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This dissertation solves the Buffer allocation problem (BAP), using Simulation-based op-
timisation (SBO). Chapter 1 describes the role buffers play within a production line.
Buffer is allocated to decouple stations and reduce the effect station failure and differing
process times have on the complete line throughput. Adding buffer to the line increases
the working capital required to run the line, thus the optimal number of buffer to add
to a line is an important design question. The problem statement is introduced. The
research design is discussed in this Chapter. A Discrete event simulation (DES) is specif-
ically designed to simulate a production line for the BAP. An inner and outer loop is
used to generate various buffer configurations. The Adaptive tabu search (ATS) for the
inner loop is modified by exploiting theory of constraints. The ideology states that the
overall performance of a line can be improved by ensuring the bottleneck is never starved
nor blocked. The proposed Theory of constraints tabu search (TOCT) uses the block or
starved ratio of stations to generate neighbours, reducing the number of neighbours that
need to be evaluated per iteration. Small-sized, medium and large-seized lines with vari-
ous process time, failure rate and repair time is used to scrutinise the proposed method,
detailed computation results are shown.

In Chapter 2 a literature study is done on approaches for solving the BAP. Three main
objectives are considered when solving the BAP. This dissertation focuses on objective
two, a prescribed throughput must be achieved with the minimum total buffer size. Various
search methods, meta-heuristics and complete enumeration is discussed as an option for
the evaluative method. The works of Demir et al. [9, 11] show that Tabu search (TS)
is an effective approach as a generative method for the BAP. Analytical methods and
simulation is discussed as evaluative methods. The decomposition method is most common
in literature. The disadvantage is that the decomposition method has limitations on
the line topology it can solve as well as distribution types for the machine parameters.
Alternatively, simulation or meta-models have been employed to represent more complex
lines. Simulation has a more accurate representation of the production line than a meta-
model but takes longer to compute. To overcome this DES can be used to create a specific
program.

In Chapter 3 a specific solution approach for the BAP is developed. The use of DES to
design a simulation in Java specifically for the BAP problem addresses the computational
burden of generic simulation models. Two event types are created for the model, departure
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and failure events. The works of Demir et al. [9, 11] establish a solid foundation for the
use of tabu search in a two-loop manner to solve the BAP.

In Chapter 4 the proposed method for creating and simulating serial production lines
using the program designed in Java is comparable to a commercial program and is faster.
Initial tests using DES with the ATS inner loop proved that SBO is capable of solving
the BAP. However, long execution time makes it unusable for medium and large-sized
problems. Two alterations are considered for the ATS and a new inner tabu loop is
proposed based on theory of constraints, TOCT as well as a list that saves previously
tested buffer scenarios and their throughput so that same scenarios are not re-evaluated
with the simulation model. The proposed method is 18 times faster than ATS for small-
sized problems and 5.5 times for medium-sized problems. The proposed method is used
to solve the BAP for objective two, showing that SBO is an effective model.

Finally, in Chapter 5, the solution approach scalability is tested on an actual, complex
automotive production line.
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Chapter 1

Introduction

The automobile industry is a global economic growth driver. The industry made over
66 million cars, vans and trucks globally in 2005 [22]. The level of output is equivalent
to a global turnover of almost e2 trillion worldwide. The industry continues to grow,
registering a 30% increase from 1995–2005. Building 60 million vehicles requires the
employment of 9 million people; those involved in making the vehicles directly as well
as those required to manufacture the parts that go into them. This is over 5% of the
worlds total manufacturing employment. For every direct employee, it is estimated that
5 indirect employees are involved. The industry is a major innovator, investing over e84
billion in research, development, and production. Achieving efficient utilisation of the
investment is crucial to the success of the industry.

1.1 Problem background

Vehicle production is done in high volumes, with individual factories capable of producing
half a million units per year. Adding to the complexity, single plants can be required to
produce different models. To achieve these car manufacturers have established factories
consisting of multiple facilities to fit the various components.

Sheet metal is used for the body of the car. These are pressed in press plants which
can either form part of the factory or be outsourced to external suppliers. The press parts
are welded together in the body shop. Highly automated lines construct the body of the
car. Step by step, new press parts are added to it as it moves through the line. The end
product is a steel body known as the Body-in-white (BIW). After the BIW is built, it
goes to the paint shop where multiple layers of protective coating and paint are applied
to the car. Finally, the car moves to the assembly line. Here workers install the various
parts to the body. The end product from the assembly line is a completed car that drives
off the line. Each of these facilities uses a production line to achieve the mass production
needed.

A production line is a system in which a series of value-adding work stations are
connected with material moving equipment. Value is added to the item as it moves
through the line [11]. At each step, parts are assembled.

Each line in the automotive factory has unique characteristics based on production
requirements. Body shops are highly automated and consist of multiple smaller lines
(machine cells). These lines build the sub-assemblies, which then flow into the mainline.
Sub-assemblies of a BIW is shown in Figure 1.1. A typical body shop production line is
shown in Figure 1.2a, this line layout can be classified as a tree structure line. The line
consists of a number of machines cells, labelled as Mk and separated by a buffer Bk−1
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Figure 1.1: BIW assembly components [14].

where k ∈KKK = {1, 2, ...,K}, KKK is the number of machine cells. The various machine cells
of a body shop, shown in Figure 1.2a contain smaller machine cells each with body shop
equipment such as welding robots, grippers and fixtures.

Compared to the body shop, the assembly line is a labour intensive facility where
the trim components of the car are assembled. The car moves down a serial line (see
Figure 1.2b) and at each station, workers assemble a specific set of parts on the car until
a completed car drives off the line.

Figure 1.3 shows the content of the Front wheel house (FWH), station M1 of Figure
1.2a. The FWH can easily be broken down into 10 smaller machine cells and 14 buffers.
It is even possible to expand station M1.3 and M1.6 into more, smaller stations as they
also consist out of several fixtures, robots and buffers. Stations M1−13 in Figure 1.2a can
all be expanded in a similar manner. Hence, the body shop production line is seen as a
complex system.

During the design of the body shop, specific cycle time is calculated for the line. The
cycle time is determined by the throughput the production line needs to achieve. Each
machine cell is then developed to have a processing time as close to this desired cycle time
as possible. The processing time is how long it takes the cell from receiving the parts
to finishing the assembly. The aim is to never have a processing time that exceeds the
cycle time. Due to space, weld locations and robot movement constraints, only certain
work content can be included in each cell. Even if the cell’s processing time is less than
the required cycle time, it is not possible to add more content to the cell due to these
constraints. This limitation makes it impossible to have the same processing time for all
the cells. In a scenario where the processing time of a station is longer than those before
and those after, all stations upstream of it will be blocked, while all downstream stations’
waiting time to receive parts will increase. For the downstream stations, we say they
are starved as no parts are arriving to feed them. Therefore the station with the longest
processing time will be the bottleneck in the line.

Another factor that can influence stations becoming blocked or starved is equipment
failure. The body shop equipment such as robots, grippers and fixtures are all subject to
failure. Due to a large number of equipment in the body shop, it is extremely sensitive to
machine failure. Figure 1.4 is used to illustrate the impact of machine failure on the total
availability of a simple serial production line with five machines, each with an equipment
availability of 95%. If we assume each machine fails independently, the total availability of
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(a) Tree structure line typically found in body shop.

(b) Serial line typically found in assembly.

Figure 1.2: Production line topology.

the five-station line can be calculated as 95%×95%×95%×95%×95% = (95%)5 = 77.37%.
If the total assembly system stopped every time a single station failed the line would rarely
function [1]. Once a station fails, it can cause all upstream stations to become blocked
and downstream stations starved if the station cannot be repaired before the end of the
cycle.

The impact of these factors on the throughput of the line can be reduced by introducing
buffers into the production line. Buffers are temporary storage areas strategically placed
in the production line to decouple segments of the line. If a station that has a buffer for its
exit material fails, all downstream stations can remain operational while there are parts
in their respective buffers. If the station cannot be repaired before the buffer empties,
and start supplying downstream, the production of the downstream station will stop. If
there is a buffer before the failed station, all upstream stations will be able to produce
while there is space in the buffer. Again if the station cannot be repaired before the buffer
reaches capacity, and start pulling parts, the upstream line will become blocked. The
bigger the buffer, the longer the production line can run independently. This reduces the
effect line reliability has on production throughput.

Allocating buffers into a production line requires additional capital, material handling
and is limited by available floor space. Buffers also increase Work-in-progress (WIP)
inventory. The strategic placement of buffers in the production line is, therefore, an
important manufacturing design problem.

The problem of allocating buffers optimally is known as the Buffer allocation problem
(BAP). BAP consists of finding the optimal buffer configuration (location and size) within
the production line. For a comprehensive study of the BAP see the works of Demir et al.
[10].

The BAP has three main classifications of problem objectives: maximise throughput
for a given fixed number of buffer, achieve desired throughput with minimum buffer, and
minimisation of the WIP subject to the specified buffer size.

The BAP is also classified based on line parameters. A production line where the pro-
cessing time of all stations are similar is called a homogeneous production line. Conversely,
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Figure 1.3: M1 FWH station explosion.

Figure 1.4: Serial production line availability.

if the process times are different, it is known as a heterogeneous line [29]. In some cases,
literature ignores the possibility that failures may occur, or that failures are negligible,
in which case the line is assumed to be reliable. However, when failures are explicitly
addressed in the model, the line is referred to as being unreliable [10].

BAP has been proven to be an NP-Hard combinatorial optimisation problem [10].
That means when the number of machines in the line is increased, or the number of
buffers that can be allocated to the line increases, the number of possible solutions to the
problem grows exponentially. For example, a small-sized problem—say a production line
with five machines, four buffer locations and a total buffer size of 25—has 3 279 possible
configurations. Increasing the total buffer size to 100 (factor 4) increases the number of
configurations to 176 854 (factor 54). Production lines can have more than 40 machines
in the line and a total buffer size of 800.

A complex system such as a production line cannot be expressed by a simple math-
ematical equation where the throughput of the line can be calculated for a given buffer
configuration [10]. Due to the lack of this algebraic relation and the problem being NP-
Hard, a method with two elements are frequently used to solve the BAP [10].

Evaluative method: The evaluative method is used to calculate the throughput of a
production line for a given buffer configuration. Various versions of the evaluative
method have been employed in the literature.

Analytical methods have been used for the BAP. Exact analytical methods are only
applicable to small-sized problems, not for production lines as big as the body shop.
For larger systems, approximation methods can be used.

Methods employing algebra, calculus or probability theory are used to approximate
the throughput of the line. A method known as the decomposition method is widely
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used in BAP as an evaluative method. In the works of Demir et al. [9], the decompo-
sition method is used to determine the throughput of a serial line. The decomposition
method transforms the production line into a set of K−1 smaller two-machine lines
L(i), for i = 1, ...,K − 1, as illustrated in Figure 1.5. Line L(i) has an upstream
machine and a downstream machine separated by a buffer. The average throughput
of the production line can be obtained by modelling the line as a Markov process.
The performance characteristics of a two-machine line can be obtained exactly, the
decomposition method requires a derivation of a set of equations that link the decom-
posed two-machine lines together. The non-linear equations are solved to determine
parameters of the upstream and downstream machine such as process time, failure
rate and repair rate to that the behaviour of material flow into buffer B(i) closely
matches that of the flow into buffer Bi of the original line L. The literature found
on the BAP using the decomposition method is limited to serial production lines.
Recall from Figure 1.2a, the topology of the body shop line is a tree structure where
multiple buffers lead into a machine, and the machine can only produce when a
component from each buffer is present. Due to the structure of the body shop, it
cannot be decomposed in the same way as a serial line.

Alternatively, simulation is used to determine line throughput. Simulation is the
imitation of a system being studied which is performed on computers by creating
a model of it. Various line topologies can be modelled, including tree structure
lines. Each station can have different random variables describing the processing
times. Failure of stations can also be included in the model. The disadvantage of
simulation is the time it takes to evaluate a scenario.

Generative method The generative method moves through the solution space and con-
siders the various buffer configurations to be evaluated Demir et al. [10]. The gen-
erative method aims to find a (near) optimum buffer configuration in the shortest
time possible. Methods employed include complete enumeration, traditional search,
heuristic search, and metaheuristics. Complete enumeration evaluates all possible
configurations and is only applicable to small problems. Traditional search methods
and heuristics test only a subset of the buffer configurations. The disadvantage is
that they get stuck at a local optimum. Metaheuristics add logic to the way it moves
through the solution space and has the main advantage that they can escape local
optimum.

The evaluative and generative methods are executed iteratively. The methods start with
an initial buffer configuration. With the given buffer configuration, the evaluative method
can determine the throughput of the line. Because the initial configuration might not be
the optimal solution, the generative method generates new buffer configurations for the
evaluative method to test. This is repeated until a (near) optimal solution is found.

Demir et al. [10] conducted a comprehensive survey of the BAP. It highlights the new
trends in the field and presents ideas for future research by identifying gaps. Within the
paper, 95 literature works on the BAP were studied. The studied papers are classified
based on line characteristics as well as the solution approaches used. The study showed
that the majority of literature did not ignore failure, and included it in the model. Only
41 papers ignored failure in their solution approach.

Out of the 54 papers that did include failure, the majority of the literature focus on
simpler production lines. Serial or serial-parallel production lines were studied in 40 of the
54 papers, with the rest solving the BAP for more complex line topologies. These simpler
lines are solved using approximation methods as the evaluative method. Only 14 papers
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Figure 1.5: Serial line decomposition method.

conducted studies on complex lines. Out of these 14 papers, 10 of them used simulation
as the evaluative method.

The complex stochastic nature of the body shop line cannot be accurately solved with
approximation methods. Thus simulation needs to be used as an evaluative method.
Simulation can be used to evaluate the throughput of the line for every scenario given by
the generative method. The use of simulation iteratively with an optimisation technique
is known in the literature as Simulation-based optimisation (SBO). This dissertation aims
to increase the body of literature on SBO as method to solve BAP.

1.2 Problem statement

The problem under investigation is how to determine the buffer configuration for complex
production lines that require simulation to accurately represent the production line. The
solution should be scalable for a system such as the body shop. The aim is to achieve
its required throughput while minimising the number of buffers included in the line. To
reduce the effect of equipment failure, buffers are included in the line at a great financial
cost. The body shop is a complex manufacturing facility in an automotive factory as it has
a non-serial, heterogeneous and unreliable production line. Appropriate methods need to
be used to evaluate this complex line’s throughput and generate good buffer configurations
for evaluation.

For a complex system such as the body shop, analytical and approximation methods
cannot be used. Simulation is capable of modelling the stochastic nature of the line and
provide highly accurate throughput times for a given buffer configuration. To find the best
solution, multiple buffer configurations need to be generated by an optimisation method
and evaluated with simulation.

Thus, the problem that needs to be solved is how the method of SBO can be applied
to the BAP to achieve the best solution. Best referring to finding a buffer configuration
that has the smallest total buffer size while still achieving a specific throughput, within
an acceptable time frame.

14



1.3 Research design

The dissertation solves the BAP using SBO. The iterative use of a generative method
and evaluative method is employed to solve the BAP with the aim to find the minimum
buffer size required to achieve a required throughput. A Discrete event simulation (DES)
is specifically designed to simulate a production line for the BAP. Stochastic simulation in
java (SSJ) is used to create a general framework that receives the number of machines with
corresponding machine parameters as input and creates the simulation model. The design
of the simulation model is focused specifically for BAP. It is tested against commercial
software to prove the efficiency of the model. The generative method is based on the
works of [9, 11]. An inner and outer loop is used to generate various buffer configurations.
The Adaptive tabu search (ATS) for the inner loop is modified by exploiting theory of
constraints. The ideology states that the overall performance of a line can be improved by
ensuring the bottleneck is never starved nor blocked. The proposed Theory of constraints
tabu search (TOCT) uses the block or starved ratio of stations to generate neighbours,
reducing the number of neighbours that need to be evaluated per iteration. Small-sized,
medium and large-seized lines with various process time, failure rate and repair time is
used to scrutinize the proposed method, detailed computation results are shown. Finally
the proposed methods scalability is tested on an industry problem, solving the BAP on a
non-serial, large production line.

1.4 Research methodology

The methodology of design research discussed in Manson [20] is used in the paper. This
methodology describes guidelines for a researcher who wishes to conduct a paper based
on the field of operations research.

