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PREFACE 

 

A short background and introduction 

Weather and the study thereof (Meteorology) have been a part of the everyday human life for a very 

long time, and as is the case with many different scientific fields that intrigue us, we constantly strive 

to advance in what is already known by improving the technology or by developing a new theory. In 

Meteorology we continuously strive to refine forecasts of atmospheric behaviour. To accomplish the 

latter, we develop enhanced numerical models to create these forecasts. 

 

In any situation where you want to improve something, you need to test the outcome of a new 

“experiment”. That is the case with this study on Tropical Temperate Troughs (TTTs): to test the ability 

of a state-of-the-art seasonal forecast model to predict these weather phenomena on a seasonal 

timescale. This study therefore forms part of the development of the field of meteorology, because it 

focusses on the predictability of a specific weather phenomenon, namely TTT events over southern 

Africa. This study is also a novelty, as it is the first time that the predictability of these tropical-

extratropical interactions is investigated on a seasonal timescale. 

 

In this study these TTT events are investigated using a state-of-the-art ensemble prediction system, the 

Global Seasonal Forecasting System version 5 (GloSea5) of the UK Met Office. The UK Met Office 

bought their first computer in 1959, which was able to do 30000 calculations per second (UK Met 

Office, 2012). Since then the weather models of the UK Met Office have improved significantly (as has 

any other weather model of other meteorological institutions). Nowadays, they use various ensemble 

predicting systems to produce extremely detailed short-range forecasts, as well as complicated seasonal 

and climatological (long-range) forecasts. 

 

More on TTT events and this study 

A TTT is a type of weather system that links the tropics and the extra-tropics across southern Africa. 

TTT events have been studied statistically quite comprehensively, in particular with reference to the 

frequency of occurrence during the austral summer season and its contribution to rainfall. However, 

whether these rain-producing weather systems can be captured and predicted has not received much 

attention. This study focuses on the predictability of the characteristics of TTTs across southern Africa 

on a seasonal timescale, by using the GloSea5 seasonal forecasting model developed by the UK Met 

Office. Gridded hindcast data for the months of November, December, January and February from 

1996/1997 to 2009/2010 are compared to observed data. The different ensemble members of the 

GloSea5 model (with lead-times of 1 week up to 2 months) are first compared separately to the observed 
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data, after which the model average, with a 0-month, a 1-month and a 2-month lead-time, is calculated 

and also compared to the observed dataset.  

 

TTT events have distinctive characteristics during the formation and the development phases. Most 

prominent of these characteristics are the cloud bands associated with these weather systems, which 

have in most cases a north-west to south-east orientation and move from west to east across southern 

Africa. To identify the TTTs, daily outgoing long-wave radiation values are processed by a 

Meteorological Robot (MetBot), with a strict criterion to identify the cloud bands that characterise these 

weather systems. The MetBot’s algorithm produces the information needed to further investigate the 

different characteristics of TTTs, such as the frequency, the location and the intensity thereof. Analysis 

of the MetBot output includes calculating the Root Mean Square Error, the percentage error and in some 

cases the percentage deviation of the different characteristics, namely the number of cloud bands, as 

well as the anchor point, the centroid position, the area, the tilt and the minimum and maximum OLR 

values of the cloud bands. 

 

The outcome 

This investigation revealed that the characteristics of TTT events can to some extent be predicted on a 

seasonal timescale for the summer rainfall season of southern Africa. The model used in this study fared 

particularly well with a 1-month lead-time forecast (compared to a 0-month and a 2-month lead-time 

forecast). The intensity and the location of the cloud bands associated with TTT events are forecast with 

a smaller percentage error than the frequency of these systems, as the frequency of TTTs tend to be 

significantly under-predicted by the model. For some predicted quantities, such as the area of the cloud 

bands, a bias-adjustment is necessary which produces significantly better results with smaller 

percentage errors. In the conclusions, suggestions are made on possible future studies, and how to 

develop this study further to create seasonal forecasts with higher skill, with special regard to TTT 

events. 

 

Part of the research done in this study was already presented at the annual conference of the South 

African Society for Atmospheric Sciences (SASAS) in 2016. One of the characteristics of TTT events, 

namely the frequency of TTT events during the summer rainfall season, was discussed during a 

presentation. This part of the research was also included in the Conference Proceedings, which can be 

found via the website of SASAS (www.sasas.org). 

 

The layout 

This thesis is compiled as follows: First an introductory chapter will explain what a TTT event is, what 

the characteristics of such an event are and why it is important to gain a better understanding of these 

events. Information will also be given on previous studies on TTT events. The reader will also find in 
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this chapter a motivation as to why the GloSea5 model was chosen and the reasoning behind choosing 

the specific geographical domain. A chapter on the methodology of the study follows thereafter, in 

which the reader will be informed about the procedure that is followed to identify a TTT event, which 

variables are focused on in this study and why these variables are chosen. A brief description of the 

software used in this study is given, as well as a description of the data and the observations. Chapter 

three to six show the results obtained in this study. It focuses on the modelled TTT events and how 

these events correlate with the observed TTT events. Each of these result-chapters considers the 

different objectives and subobjectives separately. Hereafter follows an in-depth discussion of the results 

in chapter seven and lastly, chapter eight will give concluding remarks and what future work may entail. 

After the final chapter on this study, the references used during this study can be found, as well as an 

appendix with some of the figures of each ensemble member not included within the different results 

chapters. 

 

The author of this dissertation sincerely hopes that the reader finds this study on TTT events intriguing 

and enjoyable.  
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CHAPTER 1: Introduction 
 

 

 Tropical Temperate Troughs 

 

In various parts of the world, there exist a significant type of weather system that creates a link 

between the tropics and the extratropics (Harangoza & Harrison, 1983; Streten, 1973). This 

type of weather system is associated with tropical-extratropical interactions, and can be referred 

to as tropical plumes (Hart et al, 2010; Knippertz, 2007). In southern Africa, however these 

systems are known as Tropical Temperate Troughs (TTTs) (Harrison, 1984; Hart et al, 2010) 

and hereafter these tropical-extratropical interactions will be referred to as such. TTTs 

represent an important mechanism for the poleward transportation of energy (heat), moisture 

and momentum, and consist of an area of enhanced convergence that can normally be identified 

by cloud bands (Harrison, 1984; Hart et al, 2010; Macron et al, 2014; Ratna et al, 2013; Todd 

and Washington, 1999; Todd et al, 2004; Vigaud et al, 2012; Washington and Todd, 1999). 

These cloud bands can be recognized on satellite imagery as regions of elongated bands of 

clouds, stretching from the tropics south-eastward (north-eastward) towards the South Pole 

(North Pole) (Hart et al, 2010; Harangozo and Harrison, 1983; Macron et al, 2014) (Fig. 1.1). 

 

 

Figure 1.1: A satellite image showing a typical TTT cloud band across southern Africa. 

This image was taken at 12:00 UTC 19 January 2010 (Meteosat SEVIRI RGB composite 

3,2,1; Courtesy: NERC Satellite Receiving Station, Dundee University, Scotland, 

http://www.sat.dundee.ac.uk/) 
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TTTs usually last several days and can be tracked on satellite imagery as the associated cloud 

bands move eastwards. Due to their longevity, these systems usually produce large amounts of 

rainfall and can contribute greatly towards a season’s accumulative rainfall. These systems are 

one of the major contributors to summer rainfall over southern Africa (Harrison, 1984). In the 

summer rainfall region even up to 39% of the mean annual rainfall could be attributed to TTT 

events (Crimp et al, 1997).  Although the physical and dynamic characteristics of these systems 

are not fully understood at the synoptic scale (Hart et al, 2010; Ratna et al, 2013; Vigaud et al, 

2012), a substantial amount of work has been done describing these significant rain-producing 

systems. 

 

 General structure of a TTT 

TTTs are characterised by a cloud band stretching from the tropics to the mid-latitudes 

(Harrison, 1984), indicating an area of enhanced convection. On either side of the cloud band 

there are areas of suppressed convection (Macron et al, 2014), forming a ridge-trough-ridge-

like synoptic pattern (Ratna et al, 2013), that can contribute to focus the inflow of moisture into 

the TTT (e.g. Lindesay and Jury, 1991). These ridge-trough-ridge patterns can either form over 

a landmass or over the ocean. Normally a TTT forming over the ocean only exhibits mid- to 

upper-level clouds through the subtropics, but when a TTT forms over a landmass, for example 

southern Africa, deep convection and heavy rainfall can be supported by continental heating 

(Hart et al, 2010). Another difference is that when a TTT forms over a landmass, it usually 

produces heavy rainfall along the full length of the TTT, whereas it is not necessarily the case 

for a TTT forming over the ocean (Hart et al, 2010). 

 

Adiabatic temperature advection, positive vorticity advection and land-based convection play 

an important role in producing uplift in TTTs (Hart et al, 2010). Adiabatic temperature 

advection is usually stronger in the lower troposphere, while positive vorticity advection 

primarily occurs in the upper-tropospheric troughs in a quasi-geostrophic context (Hart et al, 

2010). It was also found that local land-based convection is especially important in the 

subtropical section of the cloud band (Hart et al, 2010). 

 

 Location of TTTs 

TTTs can occur in the Northern and the Southern Hemisphere, as they are occurrences where 

tropical moist air stretches either northwards or southwards respectively. These types of 

weather phenomena have been studied for both hemispheres; one such example was done on 
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the Northern Hemisphere Atlantic Ocean (Knippertz, 2005). A few factors were found that can 

possibly explain why the three areas (the east and central Pacific Ocean and the northern 

Atlantic Ocean) are preferred locations for tropical plume development, namely: wave 

disturbances are generated by the cool-season semi-permanent baroclinic zones along the 

continents to the northwest, which eventually penetrate into the tropics at the eastern ends of 

the basins; and convergent forcing situations can sometimes be produced by upper-level ridges, 

forced by the maxima of tropical convection over the western Pacific, as well as the Amazon 

basin (Knippertz, 2005). An important difference was found between tropical plumes 

developing over the Pacific Ocean basin and the Atlantic Ocean basin: a deeper layer of tropical 

moisture over the African continent have an effect on the precipitation under the extratropical 

end of the tropical plume (Knippertz et al, 2003; Knippertz, 2005). It was also found that 

sometimes tropical plumes do not show the typical slow evolution, east-west orientation and 

predominant cloud generation (Knippertz, 2005). 

 

In the Southern Hemisphere, TTT events can form in three possible locations of which the 

southern Africa-southwest Indian Ocean region is one of the preferred regions (Fauchereau et 

al, 2009; Pohl et al, 2009; Ratna et al, 2013; Vigaud et al, 2012).  So far most previous studies 

that focused on TTTs over the southern African region were based on statistical analysis 

(Fauchereau et al, 2009; Harrison, 1984; Todd and Washington, 1999; Todd et al, 2004) and 

therefore did not capture any connections between the local rain-producing systems and large-

scale tropical-temperate atmospheric interactions over southern Africa (Vigaud et al, 2012). 

Later studies focused more on a simulation approach towards TTT prediction (Fauchereau et 

al, 2009; Vigaud et al, 2012). 

 

Three preferred regimes where TTTs tend to develop across southern Africa were discovered 

(Fauchereau et al, 2009), which was confirmed by a later study (Vigaud et al, 2012).  These 

three regimes are bands of maximum convection that are rooted over the north-eastern parts of 

South Africa, Mozambique and Madagascar, stretching in a NW/SE direction and ends at 

longitudes between 40°E and 65°E (Fauchereau et al, 2009). A precursory signal of simulated 

zonal stretching deformation at about 5 days prior to a TTT event at the 200hPa level was also 

discovered (Vigaud et al, 2012). This suggests that the mid-latitude westerly waves play an 

important role and especially their phasing during a TTT event (Vigaud et al, 2012). The area 

where TTTs develop most often lies in the southwest Indian Ocean and this is also where these 
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weather phenomena develop the strongest (Cook, 2000; Hart et al, 2010; Todd and 

Washington, 1999). 

 

 Development of TTT events over southern Africa 

Several atmospheric circulation features of the southern African summer season play an 

important role in TTT formation and development over the region (Hart et al, 2010). Upper 

westerly waves are important for TTT formation over southern Africa (Harangoza and 

Harrison, 1983) and play a role in the southward moisture transport (Todd et al, 2004). Other 

atmospheric features which play a role in the development of TTT events include the Angola 

Low, a surface high over southern Mozambique and the south-western Indian Ocean, 

continental heat lows over the central Kalahari Desert, the South Atlantic High and the South 

Indian High (Hart et al, 2010; Macron et al, 2014) (Fig. 1.2).  

 

 

Figure 1.2: A schematic illustration of the various atmospheric circulation features playing a role 

during the development of TTTs across southern Africa. The red arrow indicates the enhanced 

pressure gradient force between the weak surface high over southern Mozambique and the low 

pressure above Angola (the Angola Low), and the blue arrow indicates the influx of tropical 

moist air. 

 

When a weak surface high-pressure develops over southern Mozambique and the adjacent 

ocean, it enhances the pressure gradient across Botswana and Zimbabwe towards the semi-

permanent Angola Low (Hart et al, 2010). A greater pressure gradient leads to stronger low-
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level north-easterly flow across the central parts, bringing tropical air north of Madagascar 

towards central southern Africa (Hart et al, 2010; Reason et al, 2006; Todd and Washington, 

1999).  When a continental heat low forms over the Kalahari Desert, a weak cyclonic 

circulation is induced, diverting the low-level north-easterlies further south (Hart et al, 2010).  

 

The scenario for TTT development is further established by the ridging of the South Atlantic 

High-pressure system to the east of South Africa, which induces onshore flow and therefore 

also possible coastal showers (Hart et al, 2010; Ratna et al, 2013). When the South Indian High 

extends north-westward and combines with a surface high over Mozambique and the adjacent 

ocean, an easterly wave is established over Mozambique and eastern South Africa (Hart et al, 

2010; Ratna et al, 2013). According to Manhique et al (2011) the strengthening of the South 

Indian High and the shifting thereof to the northwest are important mechanisms for generating 

TTT events. 

 

The combination of these atmospheric circulation features may then lead to the development 

of a TTT across southern Africa (Hart et al, 2010), which propagates eastward towards 

Mozambique and Madagascar (Fauchereau et al, 2009; Ratna et al, 2013). This propagation 

causes moisture to be transported off the continent along the cloud band, rising from around 

800hPa over the continent to the mid-atmosphere (700-650hPa) in the mid-latitudes, during the 

mature stages of the TTT (D’Aberton and Tyson, 1996; Ratna et al, 2013; Todd et al, 2004). A 

TTT developing under these atmospheric circumstances will typically extend from the Angola 

Low, south-eastwards to an area in the southern Indian Ocean, just east of the ridging South 

Atlantic High (Hart et al, 2010). 

 

 Effects of TTT events on southern Africa 

Due to the geographic location of southern Africa, the weather and climate are mostly affected 

by tropical and mid-latitudinal weather systems and dynamics (Vigaud et al, 2012). Therefore, 

rainfall normally occurs during late spring and the summer months (November to February), 

except for the south-western coast of South Africa to the Namib Desert where rainfall occurs 

during winter. Part of the south coast and southeast coast of South Africa fall within both 

rainfall regions and receive therefore rain all-year-round. Winter rainfall is driven by the 

passing of frontal systems, while summer rainfall is more of tropical origin. Especially during 

the summer months, frontal systems can link up with a tropical system, which in general leads 

to a TTT event. 
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Subsequent analysis suggested that the mean frequency of the cloud bands moving across South 

Africa during the summer months is once every seven days, due to the occurrence of TTT 

events and the passing of a surface cold front (Harrison, 1984). TTT events have a great 

influence on rainfall over specific regions, but across southern Africa it specifically plays a 

significant role during the summer rainfall season (November to February) (Harrison, 1984; 

Hart et al, 2010; Ratna et al, 2013; Vigaud et al, 2012).  Normally heavy rainfall is associated 

with TTT events (Harrison, 1984; Macron et al, 2014; Ratna et al, 2013) and it can therefore 

cause major flooding, especially in cases where a TTT and a cut-off low occur at the same 

time. Such was the case during the extreme rainfall event of 16-22 April 2006 across the 

southern Namib Desert when an anomalously northward located cut-off low occurred in 

combination with an anomalously westward located TTT (Muller et al, 2007). During this 

period, Lüderitz (a coastal town in Namibia) received a record-breaking 101.8mm of rain, 

compared to the long-term annual average rainfall of only 16.7mm (Muller et al, 2007).  

 

In addition, it is also possible for phenomena such as mesoscale convective systems to be 

embedded within the cloud bands associated with TTTs (Hart et al, 2010; Blamey and Reason, 

2009).  A study of the 12-14 February 1996 rainfall event found that during the first 24-hours 

of rainfall a mesoscale convective system developed, bringing nocturnal convective activity 

which died out during the daytime (De Coning et al, 1998). It appeared that this mesoscale 

convective system was part of a larger scale subtropical trough, which moved slowly eastward 

(De Coning et al, 1998).  

 

Recent studies suggest that there is a relation between the rainfall inter-annual variability over 

southern Africa and the frequency, position and intensity of weather events like TTTs (Ratna 

et al, 2013). For the wet spell of 1 - 7 January 1998, two consecutive TTTs contributed more 

than 40% of the summer rainfall of South Africa for that specific season (Hart et al, 2010; 

Ratna et al, 2013).  

 

 Relation between TTT events and planetary (Rossby) waves 

Planetary or Rossby waves play an important role in large-scale meteorological processes 

(Holton & Hakim, 2013). It can in general be defined as a potential vorticity-conserving motion 

that exists because of the gradient of potential vorticity in a baroclinic atmosphere (Holton & 

Hakim, 2013). 
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TTT events are closely related to mid-latitude perturbations (Rossby waves), for instance the 

Rossby waves and the eastward propagation of the TTT events are in phase (Hart et al, 2010; 

Macron et al, 2014; Ratna et al, 2013; Vigaud et al, 2012).  It was found that 41% of mid-

latitude perturbations can be associated with a TTT (Macron et al, 2014). In another study, 

mid-latitude perturbations were associated with significant anomalies of uplift over southern 

Africa and it was found that abnormally strong Rossby waves, which favour large-scale 

atmospheric instability over southern Africa, were a necessary condition for the development 

of TTTs (Vigaud et al, 2012; Macron et al, 2014).  It was also shown that Southern Hemisphere 

planetary waves play an important role in the inter-annual variability of TTT events (Manhique 

et al, 2011). Another necessary condition is positive latent energy anomalies over the Agulhas 

Current, for the supply of lower-layer moisture, which in combination with the Rossby wave, 

can form favourable conditions for atmospheric convection development (Macron et al, 2014). 

 

Rainfall across South America is linked to that across southern Africa by Atlantic moisture 

fluxes that are embedded in a large-scale circulation pattern, however these teleconnections are 

not yet fully understood (Grimm & Reason, 2011, Macron et al, 2014).  The fact that these 

moisture fluxes occur about two to three days prior to TTTs can play an important role in the 

real-time prediction of these systems (Macron et al, 2014).  According to another study, a 

surface low initiated the transport of tropical moisture poleward, because of a low potential 

vorticity trough across southern Africa that developed due to anti-cyclonic wave breaking a 

few days before a TTT occurred (Hart et al, 2010).  It was further stated that as soon as the 

leading edge of this low potential vorticity trough neared the western regions, convection and 

cloud band formation are triggered (Hart et al, 2010). This effect is supported by upstream 

deformation as low potential vorticity air is advected poleward and by baroclinic wave growth 

near the subcontinent (Hart et al, 2010). 

 

 Relation of TTT events with SSTs around southern Africa 

Previous studies found that sea-surface temperatures (SST) off the southern African coasts can 

also play a role in the development and frequency of TTT events (Crimp et al, 1998, Macron 

et al, 2014, Manhique et al, 2011 and Ratna et al, 2013).  The forcing of low-level pressure 

anomalies in the Mascarene area (the region around the islands of Mauritius, Réunion and 

Rodriques) was found to contribute to the increased frequency of TTT events over southern 

Africa (Manhique et al, 2011). Cool SST to the east of Madagascar, along with large-scale 
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planetary waves play an important role in the development of these low-level pressure 

anomalies (Manhique et al, 2011). 

 

It was found that the occurrences and/or persistence of TTT events are increased by moisture 

fluxes associated with warm temperature anomalies over the Agulhas Current, south of 

Madagascar (Macron et al, 2014; Manhique et al, 2011; Vigaud et al, 2012; Williams et al, 

2007). At a few days’ lead, continental TTTs are characterised by a significant warming in the 

Agulhas Current region (Vigaud et al, 2012). This warming in association with latent heat-

release supports increased baroclinic instabilities and therefore also local enhanced convection 

(Vigaud et al, 2012). Low-level humidity convergence was favoured by increased moisture 

advection from the Agulhas Current region onto the adjacent continent, which further 

contributed to the persistence of TTT events (Vigaud et al, 2012).  

 

The main source of moisture for the development of a TTT comes from the Indian Ocean, 

because of the easterly winds that pushes the moisture across southern Africa (Ratna et al, 

2013).  This is due to anomalously warm SST close to the African coast in the Indian Ocean 

(Ratna et al, 2013). It was suggested by previous studies that there is a relationship between a 

TTT that develops over the Mozambique Channel and the positive phase of the subtropical 

Indian Ocean dipole (Fauchereau et al, 2009; Macron et al, 2014).  

 

During a case study, it was found that the general formation and dissipation of the TTT event 

of 21-24 January 1981 was not affected by anomalous SST in the Agulhas Current retroflection 

region, however it showed significant increases in convective precipitation (Crimp et al, 1998). 

These precipitation increases can be ascribed to modifications in the near-surface layers of the 

atmosphere, such as strengthened ocean-atmosphere heat fluxes that reduced the static stability 

over the SST anomaly (Crimp et al, 1998). 

 

 Changes in the intertropical convergence zone before, during and after a TTT 

The intertropical convergence zone (ITCZ) is a band of tropical circulation in the vicinity of 

the equator where the north-easterly and south-easterly trade winds converge (Wallace & 

Hobbs: 15,16, 2006).  

 

In 1987 a study was conducted on moisture bursts, which are essentially bands of upper (or 

middle and upper) cloud bands that extend from the tropics poleward (McGuirk et al, 1987). It 
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was found that in the eastern tropical Pacific Ocean moisture bursts are rare during an active 

ITCZ mode, which usually occurs during summer or during a strong ENSO event (McGuirk et 

al, 1987). The time mean behaviour of the local Hadley cell should be composed, or at least 

partly composed, by the time mean behaviour of an ample amount of brief, synoptic moisture 

bursts during a weak ITCZ mode (McGuirk et al, 1987). It was then concluded that moisture 

bursts can be connected to the tropical Hadley cell in a similar way that frontal cyclones are 

connected to the mid-latitude Ferrell cell (McGuirk et al, 1987). Moisture bursts also resemble 

local amplifications of a thermally direct overturning in their zonal average, which relates to a 

temporary Hadley cell (McGuirk et al, 1987). These moisture bursts are usually associated with 

tropospheric-wide increases in the mean westerlies, and momentum flux from the tropics and 

subtropics to the mid-latitudes is largely increased (McGuirk et al, 1987). 

 

It was also found that the ITCZ changes over southern Africa and Madagascar during the 

occurrence of a TTT, but remains climatologically unchanged over other regions (Ratna et al, 

2013). Instead of changing its positions over southern Africa, it breaks down (Ratna et al, 

2013). Prior to a TTT, the continental part of the ITCZ intensifies over southern Africa after 

which it spreads southward to follow the mid-latitude influence during and after the event 

(Ratna et al, 2013). 

 

 Correlation of TTTs with ENSO 

In previous studies, it was found that TTT events are more associated with La Niña events than 

with El Niño events (Manhique et al, 2011; Ratna et al, 2013). The apparent reason for this is 

that during La Niña events there is enhanced tropospheric convection around the Sumatra 

region in the Pacific Ocean, which in turn modifies the Walker circulation, causing upper level 

convergence over the western equatorial Indian Ocean (Ratna et al, 2013). In another study, it 

was found that La Niña events influence the intensity of TTTs, the suggested reason for this 

being through the enhancement of the pressure gradient over the southwest Indian Ocean 

between the tropical and subtropical regions, as well as through the strengthening of the Angola 

Low (Manhique et al, 2011).  

 

During El Niño events, the rainfall patterns across the globe shift eastward due to the shift in 

the Walker Circulation. It was found that an anomalous upper-level convergence and an 

anomalous lower-level divergence exist over southern Africa during El Niño (Ratna et al, 

2013). Seasonal rainfall is reduced due to the lower-level divergence over the subcontinent that 
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prevents moisture transport from the southwest Indian Ocean to southern Africa (Ratna et al, 

2013).  

 

 Statistical Analysis in previous studies on TTT events 

In earlier studies the characteristics of TTTs were investigated using objective methods such 

as principal component analysis and cluster analysis (Fauchereau et al, 2009; Manhique et al, 

2011; Ratna et al, 2013; Washington and Todd, 1999; Williams et al, 2007). In the study by 

Ratna et al (2013) an index for TTTs was formulated, which is based on two facts: over 

southern Africa convection exhibits a dipolar structure; and TTTs exhibit a ridge-trough-ridge 

synoptic pattern that extends from the southern Atlantic Ocean to Madagascar. This TTT index 

was created using a thirty-year daily dataset for the summer season of 1980-1981 to 2009-2010 

and for which a TTT event is defined with the conditions that the standard deviations of 

outgoing long wave radiation (OLR) must exceed 1.5 and that of wind must exceed 0.5 (Ratna 

et al, 2013).  

