made progress in understanding how the non-commutativity
underlying the gauge theory can appear on the gravity side of the AdS/CFT correspondence.

Turning to the general (q, h) theories, progress in understanding their noncommutative structure
was made in [14], where, using the FRT relations [22], it was shown that the superpotential (1.1)
is invariant under a global Hopf-algebraic symmetry. In this way, the Leigh-Strassler deformation
was understood as a deformation of the Lie-algebraic SU(3) × U(1) R-symmetry group of N = 4
SYM to a Hopf algebra. The FRT relations define this algebra at quadratic level, however in [14]
associativity was imposed as an additional cubic condition on the generators of this algebra. Even
though this constraint was shown to be consistent at cubic level, the fact that the general (q, h)
R-matrix does not satisfy the YBE left open the possibility that the quartic and higher relations
will end up trivialising the algebra.

In this work, we construct a Drinfeld twist which relates the (q, h) R-matrix (1.4) to the (trivial)
R-matrix of the N = 4 SYM theory. Unlike in [14], we do not force associativity on the algebra,
but rather show, by explicitly constructing the co-associator of the theory and establishing that
the (q, h) R-matrix satisfies the quasi-Hopf Yang-Baxter equation, that the appropriate algebraic
structure is that of a quasi-Hopf algebra [23], which will be reviewed in the next section.

Using our quasi-Hopf Drinfeld twist, we are able to define a star product between the scalar
fields of N = 4 SYM. As expected, this star product is non-associative. However, and perhaps
surprisingly, the cyclic combinations of fields appearing in the superpotential of N = 4 SYM
do not notice the non-associativity. It thus turns out that one can directly obtain the Leigh-
Strassler superpotential (1.1) by star-deforming the N = 4 SYM superpotential without worrying
about associativity. Expressing the (q, h) superpotential as a star-deformed version of the N = 4
SYM superpotential allows us to show that the Leigh-Strassler theories enjoy a global quasi-Hopf
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symmetry which deforms the SU(3) part of the N = 4 SYM R-symmetry group in a precise way.
So, as long as one is willing to consider quantum group symmetries rather than just Lie algebraic
ones, one finds that the Leigh-Strassler theories have a much higher degree of symmetry than just
the naive ∆27. The prospect of using this hidden symmetry to constrain the observables, and
perhaps gain some additional insight on the supergravity duals of the Leigh-Strassler deformations,
certainly provides strong motivation to include quasi-Hopf algebras in our toolkit in future studies
of these theories.

This paper is structured as follows: The next section provides an informal review of aspects of
Hopf and quasi-Hopf algebras, with a focus on Drinfeld twists as a way to generate a new algebra
from an existing one. Section 3 shows how the R-matrix (1.4) can be obtained by a Drinfeld twist,
while section 4 focuses on the construction of the coassociator, which relates different placements of
parentheses in a quasi-Hopf algebra. In section 5 we use the twist to define suitable star products
and show how the superpotential (1.1) can be thought of as a twisted version of (1.3). We conclude
with a summary of our results and a discussion of open questions. Several appendices provide
further details of our construction.

2 Drinfeld twists and quasi-Hopf algebras

In this section we will review, in a very informal way, some general features of Hopf and quasi-Hopf
algebras. For more details and proofs, we refer to textbooks on the subject such as [24, 25].

2.1 Hopf algebras

Recall that the defining feature of an algebra A (over a field k, which for us will be |||C) is an
associative product ·, which takes two copies of the algebra into a single copy: · : A ⊗ A → A.
Similarly, in a coalgebra one has a coproduct ∆ which takes a single copy to two: ∆ : A → A⊗A.
In A one also defines the unit map η : k → A, which takes λ → λ1, where λ ∈ k and 1 is the
unit element of A (satisfying 1 · X = X · 1 = X for X ∈ A). In terms of maps, the statement
that multiplying an element by the unit element gives back the original element is expressed as
·(η⊗ id) = ·(id⊗η) = id. Similarly, for a coalgebra one defines a co-unit ε : A → k, which expresses
the dual of the above statement, i.e. that taking the coproduct of an element and acting on it by
ε ⊗ id or id ⊗ ε should give back the original element: (ε ⊗ id)∆ = (id ⊗ ε)∆ = id. Note that the
coproduct in a coalgebra also needs to be co-associative, which, for X ∈ A, is the statement that

(id⊗∆) ◦∆(X) = (∆⊗ id) ◦∆(X) . (2.1)

A bialgebra arises when combining an algebra and coalgebra such that the product, coproduct,
unit and co-unit are all compatible, which implies that for X,Y ∈ A one requires the following
relations: ∆(X · Y ) = ∆(X) ·∆(Y ), ∆(1) = 1⊗ 1, ε(X · Y ) = ε(X) · ε(Y ) and ε(1) = 1.

A Hopf algebra is a bialgebra with an additional map S : A → A known as the antipode, which
is linked to the existence of an inverse. Unlike ∆ and ε, the antipode satisfies S(X ·Y ) = S(Y )·S(X).

An important case of a Hopf algebra structure arises for the universal enveloping algebra (UEA)
of a Lie algebra. This is the associative algebra obtained by including all polynomials in the Lie
algebra elements and imposing the relations implied by the commutator identities. Focusing on
matrix Lie algebras, the product between elements X and Y in the corresponding UEA is just
matrix multiplication, and the unit just the unit matrix. The operations that complete the UEA
to a Hopf algebra are

∆(X) = X ⊗ 1 + 1⊗X , ε(X) = 0 , S(X) = −X , (2.2)

as well as
∆(1) = 1⊗ 1 ε(1) = 1 , S(1) = 1 . (2.3)
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One can check that the action of the antipode on a group element corresponds to the inverse group
element:

S(eαX) = eαS(X) = e−αX . (2.4)

Note that while the algebra product is of course non-commutative (assuming the underlying Lie
algebra is non-abelian), the above coproduct is co-commutative: Calling τ the operation of ex-
changing the two copies of the algebra, we have τ ◦∆(X) = ∆(X). This matches our intuition (e.g.
from quantum mechanics) of how Lie algebra elements act on multiparticle states. But the co-
commutativity makes the above construction trivial from the Hopf algebra perspective. Inversely,
a non-trivial Hopf algebra structure is one where both the product is non-commutative and the
coproduct non-co-commutative. Of course, any change to the coproduct has to be done in a way
that satisfies the compatibility relations, and, as we will see, a powerful way of achieving this is
through Drinfeld twists.

Since the SU(3) part of the R-symmetry group of N = 4 SYM is a Lie group, we can consider
its Lie algebra within the above framework, as a trivial Hopf algebra with the product being the
usual matrix product and the coproduct being the co-commutative one given in (2.2). This is the
Hopf algebra that we will be Drinfeld-twisting later on.

2.2 Quasitriangular Hopf algebras

We will further specialise to quasitriangular Hopf algebras, where there exists an element R ∈ A⊗A,
called the universal R-matrix. This matrix governs the non-cocommutativity of the algebra, in the
sense that the opposite coproduct, while not equal to the coproduct as in the above example, is
related to it via conjugation with R:

τ ◦∆(X) = R∆(X)R−1 , X ∈ A . (2.5)

The matrix R is also taken to satisfy the conditions:

(∆⊗ id)(R) = R13R23 , (id⊗∆)(R) = R13R12 , (2.6)

which, together with (2.5), can be shown to imply the Yang-Baxter equation

R12R13R23 = R23R13R12 . (2.7)

A special case arises when the R-matrix further satisfies the condition

R21 = R−1
12 . (2.8)

In this case the Hopf algebra is called triangular.
Clearly, the co-commutative UEA of a Lie algebra is a triangular Hopf algebra with trivial

R-matrix: R = 1⊗ 1.
The above discussion in terms of the universal R-matrix was independent of a choice of repre-

sentation for the algebra. However, the R-matrix (1.4) that we are interested in is evaluated in the
product of the fundamental representation, so our discussion in the following (and all our results
for the twists) will only apply in this limited setting. (In general, the construction of universal
R-matrices and corresponding twists is a difficult problem, even for well-studied quantum groups.)

2.3 Drinfeld Twists

We will now consider relations between inequivalent Hopf algebras which arise due to Drinfeld
twists [23]. We will remain within the quasitriangular case as above, but eventually restrict to the
triangular case which will be relevant to our case.
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Given an initial quasitriangular Hopf algebra, with R-matrix R0, a Drinfeld twist is an element
F ∈ A ⊗ A, which is invertible and satisfies (ε ⊗ id)F = (id ⊗ ε)F = 1, known as the co-unital
condition. The twist can be used to deform the coproduct of the algebra as

∆F (X) = F∆(X)F−1 , (2.9)

and its R-matrix by
RF12 = F21R12F

−1
12 . (2.10)

Twists preserve quasitriangularity, as well as triangularity. We can easily check the latter:

RF21 = τ ◦ (F21R12F
−1
12 ) = F12R21F

−1
21 = F12R

−1
12 F

−1
21 = (RF )−1

12 . (2.11)

In our case, the initial R-matrix is that of N = 4 SYM, which, as discussed in the introduction, is
just the identity matrix I ⊗ I.2 So for Rq,h in (1.4), the twist relation (2.10) reduces to

Rq,h = F21F
−1
12 . (2.12)

This is known as a factorising twist (see e.g. [26]). Clearly an R-matrix constructed as in (2.12)
will automatically satisfy the triangular condition (2.8), and it is shown in [23] that any triangular
R-matrix admits a factorising twist.

If a twist additionally satisfies the 2-cocycle condition

(F ⊗ 1)(∆⊗ id)(F ) = (1⊗ F )(id⊗∆)(F ) , (2.13)

(with ∆ the undeformed coproduct) then twisting a Hopf algebra produces another Hopf algebra.
This is the setting of the w-deformation considered in [21]. To distinguish the Drinfeld twists
satisfying (2.13) from the general case, they were termed Hopf twists in [21]. When twisting a
quasitriangular Hopf algebra, the cocycle condition guarantees that the R-matrix of the twisted
theory is also quasitriangular.

Drinfeld twists have found numerous applications in the study of quantum groups, although
their applicability is often limited by the lack of explicit expressions for the twists. In the context
of integrability, Drinfeld twists have been advocated as a powerful tool within the algebraic Bethe
ansatz approach in [26]. In the more specific context of AdS/CFT integrability, the γi-twisted
Bethe equations of [8] have been derived via an (abelian) Drinfeld twist in [27]. In [28], Drinfeld
twists were used to achieve a better understanding of Yang-Baxter deformations of the string sigma
model and their field theory interpretation.

In our current setting, since we know that the YBE is not satisfied for the general (q, h) R-
matrix, we can infer that the Drinfeld twist factorising Rq,h as in (2.12) cannot satisfy the cocycle
condition. Relaxing (2.13) brings us into the realm of quasi-Hopf algebras, which we turn to in the
next section.

2.4 Quasitriangular Quasi-Hopf algebras

The definition of quasi-Hopf algebras involves the same ingredients as Hopf algebras, i.e. an as-
sociative algebra, and a coalgebra given by a coproduct and co-unit, but brings in a new item,
an element Φ ∈ A ⊗ A ⊗ A called the coassociator.3 Here the coproduct is allowed to be non-co-
associative, which brings us out of the domain of Hopf algebras. However, similarly to how the
R-matrix in a quasitriangular Hopf algebra controls the non-commutativity of the coproduct, the
coassociator controls its non-associativity:4

(id⊗∆) ◦∆(X) = Φ[(∆⊗ id) ◦∆(X)]Φ−1 . (2.14)

2We will use I instead of 1 for the identity when we are specifically referring to the 3× 3 identity matrix.
3We hope that no confusion will arise between Φ and the chiral superfields Φi, which always carry indices.
4We note that the conventions for Φ vary in the literature. Ours are as in [23, 24] but differ from [25] by Φ→ Φ−1.
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((a⊗ b)⊗ c)⊗ d

(a⊗ (b⊗ c))⊗ d

a⊗ ((b⊗ c)⊗ d)

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

(∆⊗ id⊗ id)Φ

(id⊗ id⊗∆)Φ

Φ⊗ 1

(id⊗∆⊗ id)Φ

1⊗ Φ

Figure 1: A graphical depiction of the pentagon identity, showing the maps between the different
placements of parentheses for four elements a, b, c, d of V.

We see that the two placements of parentheses (“bracketings”) are equivalent by conjugation with Φ.
This is often described as a quasi-associative condition, as it corresponds to breaking co-associativity
in the weakest possible sense: Assuming one knows Φ, one can always use it to express a term with
a given bracketing as a linear combination of terms with the other bracketing and thus ensure that
the placement of parentheses is the same for all terms in an equation. For this reason, Φ is also
often called a re-associator.

The coassociator identity (2.14) also has implications for the module/representation space of
our algebra, which we call V. We denote the action of an element X of A on an element a ∈ V
as a′ = X . a. To act with X on the tensor product V ⊗ V we need to use the coproduct,
(a′⊗b′) = ∆(X). [a⊗b]. If we now wish to act on the cubic tensor product V ⊗(V ⊗V ), we need to
iterate the coproduct in a way that matches the bracketing: a′⊗(b′⊗c′) = (id⊗∆)∆(X).[a⊗(b⊗c)].
Similarly, the action on (V ⊗ V ) ⊗ V will be (a′ ⊗ b′) ⊗ c′) = (∆⊗ id)∆(X) . [(a ⊗ b) ⊗ c]. Given
(2.14), covariance of the action of A on V implies that the left- and right- cubic elements need to
be related as a⊗ (b⊗ c) = Φ . (a⊗ b)⊗ c, since then we can compute

a′ ⊗ (b′ ⊗ c′) = [(id⊗∆) ◦∆(X)] . [a⊗ (b⊗ c)]
= Φ[(∆⊗ id) ◦∆(X)]Φ−1 . Φ . [(a⊗ b)⊗ c] = Φ . (a′ ⊗ b′)⊗ c′ .

