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This dissertation solves the Buffer allocation problem (BAP), using Simulation-based op-
timisation (SBO). Chapter 1 describes the role buffers play within a production line.
Buffer is allocated to decouple stations and reduce the effect station failure and differing
process times have on the complete line throughput. Adding buffer to the line increases
the working capital required to run the line, thus the optimal number of buffer to add
to a line is an important design question. The problem statement is introduced. The
research design is discussed in this Chapter. A Discrete event simulation (DES) is specif-
ically designed to simulate a production line for the BAP. An inner and outer loop is
used to generate various buffer configurations. The Adaptive tabu search (ATS) for the
inner loop is modified by exploiting theory of constraints. The ideology states that the
overall performance of a line can be improved by ensuring the bottleneck is never starved
nor blocked. The proposed Theory of constraints tabu search (TOCT) uses the block or
starved ratio of stations to generate neighbours, reducing the number of neighbours that
need to be evaluated per iteration. Small-sized, medium and large-seized lines with vari-
ous process time, failure rate and repair time is used to scrutinise the proposed method,
detailed computation results are shown.

In Chapter 2 a literature study is done on approaches for solving the BAP. Three main
objectives are considered when solving the BAP. This dissertation focuses on objective
two, a prescribed throughput must be achieved with the minimum total buffer size. Various
search methods, meta-heuristics and complete enumeration is discussed as an option for
the evaluative method. The works of Demir et al. [9, 11] show that Tabu search (TS)
is an effective approach as a generative method for the BAP. Analytical methods and
simulation is discussed as evaluative methods. The decomposition method is most common
in literature. The disadvantage is that the decomposition method has limitations on
the line topology it can solve as well as distribution types for the machine parameters.
Alternatively, simulation or meta-models have been employed to represent more complex
lines. Simulation has a more accurate representation of the production line than a meta-
model but takes longer to compute. To overcome this DES can be used to create a specific
program.

In Chapter 3 a specific solution approach for the BAP is developed. The use of DES to
design a simulation in Java specifically for the BAP problem addresses the computational
burden of generic simulation models. Two event types are created for the model, departure



and failure events. The works of Demir et al. [9, 11] establish a solid foundation for the
use of tabu search in a two-loop manner to solve the BAP.

In Chapter 4 the proposed method for creating and simulating serial production lines
using the program designed in Java is comparable to a commercial program and is faster.
Initial tests using DES with the ATS inner loop proved that SBO is capable of solving
the BAP. However, long execution time makes it unusable for medium and large-sized
problems. Two alterations are considered for the ATS and a new inner tabu loop is
proposed based on theory of constraints, TOCT as well as a list that saves previously
tested buffer scenarios and their throughput so that same scenarios are not re-evaluated
with the simulation model. The proposed method is 18 times faster than ATS for small-
sized problems and 5.5 times for medium-sized problems. The proposed method is used
to solve the BAP for objective two, showing that SBO is an effective model.

Finally, in Chapter 5, the solution approach scalability is tested on an actual, complex
automotive production line.
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Chapter 1

Introduction

The automobile industry is a global economic growth driver. The industry made over
66 million cars, vans and trucks globally in 2005 [22]. The level of output is equivalent
to a global turnover of almost €2 trillion worldwide. The industry continues to grow,
registering a 30% increase from 1995-2005. Building 60 million vehicles requires the
employment of 9 million people; those involved in making the vehicles directly as well
as those required to manufacture the parts that go into them. This is over 5% of the
worlds total manufacturing employment. For every direct employee, it is estimated that
5 indirect employees are involved. The industry is a major innovator, investing over €84
billion in research, development, and production. Achieving efficient utilisation of the
investment is crucial to the success of the industry.

1.1 Problem background

Vehicle production is done in high volumes, with individual factories capable of producing
half a million units per year. Adding to the complexity, single plants can be required to
produce different models. To achieve these car manufacturers have established factories
consisting of multiple facilities to fit the various components.

Sheet metal is used for the body of the car. These are pressed in press plants which
can either form part of the factory or be outsourced to external suppliers. The press parts
are welded together in the body shop. Highly automated lines construct the body of the
car. Step by step, new press parts are added to it as it moves through the line. The end
product is a steel body known as the Body-in-white (BIW). After the BIW is built, it
goes to the paint shop where multiple layers of protective coating and paint are applied
to the car. Finally, the car moves to the assembly line. Here workers install the various
parts to the body. The end product from the assembly line is a completed car that drives
off the line. Each of these facilities uses a production line to achieve the mass production
needed.

A production line is a system in which a series of value-adding work stations are
connected with material moving equipment. Value is added to the item as it moves
through the line [11]. At each step, parts are assembled.

Each line in the automotive factory has unique characteristics based on production
requirements. Body shops are highly automated and consist of multiple smaller lines
(machine cells). These lines build the sub-assemblies, which then flow into the mainline.
Sub-assemblies of a BIW is shown in Figure 1.1. A typical body shop production line is
shown in Figure 1.2a, this line layout can be classified as a tree structure line. The line
consists of a number of machines cells, labelled as M}, and separated by a buffer B
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Figure 1.1: BIW assembly components [14].

where k € K = {1,2,..., K}, K is the number of machine cells. The various machine cells
of a body shop, shown in Figure 1.2a contain smaller machine cells each with body shop
equipment such as welding robots, grippers and fixtures.

Compared to the body shop, the assembly line is a labour intensive facility where
the trim components of the car are assembled. The car moves down a serial line (see
Figure 1.2b) and at each station, workers assemble a specific set of parts on the car until
a completed car drives off the line.

Figure 1.3 shows the content of the Front wheel house (FWH), station M; of Figure
1.2a. The FWH can easily be broken down into 10 smaller machine cells and 14 buffers.
It is even possible to expand station M; 3 and M g into more, smaller stations as they
also consist out of several fixtures, robots and buffers. Stations M;_13 in Figure 1.2a can
all be expanded in a similar manner. Hence, the body shop production line is seen as a
complex system.

During the design of the body shop, specific cycle time is calculated for the line. The
cycle time is determined by the throughput the production line needs to achieve. Each
machine cell is then developed to have a processing time as close to this desired cycle time
as possible. The processing time is how long it takes the cell from receiving the parts
to finishing the assembly. The aim is to never have a processing time that exceeds the
cycle time. Due to space, weld locations and robot movement constraints, only certain
work content can be included in each cell. Even if the cell’s processing time is less than
the required cycle time, it is not possible to add more content to the cell due to these
constraints. This limitation makes it impossible to have the same processing time for all
the cells. In a scenario where the processing time of a station is longer than those before
and those after, all stations upstream of it will be blocked, while all downstream stations’
waiting time to receive parts will increase. For the downstream stations, we say they
are starved as no parts are arriving to feed them. Therefore the station with the longest
processing time will be the bottleneck in the line.