To solve the problem described in the problem statement, first our understanding of
the BAP needs to be enhanced. In Chapter 2 a comprehensive literature review on the
BAP is done. The method of using an evaluative and generative element iteratively to
solve the BAP is studied. Analytical evaluative methods are compared with simulation
evaluative methods and justification is provided for the use of simulation as the evaluative
method of choice in this dissertation. For the generative method, various approaches are
researched. Chapter 2 suggests why the use of SBO is the most applicable method to solve
the BAP for the body shop line.

This idea of SBO is then developed as a solution approaches in Chapter 3, specifically
for the BAP. A simulation program is created in a general programming language, Java.
This program is a newly designed blueprint using the library of the SSJ. It is possible to
simulate any size of a serial production line by just specifying the number of machines,
random parameters, replication length and simulation length as well as the buffer vector.
For the generative method, two metaheuristics are compared for finding the optimal buffer
configuration for maximising throughput. The first method is based on the works of Demir
et al. [9]. The second method is a proposed improvement on the above mentioned algorithm
to improve the evaluation time.

In Chapter 4 this artefact is used and tested on serial production lines. First, the
validity of the simulation model is checked. Then the two generative methods are compared
across various production line lengths and random parameters. The best, that is the
method that achieves a near-optimal solution within a reasonable amount of time, will be
used with the simulation model to solve the larger and more realistic BAP.

Lastly, the proposed methodology is applied to a body shop production line. The use
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of SBO in the BAP will help to increase our knowledge on its effectiveness with solving
the BAP for complex lines such as the body shop.

1.5 Contribution

The dissertation presents a DES model that is not a computational burden. A TOCT
is presented where theory of constraints ideology that the overall performance of a line
can be improved by ensuring the bottleneck is never starved or blocked. The neighbour
generation prioritise buffer allocation to stations that are mostly blocked and remove buffer
from stations that are rarely starved.
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Chapter 2

Literature review

Buffers are locations in which semi-completed, Work-in-progress (WIP), parts are stored
within a production line. Factors such as uneven processing time and station failure create
instability in the production line, which has a negative effect on throughput. Buffers are
placed in the line to decouple stations and reduce instability. Buffers allow preceding and
succeeding stations to operate independently.

By including buffers, the required capital to realise and operate the production line is
increased. WIP is also increased, leading to higher running capital. Minimising capital
investment, by reducing the number of buffers while providing sufficient buffer to reduce
the effect of equipment instability on production availability, makes the optimal placement
of buffers in the line a vital problem to solve.

The Buffer allocation problem (BAP) deals with finding the optimal buffer configu-
ration to incorporate in the production line to achieve a specific objective [10]. Due to
the complexity of the BAP, numerous publications are available in the literature. In this
chapter, an in-depth study is conducted to discover the various methods used to solve
the BAP. First, the basic formulation for the BAP is given. The available approaches
to generate various buffer configurations are then explored. Once various buffer configu-
rations can be generated, a means to evaluate them is needed. Evaluative methods are
covered first for simple lines, then for the more complex lines. The concept of Simulation-
based optimisation (SBO) is then introduced as the preferred solution approach in this
dissertation.

2.1 Basic formulation

To explain the components of a production line, consider the example given in Figure 2.1
with K machines, each denoted by Mk, k ∈ KKK = {1, . . .K}. Parts flow sequentially from

Figure 2.1: Problem notation on a serial production line [12].

M1 to Mk. The final machine Mk is never blocked, meaning once a part is processed, there
is always space for it to exit the system. Between consecutive machines, there are buffers
where parts await processing. The set of buffers are denoted by BBB = {B1, B2, . . . , Bk−1}
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where B1 represents the buffer between machines 1 and 2, B2 the buffer between machines
2 and 3, etc. Jointly we represent the set of buffers by BBB = {B1, B2, . . . , BK−1}.

Associated with each machine k ∈ KKK are several parameters. The first, tk, denotes
the processing time required at machine k. Secondly, fk denotes the time between failures
of machine k while rk denotes the repair time of machine k. We denote the line’s total

buffer size as N =
K−1∑
k=1

Bk. An example of the buffer vector for a five machine line can

be, BBB = {4, 3, 2, 1}, where B1 = 4, B2 = 3, B3 = 2, B4 = 1 with a total line buffer size of
N = 10. In the basic cases, the BAP assumes the processing times of all machines are
equal and deterministic. That is, it is assumed that t1 = t2 = . . . tK .

The BAP is concerned with finding Bk, represented by the vectorBBB, that best achieves
the organisation’s objective. This goal is usually measured against the throughput of the
production line. Line throughput is a function of the buffer vector, expressed as f(BBB).

Three objectives have been proven prominent in the literature for BAP [10].

Objective 1 Maximise the throughput of the line for a given fixed number of buffer N
[9, 21, 23]. The BAP formulation is then expressed as:

max f(BBB)

subject to

K−1∑
i=1

Bi ≤ N

where N is a predefined value.

Objective 2 A prescribed throughput, f?, must be achieved with the minimum total
buffer size [11, 16, 24]. The formulation then changes to:

min
K−1∑
i=1

Bi

subject to

f(BBB) ≥ f?

where f? is a predefined value.

Objective 3 Minimise the average WIP inventory, Q(BBB), for the buffer configuration
subject to the total buffer size and prescribed throughput. The problem is then
formulated as:

min Q(BBB)

subject to

K−1∑
i=1

Bi ≤ N

f(BBB) ≥ f?

where both N and f? are predefined values.

Solving the BAP for objective 2 is the aim of this dissertation. Production plant
designers are faced with the problem of achieving a balance between throughput and
WIP. The solution approaches studied aim to solve objective 2 problems.
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2.2 Solution approaches

The objective of the BAP is to find a buffer configurationBBB that meets a specific objective
function. The simplest objective function is to maximise the line’s throughput, f(BBB), for a
given total buffer size N . To achieve this, various permutations of the buffer configuration
need to be generated and tested. All the possible permutations are called the solution
space. To say that a solution is truly the best, all possible scenarios in the solution space
need to be generated and tested. Creating these buffer scenarios is called the generative
method in the literature.

2.2.1 Generative method

The simplest way to find the best buffer configuration is to generate all the possible buffer
permutations and test every single one of them. This is known as complete enumeration.
The BAP has been proven to be an NP-Hard combinatorial optimisation problem [10].
That is if we increase the number of machines or the total number of buffers that can
be allocated among the various buffer locations, the solution space grows exponentially.
Thus, the complete enumeration is only possible for very small problems.

Because it is not possible to generate all the possible buffer permutations, a subset of
them can be generated in a smaller amount of time. The question is then how do we select
this subset of permutations from the solution space that needs to be tested and how is the
best then found.

Various search methods have been used in literature. Traditional search methods have
been applied to the BAP. Methods such as gradient search algorithm [15, 16], knowledge-
based methods as well as degrading ceiling local search heuristics have been used.

These methods start with an initial solution. They then generate all possible permu-
tations of the initial solution that can be reached in one step. A step can be seen as
increasing the buffer space limit with a specific value and decreasing another with the
same value. All the permutations are tested, and the buffer configuration that results
in the highest throughput is then considered as the best solution. This is repeated until
no other improved buffer configuration can be found. Although these methods are more
efficient than complete enumeration, they cannot escape local optima.

Unlike the previous search method, metaheuristics are allowed to select a permutation
that results in a worse throughput than the current best. This allows the metaheuristics to
escape a local optimum and move to other areas in the solution space in the hope to find a
better local optimum or ideally the global optimum. That means metaheuristics add logic
to the search, giving it the ability to escape local optimum. It is a method that controls
the way we move through the solution space. Metaheuristics have been widely applied in
the buffer allocation problem. The following section explains two common metaheuristics
in the BAP literature.

Genetic algorithm is based on the theory of evolution that favour the reproduction of
individuals with specific traits. Let N denote a specific total buffer for the line,

where N =
K−1∑
k=1

nk. Assume N = 50, the buffer vector BBB can have the following

configuration. BBB = {5, 6, 4, 5, 20, 10}. The following steps form the basis of a genetic
algorithm [25].

Each iteration is referred to as a generation in evolutionary algorithms. For each
generation, a selection of the population is made and known as the parents. The
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parent solutions reproduce/mutate into new solutions, called offspring. The pop-
ulation is then updated with the new offspring. The initial population is usually
randomly generated scenarios. The iteration of generation creation is repeated un-
til some stopping criteria are met. The stopping criteria can be after a predefined
number of generations, mmax has been evaluated.

Let m denote the iteration number in the algorithm.

Step 1 Set m = 1, where m is the generation number. Select s initial parents,
where s > 1. Ideally, all the s solutions should be relatively “good” although
this is not a requirement. Example, set s = 3, it means that 3 parents are
required to start the algorithm;

• Parent 1: {5, 6, 4, 5, 20, 10}
• Parent 2: {8, 4, 8, 8, 10, 12}
• Parent 3: {3, 10, 15, 15, 5, 2}

Step 2 Identify the best and worst among the s solutions by determining the line
throughput for each parent s. Denote the best by −→x best and the worst by
−→x worst. Randomly select a parent of −→x best and call it −→x new. Replace the worst
parent with the new child.

Various methods exist for generating offspring. Offspring generating mecha-
nisms are adapted to specific problems. For the BAP this mechanism will
subtract a predefined total from a specific buffer and add the same value to a
different buffer.

Step 3 Increment generation, m by 1. If m = mmax, return −→x best as the best
solution and stop. Otherwise repeat step 2.

Various variants of the format above exist in literature [13, 25]. Variants focus on
aspects such as selection paradigm in which individuals with better solutions are
selected with higher probability. Selected individuals can then reproduce in various
ways (e.g., crossover, mutation) to generate new offspring. Various replacement
schemes also exist for replacing parent solutions with offspring.

Tabu search is a widely used metaheuristic. A distinctive feature of the Tabu search
(TS) algorithm is the so-called tabu list. The tabu list is a list of mutations that are
prohibited in the algorithm to avoid cycling to recently visited solutions. The basic
steps to the TS are as follows:

Let m denote the iteration number in the algorithm. Then mmax denotes the maxi-
mum number of iterations to be performed.

Step 1 Set m = 1. Select an initial solution −→x current randomly. Set −→x best ←−→x current, where −→x best is the best solution obtained so far.

Step 2 Select s number of neighbours, of −→x current. Call these neighbours −→x news

respectively. Determine the throughput for each scenario s.

Step 3 Rank the solutions from best to worst, based on the throughput. Compare
the best of these solutions, with the items in the tabu list. If the best item is
in the tabu list, skip it, and go to the second-best. Repeat this until a solution
that is not in the tabu list is found.

Step 4 Replace the −→x current with the best scenario that is not tabu as the new
−→x current. Enter −→x current at the top of the tabu list. Each item in the tabu list

20



moves one space down. The tabu list has a specified length, if the list exceeds
this length, remove the bottom item. The length of the tabu list is the tabu
tenure and is problem-dependent. There is no set rule on how to pick the tabu
tenure.

Step 5 If −→x current is better then −→x best, change −→x best ← −→x current, if not do not
change −→x best. Increment m by 1. If m = mmax, STOP, and return −→x best as
the solution. Otherwise, go to Step 2.

The tabu list thus contains a list of permutations that have been made recently.
Maintaining the lists avoids the solution from moving back and forth between the
same scenarios.

Demir et al. [9] used an Adaptive tabu search (ATS) to solve the BAP for an unreliable,
unbalanced line. The objective is to maximise the throughput of the production line
f(BBB), for a given buffer size constraint N . The algorithm distributes a fixed number of
buffer between each buffer location Bk. In their paper Demir et al. [9] proposed a new
ATS and compared it to the simple TS as discussed above, referred to as Standard tabu
search (STS). Various changes are made to the STS which are discussed below.

Neighbour generation The moves through neighbouring solutions are depicted by the
notation i, j, meaning that a given number of buffers is added to location i and
the same number is subtracted from a location j. All the possible i, j scenarios are
generated from the current solution. In the STS the size of buffer change at location
i, j is set to 1. In the ATS the incremental size is subject to the problem size. It is
set to 1 for small and medium-sized problems, i.e. 5 and 10-machine lines. For large
problems involving 20–40 machine lines, the size is set to 1% of the total buffer size,
rounded up.

Tabu list The full move tabu criterion was employed in both the STS and ATS. If the
move i, j produces the better objective function from the various scenarios evaluated
then move j, i becomes tabu for a certain amount of iterations until it is moved off
the list. The tabu tenure, which is the length of the tabu list, is set to

√
ns where

ns = neighbour solution space size. The tabu tenure for the ATS is tuned adaptively.
Initially, the tabu tenure is set to a predefined minimum value. It is then calculated
for each move. If the objective function is improved, the tabu tenure is decreased
by 1. If the solution is not improved, it is increased by 1, subject to an upper and
lower limit for the tabu tenure.

Intensification and diversification The ATS also employs an intensification strategy.
If a solution found to be the best does not change for a certain number of iterations,
the increment (decrement) size is reduced to 1 for large-sized problems.

Diversification is also employed in the ATS. After several iterations without any
improvement, a new random buffer configuration is generated. The algorithm then
explores from this solution onwards.

Demir et al. [9] also showed that the quality of the initial scenario on which the algorithm
starts could affect the quality of the final solution. Three different methods for determining
the initial allocation of buffer were compared. Either using the ratio of failure to repair
rate, the processing rate or using random initialisation. Experiments showed that using
the ratio of failure to repair rate, where the machine with the higher ratio receives more
buffer for its exit buffer, results in a good initial solution.
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Figure 2.2: Generative methods.

The ATS can have significant performance improvement compared to the STS. In all
instances an improved throughput is achieved by the ATS. The improvement is even more
noteworthy for large sized problems. They found that in most large-sized problems, the
STS cannot avoid local optima.

The objective function of this dissertation is not to maximise the throughput of the
line for a given N , but to achieve the desired throughput with the smallest N . Demir
et al. [11] extended on the work of Demir et al. [9] by introducing two control loops to
find the minimal buffer size required to achieve the desired throughput. The inner loop
includes a ATS to obtain a maximum throughput for a given buffer size N as discussed
above. Binary search and TS was evaluated for the outer loop. The outer loop sequentially
decreases the total buffer size N to find the desired throughput with a minimal buffer.
First, the outer loop will use a specified N from the user. In most cases, the initial N is
a big number. The inner loop will then determine the best throughput possible for N ,
by searching for the relevant buffer configuration. If the throughput is higher than the
desired throughput, the outer loop can decrease the size of N . Again, the best throughput
for the new N is determined. This is repeated until the size of N can’t be decreased as it
will result in a lower throughput than required.

The proposed method was tested across a wide range of possible line properties. Both
binary search and TS for the outer loop were able to solve small to large scale problems.
For large problems, the binary search was executed faster than TS, but the authors noted
that using parallel implementation of the TS can result in faster execution time than the
binary search.

Figure 2.2 summarises the possible approaches for the generative step. Recall that the
BAP is an NP-hard problem. Thus complete enumeration and search methods cannot
be used. The only way to obtain a near-optimal solution within a reasonable amount of
time is to use a metaheuristics. Both the genetic and TS algorithms have been used in
literature. The work of Demir et al. [9] shows that the TS can successfully be applied to
the BAP to minimise total buffer size for a given throughput target. Therefore the same
approach is considered in this dissertation.

During the generation of buffer permutations, the throughput of the various permu-
tations needs to be tested. Various ways to evaluate the throughput of a production line
exists in the literature. In the BAP this step is called the evaluative method.
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2.2.2 Evaluative method

Every time the generative method generates a new buffer configuration BBB, that is new val-
ues for the buffer’s maximum capacity, Bk, the buffer configuration needs to be evaluated.
Recall that a line’s throughput is a function of its buffer vector, f(BBB).

A large number of buffer permutations needs to be evaluated to get the best solution.
It would have been ideal if a simple algebraic formula could be expressed for f(BBB), as an
algebraic formula would be quick to solve.

Unfortunately, machine failure and processing time are stochastic in nature. The
algebraic relation between the buffer configuration and throughput of the line is very
limited. The next best option is to approximate the line’s throughput, using analytical
methods. The line reliability and topology influences the approach we can use.

For very short, serial production lines exact results based on queuing models are pos-
sible [9]. This is not the case for the body shop.

