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Due to the recognition of the importance of maintenance from an organisational perspective, a number of 

different maintenance-related approaches have been developed. These approaches include reliability 

centred maintenance, business-centred maintenance, total productive maintenance and life cycle costing. 

They consider maintenance from specific different viewpoints and no single approach can be applied to all 

circumstances. Common to all these approaches are techniques to optimise the maintenance strategies using 

mathematical models. A variety of mathematical approaches are described in the literature, all of which 

involve the minimisation of the total costs incurred in relation to the required maintenance activities. This 

study focuses on data-driven optimisation models that consider costs and the reliability performance of 

equipment. The practical implementation of these optimising maintenance models presents two main 

challenges. First, the decision on when to use which model would depend on the type of system/equipment 

under consideration, as well as on available data. Different models based on analysing the historical failure 

data of the system or component are considered in order to optimise the maintenance strategies to be applied 

to these two types of individual systems. In the case of having a number of identical components or systems 

in series, where a shutdown of one of the systems results in the shutdown of the entire series, models are 

considered to allow for analysis with the correct maintenance technique of components or systems showing 

these trends.  A major limitation of these maintenance optimisation models is that they all require failure 

data for their implementation, which is not always obtainable. Historical maintenance cost data, however, 

is mostly available, therefore forecasting techniques and life cycle cost modelling are also considered. 

Second, the successful implementation of optimised maintenance strategies will be dependent on informed 

budgetary decisions being made. Therefore, the challenge of integrating the outputs from the variety of 

optimisation models utilised into a cohesive compilation and sensible presentation of an overall 

maintenance budget for a complex plant needs to be addressed. This study presents an integrated 

maintenance optimisation model that uses the appropriate sub-models described individually in the 

literature to enable the integrated compilation and sound presentation of an overall maintenance budget for 

a complex plant for appropriate decision-making.   
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The use of the case study validates this methodology. It illustrates that a concise, integrated overall 

budgetary maintenance decision model is highly beneficial in communicating the budgetary requirements 

for an organisation. It was found that the outcome resulted in an effective decision-making tool with 

significant potential for implementation in a variety of organisations in search of optimal maintenance 

planning and budgetary requirements. 
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1 Introduction 

1.1 Background 

Historically, preventive maintenance was regarded as a secondary business process that adds additional, 

albeit necessary, costs to production activities. Recently this perception has changed, and more time and 

effort have been directed into attempts to optimise maintenance strategies within the context of sustainably 

achieving the business goals of organisations.  

In support of this view, Marowa and Muyengwa (2015) state that the role of maintenance is to enable 

organisations to reach their goals in terms of profitability and productivity. They also affirm that the 

perception of maintenance within an organisation has changed, placing a lot more emphasis on maintenance 

in the overall business context. Studies have found that the total cost of maintenance can account for 

between 15–70% of the total cost of production within an organisation (Bevilaqua & Bragila, 2000). In 

addition, it has been established that 30% of maintenance-related costs are due to unnecessary expenditure 

as a result of the poor implementation of maintenance strategies (Salonen & Deleryd, 2011). Therefore, it 

is evident that following an accurate and correct maintenance plan is essential. Vilarinho et al. (2017) state 

that performance, risk and cost must all be considered when developing a maintenance plan.  

To indicate the importance of maintenance within companies, Waeyenbergh and Pintelon (2002) found that 

up to 30% of the workforce involved in a chemical plant comprise maintenance personnel. Dekker (1996) 

also states that the maintenance and operations departments within companies are usually the most sizeable 

due to the significance of maintenance. In addition, Bevilacqua and Braglia (2000) determined that the total 

cost of maintenance in a final product can range from 15–70% of the value. This is a huge portion of the 

value of the product, which again highlights the core role of maintenance. 

Due to the recognition of the importance of maintenance from an organisational perspective, a number of 

different maintenance-related approaches have been developed, including reliability centred maintenance, 

business-centred maintenance, total productive maintenance and life cycle costing. These approaches 

consider maintenance from specific different viewpoints and no single approach can be applied to all 

circumstances. Common to all these approaches are techniques to optimise the maintenance strategies using 

mathematical models. Coetzee (1997) and Jardine and Tsang (2013) have outlined several different 

mathematical approaches, all of which involve minimising the total costs incurred in relation to the required 

maintenance activities. It is recognised that various other factors apart from economics, such as issues 

related to safety, the environment and legislation, can affect preventive maintenance strategies and 

planning. However, this paper focuses on data-driven optimisation models that consider the costs and 

reliability performance of equipment. 

1.2 Problem statement  

The practical implementation of these maintenance optimisation models presents two main challenges. 

First, the decision on when to use which model depends on the type of system/equipment under scrutiny 

and on available data. Coetzee (1997) differentiates between two different types of systems, namely 

repairable systems (which can be restored to a working condition by implementing appropriate maintenance 

techniques) and non-repairable systems (which require replacement when defective). Different models, 

based on analysing the historical failure data of the system or component, are considered in order to optimise 

the maintenance strategies to be applied for these two types of individual systems. In the case of having a 

number of identical components or systems in series, where a shutdown of one of the systems results in the 

shutdown of the entire series, models developed by Jardine and Tsang (2013) and Laggoune et al. (2008) 
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are considered to allow for analysis with the correct maintenance technique of components or systems 

showing these trends. 

A major limitation of these maintenance optimisation models is that they all require failure data for their 

implementation, which is not always obtainable. However, historical maintenance cost data is mostly 

available and, therefore, forecasting techniques and life cycle cost modelling are also considered. 

Second, the successful implementation of optimised maintenance strategies will be dependent on informed 

budgetary decisions being made. Thus, the challenge of combining the outputs from all the various 

optimisation models utilised into an integrated compilation and sensible presentation of an overall 

maintenance budget for a complex plant needs to be addressed. 

1.2.1 Research objectives/ questions  

The main objective of this research was to develop an overall preventative maintenance optimisation 

methodology that: 

 considers the wide range of current maintenance optimisation models available through an 

integrated methodology that addresses when to use each method  

 examines how to present the results in a combined budgetary manner for an entire plant 

 integrates ways to address the uncertainty around the models through confidence levels 

 presents ways to make budgetary decisions where the effect of not doing so is evident. 

1.2.2 Methodology  

A model will be built using numerical analysis and simulation where field data will be implemented into 

this model as the main input. In order to validate the proposed model and to show its fundamental workings, 

a comprehensive case study is presented. It is necessary for the case study in question to incorporate real-

world field data with varying conditions and data requirements in order to show the variability in the model. 

The outcome of the case study needs to result in the development of one overall maintenance budget for a 

specific plant that can be used in a decision process for an organisation. The validity of the output of such 

a model will then be proven through the use of industry surveys where the benefit of the model can be 

proven. 

1.3 Dissertation layout 

A literature study is presented in Section 2 of this dissertation. It starts with a broad overview of the physical 

asset management process, with an emphasis on asset care, to give the reader a clear understanding of the 

importance of maintenance in an organisation. The literature study then proceeds to the topic of 

maintenance. It considers the various types of maintenance practices that are currently in use in industry 

and the different approaches used by organisations to optimise their businesses. Finally, it examines 

different maintenance modelling techniques, including hard and soft approaches.  

Section 3 outlines the modelling and optimisation techniques that will be used to build the overall 

maintenance models. All the models briefly outlined in Section 3 are thoroughly examined with their 

functioning and mathematics presented. An illustrative example is given for each model discussed to show 

its exact workings and how it can be used practically in a real-world problem.  
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Section 4 of the dissertation presents an in-depth case study using the developed methodology in Section 

3. The case study makes use of data collected from the operating platform of a major mining company. A 

contrived plant, made up of different systems and components, is developed for the case study to show the 

underlying working and functioning of the developed model. The methodology outlined in Figure 3.1 in 

Section 3 is validated using the case study, resulting in the development of an overall budgetary requirement 

with confidence around it for a plant.  