(2.15)

We conclude that the left- and right- placements of parentheses for the module tensor product are
related by the coassociator as

V ⊗ (V ⊗ V) = Φ (V ⊗ V)⊗ V . (2.16)

This associativity isomorphism can be thought of as mapping between the two nodes of the one-
dimensional associahedron K3. Recall that an associahedron is the polytope where each node
corresponds to an inequivalent placement of parentheses. Since for three elements we only have
two possible placements, the associahedron K3 has just two nodes which we can label L and R
based on the placement of the parenthesis. So we can write (2.16) as Φ : L→ R.

For four elements, there are five inequivalent bracketings, and the corresponding associahedron
K4 is a pentagon. As depicted graphically in Fig. 1, there are two possible ways to construct maps
between two given vertices of this pentagon. Since these two routes must agree, one derives the
following consistency check on the coassociator, known as the pentagon identity:

(id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ) = (1⊗ Φ)(id⊗∆⊗ id)(Φ)(Φ⊗ 1) . (2.17)

After these remarks on the role of the coassociator, let us return to our definition of a quasi-Hopf
algebra. The structure we have described so far is a quasi-bialgebra. For a quasi-Hopf algebra
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1 2 3

3 2 1

R12

Φ213

R13

Φ−1
231

R23

Φ321

=

1 2 3

3 2 1

Φ123

R23

Φ−1
132

R13

Φ312

R12

Figure 2: A graphical representation of the quasi-Hopf Yang-Baxter equation. In order for the
R-matrix to be able to interchange two particles, they need to live on the appropriate node of
the 1-d associahedron. Solid lines indicate the node L : (V ⊗ V) ⊗ V, while dashed ones the node
R : V ⊗ (V ⊗ V). An arrow pointing to the right indicates the map Φ : L→ R, while an arrow to
the left indicates Φ−1 : R → L. Read from top to bottom, both the left and right diagrams map
(V1 ⊗V2)⊗V3 to V3 ⊗ (V2 ⊗V1), and the qHYBE is the statement that these two paths are equal.

we also need to introduce the analogue of an antipode. It turns out that in the quasi-Hopf case
this notion is provided by a triple (S, α, β), sometimes termed a quasi-antipode, containing the
antipode together with two canonical elements α and β. As we will not require more details of the
quasi-antipode construction in this work, we refer to [23] and the literature for further details.

For our purposes, we will think of quasi-Hopf algebras as the algebraic structure arising when
Drinfeld-twisting Hopf algebras by twists that do not satisfy the 2-cocycle condition (2.13). (The
twists still need to be invertible and co-unital). In this sense, quasi-Hopf algebras are simpler than
Hopf algebras, as they allow for a larger “gauge invariance” given by the Drinfeld twists.

In terms of the twist, the coassociator is expressed in terms of that of the untwisted algebra as:

Φ = F23(id⊗∆)(F )Φ0(∆⊗ id)(F−1)F−1
12 . (2.18)

If the untwisted algebra is a Hopf algebra, with trivial coassociator Φ0 = 1 ⊗ 1 ⊗ 1, we can read
the 2-cocycle condition as the statement that the coassociator remains trivial after twisting. This
guarantees that the twisted Hopf algebra is still an (associative) Hopf algebra. However, since
in our case we will be interested in more general twists, we will be working within the class of
(quasitriangular) quasi-Hopf algebras, and thus expect (2.18) to lead to a non-trivial coassociator.

The additional structure coming with quasitriangularity also extends naturally to quasi-Hopf
algebras. In a quasitriangular quasi-Hopf algebra, the role of the R-matrix in relating the coproduct
and opposite coproduct remains the same (2.5), however the relations (2.6) are modified to

(∆⊗ id)(R) = Φ312R13Φ−1
132R23Φ123 and (id⊗∆)(R) = Φ−1

231R13Φ213R12Φ−1
123 . (2.19)

These relations imply that, instead of the usual YBE (2.7) the R-matrix satisfies the quasi-Hopf
Yang-Baxter equation (qHYBE):5

R12Φ312R13Φ−1
132R23Φ123 = Φ321R23Φ−1

231R13Φ213R12 . (2.20)

5This condition is often denoted just “quasi-YBE” in the literature, and also holds in more general situations,
such as the weak quasitriangular quasi-Hopf case of [29]. We will use qHYBE to emphasise our quasi-Hopf setting.
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One can depict this relation graphically as in Fig. 2, where as usual one thinks of the R-matrix as
a braiding element, but where one also has to account for the need to map between the two nodes
of the associahedron in order for its action on the appropriate vector spaces (which we think of
physically as the states corresponding to three particles which are scattering) to make sense.6

The question of whether quasi-Hopf symmetries can appear in Quantum Field Theory was
addressed in [29], where it was shown that (quasitriangular) quasi-Hopf algebras (as well as a
generalisation called weak quasi-Hopf) are compatible with all our usual expectations from QFT.
So far, most physical applications of Quasi-Hopf algebras have been in the context of 2-d CFT (e.g.
in relation to the Knizhnik-Zamolodchikov equation, as reviewed in [25], see also [30]). Interestingly,
it also turns out [31] that the dynamical Yang-Baxter equation can be obtained by a quasi-Hopf
Drinfeld twist of a particular type, see [32] for a discussion. Recently, quasi-Hopf algebras have
also made an appearance in target-space string theory [33, 34], in the context of non-geometric
compactifications, where the geometry perceived by closed strings can be non-associative (see [35]
for a recent review). The pentagon identity that we reviewed also arises in this context, see [36]
for a discussion.

In the following sections we will show how to twist the N = 4 SYM R-matrix R = I ⊗ I in
order to obtain the R-matrices relevant to the Leigh-Strassler deformations, and conclude that the
resulting structure fits precisely into the framework above.

3 The Leigh-Strassler R-matrix from a twist

Let us now focus on the R-matrix (1.4). As mentioned, this R-matrix does not generically satisfy
the Quantum Yang-Baxter equation (2.7). In the context of the FRT relations [22], which were
studied in this context in [14], failure of the YBE can lead to the trivialisation of the algebra at
higher orders if associativity is enforced. In this work we will argue that a more fruitful approach
might be to not enforce associativity and instead work in the wider context of quasi-Hopf algebras.

Among several interesting properties of the (q, h)- R-matrix, it was observed in [21] that it is
triangular, satisfying the relation (2.8), or in indices:

Rj il k = (R−1)i jk l ⇒ Rn mj i R
i j
k l = δmk δ

n
l . (3.1)

The triangular property suggests that Rq,h arises from a Drinfeld twist. Such twists were con-
structed in [21] for special cases where Rq,h satisfies the YBE, in particular the real-β deformation
(where q̄ = 1/q, h = h̄ = 0) and the w-deformation (where q = q̄ = 1 + w, h = h̄ = w). Those
twists have several special properties, and in particular they are abelian, in the sense that they can
be expressed as exponentials of commuting matrices (Cartan matrices for the real-β case and shift
matrices for the w-deformation). In the next section we will extend the twists of [21] to the general
(non-abelian) case.

The (q, h) R-matrix is also unitary as a 9×9 matrix, which together with the triangular property
implies that it is of real type, i.e.

Ri jk l = Rl kj i . (3.2)

This will play a role in section 5.6, when we discuss the mixed quantum plane relations arising
from the R-matrix.

Finally, one can check that the R-matrix (1.4) has a Z3 invariance: for any choice of indices,
Ri jk l = Ri+1 j+1

k+1 l+1 = Ri−1 j−1
k−1 l−1. This of course reflects the Z3 symmetry of the superpotential,

Φ1 → Φ2 → Φ3 → Φ1, which is part of the ∆27 discrete symmetry group of the theory. All our
expressions in the following will need to respect this Z3 invariance.

6If one were to consider quasi-Hopf scattering of four particles, one would need to take into account the associativity
maps between the five nodes of the pentagon (Fig. 1), and so on for more particles.

9



3.1 The imaginary β twist

As a warm-up, and to motivate the construction of the (q, h)-twist, let us consider the case of
imaginary β, i.e. q = eiβ real. We would like to construct the twist which leads to the imaginary-β
R-matrix, in other words it should satisfy (2.12) for q̄ = q and h = h̄ = 0.

Our approach will be to suitably exponentiate the classical twist. For imaginary β the classical
r-matrix is7

r = −(q − 1)



0 0 0 0 0 0 0 0 0
0 0 0 −i 0 0 0 0 0
0 0 0 0 0 0 i 0 0
0 i 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −i 0
0 0 −i 0 0 0 0 0 0
0 0 0 0 0 i 0 0 0
0 0 0 0 0 0 0 0 0


. (3.3)

Let us assume that, like the R-matrix, the twist is triangular, F−1
12 = F21. Then the classical twist,

which satisfies (2.12) to first order in (q − 1), is just f12 = −1
2r12. It is easy to see that simply

exponentiating f12 does not lead to a twist satisfying (2.12). Fortunately, it turns out that the next
best guess works: Let us start by writing f12 = q−1

2 f̃12, where f̃12 is the matrix in (3.3) without
the prefactor. We then replace the (q− 1)/2 coefficient by a to-be-determined function α(q), which
should reduce to (q − 1)/2 at first order. Exponentiating the matrix α(q)f̃12, we find:

F12 = eiαf̃12 =



1 0 0 0 0 0 0 0 0
0 cosα 0 sinα 0 0 0 0 0
0 0 cosα 0 0 0 − sinα 0 0
0 − sinα 0 cosα 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 cosα 0 sinα 0
0 0 sinα 0 0 0 cosα 0 0
0 0 0 0 0 − sinα 0 cosα 0
0 0 0 0 0 0 0 0 1


. (3.4)

Requiring (2.12) as well as the appropriate limits, we easily obtain cosα = 1+q√
2(q2+1)

. Inverting

these relations we find

α(q) = arccos

(
1 + q√

2(q2 + 1)

)
=
q − 1

2
− (q − 1)2

4
+ · · · (3.5)

which agrees with our requirement that F12 reduces to the classical twist at first order. In

7Although in this case the R-matrix is real, in general it is unitary so our convention is to expand it as R12 =
I ⊗ I + ir12 + · · · so that the classical r-matrix is hermitian. Similarly, we will write F12 = I ⊗ I + if12 + · · · .
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conclusion, the imaginary-β twist we obtain is:

F =



1 0 0 0 0 0 0 0 0

0 q+1√
2
√
q2+1

0 q−1√
2
√
q2+1

0 0 0 0 0

0 0 q+1√
2
√
q2+1

0 0 0 − q−1√
2
√
q2+1

0 0

0 − q−1√
2
√
q2+1

0 q+1√
2
√
q2+1

0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 q+1√
2
√
q2+1

0 q−1√
2
√
q2+1

0

0 0 q−1√
2
√
q2+1

0 0 0 q+1√
2
√
q2+1

0 0

0 0 0 0 0 − q−1√
2
√
q2+1

0 q+1√
2
√
q2+1

0

0 0 0 0 0 0 0 0 1



. (3.6)

This twist has unit determinant by construction, and reduces to the identity as q → 1.

3.2 The general (q, h)–twist

We now turn to the twist leading to the general R-matrix (1.4). Now the classical twist will depend
on the four parameters (q−1), (q̄−1), h, h̄. Instead of exponentiating the sum of these four matrices
as above, we take a shortcut to the form of the full twist. Guided by the form of the R-matrix, we
parametrise the twist as follows:

F12 =



a 0 0 0 0 e 0 f 0
0 b 0 c 0 0 0 0 g
0 0 i 0 j 0 d 0 0
0 d 0 i 0 0 0 0 j
0 0 f 0 a 0 e 0 0
g 0 0 0 0 b 0 c 0
0 0 c 0 g 0 b 0 0
j 0 0 0 0 d 0 i 0
0 e 0 f 0 0 0 0 a


, (3.7)

where the non-zero coefficients are compatible with the Z3 symmetry of the theory. Requiring
(2.12), unit determinant, invertibility and the appropriate limits, and after some computation, we
find that the coefficients are given by the following expressions:

a =

√
2h h̄

√
q + 1

√
q̄ + 1√

q q̄ + h h̄ + 1
(
q q̄ − q̄ − q + 2h h̄ + 1

) +
(q − 1) (q̄ − 1)

q q̄ − q̄ − q + 2h h̄ + 1
, (3.8)

b =
h h̄

q q̄ − q̄ − q + 2h h̄ + 1
+
q2 q̄2 − q q̄2 + q2 q̄ + h h̄ q q̄ − h h̄ q̄ − q̄ − 2 q2 + 3h h̄ q + q + h h̄ + 1

√
2
√
q + 1

√
q̄ + 1

√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.9)

c =
h h̄

q q̄ − q̄ − q + 2h h̄ + 1
+
q2 q̄2 − q q̄2 − q2 q̄ + h h̄ q q̄ − h h̄ q̄ + q̄ − h h̄ q + q − 3h h̄ − 1
√

2
√
q + 1

√
q̄ + 1

√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.10)

d =
h h̄

q q̄ − q̄ − q + 2h h̄ + 1
− q2 q̄2 − q q̄2 − q2 q̄ + 3h h̄ q q̄ + h h̄ q̄ + q̄ + h h̄ q + q − h h̄ − 1
√

2
√
q + 1

√
q̄ + 1

√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.11)

e =
h̄ (q − 1)

q q̄ − q̄ − q + 2h h̄ + 1
−

√
2 h̄
√
q + 1

(
q − h h̄ − 1

)
√

q̄ + 1
√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.12)
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f =
h̄ (q − 1)

q q̄ − q̄ − q + 2h h̄ + 1
−

√
2 h̄
√
q + 1

(
q q̄ − q̄ + h h̄

)
√

q̄ + 1
√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.13)

g =
h (q̄ − 1)

q q̄ − q̄ − q + 2h h̄ + 1
−

√
2h
√

q̄ + 1
(
q q̄ − q + h h̄

)
√
q + 1

√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.14)

i =
h h̄

q q̄ − q̄ − q + 2h h̄ + 1
+
q2 q̄2 + q q̄2 − 2 q̄2 − q2 q̄ + h h̄ q q̄ + 3h h̄ q̄ + q̄ − h h̄ q − q + h h̄ + 1

√
2
√
q + 1

√
q̄ + 1

√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) , (3.15)

j =
h (q̄ − 1)

q q̄ − q̄ − q + 2h h̄ + 1
−

√
2h
√

q̄ + 1
(
q̄ − h h̄ − 1

)
√
q + 1

√
q q̄ + h h̄ + 1

(
q q̄ − q̄ − q + 2h h̄ + 1

) . (3.16)

This satisfies all the requirements of a factorising twist, in particular R = F21F
−1
12 , as well as the

triangular relation

F21F12 = I ⊗ I
(

in indices: F i jk lF
l k
n m = δimδ

j
n

)
. (3.17)

This relation allows us to express the R-matrix purely in terms of the twist itself, as

R12 = (F21)2
(

in indices: Ri jk l = F j in mF
nm
l k

)
, (3.18)

a relation which will be used extensively later on. The twist is also of real type, satisfying the
equivalent of (3.2). Together, these properties imply that F is unitary as a 9×9 matrix, a property
which will also be very useful in what follows.