For larger production systems, approximation methods are used. Two approximation
methods studied in the BAP literature are the decomposition method [9, 11, 21] and
aggregation method. The decomposition method breaks the line up into L smaller lines,
while the aggregation method combines the stations. These methods are very similar in
implementation. Thus only the decomposition method will be investigated in detail. The
decomposition method is time-efficient in the calculation of the line’s throughput and is
based on the theory of queueing networks.

Decomposition Method

Gershwin [12] proposes a decomposition method to analyse a queuing system with a finite
buffer. This method is applied to production lines to calculate the throughput.

To explain the components of the method, consider the example of a queuing network.
Customers arrive at a service area, wait in a queue until the other customers’ services are
completed, obtain the services they require and sequentially move through the service areas
until they leave the system. Not unlike the behaviour of a production line. It is possible to
calculate both the throughput of the system and the average number of operators in each
queue [12]. The following section describes the workings of the decomposition method.

Each machine Mk has two states; working or being repaired. During a time unit, if
machine Mk is active and servicing, thus working, it has a probability of fk to fail. Note
fk previously denoted the time between failure, whereas for the decomposition it is the
probability to fail in the next time unit. The failure time is distributed geometrically with
a Mean time to failure (MTTF) of 1/fk. If the machine failed, it has a probability of
rk to be repaired within the next time unit. Again, unlike before, rk now denotes the
probability to be repaired and not the time to repair as denoted previously.

For each buffer Bk as in the basic formulation, Bk can be in ak states, ak = 0, 1, ...nk,
where ak is the number of material in Bk and nk is its capacity.

The decomposition method takes the serial production line and creates K−1 lines, each
with two machines and a buffer, Figure 2.3. These lines are denoted as L(i), i ∈KKK|i ≤ K−1
The decomposed line represents the characteristics of the serial line. Bk in L(i) equals Bk

in the K machine line.
Each line L(i) has two machines, denoted as Mu(i) (upstream from buffer) and Md(i)

(downstream). Consider line segment L(i): it will have two machines out of the original
line KKK. These machines are k = 1, M1, and k = 2, M2. Machine M1 is shown in line L(1)

as Mu(1) while machine M2 is Md(1).
The attributes of each inline machine segment L(i) is as follows:
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Figure 2.3: Serial production line decomposed [12].

• The first machine in line L(i), Mu(i) has a failure probability fu(i) and repair prob-
ability ru(i) that represents all upstream stations.

• The second machine, Md(i) has a failure probability fd(i) and repair probability
rd(i) that represents all downstream stations.

The machine Mk also has a global variable αk, where αk is 1 if the machine is opera-
tional (not failed) and 0 if the machine is not operational (failed).

The four attributes are derived by a 4(k − 1) polynomial equation. They are derived
from the algorithm developed by Gershwin [12]. The attributes represent the upstream
and downstream performance of the line. Thus flow rate into B(i) in L(i) is closely matched
to that of Bk in the KKK-machine line. The probability that the buffer is empty or full is
also matched. The machine is starved if its upstream buffer is empty and blocked if the
downstream buffer is full. The number of material in B(i) at any time can be expressed
as a(i), 0 6 a(i) 6 n(i). The buffer will either gain or lose one unit during a time unit.

When machine Mk is under repair, αk = 0, it then has the probability rk to become
operational during each time unit:

prob[αk(t+ 1) = 1|αk(t) = 0] = rk

When machine K is working, it has a probability fk of failure:

prob[αk(t+ 1) = 0|ak − 1(t) > 0, αk(t) = 1, ak(t) < nk] = fk

Repair and failure occur at the beginning of a time unit and buffers change levels at the
end of the time unit. Thus during periods in which starvation and blocking do not influ-
ence buffer B(i),

a(i)(t+ 1) = a(i)(t) + αk(t+ 1)− αk + 1(t+ 1)

More generally:

a(i)(t+ 1) = a(i)(t) + Iui(t+ 1)− Idi(t+ 1)
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where Iui(t+ 1) is the indicator of whether flow arrives at buffer i from upstream, that is:

a(i)(t+ 1) = a(i)(t) + Iui(t+ 1)− Idi(t+ 1)

Iui(t+ 1) = 1 if αk(t+ 1) = 1 and a(i−1)(t) > 0 and a(i)(t) < n(i), 0 otherwise.

The indicator Idi(t + 1) of flow leaving buffer i is defined similarly. The performance
measure Ei is defined by production rate (which can be throughput, flow rate, or line
efficiency) of machine Mi in parts per time unit:

E(i) = prob[αk = 1, a(i−1) > 0, a(i) < n(i)]

Due to the conservation of flow, parts are neither destructed nor created. This means
every part starts at the first machine and flows through each machine K until they exit
the last machine. No parts can leave or enter in-between the start and last machines. It
can thus be assumed that the steady-state production rate of one machine will equal that
of all the other machines.

f(B) = E1 = E2 = .... = Ei.

If each machine was truly independent (thus no influence from downstream or up-
stream) the flow rate of each machine can be described by ei = ri

ri+fi
. The actual produc-

tion rate of Ek of Mk is less due to starvation and blocking.

Ei = eiprob[ai−1 > 0, ai < ni]

Because prob[ai−1 = 0, ai = ni] ≈ 0 as the probability of reaching states where ai−1 = 1
and ai = ni− 1 by means of transition is approximately 0, the formulation is:

Ei ≈ ei(1− prob(ai−1 = 0)− prob(ai = ni)

The decomposition method uses a set of equations that link the decomposed two-
machine lines together. These non-linear equations are solved to determine the throughput
of the line. The method has been employed in the BAP literature for both homogeneous
and heterogeneous lines.

The method described above was improved by Burman [5], to be able to model het-
erogeneous lines. The research papers using the model assume that the processing time
of machines Mk, that is tk, are continues stochastic variables. All the papers used one
random distribution for all the equipment, that is, p(t1) = p(t2) = . . . p(tk).

The decomposition method is dependent on specific assumptions:

Reliable, unreliable lines - the decomposition method is capable of approximating pro-
duction lines which are unreliable, similar to the needs of the body shop.

Line topology - the decomposition method is based on a serial production line which
can be approximated by LLL sub-lines. Each line has a buffer with one station in front,
and one after the buffer. Literature could not be found where the method is applied
to non-serial production lines. In non-serial production lines, such as the body shop
a buffer can have multiple stations in front as well as multiple stations afterwards.
Therefore the method described above can not be applied to the body shop problem.
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Parameter distributions - in the works of Demir et al. [9], the processing time for
all stations is a continuous stochastic variable with the same distribution, that is
p(t1) = p(t2) = . . . p(tk). No paper using the decomposition method could be found
where each machine could have its own unique distribution, that is p(t1) 6= p(t2) 6=
. . . p(tk). The body shop processing time is also a continuous stochastic variable,
where not all machines have the same distribution.

The decomposition method has been widely used because of its speed and accuracy.
Unfortunately, the decomposition method cannot be applied for tree structure systems
with various stochastic variables such as the body shop. The only practical way to calculate
the throughput of such a complex system is a simulation model.

Simulation and meta-models

An alternative method used as an evaluative method for the BAP is a simulation model.
Recall that simulation is an approach of using computers to imitate the operations of
various kinds of real-world systems. It is used to perform tests on the simulation instead
of the real system. The imitation created with the simulation is known as a model and
is built with certain assumptions. With simulation, the real system is not analysed, but
the model. It must then be assumed that if the model is an accurate imitation of the
system, that the results obtained with the model might also be obtained in the real-
life system if similar changes are made to it. Simulation allows any line topology to be
simulated. Reliable and unreliable lines can be modelled, and each station can have unique
parameters. Due to this flexibility, it has been used widely in complex systems such as
production lines [18].

Simulation is applied in various research contributions [2–4, 7, 8, 17, 19, 24, 26, 27].
There are two ways in which simulation is used as an evaluative method. The simulation
itself can be used to determine the throughput for each buffer configuration. Alterna-
tively, a meta-model can be made of the simulation, and this meta-model is then used to
determine the throughput.

Meta Model

A simulation model is a representation of a real-world system, whereas the term meta-
model refers to a mathematical approximation of a simulation model. Meta-models are
developed to obtain an understanding of the relationship between the input variables and
the output variables of the system under investigation.

The complexity of cellular manufacturing is also a motivation for the use of meta-
models as the evaluative method when assigning buffers. Lee [19] developed an approach
to find the buffer configuration that leads to the lowest cost in terms of investment and
running cost. Simulation was selected for its flexibility and realism. The simulation was
used to determine queuing statistics such as average utilisation of the machines, average
waiting time and standard deviation of waiting time. One simulation run is executed with
an infinite buffer to calculate the statistics. These were then used in a meta-model, called
the line search procedure, to find the optimal buffer configuration.

Amiri and Mahtashami [2] proposed a multiobjective formulation to solve the BAP
for an unreliable line. A detailed discrete event simulation is used to build a meta-model,
which is then used for estimating the throughput. The objective is to maximise the
throughput of the line and to minimise intermediate buffer storage.

Numerous methods have been used to develop meta-models. The one used by Amiri
and Mahtashami [2] was a polynomial regression model. A two-level factorial design is
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done in their paper. It requires 2 × 2 × 2.... × 2 = 2k observations and is defined as
a 2k factorial design (k denotes the number of buffer locations). For example if a line
has 20 buffer storages, the full 2k design requires 220 = 1 048 576 observations. The level
represents the different values chosen to study the factors, thus in the instance above
only two values (levels) for each buffer is considered. It is too time-consuming to use a
three-level factorial, 3k for the example of the 20 buffer locations as it will require 320 =
3 486 784 401 observations. With a low number of observations, the accuracy of the meta-
model is decreased. The simulation was done using MATLAB software and took 5 to 6
minutes per run. To test the validity of the meta-model, ten different buffer configurations
were compared against the simulation model. The error between the two methods varied
from 1.611% to 5.365%.

Can and Heavey [6] investigated the robustness and accuracy of genetic programming
to create meta-models. In a subsequent paper, Can and Heavey [7] created a meta-model
of a simulation of the line studied and used genetic programming and artificial neural
networks to solve the meta-model.

Chan and Ng [8] made a simulation on Siemens IV to find an algebraic relation between
line throughput and buffer sizes.

The use of meta-models allows for more valid representations of complex systems being
modelled than the decomposition method as well as faster execution than pure simula-
tion. The disadvantage of the meta-model is that if the algebraic relation between line
throughput and buffer size is not valid for all scenarios, an invalid representation is being
solved. Due to this, a meta-model cannot be used for the body shop problem.

Simulation

Most papers using analytical methods use deterministic or exponential times for the pro-
cess, failure and repair times. The methods are limited to simpler line topologies. Simu-
lation is utilised in the literature to relax these restrictions. The simulation model allows
general function distributions to be used (e.g. normal, gamma, Weibull and uniform) for
all parameters of the production line. Simulation is employed for a more realistic repre-
sentation of the dynamic behaviour of a system. Discrete event simulation (DES) is used
for its effective way of estimating almost any system performance, given that the input
data is accurate. Research papers considering real-life systems usually employ simulation
as the evaluative method.

Kose Simge and Deniz [17] solved the BAP for a real-world facility, namely a thermo
technology company in Turkey. Due to the complexity of the system, a simulation was
done using Arena. The system investigated had 13 stations. For these stations, data for
failure and repair times were evaluated using the Input Analyser of Arena to fit appropriate
distributions. The objective of the company was to improve the production rate by at least
30%. The simulation is used to obtain an average daily throughput for a specific buffer
configuration. The rate is then compared to the desired rate, and a new configuration
is computed by the algorithm until the termination criteria are met. Various generative
methods were evaluated in the paper.

Spieckermann et al. [24] conducted a comprehensive case study at BMW AG. The
design approach and topology of the line are similar to the line under investigation in this
dissertation. A simulation optimisation approach was used to solve the BAP. An exist-
ing simulation model made using SIMPLE++ was combined with commercially available
optimisation packages, the WitnessOptimizer and SIMPLE/GA. Simulation is a common
tool within the automotive industry. It is very convenient to use when determining a line’s
throughput, but very expensive as each evaluation of the objective function requires at
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least one simulation run. The use of commercial optimisation tools had to be considered
as black boxes, with only a small degree of configuration. Execution times can be up to
several days and evaluated solutions per optimisation run had to be restricted.

Figure 2.4 shows a summary of the various evaluative methods used in the BAP lit-
erature. Analytical methods do not apply to complex systems such as the body shop.
Simpler serial production lines can be modelled by the decomposition model. It has been
well developed in the literature and proved its efficiency and accuracy. Unfortunately,
the decomposition approach cannot be used for lines with complex tree structures line
topology. Certain assumptions around processing time, failure probability and repair
probability are required. Simulation allows for these restrictions to be relaxed [26]. This
approach is very popular for modelling complex systems. The disadvantage is that long
computational time is needed to run the simulation. The generative method and evalu-

Figure 2.4: Evaluative methods.

ative method need to be performed in an iterative manner as shown in Figure 2.5. The
proposed TS metaheuristic is used to generate various buffer configurations. For each step
in the generative method, where a buffer configuration is generated, a simulation run is
required to evaluate the performance of the line.

Figure 2.5: Buffer allocation problem solution approach.

The use of simulation to evaluate every output of an optimisation algorithm is known
as SBO.

2.2.3 Simulation modelling

One disadvantage of simulation is the long computational time required to evaluate sce-
narios. This can be reduced by creating a simulation program in a general programming
language instead of commercial software. Commercial software has features that allow for
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the ease of model creation and report generation. Although this makes it easier to create
a simulation, it also increases the processing demand due to all the extra features. If a
simulation program is created specifically for the BAP without any special or additional
features, it will result in shorter computational times. Therefore creating a simulation
program using general programming software is considered in this dissertation.

To create a simulation program, a certain blueprint is required. DES is extensively used
in the analysis of modern industrial systems. It has been used in production planning and
scheduling, supply chain design and analysis as well as systems design and manufacturing
operations [6]. DES is a model that executes by moving through the simulation by changing
the state of variables at separate (“countable”) points of time called events [18]. Therefore
DES approach is considered in this dissertation.

The following is an example of DES. Any system can be described as a chain of
events that occur. An event can be anything from a part leaving a machine, machine
failure or workers becoming available. The time at which these events occur is usually
stochastic. Consider the serial production line shown in Figure 2.6. The serial line has four
machines (M1, M2, M3, M4) and the buffer vector is BBB = {2, 3, 1}. When a simulation

Figure 2.6: Serial production line.

model is created this structure of the line is first defined in the simulation program. For
each stochastic machine process, failure and repair times are also defined in the simulation
program. At this point, it is also necessary to define the simulation length that is required.
This represents the system in real life. The simulation length can range from seconds to
years. The advantage of using simulation on computers is that the computational time of
the simulation is a lot quicker than the needed simulation length. A simulation representing
months worth of production can be computed in minutes.

Once the model has been defined in the simulation program, it can initiate the simula-
tion. The line represented in Figure 2.6 has two types of events: parts leaving a machine,
and a machine failing. Upon initialisation, the simulation program schedules these events.
The time of each event occurrence, tk, is randomly generated from the stochastic variables.
This is added to the current time to determine the time of occurrence. For our example,
let us assume that the following times for tk where generated. As the current simulation
time is 0, the execution time of each will be 0 + tk. The processing time of the events was
generated randomly.

• Part done M1: 15.1 s.

• Part done M2: 10.12 s.

• Part done M3: 14.31 s.

• Part done M4: 19.21 s.

• Machine fails M1: 30.25 s.

• Machine fails M2: 45.12 s.

• Machine fails M3: 60.12 s.

• Machine fails M4: 20.1 s.
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At this stage in the simulation the line has a part in every machine with an expected
completion time, as shown in Figure 2.7.

Figure 2.7: Serial production line.

The simulation uses an event list to control all the
events. Each event is scheduled in the event list upon ini-
tialisation, as shown left. The events are sorted chronolog-
ically according to their times. The simulation also sched-
ules the simulation end event, which is the specified simu-
lation length. A simulation clock is used to keep track of
where the simulation is in the event list. At initialisation,
the simulation clock is at 0 s. The simulation clock needs
to move to the first event in the list, part done M2.