The research in this dissertation is concluded in Section 5 where recommendations about future work and 

developments are presented. Appendices follow, containing additional information and validations, which 

should be consulted throughout the dissertation as necessary.  
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2 Literature study  

2.1 Introduction 

This section of the dissertation introduces relevant literature that is directly based on the problem statement 

as described in Section 1. The aim of this literature study is to contextualise the topic of maintenance 

optimisation in a capital-constrained environment and to determine what other work has been undertaken 

related to this topic.  

The literature study tackles the topic from an initially broad view by discussing subjects such as physical 

asset management and asset care, which comprise the grounding for the problem statement. It then moves 

directly towards the topic in its review of various elements, including diverse maintenance techniques, 

models and approaches. The knowledge acquired here will be applied in Section 3 in which a detailed 

mathematical background to the overall problem is outlined.  

2.2 Physical asset management  

According to the Oxford English Dictionary (OED, 2018), an asset can be defined as follows:  

An item of property owned by a person or company, regarded as having value and available to meet 

debts, commitments, or legacies. 

The Oxford English Dictionary (OED, 2018) defines management as:  

The process of dealing with or controlling things or people. 

From these two definitions, it is evident that the term ‘asset management’ encompasses a large range and 

needs to be whittled down for application to engineering asset management (EAM) and physical asset 

management. Amadi-Echendu et al. (2010) define engineering asset management as the total management 

of physical assets, as opposed to financial assets. Physical assets include items such as buildings, land and 

equipment, while examples of financial assets include stocks and patent rights. However, engineering assets 

have a financial side which plays an important role in overall engineering asset management (Amadi-

Echendu et al., 2010).  

In the context of maintenance management, Tsang (2002) addresses the human dimension of engineering 

asset management and explains how it is a key area in the successful management of engineering assets. A 

central point to be drawn from Amadi-Echendu (2006) is that asset management is not straightforward; it 

has various additional elements to normal maintenance management. Amadi-Echendu (2006) gives a 

holistic view of an entire system rather than just one process within a system. This view is directly related 

to the value chain of asset management, which encompasses ownership, management and utilisation of the 

asset. Bearing this in mind, engineering assets are positioned at the base of the pyramid in Figure 2.1 

(Amadi-Echendu et al., 2010), while every other type of asset sits above this base layer. All the assets above 

the base layer are financial assets, which do not form part of the engineering asset management process 

(Amadi-Echendu et al., 2010).  
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Figure 2.1: Where EAM fits into the picture of total asset management (Amadi-Echendu et al., 2010) 

 

Amadi-Echendu et al. (2010) detail five requirements and challenges that are faced in the broader terms of 

engineering asset management. These are listed in Table 2.1, along with an explanation. 

Table 2.1:  Requirements and challenges faced in the broad spectrum of EAM                                        

(Amadi-Echendu et al., 2010) 

Generality Context 

Spatial generality  EAM has a broad scope across physical assets, 

including human resources. 

Time generality EAM includes short-term and long-term aspects of 

physical assets. 

Measurement generality Measurement data includes the economic and 

social value of the physical asset, as well as its 

physical attributes.  

Statistical generality Risk measurements and normal performance 

measurements are important in EAM.  

Organisational generality EAM is multi-organisational – it takes place across 

all organisations. 

 

From Table 2.1 it is evident that engineering asset management is a broad topic. It requires a significant 

amount of knowledge to fully understand it, which suggests that a competent engineering asset manager 

needs a diverse skill set in various disciplines. 
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2.3 Asset care  

Asset care is the process that is used to ensure an asset is performing at its full potential. It encompasses all 

the elements which enable this to occur. Wheelhouse (2009) states that a plant asset care programme allows 

all types of businesses to plan, repair and replace all their equipment and the plant, if necessary, in order to 

meet the real needs of the business. According to Jones (2018), asset care can be regarded as the 

performance of a control strategy in the most cost-effective way; it directly addresses all the failure modes 

associated with a certain asset. Jones (2018) also states that the main objective of asset care plans is to 

ensure that an asset is being utilised correctly, in the most cost-effective manner, allowing the greatest 

probability that the asset will survive until its life end. By contrast, Wheelhouse (2009) states that the 

optimum goal a plant asset care plan needs to achieve is a balance between safety, cost, performance and 

availability. Von Petersdorff and Vlok (2014) assert that physical asset management is the process of 

maximising the value that can be gained from an asset throughout its life cycle via the mix of cost, risk and 

performance. It is evident that their approach to physical asset management closely correlates to that of 

Wheelhouse (2009) on asset care. This strongly suggests that asset care is a vital process in physical asset 

management. Woodhouse (2007) connects asset care to maintenance and risk management. He also links 

asset management to asset care by stating that it is the best mix of asset care and asset exploitation, a process 

that needs to be optimised throughout the life cycle of the asset. 

The prerequisite of an asset care plan is to create value. Wheelhouse (2009) affirms that there are five ways 

to create shareholder value. These include a reduction in capital cost, reduced tax burdens, investments for 

growth, improved asset performance, and an influence on the perception of the stock market. The last two 

of these listed factors can be affected by asset care. The reason why these last two factors create value is 

that greater uptime accompanies increased performance. This directly affects sales, thereby boosting the 

likelihood of increased profit. In addition, an increase in sales means there is a demand for the product. If 

the company meets that demand, it demonstrates a reliable functioning system. This will strengthen 

people’s positive perception of the company, thus affecting the stock market.  

Lastly, Wheelhouse (2009) states that the following items must always be included in an asset care plan: 

 Servicing and maintenance 

 Inspections  

 Shutdowns  

 Spares management  

 Asset strategy 

 Performance monitoring.  

 

2.4 Maintenance techniques 

According to Dekker (1996) and the British Standards Institution (1984), maintenance can be defined as 

“the combination of all technical and associated administrative actions intended to retain an item or system 

in, or restore it to, a state in which it can perform its required function”. Waeyenbergh and Pintelon (2002) 

state that companies have several different systems which all interact with one another to achieve one goal. 

They assert that maintenance makes a significant contribution to meeting that goal. It assists in reaching all 

the company objectives, in keeping all life cycle costs to a minimum, and in increasing the overall 

performance of a company in terms of its systems (Waeyenbergh & Pintelon, 2002). De Jonge et al. (2017) 

argue that the importance of maintenance has increased significantly in terms of its performance by 

employees and its escalating costs due to the rapid increase in technological development and the 

complexity of systems because people demand more from them. Like De Jonge et al. (2017), Vilarinho et 
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al. (2017) affirm that the main driving force behind the importance of maintenance is technology. This has 

resulted in improved maintenance techniques, better decisions and a striving towards maintenance 

excellence. To reach this state of excellence and achieve the best possible solution in terms of maintenance, 

it is essential to consider performance, risk and cost (Vilarinho et al., 2017).  

To demonstrate the importance of maintenance within companies, Waeyenbergh and Pintelon (2002) found 

that up to 30% of the workforce involved in a chemical plant comprise maintenance personnel. Dekker 

(1996) also states that the maintenance and operations department within companies are usually the most 

sizeable due to the significance of maintenance. In addition, Bevilacqua and Braglia (2000) determined that 

the total cost of maintenance in the final product can range from 15–70% of the value. This is a huge portion 

of the product value, which again highlights the core role of maintenance. 

Maletic et al. (2012) state that a main function of maintenance is to contribute towards the company’s profit, 

not to reduce it. The work of Alsyouf (2007) shows how effective maintenance policies can influence the 

productivity and profitability of a manufacturing process. He found that the implementation of proper 

maintenance policies led to the avoidance of unplanned stoppages and lost production due to maintenance-

related issues. As a result, the plant could experience an increase of nearly US$0.975 million per year, 

which equated to almost 12.5% of the plant’s annual maintenance budget (Alsyouf, 2007). Maletic et al. 