Another factor that can influence stations becoming blocked or starved is equipment
failure. The body shop equipment such as robots, grippers and fixtures are all subject to
failure. Due to a large number of equipment in the body shop, it is extremely sensitive to
machine failure. Figure 1.4 is used to illustrate the impact of machine failure on the total
availability of a simple serial production line with five machines, each with an equipment
availability of 95%. If we assume each machine fails independently, the total availability of
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Figure 1.2: Production line topology.

the five-station line can be calculated as 95% x 95% x 95% x 95% x 95% = (95%)° = 77.37%.
If the total assembly system stopped every time a single station failed the line would rarely
function [1]. Once a station fails, it can cause all upstream stations to become blocked
and downstream stations starved if the station cannot be repaired before the end of the
cycle.

The impact of these factors on the throughput of the line can be reduced by introducing
buffers into the production line. Buffers are temporary storage areas strategically placed
in the production line to decouple segments of the line. If a station that has a buffer for its
exit material fails, all downstream stations can remain operational while there are parts
in their respective buffers. If the station cannot be repaired before the buffer empties,
and start supplying downstream, the production of the downstream station will stop. If
there is a buffer before the failed station, all upstream stations will be able to produce
while there is space in the buffer. Again if the station cannot be repaired before the buffer
reaches capacity, and start pulling parts, the upstream line will become blocked. The
bigger the buffer, the longer the production line can run independently. This reduces the
effect line reliability has on production throughput.

Allocating buffers into a production line requires additional capital, material handling
and is limited by available floor space. Buffers also increase Work-in-progress (WIP)
inventory. The strategic placement of buffers in the production line is, therefore, an
important manufacturing design problem.

The problem of allocating buffers optimally is known as the Buffer allocation problem
(BAP). BAP consists of finding the optimal buffer configuration (location and size) within
the production line. For a comprehensive study of the BAP see the works of Demir et al.
[10].

The BAP has three main classifications of problem objectives: maximise throughput
for a given fixed number of buffer, achieve desired throughput with minimum buffer, and
minimisation of the WIP subject to the specified buffer size.

The BAP is also classified based on line parameters. A production line where the pro-
cessing time of all stations are similar is called a homogeneous production line. Conversely,

11
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if the process times are different, it is known as a heterogeneous line [29]. In some cases,
literature ignores the possibility that failures may occur, or that failures are negligible,
in which case the line is assumed to be reliable. However, when failures are explicitly
addressed in the model, the line is referred to as being unreliable [10].

BAP has been proven to be an NP-Hard combinatorial optimisation problem [10].
That means when the number of machines in the line is increased, or the number of
buffers that can be allocated to the line increases, the number of possible solutions to the
problem grows exponentially. For example, a small-sized problem—say a production line
with five machines, four buffer locations and a total buffer size of 25—has 3279 possible
configurations. Increasing the total buffer size to 100 (factor 4) increases the number of
configurations to 176 854 (factor 54). Production lines can have more than 40 machines
in the line and a total buffer size of 800.

A complex system such as a production line cannot be expressed by a simple math-
ematical equation where the throughput of the line can be calculated for a given buffer
configuration [10]. Due to the lack of this algebraic relation and the problem being NP-
Hard, a method with two elements are frequently used to solve the BAP [10].

Evaluative method: The evaluative method is used to calculate the throughput of a
production line for a given buffer configuration. Various versions of the evaluative
method have been employed in the literature.

Analytical methods have been used for the BAP. Exact analytical methods are only
applicable to small-sized problems, not for production lines as big as the body shop.
For larger systems, approximation methods can be used.

Methods employing algebra, calculus or probability theory are used to approximate
the throughput of the line. A method known as the decomposition method is widely

12



used in BAP as an evaluative method. In the works of Demir et al. [9], the decompo-
sition method is used to determine the throughput of a serial line. The decomposition
method transforms the production line into a set of K — 1 smaller two-machine lines
L(3), for i = 1,..., K — 1, as illustrated in Figure 1.5. Line L(7) has an upstream
machine and a downstream machine separated by a buffer. The average throughput
of the production line can be obtained by modelling the line as a Markov process.
The performance characteristics of a two-machine line can be obtained exactly, the
decomposition method requires a derivation of a set of equations that link the decom-
posed two-machine lines together. The non-linear equations are solved to determine
parameters of the upstream and downstream machine such as process time, failure
rate and repair rate to that the behaviour of material flow into buffer B;) closely
matches that of the flow into buffer B; of the original line L. The literature found
on the BAP using the decomposition method is limited to serial production lines.
Recall from Figure 1.2a, the topology of the body shop line is a tree structure where
multiple buffers lead into a machine, and the machine can only produce when a
component from each buffer is present. Due to the structure of the body shop, it
cannot be decomposed in the same way as a serial line.

Alternatively, simulation is used to determine line throughput. Simulation is the
imitation of a system being studied which is performed on computers by creating
a model of it. Various line topologies can be modelled, including tree structure
lines. Each station can have different random variables describing the processing
times. Failure of stations can also be included in the model. The disadvantage of
simulation is the time it takes to evaluate a scenario.

Generative method The generative method moves through the solution space and con-
siders the various buffer configurations to be evaluated Demir et al. [10]. The gen-
erative method aims to find a (near) optimum buffer configuration in the shortest
time possible. Methods employed include complete enumeration, traditional search,
heuristic search, and metaheuristics. Complete enumeration evaluates all possible
configurations and is only applicable to small problems. Traditional search methods
and heuristics test only a subset of the buffer configurations. The disadvantage is
that they get stuck at a local optimum. Metaheuristics add logic to the way it moves
through the solution space and has the main advantage that they can escape local
optimum.

The evaluative and generative methods are executed iteratively. The methods start with
an initial buffer configuration. With the given buffer configuration, the evaluative method
can determine the throughput of the line. Because the initial configuration might not be
the optimal solution, the generative method generates new buffer configurations for the
evaluative method to test. This is repeated until a (near) optimal solution is found.

Demir et al. [10] conducted a comprehensive survey of the BAP. It highlights the new
trends in the field and presents ideas for future research by identifying gaps. Within the
paper, 95 literature works on the BAP were studied. The studied papers are classified
based on line characteristics as well as the solution approaches used. The study showed
that the majority of literature did not ignore failure, and included it in the model. Only
41 papers ignored failure in their solution approach.

Out of the 54 papers that did include failure, the majority of the literature focus on
simpler production lines. Serial or serial-parallel production lines were studied in 40 of the
54 papers, with the rest solving the BAP for more complex line topologies. These simpler
lines are solved using approximation methods as the evaluative method. Only 14 papers

13
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Figure 1.5: Serial line decomposition method.

conducted studies on complex lines. Out of these 14 papers, 10 of them used simulation
as the evaluative method.

The complex stochastic nature of the body shop line cannot be accurately solved with
approximation methods. Thus simulation needs to be used as an evaluative method.
Simulation can be used to evaluate the throughput of the line for every scenario given by
the generative method. The use of simulation iteratively with an optimisation technique
is known in the literature as Simulation-based optimisation (SBO). This dissertation aims
to increase the body of literature on SBO as method to solve BAP.

1.2 Problem statement

The problem under investigation is how to determine the buffer configuration for complex
production lines that require simulation to accurately represent the production line. The
solution should be scalable for a system such as the body shop. The aim is to achieve
its required throughput while minimising the number of buffers included in the line. To
reduce the effect of equipment failure, buffers are included in the line at a great financial
cost. The body shop is a complex manufacturing facility in an automotive factory as it has
a non-serial, heterogeneous and unreliable production line. Appropriate methods need to
be used to evaluate this complex line’s throughput and generate good buffer configurations
for evaluation.