The simulation clock can be advanced by two approaches:

Fixed-increment, the simulation has a predefined time increment size. Assume the in-
cremental size is 0.01 s. The simulation clock will advance with 0.01 s throughout the
entire simulation. At each point, the simulation identifies if any event has occurred.
This time incremental size should be small enough so that with each increment, an
event cannot be overlooked. The disadvantage of this approach is that the simulation
program requires time evaluating “inactive” time where events do not occur.

Next-event time overcomes this disadvantage by skipping inactive time. This approach
will move from the time of one event to the time of the next event. The reason for
this is that no changes to the system states occur during this inactive time. This
reduces the computational time of the simulation program. This approach is used
for the example.

The simulation clock jumps from 0 s to the first event
which is executed at 10.12 s. An event can have a range of
actions it takes based on the state of the line. For simpli-
fication, let us assume the event checks if there is space in
the buffer. If there is space, the completed part moves into
the buffer. The event also checks if there is a part available
to start work on. In this case not. Thus no new event is
scheduled. The state of the serial line is now visualised in
Figure 2.8.
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Figure 2.8: Serial production line.

The simulation clock jumps to the next event in the list,
part done M3. The M3 part done event moves the completed
part into the buffer. Because a part is available for M3, it
can start production on it. The processing time tk, for the
part is generated from the stochastic variable. Let us assume
the random time obtained is 1.9 s. The new part will thus be
completed at the current simulation time plus the processing
time, 14.31 s + 1.9 s = 16.21 s. This new event is pushed
into the event list, by adding the completion time to the
current simulation time, so that the event list ranking stays

chronologically sorted. The new serial line is shown in Figure 2.9.

Figure 2.9: Serial production line.

This process of moving from one event to the next is the way a DES is executed. Every
time a part leaves machine 4, the total throughput of the line is increased by one.

For DES, shown above, the following components are required for the program. These
components and the interaction between them are shown in Figure 2.10 [18].

A main program is required that controls all the other components. The main starts
by invoking the initialisation routine. This routine sets the simulation clock to 0 time
units. It initialises all system states and creates the event list with all the initial events
as in the first part of the above example. The simulation program then returns control to
the main program, which then invokes the timing routine. This routine is responsible for
managing the event list. It determines which event is next on the list as well as its time
of occurrence. It then advances the clock to this event’s time. The simulation program
again returns control to the main program, which then invokes the event routine. There
is a specific event routine for each type of event. This routine contains all the actions that
need to be taken when the event is executed. The event routine updates system states,
statistical counters and generates any future events. If the simulation end time is reached,
the simulation stops and the report generator returns reports on statistical counters. If
this time is not yet reached, the timing routine is again invoked to move to the next
event. This action between the timing routine and the event routine is repeated until the
simulation end time is reached. The library routine generates the random times required
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during the event scheduling. These components of a simulation model are contained in

Figure 2.10: Flow control for DES with the next-event time-advance approach [18].

commercially available software packages such as Arena, Simio and Siemens Technomatic
Plant Simulation. The software manages the various components and allows the user to
create a simulation by placing and connecting various building blocks in a convenient
graphical user interface. When the simulation is programmed in a general programming
language such as Java, each of these components needs to be programmed by the model
developer.

Java is a class-based, object-oriented programming language. Object-oriented pro-
gramming allows the creation of classes which can contain data (attributes) and instruc-
tional code in the form of prescriptive procedures (methods). Multiple instances of the
class can be instantiated and are known as Objects of a specific class. Object-oriented
programming allows various objects to interact with one another.

Tiacci [26] not only created a simulation model of the line under investigation in their
work but also a standard set of classes in Java which is capable of performing the various
components of DES, called The assembly line simulator (ALS).

It is a discrete event simulation model programmed in Java which is capable of receiv-
ing line configurations and building a simulation model around these parameters. ALS
was developed in Java, due to the common adoption of the Java programming language.
Java programs are easily distributable and work on multiple platforms. The ALS was
implemented using the Stochastic simulation in java (SSJ) library. SSJ is an organised
set of code, offering general-purpose libraries for DES in Java. It contains the classes and
objects required for the various components of DES.

Simulation provides the required flexibility needed to accurately represent the char-
acteristics and parameters of a body shop. Simulation on its own, as well as analytical
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methods, are not an optimisation technique. But in combination with a generative method,
an optimisation technique is created. The preferred generative method for this disserta-
tion will be the TS algorithm. The combination of simulation and a generative method is
known as SBO.

The BAP has been studied intensively and the basic formulation for the BAP is found
in literature. Three main objectives are considered when solving the BAP. This disser-
tation focus on objective two, a prescribed throughput, f?, must be achieved with the
minimum total buffer size. The general approach to solve the BAP is using an evaluative
method and generative method in an iterative manner. Various methods are employed in
literature to evaluate the throughput of the production line. Most commonly the decom-
position method. The disadvantage is that the decomposition method has limitations on
the line topology it can solve as well as distribution types for the machine parameters.
Alternatively simulation or meta-models have been employed to represent more complex
lines. Simulation has a more accurate representation of the production line than a met-
model but takes longer to compute. To overcome this DES can be used to create a specific
program. Various generative methods are also available. The works of Demir et al. [9, 11]
shows that TS is an effective approach as a generative method for the BAP.

33



Chapter 3

Solution approach

Recall that solving the Buffer allocation problem (BAP) requires finding the best size and
configuration of buffers in the production line. What is considered best will depend on
the objective function that is specified. In this dissertation, the best buffer configuration
will be the one that achieves the desired throughput with the minimum total number of
buffers.

The lines under investigation are subject to machine failure and different processing
times, and these are stochastic in nature. The throughput of these lines can be evaluated
using simulation as the evaluative method. In the first part of the chapter, the detail of
the simulation program created for this dissertation will be dealt with. This program will
then be used to evaluate various production lines.

Evaluating all possible buffer configurations is computationally not practical. Conse-
quently, we employ an optimisation procedure to navigate the solution space more effi-
ciently and generate useful configurations. The second part of this chapter introduces the
Tabu search (TS) metaheuristic that is used as the generative method.

3.1 Simulation program

Simulation can be done on a computer to imitate the operations of real-world systems.
The imitation, known as a model, can easily be altered on the computer and the effect
of the changes can be evaluated. Simulation on computers can be created using either
commercially available software or programming it in a general-purpose programming
language. A simulation model that is programmed for a specific problem can have a
shorter computational time compared to commercially available software. With most
commercial software, an entirely new simulation model needs to be created each time
the line configuration or size is changed. To overcome this, a more general program
(framework) needs to be created, which will then be used to model a production line.

The proposed simulation program developed in this dissertation will have the basic
framework needed to simulate a serial production line with any number of machines. The
user of the program needs to define the number of machines, as well as the random variables
for processing, failure and repair time. The program will then create a model of the line
which can then test various buffer configurations and return the throughput of the line for
each. This change to the model is achieved without making any changes to the simulation
program’s code. A second simulation program is also created for use in more complex
lines, non-serial line. This program will be used to test the problem scenario in Chapter 5.

The simulation program is created in Java based on the Discrete event simulation
(DES) framework. Recall that the DES works with events. These events are scheduled
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in a chronological event list, and the simulation is executed by moving from one event to
the next. Upon reaching an event, specific actions need to be taken by the simulation
program which, in turn, can result in more events being scheduled.

The simulation program has various components, each managing a specific activity
(see Figure 3.1). The components are similar to the ones discussed in the literature

Figure 3.1: Flow control for DES with the next-event time-advance approach.

review except for the addition of a model creation program. Because the simulation
program proposed in this dissertation is a general framework for a simulation program of
a serial line, the model itself needs to be created before the main program can invoke the
simulation.

The Stochastic simulation in java (SSJ) package [28] is used to assist with the pro-
gramming. SSJ contains libraries that can manage the event list and generate random
variables. The SSJ package provides the programming code for: initialise routine, event
routine, timing routine, library routine and the report generator. For this dissertation,
a unique main program is created to combine each of these routines. A model creation
program is also created that can automatically generate a model of a serial production
line of any size. The number of machines, buffer size and machine parameters are the only
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input needed into the program to create a simulation model of a serial line of any size.
The program allows for the creation of parallel lines, but the line layout and flow need to
be hard-coded. This is done for the problem in Chapter 5.

The event routine of the SSJ has the code for activating the event, but no reaction
procedure that needs to be followed. This is expanded with additional code to include the
requirements of the BAP and is described in the next section.

3.1.1 Event routine

Two main events are programmed into the event routine. The first event is activated
when a part leaves a machine, called a departure event, and a second is activated when a
machine fails.

Departure event is triggered when a part is completed and leaves the station. Law [18]
explains the structure for a general departure event of a simple simulation model.
This structure is expanded to meet the needs of the BAP. The departure event is
scheduled in the event list and represents a machine completing a part. When the
event is performed by the simulation, the logic in the flow chart below is executed,
see Figure 3.2.

The departure event first needs to move the completed part to the downstream
station. If the downstream station is idle and starved (meaning the buffer was
empty and no part was available to process) the completed part can be sent directly
to the downstream station for processing. Transfer time is ignored in the simulation.
In automated factories such as the Body-in-white (BIW) transfer time is constant.
Transport time can be included by increasing the processing time of the station
with the additional transport time. Upon part arrival at the downstream station,
the station state is set to not idle and not starved. The downstream station
immediately starts service on the part. The new random process time is generated
and added to the current simulation time. The completion time of the event is
scheduled in the event list. If the part arrived at a station that is failed, repair
time is also generated. The departure event is delayed by the repair time. A new
failure time is generated and added to the event list. The failure status is changed
to not failed.

If the downstream station is not idle, it means that parts might be in the buffer
before the station. It is necessary to check if the buffer has reached its capacity. If
there is space left in the buffer, the part can exit the current station and join the
queue while if it has reached its capacity, the part cannot exit. The current station’s
blocked state is set to blocked and the departure event ends.

After the part has left the current station, it is ready to receive parts, the station’s
state is set to idle. If there are no parts available in the upstream buffer, the
station’s state is set to starved. The departure event ends.

If a part is available from the upstream buffer, it can be removed from the queue
and enter the station, station’ state is change to not idle. All parts in the queue
are moved up one space. Upon arrival in the station the random processing time for
the part is generated. This is based on the random distribution defined in the model
creation step. The processing time of the part is added to the current simulation
time to determine the time the part is planned to be completed. The next departure
event is scheduled in the event list.
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Figure 3.2: Departure event flow chart for simulation model.
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The model checks if the part arrived at a station that failed while it was idle. If the
machine’s failed state is failed, repair time is generated randomly from the defined
distribution. The departure event that was scheduled is now delayed by the repair
time. If the machine’s failed state is not failed, no adjustment to the scheduled
departure event is needed.

It is possible that the upstream station was blocked by a full buffer before the
departure event was executed. If a part was removed from the upstream buffer, it
now has space available for the upstream station to place its blocked part. If the
previous station was blocked, a departure event for it could be triggered. If it was
not blocked no further action is needed, and the departure event is completed.

Failure event is triggered when a station fails. The flow chart for the failure event is
shown in Figure 3.3.

Figure 3.3: Failure event flow chart for simulation model.

When the simulation time moves to a failure event, the station stops processing and
awaits repair. The machine can be in one of two states when the failure event time
is reached. It can either be idle or not idle.

If the station is idle, it means no part is currently being processed by the machine.
In practice, the failure will only be detected when the next part arrives at the station.
Thus repair is not yet scheduled, but the station fail state is set to failed.

If the station is not idle the failure will stop the machine processing, and the
failure is immediately detected. Repair time is generated randomly from a random
distribution. The departure event of the current station is delayed by the repair
time. A new failure event is scheduled by generating a random time between failure
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and adding it to the current simulation time. The time between failure is generated
from a specified random distribution.

The inclusion of these events in the event routine concludes the design of the simulation
program. The simulation program is used to model the serial production line for Chapter 4
and a tree-structured line in Chapter 5.

The throughput of the simulation model is time-dependent. The designer specifies the
timeframe for which the model needs to be evaluated—called the simulation length—and
can be defined from seconds to years. The main advantage of using computers to execute
simulations is that we can evaluate a multi-year simulation within a few hours.

This program is executed in a similar way to other simulation programs by scheduling
and executing events until the simulation end time is reached. This program can change
from a 10 machine line simulation to a 1 000 with a simple change of the number of
machines in the program’s parameter.

3.2 Generative method

The generative method moves through the solution space, guided by the objective function,
and provides different scenarios for the simulation model to test. The problem investigated
in this dissertation attempts to solve the BAP by finding the minimum number of buffer
size needed to reach a specific throughput.

The generative method proposed in this dissertation uses two TS metaheuristics: an
outer loop focusing on reducing the total buffer size of the line, N , and an inner loop for
calculating the best allocation BBB of the given buffer size, Figure 3.4.

Figure 3.4: Two heuristic approaches [11].

The method starts with an initial total buffer size N. The total buffer size is then
distributed among the buffers to obtain a buffer vector BBB. The inner loop TS algorithm is
then executed to determine the maximum throughput that can be obtained with a total
buffer size N. Various permutations of the buffer vector BBB are generated. BBB is used in the
simulation model to determine the throughput, f(BBB), for each permutation. With each
buffer permutation, the simulation model is executed until it reach a predefined simulation
length and replication number and terminates. The solution is then tested against the
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termination criteria. If the criteria are met, the algorithm is terminated. If not, the outer
loop is run to obtain a new total buffer size, N, for the inner loop to evaluate.

The following section describes the inner and outer loop in more detail.

3.2.1 Inner tabu algorithm

The inner loop aims to find the maximum throughput that can be reached for a specific
total buffer size, N . This is achieved by testing various buffer permutations that have a
total buffer size of N , and finding the permutation that results in the highest throughput.

The inner Adaptive tabu search (ATS) based on our interpretation of Demir et al. [9],
is described in this section. Consider a serial production line with five machines. Four
buffer locations are available. The inner loop receives a total buffer size number N from
the outer loop. The total buffer is then distributed among the various buffers. Recall that
the ratio of failure to repair rate is a good approach for determining the initial distribution
of a buffer. The generative method will first calculate this ratio for each machine, after
which it is summed, and a percentage for each machine is calculated. Based on these
percentages each machine then receives a rounded value of buffer which totals to N . If
the total allocated buffer exceeds or is less than N , a random buffer’s size will be either
increased or decreased to meet the total line buffer size of N . The throughput of the line is
then determined using simulation. Figure 3.5 is a graphical representation of the line. The
line has a total buffer size of N = 15, for B1 the total buffer size will be 15× 0.04 = 0.6,
the allocated buffer space is rounded up. Due to the rounding values, the last machines
buffer size is not determined by the ratio, 0.7 in this case, but rather the remainder of the
buffer size after each allocated buffers size has been deducted. The initial buffer vector is
BBB = {1, 4, 1, 9}. The average throughput for this configuration is 621.69 units.

Figure 3.5: Simple production line with buffer allocated according to repair/failure ratio.

Two variables are used to keep track of the best buffer vector. The first can be seen as
the best of the best. This contains the buffer vector that achieved the highest throughput
from all tested scenarios. The above buffer vector and its throughput are stored in this
variable, which is called global best.

The ATS algorithm then determines all possible permutations of the current buffer
configuration by increasing a buffer with the buffer change size and decreasing another by
the same number to ensure the N of the line stays consistent. For lines with less than or
equal to 20 machines, the buffer change size is set to 1 buffer space. This allows for small
changes in the buffer configuration to be tested. If the line has more than 20 machines,
the total number of buffer is usually large. Changing the size of a buffer by only 1 space
will generate a large number of scenarios. To prevent this the buffer size is changed by
more than 1, its set to N × 0.01, rounded up.

This is done for each possible permutation that can be reached by a single move. Each
move is represented by the move vector (i, j), where i is the location where the buffer
is added and j the location where the buffer is removed. Figure 3.6 shows four possible
permutations of the initial buffer configuration. Each permutation is evaluated using the
simulation model.

The best solution out of these permutations is then stored in the second variable. This
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Figure 3.6: Simple production line showing various buffer permutations.

variable keeps track of the best permutation at each iteration, referred to as the local
best. The ATS then compares the local best solution with the items in the tabu list. If
the local best solution is in the tabu list, it is not considered unless it is better than the
global best solution found so far. If so, the global best variable is updated with this buffer
configuration. If it is not better than the global best, the second-best solution out of the
permutations is checked against the tabu list. This is repeated until a usable solution is
found. This solution is then the new local best and is added to the tabu list.