(2012) also determined that profit could increase by up to 3.22% if there was a reduction in unplanned 

stoppages and lost production. Al-Najjar and Alsyouf (2004) found that the introduction of an appropriate 

vibrations-based monitoring technique in a Swedish paper mill could result in a maintenance cost reduction 

of US$0.385 million and an average potential savings of up to US$3 million. Thus, from the examples 

given above, it is evident that organisations with proper maintenance practice derive significant benefit in 

terms of profit, and further development of maintenance in different organisations is essential. 

According to Ghosh and Roy (2009), over the last few decades there has been a complete paradigm shift in 

how maintenance is performed and what techniques are used. The shift has evolved mainly from a 

corrective type of approach that allows a system to fail first before any action is implemented, to a 

preventive type of approach that allows for a system to be fixed before failure occurs (Ghosh & Roy, 2009).  

Figure 2.2 shows a breakdown of the different types of maintenance techniques.  

 

Figure 2.2: Structural hierarchy of maintenance activities, adapted from Shaalane (2012) 
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From Figure 2.2 it can be noted that there are four types of maintenance techniques: predictive, preventive, 

improvement and corrective. The most common two types of maintenance techniques are preventive 

maintenance and corrective maintenance from which the other two types (predictive and improvement) 

have developed. Dekker (1996) states that a maintenance strategy is a mix of all the different types of 

techniques and policies needed in a certain facility. According to Alsyouf (2007), a maintenance approach 

is an integration of all the maintenance concepts and strategies to build the best model possible for an 

organisation. It is evident from these findings that all the maintenance techniques, strategies and concepts 

need to be considered in a systematic way to ensure their best implementation into different organisations. 

This necessitates a comprehensive understanding of the available knowledge.  

 

2.4.1 Corrective maintenance 

Corrective maintenance is the actions that are put into place when a system or component fails. These 

actions need to restore the system to a functioning state, which can involve different processes. Wang et al. 

(2014) define corrective maintenance as a maintenance task that is performed to identify and rectify the 

cause of failure in a failed system or component. Adolfsson and Dahlstrom (2011) state that corrective 

maintenance is implemented to return a system or component back to its working condition after a 

breakdown has occurred. Corrective maintenance is not schedulable and only occurs once failure has 

happened, which contrasts to preventive and proactive maintenance techniques (Adolfsson & Dahlstrom, 

2011).  

Swanson (2001) states that a disadvantage of corrective maintenance is higher levels of out-of-tolerance 

and scrap output. This results from the disposal of equipment and unpredictable and fluctuating production 

capacity because corrective maintenance cannot be scheduled and incurs higher costs due to the need to 

repair catastrophic failures (Swanson, 2001).  

According to Manganye et al. (2008), corrective maintenance can be grouped into two categories, that is, 

immediate or remedial maintenance and deferred maintenance, which can be seen in Figure 2.3. Depending 

on the severity of the failure that occurs, one of the following tasks will be performed: 

 Immediate maintenance: This maintenance activity is performed immediately after failure has 

occurred since the failure can cause more imminent damage or extended lost production. 

 

 Deferred maintenance: This maintenance activity does not have to be performed immediately and 

can be delayed. The result can be the scheduling of the maintenance activity for another period, 

based on the priority of activities (Manganye et al., 2008). 

Once it has been determined what type of corrective maintenance needs to take place in terms of the 

prioritisation of all activities, the corrective maintenance activity required for a specific situation can then 

be implemented. The different types of activities, with an explanation, can be seen in Table 2.2. 
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Table 2.2: Corrective maintenance activities with an explanation (Shaalane, 2012) 

Corrective maintenance activity Explanation 

Fail-repair The item that has failed is restored to its operating 

state so that a specific process can continue. 

Overhaul Only repair and fix the parts in an item that are 

necessary to enable the item to function to its 

required standards. 

Servicing This action entails all the servicing that is 

currently required due to the corrective 

maintenance. 

Salvage An item that has failed is completely removed 

from the system and disposed of. 

Rebuild An item is completely restored to a functioning 

state using new or reconditioned parts. The 

performance of the new item must be on a par 

with the performance of the original item. 

 

2.4.2 Preventive maintenance 

Manganye et al. (2008) state that preventive maintenance can be defined as the maintenance performed 

before any type of failure occurs in a system or a component. Preventive maintenance preserves the 

condition of the system or component in a satisfactory manner. According to Theron (2016), time-based 

maintenance is the most common type of preventive maintenance strategy to be implemented. It requires 

maintenance tasks to be performed on a fixed-time basis that is determined through a variety of different 

mathematical techniques, as stated by Schneider et al. (2006). Time-based maintenance is the most 

appropriate technique to use for failure mechanisms such as abrasion, erosion, corrosive wear and fatigue 

(Schneider et al., 2006). This type of technique is prominent in rotary machinery applications.  

Lee and Scott (2009) describe preventive maintenance as one of the most effective maintenance strategies 

to reduce the frequency of breakdown. However, they also state that incorrect implementation of preventive 

maintenance is an ineffective solution because it can cause too early and unnecessary replacement of 

components. It is evident, therefore, that an extensive understanding of the preventive maintenance 

technique is essential before it is implemented into a system.  

According to Corman et al. (2017), preventive maintenance actions can be placed into three main 

categories: 

1. Perfect preventive maintenance: This maintenance activity restores the system or component to 

an ‘as good as new’ condition, which means that the system or component has returned to its 

optimum condition.  

 

2. Minimal preventive maintenance: This maintenance activity restores the system or component to 

a condition that is comparable to just before the maintenance activity was performed. This is called 

‘as bad as old’ restoration.  
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3. Imperfect preventive maintenance: In most real-life cases, neither perfect nor minimal preventive 

maintenance is reached, but rather some sort of activity in between the two. This is referred to as 

imperfect preventive maintenance. 

Corman et al. (2017) also categorise three main maintenance activities that can take place when performing 

preventive maintenance. These activities are described in Table 2.3. 

Table 2.3: Preventive maintenance activities 

Activity Description Outcome 

Service This includes all preventive 

maintenance activities, such as 

cleaning, adjusting, refilling and 

tightening components. 

It reduces the rate of 

deterioration without improving 

the reliability of the system. 

Low-level repair This includes small part 

replacement in addition to all 

the service-related activities. 

It improves the reliability of the 

system to a state that is in 

between ‘as good as new 

condition’ and ‘as bad as old 

condition’. 

High-level repair This includes systems overhaul 

as well as replacement. 

It improves the reliability of the 

system to an ‘as good as new’ 

condition. 

 

2.4.3 Predictive maintenance 

Predictive maintenance is a maintenance technique that uses various activities, such as condition 

monitoring, to measure the condition of a component or system to determine its state. Once this is achieved, 

an appropriate maintenance approach can be employed to extend the service life of the component or system 

at hand. TextileToday (2012) states that the main difference between predictive maintenance and preventive 

maintenance is that predictive maintenance uses monitoring techniques to determine the actual mean time 

to failure of a certain piece of equipment, while preventive maintenance uses life statistics that are found in 

the industry. Some engineers consider predictive maintenance to be a type of preventive maintenance 

(TextileToday, 2012).  