For a complex system such as the body shop, analytical and approximation methods
cannot be used. Simulation is capable of modelling the stochastic nature of the line and
provide highly accurate throughput times for a given buffer configuration. To find the best
solution, multiple buffer configurations need to be generated by an optimisation method
and evaluated with simulation.

Thus, the problem that needs to be solved is how the method of SBO can be applied
to the BAP to achieve the best solution. Best referring to finding a buffer configuration
that has the smallest total buffer size while still achieving a specific throughput, within
an acceptable time frame.

14



1.3 Research design

The dissertation solves the BAP using SBO. The iterative use of a generative method
and evaluative method is employed to solve the BAP with the aim to find the minimum
buffer size required to achieve a required throughput. A Discrete event simulation (DES)
is specifically designed to simulate a production line for the BAP. Stochastic simulation in
java (SSJ) is used to create a general framework that receives the number of machines with
corresponding machine parameters as input and creates the simulation model. The design
of the simulation model is focused specifically for BAP. It is tested against commercial
software to prove the efficiency of the model. The generative method is based on the
works of [9, 11]. An inner and outer loop is used to generate various buffer configurations.
The Adaptive tabu search (ATS) for the inner loop is modified by exploiting theory of
constraints. The ideology states that the overall performance of a line can be improved by
ensuring the bottleneck is never starved nor blocked. The proposed Theory of constraints
tabu search (TOCT) uses the block or starved ratio of stations to generate neighbours,
reducing the number of neighbours that need to be evaluated per iteration. Small-sized,
medium and large-seized lines with various process time, failure rate and repair time is
used to scrutinize the proposed method, detailed computation results are shown. Finally
the proposed methods scalability is tested on an industry problem, solving the BAP on a
non-serial, large production line.

1.4 Research methodology

The methodology of design research discussed in Manson [20] is used in the paper. This
methodology describes guidelines for a researcher who wishes to conduct a paper based
on the field of operations research.

To solve the problem described in the problem statement, first our understanding of
the BAP needs to be enhanced. In Chapter 2 a comprehensive literature review on the
BAP is done. The method of using an evaluative and generative element iteratively to
solve the BAP is studied. Analytical evaluative methods are compared with simulation
evaluative methods and justification is provided for the use of simulation as the evaluative
method of choice in this dissertation. For the generative method, various approaches are
researched. Chapter 2 suggests why the use of SBO is the most applicable method to solve
the BAP for the body shop line.

This idea of SBO is then developed as a solution approaches in Chapter 3, specifically
for the BAP. A simulation program is created in a general programming language, Java.
This program is a newly designed blueprint using the library of the SSJ. It is possible to
simulate any size of a serial production line by just specifying the number of machines,
random parameters, replication length and simulation length as well as the buffer vector.
For the generative method, two metaheuristics are compared for finding the optimal buffer
configuration for maximising throughput. The first method is based on the works of Demir
et al. [9]. The second method is a proposed improvement on the above mentioned algorithm
to improve the evaluation time.

In Chapter 4 this artefact is used and tested on serial production lines. First, the
validity of the simulation model is checked. Then the two generative methods are compared
across various production line lengths and random parameters. The best, that is the
method that achieves a near-optimal solution within a reasonable amount of time, will be
used with the simulation model to solve the larger and more realistic BAP.

Lastly, the proposed methodology is applied to a body shop production line. The use
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of SBO in the BAP will help to increase our knowledge on its effectiveness with solving
the BAP for complex lines such as the body shop.

1.5 Contribution

The dissertation presents a DES model that is not a computational burden. A TOCT
is presented where theory of constraints ideology that the overall performance of a line
can be improved by ensuring the bottleneck is never starved or blocked. The neighbour
generation prioritise buffer allocation to stations that are mostly blocked and remove buffer
from stations that are rarely starved.

16



Chapter 2

Literature review

Buffers are locations in which semi-completed, Work-in-progress (WIP), parts are stored
within a production line. Factors such as uneven processing time and station failure create
instability in the production line, which has a negative effect on throughput. Buffers are
placed in the line to decouple stations and reduce instability. Buffers allow preceding and
succeeding stations to operate independently.

By including buffers, the required capital to realise and operate the production line is
increased. WIP is also increased, leading to higher running capital. Minimising capital
investment, by reducing the number of buffers while providing sufficient buffer to reduce
the effect of equipment instability on production availability, makes the optimal placement
of buffers in the line a vital problem to solve.

The Buffer allocation problem (BAP) deals with finding the optimal buffer configu-
ration to incorporate in the production line to achieve a specific objective [10]. Due to
the complexity of the BAP, numerous publications are available in the literature. In this
chapter, an in-depth study is conducted to discover the various methods used to solve
the BAP. First, the basic formulation for the BAP is given. The available approaches
to generate various buffer configurations are then explored. Once various buffer configu-
rations can be generated, a means to evaluate them is needed. Evaluative methods are
covered first for simple lines, then for the more complex lines. The concept of Simulation-
based optimisation (SBO) is then introduced as the preferred solution approach in this
dissertation.

2.1 Basic formulation

To explain the components of a production line, consider the example given in Figure 2.1
with K machines, each denoted by My, k € K = {1,... K}. Parts flow sequentially from

M, B, M, B M; Bs M, Bk My
1y, fi n r, f n 13, f3 n; 1y, 4 Ni| T, fi

Figure 2.1: Problem notation on a serial production line [12].
M to M. The final machine M}, is never blocked, meaning once a part is processed, there

is always space for it to exit the system. Between consecutive machines, there are buffers
where parts await processing. The set of buffers are denoted by B = {B1, Ba,...,Bx_1}
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where B represents the buffer between machines 1 and 2, Bs the buffer between machines

2 and 3, etc. Jointly we represent the set of buffers by B = {By, Ba,...,Bx_1}.
Associated with each machine & € K are several parameters. The first, ¢;, denotes

the processing time required at machine k. Secondly, fi denotes the time between failures

of machine k£ while r; denotes the repair time of machine k. We denote the line’s total
K-1

buffer size as N = > Bjy. An example of the buffer vector for a five machine line can
k=1

be, B = {4,3,2,1}, where By = 4, By = 3, B3 = 2, By = 1 with a total line buffer size of

N = 10. In the basic cases, the BAP assumes the processing times of all machines are

equal and deterministic. That is, it is assumed that t; =to = ... {x.

The BAP is concerned with finding By, represented by the vector B, that best achieves
the organisation’s objective. This goal is usually measured against the throughput of the
production line. Line throughput is a function of the buffer vector, expressed as f(B).

Three objectives have been proven prominent in the literature for BAP [10].

Objective 1 Maximise the throughput of the line for a given fixed number of buffer N
[9, 21, 23]. The BAP formulation is then expressed as:

max f(B)

subject to

K-1
> Bi<N
=1

where N is a predefined value.