The actions discussed above constitute one iteration. The process of creating new
permutations for the following iterations, which can be reached within one move of the
new local best, is evaluated to obtain a new local best and, if possible, a new global best.

A solution remains tabu for a number of subsequent search iterations, the Tabu tenure
(TT). TT is tuned adaptively based on the quality of the current solution and frequency
of the moves. If an iteration does not improve the global best, the TT is increased. The
TT is decreased when a new global best is found.

An intensification strategy is used to explore promising search space more thoroughly.
This is done for large sized problems. If the solution found stays the best for a certain
number of iterations (0.25×N), the buffer change size is set to 1.

Diversification guides the search to unexplored areas to avoid local optimality. Two
diversification methods are used:

Restart diversification implements several random restarts during the optimisation.
After 12.5 × N iterations, a new buffer configuration is generated randomly. This
allows for unsearched areas to be considered.

Continuous diversification forms part of the regular search process. A counter is used
to track the number of times a specific move is performed. When the counter reaches
a predefined value (12.5×N), the move is penalised and made less attractive. The
penalty is determined as 10−4, but can be adjusted.

The algorithm will continue until one of two stopping criteria is reached. Either after
50×N iterations or after no improvement is made to the global best for 25×N iterations.
Algorithm 1 shows the pseudocode for the inner TS.

The termination criteria, intensification strategy and diversification is based on a factor
of the total buffer size N . These factors are from the work of Demir et al. [9].
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Algorithm 1: Pseudo code TS heuristic inner tabu loop.

input : Total buffer size N to be allocated amongst buffers. Simulation
parameters such as simulation length Slength, the number of replications
Sreplication and the number of machines in the line K. Machine random
variables, failure, repair and processing time distributions

output: Best configuration B as a buffer vector and best throughput of the line.

1 if ProblemSize ≥ 20 then
2 bufferChangeSize = N × 0.01
3 else
4 bufferChangeSize = 1
5 end
6 Determine the initial buffer configuration B0 using the failure/repair ratio of

each machine.;
7 Run simulation with Sreplication, Slength, N and B0; Store simulation throughput

in the global best xbest and Bbest as B0.;
8 Also store the throughput in local best as xlocal and Blocal as B0.;
9 for Each j in all possible neighbours of Blocal do

10 for Each i in number of possible buffer K − 1 do
11 Bj = Blocal;
12 for Each k in number of possible buffer K − 1 do
13 if Bk - bufferChangeSize ≥ 0 then
14 Bji = Blocal,i + bufferChangeSize;
15 Bjk = Blocal,k - bufferChangeSize;
16 neighbours[0] = i ;
17 neighbours[1] = k ;

18 end

19 end

20 end

21 end
22 Evaluate each of the permutations using the simulation with Sreplication, Slength,

N and Bj ;
23 if If throughput of Bj is ≥ xglobal then
24 xglobal = best throughput, Xlocal = best throughput, Bbest and Blocal is the

corresponding buffer configuration. Set no improvement counter = 0,
decrease tabu tenure

25 else
26 Get best non tabu buffer vector, Blocal is the coresponsing buffer

configuration, xlocal is the throughput, increase tabu tenure, save move in
tabu list

27 end
28 Increase number of iterations and non improvement counter by 1;
29 if Non improvement calculator ≥ 0.25×N and number of machines ≥ 20 then
30 Set bufferChangeSize = 1
31 end
32 if Number of iterations ≥ 12.5×N then
33 Generate random Blocal

34 end
35 Repeat step 7-9 until termination criteria is met, Number of iterations > 50×N

or Non improvement calculator > 25×N ;
36 Return xbest and Bbest.
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The neighbour generating method used by Demir et al. [9] is used to evaluate all
possible neighbours, (lines 9–21 in Algorithm 1). To explain this in an example, consider
an initial buffer configuration {2, 3, 4, 5} for n = K − 1 = 4 buffers production line. The
possible neighbours that can be reached within one step are twelve, n(n−1) = 4×3, these
are:

1. Swap Index: (2,1) - {1, 4, 4, 5}
2. Swap Index: (3,1) - {1, 3, 5, 5}
3. Swap Index: (4,1) - {1, 3, 4, 6}
4. Swap Index: (1,2) - {3, 2, 4, 5}
5. Swap Index: (3,2) - {2, 2, 5, 5}
6. Swap Index: (4,2) - {2, 2, 4, 6}

7. Swap Index: (1,3) - {3, 3, 3, 5}
8. Swap Index: (2,3) - {2, 4, 3, 5}
9. Swap Index: (4,3) - {2, 3, 3, 6}

10. Swap Index: (1,4) - {3, 3, 4, 4}
11. Swap Index: (2,4) - {2, 4, 4, 4}
12. Swap Index: (3,4) - {2, 3, 5, 4}

Each of these neighbours are evaluated with the evaluation method. For each itera-
tion of the inner TS all the one step neighbours are generated and need to be evaluated
to determine the best performing neighbour, local best. With an increase in number of
machines, the number of possible neighbours increase.

3.2.2 Outer tabu algorithm

The outer loop is based on the work of Demir et al. [9]. It reduces the total size of N to
obtain the smallest N possible while still meeting the required throughput. To explain
how this works, consider the line in Figure 3.7.

Figure 3.7: Simple production line showing various N sizes.

The algorithm starts with an initial buffer size of N0. Upon initialisation N should be a
sufficiently large number, lets assume this is N0 = 18 as in line 1. The size N is then given
to the inner tabu algorithm. This determines the best buffer configuration and returns it
as well as the total throughput. The buffer configuration for line 1 is BBB = {6, 4, 2, 6} for
a total buffer size N = 18.

The outer tabu loop is then used to generate a new total buffer size, assume the result
of this is N = 12 as in line 2. Again the inner loop evaluates this and returns the best
buffer configuration and throughput. Line 2 is B = {3, 1, 2, 6} for a total buffer size
N = 12. This is repeated until either of two stopping criteria is reached:

• no better solution has been found within a certain number of iterations,

• the maximum number of iterations is performed.

The pseudo-code for the outer loop is shown in Algorithm 2:
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Algorithm 2: Pseudo code TS heuristic for outer loop.

input : Initial buffer size No to start evaluation. Number of buffers K − 1
between machines K. Number of machines in the line K. Desired
throughput f∗. Solution divisor x

output: Buffer vector BBB resulting in minimum total buffer to achieve desired
throughput and throughput of the line f(BBB) and corresponding N .

1 Set total buffer size Ncurrent equal to initial buffer size N0, set iteration counter
to i = 0;

2 Run the inner tabu algorithm to obtain the best throughput value, set

f best = f(Ncurrent), and BBest = BNcurrent . Place N0 into tabu list.;
3 Generate 3 possible neighbours of Ncurrent, called Ns, s ∈ {1, 2, 3}. Neighbour 1

N1 = (1/2)(N/x) Neighbour 2 N2 = (1/4)(N/x) Neighbour 3 N3 = (1/8)(N/x);
Evaluate each neighbour with the inner tabu algorithm. ;

4 if All neighbors throughput ≥ desired throughupt f∗ then
5 if All moves are tabu then
6 Select the solution s that has a lower N than the current best, set

fbest = f(Ns), and BBest = BNs .
7 else
8 Move to the solution s having the minimum non-tabu buffer size, set

fbest = f(Ns), and BBest to BNs and add all neigbours to the tabu list.
9 end

10 else
11 Move to the solution having the minimum total buffer size that has a

throughput ≥ f∗ and add to the tabu list.
12 end
13 Increase the iteration by 1 and go to step 1 until one of the termination criteria

is satisfied.;
14 Termination criteria:

• No better solution found within a certain number of iterations.

• Number of iterations reaches the maximum limit.
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3.3 Solving the BAP using Simulation-based optimisation
(SBO)

Recall that the problem being investigated in this dissertation is to find the smallest
total buffer size required to achieve the desired throughput as well as the optimal buffer
configuration needed to achieve this. The solution approach described above uses SBO as
the method to achieve this.

The proposed SBO method has three main components, shown in Figure 3.8. Each
component is evaluated in Chapter 4 for solution quality and execution time.

The outer tabu loop requires accurate maximum throughput results from the inner
tabu loop to compare the various total buffer size N. The Theory of constraints tabu
search (TOCT) method proposed in this dissertation is tested in Chapter 4 and compared
to the ATS in Demir et al. [9]. The inner tabu loop needs to evaluate various buffer
permutations to find the maximum throughput possible with the provided total buffer
size N. Each permutation is evaluated by the proposed simulation program based on DES;
the program is verified in Chapter 4.

Figure 3.8: Interaction between elements of the SBO method.

A specific solution approach for the BAP has been developed in this Chapter. The
use of DES to design a simulation in Java specifically for the BAP problem addresses
the computational burden of generic simulation models. Two events are created for the
model, a departure event and failure events. These events contain the logic followed by the
simulation when a part is completed or a station fails. The works of Demir et al. [9, 11]
establishes a solid foundation for the use of tabu search in a two loop manner to solve the
BAP. Experiments on the inner tabu loop with the simulation model in Chapter 4 will
show another opportunity for improvement by exploiting theory of constraint. Serial lines
will first be used in Chapter 4 for proof of concept. In Chapter 5 the proposed solution
approach will be used in a more complex tree-structured production line.
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Chapter 4

Computational experiments

The proposed Simulation-based optimisation (SBO) method for solving the Buffer alloca-
tion problem (BAP) is tested in this chapter. Each of the SBO components, outer tabu
loop, inner tabu loop and simulation program is tested to demonstrate the effectiveness
of the proposed solution. To achieve this, the method will be tested on serial production
lines, using different line sizes, buffer configurations and line parameters.

Demir et al. [9] used four line sizes with the number of machines denoted by the set
K = {5, 10, 20, 40}. For each line, the total buffer size N is calculated by multiplying the
number of machines by a factor of 5, 10, and 20. Thus 12 different serial line scenarios
are used, representing lines ranging from small to large as shown in Table 4.1. Lines with

Table 4.1: Serial line scenarios for SBO experiments [9].

Number of machines
in line, (K)(K)(K)

Total buffer
size, (N)(N)(N)

5 25, 50, 100
10 50, 100 ,200
20 100, 200, 400
40 200, 400, 800

five machines are considered small, while those with 10 machines are considered medium
in size. Lines with 20 and 40 machines are regarded as large lines.

Each scenario will be referred to by its number of machines (K) and total buffer size
(N). For example, 5.25 will refer to a line with five machines and the total buffer size
of 25. As per Demir et al. [9], the range of line scenarios allows the effectiveness of the
proposed method to be tested across various line sizes and therefore, will also be used in
this dissertation.

The allocation of buffers is done to decouple stations, preventing the negative effect of
different machine speeds, and machine failures on the downstream system. The proposed
solution should be able to solve lines that have short or long processing times, lines with a
short or long time between failures, as well as lines that are either quick to repair or that
take long to repair. For each line scenario, (e.g. a line with five machines and total buffer
size of 25 buffers) the various machine characteristics stated above are tested. Again the
work of Demir et al. [9] is referred to. The following section explains how Demir et al. [9]
defined the random process time, time between failure and repair time for each machine.

Process time: the time it takes to complete a part. The processing time is randomly
sampled from a uniform distribution, U(a, b). Each machine’s process time will first
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be described with parameters, a = 5, b = 15. Then experiments will be done on the
line with parameters, a = 5, b = 45. The distribution for each machine is the same.

Time between failure: each machine is subject to failure. The time between failure
is randomly sampled from a geometric distribution G(pK). Unlike the processing
time, each machine in the line will have a unique distribution, some machines are
more reliable than some. Each machine has a unique parameter p for the geometric
distribution. This parameter is randomly sampled from a uniform distribution, pK =

1
U(a,b)∀K to give each machine a unique distribution. Two different parameters are
considered for the uniform distribution. First the parameters are a = 1, b = 200
then a = 1, b = 2000.

Repair time: each machine has a repair time once it fails. The repair time is randomly
sampled from a geometric distribution G(pK). Similar to the failure time, each
machine in the line will have a unique parameter for the geometric distribution. Some
machines are easier to repair than others. This parameter is randomly sampled from
a uniform distribution pK = 1

U(a,b)∀K. Four different parameters are considered

for the uniform distribution. For lines that have failure parameters U(1, 200) repair
parameters are a = 1 and b = 10, then a = 1 and b = 40. Lines that have failure
parameters U(1, 2000) repair parameters are a = 1 and b = 100, then a = 1 and
b = 400.

Table 4.2 shows the eight different line parameters used by Demir et al. [9]. This
dissertation will also use these parameters. 96 unique line scenarios are considered in the

Table 4.2: Serial line machine parameters for SBO experiments [9].

Instance Processing time Time between failure Repair time

1 U(5,15) G(1/U[1,200]) G(1/U[1,10])
2 U(5,15) G(1/U[1,200]) G(1/U[1,40])
3 U(5,15) G(1/U[1,2000]) G(1/U[1,100])
4 U(5,15) G(1/U[1,2000]) G(1/U[1,400])
5 U(5,45) G(1/U[1,200]) G(1/U[1,10])
6 U(5,45) G(1/U[1,200]) G(1/U[1,40])
7 U(5,45) G(1/U[1,2000]) G(1/U[1,100])
8 U(5,45) G(1/U[1,2000]) G(1/U[1,400])

experiments. Each of the 12 line scenarios in Table 4.1 are tested with the eight machine
characteristics given in Table 4.2.

The SBO approach proposed in this dissertation has three elements; outer tabu loop,
inner tabu loop and simulation program. Each of these elements is tested in this chapter.
The outer and inner loop uses the throughput of the line to measure their objective
functions. Thus an accurate throughput for a given buffer configuration is needed. The
simulation program is tested in the next section. The execution of the experiments is done
on a computer having a 3.80Ghz Intel Core i5-7600K processor and 8 GB of RAM.

4.1 Simulation program verification

Recall from Chapter 3 that a simulation program based on Discrete event simulation (DES)
is used in this SBO approach. This is used instead of commercially available simulation
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software to reduce the computational time for running the simulation.
Before any model and its results can be used to solve the BAP, the simulation program

needs to be tested to establish if the program is executing the simulation as expected. This
dissertation’s program is compared to a commercially available program to test similarity
of results.

Only 10 of the 12 line scenarios in Table 4.1 are modelled in the commercial program
due to licensing constraints. Scenarios 40.400, 40.800 are not considered. For each line
scenario, three different values for each machine’s failure and repair time are generated
based on the parameters in Table 4.2. Thus each of the 80 scenarios is tested three times
for a total of 240 tests. For these tests, a random buffer configuration BBB is generated for
each total buffer size N .

SimioTM is a widely used commercial simulation software. Both DES and SimioTM

is run for a duration of 300 000 time units to ensure a steady state is reached. The
simulation is replicated 1 000 times to get 1 000 different throughput results. At the end
of the simulation run, the throughput is recorded, and the average results across the 1 000
replications used to compare the DES program’s results to those of SimioTM. Secondly,
the computational time of the programs model using DES is compared against that of
SimioTM to see if a simulation in Java can outperform a commercial program.

The % throughput error between the SimioTM line and DES is compared using the
calculation in equation (4.1), while the time factor is calculated using equation (4.2):

SimioTM throughput−DES throughput

SimioTM throughput
× 100 (4.1)

SimioTM computational time

DES computational time
(4.2)

Table 4.3 shows the results of the test. The first column shows the problem scenario,
(K.N). The second column shows the average throughput difference between the DES

Table 4.3: Simulation results from Java tool compared to SimioTM program.

Problem scenario Throughput diff. (%) Time factor

5.25 0.60 74
5.50 0.27 94

5.100 -0.48 89
10.50 1.03 67

10.100 0.54 79
10.200 0.21 65
20.100 2.30 53
20.200 0.35 60
20.400 0.01 59
40.200 2.60 51

tool and the SimioTM program calculated with equation (4.1). The third column shows
the time difference between the two programs calculated with equation (4.2). The DES
simulation program created in Java has on average a 0.84% difference in total throughput
compared to SimioTM. This difference is small and is due to the stochastic nature of
simulation. Figure 4.1 supports this. The figure shows the density plot of the throughput
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Figure 4.1: Simulation throughput comparison between Java and SimioTM program.

obtained from the 1 000 replications for line scenario 10.200. The two programs result in
a density plot with similar shapes.