By taking special cases of the (q, h)-twist we can easily reproduce previously known twists, such
as that for real β [21] or imaginary β as above.8

Of course, since the (q, h) deformation depends on just four real parameters, the parameters
(3.8)-(3.16) are not all independent and there are numerous relations between them. We have:

a = 1− d− c , e = h̄(b− c) + f , j = ē = h(b̄− c̄) + f̄ , i = b̄ , g = f̄ . (3.19)

We also note that the parameters c and d are real, with

d = c+

√
2(1− qq̄)

√
1 + q

√
1 + q̄

√
1 + qq̄ + hh̄

, (3.20)

and that b is simply related to c by

b = c+

√
2
√
q + 1

√
q̄ + 1

√
1 + qq̄ + hh̄

. (3.21)

These relations allow one to choose a convenient subset of variables in terms of which to express
the twist. Below we will use the (non-minimal and possibly non-optimal) subset {b, b̄, c, f, f̄}.

8On the other hand, specialising to the w-deformation we do not obtain the twist constructed in [21], which did
not satisfy the triangularity condition. We will comment on this difference later on.
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3.3 Exponential form of the twist

In order to further study the (q, h)-twist, it is necessary to express it in exponential form, i.e. as the
exponentiation of a classical twist. The main reason is that in order to construct the coassociator
and the other structures of the Drinfeld-twisted algebra we will need to act on the twist with
coproducts, and it is not immediately clear how to evaluate an expression such as (∆⊗ id)(F ) using
the group-like form (3.7). But since in our case the undeformed coproduct is the Lie-algebraic one,
acting on Lie algebra elements and the identity as

∆(X) = X ⊗ I + I ⊗X , ∆(I) = I ⊗ I , (3.22)

we can make use of the compatibility of the coproduct with multiplication to write

(∆⊗ id)(F ) = (∆⊗ id)
(
eif
)

= (∆⊗ id)
(
ei
∑
f (1)⊗f (2)

)
= ei

∑
∆(f (1))⊗f (2)

= ei(∆⊗id)f . (3.23)

So in order to compute (∆⊗ id)(F ), we first compute (∆⊗ id)(f) (which is straightforward since
f can be expressed in terms of generators of the algebra, on which the coproduct acts as in (3.22))
and then matrix exponentiate it.9 Writing a twist in exponential form also makes the co-unitality
condition (ε⊗ id)F = (id⊗ ε)F = 1 obvious, as the co-unit also exponentiates and ε(X) = 0.

By explicit calculation, we find that the full (q, h) twist (3.7) can be constructed by suitably
exponentiating a linear combination of the four classical twists corresponding to real and imaginary
β, and real and imaginary h. We will work with the usual Gell-Mann basis for the SU(3) algebra:

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 , λ4 =

0 0 1
0 0 0
1 0 0

 ,

λ5 =

0 0 −i
0 0 0
i 0 0

 , λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

1 0 0
0 1 0
0 0 −2

 .

(3.24)

Including also the identity as λ0, the tensor products λi ⊗ λj of these matrices form a basis for
A⊗A.

To find the classical twists we need, we specialise the (q, h)-twist (3.7) to each of the four cases
and expand to first order. Via a similar procedure to the imaginary-β case above, we can then
express the full twist in each case as an exponentiation of the corresponding classical twist:

• Real β (q̄ = 1/q, h = h̄ = 0):

Fβr = e
iβ
2
f̃βr = e

1
2

ln(q)f̃βr = q
1
2
f̃βr with f̃βr =

√
3

2
λ3 ∧ λ8 (3.25)

• Imaginary β (q̄ = q, h = h̄ = 0):

Fβi = e
i arccos

(
1+q

√
2
√

1+q2

)
f̃βi with f̃βi = −1

2

(
λ1 ∧ λ2 − λ4 ∧ λ5 + λ6 ∧ λ7

)
(3.26)

• Real h (q = q̄ = 1, h = h̄ = hr):

Fhr = e
i
√

2
2

arccos

(
√

2√
2+h2

r

)
f̃hr

with

f̃hr =
1

2

(
λ1 ∧ λ5 + λ7 ∧ λ1 + λ2 ∧ λ4 + λ2 ∧ λ6 + λ7 ∧ λ4 + λ6 ∧ λ5

) (3.27)

9As we will see, the latter step is technically challenging for our matrices, but can always be performed given
enough computing power.
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• Imaginary h (q = q̄ = 1, h = −h̄ = ihi):

Fhi = e
i
√

2
2

arccos

(
√

2√
2+h2

i

)
f̃hi

with

f̃hi =
1

2

(
λ4 ∧ λ1 + λ1 ∧ λ6 + λ2 ∧ λ5 + λ2 ∧ λ7 + λ6 ∧ λ4 + λ5 ∧ λ7

) (3.28)

where x ∧ y = x ⊗ y − y ⊗ x. We note that the f̃ classical twists are all hermitian as 9 × 9
matrices (as expected, since F is unitary). Adjusting for our slightly different conventions, they
also individually satisfy the r-symmetric condition r12 ∼ f12 [28].10 The abelian real-β twist is well
known [8, 28, 21], while the other ones are new (and clearly non-abelian).

It turns out that the exponential form of the general (q, h) twist (3.7) can be written in terms of
the same classical twist matrices, but with coefficients which now each depend on all four parameters
(q, q̄, h, h̄). That is, we have:

Fq,h = ei fq,h , (3.29)

with the (q, h) classical twist given by a linear combination of the four twists above

fq,h = αβr f̃βr + αβi f̃βi + αhr f̃hr + αhi f̃hi . (3.30)

The expressions for the coefficients are:

αβr =
i(b− b̄)(c− 1)ρ

√
1 + b− c

√
1 + b̄− c

√
(1− c)(3− b− b̄+ c)− bb̄

,

αβi =
(bb̄− (c− 1)2)ρ

√
1 + b− c

√
1 + b̄− c

√
(1− c)(3− b− b̄+ c)− bb̄

,

αhr =
((1 + b− c)f + (1 + b̄− c)f̄)ρ

√
1 + b− c

√
1 + b̄− c

√
(1− c)(3− b− b̄+ c)− bb̄

,

αhi =
i((1 + b− c)f − (1 + b̄− c)f̄)ρ

√
1 + b− c

√
1 + b̄− c

√
(1− c)(3− b− b̄+ c)− bb̄

,

(3.31)

where

ρ = arccos

[
1

2
(b+ b̄+

ff̄

c− 1
)

]
(3.32)

and c, b̄, f and f̄ are as defined in (3.8)-(3.16). Note that all the α coefficients are real, again as
required for F to be unitary.

These factors can be checked to reduce to the ones in (3.25)-(3.28) in the corresponding limits.
Clearly, given the many relations between the parameters (3.8)-(3.16), there are several alternative
ways to write the α coefficients, and it is quite possible that a more compact form for these can
be found. The choice of these four particular limits as our building blocks is of course arbitrary as
well and other choices might be considered.11

This concludes our description of the general (q, h) -twist, which is one of our main results. In
the following sections we will use this twist in order to study the quasi-Hopf algebraic structure of
our theory and also to define a suitable star product between the scalar fields of N = 4 SYM which
will lead to the general Leigh-Strassler theory.

10Expanding in terms of real parameters, we have rβr = −βr f̃βr , rβi = −(q−1)f̃βi , rhr = −hr f̃hr and rhi = −hif̃hi .
A relative factor of 1/2 arises on expanding the prefactors so one obtains f12 = − 1

2
r12 as required.

11As an example, we have found that switching from f̃hr and f̃hi to f̃h± = f̃hr±if̃hi gives more compact expressions
which simplify some explicit computations.
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4 The coassociator

In this section we construct the coassociator for the (q, h)-twisted algebra. The general expression
for the twisted coassociator is given in (2.18). However, in our case we are twisting the algebraic
structure of the N = 4 SYM theory. So our starting point is the trivial coassociator Φ0 = I ⊗ I ⊗ I
and the formula simplifies to

Φ = F23 (id⊗∆)(F ) (∆⊗ id)(F−1) F−1
12 . (4.1)

This expresses the coassociator as a product of four 33 × 33 = 27 × 27 matrices, acting on triple
copies of the representation space of the algebra ordered as |111〉, |112〉, . . .. Two of these matrices
are trivially defined as F23 = I ⊗ F and F−1

12 = F−1 ⊗ I. So the only non-trivial computations
needed are the actions of (∆ ⊗ id) and (id ⊗ ∆) on the twist. As discussed, to compute these
expressions we apply the coproducts to the Taylor expansion of eif and re-exponentiate to find

(∆⊗ id)(F ) = (∆⊗ id)(ei
∑
f(1)⊗f(2)) = ei

∑
∆(f(1))⊗f(2) ,

(id⊗∆)(F ) = (id⊗∆)(ei
∑
f(1)⊗f(2)) = ei

∑
f(1)⊗∆(f(2)) ,

(4.2)

where we use Sweedler notation to write f =
∑
f(1) ⊗ f(2) as shorthand for f =

∑
i,j cijλ

i ⊗ λj .
Of course, the twisting procedure (4.1) guarantees that the coassociator we will obtain, together

with the R-matrix (1.4), will satisfy the quasi-Hopf Yang-Baxter equation (2.20). So our main goal
in explicitly constructing the coassociator is not to check the qHYBE as such, but to confirm
the validity of our computations which will allow us to work with quasi-Hopf algebras in future
applications.

4.1 Imaginary β

Let us again consider first the imaginary-β case in order to illustrate the computation. Recall that
the twist (3.6) can be expressed in terms of the su(3) generators as:

F = e−i
α(q)

2 [λ1∧λ2−λ4∧λ5+λ6∧λ7] . (4.3)

So we have, for instance:

(id⊗∆)(F ) = e−i
α(q)

2 [λ1⊗∆(λ2)−λ2⊗∆(λ1)−λ4⊗∆(λ5)+λ5⊗∆(λ4)+λ6⊗∆(λ7)−λ7⊗∆(λ6)]

= exp
[
−iα(q)

2
[λ1 ⊗ (λ2 ⊗ I + I ⊗ λ2)−λ2 ⊗ (λ1 ⊗ I + I ⊗ λ1)−λ4 ⊗ (λ5 ⊗ I + I ⊗ λ5)

+ λ5 ⊗ (λ4 ⊗ I + I ⊗ λ4) + λ6 ⊗ (λ7 ⊗ I + I ⊗ λ7)− λ7 ⊗ (λ6 ⊗ I + I ⊗ λ6)]
]
.

(4.4)

This matrix can be easily computed using computer algebra. Similarly we can compute the expres-
sion (∆ ⊗ id)(F−1). Finally we multiply the four matrices in (4.1). The final result is presented
in appendix A, where for clarity we do not give the matrix form of Φ but rather its tensorial
components expressed in the basis |i〉 ⊗ |j〉 ⊗ |k〉.

4.2 The general case

After illustrating the steps involved in the computation for the special case of imaginary β, we can
now proceed to evaluate the coassociator for the general (q, h)-twist (3.7). This turns out to be
considerably more computationally demanding, and we have not found it possible to exhibit the
components of Φ in the same compact way as for the imaginary-beta case. We will therefore outline
the steps of the computation and the interested reader can find the details in the Mathematica file
associated to this preprint.