According to Barabady and Kumar (2007), condition-based monitoring is a method used in predictive 

maintenance to detect faults with the use of equipment; preventive maintenance methods are then used to 

fix the fault. Theron (2016) states that condition-based monitoring can include two types of decision-

making process: the first involves locating the source of the fault, known as diagnostic decision making, 

and the second involves predicting when the failure may occur, which is known as prognostic decision 

making. Block and Geitner (1983) assert that 99% of all machine failures are preceded by certain signs, 

conditions or indications that something is not right. This indicates that the implementation of a system 

such as condition monitoring could be hugely beneficial to the performance of an organisation.  
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2.4.4 Design out maintenance  

Design out maintenance is a technique associated with improvement maintenance. According to Theron 

(2016), design out maintenance can be defined as a maintenance action that takes place in order to remove 

the cause of a systems or components failure. This allows other maintenance tactics to be more effective in 

managing the root cause of failure. Jain (2013) states that design out maintenance is applicable to the 

following: systems with high downtime periods, resulting in a high maintenance cost; equipment that 

requires a high level of maintenance effort or a number of spare parts; and systems with unacceptably high 

failure rates. A choice needs to be made between the cost of redesign, which is directly related to design 

out maintenance, and the cost of recurring maintenance, which is a result of the other types of maintenance 

techniques (Jain, 2013).  

There are three main reasons why systems and components can result in high maintenance costs, which can 

then lead to design out maintenance (Jain, 2013): 

1. Poor maintenance implementations and actions  

2. The equipment in an organisation operates outside its original design specifications, leading to 

more frequent failures  

3. The original piece of equipment designed for a certain application is poor and below standard. 

Markeset and Kumar (2003) state that a major factor which must be considered in terms of design out 

maintenance is whether the reliability of the system increases by using a newly designed system. It is also 

essential to look at all the costs involved and ascertain if it will be feasible to implement such a technique. 

One way to determine this is to perform a trade-off analysis between the alternatives and to choose the best 

option from the analysis.  

Figure 2.3 shows the approach taken by Markeset and Kumar (2003) in the trade-off analysis, using life 

cycle costing (LCC) as the analysis tool. 

 

Figure 2.3: Design out maintenance trade-off analysis (Markeset & Kumar, 2003) 

 

2.5 Maintenance optimisation  

Moore and Starr (2006) state that, at present, one of the most vital factors to consider in an organisation is 

the complete optimisation of its costs. The cost of maintenance is one of the greatest contributors to 

operational costs. If maintenance is inadequate and not up to standard, it can lead to lost production, spare 

parts, fines for late orders, unsatisfied customers due to late production, and the need to rework and scrap 
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(Moore & Starr, 2006). These factors will directly increase the costs incurred by the organisation, resulting 

in a sub-optimal system.  

Dekker and Scarf (1998) and Von Petersdorff (2013) found that the most common practice in maintenance 

optimisation was the development of a mathematical model that aimed at either determining the best 

balance between cost and benefits related to maintenance, or establishing the best interval in which to 

perform maintenance. Von Petersdorff (2013) states that the literature focused more on the latter.  

Maintenance optimisation is a task that begins in the design phases and carries on throughout the life cycle 

of a system, again emphasising the importance of maintenance optimisation in an organisation (Von 

Petersdorff, 2013). Figure 2.4 shows the process that needs to be applied to the data in an organisation in 

order to reach maintenance optimisation. 

 

Figure 2.4: Maintenance optimisation process (Kallen, 2007) 

From Figure 2.4 it is evident that there is neither one generic failure modelling technique that can be applied 

to all organisations, nor one technique that can be used in final decision making. This means that several 

different factors and techniques need to be taken into consideration when it comes to implementing the 

optimal maintenance strategy.  

 

2.6 Maintenance approaches  

This section of the literature study gives an overview of all the different maintenance approaches that are 

currently in use. Lee and Scott (2009) state that a maintenance approach is a policy that integrates all the 

different maintenance strategies (corrective, preventive, proactive and design out) to result in the best 

solution for an organisation. One of the deciding factors in which strategy or approach to use is directly 

related to the resources available to the organisation. The main resource is linked to the cost involved in the 

process. According to Coetzee (1999), maintenance strategies and approaches should be directly connected 

to the detailed design of the maintenance cycle for different organisations. Tse (2002) states that the 

majority of maintenance activities over the years have been failure-driven, time-based, condition-based and 

reliability-centred.  

2.6.1 Reliability-centred maintenance (RCM) 

Reliability-centred maintenance (RCM) developed from the aviation industry when a comprehensive study 

was performed in the sixties to determine a preventive maintenance programme for the new Boeing 747 

(Ben-Daya et al., 2009). It was found that this programme would not be economically viable and that 

something needed to be changed. At this point, different textbooks were written, including the MSG-1. 

Development in the field led to the MSG-3, which then resulted in the creation of RCM (Ben-Daya et al., 

2009).  
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A major downfall of preventive maintenance is the misconception of people in industry that the more 

maintenance performed on a certain item or system, the more reliable the system will be, which is not the 

case. According to Shaalane (2012), RCM reaches the inherent reliability of a system or item by 

implementing effective maintenance programmes. However, the central focus of these maintenance 

programmes is the balance between the cost and the benefits. In the aviation industry, Ben-Daya et al. 

(2009) found that only 11% of components exhibited failure modes that would benefit from scheduled 

repair or replacement maintenance. This type of maintenance would be ineffective on the other 89% and 

would simply not work. This led to the new way of thinking in which maintenance now focuses on an entire 

system rather than just one function within the system.  

As a result of this complete change in thinking, the Society of Automotive Engineers developed a document 

named SAE JA-1011 which outlines seven basic processes that need to occur when an RCM analysis is 

performed. These seven processes are defined as follows (Leverette, 2004): 

1. What are the functions and the associated desired standards of performance of the asset in its present 

operating context? 

2. In what ways can it fail to fulfil its functions? 

3. What causes each functional failure? 

4. What happens when each failure occurs? 

5. In what ways does each failure matter? 

6. What should be done to predict or prevent each functional failure? 

7. What should be done if a suitable proactive task cannot be found? 

If these seven questions are answered correctly, a document can be drawn up that looks at the most efficient 

and cost-effective way to implement maintenance in an organisation, which can be regarded as RCM. Ben-

Daya et al. (2009) state that RCM can be used to create the most cost-effective maintenance strategy that 

considers and addresses all the main causes of failure found in an organisation. At the same time, it provides 

the required availability and reliability at the lowest cost possible (Ben-Daya et al., 2009). 

2.6.1.1 Main RCM principles and benefits  

One of the fundamental concepts on which RCM is based is the task of assigning different levels of 

criticality to different failure modes, based on the consequences of their failure to the organisation (Ben-

Daya et al., 2009). This is done in order to create the most cost-effective and efficient system.  

Four main principles outline an entire RCM process (Ben-Daya et al., 2009):  

1. Preserving the system function: This involves determining the current systems level of output and 

ensuring that the availability of the same output can be met. 

 

2. Identification of the specific failure modes that could potentially cause functional failure: This is 

critical at the times when a maintenance plan needs to be developed or design changes might occur. 

 

3. Prioritising key functional failures: This is a core principle in terms of achieving cost effectiveness 

and efficiency within the organisation. It is implemented to ensure that resources are allocated to 

the correct area in order to minimise unavailability.  

 

4. Selection of applicable and effective maintenance tasks for high priority items: This is done to 

achieve cost effectiveness and efficiency within the organisation.  
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Shaalane (2012) states that, in order to categorise an RCM strategy as a true RCM strategy, all the 

maintenance components in Figure 2.5 need to be examined. This is directly related to the fourth principle 

– Selection of applicable and effective maintenance tasks for high priority items, at which stage it becomes 

necessary to perform the RCM process.  

 

 

 

 

 

 

 

From Figure 2.5 it is evident that an in-depth understanding of all the different types of maintenance 

techniques is required before any attempt at an RCM analysis can be performed in a maintenance 

organisation. Ben-Daya et al. (2009) give a complete overview of all the benefits RCM can produce, which 

are summarised in Table 2.4. 