DES had a significant speed advantage compared to SimioTM. On average, SimioTM

takes 71 times longer than the proposed program based on DES. For the small-sized
problems, SimioTM took 23 minutes to complete the simulation run and replications and
75 minutes for large-sized problems. In comparison, the DES only took 19 seconds for
small problems and 1.5 minutes for large problems.

The experiment above verified that the simulation program using DES can obtain a
throughput similar to that of commercial software. DES is also faster than commercial
software. From this point, all simulations used in experiments are done using the Java
simulation program created for this dissertation using DES. The simulation tool will be
used by the inner tabu loop to determine the throughput of a line for a given buffer
configuration. The inner loop will generate thousands of permutations that need to be
tested. Thus it is crucial that the simulation achieves an accurate throughput in the
shortest amount of time.

Two factors influence both the simulation’s computational time and the quality of the
solution it provides: the simulation length is the amount of time the simulation model
uses to test the line, and the simulation replications, which is the number of times the
simulation is repeated for each problem instance.

The simulation model in Java is quite fast. Still, if it takes 1.5 minutes for every
evaluation during the generative method, the time required to solve the BAP can be
excessively long. As the solution quality is time-dependent, a balance is needed between
solution quality, simulation length and the number of replications.

4.1.1 Simulation length at steady state

Simulation steady state is a state at which the value of the throughput has acceptable
small fluctuations over time. At the start of the simulation, throughput can be relatively
fast because all the buffers are empty and all the machines are operational. As time
progresses, buffers start filling up, and machines begin to fail. This can lead to a different
throughput compared to the one achieved at the start of the simulation. Thus solution
quality is dependent on the simulation length.

To find this point for the simulation model, all the possible scenarios in Table 4.2 are
tested across all the line sizes in Table 4.1. Each scenario is evaluated for a simulation
length of 1 000 000 time units. At each time unit, the throughput of the line is compared
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to the average value the line can achieve at time 1 000 000. Figure 4.2 shows the results
for one of the lines. The bottom graph shows it for timeline 0–1 000 000 time units, and
the top graph is an enlargement of the portion at 0–10 000 time units.

At time 1 000 000 the line completed 59 198 units, achieving an average throughput of
1 000 000
59 198 = 16.89 time units per unit. The average time unit per unit is calculated every

time a unit is completed and compared to the average of 16.89 time units per unit; this
is plotted against the simulation length on Figure 4.2. It is clear that at the start of the
simulation, the throughput has a significant variation from the 16.89 time units per unit.
During this stage it takes more time to produce units. This variation decreases as the
simulation length is increased, with a simulation length of 40 000 the simulation has 0%
deviation from the average of 16.89 time units per unit.

Figure 4.2: Throughput stability development over simulation length.

The simulation computational time is dependent on the simulation length. To reduce
the computational time, a 5% throughput deviation will be considered as acceptable. In
the above example at 10 000 time units, the line remains under the 5% deviation target.
At this simulation length, the average time units per unit is 17.61 time units.

4.1.2 Simulation replication

The second factor contributing to simulation run time and solution quality is the number
of replications.

Take a simulation of a line with five machines and a total buffer size of 25. A simulation
is done with a simulation length of 10 000 time units. At the end of the simulation run,
193 units are produced, or an average of 52 time units per unit. The same simulation
is repeated, this time, a total of 355 units are produced, or an average of 28 time units
per unit. Figure 4.3 shows that both simulations reached a steady state at two different
average throughput values per time unit.

With each replication the initial system state can vary due to the random parameters
used. To obtain a stable throughput from the simulation, multiple replications of the
same simulation, each with a unique random seed, are done, and the throughput of each
simulation is recorded. An average throughput across all simulations is then used to reduce
this variation. This can be done because each replication is independent. The number
of replications performed is directly correlated to the accuracy of the average statistic.
Again, a large number of replications comes at the expense of execution time.
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Figure 4.3: Throughput stability of two separate simulation runs of the same line.

(a) Replication experiment, 5.25 parameter
scenario 1.

(b) Replication experiment, 5.25 parameter
scenario 4.

(c) Replication experiment, 40.200 parameter
scenario 1.

(d) Replication experiment, 40.200 parameter
scenario 4.

Figure 4.4: Simulation replication experiments.

To find a good number of replications, simulations of the problem scenarios were done,
each replicated 1000 times. Figure 4.4 shows the development of the average throughput
as the number of replications increases. Four various line scenarios are shown in Figure
4.4. Figure 4.4a is a simulation of a line with 5 machines and the total buffer size of 25.
Machine parameters of scenario 1 were used. Figure 4.4b is also a 5.25 line scenario but
with parameter scenario 4. Figure 4.4c is a line with 40 machines and total buffer size of
200. Machine parameter scenario 1 was used. Figure 4.4d is also a 40.200 line scenario
but with parameter scenario 4.

Initially, the average throughput varies significantly from 1 to 100 replications and then
decreases to a small variation concerning the total throughput. Although more replications
do result in less variation in the average throughput, at 200 replications, the variation is
already minimal compared to the total throughput achieved by the line. For the line
shown in Figure 4.4a the throughput at 200 replications is only 0.01% different from the
throughput at a 1000 replications.
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The experiments above showed that the accuracy of the line’s throughput is dependent
on both simulation length and simulation replications. The longer the simulation length
and the higher the number of replications, the more accurate the throughput obtained
is. This is crucial for the inner loop. When two buffer scenarios are compared, it should
be able to accurately say that a change in the throughput was due to the change in the
buffer configuration and not due to natural throughput variation within the simulation
model. Unfortunately, the increase in simulation length and number of replications come

Figure 4.5: Interaction between elements of the SBO method with simulation program
run length and replication info.

at the cost of computational time. To minimise the simulation computation time, for all
experiments, a simulation duration of 10 000 and 200 replications will be used. This will
result in a simulation steady-state error of below 5% and a small fluctuation in average
throughput across the number of replications.

Considering the results from the simulation program experiments, the SBO approach
shown in Figure 3.8 can be updated. Step 6 is amended in Figure 4.5. The inner tabu
tests various buffer neighbours. To compare the neighbours, the throughput of the line
is determined using the simulation program. The simulation will be done for a length
of 10 000 time units and replicated 200 times. The average throughput across the 200
replications is returned to the inner tabu loop as the average throughput for the specific
buffer configuration.
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4.2 Inner tabu algorithm

The previous section showed that the proposed method for creating and simulating se-
rial production lines using the program designed in Java is comparable to a commercial
program and is faster. Recall that once the throughput of the production system can be
evaluated, different scenarios of buffer configurations can be used to determine the best
configuration.

An inner and outer tabu search algorithm is needed to generate the various buffer
configurations. For the inner tabu search, the work of Demir et al. [9] is considered in
this dissertation, known as the Adaptive tabu search (ATS). In this section, the efficiency
of the algorithm to find the optimal buffer configuration is evaluated. The evaluation
method will be the DES program created in Java with the simulation length and number
of replications as determined in the previous section.

The inner tabu algorithm searches through the solution space until the termination
criteria are met and returns the buffer configuration BBB that resulted in the maximum
throughput. Recall that the termination criteria are either after 50 × N iterations or
25 × N iterations without an improved solution. The inner tabu is only executed once
for every N provided by the outer tabu. Thus the inner tabu must be repeatable: various
runs of the same experiment should not result in (too) different optimal solutions.

Once again the eight line scenarios in Table 4.1 and the 12 machine parameters in
Table 4.2 are used. A total of 96 experimental combinations are generated.

Because the inner tabu loop must be repeatable, each of the 96 experiments will be
repeated ten times. This is done to determine whether the inner loop was able to achieve
the same result for an experiment across all ten replications.

The 12 problem sets are grouped into three classes: small (K = 5), medium (K =
10) and large (K = 20, 40). For the small-sized problem, the efficiency of the algorithm
is compared against Complete enumeration (CE). However, for medium and large scale
problems CE is not computationally feasible and won’t be tested using CE.

The experiments were done on the Lengau cluster of the Centre for high performance
computing (CHPC), South Africa, parallelising the tasks over 261 threads.

4.2.1 Results from small-sized problems

Table 4.4 shows the results from the experiments on small problems. The first column
shows the problem set, shown as machine and buffer size, (K.N). The second column
shows the experimental scenario from Table 4.2. The third column shows the % error
of the average optimal (maximum) throughput achieved, compared to the solution found
using CE. The following formula is used to calculate the % error.

Deviation for ATS =

(
f(CE)− f(ATS)

f(CE)

)
× 100 (4.3)

For each of the ten replications the absolute % error is calculated and averaged for each
experiment scenario. Column four show the average computational time of the ATS al-
gorithm in minutes. This is the time it took one iteration of the inner loop to complete.
Column five show the average number of iterations it took the algorithm to find the best
throughput it returned. All entries in the table are the averages across the ten replications
of each scenario.

Experimentation on small lines shows that the ATS method is capable of returning a
throughput similar to the global optimum achieved using CE. The absolute error for ATS
in caparison to complete enumeration was 0.30%. This small fluctuation can be attributed
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Table 4.4: Inner tabu computational results for small sized problems ATS vs. CE.

Problem
set Scenario

Avg. % error
from optimal

solution

Avg. computation
time of algorithm

(min.)

Total iterations
until optimal

solution

5.25 1 0.06 8.28 145
2 0.44 8.11 158
3 0.63 7.31 145
4 0.71 6.14 134
5 0.20 7.08 198
6 0.62 5.30 178
7 0.69 4.51 129
8 1.41 4.03 163

5.50 1 0.06 18.30 461
2 0.10 18.84 263
3 0.11 16.22 374
4 0.18 15.72 291
5 0.08 11.36 328
6 0.10 10.70 722
7 0.20 9.90 259
8 0.21 8.08 267

5.100 1 0.04 27.62 713
2 0.18 23.60 1274
3 0.10 26.09 807
4 0.72 18.29 486
5 0.16 21.24 1010
6 0.09 19.31 1356
7 0.07 16.61 1035
8 0.14 16.25 435

to the inherent stochasticity of the simulation, and in some instances, the method resulted
in a better throughput than the CE.

The computational time to do all the experiments (24 scenarios tested 10 times) for the
small-sized problems using ATS took 55 hours, excluding the time for the CE tests. Initial
tests on medium-sized problems show that the time for a single experiment increases by
a factor of ten. Although the quality of the solution from the proposed solution approach
looks promising, the computational time makes the current approach impractical.

Recall that the ATS generates and evaluates all possible neighbours of the initial buffer
configuration BBB during each iteration of the tabu search. Although the approach is very
thorough, it does increase the number of times the simulation program needs to run.
Due to the time required to evaluate a scenario using simulation, the initial tests proved
that the computation times for medium and large-sized problems became unreasonable
and impractical. The tests also showed that very bad scenarios are tested in complete
neighbour generation. Buffers are removed from stations that are blocked and added to
stations that are never blocked, resulting in a worse throughput and a waste of simulation
time.
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To overcome this an alteration to the work of Demir et al. [9] is proposed for neighbour
generation. A smaller set of good neighbours are generated. This is achieved using the
theory of constraints. It states that the performance of a line is limited by a specific
station, the slowest one, known as the bottleneck. If the overall performance of the line
is to be improved, this single station needs to be improved first. This bottleneck can be
identified with reports from the simulation.

The simulation model provides statistics on how long each station was blocked dur-
ing the simulation. It is thus possible to allocate weight to each buffer indicating how
much time it blocked its upstream station. The longer the station is blocked, the higher
the weight allocated to the buffer. The swap index is then randomly generated, where
the buffer that has the highest block weight has a higher probability of being picked,
and the buffer with the lowest block weight has the lowest probability of being picked.
This station’s buffer is increased. The buffer that will decrease in size is also chosen ran-
domly, where the buffer that has the smallest block weight has the highest probability of
being chosen and the buffer with the highest block weight the lowest probability. Only
0.5×(Number of machines K) neighbours are generated per iteration using the proposed
method. This dramatically decreases the simulation burden. The factor 0.5 is an arbitrary
value.

Another alteration to the heuristic is the inclusion of a list, storing the throughout
for each evaluated buffer configuration. After generating new neighbours, the generated
neighbours are compared to the items in this list to see if it has been evaluated previously.
If it has been evaluated, the previously achieved throughput can be used, and the scenario
does not have to be re-evaluated. The rest of the algorithm is the same as the work of
Demir et al. [9]. The proposed algorithm is referred to as the Theory of constraints tabu
search (TOCT) inner loop, whereas the model by Demir et al. [9] is referred to as ATS.

The experiments on small-sized problems are repeated, using the new proposed TOCT
method. The following formula is used to calculate the % error.

Deviation for TOCT =

(
f(CE)− f(TOCT )

f(CE)

)
× 100 (4.4)

Similar to the ATS method, the TOCT is capable of achieving throughput similar to
the global optimum achieved using CE. The absolute error for TOCT in comparison to
CE was 0.88% versus the 0.30% for ATS.

The complete and detailed throughput results for each of the ten replications for each
scenario is shown in Appendix A. Suffice to conclude that the results are tightly grouped
(between maximum throughput achieved and line scenario), indicating that a single run
of the inner tabu is sufficient. Multiple inner tabu runs would have achieved the same as
the multiple replications, albeit slower.

The significant difference between TOCT and ATS is computation time. The ATS
method took, on average, 18 times longer to execute.

The third performance comparison is the number of iterations the program took to
reach the solution it returned. For these small sized problems, K = 5, various total buffer
sizes are tested, N = 25, N = 50, N = 100. The inner tabu is terminated if one of the two
termination criteria are met. Either after N×50 iterations, termination criteria 1, or after
N × 25 iterations without an improvement on the optimal solution, termination criteria
2. Table 4.6 shows the stipulated number of iterations required to meet the termination
criteria for the different scenarios. The actual number of iterations at which point the
best throughput found does not improve for the ATS method is shown in column five in
Table 4.4. Column five in Table 4.5 shows the number of iterations at which point the
best throughput found does not change for the TOCT method.
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Table 4.5: Inner tabu computational results for small sized problems TOCT vs. CE.

Problem
set Scenario

Avg. % error
from optimal

solution

Avg. computation
time of algorithm

(min.)

Total iterations
until optimal

solution

5.25 1 0.02 0.51 502
2 1.64 0.36 350
3 0.26 0.29 415
4 0.34 0.32 329
5 0.52 0.23 433
6 1.11 0.20 315
7 0.33 0.28 378
8 0.98 0.17 450

5.50 1 0.33 0.50 858
2 2.60 0.80 1630
3 0.61 1.42 1425
4 1.52 1.86 858
5 0.04 0.46 933
6 0.14 0.53 1031
7 0.11 0.85 879
8 3.75 0.60 879

5.100 1 0.09 0.72 1119
2 0.79 0.71 1335
3 0.21 2.34 1635
4 3.36 2.18 1064
5 0.52 0.78 1645
6 0.43 0.48 1262
7 0.37 0.44 1949
8 1.11 0.90 1538

Both the ATS and TOCT found, on average, the optimal solution in fewer iterations
than the maximum allowed iterations. After that point, the algorithm kept running until
the termination criteria were met but could not find a better solution. The ATS needed
fewer iterations compared to TOCT because it can find a better solution per iteration due
to complete neighbourhood generation, but it takes much longer to do a single iteration.
The termination criteria can thus be revised if the same results are found for medium and
large-sized problems.
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Table 4.6: Inner tabu termination criteria for small-sized problems.

Problem
set

Termination
criteria 1

Termination
criteria 2

(N × 50) (N × 25)

5.25 1250 625
5.50 2500 1250

5.100 5000 2500

4.2.2 Results from medium-sized problems

Complete enumeration is not possible for medium and large-sized problems. For the
medium sized problems, the throughput achieved using ATS and TOCT is compared using
equation (4.5), which shows the calculation used to determine the throughput deviation
between the two methods.

% throughput deviation
between ATS and TOCT =

(
|f(TOCT )− f(ATS)|

f(TOCT )

)
× 100. (4.5)

Table 4.7 shows experimental results for the medium sized problems. The first col-
umn shows the problem set for the medium sized line, and the scenario in the second
column. For each of the ten replications, the % throughput deviation is calculated using
equation (4.5); the average result is shown in the third column. Columns 4–5 are the
average computational time for the two methods and columns 6–7 the average number of
iterations it took the tabu algorithm to reach its optimal solution.