 

 Case studies on TTT events 

Three events of heavy summer rainfall were identified that were associated with TTTs, namely: 

31 December 1997 – 2 January 1998, 5 – 7 January 1998 and 15 – 17 December 2007 (Hart et 

al, 2010). The first two (in the summer of 1997 and 1998) fell within a strong El Niño season 

and the last one (in 2007) was during a strong La Niña season. During the study of these three 

events it was found that TTTs are related to planetary wave structures, because a few days 

before each event, anti-cyclonic wave breaking left a weak potential vorticity streamer across 

southern Africa (Hart et al, 2010).  The low potential vorticity air in the upper atmosphere 

encouraged a surface low to transport moisture southwards into subtropical southern Africa, 

which in turn triggered convection and cloud band formation (Hart et al, 2010).  It was also 

found that the primary role of the Angola Low during these case studies were to enable moisture 

transport into subtropical southern Africa (Hart et al, 2010). A low-level low-pressure feature, 

which probably developed due to upper-level divergence downstream of an upper-tropospheric 

trough, developed two days prior to the extreme rainfall days in two of the cases (Hart et al, 

2010). This low-level disturbance diverted the moisture deeper into the subtropics, which could 

have led to higher amounts of rainfall (Hart et al, 2010). In conclusion, it was found that in all 

three cases the appearance of an upper-level trough over southern Africa, associated with a 

band of divergence to the east thereof, triggered TTT cloud band formation (Hart et al, 2010). 
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As mentioned earlier in this chapter, upper level waves have been identified as a very important 

ingredient in the formation of TTT events (Harangoza and Harrison, 1983; Todd et al, 2004). 

 

Another study focused on the heavy rain producing system of 12 – 14 February 1996 (De 

Coning et al, 1998). During this time two cloud bands occurred, one associated with a 

subtropical moist conveyor belt or tropical plume and the other associated with a mid-latitude 

cyclone and frontal system (De Coning et al, 1998). The tropical plume was the instigator of 

this event and in combination with several different triggering mechanisms the heavy rainfall 

event occurred (De Coning et al, 1998). On the first and second day of the event heavy rainfall 

was due to deep convection; on the first day, it was triggered by a short-wave trough in the 

mid-latitude westerlies and on the second day it was triggered by enhanced, moist northerly 

flow that resulted from an approaching mesoscale convective vortex (De Coning et al, 1998). 

During this study, orographic ascent appeared to be a contributing factor to the convection 

initiation, because much of the heavy rainfall occurred on upwind slopes (De Coning et al, 

1998). Heavy rainfall on the last day of the event seemed to be rather from the lifting of the 

western edge of the moist plume by the passing cold front and mid-latitude trough (De Coning 

et al, 1998). 

 

 Importance of modelling and understanding TTT events 

Due to the great influence TTTs has on southern African rainfall, it is important to gain a better 

understanding as to how accurately models capture these systems. In many occasions, severe 

flooding from extreme rainfall events associated with TTTs not only leads to severe property 

damage, but also to loss of cattle and in some cases fatalities. Informal settlements in lower-

lying areas can suffer severely from such events, because of the lack of a trustworthy early 

warning system. 

 

Confidence in model simulations of TTTs may possibly be gained from this study over 

southern Africa and the south-western Indian Ocean, which may lead to more skilful 

operational seasonal forecasts. Forecasting TTTs more skilfully can in turn assist with an 

improved early warning system to inform inhabitants of low-lying areas, as well as warn 

farmers of possible flooding. More skilful operational seasonal forecasts can also assist farmers 

in their decision making of which crops to plant in a specific season. 
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Other entities like the Electricity Supply Commission of South Africa (Eskom) can benefit 

from this study.  Early warning of long periods of constant rain, where the coal supply may be 

insufficient due to a lack of dry coal, will help them to be better prepared for such situations. 

 

For all the reasons mentioned above, it is important to see how accurate numerical models can 

see TTT events and their characteristics, especially on a seasonal scale. A positive outcome of 

this study can improve the confidence of current medium and long-range forecasts.  

 

1.2 Numerical Meteorological Models 

 

Meteorology and weather forecasting have come a long way.  The study of meteorology itself 

dates back as far as 500BC! Since then meteorology and weather forecasting have developed 

in such a way that clusters of computers are used not only for day-to-day forecasts, but also for 

seasonal forecasts and even longer-range forecasts. Nowadays human forecasting is combined 

with numerical models, which are based on the basic laws of physics, i.e. the conservation of 

mass, momentum and energy, to create weather forecasts (Wallace & Hobbs: 1, 2006). In situ 

data is more easily obtainable across the continents as well as the oceans, and in combination 

with satellite imagery these data sets give forecasters a good indication of the current 

atmospheric conditions. 

 

1.2.1 History of Numerical Weather Prediction 

The basis for numerical weather prediction was set by Vilhelm Bjerknes when he stated in a 

paper that the laws of physics can be used to predict weather (Bjerknes, 1904). Lewis Fry 

Richardson developed the concept of modern-day numerical modelling in 1922 (Richardson, 

1922), but due to the large amount of calculations needed, real progress on this subject matter 

was only possible after the development of computers, which happened in the mid-1940s 

(Schuman, 1989). In 1946 John von Neumann started a project, named the Electronic Computer 

Project, to build and design a computer that has more power than the earlier computers 

(Shuman, 1989). In 1954 the Joint Numerical Weather Prediction Unit (JNWPU) was 

established in the United States of America and by March 1955 the unit issued numerical 

weather predictions twice daily (Schuman, 1989). Edward Lorenz also played a role in the 

development of numerical weather prediction. He described the chaotic properties of the 

atmosphere in a paper he wrote in 1963 (Lorenz, 1963). The first attempt of numerical weather 

prediction used the two-dimensional barotropic model for various reasons, but the main reason 
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is because of the simplicity of the barotropic model and how this model posed as a good starting 

point to explore the dynamics of the atmosphere (Bolin, 1955).  

 

Modern day numerical modelling has developed significantly since then. There are various 

computer models simulating the state of the climate system. Coupled models also exist in which 

various types of models are combined, for example an atmospheric and oceanic model.  Before 

December 1992 numerical weather prediction had more a “deterministic” approach and 

consisted of computer resources that were devoted to produce the most accurate possible single 

global forecast for up to 10 days (Tracton & Kalnay, 1993). Nowadays a “probabilistic” 

approach is taken using the same computer resources but to provide various sets of forecasts, 

which are usually of lower resolution (Tracton & Kalnay, 1993). Due to the nature of the 

ensemble approach, medium and longer-range forecasts are considered stochastic and not 

deterministic in nature, which is because of the inevitable growth of differences in forecasts 

when using only slightly different initial conditions (Lorenz, 1963; Tracton & Kalnay, 1993).  

It can be deduced that the ensemble mean will in general produce a better forecast than most 

of the individual ensemble members (Tracton & Kalnay, 1993).  

 

The UK Met Office bought their first computer in 1959, which was able to do 30000 

calculations per second (UK Met Office 2012). They started producing routine computer 

forecasts in 1965 (UK Met Office 2015). Since the 1970s the global exchange of observational 

data grew immensely and this is also the time when different meteorological centres started to 

exchange satellite data (UK Met Office 2015). Since the IBM 360/195 computer the UK Met 

Office used in 1971, their forecasting systems have improved significantly (UK Met Office 

2015). In 1990 they implemented the Unified Model, which has now been upgraded a few 

times and currently uses an ensemble to provide information on the model first guess error 

structure (UK Met Office 2015). 

 

1.2.2 Current Models 

The development of current numerical models does not solely depend on a specific individual 

or a specific company, but rather the cooperation between various teams (Coiffier, 2011). This 

led to the development of unified models or community models, specifically in Europe, that 

were designed for several categories of users in different meteorological services (Coiffier, 

2011). Examples of such international cooperation are listed below (Coiffier, 2011): 
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- ALADIN/LACE (developed by Météo France and scientists from central and eastern 

Europe) 

- ARPEGE/IFS (developed by Météo France and ECMWF) 

- The model developed by the Deutcher Wetterdienst and used by members of the 

COSMO consortium 

- HIRLAM (developed by the Scandinavian countries, Estonia, Lithuania, Ireland, the 

Netherlands and Spain) 

- The Unified Model (developed by the UK MetOffice) 

- WRF (developed by various agencies in the USA) 

 

The skill of current numerical models is constantly improving, not just because of the growing 

field of technology, but also because of the ongoing research in this field. Various 

meteorological centres are producing seasonal forecasts as part of the ongoing routine by using 

long integrations of general circulation models (GCM; Graham et al, 2005). Useful skill for 

specific regions and specific seasons were shown by the seasonal forecasts of these different 

GCMs (Arribas et al, 2011). When comparing coupled ocean-atmosphere GCM (CGCM) with 

two-tier atmosphere-only GCM (AGCM) forced with an independent prediction of SST 

evolution, it was found that the CGCM provide more substantial benefits for seasonal forecasts 

than the AGCM, not only in the tropics but also in the extra-tropics (Arribas et al, 2011; 

Graham et al, 2005). This result has also been found for southern Africa (Landman et al, 

2012a). However, CGCMs are significantly costlier to develop and to operate than two-tier 

AGCMs (Graham et al, 2005). 

 

In 2015 the UK Met Office received the first part of their latest supercomputer (UK Met Office 

2015). When this supercomputer is fully operational, it will have the memory of more than half 

a billion numbers, and it will be able to do 23 000 trillion arithmetic operations per second, 

which will enable higher resolution forecasts (UK Met Office 2015). This is where current 

numerical weather prediction stands and it can only be improved in the future. This study will 

also be using hindcast data from one of the coupled ocean-atmosphere global circulation 

models developed by the UK Met Office, namely the Global Seasonal Forecast System version 

5 (GloSea5). 
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 Study description 

 

1.3.1 The need to investigate TTT events 

There is a need to understand TTT events better at the synoptic scale (Ratna et al, 2013; Vigaud 

et al, 2012) and also to understand how models see TTT events.  Therefore, this study will 

investigate this weather phenomenon by using the GloSea5, a high-resolution seasonal 

forecasting system, which has not yet been used for TTT investigative application. Analysing 

TTT events will provide insight into how models simulate these weather phenomena and in 

turn this can help predict these events better in the future, providing a better early warning 

system for low-lying areas and informal settlements that are easily affected by floods. 

 

It is important to determine whether the forecasting models predict wet seasons for the right 

reasons, i.e. is the reason for a specific wet season due to more TTT events that produce fewer 

wet days, but with more rainfall per day or is the reason that there are lots of wet days producing 

small amounts of rainfall due to various weather systems. 

 

1.3.2 The benefits to investigate TTT events 

Confidence in model simulations of TTT events may possibly be gained from this study over 

southern Africa and the south-western Indian Ocean, which may provide more skilful 

operational seasonal forecasts. Forecasting TTT’s more skilfully can in turn assist with an 

improved early warning system to inform inhabitants of low-lying areas and farmers of possible 

flooding and it can also assist farmers in planning better for a specific season’s crop. 

 

Other entities like Eskom (Electricity Supply Commission of South Africa) can also benefit 

from this study.  Early warning of long periods of constant rain, where the coal supply may be 

insufficient due to a lack of dry coal, will assist them to be prepared for such a situation. 

 

1.3.3 Research problem 

Evidently, there exists the need to better understand TTT events across southern Africa. It is 

also beneficial to be able to predict the occurrence of these events on a seasonal scale for the 

summer rainfall season, which will help for example farmers to better prepare for the amount 

of seasonal rainfall that can be expected.  
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1.3.4 Research Question and Objectives 

To address the research problem mentioned above, the following question needs to be 

answered: what is the ability of a state-of-the-art seasonal forecast model to simulate TTT 

characteristics over southern Africa on a seasonal scale? In order to address this research 

question there are a few objectives: 

1. Identify the distinctive cloud bands associated with TTT events using gridded data 

2. Investigate the characteristics of modelled TTT events using the gridded data: 

a. Frequency of TTT occurrences 

b. Location of TTT events across southern Africa 

c. Intensity of TTT events over southern Africa 

 

1.3.5 Challenges and limitations 

Challenges can arise from retrieving observational data for an extended period due to 

incomplete data at some stations across southern Africa. The modelled data with the chosen 

parameters and variables may not correctly indicate the occurrence of TTT events, which 

means more data, with additional parameters, will have to be generated. The spatial resolution 

of the GloSea5 (or the observed data) may not be small enough to pick up on specific 

characteristic of TTT events. The area selected for this investigation may be too small or too 

large.  

 

1.4 Thesis Layout 

 

The principle of ensemble forecasting has been quite successfully used on medium range 

forecasts (Coiffier, 2011). This principle can be extended to all the different forecasting ranges, 

including seasonal forecasts (Coiffier, 2011). For this study the GloSea5 of the UK MetOffice 

has been chosen to evaluate the characteristics of TTT events across southern Africa during the 

summer rainfall period. The GloSea5 model is a state-of-the-art seasonal forecast model that 

has been recently developed by the UK MetOffice.  

 

In the next chapter, the methodology to investigate the characteristics of TTT events will be 

discussed in detail, including the model, the “meteorological robot” and the datasets used. 

Thereafter four chapters on the results will follow (chapter 3 to 6). Chapter 7 consists of a 

detailed discussion of the results. The final chapter of this thesis, chapter 8, entails a conclusion, 
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possible future studies on the formation and development of TTT events, and a few final 

remarks. 
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CHAPTER 2: Methodology 
 

 

2.1 Introduction 

 

TTT events are important weather phenomena that play a major role in rainfall across southern 

Africa, especially during the summer rainfall season (e.g. Taljaard, 1996; Hart et al, 2013). 

These events can be identified by various characteristics such as the typical cloud bands (e.g. 

Hart et al, 2012), the eastward progression of the cloud bands and the geographical span of the 

event (Fauchereau et al, 2009; Pohl et al, 2009). In this study, hindcast data from a state-of-

the-art coupled atmosphere-ocean general circulation model (CGCM) is compared to 

reanalysis data in order to establish whether the characteristics of TTT events can be relayed 

by a numerical model on a seasonal scale. A statistical approach is considered to compare the 

results of the modelled data and the observed data, and to establish whether the CGCM has 

skill in forecasting the characteristics of TTT events across southern Africa during the summer 

rainfall season. Hereafter will follow a discussion on how TTT events can be identified. Then 

a detailed description of the CGCM will follow, after which the observed and modelled datasets 

used in this study, are discussed. The domain and software used to analyse the data will also 

be described, and finally the statistical processes used will be explained. 

 

 

2.2 Identification of TTT events 

 

One of the key characteristics of TTTs is the typical cloud bands that develop as a result of 

tropical-extratropical interactions. The cloud bands associated with TTTs are usually orientated 

in a NW-SE direction in the southern hemisphere and in a SW-NE direction in the northern 

hemisphere. The cloud bands typically stretch from the tropics to the mid-latitudes. Within 

these cloud bands, areas of enhanced tropical convection can be found which is clearly 

identifiable on satellite imagery. These areas are usually where heavy rainfall occurs during a 

TTT event. To identify a TTT within the observed and modelled data, the focus during this 

study is on the cloud bands and the structure and position thereof. A Meteorological Robot 

(MetBot) (Hart et al, 2012) is used to identify these cloud bands by applying a certain criterion 
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to the data. This criterion, as well as an in-depth discussion on the MetBot will follow in section 

2.6.  

 

The progression of the cloud bands is also important. Usually a TTT event lasts three to five 

days, but the duration can be longer. During a TTT event, the cloud band moves eastwards 

(Fauchereau et al, 2009; Pohl et al, 2009), during which heavy rainfall can occur for 

consecutive days. The Metbot used in this study identifies the cloud bands and therefore also 

the days on which cloud bands were present. Consecutive days on which cloud bands occur, 

could potentially represent a TTT event.  

 

The precursors to a TTT event and the development of such an event were discussed in section 

1.1.3. One can therefore possibly forecast the occurrence of a TTT event by looking at the 

different atmospheric circulation features that play a role during the development of a TTT. 

However, the presence of these atmospheric circulation features does not necessarily indicate 

that a TTT event is imminent. To identify TTT events, atmospheric flow associated with these 

circulation features should first be identified, which leads to various atmospheric variables that 

can be considered when attempting to model TTT events, such as wind vectors and atmospheric 

pressure. For this study, however, only outgoing long-wave radiation (OLR) is considered, 

since OLR values represent TTTs the best as they relate directly to the characteristic cloud 

bands, which are associated with TTT events. Ultimately, observed rainfall may also be 

considered to verify whether a cloud band event was indeed a TTT, by evaluating periods of 

heavy rainfall. 

 

 

2.3 The GloSea5 model 

 

The Global Seasonal Forecast System version 5 (GloSea5) is a high resolution coupled ocean-

atmosphere seasonal forecast model that was developed and is currently used by the UK Met 

Office (Graham et al, 2005). Since the first version was developed, there have been a number 

of changes and improvements.  The previous version, the GloSea4 was found to have the ability 

to predict seasonal to inter-annual variability over southern Africa (Landman et al, 2012b). In 

this study hindcast data from the GloSea5 will be used.  
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The GloSea forecasting system, but specifically the GloSea4 system, was designed with the 

idea in mind to rapidly improve the skill of long-range forecasts of the current models and 

systems used for seasonal forecasting (Arribas et al, 2011). It is also a flexible and easy-to-

upgrade system that is fully integrated within the UK Met Office model development 

infrastructure (Arribas et al, 2011). Since 2009 the UK Met Office was able to introduce 

improvements to their forecasting systems, which has been reflected in the skill of their 

forecasts (MacLachlan et al, 2014). There are various advantages in using the GloSea 

forecasting system, one of them is that hindcast and forecast components run simultaneously, 

which avoids the need to complete all the hindcast runs in advance (MacLachlan et al, 2014). 

A few notes on the finer details of the GloSea5 will follow in the next sections, however for a 

full and detailed description, please refer to the paper by MacLachlan et al (2014). 

 

2.3.1 Resolution of the GloSea5 

One of the major differences between the GloSea4 and the GloSea5 is the higher horizontal 

resolution in the GloSea5 (MacLachlan et al, 2014). The GloSea5 runs on a horizontal 

resolution of 0.833º x 0.566º for the atmosphere and land surface, which relays to 

approximately 50km in the mid-latitudes, and for the ocean and sea-ice models the horizontal 

resolution is 0.25º x 0.25º (MacLachlan et al, 2014; Scaife et al, 2014). The vertical resolution 

of the GloSea5 is 85 quasi-horizontal atmospheric levels, with an upper boundary of 85km near 

the mesopause, and 75 quasi-horizontal levels for the ocean (Scaife et al, 2014). 

 

2.3.2 Configuration of the GloSea5 

The coupled Hadley Centre Global Environmental Model version 3 (HadGEM3) is used within 

the GloSea5 and consists of the following components: for the atmosphere the Unified Model 

of the UK Met Office is used, for land surface the Joint UK Land Environmental Simulator 

(JULES) is used, the ocean model is initialised using the Nucleus for European Modelling of 

the Ocean (NEMO) and for the sea-ice component the Los Alamos Sea-Ice Model (CICE) is 

used (Arribas et al, 2011; MacLachlan et al, 2014). The previous NEMO version had a 

refinement in resolution (from 1º to 0.33º) between 20ºN and 20ºS, which lead to a better 

representation of tropical waves. This was eluded in the newer, higher resolution version, 

which has a global resolution with a grid space of 0.25º, the equivalent of 27km on the equator 

(MacLachlan et al, 2014). 
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2.3.3 Initialization 

For the GloSea5, ensemble members were at first initialized on Mondays, and forecasts of three 

consecutive weeks were used in a lagged ensemble (MacLachlan et al, 2014). Fourteen 

forecasts were completed each week with the HadGEM3 coupled model with the members 

initialised from analyses valid for 0000UTC on the Monday of each week (MacLachlan et al, 

2014). Analyses valid for that specific day have now been used since March 2011 to initialize 

the forecast members (MacLachlan et al, 2014). To achieve a spread between different 

ensemble members that are initialized on the same date, a stochastic physics scheme (SKEB2, 

Bowler et al, 2009) is utilized (MacLachlan et al, 2015). The initial conditions are generated 

as follows for the different model components (MacLachlan et al, 2014): 

- Atmospheric initial conditions: Met Office operational numerical weather prediction 

4D-Var data assimilation system (Rawlins et al, 2007) 

- Ocean and sea-ice initial conditions: Forecast Ocean Assimilation Model (FOAM) 

- Ocean and sea-ice hindcast initial conditions: Reanalysis data from the GloSea5 Ocean 

and Sea-Ice analysis 

- Atmosphere and land surface (in the hindcast members): Reanalysis from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim project 

- Soil moisture initial conditions: from land surface reanalysis using JULES land surface 

model forced with the Integrated Project Water and Global Change (WATCH) Forcing 

Data methodology applied to ERA-Interim data (WFDEI; Weedon et al, 2011) 

 

Both the forecast system and the hindcast system of the GloSea5’s ocean and sea-ice 

components use three-dimensional variational ocean data assimilation of NEMO, which is 

based on the multi-institution NEMOVAR-project (MacLachlan et al, 2014; Mogensen et al, 

2009, 2012). 

 

2.3.4 Ensemble prediction system 

GloSea5 is a monthly to seasonal forecast system that comprises of three parts: an intra-

seasonal forecast part, a seasonal forecast part and a hindcast part. For the operational forecast 

system four ensemble members are initialised each day with the 00:00UTC run analyses from 

the Numerical Weather Prediction (NWP) global data assimilation and the ocean-sea-ice data 

assimilation system (MacLachlan et al, 2014). For the hindcast data set, the model is initialized 

on the 1st, 9th, 17th and 25th of each month with three ensemble members per start date per year 

(MacLachlan et al, 2014). Each week a new set of hindcast data is completed for a period of 
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14 years, which is used to bias correct all the forecast ensemble members (MacLachlan et al, 

2014). In order to achieve a spread between the three ensemble members initialized on the 

same date for the hindcast data set, the same stochastic physics scheme mentioned in section 

2.3.4 is utilized (MacLachlan et al, 2015). 

 

2.3.5 Performance of the GloSea5 

It was found that the various upgrades performed from the GloSea4 to the GloSea5 forecast 

system improved ENSO patterns, the prediction of the Western North Pacific Subtropical High 

and the presenting of tropical cyclones (MacLachlan et al, 2014). Useful skill was also shown 

for predicting the Arctic Oscillation and the North Atlantic Oscillation, and statistically the 

GloSea5 showed significant prediction skill for tropical cyclone number, accumulated cyclone 

energy index and landfall frequency of tropical cyclones (MacLachlan et al, 2014).   

 

During this study, the GloSea5 forecast system’s ability to predict characteristics of TTT events 

will be put to the test by comparing the hindcast data set to reanalysis data by using a 

“meteorological robot” to identify TTT events, followed by a statistical analysis (as discussed 

in sections 2.6 and 2.8). 

 

 

2.4 The OLR-data 

 

Several atmospheric parameters can be considered for a study of TTT events, such as daily 

OLR, specific humidity, as well as zonal and meridional wind velocity, but only the results of 

daily OLR are considered in this study. The reason for this (as mentioned in section 2.2) is that 

OLR represents cloud bands the most accurately as it relates directly to enhanced tropical 

convection, and therefore the characteristic cloud bands associated with TTT events. The 

modelled daily OLR data is compared to observed daily OLR values from the National 

Environmental Satellite Data and Information Service (NESDIS) of the National Oceanic and 

Atmospheric Administration (NOAA).  

 

2.4.1 OLR 

All objects emit radiation. In terms of the sun, most of its radiation (solar radiation) is emitted 

at short wavelengths (majority of wavelengths are less than 2μm), while the earth’s radiation 
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(terrestrial radiation) falls mostly in the longer wavelength section (between about 5 and 25μm) 

(Ahrens:35-38, 2007; Wallace & Hobbs: 113-114, 2006). Within the atmosphere there are 

molecules such as water vapour, carbon dioxide and other gases, which tend to absorb the 

outgoing longwave terrestrial radiation more than the shortwave solar radiation, because of 

electric dipole moments within the molecules (Wallace & Hobbs: 120-121, 2006). As a result, 

incoming solar radiation passes more freely through the atmosphere than outgoing terrestrial 

radiation. Figure 2.1 depicts a diagram of the incoming solar radiation, how much of it is 

absorbed by the atmosphere and the Earth’s surface, as well as the outgoing radiation emitted 

by the Earth’s surface, atmosphere and clouds. 

 

 

Figure 2.1: A diagram illustrating Earth’s Radiation (Energy) Budget. It shows incoming 

shortwave solar radiation, how much of it is absorbed and by what means, as well as outgoing 

radiation (the values are in W.m-2). Yellow arrows portray radiation from the sun or reflection of 

sunlight and orange indicates emission of infrared radiation. (Source: NASA, 2014) 

 

The relationship between temperature and radiation is given by the Stefan-Boltzmann Law (eq. 

2.1) and is written as: 

     𝐸 = 𝜎𝑇4     (2.1) 

 



24 
 

where E is the energy emitted by each square meter of surface area of the object or flux 

radiance, σ is the Stefan-Boltzmann constant (σ = 5.67 x 10-8 W.m-2K-4) and T is the object’s 

temperature in Kelvin (Ahrens: 450, 2007). As a result, the unit for flux radiation is W.m-2 

(Ahrens: 450, 2007). 

 

Monitoring and measuring the radiation emitted by and reflected from the Earth is done by 

satellite-borne radiometers (Wallace & Hobbs: 139, 2006). Figure 2.2 shows the global 

distribution of the annual mean OLR as measured at the top of the atmosphere. There is a 

gradual change in OLR between the equator and the poles, and more regional variability in the 

tropics, whereas absorbed solar radiation varies greatly between the equator and the poles 

(Wallace & Hobbs: 144, 2006). In general, there is approximately a 2:1 difference in OLR 

values between the equator and the Polar Regions, partially due to the contrast in surface air 

temperature, but also by the fact that convective cloud tops and the top of the moist layer is 

higher in the tropics (Wallace & Hobbs: 144, 2006). The highest annual mean OLR is found 

over desserts, for example the Sahara, and equatorial dry zones over the tropical Pacific Ocean 

(Wallace & Hobbs: 144, 2006).  