15



As above, the main elements in constructing the coassociator will be the two 27× 27 matrices
(∆⊗ id)(f) and (id⊗∆)(f), where f is the classical twist (3.30). For concreteness, we write them
down in appendix B. Direct exponentiation of these matrices in Mathematica appears challenging,
so to exponentiate them we will need to explicitly find their diagonalisation matrices V , which
allow us to find the exponential of a matrix by way of its diagonalised version:

M = V †DV ⇒ eM = V †eDV . (4.5)

We have chosen to construct the left-eigenvectors, such that E
(L)
i (∆ ⊗ id)(f) = λiE

(L)
i .12 Then

V (L) is the matrix whose rows are the eigenvectors. Noting that (∆ ⊗ id)(f) and (id ⊗∆)(f) are
related by conjugation with P13, they have the same eigenvalues, and their eigenvectors are related

as E
(R)
i = E

(L)
i′ P13, where the i′ means that some indices need to be swapped in E

(R)
i in order to

keep the eigenvalues in the same order. The diagonalisation matrix V (R) can then be constructed
from these eigenvectors. Finally, we can write

(∆⊗ id)(F ) = ei(∆⊗id)(f) = (V (L))†eDV (L) ,

(id⊗∆)(F ) = ei(id⊗∆)(f) = (V (R))†eDV (R) ,
(4.6)

where D is the diagonal matrix given by Dii = eλi . We similarly compute

(∆⊗ id)(F−1) = e−i(∆⊗id)(f) = (V (L))†e−DV (L) ,

(id⊗∆)(F−1) = e−i(id⊗∆)(f) = (V (R))†e−DV (R) .
(4.7)

Using these components, we can construct Φ and its inverse according to (4.1), and are finally able
to verify the quasi-Hopf YBE (2.20). This check is performed through choosing generic numerical
values for the parameters q, q̄, h, h̄, and is successful. The details of the above construction and
the verification of the qHYBE can be found in the Mathematica file submitted together with this
article13.

One possible issue with our construction of the coassociator is that it relies on the exponen-
tiations (4.6). This is certainly fine for values of the parameters close to their classical values,
but one should perhaps take additional care when considering, for instance, roots of unity, or very
non-classical limits such as q → 0, h̄ = 1/h (a case which is interesting both from the perspective of
planar finiteness [37] as well as integrability [13, 14]), or the “cubic” model of [38]. Even for some
special cases which are close to classical values, such as the w-deformation q = q̄ = 1+w, h = h̄ = w
[21], we have noticed that some denominators in the diagonalisation matrices become large and the
numerical evaluation of the coassociator cannot be trusted. Fortunately, in this case it is possible
to simplify the matrices analytically and confirm that the coassociator becomes trivial, as it should
since the R-matrix satisfies the usual YBE.

As mentioned, the qHYBE is guaranteed to be satisfied by the twisting procedure, so confirming
it is really a check of our computation of the coassociator and the ingredients that went into it.
This is important, if one would like to perform explicit computations in the quasi-Hopf algebra in
the future. (Some such computations appear in the next section).

Another ingredient in confirming the quasi-Hopf structure is showing the pentagon identity
(2.17). In appendix D we discuss how this identity follows from the twisting procedure. The
antipode and elements α and β of the quasi-Hopf algebra are also guaranteed by the twisting
procedure, and since we have not needed their explicit forms, we have not computed them explicitly.

12Note that the (L) refers to the coproduct being on the left in (∆⊗ id)(f), and not to the type of eigenvector.
13If one is interested in a specific choice of parameters it is possible, with some patience, to verify the qHYBE

analytically. In the associated Mathematica file, we illustrate this for the cases of the imaginary-β and real-h
deformations.
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We conclude that, as expected, the twist (3.7) acting on the trivial R-matrix R = I ⊗ I has led
to a triangular quasi-Hopf algebra. Since this algebra is a Drinfeld twist of the universal enveloping
algebra of the su(3) Lie-algebraic symmetry of N = 4 SYM, we can denote it as Uq,h[su(3)], where
(q, h) can also be taken to stand for “quasi-Hopf”.14

5 The star product

After establishing the quasi-Hopf structure of our (q, h)-twisted algebra, let us now turn to its
module, or representation space, focusing on the fundamental representation. As discussed in e.g.
[24, 41, 42, 43], when twisting an initial Hopf algebra, and thus defining a new coproduct according
to (2.9), compatibility between the algebra coproduct ∆F and the module product m requires the
latter to be twisted as well. The new product is

mF (a⊗ b) = m(F−1 . x⊗ y) =
∑

(F−1
(1) . a) · (F−1

(2) . b) . (5.1)

where we abuse notation by also denoting m by ·, which is also used for the product in A. It is
natural to express this modified module product as a star product:

a ? b = mF (a⊗ b) . (5.2)

For explicit computations, it is useful to write this and similar expressions in index notation. For
this we define a basis ei for our vector space

e1 =

 1
0
0

 , e2 =

 0
1
0

 , e3 =

 0
0
1

 , (5.3)

and notice that the star product (5.2) is essentially a rotation of the vector a⊗ b = cijei⊗ ej by the
action of F−1. In terms of the ei, this action can be written as (ei ? ej) = ekel(F

−1)k li j . However,
since we would like to express the star product as a transformation on the coordinates, we will
be interested in the dual basis zi ⊗ zj , related to the basis ek ⊗ el by 〈zi ⊗ zj , ek ⊗ el〉 = δikδ

j
l .

In order for the same relation to hold for the ?-deformed dual basis, we need to transform it as
zi ? zj = F i jk lz

k ⊗ zl (where we used F21 = F−1
12 ). The outcome of this is that the star product

acting on the coordinates zi is given by

zi ? zj = F i jk lz
kzl . (5.4)

In [21], this star product was used to relate the related the superpotentials of the β and w-deformed
theories to that of the N = 4 SYM theory. Since we now have the full (q, h)-twist at our disposal,
we simply extend the star product to the general case. We note that the zi on the right-hand-side
of (5.4) are in principle commuting coordinates, but in the field theory context they will acquire
additional non-abelian structure (as they will be mapped to matrix-valued scalar fields) so we will
be careful to preserve their ordering unless otherwise noted.

Of course, an essential difference between [21] and the current work is that the twist (5.2) does
not satisfy the YBE. Working out the two possible cubic products, one finds the expressions:

a ? (b ? c) = m
(
((id⊗∆)(F−1)(1⊗ F−1)) . [a⊗ b⊗ c]

)
,

(a ? b) ? c = m
(
((∆⊗ id)(F−1)(F−1 ⊗ 1)) . [a⊗ b⊗ c]

)
.

(5.5)

14One could also use the notation SU(3)q,h, but it might be best to reserve that for the dual FRT picture studied in
this context in [14]. In using this notation one should keep in mind that this algebra is unrelated to multiparameter
deformations of SU(3), such as those in e.g. [39, 40], which are Hopf and not quasi-Hopf.
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These will be different in general. Note that in [21] we made use of the abelian nature of the
twists appearing there to rewrite the above expressions as cubic products of F−1. However, the
(q, h)-twist is non-abelian, so that option is not available here. In order to compute these two cubic
products we need to first compute the explicit 27 × 27 matrices in (5.5). As before, we will first
show how to do this for the imaginary-β deformation before proceeding to the general case.

5.1 Imaginary β

To illustrate the computations without the expressions becoming too unwieldy, let us again spe-
cialise first to the imaginary β deformation. In order to compute the expressions in (5.5), we need
to apply the coproduct on the twist F . As discussed above, the coproduct ∆ entering here is that
of the undeformed theory, so its action on generators of the algebra is the trivial one (2.2). So in
order to apply say id⊗∆ on the twist we need to first write F in terms of generators of SU(3). We
recall that F12 = eif12 , where in this case f12 is

f12 = −α(q)

2
(λ1 ∧ λ2 − λ4 ∧ λ5 + λ6 ∧ λ7) , (5.6)

with α(q) as in (3.5). So we compute:

(a ? b) ? c = m
(

(∆⊗ id)(e−if )F−1
12 . [a⊗ b⊗ c]

)
= m

(
e−i

∑
∆(f(1))⊗f(2)F−1

12 . [a⊗ b⊗ c]
)
, (5.7)

while

a ? (b ? c) = m
(

(id⊗∆)(e−if )F−1
23 . [a⊗ b⊗ c]

)
= m

(
e−i

∑
f(1)⊗∆(f(2))F−1

23 . [x⊗ y ⊗ z]
)
. (5.8)

For ease of reference, let us give names to the 27×27 matrices appearing in the cubic star products,
according to whether the parenthesis is placed to the left or to the right:

[F3,L] = (∆⊗ id)(F−1)(F−1 ⊗ 1) and [F3,R] = (id⊗∆)(F−1)(1⊗ F−1) . (5.9)

The explicit expressions for these matrices are given in appendix C, where (as for the coassociator)
we find it easier to record their components as tensors acting on three copies of the algebra. In
general, these are unitary matrices, although in the imaginary-β case they are orthogonal.

As in the quadratic case, we would also like to express the cubic star product in terms of its
action on our coordinate basis zi. This will again entail an inversion of the matrix, so we write:

(zi ? zj) ? zk = [F−1
3,L]i j ki′j′k′z

i′zj
′
zk
′

and zi ? (zj ? zk) = [F−1
3,R]i j ki′j′k′z

i′zj
′
zk
′
. (5.10)

where
[F−1

3,L] = (F ⊗ 1)(∆⊗ id)(F ) and [F−1
3,R] = (1⊗ F )(id⊗∆)(F ) . (5.11)

As the matrices tabulated in appendix C are orthogonal, their inverses can easily be found by
transposition, so we do not record them here. Of course, by construction, the left- and right-
matrices are related:

[F3,L] = [F3,R]Φ and [F−1
3,L] = Φ−1[F−1

3,R] , (5.12)

which shows explicitly how the coassociator relates the two cubic bracketings.

5.2 The (q, h)-star product

We can now proceed to define the (q, h) star product using the definition (5.4) with the twist (3.7).
To see why this is a consistent definition, it important to recall the link to quantum planes, which
in this context were discussed in detail in [14]. In the context of the FRT relations defining a Hopf
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algebra (which is a dual picture to the UEA picture that we are using here), the quantum plane
can directly be seen as the space on which the algebra acts, and its non-commutativity is governed
by the same R-matrix that enters the FRT relations through expressions such as Rx1x2 = x2x1.15

From a physical perspective, the quantum plane relations are identified with the F-term relations
of the gauge theory, as described in [16]. To see this, it is useful to have in mind the usual setup
where a stack of N D3-branes is placed at the origin of a transverse |||C3. On the worldvolume
of the branes, these six transverse directions appear as scalar fields in the adjoint representation
of SU(N) [44]. Since the coordinates of |||C3 all commute, all these directions are equivalent, and
the action of the scalars will have an SO(6) symmetry (though of course only an SU(3) × U(1) is
explicit if we insist on working with holomorphic coordinates). This symmetry is also reflected on
the moduli space of the worldvolume theory, resulting in the usual F-term relations of N = 4 SYM
of the form [Φi,Φj ] = 0. If we now replace the transverse space by a quantum plane |||Cq,h

3 , the
worldvolume action will reflect the Uq,h[su(3)] symmetry of this space and translate to quantum
group relations for the scalar fields, of the type [Φi,Φj ]q,h = 0. These were the relations discussed
in [16]. Given the above, in the following we will often switch between the quantum plane geometry
of the transverse space and relations for the N = 4 SYM scalars.

In [14], the quantum plane coordinates were non-commutative, while in the present (dual)
setting the non-commutativity is controlled by the star product. So we expect a star-product
version of the quantum plane relations in [14] to hold:

Ri jk lz
k ? zl = zj ? zi . (5.13)

Noting that (5.4), together with (3.17) implies

zi ? zj = F i jk lz
kzl ⇒ zmzn = Fn mj i z

i ? zj , (5.14)

we compute

zj ? zi = F j in mz
nzm = F j in mz

mzn = F j in m

(
Fnml k z

k ? zl
)

= F j in mF
nm
l k z

k ? zl = Ri jk lz
k ? zl, (5.15)

where we used (3.18) in the last step. This is just as required from (5.13), so our star product is
consistent with the underlying quantum plane structure.16 Let us note that a similar star-product
derivation of quantum plane relations appears in [41], and a detailed study of the interplay between
quantum symmetries, quantum planes and star products can be found in [42].

We can thus expect that expressions which are natural from the quantum plane picture will
also be natural from the perspective of the star product, and this indeed turns out to be the case.
For instance, as a special case of (5.13), we find:

z1 ? z2 − qz2 ? z1 + hz3 ? z3 =

√
1 + q

√
1 + qq̄ + hh̄√

2
√

1 + q̄

(
z1z2 − z2z1

)
, (5.16)

as well as its cyclic permutations. On the right hand side the z’s are multiplied using the undeformed
module product. As this product is commutative, the right hand side vanishes, demonstrating how
the star product reproduces the quantum plane relations appropriate to the general Leigh-Strassler
theory [14].

15Quantum planes acted on by matrix quantum groups which are deformations of GL(3), and the corresponding R-
matrices, were classified in [40], however those planes were alphabetically ordered, rather than the cyclically ordered
planes which arise in our context.

16Note that in the above derivation we made use of the undeformed (commutative) quantum plane relation,
zmzn = znzm. In the gauge theory context, this corresponds to imposing the N = 4 SYM F-term relations
[Φm,Φn] = 0. However, the star product relates LS and N = 4 SYM expressions without necessarily imposing
this constraint.
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As discussed, in the gauge theory picture the |||C3 coordinates zi are replaced by the adjoint
scalar fields Φi. Being matrices, these scalars do not generically commute, so the relation above
should be read as

Φ1 ? Φ2 − qΦ2 ? Φ1 + h Φ3 ? Φ3 =

√
1 + q

√
1 + qq̄ + hh̄√

2
√

1 + q̄
[Φ1,Φ2] (5.17)

plus cyclic permutations. This illustrates how the F -term constraints in the Leigh-Strassler-
deformed theories (discussed from a quantum plane perspective in [16]) can be simply related
to the N = 4 SYM F -term constraints using the ?-product. Clearly, both sides reduce to the
standard commutator in the classical limit (q, h) = (1, 0).