 

Table 2.4: Benefits that can arise from conducting RCM (Ben-Daya et al., 2009) 

RCM benefits 

1. Determine optimum maintenance plan 2. An increase in technical knowledge related 

to maintenance 

3. Optimise maintenance efforts in terms of 

operational efficiency and cost efficiency 

4. Cost savings from the implementation of 

the correct maintenance action  

5. Retain most crucial functions as the main 

focus, thereby neglecting inessential 

actions  

6. Improved safety and environmental effects 

7. Correct distribution of resources  8. Workload reduction and an increase in 

operational performance 

 

2.6.2 Total productive maintenance (TPM) 

Total productive maintenance is a maintenance approach that was developed in the seventies by the 

Japanese with the aim of extending preventive maintenance to become more like a productive maintenance 

strategy. Ben-Daya et al. (2009) state that TPM has become a widely recognised tool, which has been used 

RCM 
maintenance 
components

Preventive 
maintenance

Reactive 
maintenance 

Proactive 
maintenance

Predictive 
maintenance

Figure 2.5: RCM maintenance components, adapted from Shaalane (2012) 
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to increase the overall effectiveness of different production facilities around the world. In Ben-Daya et al. 

(2009), Ahuja (2009) states that the three words in TPM can be split up as follows: 

Total: All aspects in an organisation are covered, following a top-to-bottom approach. 

Productive: Activities are performed while production takes place in order to minimise production 

difficulties. 

Maintenance: Equipment upkeep is performed autonomously by operators in order to keep it in 

good condition.  

The division of TPM into three different parts makes it clear that it is not simply regarded as a maintenance 

function that needs to be performed, but rather a function that is recognised as one of the main focuses of 

an organisation (Ben-Daya et al., 2009). According to McCarthy (2004), the core focus of TPM is to help 

to identify and fix defects in manufacturing, to increase the elimination of waste, and to assist in improving 

inefficient operations cycles.  

One of the breakthrough moments in TPM was the concept of lean thinking and the integration of all 

working personnel in organisations in order to create a more effective system. According to McCarthy 

(2004), this move hugely reduced defects since operations staff could now check the buffers through which 

defects used to pass, which previously could only be inspected by specialised personnel. There was also a 

significant push away from the system of forecasting about what needs to be produced in a manufacturing 

plant. A greater emphasis was put on a pull system that did not use forecasting, but rather put forward 

operations in response to actual customer needs. This move away from the push system towards the pull 

system allowed some internal disruptions to occur, which did not take place in the push system. It also 

enabled immediate customer satisfaction and a smoother process.  

McCarthy (2004) found that the emphasis in this lean thinking approach on the redesign of the production 

system led to the elimination of all the poor processes in this system, the bulk of which resulted from mass 

production. The largest poor feature eliminated from the system was waste. Seven forms of waste were 

improved on in plant production (McCarthy, 2004): 

1. Over-production  

2. Unnecessary inventory 

3. Inappropriate processing  

4. Unnecessary transportation  

5. Unnecessary delays 

6. Unnecessary defects  

7. Unnecessary motion.  

From this improvement in waste management in organisations, McCarthy (2004) details a study that was 

performed in plants in the UK and Japan. The UK plants still followed the old method of mass production 

and the Japanese plants followed a lean TPM process. Figure 2.6 shows the results of the study performed. 
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The enormous benefit associated with the transition from normal mass production to a leaner TPM process 

is evident in Figure 2.6. Nakajima (1988) outlines the five main focus areas and aims of TPM: 

1. Maximise the efficiency of the production system. 

2. Establish a system that helps to prevent the occurrence of failures – the main goal is the final 

product. 

3. Apply TPM to all the departments in an organisation. 

4. Full participation is required, from management to operators. 

5. Achieve minimal loss through small group activities. 

The direct effect of these five focuses of TPM can be seen in the results of the study performed in Figure 

2.6. McCarthy (2004) also emphasises that the full participation of the employees in the production system 

should result in the improved reliability, availability, safety, quality and performance of the equipment. In 

addition, Nakajima (1988) states that the benefits of TPM – which include productivity (P), quality (Q), 

cost (C), delivery (D), safety (S) and morale (M) – have a direct impact on the overall equipment 

effectiveness (OEE) found within an organisation. This results in an organisation that can output its goods 

in the most effective manner possible. OEE can also be considered as one of the most important 

performance measures of TPM. 

Figure 2.6: Lean TPM comparison between UK and Japanese plants (McCarthy, 2004) 
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2.6.3 Business-centred maintenance (BCM) 

Business-centred maintenance was developed in the eighties by Anthony Kelly. He saw an opening in the 

market with the need for a more cost-effective maintenance model in which safety was one of the main 

priorities (Mungani & Visser, 2013). BCM is an approach that can be used in various applications, such as 

power stations, mines and even communications and transport networks. Thomas (2015) found that up to 

40% of a company’s cost can be controlled by a maintenance manager who can also have a significant 

impact on the production output of a company. Despite this, however, there has still not been a substantial 

shift in trying to integrate business objectives with maintenance outputs.  

Mungani and Visser (2013) state that a core focus and emphasis of BCM is to align the maintenance 

function with the organisational objectives of a company to enable the two functions to work together to 

create an optimal organisation. According to Waeyenbergh and Pintelon (2002), the framework of BCM 

works by first identifying all the business-related objectives and then translating them into maintenance-

orientated objectives. A large amount of data is needed to determine these objectives, which includes all 

the different production processes, failure data, availability data, life plans and the forecasted workload of 

the plant. From all this data, the drive of BCM is to maximise the overall contribution of maintenance within 

an organisation to enhance the total profitability of the organisation (Waeyenbergh & Pintelon, 2002).  

Figure 2.7 shows the overall BCM maintenance approach and how it aims to maximise the total profit of 

an organisation.  

 

Figure 2.7: The BCM approach to maximise profit (Waeyenbergh & Pintelon, 2002) 

Waeyenbergh and Pintelon (2002) found that the main difference between BCM and RCM is that BCM is 

more focused on increasing the profitability of a company, while RCM is more focused on the technical 

performance of an organisation. However, both maintenance approaches look at all the different units in an 

organisation and how they interact with one another in order to determine the optimal maintenance solution 

for the organisation.  

 

2.6.4 Life cycle costing (LCC) 

According to Kirstein and Visser (2017), life cycle costing is the process of determining the cost of 

something from the acquisition phase, to the operation and maintenance phase, to the final disposal phase. 
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White and Ostwald (1976) state that “The life cycle cost of an item is the sum of all funds expended in 

support of the item from its conception and fabrication through its operation to the end of its useful life”. 

This process of life cycle costing is done by prediction. The results obtained from such an analysis can be 

used to make future decisions about the element on which life cycle costing is being performed. It is evident 

from Kirstein and Visser (2017) and White and Ostwald (1976) that the life cycle costing analysis examines 

all the costs associated with an element. Only thereafter can a decision about the element be made.  

According to Ellram (1995), the main focus of LCC is on capital assets. Asiedu and Gu (1998), however, 

state that LCC can be performed on a variety of different products by gearing the nature of the analysis 

towards the different products. This suggests that there is not one generic LCC method that can be 

performed on all the different capital assets and products. Korpi and Ala-Risku (2008) assert that the main 

purpose for developing LCC was to look at the viability of the procurement of certain assets, which focused 

predominantly on the client’s perspective and tended to neglect the manufacturer’s perspective.  

In order to integrate the perspective of both the client and the manufacturer, Korpi and Ala-Risku (2008) 

outlined a methodology developed by Barringer and Weber (1996) which shows the overall purpose of 

performing an LCC analysis: 

 Affordability studies: These use the LCC to measure the long-term impact of costing on the 

company’s budget and operating results.  

 Source selection studies: These compare different alternative systems or elements using LCC 

estimates to ensure that optimum goods/services are implemented. 