Objective 2 A prescribed throughput, f*, must be achieved with the minimum total
buffer size [11, 16, 24]. The formulation then changes to:

K-1
min Z B;
i=1
subject to
fB) = f*

where f* is a predefined value.

Objective 3 Minimise the average WIP inventory, Q(B), for the buffer configuration
subject to the total buffer size and prescribed throughput. The problem is then
formulated as:

min Q(B)

subject to

K-1
Z B; <N
=1

f(B) = f*
where both N and f* are predefined values.

Solving the BAP for objective 2 is the aim of this dissertation. Production plant
designers are faced with the problem of achieving a balance between throughput and
WIP. The solution approaches studied aim to solve objective 2 problems.
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2.2 Solution approaches

The objective of the BAP is to find a buffer configuration B that meets a specific objective
function. The simplest objective function is to maximise the line’s throughput, f(B), for a
given total buffer size N. To achieve this, various permutations of the buffer configuration
need to be generated and tested. All the possible permutations are called the solution
space. To say that a solution is truly the best, all possible scenarios in the solution space
need to be generated and tested. Creating these buffer scenarios is called the generative
method in the literature.

2.2.1 Generative method

The simplest way to find the best buffer configuration is to generate all the possible buffer
permutations and test every single one of them. This is known as complete enumeration.
The BAP has been proven to be an NP-Hard combinatorial optimisation problem [10].
That is if we increase the number of machines or the total number of buffers that can
be allocated among the various buffer locations, the solution space grows exponentially.
Thus, the complete enumeration is only possible for very small problems.

Because it is not possible to generate all the possible buffer permutations, a subset of
them can be generated in a smaller amount of time. The question is then how do we select
this subset of permutations from the solution space that needs to be tested and how is the
best then found.

Various search methods have been used in literature. Traditional search methods have
been applied to the BAP. Methods such as gradient search algorithm [15, 16], knowledge-
based methods as well as degrading ceiling local search heuristics have been used.

These methods start with an initial solution. They then generate all possible permu-
tations of the initial solution that can be reached in one step. A step can be seen as
increasing the buffer space limit with a specific value and decreasing another with the
same value. All the permutations are tested, and the buffer configuration that results
in the highest throughput is then considered as the best solution. This is repeated until
no other improved buffer configuration can be found. Although these methods are more
efficient than complete enumeration, they cannot escape local optima.

Unlike the previous search method, metaheuristics are allowed to select a permutation
that results in a worse throughput than the current best. This allows the metaheuristics to
escape a local optimum and move to other areas in the solution space in the hope to find a
better local optimum or ideally the global optimum. That means metaheuristics add logic
to the search, giving it the ability to escape local optimum. It is a method that controls
the way we move through the solution space. Metaheuristics have been widely applied in
the buffer allocation problem. The following section explains two common metaheuristics
in the BAP literature.

Genetic algorithm is based on the theory of evolution that favour the reproduction of

individuals with specific traits. Let N denote a specific total buffer for the line,
K-1

where N = > ng. Assume N = 50, the buffer vector B can have the following
k=1

configuration. B = {5,6,4,5,20,10}. The following steps form the basis of a genetic

algorithm [25].

Each iteration is referred to as a gemeration in evolutionary algorithms. For each
generation, a selection of the population is made and known as the parents. The

19



parent solutions reproduce/mutate into new solutions, called offspring. The pop-
ulation is then updated with the new offspring. The initial population is usually
randomly generated scenarios. The iteration of generation creation is repeated un-
til some stopping criteria are met. The stopping criteria can be after a predefined
number of generations, mpy.x has been evaluated.

Let m denote the iteration number in the algorithm.

Step 1 Set m = 1, where m is the generation number. Select s initial parents,
where s > 1. Ideally, all the s solutions should be relatively “good” although
this is not a requirement. Example, set s = 3, it means that 3 parents are
required to start the algorithm;

o Parent 1: {5,6,4,5,20,10}
e Parent 2: {8,4,8,8,10,12}
e Parent 3: {3,10,15,15,5,2}

Step 2 Identify the best and worst among the s solutions by determining the line

throughput for each parent s. Denote the best by 7best and the worst by
?Worst' Randomly select a parent of ?best and call it 7new. Replace the worst
parent with the new child.
Various methods exist for generating offspring. Offspring generating mecha-
nisms are adapted to specific problems. For the BAP this mechanism will
subtract a predefined total from a specific buffer and add the same value to a
different buffer.

Step 3 Increment generation, m by 1. If m = mpax, return 7best as the best
solution and stop. Otherwise repeat step 2.

Various variants of the format above exist in literature [13, 25]. Variants focus on
aspects such as selection paradigm in which individuals with better solutions are
selected with higher probability. Selected individuals can then reproduce in various
ways (e.g., crossover, mutation) to generate new offspring. Various replacement
schemes also exist for replacing parent solutions with offspring.

Tabu search is a widely used metaheuristic. A distinctive feature of the Tabu search
(TS) algorithm is the so-called tabu list. The tabu list is a list of mutations that are
prohibited in the algorithm to avoid cycling to recently visited solutions. The basic
steps to the TS are as follows:

Let m denote the iteration number in the algorithm. Then my.x denotes the maxi-
mum number of iterations to be performed.

Step 1 Set m = 1. Select an initial solution T current randomly. Set ?best —
7current, where 7best is the best solution obtained so far.

Step 2 Select s number of neighbours, of 7 current.  Call these neighbours ?news
respectively. Determine the throughput for each scenario s.

Step 3 Rank the solutions from best to worst, based on the throughput. Compare
the best of these solutions, with the items in the tabu list. If the best item is
in the tabu list, skip it, and go to the second-best. Repeat this until a solution
that is not in the tabu list is found.

Step 4 Replace the 7current with the best scenario that is not tabu as the new
current- ENter T current @t the top of the tabu list. Each item in the tabu lis
z Enter 7 t the top of the tabu list. Each item in the tabu list
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moves one space down. The tabu list has a specified length, if the list exceeds
this length, remove the bottom item. The length of the tabu list is the tabu
tenure and is problem-dependent. There is no set rule on how to pick the tabu
tenure.

Step 5 If 7 current i better then 7best, change T host — 7current, if not do not
change T hest- Increment m by 1. If m = mpax, STOP, and return T best a8
the solution. Otherwise, go to Step 2.

The tabu list thus contains a list of permutations that have been made recently.
Maintaining the lists avoids the solution from moving back and forth between the
same scenarios.

Demir et al. [9] used an Adaptive tabu search (ATS) to solve the BAP for an unreliable,
unbalanced line. The objective is to maximise the throughput of the production line
f(B), for a given buffer size constraint N. The algorithm distributes a fixed number of
buffer between each buffer location By. In their paper Demir et al. [9] proposed a new
ATS and compared it to the simple TS as discussed above, referred to as Standard tabu
search (STS). Various changes are made to the STS which are discussed below.

Neighbour generation The moves through neighbouring solutions are depicted by the
notation ¢, j, meaning that a given number of buffers is added to location ¢ and
the same number is subtracted from a location j. All the possible i, j scenarios are
generated from the current solution. In the STS the size of buffer change at location
1,7 is set to 1. In the ATS the incremental size is subject to the problem size. It is
set to 1 for small and medium-sized problems, i.e. 5 and 10-machine lines. For large
problems involving 20-40 machine lines, the size is set to 1% of the total buffer size,
rounded up.