 

 

Figure 2.2: Annual mean global OLR measured at the top of the atmosphere. (Based on data from 

the NASA Earth Radiation Budget Experiment, source: Wallace & Hobbs: 144, 2006) 

 

The amount of incoming solar radiation and OLR is not only dependent on the time of year, 

but also on the time of day and the weather conditions. It goes without saying that on a clear 
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day the amount of incoming solar radiation will be much more than on a cloudy day. The same 

applies for OLR – it will be less during an overcast night than during a cloudless night. Another 

point of note is that OLR values are in general higher during the night-time hours than during 

the day. In order to overcome these diurnal and nocturnal variances of very small OLR values 

during the day and large OLR values at night, daily OLR is used, which is an average value 

per day (24 hours). As was found in previous studies, the frequency distribution of daily OLR 

is bimodal with a peak for cold cloud tops and one for clear skies (Hart et al, 2012). This 

bimodal nature of OLR makes the choice for a threshold easier. Figure 2.3 shows an example 

of the probability distribution of the daily OLR, where the bimodal characteristic of OLR is 

clear. Therefore, the threshold for the daily OLR is chosen at 240 W.m-2. In the area between 

30˚N and 30 ˚S, low OLR values (in this case, lower than 240 W.m-2) are generally considered 

to indicate convection (Liebmann & Smith, 1996). 

 

 

Figure 2.3: An example of the probability distribution of daily OLR values, which shows the 

bimodal characteristic of OLR. The black arrow between 200 and 250 W.m-2 indicates the 

threshold value, in this case 240 W.m-2. 

 

2.4.2 Observed data 

Observed daily OLR values from NESDIS of NOAA is used to establish the skill of the 

GloSea5 to forecast TTT events. This observed daily OLR data is archived onto a 2.5° x 2.5° 

grid (Liebmann & Smith, 1996). Temporal and spatial interpolation has been used to overcome 

the problem of missing values (Liebmann & Smith, 1996). A daily average is calculated from 

the two OLR data sets (day-time and night-time) (Liebmann & Smith, 1996). For a detailed 

description of the interpolation process, please refer to Liebmann and Smith (1996). This 

observational dataset is the same dataset used in previous studies regarding the use of the 

MetBot (Hart et al, 2012). 
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2.4.3 Model data 

Daily OLR hindcasts from the UK’s GloSea5 is used in this study. The hindcast data is obtained 

from three ensemble members, which are initiated at 0000UTC on the 1st, 9th, 17th and 25th of 

each month from 1 September until 1 November. This amounts to a total number of 27 

ensemble members for each rainfall season (November, December, January and February, 

hereafter NDJF) of the years 1996/1997 to 2009/2010 (the study period considered for this 

study). As mentioned before, a spread between different ensemble members that are initialized 

on the same date is achieved by using a stochastic physics scheme (MacLachlan et al, 2015). 

There are several sections of modelled data missing during the considered study period of this 

study. To overcome missing modelled data issues, the observed data corresponding to the same 

time period or season was omitted during the analysis of the results. Therefore, the average 

value for the considered variables will differ for some of the ensemble members. The time 

periods with missing data are given in Table 2.1. In total for the period from 1996/1997 to 

2009/2010 (14 years’ rainfall season) a number of 378 ensemble members are available with 

complete (or semi-complete) datasets. The seasons with missing data do not have an effect on 

the efficiency of the MetBot and these seasons can easily be omitted during the analysis process 

of each ensemble member. 

 

Table 2.1: Missing hindcast datasets and the periods of the missing data. M1, M2 

and M3 indicate ensemble members 1, 2 and 3 respectively, which are initiated on 

the various dates (column 1). 

Ensemble Member Date of missing data 

Sept 1st M1 1-28 Feb ‘10   

Sept 1st M2 15 Jan-28 Feb ‘01 15 Jan-28 Feb ‘06 1 Nov ‘08-28 Feb ‘09 

Sept 1st M3 1 Nov ’99-29 Feb ’00 1 Nov ’02-28 Feb’03 1 Nov ’05-28 Feb ‘06 

Sept 9th M1 1 Nov ‘09-28 Feb’10   

Sept 9th M2 1 Nov ‘99-29 Feb’00 8 Jan-28 Feb’03  

Sept 17th M2 15-28 Feb ‘05   

Sept 17th M3 1 Nov ’99-29 Feb ’00 1 Nov ’00-28 Feb ‘01 1 Nov ’01-28 Feb ‘02 

Sept 25th M1 1 Nov ’02-28 Feb’03 24 Jan-28 Feb’05  

Sept 25th M3 1 Nov ’01-28 Feb ‘02   

Oct 1st M1 1 Dec ’04-28 Feb ‘05   

Oct 9th M3 23 Jan-28 Feb ‘99 22-29 Feb ‘00  

Oct 17th M1 17 Dec ’01-28 Feb ‘02   

Oct 25th M2 10-24 Dec ‘05   

Oct 25th M3 25 Dec ’98-28 Feb ‘99   

Nov 1st M2 1 Jan-28 Feb ‘99 15-28 Feb ‘06  
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2.5 The Geographical Domain 

 

The geographical domain for this investigation extends from 5°S to 50°S and 5°E to 80°E in 

order to capture all aspects and characteristics associated with TTT events over southern 

Africa. This domain is consistent with previous studies on TTT’s over southern Africa (e.g. 

Fauchereau et al, 2009; Vigaud et al, 2012). This area includes the three preferred regions 

where TTTs tend to develop across southern Africa as previously discovered (Fauchereau et 

al, 2009) and confirmed (Vigaud et al, 2012). The span of the geographical domain can be 

observed in Figure 2.3. These three preferred regions where cloud bands tend to occur have 

their starting positions (anchor points/roots) above Namibia, Mozambique and Madagascar 

(this is where they originate and start to develop, marked by an X in figure 2.4), and stretch 

south-eastwards from there (Fauchereau et al, 2009; Vigaud et al, 2012). 

 

 

Figure 2.4: The geographical domain of this study, which spans from 5˚S to 50˚S and 5˚E to 

80˚E. The three preferred regions where TTTs tend to develop across southern Africa are marked 

with a blue ‘X’. 
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2.6 The MetBot 

 

The methodology developed by Hart et al (2012) is used to identify TTT events in both the 

observed and hindcast data. The methodology was developed to use gridded data sets such as 

reanalysis and general circulation model outputs, to automate the synthesis of the cloud band 

meteorology associated with TTT events (Hart et al, 2012). This methodology consists of a 

meteorological robot (MetBot) that identifies cloud band systems by plotting daily OLR data 

with the maximum threshold at 240 W.m-2 and running it through a blob detection algorithm 

(Hart et al, 2013). The blob detection algorithm is a procedure within the MetBot that detects 

areas with certain OLR values (“blobs”) that essentially represent the cloud bands. The OLR 

values within these blobs adheres to the criteria of the MetBot. When OLR blobs extend from 

the tropics south-eastward into the sub-tropics, the cloud bands are flagged (Hart et al, 2013). 

OLR data values are then selected 48 hours before and after the flagged cloud bands, on which 

the process, with lower criteria, is repeated in order to establish a track for the cloud bands 

(Hart et al, 2013). From this analysis arises a data object for each event describing the 

development of the cloud band (Hart et al, 2013). 

 

The Metbot uses Python as the analysis platform. Various libraries are used in order to identify 

the cloud bands and to produce plots (Hart et al, 2012). Once the cloud bands are flagged, the 

image analysis process can start. Images are analysed through the following steps, as laid out 

in Hart et al (2012): 

1. Raw OLR data is stretched onto the grayscale image range [0,255]. 

2. A chosen threshold for the raw variable is translated into grayscale. 

3. The image is plotted and fetched from a buffer to obtain a visual interpolation of the data. 

4. A threshold is applied to this image array, which produces a binary image and performs 

connected component labelling to identify the cloud blobs. 

5. An appropriate filter is run through the blobs to keep the relevant blobs, i.e. the “metblobs”.  

6. Information is retained that describes blob contour, the centroid position and the blob area. 

7. The process is repeated at each time step. 

 

The MetBot has been tested by using dates on which known TTT events were observed, and it 

has been found that the methodology captures the characteristic features of the formation and 
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development of TTT events over southern Africa, as well as the rainfall produced by these 

events (Hart et al, 2012). 

 

 

2.7 Attending to the research question and the research objectives 

 

In Sections 1.3.3. and 1.3.4. the research problem and the research question are stated, and a 

few objectives are identified in order to address the research problem. To accomplish the first 

objective, gridded data is processed using the MetBot to flag cloud bands. Both modelled and 

observed gridded data is processed using the same software and criteria. By processing the data 

using the MetBot, the cloud bands are flagged, therefore identified, by which the first objective 

is met. For all the calculations and comparisons of the different variables, ensemble members 

are considered separately, as well as combined. Equal weighting is used when combining the 

ensemble members. 

 

Some of the subobjectives of the second objective derive directly from the output of the 

MetBot, but others need a somewhat more calculative approach. The frequency of TTT 

occurrences is calculated by comparing the modelled number of cloud bands with the observed 

number of cloud bands on a seasonal scale. This calculation is done using a statistical 

evaluation, which will be discussed in section 2.8. The location of the modelled TTT events is 

obtained from the output file of the MetBot. This file contains the coordinates of the start and 

end points, of each candidate cloud band, among others. There are different ways to investigate 

the intensity of TTT events. In this study, the intensity is investigated by looking at the area 

covered by each candidate cloud band and comparing it to the observed cloud band areas. The 

lowest and highest OLR (minimum and maximum OLR) values within the modelled cloud 

bands are also compared to that of the observed cloud bands. The lowest (or minimum) OLR 

value of a cloud band also gives an insight into the severity of the cloud band – the colder the 

cloud tops, the greater the instability within the convective cloud, therefore the greater the 

effects of the TTT event are. The highest (or maximum) OLR value on the other hand indicates 

the thinnest part of the cloud band, i.e. the section of the cloud band which allows the most 

OLR to pass through and reach the outer atmosphere.  
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2.8 Model evaluation procedure 

 

Model development has played a large role in the atmospheric sciences over the last few 

decades and it currently still does. It is therefore important to evaluate models and improve 

them. When considering the evaluation of a model, it is significant to establish the difference 

between the following concepts: verification refers to the proof of the accuracy, reality or truth 

of a model; evaluation refers to the process of examining and assessing the model’s 

performance by comparing modelled and observed data; and validation takes place when a 

conclusion of formal acknowledgment is established which may include various evaluations 

(Fox, 1981). During this study, the focus will be on evaluating the GloSea5 hindcast data with 

specific reference to TTT simulation.  

 

In previous work, two types of performance measures were identified, namely, difference or 

residuals measures and correlation measures (Fox, 1981). A quantitative estimate of the size of 

the differences between the modelled and observed data is represented by difference measures, 

while correlation measures refer to the quantitative measure of agreement between the 

modelled and observed data (Fox, 1981). Difference measures include the mean bias error 

(MBE) which can be used to describe bias, the variability of the predicted minus the observed 

variable (P-O) about the MBE (sd
2) (also the variance of the distribution of differences), Root 

Mean Square Error (RMSE) and its square (the Mean Square Error or MSE), and lastly the 

Mean Absolute Error (MAE) (Fox, 1981; Willmott, 1982). RMSE, MSE and MAE basically 

describe the average difference between the modelled and observed data (Willmott, 1982). 

There are various correlation measures that can be considered when evaluating atmospheric 

models. Examples of these correlation measures are Pearson’s product-moment correlation 

coefficient (r) and the square thereof, called the coefficient of determination (r2). Whether these 

two examples (r and r2) should be used to evaluate atmospheric models has been questioned 

before (Willmott, 1982). One of the problems is that the magnitudes of r and r2 do not always 

correlate consistently with the accuracy of the prediction; accuracy in this case being the degree 

to which model-predicted observations approach the magnitudes of their observed counterparts 

(Willmott, 1982). It seems that difference measures can give more appropriate and insightful 

information than correlation measures (Willmott, 1982). 
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In this study, various measures will be used, such as the RMSE, as well as the percentage 

deviation. In cases where the modelled data follows in general the same behaviour as the 

observed data, but significantly under or over estimates, a normalisation is applied. In extreme 

cases where no conclusion can be derived from the RMSE and the percentage error, as well as 

the average behaviour, it might be necessary to revert to a visual display of the results. In such 

cases the longitude and latitude of the variables (as calculated by the MetBot) will be used to 

be able to draw conclusions as to the performance of the model.  

 

2.8.1 Number of candidate cloud bands and percentage deviation 

By using the MetBot, candidate cloud bands are identified in both the modelled and observed 

data sets. The total number of modelled candidate cloud bands per season, per ensemble 

member and per group ensemble is calculated and compared to the number of observed 

candidate cloud bands per season. The percentage deviation of the number of modelled cloud 

bands from the number of observed cloud bands is calculated by using equation 2.2, where PD 

is the percentage deviation, CCm is the number of modelled cloud bands and CCobs is the 

number of observed cloud bands: 

 

100
−

=
obs

obsm

CC

CCCC
PD     (2.2) 

2.8.2 Root Mean Square Error 

Mean Square Error (MSE) is a common measure of accuracy for forecasts (Wilks: 359, 2011). 

The MSE averages spatially the individual squared differences between the gridded forecast 

and observed fields at each of the M grid points (Wilks: 359, 2011). This can also be written 

as:  
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where M is the number of years, ym is the number of candidate cloud bands per ensemble 

member and om is the number of observed candidate cloud bands. A perfect forecast will yield 

an MSE of 0, while larger MSE values indicate a decrease in forecast accuracy (Wilks: 359, 

2011). 

 

Another measure that can be used for accuracy is Root Mean Square Error (RMSE) (eq. 2.4), 

which has the advantage that the unit of the forecast variable is retained, which makes it easier 

to interpret (Wilks: 357, 2011). 
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The same as with MSE, when the RMSE approaches 0, the accuracy of the forecast increases. 

In this study RMSE will be used rather than MSE. 

 

2.8.3 Percentage error 

After the RMSE is obtained, the percentage error is calculated using equation 2.5, where PE is 

the percentage error, RMSE is the calculated root-mean square error, M is the total number of 

years and om is the number of observed cloud bands. The denominator in the equation is the 

calculation of the average observed number of cloud bands. 

 

𝑃𝐸 =
𝑅𝑀𝑆𝐸

1

𝑀
∑ 𝑜𝑚
𝑀
𝑚=1

      (2.5) 

 

The percentage error is calculated in order to put the RMSE values in perspective. For example, 

when using values as large as a few thousand square kilometres, as in the case of the area of a 

cloud band, an RMSE value of 8000 km2 seems extremely large. However, by calculating the 

percentage error, it yields an error of only 2%. Therefore, the model performance can be better 

established by calculating the percentage error. 

 

2.8.4 Bias-adjustment 

As mentioned previously in this chapter, a normalisation is applied in the cases where the result 

of the model data follows the same year-to-year variability as the observed data, but where the 

model extremely under- or over-predicts the variable. In such cases the normalisation is applied 

to each ensemble member, before calculating the model average.  

 

To apply the normalisation (bias-adjustment), equations 2.6 and 2.7 are used, where f is the 

difference between the average number of cloud bands of the observations (oavg) and that of 

the ensemble member (EMavg), EMun is the bias-adjusted number of cloud bands of the 

ensemble member and EMn is the number of cloud bands of the ensemble member before the 

bias adjustment was applied. After the bias is adjusted, the new RMSE values are calculated 
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for the newly calculated set of number of cloud bands (EMun) using equation 2.4 and replacing 

ym with EMunm. 

𝑓 = 𝑜𝑎𝑣𝑔 − 𝐸𝑀𝑎𝑣𝑔     (2.6) 

𝐸𝑀𝑢𝑛 = 𝐸𝑀𝑛 − 𝑓     (2.7) 

 

2.9 Synopsis 

 

This section concludes the chapter on the methodology used in this study. To summarise, 

observed and modelled OLR data is used as input in the MetBot developed by Neil Hart (2012). 

This MetBot flags cloud bands associated with TTT events. The output file containing the 

flagged cloud bands, also contains information about these cloud bands, namely the area, the 

minimum and maximum OLR values, the anchor points, the centroid position and the tilt of 

the cloud bands, and of course the number of cloud bands as well. This information is used to 

investigate whether a state-of-the-art seasonal forecast model, the GloSea5 of the UK Met 

Office, can forecast the characteristics of TTT events on a seasonal scale, as set out in the 

objectives and subobjectives of this study. These characteristics are investigated using various 

statistical calculations and, in some cases, visual representations, and comparing the observed 

characteristics with the modelled characteristics. In the following four chapters (chapter 3 to 6) 

the results are presented. 
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CHAPTER 3: Introduction to the Results 
 

3.1 General guidelines for the results chapters to follow 

 

OLR data is analysed using the MetBot (described in Section 2.6), which identifies candidate 

cloud bands by plotting the OLR data with a maximum threshold of 240 W.m-2 and running it 

through a cloud band detection algorithm. The results obtained will be discussed in detail in 

the three chapters to follow (Chapter 4, 5 and 6). Both the hindcast and model datasets are run 

through the same detection algorithm, with the same criteria and maximum threshold.  

 

In all the graphs and tables following in this chapter and the rest of this study, that concerns 

the ensemble members, abbreviations will be used for each ensemble member. One of the 

reasons for using abbreviations is to simplify the labelling of the x-axes. Table 3.1 indicates 

the abbreviation and the ensemble member it represents.  

 

Table 3.1: A list of the abbreviation used for each ensemble member in this chapter and 

the following results chapters. The date in the second and forth column is the date on 

which the ensemble member is initiated. Ensemble member is abbreviated as EM. 

Abbreviation Ensemble member (EM) Abbreviation EM 

1S1 1 September EM 1 1O3 1 October EM 3 

1S2 1 September EM 2 9O1 9 October EM 1 

1S3 1 September EM 3 9O2 9 October EM 2 

9S1 9 September EM 1 9O3 9 October EM 3 

9S2 9 September EM 2 17O1 17 October EM 1 

9S3 9 September EM 3 17O2 17 October EM 2 

17S1 17 September EM 1 17O3 17 October EM 3 

17S2 17 September EM 2 25O1 25 October EM 1 

17S3 17 September EM 3 25O2 25 October EM 2 

25S1 25 September EM 1 25O3 25 October EM 3 

25S2 25 September EM 2 1N1 1 November EM 1 

25S3 25 September EM 3 1N2 1 November EM 2 

1O1 1 October EM 1 1N3 1 November EM 3 

1O2 1 October EM 2   
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The season consisting of the months November, December, January and February (NDJF) is 

considered for all 27 ensemble members. Every season of the years 1996/1997 to 2009/2010 is 

averaged and then compared to the hindcast data. The aim of this project is to assess the 

performance of the GloSea5 model on a seasonal time-scale, not on a monthly or a daily scale. 

Therefore, the averages of a season are considered instead of the monthly averages. Take note 

that in this chapter and the following results-chapters, reference to only one year is used most 

of the time, instead of two years to indicate the entire season, for example 2004 is used instead 

of 2004/2005 to indicate the season from 1 November 2004 to 28 February 2005. This 

shortened version is used to simplify the labelling of the x-axes on the graphs. The year will 

always indicate the year in which the referred season starts, for example 1999 indicates the 

season starting November 1999 and ending February 2000. 

 

3.2 MetBot results 

 

For each candidate cloud band that is identified by the algorithm, two figures are produced and 

the information regarding the cloud band is saved in a file. This detail consists of the 

coordinates of the anchor point, the longitude and latitude of the centroid, the tilt and the area 

of the cloud band. The anchor point is the root of the cloud band in the tropics. From the anchor 

point, the cloud band stretches southeast to higher latitudes. A centroid is the arithmetic mean 

position of all the points in the shape, i.e. the centre of all the points in every coordinate 

direction. Other terms for the centroid, which are perhaps more familiar, are the centre of mass 

and the geographical centre. Occasionally two candidate cloud bands are flagged on the same 

day. Both cloud bands are considered as separate events and are therefore regarded as two 

separate cloud bands in the calculations. 

 

Even though additional results, such as seasonal records, can be produced by the MetBot by 

using different input data, only OLR data is used, because OLR data is sufficient to address the 

problem statement and research question on TTTs. Therefore, the results are limited to what is 

mentioned in this chapter and the following three chapters.  

 

An example of the two figures produced as output is presented in Figure 3.1 (a and b) for the 

cloud band flagged on 12 November 1996 in the observed dataset. The top one of these figures 

(Figure 3.1.a) displays the raw OLR data with an outline of the cloud band, as well as the tilt 



36 
 

thereof (usually a number between 0 degrees and -90 degrees). The bottom figure shows the 

blob of the cloud band, a blob being a geometrical figure with a random shape (Figure 3.1.b).  

 

 

Figure 3.1: An example of the figures produced by the MetBot. This specific figure is 

produced by using the observed OLR on 12 November 1996. Raw OLR showing the 

cloud band (within the blue line) and the NW/SE tilt thereof is displayed in (a). The 

yellow OLR blob in (b) shows the candidate cloud band. 

 

3.3 Synopsis 

 

In this chapter general guidelines are given on information that will be needed for the rest of 

the results chapters of this study. Thereafter, it was proven that cloud bands can be identified 

by the model by running the data through a cloud band detection algorithm. By this means, the 

first objective of this study is achieved. 

 

In the following chapter, the results to address first subobjective of the second objective will 

be presented, namely the frequency of TTT events. These results include the anchor point and 

the area of the cloud bands and results concerning both the modelled and the observed datasets 

will be provided.  
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CHAPTER 4: Frequency of TTTs 
 

 

Cloud bands are flagged using the MetBot software. The results are compiled in an output file, 

from which different features of the cloud bands can be analysed. One of these features is the 

number of cloud bands. The number of cloud bands is an indication of the frequency of tropical 

temperate trough (TTT) events within the NDJF rainfall season and therefore addresses one of 

the objectives of this study. In this chapter the number of cloud bands of the model data will 

be compared to that of the observed data. First the total number of cloud bands and the averages 

over the seasons and study period are presented for the observed dataset and the 27 ensemble 

members. Thereafter a section on the percentage deviation will follow. This chapter concludes 

with a section on the root-mean square error and the corresponding percentage error. As 

mentioned in Chapter 3, abbreviations are used for the ensemble members. These abbreviations 

can be found in Table 3.1. 

 

4.1 Total and average number of cloud bands 

 

The total number of candidate cloud bands is considered on a seasonal time-scale for the 

months November to February of the study period ranging from 1996/1997 to 2009/2010. 

Where there are periods of model data missing, the observed data is omitted for the same 

period. This study is focused on the capability of a coupled model to predict TTT’s on a 

seasonal scale, not a daily scale. Therefore, omitting these periods of data is necessary for 

consistency between the modelled and the observed datasets. This is also the reason why the 

average value of the observed variable will differ for some of the ensemble members.  

 

Candidate cloud bands are sometimes identified by the MetBot for a few consecutive days. 

Instead of considering these consecutive occurrences as one TTT event, candidate cloud bands 

are considered separately for both the observed and the model datasets. By considering the 

cloud bands per day, the same rules apply for every cloud band in both the observed and the 

model dataset. Sometimes more than one candidate cloud band are identified for one specific 

day in which the one cloud band will lie in the eastern end (around Madagascar) of the 

geographical domain and the other one on the western side (around Namibia). In such a case 

both of the candidate cloud bands are considered, because this section (and the rest of this 
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study) focuses on the total number of cloud bands per season and per study period, not the 

specific days on which cloud bands are flagged. In both the modelled and the observed datasets 

there are days on which two cloud bands are flagged. The fact that the model also simulates 

two cloud bands on specific days, indicates that the model is performing well regarding the 

prediction of cloud bands, and therefore possible TTT events.  

 

The number of cloud bands flagged by the MetBot in the observed dataset can be seen in Figure 

4.1.1. The least number of cloud bands are observed in the season of 2006/2007 (25 cloud 

bands) and the most are observed in the season of 1998/1999 (50 cloud bands). On average, 

there are 37.36 observed cloud bands per season. This number only indicates the characteristic 

cloud bands associated with TTT events, not the actual TTT events. Therefore, this number is 

larger than one would expect for the number of TTT events in one NDJF season across southern 

Africa. 

 

 

Figure 4.1.1: A graph showing the number of cloud bands flagged in the observed dataset 

for every season (November to February) in the period 1996/1997 to 2009/2010. 

 

Due to the fact that there is data missing for parts of the study period for some ensemble 

members, the number of observed cloud bands used in the comparison between the ensemble 

members and the observed dataset will differ for some of the seasons. The missing model data 

amounts to a percentage of 0.288% of the total model dataset. Therefore, it can be said that 

whether or not the sections with missing data is excluded or not, will not make a significant 

difference in the final results. 
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Figure 4.1.2 shows the total number of cloud bands for the entire study period of 1996/1997 to 

2009/2010 for the 27 ensemble members and the observed dataset. From Figure 4.1.2 it can be 

concluded that the ensemble members under-predict the number of cloud bands, and therefore 

the model inevitably under-predicts the number of cloud bands.  

 

 

Figure 4.1.2: Graph indicating the number of cloud bands detected by the MetBot in the datasets 

of the 27 different ensemble members and the corresponding observations. The blue bars 

indicate the total number of cloud bands of the ensemble members and the orange bars indicate 

those in the corresponding observed dataset. Please refer to Table 3.1 for the abbreviations used 

for the ensemble members. 

 

In Figure 4.1.3 the difference between the average number of cloud bands per ensemble 

member and the average number of cloud bands of the observations is illustrated. On average 

the model predicted 10.34 fewer cloud bands per season than that occurred. Therefore, it is 

verified that the different ensemble members and inevitably the model as well, under-predict 

the number of cloud bands. What is interesting to note is that the ensemble members with a 

shorter lead-time (the ensemble members initiated on 25 October and 1 November) under-

predict the number of cloud bands more or less the same amount: in this case about 10 cloud 

bands too little. Lead-time is the time between the initiation date of the ensemble member and 

the start date of the considered months of the forecast, in the case of this study 1 November. 
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Figure 4.1.3: Average difference in the number of cloud bands between each ensemble 

member and its corresponding observed number of cloud bands. The words cloud bands are 

abbreviated as CCs. 

 

The different ensemble members under-predicted the number of cloud bands for the entire 

period (1996/1997 to 2009/2010), but not for every NDJF season separately. Table 4.1.1 lists 

the NDJF seasons for which each ensemble member over-predicted the number of observed 

cloud bands. Interesting to note is that 22 of the 27 ensemble members (81.5%) over-predicted 

the number of cloud bands for the NDJF season of 1996/1997 and 13 of the 27 ensemble 

members (48.1%) for the 2006/2007 season.  