 Design trade-offs: These look at various factors in the LCC and optimise those that most influence 

the system.  

 Repair level analysis: The LCC outlines actual maintenance costs and demands using maintenance 

cost modelling. This ensures that correct decisions are made in terms of the capital equipment that 

is vital to the sustainability of a company.  

 Warranty and repair costs: This uses maintenance modelling to allow the organisation to 

understand the effect of equipment or system failure in terms of overall cost.  

 Sales strategies of suppliers: This process merges the LCC analysis and the maintenance failure 

rate analysis to allow for the optimum replacement age of a system or an asset.  

From the above overview of the purpose of performing an LCC analysis, it is evident that maintenance 

optimisation plays a vital role in this analysis in terms of cost and optimum decision making. Both elements 

work together to ensure that the best decisions are made.  

2.6.4.1 Life cycle costing estimation methods  

Since LCC is an analysis process in which the costs of a system are forecast into the future, the costs that 

make up the total cost of a system are required. These costs are unknown since they are forecast into the 

future, which means that a cost-estimating method is needed in order to determine them.  

Fabrycky and Blanchard (1991) state that the life cycle costs of a system can be broken down into different 

phases, as shown in Figure 2.8.  
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Figure 2.8: Cost phases of a life cycle cost analysis (Fabrycky & Blanchard, 1991) 

For each distinct phase in Figure 2.8, a different cost estimation method could be applied. Korpi and Ala-

Risku (2008) outline three different cost estimation methods that can be used in an LCC analysis: 

1. Estimation by engineering procedures  

This cost estimation method makes uses of labour time and rates as well as material quantity and 

prices in order to gain an overall cost estimate of a product or system (Asiedu & Gu, 1998). It is 

regarded as the costliest method to implement since a large quantity of data is needed which 

requires a large portion of time to gather. Asiedu and Gu (1998) state that, despite the expense, this 

method can result in the best output if carried out correctly with all the required data inputted into 

the model.  

2. Estimation by analogy  

According to Asiedu and Gu (1998), the estimation by analogy method identifies a product or 

system with similar attributes and adjusts the costs for the differences between this system and the 

wanted system or product. Korpi and Ala-Risku (2008) state that the main problem with this type 

of estimation method is the high degree of judgement it requires since a target product is being 

compared to another product with similar attributes. The comparison needs to be accurate to result 

in useful outputs. This is the most inaccurate but cheapest method to implement since it does not 

require a lot of data (Korpi and Ala-Risku, 2008). Nevertheless, this approach has been found to 

give good estimates for new products, as determined by Korpi and Ala-Risku (2008) and Asiedu 

and Gu (1998). 

3. Estimation by parametric methods 

This estimation method uses different statistical techniques and methods. It employs both costs and 

measurable attributes of the system at hand in order to gain the cost estimates. According to Asiedu 

and Gu (1998), this method makes use of historical data and information and implements different 

mathematical models to reach the required outputs. They state that the parametric estimation 

method can be used throughout the design process and through all the different cost phases, as seen 

in Figure 2.9. In addition, Asiedu and Gu (1998) affirm that although this method requires a large 

amount of information, time and money to set up, once it is in operation its output of results is 

reasonably quick.  

On assessing these three estimation methods, Korpi and Ala-Risku (2008) assert that the best method to use 

in most situations is the parametric estimation method. The reason is that, although it is not the most cost-

effective method initially, once it has been set up for a system or product, only small changes need to be 

made to the model when modifications occur. This makes it highly appealing to most designers. For all the 

estimation methods, one of the main factors that needs to be considered is the time value of money – because 

all the cost estimates are forecasts into the future, the value of money also changes. Therefore, interest rates 

and future discounted values need to be considered to ensure that an accurate model is represented by the 

LCC analysis.  
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Finally, it must be noted that to ensure the development of an accurate model, all costs need to be appraised. 

This includes general operations costs, which can be regarded as standard non-varying costs, and 

maintenance costs, which can be regarded as volatile. A significant amount of time needs to be spent on 

gaining these costs to ensure the development of the best possible LCC model. A detailed methodology for 

an LCC analysis, as outlined by Barringer and Weber (1996), can be seen in Appendix B. 

2.6.5 Maintenance approach overview  

Table 2.5 gives an overview of all the different maintenance approaches that have been discussed in this 

literature study by outlining the advantages and disadvantages associated with each approach.  

Table 2.5: Maintenance approach overview, adapted from Waeyenbergh and Pintelon (2002) 

Concept 

RCM TPM BCM LLC 

Advantages 

Cost savings 

Looks at a plant in its 

entirety 

Involves maintenance 

education 

Involves both operators 

and maintainers 

Optimisation and cost 

efficiency 

Only focuses on most 

important functions 

Involves both operators 

and managers 

Increased productivity 

Decrease in unnecessary 

operations 

Increase in quality 

Increase in productivity 

Focuses on maximising 

the profit of 

organisations 

Integrates organisational 

objectives with 

maintenance objectives 

Accurate approach 

Looks at costs over the 

entire life of the system 

with the future in mind 

Considers all costs 

involved in a system 

Can make capital 

decisions from the 

model outcome 

Disadvantages 

Highly complex 

Needs excessive data 

Fails to recognise the 

problem of economics 

Economics not 

considered (costs + 

profits) 

Not a definite 

maintenance concept 

Highly complex 

Needs excessive data 

Needs a large quantity 

of data 

Meticulous and time-

consuming process 

 

2.7 Modelling techniques  

This section of the literature study outlines a variety of maintenance optimisation and decision-making 

modelling techniques that are currently in use, as stated by Von Petersdorff (2013). Several different 

techniques have been compared. These include hard approaches to the problem of optimisation and soft 

approaches that take a more philosophical stance. The techniques discussed include Markov chains, Weibull 

analysis, NHPP models, block replacement models, optimum grouping models, simulation, FMEA/ 

FMECA and forecasting models.  
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2.7.1 Markov chains  

According to Von Petersdorff (2013), Markov chains are an analytical technique that can be used as a 

modelling technique for the stochastic production/failure process. Dawid et al. (2015) state that Markov 

chain models are a powerful tool that can be used for diagnostics, prognostics and maintenance optimisation 

in a variety of different organisations. According to Dawid et al. (2015), Markov chains are a random 

process in which the probability between the transition of the states only depends on the current state. The 

previous state has no influence, thus making it a ‘memoryless’ process, as found by Von Petersdorff (2013). 

Welte et al. (2006) have developed a model that is used for the scheduling and optimisation of maintenance 

renewal in which the deterioration process found in equipment is modelled by the Markov chain method. 

The model developed was able to compute different types of performance measures and operational costs 

over a finite length of time, which could be used for future analysis. Van der Laan (2016) states that, for 

any given system, a Markov model supplies a list of all the possible states of that system, all the different 

paths that can occur between the different states, and the rate parameters for the different transitions 

between the different paths.  

When modelling Markov models graphically for maintenance-related systems, Van der Laan (2016) notes 

that two states can occur, namely healthy or failed. This is depicted in Figure 2.9.  

 

   

 

 

According to Van der Laan (2016), λ denotes the rate parameter of the transition between the two states. A 

probability can also be assigned to each state. If state 0 is initially healthy, then its probability is seen to be 

P0(0) = 1 and the probability of state 1 is seen to be P1(0) = 0. As time progresses, the probability of state 

0 decreases and the probability of state 1 increases, which is due to operational wear of the component 

being modelled. Von Petersdorff (2013) has found various instances in literature where Markov models are 

used in a maintenance-related manner. These include modelling a physical system, coupled with failure 

data and life expectancies; determining the optimum maintenance policy for a certain set of 

components/systems; modelling identical manufacturing systems in terms of breakdowns, repairs and 

preventive maintenance actions; modelling the planning and maintenance plan for a particular organisation; 

determining the optimum preventive maintenance installation plan for a production line; and optimising 

production inventory plans for a production system. It is evident from the above that Markov models have 

a wide scope and can be adjusted and modified for use in different situations, depending on the system 

being modelled.  