Tabu list The full move tabu criterion was employed in both the STS and ATS. If the
move %, j produces the better objective function from the various scenarios evaluated
then move j,7 becomes tabu for a certain amount of iterations until it is moved off
the list. The tabu tenure, which is the length of the tabu list, is set to y/ns where
ns = neighbour solution space size. The tabu tenure for the ATS is tuned adaptively.
Initially, the tabu tenure is set to a predefined minimum value. It is then calculated
for each move. If the objective function is improved, the tabu tenure is decreased
by 1. If the solution is not improved, it is increased by 1, subject to an upper and
lower limit for the tabu tenure.

Intensification and diversification The ATS also employs an intensification strategy.
If a solution found to be the best does not change for a certain number of iterations,
the increment (decrement) size is reduced to 1 for large-sized problems.

Diversification is also employed in the ATS. After several iterations without any
improvement, a new random buffer configuration is generated. The algorithm then
explores from this solution onwards.

Demir et al. [9] also showed that the quality of the initial scenario on which the algorithm
starts could affect the quality of the final solution. Three different methods for determining
the initial allocation of buffer were compared. Either using the ratio of failure to repair
rate, the processing rate or using random initialisation. Experiments showed that using
the ratio of failure to repair rate, where the machine with the higher ratio receives more
buffer for its exit buffer, results in a good initial solution.
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Figure 2.2: Generative methods.

The ATS can have significant performance improvement compared to the STS. In all
instances an improved throughput is achieved by the ATS. The improvement is even more
noteworthy for large sized problems. They found that in most large-sized problems, the
STS cannot avoid local optima.

The objective function of this dissertation is not to maximise the throughput of the
line for a given N, but to achieve the desired throughput with the smallest N. Demir
et al. [11] extended on the work of Demir et al. [9] by introducing two control loops to
find the minimal buffer size required to achieve the desired throughput. The inner loop
includes a ATS to obtain a maximum throughput for a given buffer size N as discussed
above. Binary search and T'S was evaluated for the outer loop. The outer loop sequentially
decreases the total buffer size N to find the desired throughput with a minimal buffer.
First, the outer loop will use a specified NV from the user. In most cases, the initial IV is
a big number. The inner loop will then determine the best throughput possible for N,
by searching for the relevant buffer configuration. If the throughput is higher than the
desired throughput, the outer loop can decrease the size of N. Again, the best throughput
for the new N is determined. This is repeated until the size of N can’t be decreased as it
will result in a lower throughput than required.

The proposed method was tested across a wide range of possible line properties. Both
binary search and TS for the outer loop were able to solve small to large scale problems.
For large problems, the binary search was executed faster than TS, but the authors noted
that using parallel implementation of the TS can result in faster execution time than the
binary search.

Figure 2.2 summarises the possible approaches for the generative step. Recall that the
BAP is an NP-hard problem. Thus complete enumeration and search methods cannot
be used. The only way to obtain a near-optimal solution within a reasonable amount of
time is to use a metaheuristics. Both the genetic and TS algorithms have been used in
literature. The work of Demir et al. [9] shows that the T'S can successfully be applied to
the BAP to minimise total buffer size for a given throughput target. Therefore the same
approach is considered in this dissertation.

During the generation of buffer permutations, the throughput of the various permu-
tations needs to be tested. Various ways to evaluate the throughput of a production line
exists in the literature. In the BAP this step is called the evaluative method.
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2.2.2 Evaluative method

Every time the generative method generates a new buffer configuration B, that is new val-
ues for the buffer’s maximum capacity, By, the buffer configuration needs to be evaluated.
Recall that a line’s throughput is a function of its buffer vector, f(B).

A large number of buffer permutations needs to be evaluated to get the best solution.
It would have been ideal if a simple algebraic formula could be expressed for f(B), as an
algebraic formula would be quick to solve.

Unfortunately, machine failure and processing time are stochastic in nature. The
algebraic relation between the buffer configuration and throughput of the line is very
limited. The next best option is to approximate the line’s throughput, using analytical
methods. The line reliability and topology influences the approach we can use.

For very short, serial production lines exact results based on queuing models are pos-
sible [9]. This is not the case for the body shop.

For larger production systems, approximation methods are used. Two approximation
methods studied in the BAP literature are the decomposition method [9, 11, 21] and
aggregation method. The decomposition method breaks the line up into L smaller lines,
while the aggregation method combines the stations. These methods are very similar in
implementation. Thus only the decomposition method will be investigated in detail. The
decomposition method is time-efficient in the calculation of the line’s throughput and is
based on the theory of queueing networks.

Decomposition Method

Gershwin [12] proposes a decomposition method to analyse a queuing system with a finite
buffer. This method is applied to production lines to calculate the throughput.

To explain the components of the method, consider the example of a queuing network.
Customers arrive at a service area, wait in a queue until the other customers’ services are
completed, obtain the services they require and sequentially move through the service areas
until they leave the system. Not unlike the behaviour of a production line. It is possible to
calculate both the throughput of the system and the average number of operators in each
queue [12]. The following section describes the workings of the decomposition method.

Each machine M}, has two states; working or being repaired. During a time unit, if
machine M}, is active and servicing, thus working, it has a probability of f; to fail. Note
fr previously denoted the time between failure, whereas for the decomposition it is the
probability to fail in the next time unit. The failure time is distributed geometrically with
a Mean time to failure (MTTF) of 1/f. If the machine failed, it has a probability of
r; to be repaired within the next time unit. Again, unlike before, r; now denotes the
probability to be repaired and not the time to repair as denoted previously.

For each buffer B as in the basic formulation, By can be in aj states, ap = 0,1, ...ny,
where a; is the number of material in By and ny is its capacity.

The decomposition method takes the serial production line and creates K —1 lines, each
with two machines and a buffer, Figure 2.3. These lines are denoted as L;), i € K|i < K—1
The decomposed line represents the characteristics of the serial line. By, in L(;) equals By,
in the K machine line.

Each line L; has two machines, denoted as M, (i) (upstream from buffer) and Mg(7)
(downstream). Consider line segment L;: it will have two machines out of the original
line K. These machines are k =1, My, and k = 2, M2. Machine M is shown in line L)
as M, (1) while machine My is My(1).

The attributes of each inline machine segment L ;) is as follows:
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Figure 2.3: Serial production line decomposed [12].

e The first machine in line L;), M, (i) has a failure probability f,(i) and repair prob-
ability 7,(7) that represents all upstream stations.

e The second machine, M (i) has a failure probability f;(i) and repair probability
rq(i) that represents all downstream stations.

The machine M), also has a global variable «j, where oy, is 1 if the machine is opera-
tional (not failed) and 0 if the machine is not operational (failed).

The four attributes are derived by a 4(k — 1) polynomial equation. They are derived
from the algorithm developed by Gershwin [12]. The attributes represent the upstream
and downstream performance of the line. Thus flow rate into B(;) in L) is closely matched
to that of By in the K-machine line. The probability that the buffer is empty or full is
also matched. The machine is starved if its upstream buffer is empty and blocked if the
downstream buffer is full. The number of material in By;) at any time can be expressed
as a(;), 0 < agy < ng;). The buffer will either gain or lose one unit during a time unit.