Applying the star product to cubic expressions, by defining the analogues of (5.9), it is easy
to establish that it is non-associative for generic q, h. However, by construction, the coassociator
allows us to relate any two placements of parentheses. For the star product on vectors the relation
is simply:

(a ? b) ? c =
∑

[Φ(1) . a] ?
(
[Φ(2) . b] ? [Φ(3) . c]

)
. (5.18)

This is a standard result (see e.g.[41, 33]), however we would also like to express it in index form.
Rewriting (5.12) in tensor language and recalling the definition (5.10), we can write:

(zi ? zj) ? zk = Φi j k
l m n z

l ? (zm ? zn) , (5.19)

an equality which can be verified by explicitly evaluating both sides. This formula allows us to
convert any left-bracketed cubic expression to a sum of right-bracketed ones. (And vice-versa, using
the inverse coassociator).

A very interesting relation arises when we introduce the star product into the Leigh-Strassler
superpotential itself. By explicit computation we find:

(z1 ? z2) ? z3+(z2 ? z3) ? z1+(z3 ? z1) ? z2−q((z1 ? z3) ? z2+(z2 ? z1) ? z3+(z3 ? z2) ? z1)

+h((z1 ? z1) ? z1+(z2 ? z2) ? z2+(z3 ? z3) ? z3)

=

√
1+q

√
1+qq̄+hh̄√

2
√

1+q̄

(
(z1z2)z3+(z2z3)z1+(z3z1)z2−(z1z3)z2−(z2z1)z3−(z3z2)z1

) (5.20)

Switching to the right bracketing in the above expression produces the same answer. Replacing
zi → Φi and taking the gauge theory trace, we find that not only the quadratic quantum plane
relation (5.16) but also the cubic Leigh-Strassler superpotential (1.1) reduces to its corresponding
undeformed (N = 4 SYM) expression upon introducing the ? -product.

5.3 The inverse star product

As discussed more extensively in [21], it is very convenient to also introduce the inverse star
product, which we will denote by an asterisk.

aAb = mF−1(x⊗ y) = m(F . a⊗ b) =
∑

(F(1) . a) · (F(2) . b) . (5.21)

Similar arguments as in the previous section can be used to show that, acting on the coordinates,
the A -product is simply:

ziAzj = (F−1)i jk lz
kzl = F j il kz

kzl . (5.22)

Using the explicit form of the twist, we can check the following relation (plus its cyclic analogues):

z1 Az2 − z2 Az1 =

√
2
√

1 + q̄
√

1 + q
√

1 + qq̄ + hh̄

(
z1z2 − qz2z1 + h(z3)2

)
, (5.23)

20



which is of course the inverse relation to (5.16). In the gauge theory context, this relation tells us
that A -deforming the commutator [Φ1,Φ2] leads to the corresponding (q, h)-commutator:

Φ1 AΦ2 − Φ2 AΦ1 =

√
2
√

1 + q̄
√

1 + q
√

1 + qq̄ + hh̄
[Φ1,Φ2]q,h , (5.24)

where we define [Φ1,Φ2]q,h = Φ1Φ2 − qΦ2Φ1 + h(Φ3)2. In other words, this product takes N = 4
SYM expressions to ones relevant to the Leigh-Strassler theory.

At cubic level, the two bracketings of the A -product are:

(aAb)Ac = m
(
(F ⊗ 1)(∆⊗ id)(F ) . [a⊗ b⊗ c]

)
(5.25)

and
aA(bAc) = m

(
(1⊗ F )(id⊗∆)(F ) . [a⊗ b⊗ c]

)
, (5.26)

where the relevant 27× 27 matrices appear in (5.11).
As before, for explicit computations we would like to know how the A -product acts on the

coordinates themselves. Given the inversion that occurs when switching to coordinates, we find

(ziAzj)Azk = [(∆⊗ id)(F−1)(F−1 ⊗ 1)]ijki′j′k′z
i′zj

′
zk
′

= [F3,L]ijki′k′j′z
i′zj

′
zk
′
, (5.27)

and similarly:

ziA(zj Azk) = [(id⊗∆)(F−1)(1⊗ F−1)]ijki′j′k′z
i′zj

′
zk
′

= [F3,R]i j ki′j′k′z
i′zj

′
zk
′
. (5.28)

For the imaginary-β case, the [F3,L] and [F3,R] matrices are given in appendix C, while for the
general (q, h) case they can be computed using the Mathematica file associated to this preprint.

We now have all the information we require in order to compute cubic star-product expressions.
As expected, the cubic star product is not associative. As an example, for imaginary-β we compute:

(z1 Az2)Az2 =
1 + q cos(

√
2α)

√
2
√

1 + q2
z1z2z2 +

cos(
√

2α)− 1
√

2
√

1 + q2
z2z1z2 − sin(

√
2α)√

2
z2z2z1 , (5.29)

while:

z1 A(z2 Az2) = cos(
√

2α)z1z2z2 − q sin(
√

2α)√
1 + q2

z2z1z2 − sin(
√

2α)√
1 + q2

z2z2z1 . (5.30)

However, as for the ? -product, we can relate any left-bracketed expression to a sum of right-
bracketed ones using the coassociator. Since in this case the coassociator appears on the right in
(5.12), the relation cannot be written as simply as (5.19), but can still be expressed compactly in
a hybrid of Sweedler and index notation as

(ziAzj)Azk =
∑

Φ(1)
i
lz
lA(Φ(2)

j
mz

mAΦ(3)
k
nz

n) . (5.31)

Again, the equality of the two sides can be explicitly verified.
The inverse star product allows us to obtain relations in the generic Leigh-Strassler-deformed

theory by star-deforming N = 4 SYM expressions, with the (non-trivial) caveat that it is non-
associative and thus one can only expect to obtain correct (q, h)-deformed expressions if one knows
how the parentheses should be placed in the undeformed ones, a situation similar to the one
encountered when deforming from a commutative setting to a non-commutative one.
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5.4 The cyclic star product

As we saw, the star products defined in the previous sections are non-associative. So, if for instance
we wish to use the A -product to deform an N = 4 SYM expression involving the fields to the (q, h)
theory, the result will depend on how the parentheses are placed in the undeformed expression and
can result in ambiguous expressions.

However, and rather surprisingly, it turns out that this issue is not present when considering
precisely the (cyclically symmetrised) cubic expression which appears in the superpotential of the
theory. In that case, the two different placements of parentheses are equal. So for instance one can
show, for the general (q, h)-twist, that

z1 A(z2 Az3) + z2 A(z3 Az1) + z3 A(z1 Az2) = (z1 Az2)Az3 + (z2 Az3)Az1 + (z3 Az1)Az2 (5.32)

and similarly for the expression with any two indices interchanged. Therefore, if we apply the
cyclicity of the trace to write the N = 4 SYM superpotential as

1

3
Tr
[
Φ1Φ2Φ3 + Φ2Φ3Φ1 + Φ3Φ1Φ2 − Φ1Φ3Φ2 − Φ3Φ2Φ1 − Φ2Φ1Φ3

]
, (5.33)

there is no need to be careful with parentheses, as either of the two placements will work (as long
as the same choice is used for all the terms).17 Choosing the left placement, star-deforming and
performing the explicit computations, the above expression becomes

1

3
Tr
[
(Φ1 AΦ2)AΦ3+(Φ2 AΦ3)AΦ1+(Φ3 AΦ1)AΦ2−(Φ1 AΦ3)AΦ2−(Φ3 AΦ2)AΦ1−(Φ2 AΦ1)AΦ3

]
=

√
2
√

1 + q̄

3
√

1 + q
√

1 + hh̄+ qq̄
Tr[Φ1Φ2Φ3 + Φ2Φ3Φ1 + Φ3Φ1Φ2 − q(Φ1Φ3Φ2 + Φ3Φ2Φ1 + Φ2Φ1Φ3)

+ h(Φ1Φ1Φ1 + Φ2Φ2Φ2 + Φ3Φ3Φ3)] .

(5.34)

Here the product between the fields is just the usual matrix product, so the cyclically related terms
are equal under the trace. Introducing a more compact notation where it is understood that one
needs to first write out cyclically related terms before introducing the A -product, we can write

gTr
[
Φ1 AΦ2 AΦ3−Φ1 AΦ3 AΦ2

]
= κ Tr

[
Φ1Φ2Φ3−qΦ1Φ3Φ2 +

h

3

(
(Φ1)3+(Φ2)3+(Φ3)3

)]
, (5.35)

which is the Leigh-Strassler superpotential (1.1) for the specific value

κ = g

√
2
√

1 + q̄
√

1 + q
√

1 + hh̄+ qq̄
. (5.36)

We have thus achieved the long-standing goal of obtaining the full Leigh-Strassler superpotential
from a star product inserted in the superpotential of N = 4 SYM. This generalises star products
for associative cases in [7, 20, 21]. We emphasise that, even though theA -product is non-associative
in general, the coassociator does not appear to be necessary for this specific result.

Substituting the value of κ in the conformal constraint equation (1.2), we find that it is perfectly
consistent with it in the planar limit (which makes sense, as we have only used planar information
in our construction). Also, we are here of course only dealing with the classical lagrangian, so
we would certainly not expect to see any signs of the corrections to the constraint equation that
arise at higher loop orders (in particular, at four loops at planar level [37]). But one could hope
that our star-product approach will allow for more efficient computations of loop corrections in the

17The need to rewrite the trace to make the cyclicity evident before inserting the star product was already seen in
the associative setting of [21], and has also appeared in a similar context in [45] (see also [46] for further discussion
of the interplay between cyclicity and quantum groups).
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Leigh-Strassler theories, and through that a better understanding of the conformal condition at
higher loops.

Let us emphasise that specifying the parameters to those of the w-deformation of [21] one
obtains the correct superpotential, however the coefficient κ in that work is different. This is to be
expected, since our twist here is different from the one used in [21]. We interpret that twist (which
is non-equivalent to the present one, being non-triangular) as deforming a given N = 4 SYM theory
(labelled by the value of the gauge coupling g) to a different superconformal deformation which
has the same values for q and h but differs also in the gauge coupling g′, and thus also in the κ
parameter in front of the superpotential (1.1). Whether this can be made precise by understanding
the twist of [21] as a two-step process of first changing the gauge coupling along the N = 4 SYM
marginal line and then performing a triangular twist is an interesting open question.

We saw that the non-associativity of our quasi-Hopf-twisted algebra does not enter for the
specific combination of fields appearing in the superpotential. The underlying reason is not clear
to us18 but it is likely to be related to another curious fact: In [14] associativity was imposed by
hand on the cubic relations between generators arising from the FRT relations, but still led to a
consistent, central, quantum determinant. This was precisely as required to show Hopf invariance
of the superpotential. In the current article, we work in the universal enveloping algebra picture
(dual to the FRT picture employed in [14]), so what we are seeing is perhaps the dual statement
to what appeared there. In other words, although in [14] associativity was imposed in a situation
where one did not expect it to hold, it was consistent with the cubic expression arising in the
quantum derivative and thus justified.

Let us note that the non-associative star products induced on D-brane worldvolumes in the
presence of non-constant fields [47] also have several special cyclicity properties, from which one
can show them to be associative up to total derivatives [48, 49, 50]. Our gauge-theoretic star
products are essentially the same object, of course constructed from a very different starting point
and acting not on the worldvolume coordinates but the transverse ones. Trying to understand the
D-brane worldvolume origins of our star products, at least at leading order in the deformation,
might help to elucidate the origins of this hidden associativity.

5.5 Quasi-Hopf Invariance of the superpotential

Having expressed the Leigh-Strassler superpotential as a star-product version of that of N = 4
SYM, we are ready to show that it is invariant under our Uq,h[su(3)] quasi-Hopf symmetry. We
will show this by untwisting the Uq,h[su(3)] action to an undeformed SU(3) action. Since our
non-associative setting is perhaps unfamiliar, we will go through the steps in some detail.

We start by expressing the Leigh-Strassler superpotential (5.35) as

WLS =
1

3
εijkTr[(ΦiAΦj)AΦk] , (5.37)

where for concreteness we have chosen the left placement of the parentheses, but we might have as
well chosen the right one as they are equal for this cyclically ordered combination.

Let us analyse this star product at the level of the coordinates zi (of the non-commutative
|||C3 transverse to the D3-branes in the field theory setup), looking at a single term for simplicity.

To make contact with computations in similar settings (e.g. in [24]) we suppress the indices by
introducing the notation [z1 ⊗ z2] for the 9 × 1 column vector whose components are zizj in the
standard ordering {11, 12, . . .} and [(z1 ⊗ z2)⊗ z3] for the 27× 1 column vector whose components
are (zizj)zk in the standard ordering {111, 112, . . .}, and similarly for their star-product versions.