 

Due to the fact that the ensemble members on average under-predicted the number of cloud 

bands, it was considered to adjust the bias of all the ensemble members separately. More on 

the bias-adjustment can be found in the Root-mean square error section (Section 4.3) later in 

this chapter. 

 

To indicate by how many the different ensemble members under-predict the number of cloud 

bands, the percentage deviation and the Root-mean square error (RMSE) are calculated. These 

results will be presented in the two sections following Table 4.1.1. 
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Table 4.1.1: The NDJF seasons in which an ensemble member over-predicted the number 

of cloud bands, indicated by an ‘X’. In the last row, the total number of ensemble members 

that over-predicted cloud band occurrences in that particular year is displayed. 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

1S1 X          X    

1S2            X   

1S3 X          X    

9S1             X  

9S2 X          X    

9S3           X    

17S1 X      X    X    

17S2               

17S3 X              

25S1 X        X    X  

25S2 X           X   

25S3 X          X    

1O1 X      X  X  X    

1O2 X   X         X  

1O3 X              

9O1 X      X        

9O2 X              

9O3    X           

17O1 X         X  X   

17O2 X         X   X  

17O3 X   X           

25O1 X          X    

25O2 X          X    

25O3 X          X    

1N1 X          X    

1N2 X          X    

1N3 X          X    

Total 22 0 0 3 0 0 3 0 2 2 13 3 4 0 

 

4.2 Percentage deviation 

 

The percentage deviation is a measure to calculate the percentage the model data differs from 

the observed data and can be calculated using Eq. 2.2 and is calculated for each NDJF season 

in the study period spanning from 1996/1997 to 2009/2010 for each ensemble member, as well 

as the average percentage deviation over the entire period for all 27 ensemble members (the 

model/ensemble average). 
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Figure 4.2.1 indicates the average percentage deviation of the different ensemble members. 

From this figure it is apparent that every ensemble member under-predicts on average the 

number of cloud bands for the period 1996/1997 to 2009/2010. The average percentage 

deviation of the 27 ensemble members (the ensemble average) is calculated as -28.29%. 

Interesting to note is that the average percentage deviation seems to settle between -25% and -

30% with a shorter lead-time, particularly for the ensemble members initiated on 25 October 

and 1 November. According to Figure 4.2.1, ensemble member 3 initiated on 25 September 

(25S3) performed the best with an average percentage deviation of -21.02%. The worst 

performer is ensemble member 3 initiated on 17 September (17S3) with an average percentage 

deviation of -37.97%. The data of the entire NDJF season of the year 2001/2002 is missing for 

ensemble member 25S3. Ensemble member 17S3 misses the data for three consecutive seasons 

(1999/2000, 2000/2001 and 2001/2002), which possibly contributes to the poor performance 

in predicting the number of cloud bands. The individual percentage deviation of the poorest 

and best performers is presented in Figures 4.2.2 and 4.2.3 respectively. 

 

In the case where the data is missing for the entire NDJF season of a particular year, the line 

on the graph is connected from the previous year to the next year with available data. Thus, no 

interpolation was used in the calculations. 

 

 

Figure 4.2.1: The average percentage deviation of the number of cloud bands for every 

ensemble member. The x-axis indicates the different ensemble members and the y-axis 

donates the percentage deviation. The abbreviations on the x-axis is explained in Table 3.1. 
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Figure 4.2.2: The percentage deviation of the number of cloud bands for ensemble member 

3 initiated on 17 September. The x-axis indicates the different NDJF seasons in the study 

period and the y-axis donates the percentage deviation. 

 

 

Figure 4.2.3: The percentage deviation of the number of cloud bands for ensemble member 

3 initiated on 25 September. The x-axis indicates the different seasons in the study period 

and the y-axis donates the percentage deviation. 
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4.3 Root-Mean-Square-Error 

 

The root-mean square error (RMSE) is used to measure the accuracy of forecasts (more on this 

measure in Chapter 2, Section 2.8.2). To calculate the RMSE, Equation 2.4 is used. After the 

RMSE is obtained, the percentage error is calculated using Equation 2.5.  

 

The RMSE values and the corresponding percentage error of each ensemble member are 

presented in Table 4.3.1. The average RMSE of all the ensemble members is 14.22 cloud bands, 

which yields an average percentage error of 38.8%. Again, ensemble member 3 initiated on 25 

September (25S3) fared the best with an RMSE of 10.94 cloud bands, while ensemble member 

3 initiated on 1 September (1S3) performed the worst with an RMSE of 17.62 cloud bands. 

Ensemble member 1S3 has three seasons of data missing. These seasons are 1999/2000, 

2002/2003, 2005/2006. As mentioned earlier in this chapter, ensemble member 25S3 misses 

data for the season of 2001/2002. 

 

Table 4.3.1: The RMSE values (cloud bands) and the corresponding percentage error (%) 

of the number of cloud bands for the 27 different ensemble members. EM stands for 

ensemble member. The abbreviations of the ensemble members are presented in Table 3.1. 

The RMSE and percentage error averages in the last row of the last two columns are the 

averages for all 27 ensemble members. 

EM RMSE (cloud bands) Error (%)  EM RMSE (cloud bands) Error (%) 

1S1 14.05 38.20  1O3 14.18 37.96 

1S2 12.96 36.95  9O1 12.53 33.55 

1S3 17.62 46.15  9O2 13.13 35.15 

9S1 13.94 37.67  9O3 13.82 39.48 

9S2 15.95 43.84  17O1 13.07 36.96 

9S3 15.36 41.12  17O2 13.29 35.58 

17S1 15.28 40.89  17O3 13.04 34.92 

17S2 14.11 38.58  25O1 14.88 39.83 

17S3 17.59 47.76  25O2 13.50 37.07 

25S1 16.24 45.22  25O3 13.49 38.95 

25S2 15.37 41.15  1N1 15.81 42.31 

25S3 10.94 29.32  1N2 14.23 40.58 

1O1 12.82 36.63  1N3 14.29 38.25 

1O2 12.50 33.46  Average 14.22 38.80 
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Due to the high RMSE values and the fact that the ensemble members in general under-predict 

the number of cloud bands, it was decided to apply a bias-adjustment. To apply the bias-

adjustment, Equations 2.6 and 2.7 are used. 

 

The newly calculated RMSE values after the bias-adjustment is applied, as well as the 

accompanying percentage error values, can be found in Table 4.3.2. The average bias-adjusted 

RMSE calculates to 9.61 cloud bands and the average bias-adjusted percentage error is 26.23%. 

After the bias is adjusted, the best and worst performers changed. According to the bias-

adjusted RMSE values, ensemble member 3 initiated on 17 October (17O3) fared the best with 

an RMSE of 7.43 cloud bands and an error of 19.9%. Ensemble member 1 initiated on 1 

November (1N1) has the highest RMSE (12.36 cloud bands), which results in an error of 

33.1%. Both ensemble members 17O3 and 1N1 have no missing data for the entire study 

period. 

 

Table 4.3.2: The RMSE values (cloud bands) and the percentage error (%) of the number 

of cloud bands for the 27 different ensemble members after the bias was adjusted. EM 

stands for ensemble member. The abbreviations of the ensemble members are explained in 

Table 3.1 on. The RMSE and percentage error averages in the last row of the last two 

columns are the averages for all 27 ensemble members. 

EM RMSE (cloud bands) Error (%)  EM RMSE (cloud bands) Error (%) 

1S1 11.55113 31.40  1O3 8.952254 23.96 

1S2 8.429309 24.03  9O1 8.337584 22.32 

1S3 11.26833 29.51  9O2 9.284615 24.85 

9S1 7.821227 21.14  9O3 9.146484 26.13 

9S2 10.23684 28.14  17O1 10.27802 29.07 

9S3 9.497852 25.42  17O2 10.21728 27.35 

17S1 10.37289 27.77  17O3 7.439552 19.91 

17S2 7.535291 20.60  25O1 10.75326 28.79 

17S3 10.64297 28.91  25O2 8.995747 24.69 

25S1 11.73525 32.67  25O3 8.817017 25.45 

25S2 9.238341 24.73  1N1 12.35694 33.08 

25S3 7.69769 20.63  1N2 10.26685 29.27 

1O1 9.960381 28.46  1N3 9.846008 26.36 

1O2 8.822513 23.62  Average 9.611171 26.23 

 

Figure 4.3.1 indicates the percentage error of the biased and bias-adjusted versions for the 

number of cloud bands of the ensemble members. Some ensemble members improved 

significantly with the bias-adjustment, and others less significantly, for example, ensemble 
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member 1 initiated on 1 September (1S1) improved only by 6.8%, while ensemble member 1 

initiated on 9 September (9S1) improved by 16.5%.  

 

 

Figure 4.3.1: The percentage error of the cloud bands of the 27 different ensemble 

members before and after the bias is adjusted. The blue line indicates the percentage error 

of the raw data, while the red line represents the percentage error after the bias is 

adjusted. For the abbreviations of the ensemble members, please refer to Table 3.1. 

 

 

4.4 Synopsis 

 

In this chapter the number of cloud bands simulated by the model is compared to that of the 

observed dataset. The seasonal average is calculated, as well as the model average over the 

considered study period. Furthermore, the average percentage deviation of the number of cloud 

bands for every ensemble member was calculated, as well as the RMSE and the corresponding 

percentage error. The results (graphs) of the best and worst performing ensemble members are 

presented. The results of the remaining ensemble members can be found in Appendix A (the 

results regarding the percentage deviation). The ensemble average (model average) is also 

calculated for the percentage deviation, the RMSE and the percentage error.  

 

In the next chapter the intensity of the TTT events and include the area, as well as the minimum 

and the maximum OLR of the cloud bands will be presented.  
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CHAPTER 5: Intensity of TTTs 
 

This chapter focuses on the intensity of the TTT events (the cloud bands), and include the 

results regarding the area and the minimum and maximum OLR of the cloud bands. As 

mentioned in Chapter 3, abbreviations are used for the ensemble members. These abbreviations 

can be found in Table 3.1. 

 

 

5.1 Area 

 

This section focuses on the area of the cloud bands, which forms part of the output of the 

MetBot software. The area of the cloud band is an indication of the intensity of a TTT event, 

because it plays a role in the number of people affected by it and has an influence on nature. A 

large cloud band for example will have a greater area of rainfall than a smaller cloud band. 

Therefore, by looking at the area of the cloud bands, a part of one of the subobjectives (2.c: the 

intensity of TTT events) of this study is addressed.  

 

5.1.1 Average area 

In order to compare the different ensemble members to the observed, the average area is 

calculated for the entire summer rainfall season (NDJF) and for each ensemble member for the 

period 1996/1997 to 2009/2010. The same calculations are repeated for the observed dataset. 

Due to the fact that the objective of this study is to investigate the performance of the model 

on a seasonal time-scale, only the seasonal averages and the average for the entire period will 

be discussed, not the monthly average area. 

 

Figure 5.1.1 shows the seasonal average area of the cloud bands in the observed dataset that 

are flagged by the MetBot. On average, the observed cloud bands have an area of 35841.33km2. 

Interesting to note is that the cloud bands in the NDJF season of 1997/1998 has the greatest 

average area (46 749 km2) and the cloud bands in 2003/2004 has the smallest average area (31 

785 km2). It is possible that ENSO played a role during these years, because the season of 

1997/1998 was an exceptionally wet El Niño season for South Africa, while 2003/2004 was a 

neutral ENSO year. This will be investigated at a later stage. 
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Figure 5.1.1: The seasonal average area in km2 of the observed cloud bands for the period 

1996/1997 to 2009/2010. The area of the cloud bands is averaged for the NDJF season.  

 

In Figure 5.1.2 the average area of the cloud bands modelled by the ensemble members and the 

corresponding observed average area are displayed. Once again, the ensemble members under-

predicted the average area of the cloud bands and it may therefore be necessary to do a bias-

adjustment to better determine the performance of the model and its ensemble members. This 

will be done in a subsequent section. The average of the ensemble members, i.e. the model 

average for the area of the cloud bands is 29 893 km2. As discussed in previous chapters, some 

ensemble members have sections with no data. Due to these periods of missing data, the area 

of the corresponding observed cloud bands is not the same for every ensemble member. 

Therefore, the observed average area differs from the “raw” observed cloud bands mentioned 

earlier in this section. By averaging the area of the corresponding observed cloud bands for 

every ensemble member, an average area of 35 795 km2 is obtained.  

 

The difference between the average area of the ensemble members’ cloud bands and that of the 

corresponding observed cloud bands is displayed in Figure 5.1.3. This figure confirms that on 

average the model under-predicted the cloud band area by 5902 km2. From Figure 5.1.3 it can 

be deduced that ensemble member 1S3 was the best performer regarding the average area of 

the cloud bands with a difference in the average area of 3495 km2. Ensemble member 1S3 

misses data for three seasons (1999/2000, 2002/2003 and 2005/2006). Ensemble member 17S2 

fared the worst with a difference of 7323 km2. Ensemble member 17S2 misses data for the 

month February of 2005. 
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Figure 5.1.2: The average area in km2 of the cloud bands as flagged by the MetBot for the 

27 different ensemble members (in blue) and the corresponding average area of the 

observed cloud bands (in orange) for the period 1996/1997 to 2009/2010. The area is 

averaged for the NDJF season, and then for the entire period. For the abbreviations of the 

ensemble members, please refer to Table 3.1. Observed is abbreviated as Obs and ensemble 

member as EM in the legend. 

 

 

Figure 5.1.3: A graph indicating the difference between the average area of the cloud bands 

of the 27 different ensemble members and that of the corresponding observed cloud bands 

in km2. For the abbreviations of the ensemble members, please refer to Table 3.1. 
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Figures 5.1.4 and 5.1.5 represent the modelled cloud bands’ average areas per season of the 

worst and best performing ensemble members as discussed in the previous paragraph. A 

definitive outlier between the observed and the modelled average area is for the season 

1997/1998, during which the average observed area is significantly higher than the other 

seasons in the study period. For ensemble member 1S3 (the best performer) the seasons of 

2003/2004, 2004/2005 and 2009/2010 are very close to the average observed area of the cloud 

bands (the dots on the graph in Figure 5.1.4 almost coincide). The worst performer (ensemble 

member 17S2) has no seasons with values relatively close to that of the observed. Interesting 

to note is that both ensemble members over-predicted the average area of the cloud bands for 

the season 2003/2004 (more on this in Chapter 7). 

 

In the case of ensemble member 1S3 where the data is missing for three entire seasons 

(1999/2000, 2002/2003 and 2005/2006), the line on the graph is connected from the previous 

year to the next year with available data. Thus, no interpolation was used during the 

calculations for the seasons with missing data. 

 

 

Figure 5.1.4: The average area of the cloud bands for ensemble member 1S3. The x-axis 

indicates the different seasons in the study period and the y-axis donates the average area 

in km2. The blue line represents the average area of the ensemble member and the orange 

line the average area of the observed dataset. 
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Figure 5.1.5: The average area of the cloud bands for ensemble member 17S2. The x-axis 

indicates the different seasons in the study period and the y-axis donates the average area 

in km2. The blue line represents the average area of the ensemble member and the orange 

line the average area of the observed dataset. Observed is abbreviated as obs in the legend. 

 

Once again, the average area of the entire study period of the different ensemble members is 

below the average area of the observed cloud bands. That is not the case when the seasons in 

this period is considerate separately. Table 5.1.1 lists the years for which each ensemble 

member over-predicted the average area of the cloud bands. Interesting to note is that 9 of the 

27 ensemble members (33.3%) overpredicted the average area of the cloud bands in 2003/2004 

(more on this is discussed in chapter 7). In 5 of the 14 seasons in the study period none of the 

ensemble members over-predicted the average area of the cloud bands. 
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Table 5.1.1: The NDJF seasons in which the ensemble members over-predict the average 

area of the cloud bands. ‘X’ marks a season in which an ensemble member over-predicts 

the average area of the cloud bands. In the last row, the total number of ensemble members 

which over-predict the average area of the cloud bands in that particular season, is 

displayed. 

 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 

1S1               

1S2        X  X     

1S3        X     X  

9S1    X    X       

9S2       X        

9S3      X    X     

17S1               

17S2        X       

17S3        X       

25S1               

25S2               

25S3               

1O1               

1O2        X      X 

1O3               

9O1        X       

9O2          X     

9O3        X X      

17O1   X          X  

17O2               

17O3        X       

25O1         X      

25O2         X      

25O3               

1N1         X      

1N2              X 

1N3               

Total   1 1  1 1 9 4 3   2 2 
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5.1.2 Root-mean square error 

The root-mean square error (RMSE) and the percentage error for the average area is calculated 

using Equation 2.4 and 2.5 respectively. This calculation is repeated for all 27 ensemble 

members.  

 

The RMSE values in km2 and the percentage error of each ensemble member are presented in 

Table 5.1.2. The average RMSE of all the ensemble members for the average cloud band area 

is 7268.43km2. An average percentage error of 20.31% is obtained. Ensemble member 1S3 

yielded the best RMSE value (5430.5km2) with a percentage error of 15.17%, while ensemble 

member 17S2 performed the worst with an RMSE of 8753.1km2 and a percentage error of 

24.21%. As mentioned before, ensemble member 1S3 has three years of data missing 

(1999/2000, 2002/2003, 2005/2006) and ensemble member 17S2 misses the data for February 

2005. 

 

Table 5.1.2: The RMSE values in km2 and the percentage error of the average area of the 

cloud bands for the different ensemble members. EM stands for ensemble member and the 

abbreviations of the ensemble members are explained in Table 3.1. The RMSE and 

percentage error averages in the last row of the last two columns are the averages for all 27 

ensemble members. 

EM RMSE (km2) Error (%)  EM RMSE (km2) Error (%) 

1S1 6960.83 19.43  1O3 7513.80 20.96 

1S2 8004.22 22.41  9O1 6803.20 18.98 

1S3 5430.50 15.17  9O2 7016.41 19.58 

9S1 6958.18 19.29  9O3 8006.40 22.60 

9S2 6498.39 18.49  17O1 7539.85 21.06 

9S3 6892.81 19.23  17O2 8139.90 22.71 

17S1 7436.14 20.75  17O3 7312.81 20.40 

17S2 8753.10 24.21  25O1 6726.83 18.77 

17S3 8257.06 22.99  25O2 6891.68 19.20 

25S1 6175.10 17.24  25O3 7445.13 20.88 

25S2 7560.71 21.09  1N1 7972.91 22.29 

25S3 7027.20 19.57  1N2 8266.83 23.19 

1O1 7763.73 21.79  1N3 6671.03 18.61 

1O2 6222.73 17.36  Average 7268.43 20.31 

 

Because the RMSE values are quite high and the fact that the ensemble members in general 

underpredict the average area of cloud bands, the bias is adjusted. Again Equations 2.6 and 2.7 

are used (as in chapter 4) in order to adjust the bias. 
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Table 5.1.3 shows the new RMSE values in km2 and the accompanying percentage error after 

the bias is adjusted. The average bias-adjusted RMSE is 4358.2km2 and the average bias-

adjusted percentage error is 12.18%. With the bias-adjustment, the average RMSE and the 

average percentage error is considerably lower. According to the new RMSE values, ensemble 

member 25S1 fared the best with an RMSE of 2713.41km2 and an error of 7.57%. The data of 

the 2002/2003 season and of the months January and February 2005 are missing for ensemble 

member 25S1. Ensemble member 9O1 has the highest RMSE value (6803.2km2), which results 

in a percentage error of 18.98%. No data is missing for ensemble member 9O1. 

 

Table 5.1.3: The RMSE values in km2 and the percentage error of the average area of the 

cloud bands for the different ensemble members after the bias was adjusted. EM stands for 

ensemble member and the abbreviations of the ensemble members are explained in Table 

3.1. The RMSE and the percentage error averages in the last row of the last two columns 

are the averages for all 27 ensemble members. 

EM RMSE (km2) Error (%)  EM RMSE (km2) Error (%) 

1S1 4231.89 11.81  1O3 3306.82 9.23 

1S2 5773.65 16.16  9O1 6803.20 18.98 

1S3 4156.73 11.61  9O2 3518.33 9.82 

9S1 4619.28 12.80  9O3 5194.25 14.66 

9S2 4492.68 12.78  17O1 4397.19 12.28 

9S3 4699.75 13.11  17O2 4395.23 12.26 

17S1 4666.60 13.02  17O3 4197.54 11.71 

17S2 4795.09 13.26  25O1 3469.37 9.68 

17S3 4716.71 13.13  25O2 3203.56 8.93 

25S1 2713.41 7.57  25O3 3258.15 9.14 

25S2 4041.87 11.28  1N1 4846.99 13.55 

25S3 3827.84 10.66  1N2 4498.47 12.62 

1O1 6220.06 17.45  1N3 3816.29 10.65 

1O2 3837.44 10.71  Average 4359.20 12.18 

 

Figures 5.1.6 to 5.1.9 display the average area of the cloud bands before and after the bias is 

adjusted, as well as the corresponding observed average area of the cloud bands for the best 

and worst performing ensemble members. From these four figures it can be seen that by 

adjusting the bias, the difference between the RMSE values of the ensemble member and that 

of the observed decreases. For some ensemble members there are more seasons which are 

relatively close to the observed values, but for other ensemble members it is the opposite. That 

is the case for ensemble member 1S3 (Figure 5.1.6) where there are three seasons in the bias 
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RMSE values which are close to that of the observed, while the bias-adjusted RMSE values 

only has two seasons which are relatively close to the observed (1998/1999 and 2002/2003). 

The average error of ensemble member 1S3 decreased from 15.17% to 11.61% after the bias 

was adjusted. The percentage error of the worst performer of the RMSE values for the average 

area, ensemble member 17S2, improved from 24.21% to 13.26% after the bias is adjusted.  

 

It is clear that the performance of the ensemble members and the model for the average area of 

the cloud bands, improves after the bias was adjusted, but as can be deducted from Figures 

5.1.6, 5.1.7, 5.1.8 and 5.1.9, there are still some seasons for which the different ensemble 

members under-predict the average area significantly. For the graphs of the average area of the 

rest of the ensemble members, please refer to Appendix A. 

 

 

Figure 5.1.6: The average area of the cloud bands for ensemble member 1S3. The x-axis 

indicates the different seasons in the study period and the y-axis donates the average area 

in km2. The green line represents the average area of the ensemble member, the yellow line 

the bias-adjusted average area of the ensemble member and the blue line the average area 

of the observed dataset. 
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Figure 5.1.7: The average area of the cloud bands for ensemble member 17S2. The x-axis 

indicates the different seasons in the study period and the y-axis donates the average area 

in km2. The green line represents the average area of the ensemble member, the yellow line 

the bias-adjusted average area of the ensemble member and the blue line the average area 

of the observed dataset. 

 

 

Figure 5.1.8: The average area of the cloud bands for ensemble member 25S1. The x-axis 

indicates the different seasons in the study period and the y-axis donates the average area 

in km2. The green line represents the average area of the ensemble member, the yellow line 

the bias-adjusted average area of the ensemble member and the blue line the average area 

of the observed dataset. 
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Figure 5.1.9: The average area of the cloud bands for ensemble member 9O1. The x-axis 

indicates the different seasons in the study period and the y-axis donates the average area 

in km2. The green line represents the average area of the ensemble member, the yellow line 

the bias-adjusted average area of the ensemble member and the blue line the average area 

of the observed dataset. 

 

5.2 Outgoing longwave radiation 

 

Outgoing longwave radiation (OLR) is the energy emitted by the earth’s surface due to the 

warming of the sun, which is also referred to as terrestrial radiation. The earth emits radiation 

all the time, but most of the radiation is emitted at night. Due to the great variability in diurnal 

and nocturnal radiation, daily mean OLR values are used in this study. The OLR is used as 

input data for the MetBot in order to identify candidate cloud bands. As part of the output, the 

minimum and maximum OLR values of each candidate cloud band are obtained. During clear 

skies and particularly clear skies at night, the earth emits more radiation than during overcast 

skies. Therefore, OLR can be used to identify cloud bands. The lower the OLR values, the 

thicker the clouds are (a thicker cloud will “trap” more radiation underneath it). Thicker and 

denser clouds indicate more precipitable water, which can lead to more rain on the ground. 

This relates to the intensity of a TTT event or a cloud band. Therefore, the minimum and 

maximum OLR values of the cloud bands can be used to determine the intensity of the cloud 

band and inevitably the TTT event as well. 
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One of the criteria the MetBot uses to flag a cloud band is for a blob to have OLR values less 

than 240 W.m-2. Therefore, most of the minimum and maximum OLR values of a cloud band 

will be less than 240 W.m-2. Sometimes it does happen that the maximum OLR values are 

greater than 240 W.m-2. This is possible if part of the blob, which is detected as a cloud band, 

has a gap somewhere which will allow more OLR to pass through. In the end however, most 

of the gridded OLR values should be below 240 W.m-2. 

 

This section is divided in two subsections: OLR minimum and OLR maximum. Each section 

comprises of subsections, which focus on the average OLR values (minimum and maximum 

respectively), as well as the RMSE values and their associated percentage error. 

  

5.2.1 Minimum OLR 

The minimum OLR value indicates the least amount of outgoing radiation from the earth’s 

surface that passes through a cloud band. Therefore, it can be concluded that the part where the 

least amount of radiation passes through, is the thickest part of the cloud band. This relates 

directly to the intensity of the cloud band, thus also the convective nature of the cloud band 

and the amount of precipitable water contained within the cloud.  

 

5.2.1.1 Average minimum OLR 

Figure 5.2.1 indicates the average minimum OLR values for every NDJF season of the 

observed dataset for the years 1996/1997 to 2009/2010. These values vary between 128.43 

W.m-2 in 1999 and 140.78 W.m-2 in 2003. On average an observed cloud band has a minimum 

OLR value of 135.78 W.m-2. As mentioned in the previous sections, the observed dataset for 

each ensemble member varies due to the fact that the data is not complete for every ensemble 

member.  
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Figure 5.2.1: The average minimum OLR values in W.m-2 per season of the observed 

dataset for the NDJF seasons of 1996/1997 to 2009/2010. 

 

Figure 5.2.2 depicts the average minimum OLR values per season of each ensemble member 

and the corresponding observed average minimum OLR values averaged over the study period. 