When machine My is under repair, o = 0, it then has the probability r; to become
operational during each time unit:

problag(t + 1) = 1]ag(t) = 0] = ry
When machine K is working, it has a probability fi of failure:
problag(t + 1) = 0lay, — 1(t) > 0,ax(t) = 1, ax(t) < ng] = fx

Repair and failure occur at the beginning of a time unit and buffers change levels at the
end of the time unit. Thus during periods in which starvation and blocking do not influ-
ence buffer By;),

a(i)(t + 1) = a(l)(t) + Odk(t + 1) — o + 1(t + 1)
More generally:

a@y(t +1) = agy(t) + Lu(t +1) — Iy (t +1)
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where I,,;(t + 1) is the indicator of whether flow arrives at buffer ¢ from upstream, that is:

a(i)(t + 1) = a(,)(t) + Im'(t + 1) — Idi(t + 1)

Li(t+1) = 1if ap(t +1) = 1 and a;_1)(t) > 0 and a(;)(t) < n(;), 0 otherwise.

The indicator I4;(t + 1) of flow leaving buffer i is defined similarly. The performance
measure F; is defined by production rate (which can be throughput, flow rate, or line
efficiency) of machine M; in parts per time unit:

Eu = problay = 1, ai—1) > 0,a¢) < n(i)]

Due to the conservation of flow, parts are neither destructed nor created. This means
every part starts at the first machine and flows through each machine K until they exit
the last machine. No parts can leave or enter in-between the start and last machines. It
can thus be assumed that the steady-state production rate of one machine will equal that
of all the other machines.

f(By=FEy =Ey=...=Ej.

If each machine was truly independent (thus no influence from downstream or up-
stream) the flow rate of each machine can be described by e; = . The actual produc-

ri+fi
tion rate of Ej of M), is less due to starvation and blocking.
E; = e;probla;—1 > 0,a; < nj]

Because probla;—1 = 0,a; = n;] =~ 0 as the probability of reaching states where a;_1 = 1
and a; = ni — 1 by means of transition is approximately 0, the formulation is:

E; = e;i(1 — prob(a;—1 = 0) — prob(a; = n;)

The decomposition method uses a set of equations that link the decomposed two-
machine lines together. These non-linear equations are solved to determine the throughput
of the line. The method has been employed in the BAP literature for both homogeneous
and heterogeneous lines.

The method described above was improved by Burman [5], to be able to model het-
erogeneous lines. The research papers using the model assume that the processing time
of machines My, that is tj, are continues stochastic variables. All the papers used one
random distribution for all the equipment, that is, p(t1) = p(t2) = ... p(tx).

The decomposition method is dependent on specific assumptions:

Reliable, unreliable lines - the decomposition method is capable of approximating pro-
duction lines which are unreliable, similar to the needs of the body shop.

Line topology - the decomposition method is based on a serial production line which
can be approximated by L sub-lines. Each line has a buffer with one station in front,
and one after the buffer. Literature could not be found where the method is applied
to non-serial production lines. In non-serial production lines, such as the body shop
a buffer can have multiple stations in front as well as multiple stations afterwards.
Therefore the method described above can not be applied to the body shop problem.
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Parameter distributions - in the works of Demir et al. [9], the processing time for
all stations is a continuous stochastic variable with the same distribution, that is
p(t1) = p(te) = ...p(tx). No paper using the decomposition method could be found
where each machine could have its own unique distribution, that is p(t1) # p(t2) #
...p(tg). The body shop processing time is also a continuous stochastic variable,
where not all machines have the same distribution.

The decomposition method has been widely used because of its speed and accuracy.
Unfortunately, the decomposition method cannot be applied for tree structure systems
with various stochastic variables such as the body shop. The only practical way to calculate
the throughput of such a complex system is a simulation model.

Simulation and meta-models

An alternative method used as an evaluative method for the BAP is a simulation model.
Recall that simulation is an approach of using computers to imitate the operations of
various kinds of real-world systems. It is used to perform tests on the simulation instead
of the real system. The imitation created with the simulation is known as a model and
is built with certain assumptions. With simulation, the real system is not analysed, but
the model. It must then be assumed that if the model is an accurate imitation of the
system, that the results obtained with the model might also be obtained in the real-
life system if similar changes are made to it. Simulation allows any line topology to be
simulated. Reliable and unreliable lines can be modelled, and each station can have unique
parameters. Due to this flexibility, it has been used widely in complex systems such as
production lines [18].

Simulation is applied in various research contributions [2-4, 7, 8, 17, 19, 24, 26, 27].
There are two ways in which simulation is used as an evaluative method. The simulation
itself can be used to determine the throughput for each buffer configuration. Alterna-
tively, a meta-model can be made of the simulation, and this meta-model is then used to
determine the throughput.

Meta Model

A simulation model is a representation of a real-world system, whereas the term meta-
model refers to a mathematical approximation of a simulation model. Meta-models are
developed to obtain an understanding of the relationship between the input variables and
the output variables of the system under investigation.

The complexity of cellular manufacturing is also a motivation for the use of meta-
models as the evaluative method when assigning buffers. Lee [19] developed an approach
to find the buffer configuration that leads to the lowest cost in terms of investment and
running cost. Simulation was selected for its flexibility and realism. The simulation was
used to determine queuing statistics such as average utilisation of the machines, average
waiting time and standard deviation of waiting time. One simulation run is executed with
an infinite buffer to calculate the statistics. These were then used in a meta-model, called
the line search procedure, to find the optimal buffer configuration.

Amiri and Mahtashami [2] proposed a multiobjective formulation to solve the BAP
for an unreliable line. A detailed discrete event simulation is used to build a meta-model,
which is then used for estimating the throughput. The objective is to maximise the
throughput of the line and to minimise intermediate buffer storage.

Numerous methods have been used to develop meta-models. The one used by Amiri
and Mahtashami [2] was a polynomial regression model. A two-level factorial design is
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done in their paper. It requires 2 x 2 x 2.... x 2 = 2F observations and is defined as
a 2F factorial design (k denotes the number of buffer locations). For example if a line
has 20 buffer storages, the full 2¢ design requires 220 = 1048 576 observations. The level
represents the different values chosen to study the factors, thus in the instance above
only two values (levels) for each buffer is considered. It is too time-consuming to use a
three-level factorial, 3* for the example of the 20 buffer locations as it will require 320 =
3 486 784 401 observations. With a low number of observations, the accuracy of the meta-
model is decreased. The simulation was done using MATLAB software and took 5 to 6
minutes per run. To test the validity of the meta-model, ten different buffer configurations
were compared against the simulation model. The error between the two methods varied
from 1.611% to 5.365%.

Can and Heavey [6] investigated the robustness and accuracy of genetic programming
to create meta-models. In a subsequent paper, Can and Heavey [7] created a meta-model
of a simulation of the line studied and used genetic programming and artificial neural
networks to solve the meta-model.