For experiments on lines with 10 machines and total buffer size 200, only two of the
eight scenarios are tested using the ATS method due to long execution times.

The average error between the ATS method and TOCT method is 1.68%. The ATS
method takes 5.5 times longer to complete compared to TOCT.

Similar to small-sized problems, the throughput achieved across the ten replications
are tightly grouped. The complete and detailed throughput results for each of the ten
replications for each scenario are shown in Appendix A. The third performance comparison
is the number of iterations the program took to reach the solution it returned. The same
termination criteria apply. The inner tabu is terminated if one of the two termination
criteria are met. Either after N × 50 iterations, termination criteria 1, or after N × 25
iterations without an improvement on the optimal solution, termination criteria 2. Both
ATS and TOCT found, on average, the optimal solution at fewer iterations. After that
point, the algorithm kept running until the termination criteria is met but could not find
a better solution.
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Table 4.7: Inner tabu computational results for medium sized problems ATS vs. TOCT.

Problem
set Scenario

% Deviation
between

ATS & TOCT
Computation time
of algorithm (min.)

Total iterations
until

optimal solution

ATS TOCT ATS TOCT

10.50 1 -1.11 112.20 11.40 419 639
2 -0.71 56.53 3.43 367 763
3 -4.59 76.13 3.84 443 1135
4 -6.44 36.65 2.38 352 1046
5 -0.33 76.69 11.09 314 680
6 -0.74 77.23 12.05 382 506
7 -0.53 66.17 9.09 426 1144
8 -1.80 57.90 8.48 285 744

10.100 1 -0.20 270.18 39.20 433 883
2 -1.33 249.75 57.43 871 2078
3 -1.20 259.67 50.49 853 2245
4 -6.62 199.22 31.07 534 1424
5 -0.46 191.02 26.36 869 919
6 -0.62 161.65 26.04 696 1737
7 -0.91 155.50 19.01 602 1045
8 -2.27 103.49 13.70 685 1758

10.200 1 -0.21 629.54 22.57 2315 2152
2 -0.07 382.31 56.39 1376 2342
3 – – 82.03 – 3714
4 – – 45.34 – 2861
5 – – 47.52 – 2948
6 – – 45.57 – 4508
7 – – 53.63 – 3499
8 – – 29.44 – 1883

4.2.3 Results from large-sized problems

Large sized problems can only be evaluated using the proposed TOCT algorithm. Due to
the size of the problem and the increase in computational time required as the total buffer
size and number of machines increase, ATS becomes computationally expensive to test
comparatively. Table 4.8 shows the results for the large sized problem with 20 machines
as well as 40 machines. Note that due to long computational time, experiments on lines
with 40 machines and 400 N as well as 800 N could not be performed.

The detailed throughput results can be seen in Appendix A. For the large sized prob-
lems, more outliers are present compared to medium and small-sized problems. Similar to
the previous experiments, maximum throughput is achieved within fewer iterations than
required by the termination criteria.

The inner tabu loop experimentation showed that the proposed TOCT method could
satisfy the BAP’s first objective: finding the buffer configuration BBB that results in the
maximum throughput. For small problems, the TOCT method achieved similar results
to CE and ATS within a much shorter time. The reduction in execution time makes it
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possible to solve medium sized problems using SBO. Large sized problems with large
number of buffer 400N as well as 800N still require large computational time to solve
even with the proposed method.

Figure 4.6: Interaction between elements of the SBO method with inner loop termination
criteria.

The experiments indicate that in the majority of cases, the maximum throughput was
achieved with fewer iterations than currently set up in the termination criteria. For future
experiments, the termination criteria for the inner tabu loop is changed to either 20×N
or 10 × N iterations without an improved solution. This can significantly reduce the
execution time required to run the inner tabu algorithm and makes it more practical for
the use in the outer tabu loop. Replicating each experiment 10 times indicated that the
inner loop returned sufficiently similar incumbent (near-optimal) solutions. It is therefore
argued that it is safe to run the inner loop once for each N provided by the outer loop as
its results are similar to multiple replications. Figure 4.6 shows the flow of the proposed
SBO method including the addition of the inner loop termination criteria for step 7.
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Table 4.8: Inner tabu computational results for large sized problems, 20 & 40 machines
ATS vs. TOCT.

Problem set Scenario Throughput Time (min.) Iteration

20.100 1 575.33 66.04 1205
2 119.66 33.20 3309
3 623.69 89.58 1120
4 57.39 15.41 3380
5 295.38 63.19 1148
6 76.22 20.19 2077
7 19.12 11.39 2343
8 101.30 31.31 1219

20.200 1 602.44 99.30 1932
2 552.28 186.81 1136
3 470.88 154.52 5558
4 170.09 82.93 1852
5 262.47 178.05 2897
6 199.80 129.33 2453
7 233.57 121.80 3172
8 89.13 49.56 3372

20.400 1 670.06 642.68 5215
2 570.03 621.26 5458
3 603.30 495.67 1208
4 333.46 270.36 298
5 274.24 464.34 3861
6 191.54 376.49 4280
7 205.63 286.36 5457
8 122.19 237.02 5624

40.200 1 373.83 376.54 9004
2 15.28 57.06 2843
3 18.26 65.55 4060
4 14.73 47.92 7257
5 227.09 462.19 4702
6 28.47 78.03 3320
7 21.37 64.60 4315
8 16.01 51.61 4681

4.3 Solving the BAP using SBO

The final piece of the SBO method is the outer loop. Recall that the main objective of the
SBO is to find a buffer configuration, BBB, that results in the smallest total buffer size N
while achieving a required throughput. The experiments thus require a target throughput.
Similar to the experiments on the inner loop the line scenarios presented in Table 4.1 and
Table 4.2 are used. To determine the target throughput, each experiment is done with
half the initial N . For example, a line with K = 5 machines and N = 25 total buffer size,
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the inner tabu loop is executed using
⌈
N
2

⌉
,
⌈
25
2

⌉
= 12. For a line with K = 5 machines

and N = 12 total buffer size the inner loop achieved a maximum throughput of 918. This
then becomes the target for the outer loop. It will start with the initial total buffer size
N = 25 and search for the smallest N that results in a throughput of at least 918. It can
be that the outer loop only return N = 12, or if possible, it could achieve a throughput
of 918 with even a smaller total buffer size.

The execution of the experiments is done on a computer having 3.80Ghz Intel Core i5-
7600K processor and 8 GB of RAM. For small-sized problems, the experiment was repeated
five times. For medium and large-sized problems, the experiment was only replicated once.
The CHPC is not used to run these experiments but a desktop. Do to computational
resources, only limited number of replications are tested. All entries in the tables are the
averages of the number of replications for each problem instance. The results are shown in
Table 4.9. The first column is the problem set from Table 4.1. The second column is the
problem scenario from Table 4.2. The throughput target the algorithm needs to achieve is
shown in the third column. The actual throughput and the corresponding optimal buffer
size to achieve this is shown in the fourth and five column respectively. Lastly, the time
to solve one instance of the SBO in minutes is shown in the sixth column. For small sized
problems the final throughput achieved by the model is very similar to the objective. In
ten of the scenarios the model achieved the throughput at

⌈
N
2

⌉
of the starting N . In 14

of the scenarios, the model achieved the required throughput with less than
⌈
N
2

⌉
of the

starting N .
Table 4.10 show the results for medium-sized problems. Similar to small-sized prob-

lems, the model was able to achieve a required throughput close to the target throughput.
Again in all scenarios, the required buffer to do this was either

⌈
N
2

⌉
, or less than

⌈
N
2

⌉
of the starting N . 20 scenarios was less than

⌈
N
2

⌉
. Table 4.11 show the results for large

sized problems. 21 scenarios was less than
⌈
N
2

⌉
of the starting N . With the large sized

problems, 3 scenarios 20.100.8, 20.200.2 and 20.200.8 was not successfully solved. A higher
throughput is achieved with a total buffer size required bigger than

⌈
N
2

⌉
of the starting

N .
In this section its shown that proposed method for creating and simulating serial pro-

duction lines using the program designed in Java is comparable to a commercial program
and is faster. DES model is proven to be quicker than a commercial program. For small-
sized problems SimioTM took 23 minutes to complete the simulation run and replications
and 75 minutes for large-sized problems. In comparison, the DES only took 19 seconds
for small problems and 1.5 minutes for large problems. Experiments with the simulation
model show that simulation length and replication has an impact on both solution quality
and execution time. To minimise the simulation computation time, for all experiments,
a simulation duration of 10 000 and 200 replications will be used. This will result in a
simulation steady-state error of below 5% and a small fluctuation in average throughput
across the number of replications. Initial tests using DES with the ATS inner loop proved
that SBO is capable of solving the BAP. However, long execution time makes it unusable
for medium and large-sized problems. Two alterations are considered for the ATS and a
new inner tabu loop is proposed based on theory of constraints, TOCT as well as a list
that saves previously tested buffer scenarios and their throughput so that same scenarios
are not re-evaluated with the simulation model. The proposed method is 18 times faster
than ATS for small-sized problems and 5.5 times for medium-sized problems. The pro-
posed method is used to solve the BAP for objective two, showing that SBO is an effective
model.
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Table 4.9: Outer tabu experimental results small sized problems.

Problem
set Scenario

Target
throughput

Avg. throughput
achieved

Avg. total
buffer size

CPU time
(min.)

5.25 1 918 918 12 10
2 626 629 12 8
3 681 683 12 5
4 423 425 12 5
5 294 295 12 6
6 238 240 12 3
7 277 278 12 3
8 190 192 12 2

5.50 1 650 651 12 8
2 710 714 20 29
3 843 844 24 36
4 755 757 24 36
5 360 360 25 18
6 270 270 20 13
7 345 345 25 16
8 198 199 24 9

5.100 1 940 940 37 54
2 435 436 40 32
3 785 786 49 103
4 345 348 49 36
5 317 317 43 42
6 288 288 33 14
7 325 326 40 15
8 299 301 38 19
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Table 4.10: Outer tabu experimental results medium sized problems.

Problem
set Scenario

Target
throughput

Avg. throughput
achieved

Avg. total
buffer size

CPU time
(min.)

10.50 1 552 608 9 35
2 60 60 11 7
3 392 392 24 44
4 31 31 18 9
5 255 288 9 37
6 212 224 9 36
7 280 281 25 81
8 164 164 24 64

10.100 1 837 837 42 738
2 684 684 50 842
3 729 730 50 754
4 391 392 48 541
5 276 276 45 466
6 255 256 47 390
7 283 283 47 305
8 100 101 50 121

10.200 1 503 503 50 458
2 614 615 66 998
3 650 655 98 1826
4 368 370 98 922
5 283 283 43 433
6 216 217 63 415
7 214 215 67 473
8 131 132 96 396
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Table 4.11: Outer tabu experimental results large sized problems.

Problem
set Scenario

Target
throughput

Avg. throughput
achieved

Avg. total
buffer size

CPU time
(min.)

20.100 1 13 14 47 141
2 8 5 45 59
3 9 9 20 241
4 9 12 16 58
5 16 16 46 137
6 12 15 39 30
7 9 10 16 11
8 23 98 88 169

20.200 1 601 601 82 618
2 112 550 124 988
3 15 15 70 109
4 124 125 97 1507
5 211 261 80 710
6 19 196 80 413
7 14 216 44 137
8 32 103 163 219

20.400 1 669 669 63 2885
2 563 563 133 2615
3 237 564 157 2217
4 223 256 182 1437
5 274 274 161 8171
6 189 190 99 1006
7 203 203 188 3652
8 112 112 175 1811
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Chapter 5

Case study on BIW production
facility

Body-in-white (BIW) is a production phase in which the automobile’s metal body, called
the body in white, is assembled using preformed pieces of metal. Some of the parts pro-
cessed during this phase (originally shown in Figure 1.1) is repeated here in Figure 5.1 for
reference.

Figure 5.1: Components assembled during BIW process.

Such a line can consists of hundreds of welding robots, the production line this case
study is based on has 292 robots. The structure of the body changes with each new
model. Consequently, so does the technology used to join the preformed pieces of metal.
As a result, a new body shop needs to be designed for each new model, or a major model
update.

The body shop manufactures multiple model variants. The lines are subject to failure
and are partially unbalanced. Throughput of these manufacturing lines are generally very
high and is affected by factors such as variation in processing times and reliability. The
impact of these factors on the throughput of the line is reduced by introducing buffers
that aims to mitigate idle time due to starving (no input available) or blocking (no space
for output). However, allocating buffers into a production line requires additional capital,
material handling and is limited by available floor space. Buffers also increase the work-in-
process inventory. Due to these factors the strategic placement of buffers on the production
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line is an important manufacturing design problem.
The BIW production system under investigation is a BMW production facility, Figure

5.2 and Figure 5.3 illustrates the layout of this production system. The figures show the
stations, buffers and material flow for the BIW factory that produces the components
in 1.1. Differences should be noticed between the line topology in figures 5.2 and 5.3
compared to a serial line. The topology is a tree structure, various machines have more
than one station feeding parts into them. Figure 5.2 is the first part of the factory. The
three main sub-assemblies are produced in separate areas, the Front End, Centre Floor
and Rear End. The Front End has seventeen production cells with unique station codes.
To conform with the BAP notation, each of these production cells will be simulated and
referred to as a single machine K. Each of these machines are separated with a small buffer.
The Centre Floor has nine machines while the Rear End has twelve. Each machine has a
unique processing time, which can be simulated with a uniform distribution. Each machine
also has unique failure and repair times. Not only do the distributions of the various
machines’ failure and repair rate differ, but also its parameters. Some are modelled using
Gamma, some using Beta distributions. The topology of the line is also not serial but tree
structured.

Figure 5.3 shows the second part of the production facility. The three main sub-
assemblies are constructed into one piece and reinforced with additional sub-assemblies
as it moves down the main line. Together the total facility has 63 machines, 59 buffer
locations and a total buffer size N of 318. Referring to our experiments in Chapter 4,
the BIW problem is considered a large-sized problem. The SBO method developed in
this dissertation can be used to solve the BAP for complex lines such as this production
system. A simulation is created of the line, using its tree topology. Each machine has
unique random distributions that represent the processing time, failure rate and repair
time, respectively.

The simulation has a simulation length of three days (72 hours). The simulation starts
with all buffers empty and a single part in every station. The throughput for the first two
days are not recorded as it allows the simulation to reach a steady state. The throughput
for the third day is then stored and used for analysis. The simulation is replicated 10
times and the average of the throughput across the ten replications is returned as the
performance result for the line.

The BMW plant is measured on daily output performance. Stability is crucial and the
line needs to achieve its targets daily. The current buffer allocation and line parameters
results in an average daily throughput of 239.7 units per day.

Using the TOCT inner tabu tested in Chapter 4 the optimal buffer configuration
resulted in a daily throughput of 282.7 units per day. Reconfiguring the allocation of
buffer increased the performance of the line by 43 units from the initial state.

The objective function of the BAP for this dissertation is achieving a specific through-
put with the smallest total buffer size. The SBO tested in Chapter 4 is used on the BMW
line. A target throughput of 230 units per day needs to be achieved by the line. The
SBO method obtained a buffer configuration that resulted in 242.9 units per day with a
total buffer size of 126. That is a reduction of 192 units in the total buffer size. The
algorithm required 3 hours and 55 minutes to finish. Table 5.1 and Table 5.2 show the
buffer allocation for the initial case study versus the optimal buffer allocation. None of
the buffers where reduced to 0 thus, the optimal buffer configuration is to have more small
buffers among the line than fewer large buffers. Some buffer locations (B47,B50, B52,
B56) increased in size.
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The case study shows that the proposed SBO method is able to solve the BAP for
complex lines such as the BMW BIW production line.

Table 5.1: Buffer allocation results production phase 1.

Front End Centre Floor Rear End

Buffer
index

Initial
BiBiBi size

Optimal
BiBiBi size

Buffer
index

Initial
BiBiBi size

Optimal
BiBiBi size

Buffer
index

Initial
BiBiBi size

Optimal
BiBiBi size

B0 2 2 B17 2 1 B26 4 1
B1 2 1 B18 2 1 B27 4 1
B2 2 1 B19 2 1 B28 2 1
B3 2 1 B20 2 1 B29 2 1
B4 2 1 B21 4 2 B30 2 2
B5 2 2 B22 4 2 B31 2 1
B6 2 1 B23 2 1 B32 4 2
B7 10 1 B24 2 1 B33 2 1
B8 2 1 B25 10 1 B34 4 1
B9 2 1 B35 4 1

B10 2 1 B36 2 1
B11 2 1 B37 10 1
B12 2 1
B13 2 1
B14 5 1
B15 2 1
B16 10 1
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Table 5.2: Buffer allocation results production phase 2.