From the figure it can be deduced that the ensemble members in general under-predict the 

minimum OLR values. The only ensemble member which just slightly over-predicts the 

average minimum OLR value is ensemble member 17O1. The average minimum OLR value 

for ensemble member 17O1 is 136.49W.m-2 and the matching observed value is 136.31W.m-2. 

Ensemble member 17O1 does not have data for the months December 2001, January 2002 and 

February 2002. The worst performer is ensemble member 1S3 with a value of 128.42 W.m-2, 

which corresponds to an average observed value of 136.54 W.m-2. Ensemble member 1S3 

misses data for three NDJF seasons, namely 1999/ 2000, 2002/2003 and 2005/2006. The model 

average calculates to 132.99 W.m-2.  

 

To better establish the best and worst performers of the ensemble members when considering 

the average minimum OLR, the difference between the average minimum OLR values of each 

ensemble member and the corresponding observed value is calculated by using Equation 5.1: 

D indicates the difference between the ensemble member and the corresponding observed 

value, xo is the ensemble member’s specific average observed minimum OLR value and xm is 

the average minimum OLR value of the considered ensemble member:  

 

𝐷 = 𝑥𝑜 − 𝑥𝑚      (5.1) 
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Thereafter the results are plotted and from this figure (Fig. 5.2.3) the best and worst performing 

ensemble members as discussed in the previous paragraph are confirmed.  

 

 

Figure 5.2.2: The average minimum OLR values per season of the 27 ensemble members 

and the corresponding observed dataset in W.m-2 averaged for the NDJF seasons of 

1996/1997 to 2009/2010. For the abbreviations of the ensemble members, please refer to 

Table 3.1. 

 

 

Figure 5.2.3: The difference between the average minimum OLR value per season in W.m-2 

for the NDJF seasons of 1996/1997 to 2009/2010 of every ensemble member and the 

corresponding observed value. For the abbreviations of the ensemble members, please refer 

to Table 3.1. 

126

128

130

132

134

136

138

1
S

1

1
S

2

1
S

3

9
S

1

9
S

2

9
S

3

1
7
S

1

1
7
S

2

1
7
S

3

2
5
S

1

2
5
S

2

2
5
S

3

1
O

1

1
O

2

1
O

3

9
O

1

9
O

2

9
O

3

1
7
O

1

1
7
O

2

1
7
O

3

2
5
O

1

2
5
O

2

2
5
O

3

1
N

1

1
N

2

1
N

3

M
in

im
u
m

 O
L

R
 (

W
.m

-2
)

Ensemble members

Comparison of the average minimum OLR of the different 

ensemble members to the corresponding observed dataset

OLR min

Observed

-2
-1
0
1
2
3
4
5
6
7
8
9

D
if

fe
re

n
ce

 (
W

.m
-2

)

Ensemble members

Difference between the average minimum OLR value of each 

ensemble member and the corresponding observed value



61 
 

 

Figures 5.2.4 and 5.2.5 show the worst and the best performers of the ensemble members 

regarding the average minimum OLR value of the modelled cloud bands to that of the observed 

cloud bands, respectively. The year-to-year variability of ensemble member 1S3 is completely 

different to that of the corresponding observed dataset, especially towards the latter part of the 

study period (from season 2002/2003 onwards). There are also sections of data missing for this 

specific ensemble member. These sections are the complete seasons of 1999/2000, 2002/2003 

and 2005/2006. Ensemble member 17O1 has missing data for the months December, January 

and February of 2001/2002. In Figure 5.2.5 it can be seen that the difference is in general less 

between the average minimum OLR values of the ensemble member (17O1) and that of the 

observed dataset. Even though there are a few outliers (1998/1999, 2002/2003 and 2008/2009), 

the year-to-year variation is closer to that of the observed dataset, compared to ensemble 

member 1S3 (Fig. 5.2.4). 

 

 

Figure 5.2.4: The minimum OLR value in W.m-2 per season for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 1S3 and the corresponding observed values. 

The blue line depicts the values of the ensemble member and the orange that of the observed 

dataset. 

 

115

120

125

130

135

140

145

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

M
in

im
u
m

 O
L

R
 (

W
.m

-2
)

NDJF Seasons

Minimum OLR values for ensemble member 1S3 compared 

to the corresponding observed values

EM 1S3

Observed



62 
 

 

Figure 5.2.5: The minimum OLR value in W.m-2 per season for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 17O1 and the corresponding observed 

values. The blue line depicts the values of the ensemble member and the orange that of the 

observed dataset. 

 

 

5.1.1.2 Root-Mean Square Error 

By using equation 2.4 once again, the root-mean square error (RMSE) is calculated for the 

minimum OLR. The percentage error is also calculated for the minimum OLR by using 

Equation 2.5. 

  

Table 5.2.1 lists the RMSE values of each ensemble member for the minimum OLR of each 

NDJF season of the years 1996/1997 to 2009/2010. The average minimum OLR of all 27 

ensemble members came to 7.09 W.m-2, which yielded an average percentage error of 5.20%. 

From the table it can be seen that ensemble member 17O3 has the lowest RMSE value 

(4.75W.m-2, which yields a percentage error of 3.49%) and ensemble member 1S3 has the 

highest RMSE value (10.76 W.m-2, which yields a percentage error of 7.63%). Ensemble 

member 17O3 has no missing data and as mentioned before, ensemble member 1S3 has no data 

for the years 1999/2000, 2002/2003 and 2005/2006.  
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Table 5.2.1: The RMSE values in W.m-2 and the percentage error of the minimum OLR 

values of the cloud bands for the different ensemble members. EM stands for ensemble 

member and the abbreviations of the ensemble members can be found in Table 3.1. The 

RMSE and the percentage error averages in the last row of the last two columns are the 

averages for all 27 ensemble members. 

EM RMSE (W.m-2) Error (%)  EM RMSE (W.m-2) Error (%) 

1S1 6.26 4.60  1O3 5.14 3.78 

1S2 8.62 6.33  9O1 5.68 4.17 

1S3 10.76 7.87  9O2 7.21 5.30 

9S1 9.65 7.11  9O3 6.27 4.57 

9S2 9.51 6.92  17O1 6.83 5.00 

9S3 8.17 6.00  17O2 5.50 4.04 

17S1 6.95 5.11  17O3 4.75 3.49 

17S2 9.16 6.74  25O1 6.54 4.81 

17S3 9.08 6.64  25O2 5.38 3.95 

25S1 5.94 4.35  25O3 5.01 3.68 

25S2 7.99 5.87  1N1 6.73 4.95 

25S3 6.51 4.79  1N2 8.32 6.08 

1O1 6.18 4.52  1N3 7.11 5.22 

1O2 6.15 4.52  Average 7.09 5.20 

 

 

In Figures 5.2.6 and 5.2.7 the minimum OLR values are displayed of the best and the worst 

performing ensemble members when considering the RMSE values for the minimum OLR. 

There is a significant difference in the year-to-year variability of ensemble member 17O3 

compared to that of the observed (Fig. 5.2.6) for the first few seasons of the study period. For 

the last few seasons (from 2005/2006 to 2009/2010) this variation between the forecast OLR 

values of ensemble member 17O3 and the OLR values of the observed cloud bands is 

improved. For the years 1997/1998, 1998/1999 and 2000/2001 to 2004/2005 ensemble member 

17O3 under-estimates the average minimum OLR, in which case a bias-adjustment can be 

considered. For ensemble member 1S3 and that of the corresponding observed data set, there 

is a definitive difference, especially from the season of 2003/2004 till 2009/2010. There is not 

a clear relationship between the minimum OLR of ensemble member 1S3 and that of the 

corresponding observed dataset. 

 

Due to the fact that the minimum OLR of the ensemble members yield an RMSE below 10 in 

all but one case and an average percentage error of 5.20%, a bias-adjustment is not necessary. 
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Figure 5.2.6: The minimum OLR value in W.m-2 per season for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 17O3 and the corresponding observed 

values. The blue line depicts the values of the ensemble member and the orange that of the 

observed dataset. 

 

 

Figure 5.2.7: The minimum OLR value in W.m-2 per season for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 1S3 and the corresponding observed values. 

The blue line depicts the values of the ensemble member and the orange that of the observed 

dataset. 
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5.2.2 Maximum OLR 

Every cloud band has a minimum and a maximum OLR value, which is part of the output of 

the MetBot. The maximum OLR value is usually below 240 W.m-2, because of the criteria used 

by the MetBot to flag the cloud bands. The maximum OLR is an indication of the thinnest and 

least dense part of the cloud band. The thinner the cloud band, the less rain it can produce.   

 

5.2.2.1 Average maximum OLR 

The average maximum OLR values for every season from 1996/1997 to 2009/2010 for the 

observed dataset is displayed in Figure 5.2.8. These values vary between 233.89 W.m-2 and 

242.39 W.m-2. There are two seasons with average values above the 240 W.m-2 threshold. As 

mentioned before, this is not entirely impossible, but will be discussed in more detail in Chapter 

7. The observed cloud bands have on average a maximum OLR value of 237.9 W.m-2. For the 

ensemble members that does not have a complete dataset in the considered study period, the 

corresponding observed average maximum OLR value will differ. 

 

 

Figure 5.2.8: The average maximum OLR values in W.m-2 per season of the observed 

dataset for the NDJF seasons of 1996/1997 to 2009/2010. 

 

In Figure 5.2.9, the average maximum OLR per season in the study period of each ensemble 

member is compared to the corresponding observed average maximum OLR values. Once 

again it is the case that the values of the different ensemble members are lower than that of the 

observed. Only ensemble member 9S3 over-estimates the maximum OLR. Also notable is that 
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considering that the maximum threshold for a cloud band is 240 W.m-2. The fact that the 

ensemble members are well below the threshold can indicate that the model in general over-

estimates the thickness of the clouds within the cloud bands. 

 

 

Figure 5.2.9: The average maximum OLR values for the entire study period (1996/1997 to 

2009/2010) of the ensemble members (blue line) compared to that of the corresponding 

observed dataset (orange line) in W.m-2. 

 

From Figure 5.2.9, it can be deduced that ensemble member 9S3 is the best performer and 

ensemble member 1O1 the worst. The average maximum OLR for ensemble member 9S3 is 

238.05 W.m-2 and the corresponding observed value is 237.9 W.m-2. Ensemble member 9S3 

does not have any missing data. Ensemble member 1O1 produces an average maximum OLR 

of 233.65 W.m-2 with a corresponding observed value of 238.19 W.m-2. Ensemble member 

1O1 misses data for the months December 2004, January 2005 and February 2005.  

 

The difference between the average maximum OLR of the ensemble members and the 

corresponding observed values is displayed in Figure 5.2.10. To calculate the difference, the 

simple Equation of 5.1 is used.  

 

In Figure 5.2.10, the best and worst performers can perhaps be better distinguished than in 

Figure 5.2.9. Ensemble member 9S3 has a difference of -0.14 W.m-2 with the corresponding 

average observed maximum OLR value (the minus indicates an over-estimation). The worst 
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performer, ensemble member 1O1, differs by +4.53 W.m-2 with the corresponding average 

observed maximum OLR value (the plus indicates an under-estimation). On average, the model 

calculated the maximum OLR per cloud band as 235.26 W.m-2, which is of course less than 

the observed, but not significantly. 

 

 

Figure 5.2.10: The difference between the average maximum OLR value per season in 

W.m-2 for the NDJF seasons of 1996/1997 to 2009/2010 of every ensemble member and 

the corresponding observed value. For the abbreviations of the ensemble members, please 

refer to Table 3.1. 

 

The best and the worst performing ensemble members, when considering the average 

maximum OLR, are displayed in Figures 5.2.11 and 5.2.12. Ensemble member 9S3 (Fig. 

5.2.11) follows more or less the same variability as that of the observed dataset. For the years 

2001, 2005 and 2006 the ensemble member showed a decrease instead of an increase from the 

previous year as was the case with the observed data. Even though there is a decreasing 

variability from 2004 to 2005 for the average maximum OLR of the model, the value for 2005 

differs by 0.13 W.m-2 to that of the model. This translates to a 0.05% percentage error, which 

is extremely low in comparison with the rest of the data. The worst performer (ensemble 

member 1O1) follows the same decrease and increase variability of the observed data for the 

first few seasons. From the 2002/2003 season however, the variability is completely different. 

For the seasons 2001/2002 and 2006/2007, the ensemble member’s average maximum OLR is 

very close to that of the observed dataset (a percentage error of 0.39% and -0.29% respectively). 
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In general, the average maximum OLR of ensemble member 9S3 is closer to that of the 

observed dataset than the average maximum OLR of ensemble member 1O1. 

 

 

Figure 5.2.11: The maximum OLR value in W.m-2 per season for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 9S3 and the corresponding observed values. 

The blue line depicts the values of the ensemble member and the orange that of the observed 

dataset. 

 

 

Figure 5.2.12: The maximum OLR value per season in W.m-2 for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 1O1 and the corresponding observed values. 

The blue line depicts the values of the ensemble member and the orange that of the observed 

dataset. 
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5.2.2.2 Root-Mean Square Error 

Next the root-mean square error (RMSE) of the average maximum OLR is calculated for all 

27 ensemble members using Equation 2.4. After the RMSE is calculated, the percentage error 

(PE) is also calculated by using Equation 2.5. 

  

Table 5.2.2 lists the RMSE values in W.m-2 of the average maximum OLR of the 27 different 

ensemble members, as well as the corresponding percentage error. The average RMSE for all 

27 ensemble members is 4.53 W.m-2 which results in a percentage error of 1.90%. From the 

table above, it can be seen that ensemble member 17S3 yields the highest RMSE value (6.11 

W.m-2) with a corresponding percentage error of 2.57% and ensemble member 9S3 yields the 

lowest RMSE value (3.42 W.m-2) with a corresponding percentage error of 1.44%. Ensemble 

member 17S3 has three years of data missing, namely 1999/2000, 2000/2001 and 2001/2002, 

while ensemble member 9S3 has no missing data. Interesting to note is that ensemble member 

9S3 is also the best performer in the previous section (the section on the average maximum 

OLR values). 

 

Table 5.2.2: The RMSE values in W.m-2 and the percentage error of the maximum OLR 

values of the cloud bands for the 27 different ensemble members. EM stands for ensemble 

member and the abbreviations of the ensemble members can be found in Table 3.1. The 

RMSE and the percentage error averages in the last row of the last two columns are the 

averages for all 27 ensemble members. 

EM RMSE (W.m-2) Error (%)  EM RMSE (W.m-2) Error (%) 

1S1 4.26 1.79  1O3 3.90 1.64 

1S2 4.74 1.99  9O1 4.63 1.95 

1S3 5.91 2.48  9O2 4.46 1.88 

9S1 4.58 1.92  9O3 4.64 1.95 

9S2 3.92 1.65  17O1 3.55 1.49 

9S3 3.42 1.44  17O2 3.60 1.51 

17S1 4.84 2.03  17O3 4.19 1.76 

17S2 4.71 1.98  25O1 5.67 2.38 

17S3 6.11 2.57  25O2 4.39 1.84 

25S1 4.59 1.93  25O3 4.40 1.85 

25S2 4.34 1.82  1N1 4.12 1.73 

25S3 4.87 2.05  1N2 4.67 1.96 

1O1 5.46 2.29  1N3 4.56 1.92 

1O2 3.83 1.61  Average 4.53 1.90 
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In Figure 5.2.13, the average maximum OLR per season of ensemble member 17S3, the 

ensemble member with the highest RMSE, is displayed. The average maximum OLR of the 

seasons 1997/1998, 2007/2008 and 2009/2010 are significantly different than that of 

corresponding observed values. There is no model data available for the three seasons 

1999/2000 to 2001/2002. The average maximum OLR values of the three seasons of 2003/2004 

to 2005/2006 differ very little from that of the corresponding observed values and the average 

maximum OLR for the season of 2008/2009 only differs by 0.47% (1.12 W.m-2). It is possible 

that the large section of missing data has an influence on the average performance of this 

ensemble member.  

 

 

Figure 5.2.13: The maximum OLR value in W.m-2 per season for the NDJF seasons of 1996/1997 

to 2009/2010 of ensemble member 17S3 (blue line) and the corresponding observed 

values (orange line).  

 

Figure 5.2.14 is almost the perfect example of a good performing ensemble member where the 

results of the ensemble member is in close agreement to that of the observed, in this case 

ensemble member 9S3. The general year-to-year variability of increasing or decreasing from 

one season to the next is very close to that of the corresponding observation dataset. The only 

outliers are the seasons of 2001/2002, 2005/2006 and 2006/2007. Both the average maximum 

OLR of ensemble member 9S3 and that of the observed dataset decreased from season 

2008/2009 to 2009/2010, but the ensemble member decreases more than that of the observed 

dataset.  
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Figure 5.2.14: The maximum OLR value in W.m-2 per season for the NDJF seasons of 

1996/1997 to 2009/2010 of ensemble member 9S3 (blue line) and the corresponding 

observed values (orange line).  

 

As in the case with the average minimum OLR values of the ensemble members, the RMSE 

and corresponding percentage errors are also very low for the average maximum OLR values. 

Therefore, it is decided not to adjust the bias.  

 

5.3 Synopsis 

 

This part of the results focuses on the intensity of the TTT events by looking at the area and 

the minimum and maximum OLR of the cloud bands. These variables of the modelled cloud 

bands are compared to that of the observed cloud bands by means of calculating the averages 

(seasonal average per ensemble member) and the model average (over the entire study period). 

Furthermore, the RMSE values and the corresponding percentage error are calculated. 

Thereafter, the graphs of the best and worst performing ensemble members are presented.  

 

In the next chapter (the final chapter on the results of this study), the results regarding the 

location of the TTTs are presented. These results include the anchor point, the position of the 

centroid and the tilt of the cloud bands. 
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CHAPTER 6: Location of TTTs 
 

 

Part 4 of the results focuses mainly on the location of the cloud bands and therefore also the 

location of the TTTs. This chapter consists of the analysis of the anchor points, the position of 

the centroid and the tilt of the cloud bands. As mentioned in Chapter 3, abbreviations are used 

for the ensemble members. These abbreviations can be found in Table 3.1. 

 

 

6.1 Cloud band anchor point 

 

The north-western most point of the cloud band is considered as the anchor point of the cloud 

band. The point can also be referred to as the root of the cloud band and has a specific longitude 

and latitude. These coordinates are located within the study area (geographical domain) that 

forms part of the criteria for the MetBot to identify cloud bands. The geographical domain was 

discussed in Chapter 2 Section 2.5 and displayed in Figure 2.3. The geographical domain 

extends from 5°S to 50°S and from 5°E to 80°E.  

 

In Figure 6.1.1 the anchor points of all the observed cloud bands (as flagged by the MetBot) 

for the NDJF seasons of 1996/1997 to 2009/2010 are displayed by the red dots. Some cloud 

bands have exactly the same anchor points. Therefore, one red dot can represent multiple 

anchor points. The most of the cloud bands have their roots somewhere above Namibia and 

Angola between 5˚E and 21˚E. The second most anchor points fall within the region above 

Madagascar. Very few cloud bands start in the region above Zimbabwe/Mozambique. From 

Figure 6.1.1, the gridded nature of the data is clearly visible.  

 

Due to the large geographical domain, cloud bands can originate in many different places with 

very different coordinates. It was found that the latitude of the anchor point of most of the 

modelled cloud bands is more or less consistent with those of the observed, but the longitude 

varies quite substantially. These differences in the latitudes between the modelled and the 

observed cloud bands resulted in large RMSE values and therefore also large percentage errors. 

It was therefore decided to rather use a graphical approach instead of a statistical approach to 

evaluate the performance of the ensemble members. However, first the original results will be 
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shown and briefly discussed to illustrate the issue faced with the anchor points of the cloud 

bands. Thereafter, the graphical results will be presented. 

 

 

Figure 6.1.1: The anchor points of the observed cloud bands as flagged by the MetBot for 

the NDJF seasons of the years 1996/1997 to 2009/2010. The red dots indicate the anchor 

points. Each red dot can represent more than one anchor point, i.e. more than one cloud 

band. The blue lines divide the geographical domain in the three preferred regions where 

TTTs tend to develop. At the bottom of these three regions (columns), the number of 

cloud bands within that region is displayed (around 35˚S). 

 

The geographical domain is divided in the following three sections based on the longitude of 

the anchor points: cloud bands with anchor points to the west of 21˚E (region 1), between 21˚E 

and 38˚E (region 2) and to the east of 38˚E (region 3). These three regions cover the three areas 

where the cloud bands have been found to have their roots, i.e. the first region is above and 

around Namibia up to the western and north-western parts of Botswana, the second above 

Zimbabwe, Mozambique and part of the Mozambican Channel, and the third stretches from 

above Madagascar to the Southern Indian Ocean. 

 

Another challenge in evaluating the anchor point of the cloud bands is that there are quite a 

few seasons in the observed dataset as well as the modelled data where there are no cloud bands 

within specific regions. This lack of cloud bands within specific seasons influenced the average 

coordinates of the cloud bands significantly, which is a result when a no-cloud band season is 
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considered as 0, which is falsely registered as coordinates of 0˚S, 0˚E. One option is perhaps 

to discard the years without any modelled or observed cloud bands. However, there are so many 

years, especially in Region 2, where either the ensemble member does not model cloud bands 

or there are no cloud bands observed in this specific area, a large section of the data in the study 

period would then have to be disregarded. 

 

In the three figures above (Fig. 6.1.2, 6.1.3 and 6.1.4) the dilemma that is faced with the 

coordinates of the cloud bands’ anchor points, can be seen. Figure 6.1.2 represents region 1 

(cloud bands with longitudes up to 20˚E) of ensemble member 1S1, as well as the 

corresponding observed longitudes for the study period. From this figure it can be seen that 

this specific ensemble member tends to model the cloud bands slightly farther east than what 

is observed. For region 2 (Fig. 6.1.3) ensemble member 1S1 performs well for 6 of the 14 

seasons (1997/1998, 1999/2000, 2002/2003, 2003/2004, 2005/2006 and 2006/2007), but not 

for the rest of the study period. Especially the years where either the ensemble member does 

not forecast cloud bands or there are no cloud bands observed in region 2. For region 3 (Fig. 

6.1.4) the ensemble member performed really well, except again for the two seasons where 

ensemble member 1S1 forecast cloud bands, while there are no observed cloud bands 

(1996/1997 and 2006/2007). 

 

These three figures (Fig. 6.1.2 to 6.1.4) only represent one of the 27 ensemble members, but 

this dilemma is faced with most of the ensemble members, especially in region 2. This 

“dilemma” results in high RMSE values, which are displayed in the Table 6.1.1, 6.1.2 and 

6.1.3. Ensemble member 1S1 is chosen randomly to illustrate this particular dilemma that is 

faced with most of the ensemble members. 
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Figure 6.1.2: The average longitude of the cloud bands’ anchor points in region 1 as 

modelled by ensemble member 1S1 (blue line) and the corresponding observed values 

(orange line) for the study period 1996/1997 to 2009/2010. 

 

 

Figure 6.1.3: The average longitude of the cloud bands’ anchor points in region 2 as 

modelled by ensemble member 1S1 (blue line) and the corresponding observed values 

(orange line) for the study period 1996/1997 to 2009/2010. 
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Figure 6.1.4: The average longitude of the cloud bands’ anchor points in region 3 as 

modelled by ensemble member 1S1 (blue line) and the corresponding observed values 

(orange line) for the study period 1996/1997 to 2009/2010. 

 

Table 6.1.1: The RMSE values in degrees east (˚E) and the percentage error of the anchor 

point of the cloud bands in region 1 for the 27 different ensemble members. EM stands for 

ensemble member and the abbreviations of the ensemble members can be found in table 

3.1. The RMSE and the percentage error averages in the last row of the last two columns 

are the averages for all 27 ensemble members. 

EM RMSE (˚E) Error (%)   EM RMSE (˚E) Error (%) 

1S1 0.78 5.13  1O3 0.67 4.45 

1S2 0.72 4.76  9O1 0.67 4.43 

1S3 0.62 4.09  9O2 0.65 4.32 

9S1 0.83 5.52  9O3 1.00 6.59 

9S2 0.88 5.78  17O1 0.75 4.92 

9S3 0.85 5.59  17O2 0.86 5.66 

17S1 0.60 3.99  17O3 0.86 5.71 

17S2 0.61 4.01  25O1 0.80 5.26 

17S3 0.72 4.75  25O2 0.69 4.55 

25S1 0.54 3.55  25O3 0.95 6.25 

25S2 0.85 5.61  1N1 0.82 5.39 

25S3 0.75 4.96  1N2 0.72 4.73 

1O1 0.77 5.10  1N3 0.78 5.15 

1O2 0.54 3.55   Average 0.75 4.96 
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Table 6.1.2: The RMSE values in degrees east (˚E) and the percentage error of the anchor 

point of the cloud bands in region 2 for the 27 different ensemble members. EM stands for 

ensemble member and the abbreviations of the ensemble members can be found in table 

3.1. The RMSE and the percentage error averages in the last row of the last two columns 

are the averages for all 27 ensemble members. 

EM RMSE (˚E) Error (%)   EM RMSE (˚E) Error (%) 

1S1 14.74 61.86  1O3 15.67 66.67 

1S2 22.51 87.74  9O1 17.49 74.40 

1S3 18.45 76.01  9O2 19.17 81.54 

9S1 11.54 48.81  9O3 13.89 66.96 

9S2 17.81 79.05  17O1 16.80 71.45 

9S3 19.09 81.21  17O2 18.99 80.80 

17S1 14.81 67.43  17O3 18.03 76.71 

17S2 16.95 77.21  25O1 16.86 71.73 

17S3 18.72 67.25  25O2 19.69 83.75 

25S1 18.16 87.08  25O3 15.56 75.03 

25S2 19.29 87.84  1N1 20.87 88.77 

25S3 17.83 75.41  1N2 16.29 78.56 

1O1 16.90 82.82  1N3 17.16 73.00 

1O2 20.16 85.75   Average 17.53 76.11 

 

Table 6.1.3: The RMSE values in degrees east (˚E) and the percentage error of the anchor 

point of the cloud bands in region 3 for the 27 different ensemble members. EM stands for 

ensemble member. The abbreviations of the ensemble members can be found in Table 3.1. 