Chan and Ng [8] made a simulation on Siemens IV to find an algebraic relation between
line throughput and buffer sizes.

The use of meta-models allows for more valid representations of complex systems being
modelled than the decomposition method as well as faster execution than pure simula-
tion. The disadvantage of the meta-model is that if the algebraic relation between line
throughput and buffer size is not valid for all scenarios, an invalid representation is being
solved. Due to this, a meta-model cannot be used for the body shop problem.

Simulation

Most papers using analytical methods use deterministic or exponential times for the pro-
cess, failure and repair times. The methods are limited to simpler line topologies. Simu-
lation is utilised in the literature to relax these restrictions. The simulation model allows
general function distributions to be used (e.g. normal, gamma, Weibull and uniform) for
all parameters of the production line. Simulation is employed for a more realistic repre-
sentation of the dynamic behaviour of a system. Discrete event simulation (DES) is used
for its effective way of estimating almost any system performance, given that the input
data is accurate. Research papers considering real-life systems usually employ simulation
as the evaluative method.

Kose Simge and Deniz [17] solved the BAP for a real-world facility, namely a thermo
technology company in Turkey. Due to the complexity of the system, a simulation was
done using Arena. The system investigated had 13 stations. For these stations, data for
failure and repair times were evaluated using the Input Analyser of Arena to fit appropriate
distributions. The objective of the company was to improve the production rate by at least
30%. The simulation is used to obtain an average daily throughput for a specific buffer
configuration. The rate is then compared to the desired rate, and a new configuration
is computed by the algorithm until the termination criteria are met. Various generative
methods were evaluated in the paper.

Spieckermann et al. [24] conducted a comprehensive case study at BMW AG. The
design approach and topology of the line are similar to the line under investigation in this
dissertation. A simulation optimisation approach was used to solve the BAP. An exist-
ing simulation model made using SIMPLFE++ was combined with commercially available
optimisation packages, the WitnessOptimizer and SIMPLE/GA. Simulation is a common
tool within the automotive industry. It is very convenient to use when determining a line’s
throughput, but very expensive as each evaluation of the objective function requires at
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least one simulation run. The use of commercial optimisation tools had to be considered
as black boxes, with only a small degree of configuration. Execution times can be up to
several days and evaluated solutions per optimisation run had to be restricted.

Figure 2.4 shows a summary of the various evaluative methods used in the BAP lit-
erature. Analytical methods do not apply to complex systems such as the body shop.
Simpler serial production lines can be modelled by the decomposition model. It has been
well developed in the literature and proved its efficiency and accuracy. Unfortunately,
the decomposition approach cannot be used for lines with complex tree structures line
topology. Certain assumptions around processing time, failure probability and repair
probability are required. Simulation allows for these restrictions to be relaxed [26]. This
approach is very popular for modelling complex systems. The disadvantage is that long
computational time is needed to run the simulation. The generative method and evalu-

Evaluative
Methods
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Analytical Simulation

|
l |

Exact Approximation

Figure 2.4: Evaluative methods.

ative method need to be performed in an iterative manner as shown in Figure 2.5. The
proposed TS metaheuristic is used to generate various buffer configurations. For each step
in the generative method, where a buffer configuration is generated, a simulation run is
required to evaluate the performance of the line.

f(B)

Evaluative Generative
Method Method

Buffer vector B
Figure 2.5: Buffer allocation problem solution approach.

The use of simulation to evaluate every output of an optimisation algorithm is known
as SBO.
2.2.3 Simulation modelling

One disadvantage of simulation is the long computational time required to evaluate sce-
narios. This can be reduced by creating a simulation program in a general programming
language instead of commercial software. Commercial software has features that allow for

28



the ease of model creation and report generation. Although this makes it easier to create
a simulation, it also increases the processing demand due to all the extra features. If a
simulation program is created specifically for the BAP without any special or additional
features, it will result in shorter computational times. Therefore creating a simulation
program using general programming software is considered in this dissertation.

To create a simulation program, a certain blueprint is required. DES is extensively used
in the analysis of modern industrial systems. It has been used in production planning and
scheduling, supply chain design and analysis as well as systems design and manufacturing
operations [6]. DES is a model that executes by moving through the simulation by changing
the state of variables at separate (“countable”) points of time called events [18]. Therefore
DES approach is considered in this dissertation.

The following is an example of DES. Any system can be described as a chain of
events that occur. An event can be anything from a part leaving a machine, machine
failure or workers becoming available. The time at which these events occur is usually
stochastic. Consider the serial production line shown in Figure 2.6. The serial line has four
machines (M1, M2, M3, M4) and the buffer vector is B = {2,3,1}. When a simulation

i OO m O~ OO m O m

Figure 2.6: Serial production line.

model is created this structure of the line is first defined in the simulation program. For
each stochastic machine process, failure and repair times are also defined in the simulation
program. At this point, it is also necessary to define the simulation length that is required.
This represents the system in real life. The simulation length can range from seconds to
years. The advantage of using simulation on computers is that the computational time of
the simulation is a lot quicker than the needed simulation length. A simulation representing
months worth of production can be computed in minutes.

Once the model has been defined in the simulation program, it can initiate the simula-
tion. The line represented in Figure 2.6 has two types of events: parts leaving a machine,
and a machine failing. Upon initialisation, the simulation program schedules these events.
The time of each event occurrence, tr, is randomly generated from the stochastic variables.
This is added to the current time to determine the time of occurrence. For our example,
let us assume that the following times for ¢; where generated. As the current simulation
time is 0, the execution time of each will be 0+ ¢;. The processing time of the events was
generated randomly.

e Part done M1: 15.1s.
Part done M2: 10.12s.

Part done M3: 14.31s.

Part done M4: 19.21s.
Machine fails M1: 30.25s.

Machine fails M2: 45.12s.

Machine fails M3: 60.12s.

Machine fails M4: 20.1s.
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At this stage in the simulation the line has a part in every machine with an expected
completion time, as shown in Figure 2.7.

Completion time Completion time Completion time Completion time
15.1s. 10.12 s. 1431s. 19.21s.

Figure 2.7: Serial production line.

Simulation time =0 s. The simulation uses an event list to control all the
Event List Event Time events. Each event is scheduled in the event list upon ini-
Part done M2 10.12 s.

tialisation, as shown left. The events are sorted chronolog-

Part done M3 1431 s. . . . . . .
Part done M1 15.10's. ically according to their times. The simulation also sched-
Part done M4 1921 s. ules the simulation end event, which is the specified simu-
Machine fail M4 20.10s. lation length. A simulation clock is used to keep track of
Macﬁme ?‘“Ml 30.25s. where the simulation is in the event list. At initialisation,
Machine fail M2 45.12s. . . . . .
o the simulation clock is at 0s. The simulation clock needs
Machine fail M3 60.12 s. . .
Sim End 100 000 s. to move to the first event in the list, part done M2.

The simulation clock can be advanced by two approaches:

Fixed-increment, the simulation has a predefined time increment size. Assume the in-
cremental size is 0.01s. The simulation clock will advance with 0.01 s throughout the
entire simulation. At each point, the simulation identifies if any event has occurred.
This time incremental size should be small enough so that with each increment, an
event cannot be overlooked. The disadvantage of this approach is that the simulation
program requires time evaluating “inactive” time where events do not occur.