Underbody Framing

Buffer
index

Initial BiBiBi
size

Optimal BiBiBi
size

Buffer
index

Initial BiBiBi
size

Optimal BiBiBi
size

B38 4 1 B45 16 1
B39 2 1 B46 3 3
B40 3 2 B47 1 3
B41 2 2 B48 2 2
B42 12 2 B49 2 1
B43 1 1 B50 1 2
B44 7 1 B51 12 2

B52 2 3
B53 2 1
B54 2 1
B55 19 1
B56 3 4
B57 50 1
B58 47 47
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Chapter 6

Conclusion

In this dissertation a Simulation-based optimisation (SBO) approach is proposed to solve
the Buffer allocation problem (BAP) for unreliable production lines with complex line
structures. The objective was to achieve a desired throughput with the smallest total
buffer size. Various methods were investigated to model unreliable production systems,
and simulation was found to provide the required flexibility to model complex systems
accurately.

A new Discrete event simulation (DES) tool was created that can simulate varying sizes
of serial lines by adjusting the line size parameters. The DES’s performance was compared
to that of commercial simulation software. The results of the experiments showed that
the proposed simulation model can achieve similar throughput results as the commercial
software, but in a much shorter amount of time.

This dissertation built on the foundation laid by Demir et al. [9] whose integrated
approach use two tabu loops. To improve its efficiency, this dissertation introduced a
neighbourhood generation mechanism, based on the Theory of Constraints. This reduced
the amount of neighbours evaluated by the tabu loop for each iteration by generating
neighbours that increase the buffer after stations that are blocked and reducing buffer
in front of stations that are least blocked. That is, a mechanism that explicitly aims to
alleviate the production bottleneck. The performance of the proposed inner loop was then
compared to that of Demir et al. [9]. The proposed method using Theory of Constraints
had a significant time advantage.

The results of the experiments showed that for small problems the two methods resulted
in similar throughout. The results were also compared to that of complete enumeration,
demonstrating that both methods are able to achieve global optimal solutions. For medium
and large problems this dissertation’s implementation of the Demir et al. [9] algorithm
could not produce results within a reasonable time.

The outer tabu loop of Demir et al. [9] was used with the Theory of Constraints inner
loop and discrete event simulation model to solve the BAP. Experiments showed that the
proposed method is able to solve the BAP for unreliable serial lines.

The same tool was then applied to simulate complex tree-structured production lines
such as the BMW production system in Rosslyn, South Africa. More specifically, the
complex production system of the Body in White facility. The method could accurately
simulate this complex line. Results showed an alternative buffer configuration and an
increase in daily output. The target throughput could be achieved with a reduction in
total buffer size.
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6.1 Future opportunities

Future research can be performed on the multi-threading logic used in SBO. Being able to
run various instances of the simulation across multiple threads does decrease the required
execution time and further improvements on this has great potential. Inclusion of cost into
the buffer allocation program will make the model more applicable to industry. Certain
areas in the production line can be cheaper to add buffer than other. In the BMW
Body-in-white (BIW) case study, it is less capital intensive to store large amounts of the
sub-assemblies that is still small in size than having large buffers later in the production
line where a complete vehicle needs to be stored in the buffer.
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Appendix A

Appendix A

Tables A.1 to A.6 show the maximum throughput achieved by the inner tabu loop. The
first column us the problem set, machine size and buffer size. The second column refers to
the problem scenario, referring to processing time, machine failure and repair rate. The
third column shows the specific inner loop method used, either Complete enumeration
(CE), Adaptive tabu search (ATS) or Theory of constraints tabu search (TOCT). The
result achieved for each of the 10 replications are shown in fourth to thirteenth column.

Table A.1: Maximum throughput achieved per replication for each scenario and method.

Problem
set Scenario Method Replication Number

1 2 3 4 5 6 7 8 9 10

5.25 1 ATS 938.44 938.47 938.42 938.79 938.35 938.63 938.55 938.31 938.51 938.34
TOCT 937.59 937.83 937.89 937.81 937.77 937.39 937.23 937.67 937.72 937.83
CE 937.89 - - - - - - - - -

5.25 2 ATS 697.58 698.40 697.94 697.08 697.73 698.53 697.04 697.05 698.05 696.89
TOCT 670.03 686.81 682.24 688.50 692.17 677.71 676.51 686.48 678.24 693.05
CE 694.58 - - - - - - - - -

5.25 3 ATS 738.68 739.53 739.7 739.27 741.05 741.23 738.97 738.44 739.7 738.92
TOCT 734.50 734.49 735.33 738.43 738.83 736.70 735.57 738.30 732.16 733.39
CE 734.89 - - - - - - - - -

5.25 4 ATS 492.12 489.09 490.88 487.48 490.22 487.12 488.08 489.99 487.86 487.26
TOCT 485.01 485.13 486.71 489.09 487.02 483.73 487.55 488.87 486.45 484.07
CE 485.56 - - - - - - - - -

5.25 5 ATS 302.69 302.17 302.20 302.17 302.33 302.26 302.48 302.15 302.08 302.31
TOCT 289.96 300.34 301.19 300.86 299.24 300.11 300.01 300.12 300.19 299.85
CE 301.67 - - - - - - - - -

5.25 6 ATS 255.87 256.11 256.10 256.28 255.855 257.78 256.12 256.07 256.39 256.56
TOCT 253.58 251.74 251.51 251.02 205.09 252.43 251.34 253.74 250.03 253.6
CE 254.73 - - - - - - - - -

5.25 7 ATS 303.86 303.37 303.29 303.74 303.04 303.01 303.72 303.24 303.34 303.91
TOCT 301.45 300.78 300.01 302.19 298.48 300.76 301.52 301.1 301.38 298.15
CE 301.38 - - - - - - - - -

5.25 8 ATS 221.32 222.43 223.20 222.61 221.72 222.65 222.04 222.07 222.39 221.83
TOCT 215.88 215.84 218.26 217.66 219.78 220.21 215.46 217.43 217.36 222.90
CE 219.14 - - - - - - - - -
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Table A.2: Maximum throughput achieved per replication for each scenario and method.

Problem
set Scenario Method Replication Number

1 2 3 4 5 6 7 8 9 10

5.50 1 ATS 653.5 653.62 653.96 654.02 654.69 654.39 653.46 653.85 654.01 654.15
TOCT 652.67 650.77 650.78 652.74 652.44 651.60 652.02 651.85 652.90 652.58
CE 654.19 - - - - - - - - -

5.50 2 ATS 762.35 763.25 763.15 762.30 762.38 761.78 761.83 763.82 762.96 762.61
TOCT 745.43 744.38 733.06 734.48 740.84 751.00 745.22 742.47 744.61 739.63
CE 761.92 - - - - - - - - -

5.50 3 ATS 863.77 862.58 864.75 865.69 864.10 863.03 862.24 862.43 862.80 863.20
TOCT 853.13 860.06 857.47 857.33 858.64 861.05 859.59 858.67 857.60 860.41
CE 863.70 - - - - - - - - -

5.50 4 ATS 803.46 802.05 806.57 801.15 801.09 801.46 802.16 803.94 803.98 802.33
TOCT 795.55 785.21 783.04 795.77 794.66 793.09 788.86 793.10 794.23 788.11
CE 803.40 - - - - - - - - -

5.50 5 ATS 363.14 362.91 362.92 362.78 362.95 363.07 362.95 363.37 363 362.74
TOCT 362.8 362.54 362.63 362.51 362.39 362.57 362.28 362.58 362.5 362.7
CE 362.69 - - - - - - - - -

5.50 6 ATS 271.84 272.16 271.8 271.83 272.28 272.12 272.09 272.29 272.46 271.84
TOCT 271.71 271.29 271.5 271.12 271.53 271.31 271.03 271.81 271.01 271.79
CE 271.80 - - - - - - - - -

5.50 7 ATS 352.71 352.84 353.01 352.61 352.87 352.75 353.02 352.65 353.46 352.62
TOCT 351.87 351.81 351.59 351.28 351.81 351.99 352.23 351.52 351.52 352.21
CE 352.16 - - - - - - - - -

5.50 8 ATS 229.88 230.06 230.37 229.92 229.16 230.26 229.85 229.77 230.48 230.31
TOCT 215.94 221.87 222.12 222.7 219.15 226.57 217.11 222.33 220.47 221.78
CE 229.63 - - - - - - - - -
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Table A.3: Maximum throughput achieved per replication for each scenario and method.

Problem
set Scenario Method Replication Number

1 2 3 4 5 6 7 8 9 10

5.100 1 ATS 941.45 941.4 941.47 941.79 941.25 941.16 941.63 941.38 941.07 941.52
TOCT 941.26 940.94 940.76 940.91 940.87 940.9 941.13 940.76 941.05 940.87
CE 941.76 - - - - - - - - -

5.100 2 ATS 438.73 439.42 438.94 439.83 438.97 440.37 439.59 438.8 439.76 439.95
TOCT 435.63 436.49 435.37 437.87 435.92 436.8 437.08 436.57 438.4 436.92
CE 440.17 - - - - - - - - -

5.100 3 ATS 806.11 806.6 804.91 805.25 806.29 806.77 807.55 807.68 806.83 804.61
TOCT 805.38 804.53 805.09 804.94 805.03 805.26 804.67 804.25 804.28 806.51
CE 806.70 - - - - - - - - -

5.100 4 ATS 438.01 438.67 438.84 440.4 436.8 436.11 436.14 437.94 436.46 439.7
TOCT 426.45 436.25 427.03 427.54 429.91 430.01 424.34 421.85 423.1 416.4
CE 441.10 - - - - - - - - -

5.100 5 ATS 319.03 318.94 318.78 318.82 318.55 318.75 318.81 318.6 318.69 319.09
TOCT 317.29 317.76 317.52 317.67 318.23 317.69 317.98 317.98 317.18 317.18
CE 319.30 - - - - - - - - -

5.100 6 ATS 291.85 291.68 291.66 291.59 292.17 291.44 291.9 291.58 291.26 291.43
TOCT 290.6 290.83 290.46 290.44 290.07 290.64 290.71 290.47 290.63 290.79
CE 291.81 - - - - - - - - -

5.100 7 ATS 328.13 328.06 328.44 328.14 327.85 328.2 327.88 327.87 328.23 328.12
TOCT 327.65 327.14 326.78 327.37 326.78 327.26 326.81 326.9 327.14 326.88
CE 328.29 - - - - - - - - -

5.100 8 ATS 308.6 307.96 308.82 308.29 308.1 307.68 307.06 308.28 307.22 308.17
TOCT 305.46 304.81 304.18 304.58 305.54 303.92 304.45 304.47 305.05 305.33
CE 308.20 - - - - - - - - -

Table A.4: Maximum throughput achieved per replication for each scenario and method.

Problem
set Scenario Method Replication Number

1 2 3 4 5 6 7 8 9 10

10.50 1 ATS 707.58 708.2 707.57 707.38 707.93 708.37 707.58 707.36 707.59 707.43
TOCT 698.93 701.89 701.14 700.92 699.57 700.04 699.03 699.9 698.72 698.93

10.50 2 ATS 61.04 61.07 61.29 61.17 60.95 61.11 61.26 61.21 61.15 61.07
TOCT 60.79 60.64 60.84 60.69 60.84 60.5 60.71 60.72 60.75 60.51

10.50 3 ATS 450.82 450.96 450.3 450.76 450.09 450.02 450.41 450.53 451.05 450.24
TOCT 438.89 432.83 430.09 435.98 424.23 419.44 431.26 427.3 432.19 435.22

10.50 4 ATS 34 33.94 34.4 34.09 34.1 34.05 34.1 34.12 34.15 34.23
TOCT 32.32 32.17 32.19 31.77 32.56 31.75 31.89 31.77 32.16 31.95

10.50 5 ATS 325.87 325.96 325.83 325.85 326.12 325.74 325.95 325.91 325.66 325.83
TOCT 325.29 324.87 324.82 324.73 324.72 324.68 324.91 324.67 324.87 324.56

10.50 6 ATS 277.1 277.04 277.11 277.11 277.6 276.76 276.87 276.61 276.84 276.85
TOCT 275.22 274.28 274.79 275.02 274.88 275.05 274.91 275.07 275.38 274.84

10.50 7 ATS 299.46 299.86 300.03 300.34 299.5 300.17 300.04 299.72 299.6 299.98
TOCT 298.04 298.09 298.55 298.84 298.32 298.06 298.87 297.6 298.33 298.12

10.50 8 ATS 201.04 200.36 199.46 200.5 203.31 199.17 201.3 201.2 200.78 199.92
TOCT 197.02 196.48 196.8 197.2 198.36 197.44 197.26 197.77 196.46 196.8
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Table A.5: Maximum throughput achieved per replication for each scenario and method.

Problem
set Scenario Method Replication Number

1 2 3 4 5 6 7 8 9 10

10.100 1 ATS 840.95 840.9 841.02 840.97 840.9 840.89 840.99 840.98 840.89 841.05
TOCT 839.23 839.3 839.31 839.39 839.22 839.36 839.23 839.37 839.42 839.16

10.100 2 ATS 709.98 710.24 710.12 710.17 710.45 709.82 710.49 710.15 709.73 709.82
TOCT 698.88 700.96 700.53 703.95 700.2 699.68 699.8 700.12 701.06 702.41

10.100 3 ATS 770.75 772.04 770.03 770.95 771.26 771.31 770.56 770.21 770.28 769.94
TOCT 762.1 764.14 763.8 759.69 761.35 761.09 762.44 760.78 761.07 759.15

10.100 4 ATS 490.24 490.3 490.39 491.66 490.83 491.97 490.25 492.31 490.14 489.57
TOCT 456.83 474.11 460.77 438.61 449.47 464.19 450.35 468.16 463.42 476.82

10.100 5 ATS 278.69 278.56 278.77 278.59 278.69 278.59 278.88 278.88 278.71 278.64
TOCT 277.71 277.19 277.24 277.63 277.3 277.23 277.6 277.46 277.2 277.59

10.100 6 ATS 260.73 261.08 260.73 261.26 260.82 261.04 260.9 260.69 261.01 261.02
TOCT 259.46 259.21 259.27 259.76 259.14 259.22 259.26 258.94 259.01 259.88

10.100 7 ATS 293.44 293.8 293.51 294.25 294.38 293.89 293.51 293.65 293.55 293.54
TOCT 291.04 291.09 291.33 291.01 291.03 291.01 292.05 290.25 290.56 291.7

10.100 8 ATS 128.76 127.2 127.51 126.93 128.58 127.63 127.8 127.98 127.68 127.77
TOCT 123.6 124.84 125.26 124.64 125 125.81 124.8 123.95 124.86 126.67

Table A.6: Maximum throughput achieved per replication for each scenario and method.

Problem
set Scenario Method Replication Number

1 2 3 4 5 6 7 8 9 10

10.200 1 ATS 504.62 504.9 504.77 505.38 504.82 504.65 504.73 504.72 504.75 504.75
TOCT 503.67 503.63 503.51 504.02 503.52 504.04 503.53 504.17 503.81 503.58

10.200 2 ATS 616.13 616.34 616.3 616.44
TOCT 615.94 616 615.89 615.79 616.25 615.92 615.79 615.63 615.53 616.46

10.200 3 TOCT 667.24 668.15 664.1 663.36 660.19 674.64 669.06 670.52 675.85 667.98
10.200 4 TOCT 406.46 412.6 420.99 409.06 406.29 419.16 430.83 405.74 419.01 409.57
10.200 5 TOCT 284.32 284.94 284.28 284.37 284.74 284.37 284.55 284.13 284.57 284.4
10.200 6 TOCT 218.51 218.45 219.17 219.82 218.57 219.15 218.71 218.8 218.86 219.25
10.200 7 TOCT 218.93 217.56 218.97 218.09 218.18 218.58 217.81 218.52 219.11 218.46
10.200 8 TOCT 142.76 142.07 142.78 142.94 142.52 143.58 142.23 141.86 141.97 141.17
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