18At the practical level, of course, one can easily see when taking differences of the two placements of parentheses
that one obtains differences of terms where the zi’s are permuted, so cyclically symmetrising them gives zero.
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So we can write (5.27) as

(z1 Az2)Az3 = m
(
[(∆⊗ id)(F−1)(F−1 ⊗ 1)] . [(z1 ⊗ z2)⊗ z3]

)
. (5.38)

Now we would like to transform zi → zi
′

= U i
′
iz
i, where U = eiT is an SU(3) matrix. Assuming

(for now) that we are in a Lie group setting, U will act on the product of two z’s as

(z1z2)′ = m(z1 ⊗ z2)′ = m ([∆(U)] . [z1 ⊗ z2]) = m
(
[∆(eiT )] . [z1 ⊗ z2]

)
. (5.39)

But, ∆ being the undeformed coproduct, we compute

∆(eiT ) = ei∆(T ) = ei(T⊗1+1⊗T ) = ei T⊗1ei 1⊗T = eiT ⊗ eiT = U ⊗ U , (5.40)

so we find

(z1 ⊗ z2)′ = m ([U ⊗ U ] . [z1 ⊗ z2]) = m(U . z1 ⊗ U . z2) = (U . z1) · (U . z2) . (5.41)

Converting this expression to indices, we of course obtain the familiar SU(3) transformation

zi
′
zj
′

= U i
′
i z
iU j

′

j z
j . (5.42)

If we now act on three coordinates, we proceed similarly19

((z1z2)z3)′ = m((z1 ⊗ z2)⊗ z3)′ = m ([(∆⊗ id)∆(U)] . [(z1 ⊗ z2)⊗ z3]) . (5.43)

We compute

(∆⊗ id)∆(U) = (∆⊗ id)ei(T⊗1+1⊗T ) = ei(∆(T )⊗1+∆(1)⊗T ) = ei(T⊗1⊗1+1⊗T⊗1+1⊗1⊗T ) = U ⊗U ⊗U. (5.44)

So in indices we again obtain the usual transformation:

((zizj)zk)′ = (U i
′
i z
iU j

′

j z
j)Uk

′
k z

k. (5.45)

So far, we have just written down a Lie group action on its representation space in far more detail
than necessary. However, when we deform the (universal enveloping algebra of our) Lie algebra
by twisting, we will need to repeat the above while taking into account the twisted coproducts
∆F = F∆F−1, as well as the corresponding star products on the representation space, so the
computations are less trivial. Let us start by checking how the quadratic A -product relation
transforms under the action of U :

(z1 Az2)′ = mF ([∆F (U)] . [z1 ⊗ z2]) = m(F−1(F∆(U)F−1) . [z1 ⊗ z2])

= m(∆(U)F−1 . [z1 ⊗ z2]) = (UF−1
(1) . z1) · (UF−1

(2) . z2)
(5.46)

which, in indices, tells us that

zi
′
Azj

′
=
∑

U i
′
i′′ [F

−1
(1) ]i

′′
i z

i U j
′

j′′ [F
−1
(2) ]j

′′

j z
j = U i

′
i′′U

j′

j′′ [F
−1]i

′′ j′′

i j z
izj = U i

′
iU

j′

j (ziAzj) . (5.47)

So the star product, acted on by the twisted coproduct of an SU(3) element, transforms in the
same way as the undeformed product acted on by the usual Lie algebra coproduct. We emphasise
that the U ’s appearing in the relation above are just SU(3) matrices. Only the way by which they
act on multiple copies of the algebra has been twisted.

19The parentheses are of course irrelevant in this associative setting but are kept to motivate the twisted discussion
to follow.

24



We can proceed similarly for three copies of the algebra, where we can write:

U . ((z1 Az2)Az3) = U . mF ([(z1 ⊗ z2)⊗ z3]) = mF ((∆F ⊗ id)∆F (U) . [(z1 ⊗ z2)⊗ z3]) . (5.48)

But we can compute (adapting a computation in [24] to the exponential of an algebra element):

(∆F ⊗ id)∆F (U) = (∆F ⊗ id)(F∆(eiT )F−1) = (∆F ⊗ id)(eifei(T⊗1+1⊗T )e−if )

= (F ⊗ 1)(∆⊗ id)(eifei(T⊗1+1⊗T )e−if )(F−1 ⊗ 1)

= (F ⊗ 1)(ei(∆⊗id)fei(T⊗1⊗1+1⊗T⊗1+1⊗1⊗T )e−i(∆⊗id)f )(F−1 ⊗ 1)

= F12(∆⊗ id)(F ) (∆⊗ id)∆(U) (∆⊗ id)(F−1)F−1
12 .

(5.49)

We see that the iterated action of the twisted coproduct of U can be expressed as a twisted iterated
action of the untwisted coproduct of U .

Given the above and the definition (5.27), it is now easy to show covariance of the group action
on the cubic star product:

((z1 Az2)Az3)′ = mF ([(∆F ⊗ id)∆F (U)] . [(z1 ⊗ z2)⊗ z3])

= m
(
[(∆⊗ id)(F−1)(F−1 ⊗ 1)F12(∆⊗ id)(F ) (∆⊗ id)∆(U)

·(∆⊗ id)(F−1)F−1
12 ] . [(z1 ⊗ z2)⊗ z3]

)
= m

(
[(∆⊗ id)∆(U) (∆⊗ id)(F−1)F−1

12 ] . [(z1 ⊗ z2)⊗ z3]
)

=
∑

(U [F3,L](1) . z1) · (U [F3,L](2) . z2) · (U [F3,L](3) . z3) ,

(5.50)

which in indices reads
(zi
′
Azj

′
)Azk

′
= U i

′
iU

j′

j U
k′
k ((ziAzj)Azk) . (5.51)

Again, we find that the cubic star product transforms in the usual way under the undeformed
SU(3). Reverting to gauge theoretic notation, we can now write

W ′LS =
1

3
εi′j′k′Tr[(ΦiAΦj)AΦk]′ =

1

3
εi′j′k′U

i′
iU

j′

j U
k′
k Tr[(ΦiAΦj)AΦk]

= det(U)εijk
1

3
Tr[(ΦiAΦj)AΦk] = WLS

(5.52)

which shows the Uq,h[su(3)] invariance of the superpotential. It might appear that we are claiming
SU(3) invariance, but that is not so, as the true action of U on the fields is via the twisted coproduct
∆F of the Uq,h[su(3)] algebra. What (5.52) is stating is that the action of ∆F can be untwisted
to a usual SU(3) action, so that we can make use of the SU(3) invariant εijk tensor.20 Certainly
when expanding out the star products to write the superpotential as in (1.1), the SU(3) symmetry
is hidden.21

5.6 Antiholomorphic and mixed relations

The above discussion revolved around reproducing the superpotential of the (q, h)-deformed theories
and thus took place purely in the holomorphic sector spanned by the coordinates zi. In order to
make a general statement about the gauge theory, however, we need to also consider how the twist
affects the antiholomorphic and mixed sectors. An ab initio approach to this question would involve
extending the above structures to the full SO(6) scalar sector and defining the star product through

20This type of relation between the twisted and untwisted algebra (or two different twisted algebras) has had several
applications, see e.g. the discussions of twist equivalence in [51] as well as [52].

21Although one should still be able to show SU(3)q,h invariance, since instead of εijk one writes the superpotential
in terms of an Eijk, which is an SU(3)q,h-invariant tensor: this is precisely the approach taken in [14].
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the appropriate (36 × 36) twist using (5.2). We will, however, take a shortcut by proposing a set
of star-product relations which reproduces the expected mixed quantum plane relations.

A consistent set of quantum plane relations for the (q, h)-deformation was proposed in [14].
Adapting those relations to the current context (where the non-commutativity is governed by the
star product), we write them as

Ri jk lz
k ? zl = zj ? zi , z̄k ? z̄lR

k l
i j = z̄j ? z̄i ,

Rj lk iz̄l ? z
k = zj ? z̄i , R̃i lk jz

k ? z̄l = z̄j ? z
i ,

(5.53)

where R̃ is the second inverse of R, satisfying

R̃i nm jR
mk
l n = Ri nm jR̃

mk
l n = δilδ

k
j . (5.54)

The second inverse of the R-matrix can be constructed from the original one by a procedure of
transposing in the second space, inverting and transposing again (see e.g. [24] for a proof). The
second inverses of the other tensors discussed below will also be defined as in (5.54).

Our task is now to find a set of definitions for the mixed star products which reproduces the
above relations. We propose the following extension of (5.4):

zi ? zj = F i jk lz
kzl , z̄j ? z̄i = z̄lz̄kF

l k
j i ,

zi ? z̄j = zkF l ij kz̄l , z̄i ? z
j = z̄lG

l j
i kz

k .
(5.55)

The holomorphic case was already discussed in section 5.2, and the anti-holomorphic one follows
straightforwardly by hermitian conjugation. The mixed relations involve a new tensor G, whose
second inverse G̃ provides a second factorisation of the R-matrix (analogous to the normal twist-
factorisation (2.12)) as

Ri jk l = G̃j mn kF
n i
l m . (5.56)

The G-tensor whose second inverse satisfies this relation is given in appendix E. It turns out that
the same G-tensor also factorises the second inverse of the R-matrix as

R̃i jm n = F̃ j lk mG
k i
n l . (5.57)

It can be checked that, taken together, these two expressions imply (5.54).
Given the above two factorisations of the R-matrix, we can now easily see that the definitions

(5.55) lead to the quantum plane relations (5.53). For instance, we can check:

zj ? z̄i = zlz̄kF
k j
i l = z̄kz

lF k ji l = z̄m ? znG̃m l
k nF

k j
i l = z̄m ? znRj mn i , (5.58)

where we used that
z̄i ? z

j = Gl ji kz̄lz
k ⇒ z̄mz

n = G̃i nm j z̄i ? z
j . (5.59)

Similarly we can show the other mixed quantum plane relation. We conclude that the definitions
(5.55) are consistent with our expectations. As discussed, it would be important to establish them
more formally starting from the 36× 36 R-matrix of the full SO(6) scalar sector, which should also
provide additional insight into the origin of the G-tensor.

5.7 Twist-invariance of the kinetic terms

We are now ready to discuss the physical interpretation of our (conjectural) mixed star product
relations (5.55). First, we define the corresponding inverse star products as:

ziAzj = F j il kz
kzl , z̄j A z̄i = z̄lz̄kF

k l
i j ,

ziA z̄j = zkF̃ l ij kz̄l , z̄iAz
j = z̄kG̃

k j
i lz

l .
(5.60)
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As in the holomorphic sector, we can use theA-product to deform anyN = 4 SYM expression involv-
ing mixed products of the chiral superfields to the corresponding expression in the Leigh-Strassler
theories. Crucially, even though the individual mixed relations are not particularly transparent
(and we refrain from writing them down), it turns out that the traces (in the quantum algebra) of
the mixed star products evaluate simply to:

z̄1 Az1 + z̄2 Az2 + z̄3 Az3 = z̄1z
1 + z̄2z

2 + z̄3z
3 (5.61)

as well as
z1 A z̄1 + z2 A z̄2 + z3 A z̄3 = z1z̄1 + z2z̄2 + z3z̄3 (5.62)

which is of course required by compatibility with the gauge theory trace (when interpreting the z’s
as chiral superfields).

This simple result tells us that in the Kähler part of the gauge theory action we simply have22

ΦiAΦi = ΦiΦ
i . (5.63)

So the kinetic part of the action is invariant under the twist. This confirms that the quasi-Hopf
deformation we are considering is a purely superpotential deformation, as it should be in order to
correspond to the Leigh-Strassler marginal deformations.

Of course, when (for instance) relating observables of N = 4 SYM to those in the Leigh-
Strassler theories one might have to consider other mixed star product expressions, where the
above simplification does not occur and there will be nontrivial dependence on the q, h parameters.

6 Conclusions

In this work we constructed a Drinfeld twist which relates the algebraic structure of N = 4 SYM
to that of its N = 1 marginal deformations. As anticipated in [21], the resulting structure is
that of a quasi-Hopf algebra. So one can think of the Leigh-Strassler deformations as twisting the
SU(3) × U(1)R global Lie-algebraic symmetry of N = 4 SYM to a global quasi-Hopf symmetry
Uq,h[su(3)] × U(1)R. We showed how one can perform explicit computations in this quasi-Hopf
setting by studying the coassociator and demonstrating that the quasi-Hopf analogue of the Yang-
Baxter Equation is satisfied.

Using the twist, we also introduced a star product which relates the Leigh-Strassler lagrangian
to that of N = 4 SYM, as well as its inverse, which deforms the N = 4 SYM lagrangian to the
Leigh-Strassler one. This generalises previously known star products [7, 20, 21] which were only
applicable to integrable cases, such as the β or w-deformation.

An immediate issue with the above claim of a quantum group global symmetry in QFT has to
do with statistics. One of the important properties of the trivial Lie algebra coproduct is that it
admits a natural action of the symmetric group, so that it makes sense to consider symmetric or
antisymmetric wavefunctions for multi-particle states. This is no longer the case when one deforms
the coproduct to obtain a Hopf algebra. Fortunately, it has been shown in [53, 54] that for quantum
groups derived by twisting Lie algebraic structures (which is precisely our case) it is possible to
adjust the symmetric group action in order to make sense of particle statistics in precisely the same
way as in the undeformed theory. So, interpreted with due care, our quasi-Hopf symmetry is not
in conflict with the principles of Quantum Field Theory.

As we saw in section 5.4, our star product produces the Leigh-Strassler superpotential with the
appropriate coefficient to satisfy the planar limit of the one-loop conformality condition (1.2). It
would be interesting to study whether non-planar corrections as well as gauge coupling corrections

22Note that the egV terms (which couple the scalars to the gauge field), being SU(3) singlets, will also be singlets
in the quasi-Hopf algebra and do not enter this discussion.
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can be incorporated in the star product so that it can reproduce the full conformal constraint at
any given loop order.

The uncovering of the quasi-Hopf global symmetry of these N = 1 SYM theories can potentially
lead to several useful applications. For instance, one can imagine adapting our star product in order
to push the twistor amplitude computations in [17] to higher orders in the deformation parameters.
One could similarly look at higher-loop amplitudes in the gauge theory as was done for real-β in
[19]. One should also revisit the study of [14], where associativity was imposed by hand, from this
new perspective, and understand whether the algebra defined through the FRT relations (but now
allowed to be quasi-associative) can be consistent at higher levels despite the failure of the YBE.