The RMSE and the percentage error averages in the last row of the last two columns are 

the averages for all 27 ensemble members. 

EM RMSE (˚E) Error (%)   EM RMSE (˚E) Error (%) 

1S1 22.79 55.13  1O3 20.62 50.08 

1S2 23.98 59.17  9O1 19.18 46.59 

1S3 19.93 51.97  9O2 19.65 47.72 

9S1 25.78 63.80  9O3 19.09 46.56 

9S2 19.43 49.40  17O1 23.57 62.05 

9S3 18.60 45.19  17O2 19.52 47.43 

17S1 24.95 60.77  17O3 23.39 56.82 

17S2 20.83 50.89  25O1 19.96 48.50 

17S3 22.53 57.48  25O2 20.52 49.89 

25S1 20.59 51.79  25O3 23.37 61.24 

25S2 17.84 43.45  1N1 19.55 47.49 

25S3 20.42 50.06  1N2 24.92 60.51 

1O1 22.96 56.15  1N3 18.60 45.19 

1O2 17.36 42.18   Average 21.11 52.13 
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The average RMSE and the percentage error of the anchor point of the cloud bands in region 1 

of the 27 ensemble members are 0.75˚ and 4.96% respectively. For region 2 these values are 

calculated as 17.53˚ and 76.11% and for region 3 as 21.11˚ and 52.13%. The values for region 

1 are not as high as the other two regions, which could be due to the number of cloud bands 

simulated with their roots in and around Namibia, as well as the longitudinal dimension of 

region 1 that is narrower than the other two regions, in particular that of region 3. Regions 2 

and 3 could have such a high percentage error due to the lack of cloud bands in these areas 

during some of the seasons, and due to the geographical extend of these two regions. 

 

Due to the high RMSE values and the high percentage errors, as well as the dilemma discussed 

earlier in this section, it is decided to rather use a visual presentation to compare the anchor 

points of the modelled and the observed cloud bands. 

 

In figures 6.1.5, 6.1.6 and 6.1.7 the anchor points of three of the ensemble members (1S1, 1O1 

and 1N1) are displayed. These ensemble members are chosen randomly to illustrate the visual 

display of the anchor points of the modelled cloud bands. For the rest of the ensemble members, 

please refer to Appendix B. The red dots in the figures represent the anchor points of the cloud 

bands. One such a dot can represent more than one cloud band. The blue lines divide the study 

domain in the three regions where TTTs tend to develop. At the bottom of these regions the 

number of cloud bands with anchor points within that particular region is displayed. From the 

figures, as well as the other ensemble members not shown here, it is clear that most of the 

modelled cloud bands tend to develop in the first region, the second most in region 3 and the 

least in region 2. This is also the case with the observed cloud bands (fig. 6.1.1).  

 

The gridded nature of the data can be seen in figures 6.1.5 to 6.1.7, as is the case with the 

observed data in figure 6.1.1. Also evident in these figures is the difference in the resolution of 

the different datasets: the ensemble members have a finer resolution than the observed dataset. 

Due to the lack of cloud bands in the second region, it might be sensible to divide the 

geographical domain in two regions instead of three, with the border between the two regions 

around 30˚E, which can be considered in a follow-up study. The division of the domain at 30˚E 

will accommodate the extension of TTT events over the landmass and the adjacent Southwest 

Indian Ocean (Harrison, 1984). 
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Figure 6.1.5: The anchor points (red dots) of the cloud bands modelled by ensemble 

member 1S1 during the study period. Each red dot can represent more than one anchor 

point. The blue lines divide the geographical domain in the three preferred regions where 

TTTs tend to develop. At the bottom of each region (columns), the number of cloud 

bands modelled within that region is displayed (around 35˚S).  

 

 

Figure 6.1.6: The anchor points (red dots) of the cloud bands modelled by ensemble 

member 1O1 during the study period. Each red dot can represent more than one anchor 

point. The blue lines divide the geographical domain in the three preferred regions where 

TTTs tend to develop. At the bottom of each region (columns), the number of cloud 

bands modelled within that region is displayed (around 35˚S).  
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Figure 6.1.7: The anchor points (red dots) of the cloud bands modelled by ensemble 

member 1N1 during the study period. Each red dot can represent more than one anchor 

point. The blue lines divide the geographical domain in the three preferred regions where 

TTTs tend to develop. At the bottom of each region (columns), the number of cloud 

bands modelled within that region is displayed (around 35˚S).  

 

According to the observed dataset (figure 6.1.1) the cloud bands have their anchor points 

between 5˚S and 20˚S. The ensemble members correctly modelled the latitude of the cloud 

bands, which could perhaps be part of the criteria of the MetBot to identify cloud bands. 

Regarding the longitude, the anchor points of the observed cloud bands can be found between 

15˚E and 68˚E. Twelve ensemble members, i.e. 44% of the 27 ensemble members, modelled 

the cloud bands farther east than 68˚E, of which ensemble member 1O1 (fig. 6.1.6) is one of 

these.  

 

6.2 Position of the centroid 

 

The centroid, also called the geographical centre or the centre of mass, of the cloud bands is 

the arithmetic mean position of all the points in the shape, i.e. the centre of all the points in 

every coordinate direction. The centroid has therefore longitude and latitude and can be used 

to compare the average centre of the mass of the modelled cloud bands to that of the observed 

cloud bands. The position of the centroid contributes to two of the objectives of this study, 

namely the location of the cloud bands and the intensity of the cloud bands. By intensity is 
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meant the impact the cloud band and the resulting rain has on nature and humanity. The position 

of the centroid can also be an indication of whether the ensemble members have a bias towards 

a specific region and if the observed cloud bands tend to develop more in one location than 

another.  

 

The same dilemma is faced in analysing the position of the centroid as with the anchor point 

of the cloud bands in Section 6.1. Therefore, a graphical display of the centroid’s position will 

also be used in this section, instead of calculating the average position, the RMSE and the 

percentage deviation. 

 

The position of the centroids of the observed cloud bands are displayed in figure 6.2.1 (the 

green dots in the figure). Interesting to note in the figure is that most of the centroids are situated 

above and around the summer rainfall region of South Africa (northern parts of South Africa), 

as well as Zimbabwe and the southern half of Mozambique. This “cluster” of centroids 

stretches across the Mozambique Channel towards the southern and central parts of 

Madagascar. A second smaller cluster can be found across the southern Indian Ocean 

(southeast of Madagascar). The centroid is calculated using the MetBot and therefore does not 

illustrate the gridded nature of data as can be seen in the results of the anchor points. 

 

Figures 6.2.2, 6.2.3 and 6.2.4 indicate the positions of the centroids (the greed dots) of the cloud 

bands modelled by ensemble members 1S1, 1O1 and 1N1 respectively. These ensemble 

members are chosen randomly to illustrate the visual display of the centroids of the modelled 

cloud bands. For the rest of the ensemble members, please refer to Appendix B. The green dots 

indicate the positions of the centroids as modelled by the ensemble members. Also, in these 

figures are the positions of the anchor points of the cloud bands (the red dots). The anchor 

points are displayed in order to put the centroid positions in perspective. Keep in mind that one 

red dot can represent more than one cloud band. The blue lines divide the study domain in the 

three regions where TTTs tend to develop (have their anchor points). The number at the bottom 

of these regions is the number of cloud bands with anchor points in that particular region.  
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Figure 6.2.1: The anchor points (red dots) and the position of the centroids (green dots) of 

the observed cloud bands as flagged by the MetBot for the study period 1996/1997 to 

2009/2010. Each red dot can represent more than one anchor point. The blue lines divide 

the geographical domain in the three preferred regions where TTTs tend to develop (have 

their anchor points). At the bottom of these three regions (columns), the number of cloud 

bands which developed within that region is displayed (around 37˚S). 

 

 

Figure 6.2.2: The anchor points (red dots) and the centroids (green dots) of the cloud 

bands modelled by ensemble member 1S1 for the NDJF seasons of 1996/1997 to 

2009/2010. Each red dot can represent more than one anchor point. The blue lines divide 

the geographical domain in the three preferred regions where TTTs tend to develop. At 

the bottom of these three regions (columns), the number of cloud bands within that region 

is displayed (around 37˚S).  
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Figure 6.2.3: The anchor points (red dots) and the centroids (green dots) of the cloud 

bands modelled by ensemble member 1O1 for the NDJF seasons of 1996/1997 to 

2009/2010. Each red dot can represent more than one anchor point. The blue lines divide 

the geographical domain in the three preferred regions where TTTs tend to develop. At 

the bottom of these three regions (columns), the number of cloud bands within that region 

is displayed (around 37˚S).  

 

 

Figure 6.2.4: The anchor points (red dots) and the centroids (green dots) of the cloud 

bands modelled by ensemble member 1N1 for the NDJF seasons of 1996/1997 to 

2009/2010. Each red dot can represent more than one anchor point. The blue lines divide 

the geographical domain in the three preferred regions where TTTs tend to develop. At 

the bottom of these three regions (columns), the number of cloud bands within that region 

is displayed (around 37˚S).  
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Most of the modelled cloud bands have their centroids in a similar region as that of the observed 

(fig. 6.2.1), i.e. most of the centroids of the modelled cloud bands are found around the northern 

parts of South Africa, across Zimbabwe and Mozambique, as well as the southern and central 

parts of Madagascar. No centroids (observed and modelled) are found north of 15˚S. Very few 

modelled centroids are positioned south of 30˚S. This is also the case with the observed 

centroids.  

 

In the observed dataset, there is only one cloud band with its centroid positioned west of 21˚E, 

i.e. within region 1. The ensemble members modelled very few cloud bands with their centroids 

positioned in region 1. Most ensemble members do not have any cloud bands with their 

centroids positioned in this region. In fact, only four ensemble members (14.81% of the 27 

ensemble members) modelled cloud bands with the position of the centroid in region 1. 

 

Interesting to note is that a considerable number of centroids are positioned east of Madagascar 

in both the observed dataset and the modelled dataset. These cloud bands will inevitably have 

no or very little impact regarding rainfall over a landmass.  

 

 

6.3 Tilt 

 

The northwest-southeast (NW-SE) tilt of a cloud band contributes to the location of a cloud 

band, which is one of the sub-objectives of this study. It is calculated using the north-western 

most point (the anchor point) and the south-eastern most point. If the cloud band has more of 

a north-south tilt, it will for example be more confined to the west and the central parts of South 

Africa, if it has its roots in Namibia. A cloud band with a flatter tilt (more west-northwest to 

east-southeast) and with its roots in region 1, will stretch to the eastern parts of South Africa 

and even perhaps over the southwestern Indian Ocean. In the latter case, a cloud band will 

potentially affect more people due to the high population density in the eastern half of South 

Africa, compared to that of the western half.  

 

The tilt of the cloud bands is part of the output of the MetBot. The tilt has a negative orientation 

and is usually between 0˚ and -90˚. In some cases, the MetBot picked up on a positive tilt for 

the cloud bands, which are nonetheless flagged and considered as cloud bands. There are two 

calculations for the tilt within the MetBot: a small section with the lowest OLR values and the 
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larger area, which consists of the entire cloud band. If the smaller section is within the criteria 

the MetBot uses, then it will be flagged as a cloud band. The tilt of the entire cloud band (the 

larger area) is then calculated and saved in the output file. It is therefore possible that cloud 

bands can have a positive tilt.  

 

When calculating the average of the combined positive and negative tilts, the positive tilts will 

lead to a lower average tilt than when only the negative tilts are considered. Figure 6.3.1 

illustrates the difference between the average of the combined negative and positive tilts (blue 

line) and the average of the negative tilts only (red line) of the observed cloud bands for the 

considered study period. The averages of the two series coincide for a few seasons, which 

means that for that specific season there are no observed cloud bands with a positive tilt, for 

example the seasons of 1998/1999 and 2002/2003. The greatest impact that the cloud bands 

with a positive tilt has, is on the average tilt of the NDJF season of 2009/2010. During this 

season, there are only three observed cloud bands with positive tilts. These three positive tilts 

have such a huge impact on the average due to the fact that the angle of two of them is greater 

than +80˚. Usually the positive angles are closer to 0˚.  

 

 

Figure 6.3.1: A comparison between the average of the positive and negative tilts (blue 

line) and the average of the negative tilts only (orange line) of the observed cloud bands 

per season for the NDJF seasons of 1996/1997 to 2009/2010. 

 

It has been decided to include the cloud bands with a positive tilt for the characteristics of TTTs 

(except the tilt) discussed earlier in this study, because these cloud bands passed the criteria. 

Keep also in mind that both the observed and the modelled datasets run through the same 
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criteria and algorithm to establish possible TTT events and in both datasets, there are TTT 

events with positive tilts. This is perhaps an example that the model faired well, because it also 

simulated cloud bands with positive tilts, as are present in the observed dataset. 

 

To illustrate the impact the positive tilts has on the results, both sets (the negative tilts only and 

the positive and negative tilts combined) are considered and represented in this section, with 

the subsection on positive tilts in somewhat lesser detail. In the subsections to follow, results 

will be shown for the averages, the RMSE values and the percentage errors of the negative 

tilted cloud bands, as well as for the positive and negative tilted cloud bands combined. To 

consider the positive tilts separately is not viable, because there are not that many of them and 

there are a few seasons with no positively tilted cloud bands. 

 

6.3.1 Negative tilts only 

To establish the effect the positive tilts have on the averages (and to investigate the performance 

of the model on this characteristic of TTTs properly), the negative tilts are considered 

separately. Figure 6.3.2 displays the average tilts of the observed cloud bands for every NDJF 

season of 1996/1997 to 2009/2010. The average of the negative tilts per season is between -27˚ 

and -47˚. Over the entire study period it averages to -38.57˚, which is 1.64˚ more negative than 

the average for the combined positive and negative tilts.  

 

 

Figure 6.3.2: The average of the negative tilts of the observed cloud bands per season for 

the NDJF seasons of 1996/1997 to 2009/2010. 
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The averages of the negative tilts of the cloud bands represented by the 27 ensemble members 

for the entire study period are displayed in figure 6.3.3. The average tilt of the cloud bands 

modelled by the ensemble members calculates to -39.33˚ and corresponds to an observed 

average tilt of -38.55˚. As discussed before, the average value mentioned here differs from the 

one mentioned in the previous paragraph, because some of the ensemble members do not have 

a complete dataset for the entire study period. Therefore, the corresponding observed data for 

the missing periods of data of these ensemble members is omitted. The difference between the 

average modelled and the average observed tilts is 0.78˚.  

 

 

Figure 6.3.3: The average of the negative tilts of modelled cloud bands of all 27 ensemble 

members (blue line) compared to that of the corresponding observed cloud bands (red line) 

for the study period. EM stands for ensemble member. For the abbreviations of the 

ensemble members, please refer to table 3.1. 

 

The RMSE values and the corresponding percentage errors for the average tilt of the cloud 

bands modelled by all ensemble members are given in table 6.3.1 below. The average RMSE 

and the percentage error of all the ensemble members calculate to 6.14˚ and 15.92% 

respectively. Regarding the average tilt of the cloud bands, ensemble member 1N3 fared the 

best. It has an RMSE value of 4.18˚ and a percentage error of 10.85%. Ensemble member 1O1 

had the highest RMSE value (8.93˚) with the corresponding percentage error as 23.04%.  

 

  

-44

-42

-40

-38

-36

-34

1
S

1

1
S

2

1
S

3

9
S

1

9
S

2

9
S

3

1
7
S

1

1
7
S

2

1
7
S

3

2
5
S

1

2
5
S

2

2
5
S

3

1
O

1

1
O

2

1
O

3

9
O

1

9
O

2

9
O

3

1
7
O

1

1
7
O

2

1
7
O

3

2
5
O

1

2
5
O

2

2
5
O

3

1
N

1

1
N

2

1
N

3

A
v
er

ag
e 

ti
lt

 (
˚)

Ensemble member

Average tilt of the cloud bands with only negative tilts of the 

ensemble members and the corresponding observed dataset

EM

Observed



88 
 

Table 6.3.1: The RMSE values in degrees (˚) and the percentage error of the average of 

negative tilts of the cloud bands for the 27 different ensemble members. EM stands for 

ensemble member and the abbreviations of the ensemble members can be found in table 

3.1. The RMSE and the percentage error averages in the last row of the last two columns 

are the averages for all 27 ensemble members. 

EM RMSE (˚) Error (%)   EM RMSE (˚) Error (%) 

1S1 6.80 17.67  1O3 6.23 16.16 

1S2 7.24 19.05  9O1 5.69 14.77 

1S3 5.87 15.25  9O2 5.75 14.92 

9S1 5.27 13.69  9O3 6.58 16.94 

9S2 5.92 15.34  17O1 6.37 16.47 

9S3 5.06 13.12  17O2 6.15 15.96 

17S1 7.24 18.81  17O3 7.28 18.87 

17S2 5.76 15.04  25O1 6.06 15.71 

17S3 6.89 18.13  25O2 5.77 14.92 

25S1 5.06 13.04  25O3 5.04 13.07 

25S2 6.14 15.91  1N1 6.28 16.28 

25S3 5.94 15.35  1N2 7.35 18.93 

1O1 8.93 23.04  1N3 4.18 10.85 

1O2 4.87 12.63   Average 6.14 15.92 

 

The best and worst performing ensemble members regarding the average (negative) tilt of the 

modelled cloud bands are displayed in figures 6.3.4 and 6.3.5. The blue line indicates the 

average of the ensemble member and the orange line that of the observed cloud bands. In figure 

6.3.4 it is apparent why the RMSE value of ensemble member 1N3 is the lowest: the year-to-

year variation of the modelled average tilt is very close to that of the observed. The greatest 

difference between the modelled and the observed average tilt is for the seasons 1997/1998 and 

2002/2003, as well as from 2006/2007 to 2009/2010. For the remaining seasons the difference 

is small. The worst performer (ensemble member 1O1) on the other hand, has a number of 

seasons where the difference is quite large, namely 1997/1998, 2003/2004, 2006/2007 and 

2007/2008. These outliers inevitably affect the average tilt and therefore also the RMSE values 

significantly. 
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Figure 6.3.4: The average of the negative tilts of the cloud bands modelled by ensemble 

member 1N3 (blue line) and the corresponding observed values (orange line) for the study 

period 1996/1997 to 2009/2010. 

 

 

Figure 6.3.5: The average of the negative tilts of the cloud bands modelled by ensemble 

member 1O1 (blue line) and the corresponding observed values (orange line) for the study 

period. 

 

There is no clear bias in the modelled average tilts of the ensemble members. Therefore, no 

bias-adjustment is necessary. 
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6.3.2 Positive and negative tilts combined 

The average combined positive and negative tilts of the observed cloud bands for every season 

from 1996/1997 to 2009/2010 are displayed in figure 6.3.6. As can be seen in this figure, the 

seasonal average tilts are between -26˚ and -46˚. The average tilt for the entire study period 

(NDJF seasons of 1996/1997 to 2009/2010) calculates to -36.93˚.  

 

 

Figure 6.3.6: The average of the positive and the negative tilts combined of the observed 

cloud bands per season for the NDJF seasons of 1996/1997 to 2009/2010. 

 

In figure 6.3.7 the combined positive and negative tilts of the cloud bands modelled by all the 

ensemble members can be found. These tilts are the average values of all the seasons within 

the study period. The average tilt of the ensemble members calculates to -37.19˚ and the 

average of the corresponding observed tilts comes to -36.94˚. The average value here differs 

from the one mentioned earlier, because (as discussed previously) the data of some of the 

ensemble members is not complete for the entire study period. Therefore, for these ensemble 

members the corresponding observed data has to be omitted (as discussed earlier in this study). 

The difference between the average modelled and the average observed tilts is 0.25˚. This 

results in a 0.68% error. The difference between the average modelled tilts and the average 

observed tilts is less than the difference in these variables when considering only the negative 

tilted cloud bands.  
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Figure 6.3.7: The average of the positive and the negative tilts combined of modelled cloud 

bands of all 27 ensemble members (blue line) compared to that of the corresponding 

observed cloud bands (orange line) for the study period. EM stands for ensemble member. 

For the abbreviations of the ensemble members, please refer to table 3.1. 

 

In table 6.3.2 the RMSE values and the percentage errors for the average tilt of all the ensemble 

members are displayed. When perusing the RMSE’s and the accompanying percentage errors 

of the tilts, the ensemble members do not fare as well as when comparing the average tilts 

directly. The average RMSE value and the accompanying average percentage error of all the 

ensemble members are 6.61˚ and 17.91% respectively. Ensemble member 1N3 has the lowest 

RMSE value (4.65˚) with a percentage error of 12.6%. This ensemble member has no missing 

data for the entire study period. Both these values are higher than that of the negative tilts only 

(6.4˚ and 15.92%). Whether the cloud band has a positive or a negative tilt does not have an 

effect on the RMSE value. It can therefore be concluded that the ensemble members fare better 

when only the cloud bands with negative tilts are considered. 

 

From the table it seems like both ensemble members 17S3 and 1O1 are the worst performers 

with an RMSE of 8.27˚, while the percentage errors differ (22.65% compared to 22.16%). This 

is due to the difference in the average observed tilt for each of these ensemble members (due 

to the lack of data for some part of the study period). Ensemble member 17S3 misses data for 

the three seasons of 1999/2000, 2000/2001 and 2001/2002. Ensemble member 1O1 only misses 

data for the period December 2004 to February 2005. The RMSE value (to 4 decimals) of 

ensemble member 17S3 is 8.2692˚ and that of ensemble member 1O1 is 8.2723˚.  
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Table 6.3.2: The RMSE values in degrees (˚) and the percentage error of the average of the 

positive and negative tilts of the cloud bands for the 27 different ensemble members. EM 

stands for ensemble member and the abbreviations of the ensemble members can be found 

in table 3.1. The RMSE and the percentage error averages in the last row of the last two 

columns are the averages for all 27 ensemble members. 

EM RMSE (˚) Error (%)   EM RMSE (˚) Error (%) 

1S1 7.49 20.33  1O3 6.95 18.81 

1S2 8.22 22.53  9O1 6.67 18.05 

1S3 6.91 18.85  9O2 5.05 13.69 

9S1 5.34 14.32  9O3 6.97 18.56 

9S2 6.67 18.00  17O1 7.16 19.35 

9S3 5.93 16.06  17O2 7.15 19.36 

17S1 7.11 19.26  17O3 6.48 17.55 

17S2 6.34 17.34  25O1 7.90 21.33 

17S3 8.27 22.65  25O2 5.78 15.61 

25S1 5.87 16.07  25O3 6.53 17.66 

25S2 6.22 16.84  1N1 7.78 21.06 

25S3 5.48 14.85  1N2 5.81 15.52 

1O1 8.27 22.16  1N3 4.65 12.60 

1O2 5.58 15.11   Average 6.61 17.91 

 

 

6.4 Synopsis 

 

In this chapter the results regarding the location of the cloud bands associated with TTT events 

are displayed. These results include the anchor points, the position of the centroid and the tilt 

of the cloud bands. Modelled data is compared to observed data. The geographical domain of 

this study is divided into the three regions where TTTs tend to develop. To evaluate the 

performance of the ensemble members regarding the anchor points and the position of the 

centroids, a visual display is used. To investigate the tilt of the modelled cloud bands and how 

it compares to the observed cloud bands, the average tilt, the RMSE and the percentage error 

are calculated. Thereafter, the results (maps and graphs) of the best and worst performing 

ensemble members are presented. Some of the flagged cloud bands in both the observed and 

the modelled datasets have a positive tilt. These positive tilts have an impact on the average 

tilt. Therefore, the results for the cloud bands with negative tilts are presented separately, in 

order to establish the true performance of the model regarding the tilt of the cloud bands.  
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This chapter concludes the results of this study. In the next chapter the results will be discussed 

in depth to finally draw a conclusion on the performance of the GloSea5 model (the ensemble 

average considering all the characteristics of TTT events) in the chapter thereafter. 
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CHAPTER 7: Discussion 
 

 

This project investigates the ability of a state-of-the-art seasonal forecast model, the GloSea5 

of the UK Met Office, to predict TTT events for the summer rainfall season of southern Africa. 

Daily outgoing longwave radiation (OLR) is used as input for the MetBot (as discussed in 

chapter 2) to flag TTT events in the observed and the modelled dataset. Using the output of the 

MetBot the different objectives and subobjectives of the project are addressed. These objectives 

are to identify cloud bands associated with TTT events in both the observed and the modelled 

data and to investigate the characteristics of these weather phenomena by looking at the 

frequency, location and intensity thereof.  

 

For this study, 27 ensemble members of the GloSea5 are used. These members were initiated 

on the 1st, 9th, 17th and 25th of September and October, as well as the 1st of November for the 

years 1996 to 2009. The summer rainfall season of southern Africa is considered as the months 

November, December, January and February (NDJF) (e.g. Pohl et al, 2018). The 

meteorological summer usually lasts from 1 December until 28 (or 29) February in the southern 

hemisphere. However, due to the number of heavy rainfall events, such as TTT events, that 

occur in November (e.g. Hart et al, 2013), it is decided to include November as part of the 

summer rainfall season. 

 

Both the modelled and the observed datasets consist of gridded data for the geographical 

domain of this project. More on this and the resolution of the datasets can be found in chapter 

2 (Methodology). 

 

In the previous four chapters (chapters 3 to 6) the results of this study are presented. This 

chapter consists of a detailed discussion on the results. First the results of each objective and 

subobjective will be discussed. Then a discussion will follow in how the forecast model fared 

as an ensemble average and to what length the research question is addressed.  
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7.1 Identifying modelled cloud bands 

 

The MetBot is used to identify cloud bands in the modelled and the observed datasets. As part 

of the output, two figures are presented for each flagged cloud band (figure 3.1). These figures 

in itself are a confirmation that the MetBot can identify cloud bands which are associated with 

TTT events. Therefore, the first objective of this project is achieved, namely for the model to 

be able to identify modelled cloud bands associated with TTT events by using gridded data.  

 

The details of the cloud bands identified by the MetBot are used to reach the next objective, 

which is to investigate the characteristics of the modelled cloud bands, namely the frequency, 

the location and the intensity. 