2.7.2 Weibull analysis  

The Weibull distribution was developed in 1951, mainly for its use in failure work (Coetzee, 1997). An 

empirical formula was developed that can model most types of failure data through its manipulation. The 

formula makes use of historical failure data in order to understand the failure characteristics and behaviour 

of a certain set of components or a system. Abernethy et al. (1983) state that the Weibull distribution is the 

best distribution to use when analysing failure data as it has been found to best fit the different types of 

data. The Weibull distribution can also model systems and components when there are inadequacies in the 

State 0: 

Healthy 

State 1: 

Failed 

λ 

Figure 2.9: Markov states, adapted from Van der Laan (2016) 
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data, such as small sample sizes, as determined by Abernethy et al. (1983). Due to the versatility of the 

Weibull distribution, Coetzee (1997) found that it can be used to model most maintenance renewal 

problems. A core advantage of the Weibull distribution, according to Abernethy et al. (1983), is that it can 

be used in a risk and forecast analysis. The results of this analysis can be utilised to determine the condition 

of the components within a system, thus allowing for decisions to be made that ensure an optimally running 

organisation.  

According to Coetzee (1997) and Abernethy et al. (1983), the Weibull analysis entails the following five 

steps: 

1. Plotting and interpreting data 

2. Predicting and forecasting failures 

3. Developing maintenance strategies with cost-effective replacements 

4. Forecasting when spares parts will be needed 

5. Developing a corrective action plan. 

If these five steps are followed correctly, the Weibull analysis can be hugely beneficial to an organisation 

in terms of cost savings and optimum performance, as found by Coetzee (2015). Von Petersdorff (2013) 

states that, even though the Weibull analysis is highly beneficial in terms of its ability to model different 

failure distributions, a major downfall is that it can only model components and is not system-based. For 

this reason, it does not consider the interactions that take place within a system. This is a disadvantage since 

these interactions can vastly affect the failures that can occur. Nonetheless, the Weibull analysis still results 

in the output of accurate and reliable results that can be used for further analysis.  

2.7.3 NHPP model 

According to Lai and Garg (2012), the non-homogenous Poisson process (NHPP) model is a well-

developed stochastic process that is used in reliability engineering. The NHPP model generates an infinite 

series of failure events for which the inter-arrival times between the events are neither independent nor 

identically distributed (Coetzee, 2015). The main difference between the NHPP model and the homogenous 

Poisson (HPP) model is that the expected number of failures can vary with time in the NHPP model, which 

is not the case in the HPP model (Lai & Garg, 2012).  

Asekun and Fourie (2015) state that the NHPP model has proved to be suitable to model failure data that 

shows a trend. It is a straightforward model for which a lot of theoretical knowledge has been developed. 

Coetzee (1997) states that the NHPP model works particularly well for systems with reliability degradation 

in their failure data. He also asserts that the NHPP model has only been developed for repairable systems; 

other models should be used if the system being analysed is not repairable. The reason is that many models 

have been developed for components with renewal properties. This means that, once a failure occurs, the 

entire component can be replaced. However, in many cases when a system fails, the entire system is not 

replaced and only minimal repairs occur. Therefore, the same models that model renewal systems cannot 

be applied to repairable systems, hence the development of the NHPP model.  

Asekun and Fourie (2015) have outlined the basic conditions that the NHPP model needs to satisfy:  

1. N(t) > 0 

2. N(t) is an integer  

3. N(t), T ≥ 0 has independent increments  

4. If T1 < T2 then N(T1) < N(T2) 
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5. The number of events in interval (T1, T2) have a Poisson distribution with a mean of ∫ 𝑢(𝑡)𝑑𝑡
T2

T1
. 

The NHPP model has been applied to various maintenance-related systems on which numerous tests have 

been performed to verify the model (Coetzee, 1997). The model can also be used and manipulated into a 

cost-optimisation analysis, as determined by Coetzee (1997). The benefits of the model are significant in 

terms of the implementation of preventive maintenance actions on a specific system within an organisation.  

2.7.4 Block replacement models  

The Weibull analysis described in Section 2.7.2 is an effective analysis tool to use when modelling historical 

failure data which allows for its use in maintenance renewal problems, as outlined by Coetzee (1997). There 

is a major downfall to the sole use of the Weibull distribution in the development of an optimum 

maintenance plan, as described by Von Petersdorff (2013). In terms of its use in renewal-based problems, 

it is limited to single component replacement, as stated by Jardine and Tsang (2013). Single component 

replacement policies can be highly beneficial when varying components within a system have completely 

different failure statistics and the components being analysed are vastly different. One area where an 

improvement in this single-based replacement strategy can be implemented is in a system in which various 

similar or identical components are present and an optimum plan needs to be developed for the preventive 

maintenance of all the system elements. Jardine and Tsang (2013), as well as Coetzee (1997), have all 

outlined maintenance models that can be used to analyse a system when such a scenario occurs. The model 

developed by these authors is the block replacement model.  

The block replacement models were all developed based on economic viability. Jardine and Tsang (2013) 

and Coetzee (1997) argue that it would be economically more viable to replace a group of similar elements 

within a system at a certain point in time, than to replace each similar element individually. The reason 

behind this is the assumption that, in total, a group replacement of similar components costs less than 

individual replacement. This assumption is verified though the calculation that setup costs and downtime 

costs due to lost production on an individual component replacement policy will be a lot greater than in a 

block replacement policy because they are incurred several more times. The results of implementing a 

model like the block replacement model will be highly advantageous in a system with various similar 

components and in need of the development of an optimum maintenance policy. It must be noted, however, 

that this model can only be used when similar components are present. The individual maintenance policy 

briefly described in Section 2.7.2 should always be compared to the block replacement policy to ensure that 

the optimal maintenance plan is implemented.  

2.7.5 Optimum grouping models 

The Weibull analysis described in Section 2.7.2 is an extremely effective tool to use in conjunction with 

renewal-related problems, where components are analysed on an individual basis. The block replacement 

model outlined in Section 2.7.4 is an addition to the Weibull distribution, enabling similar components 

within a system to be modelled, resulting in an optimum maintenance plan for various similar system 

elements. One area which neither of these two models covers is a common scenario in industry – the 

development of a maintenance plan for one system comprised of varying components with similar failure 

characteristics. Laggoune et al. (2008) have developed a model which fulfils this exact purpose. The model 

developed is based on the rationale that it is more cost effective to group maintenance activities for 

components with similar failure statistics, than to optimally replace each component separately, as done 

using the Weibull analysis in Section 2.7.2. The reason is that it can cost a company a substantial amount 

more to shut down a system for each individual preventive action than to not replace a component at its 
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optimum age. This results from the huge costs associated with downtime and the large setup costs for the 

implementation of the various preventive actions. 

The optimum grouping model developed by Laggoune et al. (2008) makes use of an intensity function in 

conjunction with a Weibull distribution. The outcome of the model is the minimisation of a cost function. 

To implement the grouping policy and ensure that it is the optimal policy to incorporate into a maintenance 

plan, three different scenarios need to be considered: a single replacement approach, a mono-replacement 

approach and a multi-replacement approach. The single replacement approach is similar to the Weibull 

analysis described in Section 2.7.2 in which all the components within a dependant system are looked at 

individually, resulting in the development of multiple maintenance plans for each individual element. The 

mono-replacement approach determines the optimum age to replace all the elements within a system at one 

set interval. This approach results in large reductions in the downtime and setup costs. The disadvantage is 

that various elements are not replaced close to their optimum values. The multi-replacement approach 

model determines the optimum intervals to replace certain elements within a system with the intention of 

minimising the downtime and setup costs that can be endured. It has been determined that the optimum 

grouping model is highly beneficial in terms of cost reduction within maintenance plans on implementation. 