Clearly, this hidden symmetry of the Leigh-Strassler theories would be expected to lead to
conserved currents and (for instance) relations between observables, which would not be evident
if one were to focus only on the discrete ∆27 symmetry. One could also ask similar questions
regarding the spectrum, and for instance revisit studies of chiral primaries in the Leigh-Strassler
theories making use of the discrete symmetries (e.g. [55, 56]) from the quantum algebra perspective.
Note that in recent work [57, 46, 58], it was established that a different Hopf algebra, the Yangian,
acts as a symmetry on the action of N = 4 SYM as well as that of the β-deformed theory [45], and
its presence indeed led to Slavnov-Taylor relations between correlation functions. (Of course, given
the twist relating our quantum symmetry to the undeformed SU(3) symmetry of N = 4 SYM, one
expects the corresponding relations in our case to be much simpler than those for the Yangian.)

In this work we have only considered gauge-theoretic deformations which preserve N = 1
superconformal invariance. There exists a much larger class of deformations, such as for instance
the γi deformations [15] which involve the full SO(6) symmetry group of the N = 4 SYM scalars
instead of just the SU(3) symmetry of the chiral superfields. Although non-supersymmetric, these
more general deformations admit very interesting limits such as the (non-unitary, but integrable)
theories introduced in [59], and it would be relevant to understand these deformations from a
quantum group perspective.

An intriguing possibility is that, if one is able to identify how the quasi-Hopf symmetry acts on
the dual gravity side, one might use the quasi-Hopf twist as a solution-generating technique in order
to construct the supergravity dual. For Hopf twists, this has been shown to work in [21], where
the supergravity dual of the w-deformation was constructed without going through the route of
TST transformations. Rather, the star product was applied to the pure spinors of the generalised
geometry description of flat space and was shown to lead to the so-called NS-NS precursor of the
dual geometry [7], i.e. the background which leads to the actual dual geometry on inserting D-
branes at the origin and taking the near-horizon limit. Of course, there are several challenges ahead
in extending this approach to general (q, h), most notably the issue of non-associativity.

We should emphasise that the dual IIB background is a smooth geometry, and not noncommu-
tative in any way. The quasi-Hopf algebra will only appear in the open-string metric, which is of
course the one seen by the scalars of the gauge theory. As is standard, the non-commutativity (and
here also non-associativity) seen by the open strings should be exchanged with the B-field and RR
fields seen by the closed strings via the Seiberg-Witten open/closed mapping [60], appropriately
generalised to non-constant fields. Indeed, perhaps a useful (but at this stage very imprecise) way
to think of our star product is as the all-orders generalisation of the non-associative star products
appearing on the world-volumes of D-branes in the presence of non-constant background fields
[47, 48, 49, 50]. We should note that the open/closed mapping has already been used to construct
the dual background to the Leigh-Strassler theories [61, 62], although (apart from the real-β case)
the construction only worked to second order in the deformation parameter because of ambiguities
related to non-associativity. One could hope that the improved understanding of non-associativity
achieved here might help to extend that construction to higher orders.

Recently, a large class of integrable deformations of the AdS5 × S5 sigma-model have been
obtained through Yang-Baxter sigma model deformations [63, 64], based on solutions of a modified
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[65] or unmodified [66] classical Yang-Baxter equation. The latter have been interpreted in terms
of Drinfeld twists in [28, 67] (see also [68] for further discussion of Drinfeld twists in this context).
It would be interesting to understand how our twists (or at least their classical counterparts) might
fit into the Yang-Baxter sigma model framework.

In studying the twist and its implications, we have been guided by the gauge theory, and in
particular the requirement of exact four-dimensional superconformal invariance, without any special
regard to integrability. But, of course, one of the main questions motivating this work has been
to understand how the integrability properties of planar N = 4 SYM change as one deforms away
from maximal supersymmetry. In particular, what makes the β-deformation so special compared
to the more general (q, h)-deformations? At some level, this has already been answered by studying
which special cases of the (q, h) R-matrix satisfy the YBE [13]. However, here we have found that
all (q, h) R-matrices satisfy a modified form of the YBE. So quasitriangularity, a defining feature
of integrability, is still present for the full Leigh-Strassler theory, though within the wider context
of quasi-Hopf algebras. Of course, our discussion has been in the quantum group limit of infinite
spectral parameter. But it turns out that the spectral parameter can be reintroduced with very little
effort: Given the factorisation Rq,h = F21(I⊗I)F−1, we can define a spectral-parameter-dependent
Rq,h(u)-matrix starting from the XXX Heisenberg R(u)-matrix as:

Rq,h(u) = F21 (uI ⊗ I+iP )F−1 = uRq,h+i(PF12P )PF−1 = uRq,h+iPF12F
−1 = uRq,h+iP. (6.1)

So the twist only affects the identity part of the R-matrix, just as in [8] for the γi twists. It follows
(and can be explicitly shown) that the qHYBE will hold with spectral parameter, with the same
coassociator:

R12(u)Φ312R13(u+ v)Φ−1
132R23(v)Φ123 = Φ321R23(v)Φ−1

231R13(u+ v)Φ213R12(u) . (6.2)

Clearly, the study of how the algebraic Bethe ansatz construction would apply in our current quasi-
Hopf setting, and whether that might lead to a re-evaluation of the integrability properties of the
Leigh-Strassler theories, is a very interesting open question.

Acknowledgments We would like to thank Robert de Mello Koch and Manuela Kulaxizi for
very useful discussions. KZ would also like to thank the organisers and participants of the 10th

Joburg Meeting on String Theory, the 5th Athens Xmas theoretical physics workshop and the 3rd

Mandelstam Theoretical Physics School and Workshop, where this work was presented, for useful
input and feedback. The research of KZ was supported by the National Research Foundation of
South Africa through grants CSUR-93735 and Incentive-103895. HD was supported through a PhD
bursary by the National Institute for Theoretical Physics.

A The imaginary-β coassociator

In this appendix we list the non-zero components of the imaginary-β (real q) coassociator. We show
only the components with the first index being 1, as the remaining components can be obtained
by cyclically shifting the indices.

Φ
1 1 1
1 1 1 = 1 (A.1)

Φ
1 1 2
1 1 2 = Φ

1 2 2
1 2 2 =

q
(√

2 sin
(
2
√

2α
)

+ 4
)
− 2
√

2 sin
(√

2α
)

+ 4 cos
(√

2α
)

4
√

2
√
q2 + 1

(A.2)

Φ
1 1 3
1 1 3 = Φ

1 3 3
1 3 3 =

2
√

2 q sin
(√

2α
)

+ 4 q cos
(√

2α
)
−
√

2 sin
(
2
√

2α
)

+ 4

4
√

2
√
q2 + 1

(A.3)

Φ
1 1 2
1 2 1 = Φ

1 3 1
3 1 1 =

q2 cos
(
2
√

2α
)
− 4
√

2 q sin
(√

2α
)

+ q2 − 2

4
(
q2 + 1

) (A.4)
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Φ
1 1 3
1 3 1 = Φ

1 2 1
2 1 1 =

4
√

2 q sin
(√

2α
)

+ cos
(
2
√

2α
)
− 2 q2 + 1

4
(
q2 + 1

) (A.5)

Φ
1 2 1
1 1 2 = Φ

1 2 2
2 1 2 =

2
√

2 q sin
(√

2α
)
− 4 q cos

(√
2α
)

+
√

2 sin
(
2
√

2α
)

+ 4

4
√

2
√
q2 + 1

(A.6)

Φ
1 2 1
1 2 1 = Φ

1 3 1
1 3 1 =

4 q2 sin
(√

2α
)

+ 2
√

2
(
q2 + 1

)
cos

(√
2α
)

+
√

2 q cos
(
2
√

2α
)
− 4 sin

(√
2α
)

+ 3
√

2 q

4
√

2
(
q2 + 1

) (A.7)

Φ
1 2 3
1 2 3 = Φ

1 3 2
1 3 2 =

√
3
(
q2 − 1

)
sin
(
2
√

3α
)

+
(
q2 + 1

)
cos

(
2
√

3α
)

+ 2
(
q2 + 3 q + 1

)
6
(
q2 + 1

) (A.8)

Φ
1 2 3
1 3 2 = Φ

1 3 2
3 1 2 =

−2
√

3 q sin
(
2
√

3α
)

+ 3 q2 − 3

6
(
q2 + 1

) (A.9)

Φ
1 3 1
1 1 3 = Φ

1 3 3
3 1 3 = −

q
(√

2 sin
(
2
√

2α
)
− 4

)
+ 2
√

2 sin
(√

2α
)

+ 4 cos
(√

2α
)

4
√

2
√
q2 + 1

(A.10)

Φ
1 3 2
1 2 3 = Φ

1 2 3
2 1 3 =

2
√

3 q sin
(
2
√

3α
)
− 3 q2 + 3

6
(
q2 + 1

) (A.11)

Φ
1 1 2
2 1 1 = Φ

1 1 3
3 1 1 =

4 q2 sin
(√

2α
)
− 2
√

2
(
q2 + 1

)
cos

(√
2α
)

+
√

2 q cos
(
2
√

2α
)
− 4 sin

(√
2α
)

+ 3
√

2 q

4
√

2
(
q2 + 1

) (A.12)

Φ
1 2 2
2 2 1 = Φ

1 3 3
3 3 1 = −

sin2
(√

2α
)

2
(A.13)

Φ
1 3 2
3 2 1 = Φ

1 2 3
2 3 1 =

2 sin2
(√

3α
)

3
(A.14)

Φ
1 3 2
2 1 3 = Φ

1 2 3
3 1 2 =

−
√

3
(
q2 − 1

)
sin
(
2
√

3α
)

+
(
q2 + 1

)
cos

(
2
√

3α
)

+ 2
(
q2 − 3 q + 1

)
6
(
q2 + 1

) (A.15)

Here α = arccos((1 + q)/(
√

2
√

1 + q2)) as defined in (3.5)

B The left and right cubic matrices

In this appendix we record the 27 × 27 matrices i(∆ ⊗ id)(f) and i(id ⊗∆)(f) which need to be
exponentiated to obtain (∆⊗ id)(F ), (id⊗∆)(F ) and their inverses. Here f stands for the general
(q, h) classical twist denoted fq,h in (3.30). It is computationally simpler to redefine αhr and αhi
as αhr = 1

2(α+
h + α−h ) and αhi = 1

2i(α
+
h − α

−
h ). Then we can write

i(∆⊗ id)(f)= i
(
αrβ (∆⊗ id)(f)rβ +αiβ (∆⊗ id)(f)iβ +α+

h (∆⊗ id)(f)+
h +α−h (∆⊗ id)(f)−h

)
, (B.1)

where23

i(∆⊗ id)(f)rβ = diag(0, 2i,−2i,−i, i, 0, i, 0,−i,−i, i, 0,−2i, 0, 2i, 0,−i, i, i, 0,−i, 0,−i, i, 2i,−2i, 0) ,

i(∆⊗ id)(f)iβ :E2
4, E

2
10, E

5
13, E

6
8, E

7
3, E

8
16, E

11
13, E

12
20, E

15
17, E

15
23, E

16
12, E

18
26, E

19
3 , E

20
22, E

22
6 , E

24
26, E

25
9 , E

25
21 ,

i(∆⊗ id)(f)+
h :E3

5, E
3
11, E

4
9, E

6
14, E

8
1, E

9
17, E

10
21, E

12
14, E

13
18, E

13
24, E

16
27, E

17
10, E

20
1 , E

21
23, E

22
27, E

23
4 , E

26
7 , E

26
19 ,

i(∆⊗ id)(f)−h :E1
6, E

1
12, E

4
15, E

5
7, E

7
18, E

9
2, E

10
15, E

11
19, E

14
16, E

14
22, E

17
25, E

18
11, E

19
24, E

21
2 , E

23
25, E

24
5 , E

27
8 , E

27
20 .

For the non-diagonal matrices we have denoted by Eab the components of each matrix which are
equal to +1. Then antihermiticity fixes the remaining components to be −1, i.e.

[i(∆⊗ id)(f)iβ]ba = −[i(∆⊗ id)(f)iβ]ab , [i(∆⊗ id)(f)+
h ]ba = −[i(∆⊗ id)(f)−h ]ab , (B.2)

where we note that the h+/h− matrices are interchanged since (α+
h )∗ = α−h . Similarly we can write

i(id⊗∆)(f)= i
(
αrβ (id⊗∆)(f)rβ +αiβ (id⊗∆)(f)iβ +α+

h (id⊗∆)(f)+
h +α−h (id⊗∆)(f)−h

)
, (B.3)

23Equivalently, one could present our matrices in 6-index tensor notation as in appendix A, however since here we
are interested in matrix exponentiation we prefer to present them as 27× 27 matrices.
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with

i(id⊗∆)(f)rβ = diag(0, i,−i, i, 2i, 0,−i, 0,−2i,−2i,−i, 0,−i, 0, i, 0, i, 2i, 2i, 0, i, 0,−2i,−i, i,−i, 0) ,

i(id⊗∆)(f)iβ : E2
10, E

4
10, E

5
11, E

5
13, E

6
12, E

8
16, E

12
20, E

15
23, E

16
22, E

17
23, E

18
24, E

18
26, E

19
3 , E

19
7 , E

20
8 , E

21
9 , E

22
6 , E

25
9 ,

i(id⊗∆)(f)+
h : E3

11, E
6
14, E

7
13, E

8
14, E

9
15, E

9
17, E

10
21, E

10
25, E

11
26, E

12
27, E

13
24, E

16
27, E

20
1 , E

22
1 , E

23
2 , E

23
4 , E

24
3 , E

26
7 ,

i(id⊗∆)(f)−h : E1
12, E

1
16, E

2
17, E

3
18, E

4
15, E

7
18, E

11
19, E

13
19, E

14
20, E

14
22, E

15
21, E

17
25, E

21
2 , E

24
5 , E

25
4 , E

26
5 , E

27
6 , E

27
8 ,

where again the components denoted by Eab = +1 and the remaining nonzero components can be
found using the analogue of (B.2).