 

 

7.2 Frequency of the modelled cloud bands 

 

One of the characteristics of TTT events investigated in this project is the frequency thereof 

across southern Africa, i.e. how often do TTTs occur. For this sub-objective, the number of 

cloud bands are used. On average there are 37.36 cloud bands observed per NDJF season for 

the study period 1996/1997 to 2009/2010. The observed number of cloud bands may seem 

quite high, but keep in mind that these are only the cloud bands associated with TTT events 

and not particularly a fully developed TTT that lasts three to five days. The ensemble members 

predicted on average about 27 cloud bands per season. The average predicted number of cloud 

bands may be less than the observed number of cloud bands, but the model still fared well in 

predicting these systems more than 70% of the time.  

 

When considering the ensemble members separately, it is found that there are some of the 

summer rainfall seasons in the study period for which certain ensemble members over-

predicted the number of cloud bands. A surprising result is that 81.5% of the ensemble 

members (22 of the 27 members) over-predict the number of cloud bands for the season 

1996/1997 and almost half of the ensemble members (48.1%) over-predict the number of cloud 

bands for the 2006/2007 season. This result could be related to the El Niño Southern Oscillation 

(ENSO), which will be discussed later in this chapter (section 7.7). 
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Another measure is used to compare the number of cloud bands of the observed and the 

modelled datasets, namely the percentage deviation. The average percentage deviation is 

calculated as -28.29%. It appears that the average percentage deviation converges to 

approximately -27% with a shorter lead-time. More specifically for the ensemble members 

initiated on 17 October, 25 October and 1 November, but especially for the last two initiation 

dates. This result is not unexpected, as most models perform better with a shorter lead-time. 

The question is whether this is the case with all the different output data – a question that will 

be addressed in the sections to follow. 

 

The last calculations performed for the section on the number of cloud bands are to calculate 

the RMSE and the associated percentage error. By calculating the percentage error, the RMSE 

is put into perspective. 

 

The RMSE and the percentage error calculated to 14.44 cloud bands and 38.8% respectively. 

This result indicates that the ensemble members under-predict the number of cloud bands, 

which already reflected in the previous results. This result can be improved by adjusting the 

bias. After the bias is adjusted, the RMSE and the percentage error came down to 9.61 cloud 

bands and 26.23% respectively. These values are significantly lower than the values calculated 

before the bias-adjustment is applied. 

 

The ensemble members (and therefore the GloSea5 model as a whole) can identify cloud bands 

and inevitably TTT events during a season, but the number of cloud bands are somewhat 

underpredicted. It is possible that the GloSea5 models the correct number of cloud bands, but 

perhaps these are located farther west or farther east. To investigate this possibility, it will be 

necessary to enlarge the geographical domain. This change in the configuration can perhaps be 

considered in a future study. Therefore, when using this particular seasonal forecast model to 

predict whether above normal rainfall in one season will be caused by a few large heavy rainfall 

events such as TTTs, it will have to be kept in mind that the model under-predicts the number 

of these type of weather phenomena. 
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7.3 Intensity of the modelled cloud bands 

 

The best way to study the intensity of the cloud bands is to compare the average area, as well 

as the minimum and maximum OLR values of the modelled cloud bands to that of the observed 

cloud bands. The area was chosen as it relates directly to the size of the cloud band and 

therefore the geographical area that is impacted by a TTT event. The larger the TTT on a 

horizontal scale, the greater the area affected. OLR was chosen due to its relation to the amount 

of rainfall. The lower the OLR values, the more radiation is trapped by the cloud band, therefore 

the thicker the cloud band. A thicker cloud band indicates more precipitable water within the 

clouds, which can lead to heavier rainfall. Therefore, the OLR is a measure of the intensity of 

the cloud band and TTT event. 

 

7.3.1 Area 

For the observed cloud bands, the average area of a cloud band (for the entire study period) 

calculates to 35841.33km2. The season with cloud bands of the smallest spatial extent is 

2003/2004 with an average area of 31785km2 and the season with the largest average area is 

1997/1998 (46749km2). What could be of interest about this result is that the season of 

1997/1998 is one of the strongest El Niño events during which South Africa unexpectedly 

received more rainfall than usually associated with an El Niño event. Usually the summer 

rainfall region of South Africa receives below-normal rainfall during an El Niño year. The 

higher-than-expected rainfall could be due to the fact that the TTT events of that particular 

season is on average larger than other seasons. If the two extreme seasons (largest and smallest 

average areas) are omitted, then the average area of the observed cloud bands calculates to 

35270.38km2, which is only slightly lower than the average of all 14 seasons. It can therefore 

be concluded that these two outlying seasons did not have such a great effect on the average 

area of the TTT events. From figure 5.1.1 it can be seen that the average area of the cloud bands 

for most of the seasons oscillates around 35000km2. 

 

When calculating the average observed area of the cloud bands per ensemble member and 

omitting the missing model data periods, an average of 35795 km2 is obtained, which is slightly 

lower than the actual observed average area per cloud band.  

 

Similar to the number of cloud bands, the different ensemble members under-predict the area 

of the cloud bands on average by 5902km2. The ensemble members do not under-predict the 
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average area of the cloud bands for every season: there are seasons for which some ensemble 

members over-predict the average area. The season for which the most ensemble members 

over-predict the average area is the 2003/2004 season, in this case for 9 of the 27 ensemble 

members. The season for which the ensemble members over-predict the average area the 

second most is 2004/2005 (4 of the 27 ensemble members). The 2003/2004 season coincides 

with a neutral year, while the 2004/2005 season corresponds to a weak El Niño year. During 

La Niña years, South Africa tends to receive above average rainfall in the summer rainfall 

region (mainly the north-eastern part of the country), and during El Niño years below normal 

rainfall (as mentioned earlier in this chapter). 

 

The RMSE value for the average area of the modelled cloud bands calculates to 7268.43km2, 

which yields a percentage error of 20.31%.  In combination with the previous results on the 

average area of the modelled cloud bands, it can be concluded that the ensemble members on 

average under-predict this particular TTT characteristic by 20.31%. The bias of the model can 

therefore be adjusted by taking this error into consideration. A bias-adjustment is subsequently 

applied and the resulting change in the performance of the model is significant. With the bias-

adjustment, the average RMSE value reduces to 4359.2km2 and the corresponding percentage 

error to 12.18%. While the error is still above 10%, it is quite an improvement from 20.31%. 

There are a few individual ensemble members with a bias-adjusted percentage error of less 

than 10%. These ensemble members do not necessarily have a short lead-time. The individual 

ensemble members will be discussed later in this chapter. 

 

When regarding the general performance of the different ensemble members and that of the 

model as a whole, it may seem that the model did not fare that well. However, when considering 

the size of the cloud bands and the area that TTT events usually affect, the model fare well, 

and with a bias-adjustment applied, the model can be used to forecast the average area of TTT 

events on a seasonal scale, provided that a small margin of error is taken into consideration. 

 

7.3.2 Outgoing Longwave Radiation 

Outgoing Longwave Radiation (OLR) is used to determine the intensity of the cloud bands. 

Within a cloud band there is an area with the lowest OLR value, hereafter referred to as the 

minimum OLR, and an area with the highest OLR value, hereafter referred to as the maximum 

OLR. Both these values form part of the output file for every cloud band that is flagged by the 

MetBot. 
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7.3.2.1 Minimum OLR 

The minimum OLR value indicates the section of the cloud band that emits the least amount 

of OLR. This value can be translated to the thickest part of the cloud as explained in chapter 5 

section 5.2.1. 

 

The average minimum OLR per season of the observed cloud bands for the considered study 

period range between 128 W/m2 and 141 W/m2. For the entire study period, the average 

minimum OLR calculates to 135.78 W/m2. The seasons with the lowest average minimum 

OLR values are 1997/1998, 1999/2000, 2000/2001 and 2002/2003. The highest average 

minimum OLR values are obtained in the seasons 1996/1997, 2003/2004, 2008/2009 and 

2009/2010. Of these seasons, 1997/1998, 2002/2003 and 2009/2010 are El Niño years, and 

1999/2000 and 2000/2001 are La Niña years.  The season 1997/1998 is considered one of the 

strongest El Niño events on record (e.g. L’Heureux et al, 2017). However, during this particular 

El Niño some parts of South Africa received above-normal rainfall (Lyon and Mason, 2007). 

Therefore, low average minimum OLR values do not necessarily coincide with ENSO, but they 

seem to indicate wetter than normal seasons. Of the four seasons with the highest average 

minimum OLR values, two are considered neutral ENSO years, one is a weak La Niña year 

and the last one is a strong El Niño year. It is possible that there might be a link between neutral 

ENSO years and seasons with TTT events with greater than average minimum OLR values. 

However, a more in-depth study is necessary with a longer study period to confirm or contradict 

this possible link between the average minimum OLR values of TTT events and ENSO. 

 

Of all 27 ensemble members, only one (17O1) obtained an average minimum OLR value above 

that of the observed cloud bands. The rest of the ensemble members calculated lower average 

minimum OLR values than that of the observed dataset. Ensemble member 17O1 misses data 

for 3 months of the season 2001/2002, which could possibly have an effect on the average 

minimum OLR value being higher than the observed. However, the missing data sections are 

accounted for as described in various previous sections such as in chapter 2 (Methodology) 

section 2.4.3. 

 

The fact that the average minimum OLR values of most ensemble members are lower than the 

values of the observed dataset, indicates that the model in general produces cloud bands that 
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are thicker than the observed. Thicker cloud bands in turn indicate TTT events with a higher 

intensity.  

 

The average minimum OLR of the ensemble members varies between 4.75 W/m2 and 10.76 

W/m2, thus it falls within a range of 6.01 W/m2. The average RMSE for all 27 ensemble 

members of the average minimum OLR values calculates to 7.09 W/m2, with a corresponding 

average percentage error of 5.2%. This is relatively low, especially compared to the RMSE and 

the percentage error of the other characteristics that are investigated. Due to the low average 

RMSE value, it is decided not to adjust the bias for the minimum OLR. 

 

7.3.2.2 Maximum OLR 

The maximum OLR value indicates the section of the cloud band that lets the most OLR pass 

through, i.e. the thinnest part of the cloud. On average the observed cloud bands have a 

maximum OLR of 237.9 W/m2. The seasons with the highest average maximum OLR in the 

study period are 1997/1998 and 2007/2008. These two years are considerately higher than the 

rest (above 242 W/m2). As mentioned earlier in this chapter, the season of 1997/1998 was one 

of the strongest El Niño events, which produced surprisingly high amounts of rainfall in South 

Africa, while 2007/2008 was a strong La Niña year. The season of 2006/2007 has the lowest 

average maximum OLR (less than 234 W/m2) and is considered a weak El Niño. A possible 

connection between ENSO and TTT events will be discussed later in this chapter. 

 

The average maximum OLR of all 27 ensemble members calculated to 235.26 W/m2. As with 

the other parameters discussed, this value is lower than the observed average maximum OLR. 

The average RMSE and the percentage error of the maximum OLR of the ensemble members 

vary between 3.55 W/m2 and 6.11 W/m2, thus within a range of 2.56 W/m2. The average RMSE 

value of the maximum OLR for the different ensemble members comes to 4.53 W/m2 with a 

corresponding percentage error of 1.9%. These values are even lower than the average RMSE 

of the minimum OLR (7.09 W/m2 and 5.2%). These lower values could be connected to the 

fact that there is a minimum threshold build into the criteria of the MetBot to flag cloud bands. 

However, seeing that some of the maximum OLR values of the observed cloud bands exceeded 

240 W/m2 (the minimum OLR criteria for a cloud band), it is more likely that the different 

ensemble members performed better regarding the maximum OLR per cloud band. Another 

indication that the ensemble members fare better regarding the maximum OLR values is that 

the difference between the lowest and the highest average maximum OLR compared to that of 
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the average minimum OLR of the different ensemble members is much smaller (2.56 W/m2 

compared to 6.01 W/m2). Therefore, it can be said with some certainty that the model 

performed well regarding the maximum OLR of the cloud bands. 

 

 

7.4 Location of TTT events 

 

To discuss the performance of the model regarding the location of TTT events, part 4 of the 

results, namely the anchor points of the cloud bands, the position of the centroid and the tilt of 

the cloud bands, is taken into consideration.  

 

7.4.1 Anchor points of the cloud bands 

The anchor point of the cloud band is considered the north-western-most point of the cloud 

band. The geographical domain is divided into three regions according to the preferred regions 

where TTTs tend to develop. 

 

As mentioned in chapter 6, a dilemma is faced when investigating the performance of the model 

regarding the anchor points of the cloud bands: the average position for the anchor points for 

seasons without any cloud bands in one of the regions is registered as 0˚S, 0˚E, which results 

in very strange averages with unusually large RMSE and percentage error values. Therefore, it 

is decided to rather use a graphical approach when considering the anchor points of the cloud 

bands.  

 

The model performed reasonably well by modelling the latitude of the anchor points between 

5˚S and 20˚S, when looking at a graphical representation of the modelled anchor points. There 

are a few anchor points around 19.5˚S, but that could be due to the difference in resolution 

between the observed and the modelled dataset (0.833º x 0.566º compared to 2.5° x 2.5°). 

Regarding the longitude, most of the modelled cloud bands fall within 15˚E and 68˚E. About 

44% of all the ensemble members model cloud bands farther east than 68˚E. It is therefore 

plausible that the cloud bands within region 3 is misrepresented by the model, possibly because 

the GloSea5 tend to model the cloud bands slightly too far east. There seems to be no shift in 

modelled cloud bands in the other two regions. Another study with a larger geographical 

domain is necessary to prove or disregard this possibility. 
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A challenge arises when looking at the regions separately. This challenge comes from the fact 

that the observed and the modelled datasets have different resolutions. This difference in 

resolution poses difficulty if the anchor points within a specific region needs to be compared. 

Some ensemble members (about 33%) model the anchor points of the cloud bands in region 1 

around the border of Angola and the Democratic Republic of Congo, as well as around the 

border of Angola and Namibia. A similar pattern is seen regarding the anchor points of the 

observed cloud bands in region 1. There are too few cloud bands observed in region 2 to make 

any assumption as to where these cloud bands tend to have their anchor points. The anchor 

points in region 3 are scattered between 5˚S and 20˚S, and 38˚E and 68˚E of both the observed 

and modelled cloud bands. 

 

While graphically investigating the anchor points of the cloud bands, it is also discovered that 

the number of modelled cloud bands within a specific region compares well to that of the 

observed cloud bands within that region, i.e. the ensemble members modelled the most cloud 

bands within region 1 and the least in region 2, as is the case with the observed cloud bands.  

 

In general, the ensemble members perform fairly good regarding the position of the anchor 

points of the cloud bands, as well as the number of cloud bands in each region. What perhaps 

can increase the performance of the model, is if the model and the observed dataset have the 

same resolution. The model has however a higher resolution than the observed values, and it 

would therefore be imprudent to reduce the resolution of the model just to study TTT events. 

It would be better to improve the resolution of the reanalysis data. Further investigation can 

include to compare the modelled number of cloud bands in each region with the observed 

values in more detail. 

 

7.4.2 Position of the centroid 

The centroid of a cloud band is the centre of mass of that particular cloud band. When looking 

at the centroids of the observed cloud bands, there is a clutter of centroids between 20˚S to 

28˚S and 25˚E to 45˚E. The farthest north that the centroids form is about 17˚S and the farthest 

south observed centroid lies at approximately 34.5˚S. The westernmost centroid can be found 

at 19˚E and the easternmost one at 73˚E. There is also a smaller area containing a number of 

centroids, which can be found to the southeast of Madagascar in the southern Indian Ocean. 

Which is interesting about the larger cluttered area is that it includes the summer rainfall region 

of South Africa, as well as parts of tropical Mozambique, southern Zimbabwe and eastern 
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Botswana (hereafter referred to as the summer rainfall region of southern Africa). These areas 

tend to get ample rainfall during the months of November to February when it is a normal 

rainfall season (with the average amount of rainfall). The reason for the large amounts of 

rainfall could be related to the fact that the centre of mass of the TTT events tend to form above 

this area. November has been found to be the summer month over South Africa when TTT 

events contribute the most to the monthly rainfall totals (Hart et al, 2013). The question now 

is, did the ensemble members capture this “cluttered area”, and if they did, how well did they 

capture it? 

 

As is briefly discussed in one of the results chapters (Chapter 6, Section 6.2), the modelled 

centroids also lie more or less in the same region as the observed centroids. The modelled 

centroids fall south of 15˚S and the southernmost modelled centroid is found just north of 35˚S. 

Regarding the latitude, most modelled centroids can be found between 20˚E and 77˚E, with 

only three centroids forming between 19˚E and 20˚E. As with the observed centroids, the 

modelled centroids tend to “clutter” around the summer rainfall area of southern Africa. About 

21 of the ensemble members (66.7%) also display the smaller clutter to the southeast of 

Madagascar with significantly more centroids in this smaller area than the rest of the 

geographical domain (except of course for the large cluttered area). 

 

In general, the ensemble members perform well regarding the position of the centroid, 

capturing both the larger and the smaller “cluttered” areas correctly and with most of the 

centroids falling within similar boundaries as the observed centroids. Although the method 

followed to establish the performance of the model regarding the position of the centroids and 

the anchor points is not a statistical or mathematical process, this method still provides a good 

estimate on the performance of the model regarding these parameters.  
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7.4.3 Tilt of the cloud bands 

The tilt of the cloud bands plays an important role on the effect a TTT event has across the sub-

continent. If the cloud band is tilted more towards north-south or towards west-east, the TTT 

will fall across different parts of southern Africa. It could be above a more populated area or 

above a rural area. In the first case the TTT could potentially lead to flash flooding in urban 

areas, where in the latter case heavy rainfall could be profitable for farmers. Therefore, the tilt 

of the cloud bands is considered as part of the location of TTT events in this study.  

 

The MetBot measures two tilts. The first tilt is a smaller section on a cloud band to first 

establish whether a cloud band falls within the criteria of the MetBot to flag cloud bands. This 

tilt is not part of the output file of the MetBot. The second tilt is that of the entire cloud band, 

which forms part of the output of the MetBot file. Therefore, it sometimes occurs that a cloud 

band has a positive tilt, whereas the criteria for a cloud band is that the tilt must be smaller than 

0˚ and larger than -90˚. The flagged cloud bands with positive tilts are still considered as cloud 

bands, because they fit the original criteria of the MetBot. In practice, TTT events with a 

positive tilt has been observed on satellite imagery, but they are quite rare. 

 

For completeness, both sets (the combined positive and negative tilts, as well as the negative 

tilts separately) are included in the results to investigate the difference in the outcome.  

 

7.4.3.1 Positive and negative tilts combined 

The average observed tilt for the entire study period is calculated as -36.94˚, while the average 

tilt of the 27 ensemble members calculates to -37.19˚. This results in a difference of 0.25˚ and 

a percentage error of 0.68%, which is smaller than the resolution of the model. It is therefore 

safe to state that the model performs extremely well when considering the cloud bands with 

both positive and negative tilts.  

 

The reason for this positive result of the model could be because of the positive tilts that 

diminishes the effect of great negative tilts when calculating the average. For example, if a 

dataset contains a positive tilt of 80˚, it could possibly have an average tilt closer to 0˚ than a 

dataset with only negative tilts. Therefore, it is important to evaluate the performance of the 

model by only considering the negative tilts, the results of which are discussed in the following 

section. 
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The RMSE value and the corresponding percentage error of all the ensemble members 

calculates to 6.61˚ and 17.91% respectively. These values are higher than the average tilt error, 

but is considered here a more accurate way of evaluating the ensemble members. The RMSE 

values of the separate ensemble members are between 4.65˚ and 8.87˚, with the corresponding 

percentage error between 12.6% and 22.65%. These values are lower than the results of some 

of the parameters investigated during this project and although an error of around 18% is not 

ideal for a forecast model, the model can still be used to forecast the average tilt of the cloud 

bands, even when the cloud bands with positive tilts are included. 

 

7.4.3.2 Negative tilts only 

In this section of the results the cloud bands with positive tilts are omitted. For the observed 

cloud bands, the average tilt calculates to -38.55˚. For the modelled cloud bands of all 27 

ensemble members an average tilt of -39.33˚ is obtained, which has a difference of 0.78˚ with 

the observed tilt and surmounts to an error 2.02%. This is slightly higher than the percentage 

error than what is obtained for the combined tilts, but a percentage error of just more than 2% 

is sill extremely low. Therefore, the model also fares impeccable regarding the modelling of 

the negatively tilted cloud bands. 

 

The RMSE and the corresponding percentage error are calculated as 6.14˚ and 15.92% 

respectively. As in the previous section, these values are larger than the error calculated on the 

average tilt in the previous paragraph. However, RMSE is a better indication of the 

performance of a model, because in the calculation the error is squared, after which the square 

root is calculated. By squaring the error in the RMSE calculation the effect of the sign (positive 

or negative) on the value in the final result is nullified.  

 

7.4.3.3 The comparison 

It is possible that when the positive tilts are included, the average modelled tilt will be lower 

than when considering only the cloud bands with negative tilts, but that is not necessarily the 

case. For example, when a set of cloud bands contains only negative tilts, but all of the tilts are 

close to 0˚, the average tilt would also be closer to zero, than a set of cloud bands with positive 

and negative tilts, which fall within a great range. The question is how much of a difference 

the exclusion of the positive tilts makes. When subtracting the two average tilts, a value of 

0.53˚ is obtained. Seeing that this is less than a degree, the difference will not necessarily be 

noted. However, when considering the RMSE values and the corresponding percentage errors, 
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the outcome is different. The modelling of the negatively tilted cloud bands results in a slightly 

lower RMSE (6.14˚) than the positive and negative tilts combined (6.61˚). The difference in 

percentage error of these two RMSE values is slightly greater (15.92% compared to 17.91%). 

It can therefore be said that the ensemble members perform slightly better when considering 

the negative tilts separately, but if only negative tilted cloud bands are considered, not all the 

possible cloud bands will be flagged, which will affect the seasonal forecast of TTT events by 

the model. Therefore, it is still important to consider the positively tilted cloud bands in a 

seasonal forecast for TTT events. However, for the location of these events the cloud bands 

with positive tilts should be omitted. 

 

 

7.5 The Ensemble Members 

 

Table 7.1 summarises the best and worst performers of the ensemble members for every 

parameter. There is no definitive “winner” under the different best performers. However, an 

ensemble average is also considered and recommended in order to investigate how the model 

performs as a whole and to be used in order to forecast TTT events on a seasonal scale. The 

performance of the model regarding the model average also depends on the lead-time of the 

forecast: most probably a shorter lead-time will result in a better forecast. However, most of 

the best performing ensemble members were initiated in September, which pose the question 

whether a shorter lead-time is really the best option for a seasonal forecast of TTT events in 

the case of the GloSea5 model.  

  

The best and worst performing ensemble members for the anchor point and the centroid 

position, which forms part of the location of TTT events (subobjective 2.b), are not included 

in the table, because a visual presentation is used to compare these two parameters. By using 

visual inspection to establish best and worst performers, the results will be subjected to human 

error and it will not be scientifically viable.  

 

What is interesting to note however is that the best performers changed in most of the cases 

when the bias is adjusted, for example with the number of cloud bands. Another positive result 

is that the worst performers are never the same when considering the average and the RMSE 

of a parameter. Therefore, by using this state-of-the-art seasonal forecast model to produce a 
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seasonal forecast for TTT events and equal weighting regarding the ensemble members will 

most probably be the best option. 

 

Table 7.1: The best and worst performing ensemble members for every parameter 

investigated in this study. Each colour signifies a different characteristic of TTT events, 

which are: Ensemble member is abbreviated as 

EM.  

Parameter Sub-parameter Ensemble member: best Ensemble member: worst 

Number of cloud bands Percentage deviation 25 September EM 3 17 September EM 3 
 RMSE 25 September EM 3 1 September EM 3 
 RMSE: bias adjusted 17 October EM 3 1 November EM 1 

Area Average 1 September EM 3 17 September EM 2 
 RMSE 1 September EM 3 17 September EM 2 
 RMSE: bias adjusted 25 September EM 1 9 October EM 1 

OLR: minimum Average 17 October EM 1 1 September EM 3 
 RMSE 17 October EM 3 1 September EM 3 

OLR: maximum Average 9 September EM 3 1 October EM 1 
 RMSE 9 September EM 3 17 September EM 3 

Tilt: Negative only RMSE 1 November EM 3 1 October EM 1 

 

The different ensemble members can also be evaluated by combining the different parameters 

that represents a characteristic of TTT events, for example the area of the modelled cloud bands 

combined with the minimum and maximum OLR thereof. This combination of different 

parameters can be considered in a follow-up study of this project.  

 

 

7.6 The Model 

 

It may be of interest to investigate how the ensemble members perform separately, but an 

ensemble of simulations will most probably be used on an operational level. In this section the 

overall performance of the GloSea5 is discussed by considering the ensemble average for the 

different characteristics of TTT events. 

 

In table 7.2 a summary of the results for each parameter is tabulated. As can be seen in this 

table, the model under-performs regarding the number of cloud bands for the entire study 

period. The average area calculated for the cloud bands of the model is smaller than that of the 

Frequency Intensity Location 
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observed. The model performed reasonably well regarding the average minimum and 

maximum OLR values, as well as the tilt. The RMSE of the latter four parameters is below 10 

with a percentage error of less than 20%. When considering only the percentage error, the 

model also performed good regarding the average area, since this value is also below 20%.  

 

Table 7.2: A summary of the average values, the percentage deviation, the RMSE values and the 

percentage error of the different parameters investigated in this study, with the omission of the 

position of the anchor points and the centroids of the cloud bands. Not all of the RMSE values 

are bias-adjusted values. 