Next-event time overcomes this disadvantage by skipping inactive time. This approach
will move from the time of one event to the time of the next event. The reason for
this is that no changes to the system states occur during this inactive time. This
reduces the computational time of the simulation program. This approach is used
for the example.

The simulation clock jumps from Os to the first event

Simulation time = 10.12s. which is executed at 10.12s. An event can have a range of

Event List Event Time actions it takes based on the state of the line. For simpli-
Part done M3 1431s. fication, let us assume the event checks if there is space in
Part done M1 15.10s. the buffer. If there is space, the completed part moves into
Part done M4 1921s. the buffer. The event also checks if there is a part available

Machine fail M4 20.10's. to start work on. In this case not. Thus no new event is
ﬁzzmz i:ii ﬁ; 431(5)?; z scheduled. The state of the serial line is now visualised in
Machine fail M3 60.12s. Figure 2.8.

Sim End 100 000 s.
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Completion time Completion time Completion time
15.1s. 14.31s. 19.21s.

“00 e

Figure 2.8: Serial production line.

Simulation time = 14.31 s.

veniList | Evest Tims The simulation clock jumps to the next event in the list,
part done M3. The M3 part done event moves the completed

Part done M1 15.105. part into the buffer. Because a part is available for M3, it
Part done M3 1621s. *+—  can start production on it. The processing time ¢, for the
M‘Zﬁ;‘j‘;‘}iﬁ“@ ;3?(1) ; part is generated from the stochastic variable. Let us assume
l\l\flzz:i:: 2:1 ﬁ; i‘;ﬁ = the random time obtained is 1.9s. The new part will thus be
Machine fail M3 60.12s. completed at the current simulation time plus the processing
Sim End 100000s- time, 14.31s + 1.9s = 16.21s. This new event is pushed

into the event list, by adding the completion time to the
current simulation time, so that the event list ranking stays
chronologically sorted. The new serial line is shown in Figure 2.9.

Completion time Completion time Completion time
15.1s. 16.21 s. 19.21 s.

Figure 2.9: Serial production line.

This process of moving from one event to the next is the way a DES is executed. Every
time a part leaves machine 4, the total throughput of the line is increased by one.

For DES, shown above, the following components are required for the program. These
components and the interaction between them are shown in Figure 2.10 [18].

A main program is required that controls all the other components. The main starts
by invoking the initialisation routine. This routine sets the simulation clock to 0 time
units. It initialises all system states and creates the event list with all the initial events
as in the first part of the above example. The simulation program then returns control to
the main program, which then invokes the timing routine. This routine is responsible for
managing the event list. It determines which event is next on the list as well as its time
of occurrence. It then advances the clock to this event’s time. The simulation program
again returns control to the main program, which then invokes the event routine. There
is a specific event routine for each type of event. This routine contains all the actions that
need to be taken when the event is executed. The event routine updates system states,
statistical counters and generates any future events. If the simulation end time is reached,
the simulation stops and the report generator returns reports on statistical counters. If
this time is not yet reached, the timing routine is again invoked to move to the next
event. This action between the timing routine and the event routine is repeated until the
simulation end time is reached. The library routine generates the random times required
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during the event scheduling. These components of a simulation model are contained in

Initialize Routine @ Main Program Timing Routine
1. Set simulation clock = 0 0. Invoke the initialization routine 1. Determine the next event type
2. Initialize system state and ® 2. Advance the simulation clock
statistical counters 1. Invoke the timing routine
3. Initialize event list 2. Invoke the event routine i ®
Event Routine Library routine
1. Update system state
2. Update statistical counters Generate random variables
3. Generate future events and add event list

No

Is Simulation
Over?

Yes
Report Generator

1. Compute estimates of interest

2. Write report

Figure 2.10: Flow control for DES with the next-event time-advance approach [18].

commercially available software packages such as Arena, Simio and Siemens Technomatic
Plant Simulation. The software manages the various components and allows the user to
create a simulation by placing and connecting various building blocks in a convenient
graphical user interface. When the simulation is programmed in a general programming
language such as Java, each of these components needs to be programmed by the model
developer.

Java is a class-based, object-oriented programming language. Object-oriented pro-
gramming allows the creation of classes which can contain data (attributes) and instruc-
tional code in the form of prescriptive procedures (methods). Multiple instances of the
class can be instantiated and are known as Objects of a specific class. Object-oriented
programming allows various objects to interact with one another.

Tiacci [26] not only created a simulation model of the line under investigation in their
work but also a standard set of classes in Java which is capable of performing the various
components of DES, called The assembly line simulator (ALS).

It is a discrete event simulation model programmed in Java which is capable of receiv-
ing line configurations and building a simulation model around these parameters. ALS
was developed in Java, due to the common adoption of the Java programming language.
Java programs are easily distributable and work on multiple platforms. The ALS was
implemented using the Stochastic simulation in java (SSJ) library. SSJ is an organised
set of code, offering general-purpose libraries for DES in Java. It contains the classes and
objects required for the various components of DES.

Simulation provides the required flexibility needed to accurately represent the char-
acteristics and parameters of a body shop. Simulation on its own, as well as analytical
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methods, are not an optimisation technique. But in combination with a generative method,
an optimisation technique is created. The preferred generative method for this disserta-
tion will be the TS algorithm. The combination of simulation and a generative method is
known as SBO.

The BAP has been studied intensively and the basic formulation for the BAP is found
in literature. Three main objectives are considered when solving the BAP. This disser-
tation focus on objective two, a prescribed throughput, f*, must be achieved with the
minimum total buffer size. The general approach to solve the BAP is using an evaluative
method and generative method in an iterative manner. Various methods are employed in
literature to evaluate the throughput of the production line. Most commonly the decom-
position method. The disadvantage is that the decomposition method has limitations on
the line topology it can solve as well as distribution types for the machine parameters.
Alternatively simulation or meta-models have been employed to represent more complex
lines. Simulation has a more accurate representation of the production line than a met-
model but takes longer to compute. To overcome this DES can be used to create a specific
program. Various generative methods are also available. The works of Demir et al. [9, 11]
shows that TS is an effective approach as a generative method for the BAP.
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Chapter 3

Solution approach

Recall that solving the Buffer allocation problem (BAP) requires finding the best size and
configuration of buffers in the production line. What is considered best will depend on
the objective function that is specified. In this dissertation, the best buffer configuration
will be the one that achieves the desired throughput with the minimum total number of
buffers.

The lines under investigation are subject to machine failure and different processing
times, and these are stochastic in nature. The throughput of these lines can be evaluated
using simulation as the evaluative method. In the first part of the chapter, the detail of
the simulation program created for this dissertation will be dealt with. This program will
then be used to evaluate various production lines.

Evaluating all possible buffer configurations is computationally not practical. Conse-
quently, we employ an optimisation procedure to navigate the solution space more effi-
ciently and generate useful configurations. The second part of this chapter introduces the
Tabu search (TS) metaheuristic that is used as the generative method.

3.1 Simulation program

Simulation can be done on a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>