Direct exponentiation of these matrices in Mathematica has proved challenging, so, as explained
in section 4.2, we have first constructed their eigenvectors in order to use the relation exp(M) =
V † exp(D)V , with D being the diagonalised version of the matrices. The details can be found in
the Mathematica worksheet made available with this preprint.

C The imaginary-β cubic product tensors

In this appendix we record the explicit expressions of the combinations of the twists that appear
in the cubic star products.

As in appendix A, we fix the Z3 symmetry by choosing the first index of [F3,L] and the last
index of [F3,R] to be 1. The two other equal components are obtained by shifting all indices up or
down. Otherwise, these are the only nonzero components. The parameter α is as in (3.5).

[F3,L]1 1 1
1 1 1 = [F3,R]1 1 1

1 1 1 = 1 (C.1)

[F3,L]1 1 2
1 1 2 = [F3,L]1 1 3

1 1 3 = [F3,R]3 1 1
3 1 1 = [F3,R]2 1 1

2 1 1 = cos
(√

2α
)

(C.2)

[F3,L]1 1 2
1 2 1 = −[F3,L]1 1 3

3 1 1 = [F3,R]3 1 1
1 3 1 = −[F3,R]1 3 3

3 3 1 = −
q sin

(√
2α
)√

q2 + 1
(C.3)

[F3,L]1 1 3
1 3 1 = −[F3,L]1 1 2

2 1 1 = −[F3,R]1 2 2
2 2 1 = [F3,R]2 1 1

1 2 1 =
sin
(√

2α
)√

q2 + 1
(C.4)

[F3,L]1 2 1
1 1 2 = −[F3,L]1 2 2

2 2 1 = −[F3,L]1 3 1
1 1 3 = [F3,L]1 3 3

3 3 1

= −[F3,R]1 1 2
2 1 1 = −[F3,R]1 2 1

2 1 1 = [F3,R]1 1 3
3 1 1 = [F3,R]1 3 1

3 1 1 =
sin
(√

2α
)

√
2

(C.5)

[F3,L]1 2 1
1 2 1 = [F3,L]1 2 2

1 2 2 = [F3,R]3 3 1
3 3 1 = [F3,R]1 3 1

1 3 1 =
1 + q cos

(√
2α
)

√
2
√
q2 + 1

(C.6)

[F3,L]1 3 1
1 3 1 = [F3,L]1 3 3

1 3 3 = [F3,R]1 2 1
1 2 1 = [F3,R]2 2 1

2 2 1 =
cos
(√

2α
)

+ q
√

2
√
q2 + 1

(C.7)

[F3,L]1 2 1
2 1 1 = [F3,L]1 2 2

2 1 2 = [F3,R]1 1 2
1 2 1 = [F3,R]2 1 2

2 2 1 =
cos
(√

2α
)
− q

√
2
√
q2 + 1

(C.8)

[F3,L]1 3 1
3 1 1 = [F3,L]1 3 3

3 1 3 = [F3,R]1 1 3
1 3 1 = [F3,R]3 1 3

3 3 1 =
−1 + q cos

(√
2α
)

√
2
√
q2 + 1

(C.9)

[F3,L]1 2 3
1 2 3 = [F3,L]1 3 2

1 3 2 = [F3,R]3 2 1
3 2 1 = [F3,R]2 3 1

2 3 1 =
(q + 1)

(
1 + 2 cos

(√
3α
))

3
√

2
√
q2 + 1

(C.10)

[F3,L]1 3 2
3 1 2 = −[F3,L]1 2 3

2 1 3 = [F3,R]2 1 3
2 3 1 = −[F3,R]3 1 2

3 2 1 =
(q − 1)

(
1 + 2 cos

(√
3α
))

3
√

2
√
q2 + 1

(C.11)
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[F3,L]1 2 3
1 3 2 = −[F3,L]1 3 2

1 2 3 = −[F3,R]3 2 1
2 3 1 = [F3,R]2 3 1

3 2 1 =

1− q + (q − 1) cos
(√

3α
)
−
√

3 (1 + q) sin
(√

3α
)

3
√

2
√
q2 + 1

(C.12)

[F3,L]1 2 3
3 2 1 = −[F3,L]1 3 2

2 3 1 = −[F3,R]1 3 2
2 3 1 = [F3,R]1 2 3

3 2 1 =

1− q + (q − 1) cos
(√

3α
)

+
√

3 (1 + q) sin
(√

3α
)

3
√

2
√
q2 + 1

(C.13)

[F3,L]1 2 3
2 3 1 = [F3,L]1 3 2

3 2 1 = [F3,R]2 1 3
3 2 1 = [F3,R]3 1 2

2 3 1 =

1 + q − (q + 1) cos
(√

3α
)

+
√

3 (q − 1) sin
(√

3α
)

3
√

2
√
q2 + 1

(C.14)

[F3,L]1 3 2
2 1 3 = [F3,L]1 2 3

3 1 2 = [F3,R]1 2 3
2 3 1 = [F3,R]1 3 2

3 2 1 =

1 + q − (q + 1) cos
(√

3α
)
−
√

3 (q − 1) sin
(√

3α
)

3
√

2
√
q2 + 1

(C.15)

D More on the pentagon identity

In this appendix we provide some additional details on the pentagon identity (2.17) for the 3-cocycle
Φ and show how it is guaranteed by the twisting procedure. Let us start by rewriting (2.17) as

(id⊗∆F ⊗ id) Φ = (1⊗ Φ−1) · [(id⊗ id⊗∆F ) Φ] · [(∆F ⊗ id⊗ id) Φ] ·
(
Φ−1 ⊗ 1

)
, (D.1)

which we note involves the twisted coproduct. By construction the co-associator is given by

Φ = F23 · [(id⊗∆) (F )] ·
[
(∆⊗ id) (F−1)

]
· F−1

12 , (D.2)

an expression involving the untwisted coproduct. We will use Sweedler notation to write the co-
associator as a sum of tensor products, Φ =

∑
φ(1) ⊗ φ(2) ⊗ φ(3). We compute:

(id⊗∆F ⊗ id) Φ =
∑

φ(1) ⊗∆F (φ(2))⊗ φ(3)

=
∑

φ(1) ⊗ F∆(φ(2))F−1 ⊗ φ(3)

=
∑∑

φ(1) ⊗ F
(
φ(2)(1) ⊗ φ(2)(2)

)
F−1 ⊗ φ(3)

=(id⊗ F ⊗ id)
[∑

φ(1) ⊗∆(φ(2))⊗ φ(3)
]
·
(
id⊗ F−1 ⊗ id

)
=F23

[∑
φ(1) ⊗∆(φ(2))⊗ φ(3)

]
F−1

23

=F23

[
(id⊗∆⊗ id) .

∑
φ(1) ⊗ φ(2) ⊗ φ(3)

]
F−1

23

=F23 · [(id⊗∆⊗ id) Φ] · F−1
23 . (D.3)

By the exact same argument one can show that

(∆F ⊗ id⊗ id) Φ = F12 · [(∆⊗ id⊗ id) Φ] · F−1
12 , (D.4)

(id⊗ id⊗∆F ) Φ = F34 · [(id⊗ id⊗∆) Φ] · F−1
34 . (D.5)
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Let us now express the twist in exponential form:

Fqh = exp(ifqh) . (D.6)

We also define

Fqh12 = Fqh ⊗ 1 = exp(ifqh ⊗ 1) = exp(ifqh12) , (D.7)

Fqh23 = 1⊗ Fqh = exp(i1⊗ fqh) = exp(ifqh23) . (D.8)

where the fij ∈ A⊗n are defined as fij = 1⊗ · · · ⊗ fi⊗ · · · ⊗ fj ⊗ · · · ⊗ 1. Hence the f ’s are a tensor
chain with the identity element at every site but the i-th and j-th positions. Suppressing the (q, h)
label and absorbing (for clarity) the imaginary i in the definition of f , the action of the coproduct
on the twist becomes

(∆⊗ id)F = exp (f13 + f23) and (id⊗∆)F = exp(f13 + f12) , (D.9)

so that the co-associator (D.2) and its inverse are given by

Φ = ef23 · e(f13+f12) · e−(f13+f23) · e−f12 and Φ−1 = ef12 · e(f13+f23) · e−(f13+f12) · e−f23 , (D.10)

from which we obtain

Φ−1⊗1 = ef12 ·e(f13+f23) ·e−(f12+f13) ·e−f23 and 1⊗Φ−1 = ef23 ·e(f24+f34) ·e−(f23+f24) ·e−f34 . (D.11)

By simply expanding (D.4) and (D.5) we obtain

(id⊗ id⊗∆F ) Φ = F34 · [(id⊗ id⊗∆) Φ] · F−1
34

=ef34 ·
[
e(f23+f24) · e(f12+f13+f14) · e−(f13+f14+f23+f24) · e−f12

]
· e−f34 , (D.12)

(∆F ⊗ id⊗ id) Φ = F12 · [(∆⊗ id⊗ id) Φ] · F−1
12

=ef12 ·
[
ef34 · e(f13+f23+f14+f24) · e−(f14+f24+f34) · e−(f13+f23)

]
· e−f12 , (D.13)

where in the second expression we note that we first had to relabel spaces 2,3 to 3,4 to leave room
for the action of ∆ on space 1. After a few cancellations (noting that of course e−f12 commutes
with e−f34 etc.) the right-hand side of (D.1) reduces to(

1⊗ Φ−1
)
· [(id⊗ id⊗∆F ) Φ] · [(∆F ⊗ id⊗ id) Φ] ·

(
Φ−1 ⊗ 1

)
= ef23 · e(f24+f34) · e(f12+f13+f14) · e−(f14+f24+f34) · e−(f12+f13) · e−f23 ,

(D.14)

which equals the outcome of expanding the left hand side. Of course, the fact that the pentagon
identity follows from the twisting procedure is known from [23], but we find explicit derivations
such as the one above useful in acquiring confidence with computations in the quasi-Hopf setting,
which can at first appear unfamiliar.

E The G-tensor

In this appendix we provide some details on the construction of the G-tensor which arises in the
mixed star-product relations of section 5.6.

We find Gi jk l by requiring (5.56), which via a suitable ansatz can easily be solved for G̃. Taking
the second inverse leads to the tensor G. It turns out to be simplest to express G in terms of the
coefficients a, . . . , j whose explicit values are given in (3.8)-(3.16). As before, we will only exhibit
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the nonzero components where the first index is 1, as cyclically shifting all indices does not affect
their values. We have:

G1 1
1 1 =

a (1− hh̄− hh̄qq̄ + q2q̄2)− c (qq̄ + hh̄− h2h̄2 − q2q̄2) + d (1− qq̄ + h2h̄2 − hh̄qq̄)
2
(
1− hh̄− qq̄ + h2h̄2 − hh̄qq̄ + q2q̄2

) , (E.1)

G1 2
2 1 =

c (1− hh̄− hh̄qq̄ + q2q̄2)− d (qq̄ + hh̄− h2h̄2 − q2q̄2) + a (1− qq̄ + h2h̄2 − hh̄qq̄)
2
(
1− hh̄− qq̄ + h2h̄2 − hh̄qq̄ + q2q̄2

) , (E.2)

G1 3
3 1 =

d (1− hh̄− hh̄qq̄ + q2q̄2)− a (qq̄ + hh̄− h2h̄2 − q2q̄2) + c (1 + h2h̄2 − hh̄qq̄ − qq̄)
2
(
1− hh̄− qq̄ + h2h̄2 − hh̄qq̄ + q2q̄2

) , (E.3)

G1 2
1 2 =

(hh̄+ qq̄ + 1)
(
b (hh̄q̄ + q2) + f

(
h̄2 − hqq̄

)
+ j (h2q̄2 + h̄q)

)
2(h3q̄3 + 3hh̄qq̄ − h̄3 + q3)

, (E.4)

G1 3
2 2 =

(hh̄+ qq̄ + 1)
(
b
(
h̄2 − hqq̄

)
+ f (h2q̄2 + h̄q) + j (hh̄q̄ + q2)

)
2
(
h3q̄3 + 3hh̄qq̄ − h̄3 + q3

) , (E.5)

G1 1
3 2 =

(hh̄+ qq̄ + 1)
(
b (h̄q + h2q̄2) + f (q2 + hh̄q̄) + j (h̄2 − hqq̄)

)
2
(
h3q̄3 + 3hh̄qq̄ − h̄3 + q3

) , (E.6)

G1 3
1 3 = −

(hh̄+ qq̄ + 1)
(
e (hq̄ + h̄2q2) + g

(
h2 − h̄qq̄

)
+ i (hh̄q + q̄2)

)
2
(
h3 − 3hh̄qq̄ − h̄3q3 − q̄3

) , (E.7)

G1 1
2 3 = −

(hh̄+ qq̄ + 1)
(
e (hh̄q + q̄2) + g (hq̄ + h̄2q2) + i (h2 − h̄qq̄)

)
2
(
h3 − 3hh̄qq̄ − h̄3q3 − q̄3

) (E.8)

G1 2
3 3 = −

(hh̄+ qq̄ + 1)
(
e
(
h2 − h̄qq̄

)
+ g (hh̄q + q̄2) + i (hq̄ + h̄2q2)

)
2
(
h3 − 3hh̄qq̄ − h̄3q3 − q̄3

) . (E.9)

For star product computations one also requires the second inverse of G, which as usual is defined
through G̃l in kG

j k
l m = δimδ

j
n.

It is certainly possible that the above expressions for G can be further optimised, or that Gi jk l
can be related to F i jk l in a more direct way. As the above expressions are sufficient to demonstrate
the invariance of the Kähler part of the action under the (q, h)-deformation, we leave further study
of the G tensor for future work.
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