Parameter (units, unless stated 

differently in the column 

headline) 

Total/Average 

Percentage 

deviation 

(%) 

RMSE 

(bias-

adjusted) 

Percentage 

error (%) 

Observed Model Model Model Model 

Number of cloud bands 523 355 -28.29 9.611171 26.23 

Area (km2) 35795 29893 n/a 4359.2 12.18 

Minimum OLR (W.m-2) 136.02 132.99 n/a 7.09 5.20 

Maximum OLR (W.m-2) 237.88 235.26 n/a 4.53 1.90 

Tilt: Negative only (degrees) -38.55 -39.33 n/a 6.14 15.92 

 

For all the considered variables the model average is already calculated and discussed in the 

previous sections on the different parameters. Therefore, different lead-times will be 

considered in the subsections to follow. These lead-times will include a 2-month, a 1-month 

and a 0-month lead-time. For the 2-month lead-time the average of the results for the ensemble 

members initiated in September is used. The 1-month lead-time makes use of the average 

results of the ensemble members initiated in October. With a 0-month lead-time, the results of 

the ensemble members initiated on 1 November is used. For the latter only 3 ensemble 

members are used, while the other two lead-times consist of 12 ensemble members each. 
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7.6.1 The model: Frequency of TTT events 

As was discussed in section 7.2, the different ensemble members under-predict the number of 

cloud bands. Inevitably the model also under-predicts the number of cloud bands. The results, 

including the bias-adjusted results are already discussed in section 7.2. What remains is to 

investigate whether the model performance increased with a shorter lead-time. Seeing that it is 

already established that a bias-adjustment is necessary, only these results will be discussed.  

 

As can be seen in table 7.3, there is not much difference in the forecast skill of the different 

lead-times. With a 1-month lead-time, the RMSE and percentage error for the number of cloud 

bands is lower than for the other lead-times. That the RMSE and percentage error values of the 

0-month lead-time is higher than that with a 1-month lead-time, could be due to the fact that 

only 3 ensemble members are used for the 0-month lead-time, while 12 ensemble members are 

averaged for the 1-month lead-time.  

 

Table 7.3: The RMSE and the average percentage error of the different lead-times for the 

number of cloud bands predicted by the GloSea5 model. 

Number of cloud bands: bias-adjusted 

Lead-time RMSE  Error (%) 

2-month 9.67 26.25 

1-month 9.25 25.38 

0-month 10.82 29.57 

 

 

7.6.2 The model: Intensity of TTT events 

As is the case in the section on the number of cloud bands, the different ensemble members 

also under-predict the average area of the cloud bands, the minimum OLR and the maximum 

OLR. Improved results are obtained for the ensemble mean by using a bias-adjustment in the 

case of the average area. The model performed better with the minimum and the maximum 

OLR values. Therefore, it was not necessary to adjust the bias in the latter cases. 

 

In table 7.4 the RMSE and the percentage error of the different lead-times for the average area 

of the modelled cloud bands are displayed. From this table it can be seen that the ensemble 

members with a 1-month lead-time once again performed better than the other lead-times, but 

only by a small margin. The error remains above 10%, which will have to be taken into 



110 
 

consideration when using the GloSea5 model to forecast the intensity of TTT events across 

southern Africa during the summer rainfall season. 

 

Table 7.4: The RMSE and the average percentage error of the different lead-times for the area of 

cloud bands as calculated by the GloSea5 model. 

Area of cloud bands: bias-adjusted 

Lead-time RMSE (km2)  Error (%) 

2-month 4396 12.3 

1-month 4317 12.1 

0-month 4387 12.3 

 

 

In general, the ensemble members perform reasonably well with respect to the minimum OLR 

values. The RMSE values are below 10 W.m-2 and the percentage errors are well below 10% 

(table 7.5). The 1-month lead-time forecast for the minimum OLR values however clearly out-

performs the 2-month and 0-month lead-times with more than 1% difference. Regarding the 

minimum OLR, it can be concluded that the GloSea5 model performs well and can therefore 

be used to forecast seasonal minimum OLR values for TTT events. 

 

Table 7.5: The RMSE and the average percentage error of the different lead-times for the 

minimum OLR of the cloud bands as modelled by the GloSea5 ensemble members. 

Minimum OLR 

Lead-time RMSE (W.m-2)  Error (%) 

2-month 8.22 6.02 

1-month 5.89 4.32 

0-month 7.39 5.42 

 

The GloSea5 model performs even better with the maximum OLR values than with the 

minimum OLR values. Most of the RMSE values of the average maximum OLR forecast 

values are below 5 W.m-2, with the corresponding percentage errors below 2% (table 7.6). Once 

again, the average of the ensemble members with a 1-month lead-time is the lowest with an 

error of 1.84%. The GloSea5 model can therefore also be used to forecast the seasonal average 

maximum OLR values of TTT events. 
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Table 7.6: The RMSE and the average percentage error of the different lead-times for the 

minimum OLR of the cloud bands as modelled by the GloSea5 ensemble members. 

Maximum OLR 

Lead-time RMSE (W.m-2)  Error (%) 

2-month 4.69 1.97 

1-month 4.39 1.84 

0-month 4.45 1.87 

 

 

7.6.3 The model: Location of TTT events 

In the previous chapters and in section 7.4 it is established that the different ensemble members 

in general perform well regarding the position of the anchor point and the centroid of the cloud 

bands. Due to the fact that the RMSE and percentage error are not calculated for the position 

of the anchor point and the centroid, the different lead-times cannot be considered in the same 

way as with the other studied parameters. With these two parameters, a graphical representation 

will need to be used to establish whether or not the model performs better at different lead-

times. In order to compare the different lead-times, all the ensemble members initiated within 

a specific calendar month (September, October or November) will have to be combined to 

establish the performance of the model, a study that can perhaps be considered in the future.  

However, seeing that the individual ensemble members perform well regarding these two 

parameters, regardless of the lead-time of the forecast, it can be concluded that the model as an 

ensemble average will also perform well. 

 

The third parameter investigated regarding the location of TTT events is the tilt of the cloud 

bands. As was discussed to length in section 7.4.3, two separate sets are investigated, namely 

positive and negative tilts combined and negative tilts separately. Seeing that the positive tilts 

affect the results in such a way that a true average cannot be obtained, only the results of the 

negative tilted cloud bands are discussed. 

 

The same conclusion applies to the set with only the negative tilts as for the combined set: 

although the RMSE values are relatively low (below 10˚E), the percentage error is still above 

10%. Therefore, this margin of error needs to be accounted for when using the GloSea5 model. 

Once again, the model performs marginally better with the shortest lead-time (table 7.8). This 

small difference between the modelled and the forecast average tilt of TTT events does not 

affect the location of the TTT significantly. 
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Table 7.8: The RMSE and the average percentage error of the different lead-times for the cloud 

bands with negative tilts as modelled by the GloSea5 model. 

Negative tilts 

Lead-time RMSE (˚E)  Error (%) 

2-month 6.10 15.87 

1-month 6.23 16.12 

0-month 5.94 15.35 

 

7.6.4 The model: a short summary 

In general, the model is able to forecast TTT-events to a good degree. With most of the 

parameters the 1-month lead-time forecast is the most accurate. The 1-month lead-time forecast 

consists of forecasts from ensemble members 1, 2 and 3 initiated on 1, 9, 17 and 25 October. 

It is only in the case of the negative tilts, that the 0-month lead-time forecast is more accurate 

than that of the 1- and 2-month lead-times. As was discussed in the various sub-sections on the 

tilts of the cloud bands, by only considering the negative tilts separately not all of the modelled 

cloud bands are being investigated.  

 

 

7.7 ENSO and modelled TTT events 

 

The correlation between ENSO (El Niño-Southern Oscillation) and the characteristics of TTT 

events was briefly discussed in the previous sections and chapters. What stands particularly out 

in the results is that during some years (in both the observed and modelled datasets) the number, 

area, etc. of cloud bands are significantly greater or smaller than other years. This could perhaps 

be due to an association with ENSO. 

 

ENSO is a phenomenon that presents itself in the tropical eastern Pacific Ocean. It has to do 

with the irregular variation in the wind and the sea-surface temperatures over the tropical 

Pacific Ocean. This phenomenon affects the climate in the tropics and subtropics across much 

of the world. It consists of three phases, which relate to the Walker Circulation, namely the 

warming phase (El Niño), the neutral phase and the cooling phase (La Niña). The Walker 

Circulation is the globular flow of air in the troposphere of the tropics. During the warm El 

Niño phase, the summer rainfall region of southern Africa typically receives below-normal 
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rainfall, while the cooler La Niña phase usually implies above-normal rainfall (Fauchereau et 

al, 2009; Wallace & Hobbs: 431-438, 2006).  

 

During the study period considered in this project, there were five El Niño years and six La 

Niña years. The rainfall in these years were not always as one would expect during ENSO 

events, for example in the El Niño year 1997/1998 some areas of the summer rainfall regions 

of South Africa received above-normal rainfall during mid-summer (e.g. Lyon and Mason, 

2007). This particular ENSO event was one of the strongest El Niño events on record (e.g. 

Fauchereau et al, 2009; L’Heureux et al, 2017). During the 2005/2006, 2007/2008 and 

2008/2009 La Niña years, South Africa did not receive above-normal rainfall. These three 

cooling ENSO events were however considered as weak La Niña’s, which could have 

contributed to the amount of rainfall received across southern Africa. The different ENSO 

phases and the strength thereof during the 14 studied seasons in this project, are displayed in 

table 7.9. 

 

Figure 7.1 displays the number of observed cloud bands for each season during the study 

period, colour coded according to the different ENSO phases (and the strength thereof) during 

the particular season. The strongest El Niño during the studied period resulted in the second-

most observed cloud bands and the strongest La Niña of 1998/1999 in the most cloud bands. 

The least cloud bands per season are observed during the weak El Niño of 2006/2007. Although 

the most cloud bands are observed during a La Niña year and the least in an El Niño year, it 

cannot be confirmed that there is a linear relationship between the observed number of cloud 

bands and ENSO phases.  
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Table 7.9: The ENSO phases of the 14 seasons studied in this project. El Niño years are coloured 

red and La Niña years blue. The strength of the ENSO phase (weak, moderate, strong or very 

strong) is indicated with an X. In this classification the Niño 3.4 index is used.  

 El Niño/La Niña Weak Moderate Strong 
 Very 

strong 

1996/1997 Neutral         

1997/1998 El Niño       X 

1998/1999 La Niña     X   

1999/2000 La Niña     X   

2000/2001 La Niña X       

2001/2002 Neutral         

2002/2003 El Niño   X     

2003/2004 Neutral         

2004/2005 El Niño X       

2005/2006 La Niña X       

2006/2007 El Niño X       

2007/2008 La Niña     X   

2008/2009 La Niña X       

2009/2010 El Niño     X   

 

 

Figure 7.1: The number of observed cloud bands colour-coded according to the ENSO phases of 

each season. Red indicates El Niño years, the green bars designate the neutral years and blue 

relates to La Niña years. The strength of the ENSO phase is indicated by the intensity of the 

colour (a darker colour indicates a stronger event). 
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As discussed in the previous paragraph, the observed number of cloud bands do not necessarily 

correlate to the ENSO phase of each season, but perhaps the number of modelled cloud bands 

do. Therefore, the analysis is repeated using the ensemble averaged number of cloud bands. 

The modelled number of cloud bands are displayed in figure 7.2. What stands particularly out 

is that the seasons with the least cloud bands are all El Niño years (2002/2003 and 2009/2010), 

and the seasons with the most cloud bands are La Niña and neutral years (1996/1997, 

1998/1999 and 2005/2006). For the rest of the seasons there is no distinct correlation to ENSO, 

because there are El Niño years with more cloud bands than La Niña years. For example, the 

season of 2004/2005 and 2006/2007 are weak El Niño years with a relatively high number of 

cloud bands, while the seasons of 2007/2008 and 2008/2009 are strong and weak La Niña years, 

but with a relatively low number of cloud bands. 

 

 

Figure 7.2: The number of modelled cloud bands colour-coded according to the ENSO phases of 

each season. Red indicates El Niño years, the green bars designate the neutral years and blue 

relates to La Niña years. The strength of the ENSO phase is indicated by the intensity of the 

colour (a darker colour indicates a stronger event). 

 

To fully establish the relation between ENSO and TTT events, a more detailed investigation is 

necessary, which is however not part of the scope of this project. A preliminary test with only 

the number of cloud bands did not yield a definitive link between ENSO and TTT events with 

regards to the observations and the modelled data. More on possible future studies will be 

discussed in the next chapter (Chapter 8: Conclusion). 
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This section (and chapter) concludes with a preliminary investigation on how the model 

performs regarding the forecast of TTT events during different ENSO years. A link between 

the inter-annual variability of TTT events and ENSO has already been established in previous 

studies (Manhique et al, 2011). In the following and final chapter of this project a conclusion, 

as well as possible future studies that can be considered on this topic of TTT events, are 

presented. 
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CHAPTER 8: Conclusion and Future Work 
 

 

The skill of numerical models is constantly improving, but in order to know the margin of this 

improvement, it is necessary to investigate how these numerical models predict specific 

weather scenarios. That is the aim of this project: to investigate the predictability of TTT events 

across southern Africa on a seasonal time-scale by using a state-of-the-art seasonal forecast 

model. The research question therefore is: What is the ability of a state-of-the-art seasonal 

forecast model to simulate TTT characteristics over southern Africa? To address this research 

question, certain objectives have been set aside: 

1. Identify modelled cloud bands associated with TTT events using gridded data 

2. Investigate the characteristics of modelled TTT events using the gridded data: 

a. Frequency of TTT occurrences 

b. Location of TTT events across southern Africa 

c. Intensity of TTT events over southern Africa 

 

The objectives and sub-objectives have each been investigated separately for the 27 ensemble 

members of the GloSea5 forecasting model of the UK Met Office initialised between 1 

September and 1 November for NDJF of 1996/1997 to 2009/2010, by looking at the different 

aspects of the identified cloud bands, such as their anchor point and their surface area. In 

chapters 3, 4, 5 and 6 the results have been presented and in chapter 7 these results have been 

discussed in detail. After the different ensemble members are investigated separately, the 

ensemble average is calculated.  

 

By using the MetBot, the cloud bands associated with TTT events can easily be identified in 

both the observed and the modelled datasets. Therefore, by capturing the cloud bands using the 

MetBot, objective 1 is achieved. Regarding the rest of the objectives, it has been found that the 

model performs fairly well for certain characteristics of TTT events, such as the average 

minimum and maximum OLR values (which relates to the intensity of TTT events) and not as 

well regarding other characteristics, namely the number of cloud bands (which relates to the 

frequency of TTT occurrences within the summer season). However, the fact that the model is 

able to identify TTT events on a seasonal timescale and to forecast these events to a certain 

extent, is encouraging.  
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The GloSea5 model has performed the best regarding the average minimum and maximum 

OLR values. Due to the fact that the OLR is a key parameter with the identification of TTT 

events across southern Africa and the fact that it provides an indication of the intensity of these 

events, this result is of significance since it provides evidence that the GloSea5 model can be 

successfully used to forecast the intensity of TTT events on a seasonal time-scale, albeit with 

a small margin of error. 

 

To expand on the investigation of the predictability of TTT events by a state-of-the-art seasonal 

forecasting model, additional work will have to be performed which takes, for example, the 

rainfall amounts and other circulation dynamics, such as the convergence and divergence zones 

around TTT events, also into consideration. An important further study would be to explore 

the physical mechanism(s) related to the under-prediction of TTT events within the summer 

season across southern Africa. The proposed additional work is outside the scope of this 

project, since this study only uses modelled and observed OLR values to investigate whether 

or not TTT events can be predicted on a seasonal time-scale, which is sufficient to address the 

research question and the different objectives. 

 

The discussion chapter (chapter 7) ends with a quick investigation of the predictability of the 

number of TTT events occurring during the summer rainfall season of southern Africa during 

ENSO years. It could not be confirmed whether there is a linear relationship between the 

number of cloud bands (observed and modelled) and ENSO phases. The study period will have 

to be lengthened to further investigate a possible link between wetter La Niña/drier El Niño 

seasons and the number of TTT events modelled/observed during a summer season in southern 

Africa.  

 

Future work 

While investigating the frequency of TTT events, it has been noted that there might be a 

possibility that the model forecast TTT events slightly farther east or west than the considered 

geographical domain. A future study could therefore be done by using a greater geographical 

domain. In this manner, if the model reproduces cloud bands farther west or farther east of the 

geographical domain considered in this study, the number of TTT events will increase, i.e. the 

frequency thereof. However, a larger geographical domain could also increase the number of 
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observed cloud bands (even though previous studies are consistent on the area where TTTs 

tend to develop across southern Africa), but it might still be worthwhile to investigate.  

 

Due to the nature of the investigation regarding the position of the anchor point and the centroid 

of the cloud bands (a visual representation is used), the RMSE and the percentage error is not 

calculated. A possible issue that can arise from using the visual-representation method is that 

there is room for human error, because it relies on approximations using subjective methods. 

The characteristics could be further investigated by combining ensemble members to produce 

forecasts with different lead-times. A possible solution to exclude human error in the 

investigation of the anchor point and the centroid of the modelled cloud bands, could be to use 

cluster analysis or boxplots. 

 

During the investigation it has been noted that certain seasons produced significantly higher 

values of specific parameters than other seasons in both the observed and the modelled datasets. 

This anomaly lead to the question: did ENSO play a part in the modelled (and observed) 

characteristics of TTT events during these seasons? The reason behind this argument is that it 

is known that ENSO influences seasonal rainfall across southern Africa. A preliminary study 

has been done in chapter 7 to investigate whether the seasons with a significantly higher 

number of cloud bands (observed and modelled) were in fact during El Niño or La Niña years. 

No definitive association has been found; however, a more in-depth study could certainly be 

useful in investigating this possible relationship further. This investigation could be combined 

with a study regarding the Southern Indian Ocean Oscillation/Dipole. It has already been found 

that the Southern Indian Ocean Oscillation/Dipole has a connection to the seasonal rainfall 

across southern Africa (Behera and Yamagata, 2001), and perhaps an even greater connection 

when compared to ENSO or specific ENSO events. To elaborate the study further, the three 

preferred regions where TTT’s tend to develop, could also be taken into consideration. 

 

Another definitive opportunity for future studies to further advance our understanding of TTT 

events is to use observed (and modelled) rainfall data, for example to investigate whether the 

model predicts heavy rain in a small area of the geographical domain during seasons with 

relatively more TTT events. The relation between the minimum OLR values and the rainfall 

data can also be investigated.  
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All of the above mentioned “future studies” do not fall within the scope of this study, seeing 

that these studies are not necessary to address the research question and the different objectives. 

These possible future studies are mere suggestions as to how the predictability of TTT events 

by a state-of-the-art seasonal forecasting model can further be enhanced, should one wish to 

do so. 

 

Final remarks 

The study on the ability of a state-of-the-art seasonal forecast model to forecast the 

characteristics of TTT events on a seasonal timescale is a original study: It has never been done 

before. The fact that the GloSea5 forecasting model can identify TTT events and can most 

certainly forecast the different characteristics associated to TTT events to a great extent, is a 

ground breaking discovery in the field of numerical weather prediction. From the results it can 

be concluded that the GloSea5 forecasting model can be used to forecast the intensity of TTT 

events, as this characteristic mainly depends on the minimum and the maximum OLR values, 

as well as the area. Although the model performs less well with the geographical extent of TTT 

events (the area), the average percentage error is still less than 15%. The location of TTT events 

is also captured well by the GloSea5. The model had some difficulty in forecasting the 

frequency of TTT occurrences, however when taking about a 25% margin of error into account, 

the model can also be used to forecast the number of TTT events within a summer rainfall 

season across southern Africa. Lastly, in forecasting most of the parameters, the model 

performed best with a 1-month lead-time. Therefore, the seasonal forecast obtained in October 

will probably be the most accurate. 

 

In conclusion this study has successfully addressed the objectives of the work. It has 

demonstrated that different characteristics of TTT events can be captured and therefore forecast 

on a seasonal timescale by a state-of-the-art seasonal forecast model. Contemporary weather 

models most certainly have come a long way.  

 

This study is one of the first of its kind with positive results for the investigation of the different 

characteristics of a specific weather system on a seasonal timescale. This original study has 

therefore most certainly contributed to the research on the forecast ability of seasonal 

forecasting models, as well as the research of these fascinating weather phenomena across 

southern Africa.  
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APPENDIX A: Average area of the modelled cloud 

bands 
 

This appendix consists of the graphs with the average area of the cloud bands per NDJF Seasons 

as modelled by the 27 different ensemble members for the study period November, December, 

January and February of the years 1996/1997 to 2009/2010. In all the graphs below the x-axis 

indicates the different NDJF Seasons in the study period and the y-axis donates the average 

area in km2. Both the biased (green line) and the bias-adjusted (yellow line) average area-

graphs are presented. The observed average area of the cloud bands per NDJF Seasons is 

displayed as a blue line on each graph. The abbreviations used for the 27 different ensemble 

members are given in the table below (table 3.1). 

 

Table 3.1: A list of the abbreviation used for each ensemble member in this chapter and the 

following results chapters. The date in the second and forth column is the date on which the 

ensemble member is initiated. 

Abbreviation Ensemble member (EM) Abbreviation Ensemble member (EM) 

1S1 1 September EM 1 1O3 1 October EM 3 

1S2 1 September EM 2 9O1 9 October EM 1 

1S3 1 September EM 3 9O2 9 October EM 2 

9S1 9 September EM 1 9O3 9 October EM 3 

9S2 9 September EM 2 17O1 17 October EM 1 

9S3 9 September EM 3 17O2 17 October EM 2 

17S1 17 September EM 1 17O3 17 October EM 3 

17S2 17 September EM 2 25O1 25 October EM 1 

17S3 17 September EM 3 25O2 25 October EM 2 

25S1 25 September EM 1 25O3 25 October EM 3 

25S2 25 September EM 2 1N1 1 November EM 1 

25S3 25 September EM 3 1N2 1 November EM 2 

1O1 1 October EM 1 1N3 1 November EM 3 

1O2 1 October EM 2   

 

 
Figure A 1: The average area of the cloud bands for ensemble member 1S1. 
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Figure A 2: The average area of the cloud bands for ensemble member 1S2. 

 

 
Figure A 3: The average area of the cloud bands for ensemble member 1S3. 

 

 
Figure A 4: The average area of the cloud bands for ensemble member 9S1. 

 

 

Figure A 5: The average area of the cloud bands for ensemble member 9S2. 
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Figure A 6: The average area of the cloud bands for ensemble member 9S3. 

 

 
Figure A 7: The average area of the cloud bands for ensemble member 17S1. 

 

 
Figure A 8: The average area of the cloud bands for ensemble member 17S2. 

 

 
Figure A 9: The average area of the cloud bands for ensemble member 17S3. 
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Figure A 10: The average area of the cloud bands for ensemble member 25S1. 

 

 
Figure A 11: The average area of the cloud bands for ensemble member 25S2. 

 

 
Figure A 12: The average area of the cloud bands for ensemble member 25S3. 

 

 
Figure A 13: The average area of the cloud bands for ensemble member 1O1. 
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Figure A 14: The average area of the cloud bands for ensemble member 1O2. 

 

 
Figure A 15: The average area of the cloud bands for ensemble member 1O3. 

 

 
Figure A 16: The average area of the cloud bands for ensemble member 9O1. 

 

 
Figure A 17: The average area of the cloud bands for ensemble member 9O2. 
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Figure A 18: The average area of the cloud bands for ensemble member 9O3. 

 

 
Figure A 19: The average area of the cloud bands for ensemble member 17O1. 

 

 
Figure A 20: The average area of the cloud bands for ensemble member 17O2. 

 

 
Figure A 21: The average area of the cloud bands for ensemble member 17O3. 
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Figure A 22: The average area of the cloud bands for ensemble member 25O1. 

 

 
Figure A 23: The average area of the cloud bands for ensemble member 25O2. 

 

 
Figure A 24: The average area of the cloud bands for ensemble member 25O3. 

 

 
Figure A 25: The average area of the cloud bands for ensemble member 1N1. 
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Figure A 26: The average area of the cloud bands for ensemble member 1N2. 

 

 
Figure A 27: The average area of the cloud bands for ensemble member 1N3. 
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APPENDIX B: Anchor points and centroids of the 

cloud bands 
 

This appendix consists of the combined graphs with the anchor points and the centroids of all 

the cloud bands modelled by the 27 different ensemble members for the study period 

November, December, January and February of the years 1996/1997 to 2009/2010. In the 

figures below the red dots indicate the anchor points and the green dots the centroids. The blue 

lines divide the geographical domain in the three preferred regions where TTTs tend to develop, 

i.e. have their anchor points. At the bottom of these three regions (columns), the number of 

cloud bands, which developed within that region, is displayed (around 35˚S). 

 

 
Figure B 1: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 1 initiated on 1 September.  

 

 
Figure B 2: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 2 initiated on 1 September.  
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Figure B 3: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 3 initiated on 1 September.  

 

 
Figure B 4: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 1 initiated on 9 September.  

 

 
Figure B 5: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 2 initiated on 9 September.  
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Figure B 6: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 3 initiated on 9 September.  

 

 
Figure B 7: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 1 initiated on 17 September.  

 

 
Figure B 8: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 2 initiated on 17 September.  
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Figure B 9: The anchor points (red dots) and the position of the centroids (green dots) of the cloud 

bands modelled by ensemble member 3 initiated on 17 September.  

 

 
Figure B 10: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 1 initiated on 25 September.  

 

 
Figure B 11: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 2 initiated on 25 September.  
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Figure B 12: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 3 initiated on 25 September.  

 

 
Figure B 13: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 1 initiated on 1 October.  

 

 
Figure B 14: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 2 initiated on 1 October.  
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Figure B 15: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 3 initiated on 1 October.  

 

 
Figure B 16: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 1 initiated on 9 October.  

 

 
Figure B 17: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 2 initiated on 9 October.  
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Figure B 18: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 3 initiated on 9 October.  

 

 
Figure B 19: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 1 initiated on 17 October.  

 

 
Figure B 20: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 2 initiated on 17 October.  
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Figure B 21: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 3 initiated on 17 October.  

 

 
Figure B 22: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 1 initiated on 25 October.  

 

 
Figure B 23: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 2 initiated on 25 October.  
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Figure B 24: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 3 initiated on 25 October.  

 

 
Figure B 25: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 1 initiated on 1 November.  

 

 
Figure B 26: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 2 initiated on 1 November.  
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Figure B 27: The anchor points (red dots) and the position of the centroids (green dots) of the 

cloud bands modelled by ensemble member 3 initiated on 1 November.  
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