It must be noted that all three scenarios need to be considered before a decision can be made about the 

optimum maintenance plan. The reason is that varying systems have varying failure characteristics. A single 

replacement approach could sometimes result in a more optimum answer than the optimum grouping 

strategy presented here.  

2.7.6 Simulation  

Simulation can be defined as the process of building a model that is based on a real-life system in which all 

the inputs, constraints and outputs need to be investigated. This results in a model that mimics the behaviour 

of the real-life system, allowing for certain system outputs to be observed. According to Von Petersdorff 

(2013), one of the greatest benefits of simulation is to model systems that cannot be solved analytically due 

to the complexity of the system being analysed. Simulation can be used in a wide variety of applications, 

including cost models, physical asset modelling, inventory modelling and maintenance tactics selection, as 

well as in different decision-making processes.  

Von Petersdorff (2013) states that one of the most important applications of simulation is in the process of 

evaluating the capital investment of physical assets in an organisation. In this case, simulation is used to 

investigate all the alternative methods and scenarios that can be played out. Barringer and Weber (1996) 

used Monte Carlo simulation in life cycle cost modelling to create variability and to verify the LCC model 

they had developed. Murthi (2003) used simulation to develop a model that outputs the best maintenance 

strategy for a specific organisation. He found that one maintenance method does not suit all companies and, 

in order to gain the competitive edge over other competitors, it is essential to implement the best method. 

It is evident, therefore, that simulation can be used in a wide range of activities and can be modified for use 

in most systems. 

2.7.6.1 Monte Carlo simulation  

Monte Carlo simulation is one of the leading simulation techniques used in maintenance optimisation, as 

determined by Barringer and Weber (1996), due to its ease of understanding and the vast variability and 

validation it can create in a systems model. Yeh and Sun (2011) state that Monte Carlo simulation first 

originated from its use in statistical sampling. The simulation makes use of random numbers and 

probabilities to solve different problems, depending on the system being analysed. A Monte Carlo 

simulation can also be employed to evaluate deterministic models by using random numbers (Yeh & Sun, 

2011).  
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Yeh and Sun (2011) outline seven elements that make up a successful Monte Carlo simulation: 

1. Development of a probability density function for use in all the mathematics  

2. Random number generator  

3. Sampling prescription  

4. Computing methods to result in decisions  

5. Miscalculation methods to determine all statistical errors present  

6. Different change reduction techniques to reduce computation time  

7. Parallel and vertical integration techniques to allow for effective computer architecture.  

It is evident that, if all seven elements are present within a simulation, the outputted results of the simulation 

can be highly beneficial in terms of the system validation. In addition, Monte Carlo simulation can be used 

for event-based systems. If something happens in a system that results in a large and meaningful change, 

which then becomes classified as an event, it can be used in time-based simulation. Different time intervals 

are simulated in order to gain the required outputs for a system. It can also be used in agent-based 

simulation, which appraises all the factors that can affect a system to achieve an optimal result. Therefore, 

Monte Carlo simulation can be regarded as a highly useful tool for use in maintenance optimisation or to 

develop the best possible model for different types of systems.  

2.7.7 FMEA/FMECA 

According to Von Petersdorff (2013), failure modes and effects analysis (FMEA) can be defined as a highly 

effective tool that can be applied to determine and examine possible failure modes. The outcome of this 

process can be used to eliminate the potential failures in a systems design. The main aim of this tool is to 

provide an organisation with quantitative and qualitative measures that can be utilised to draw up a ranking 

system based on the consequences and risks of different failure modes that might arise in a certain system. 

From this, various corrective actions can be implemented in a system that will allow for its overall 

optimisation in terms of cost as well as operation.  

FMEA has also been defined as a systematic analysis that aims to determine all the potential failure modes 

with the intention of preventing future failure in a system (Ben-Daya et al., 2009). To understand all the 

steps that take place in an FMEA analysis, Ben-Daya et al. (2009) have developed a logic process, as seen 

in Figure 2.10.  

 

 

 

 

As is evident in Figure 2.10, the last step that needs to take place is to determine the risk priority number 

(RPN). This number is based on all the previous steps that have occurred. It allows for the different failure 

modes to be ranked and prioritised according to their importance in the overall system. Once this process 

has taken place, decisions about the system can be made. Von Petersdorff (2013) states that this method 

falls short in terms of assessing the potential economic effects of failures. The reason is the difficulty of 

assigning quantitative economic values to the effect of failure in a system. Nevertheless, the FMEA 

methodology can be applied to a system in need of an economic analysis in order to make better decisions 

on the system once economic values have been found using other models.  

Failure mode  Effect severity 

(S) 

Cause 

occurrence (O)  

Controls 

detection (D)  

Priority RPN = 

S × O × D  

Figure 2.10: FMEA logic process, adapted from Ben-Daya et al. (2009) 
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A FMEA with the inclusion of a criticality analysis is called a FMECA. The main aim of this analysis is to 

determine the assets that would have the greatest effect on an organisation if they were to fail. The main 

components to make up this analysis are the frequency of failure and the consequence of failure. These two 

components can be comparatively plotted in order to show the risk of a certain asset to an organisation in 

graphic form. According to Von Petersdorff (2013), the outcome of the analysis should allow one to see 

the assets with the largest potential impact on the overall business goals of an organisation. Decisions can 

then be made to reduce the potential impacts.  

In terms of maintenance optimisation, the FMECA logic and tools can be adapted and used to rank different 

assets based on their cost consequences to a company. The main outcome of understanding FMECA in 

terms of maintenance optimisation would be to comprehend the different ranking systems that are available, 

and to modify these to assist in making capital decisions in an organisation.  

2.7.8 Forecasting  

All the modelling techniques described in this section rely heavily on the acquisition of historical failure 

data for their implementation in a real-world scenario. In a number of engineering industries, the acquisition 

of such failure data is not always available since it is either not recorded or the systems are not in place to 

record it. One set of data that is almost always available is historical cost data associated with maintenance-

related activities because this data must be accounted for in the yearly financial records of an organisation. 

It must be noted that the models outlined in the previous sections cannot be used to develop a maintenance 

plan for the system/components under scrutiny as they require failure data for their implementation.  

One way to develop a maintenance plan based on budget is by using forecasting techniques. Hyndman et 

al. (1998) indicate that a vast variety of different forecasting techniques are available in literature, ranging 

from quantitative techniques to qualitative techniques to unpredictable techniques. Some of the most 

common forecasting techniques used in the engineering industry are quantitative, as outlined by Chase and 

Jacobs (2018). Three conditions need to be meet before these forecasting techniques can be used: first, 

information about the past needs to be available; second, this information on the past can be quantified into 

numerical data; and, third, the assumption can be made that aspects of the past pattern of historical data can 

be continued into the future (Hyndman et al., 1998). These three elements can usually be assumed in the 

engineering industry, hence the use of such a forecasting technique. As in the use of any forecasting 

technique, the result of the forecast is an estimate of what could occur rather than a conclusive answer. In 

terms of a budgetary requirement for a certain organisation, however, an estimate of the predicted budget 

for a specific year is better than relying on heuristics alone.  

 

2.8 Decision making  

Within the maintenance environment, a variety of decisions are constantly being made on both a strategic 

level and an operational level. These decisions vary from large managerial outcomes to more technical 

issues. Von Petersdorff (2013) states that different factors and concerns are relevant to managers in the 

engineering industry. These include system availability; expected failures; probability of failure at a certain 

point in time; the effect of downtime on overall production; and the optimum age and cost of a 

replacement/overhaul to a system/component. Von Petersdorff (2013) emphasises the importance of one 

area: when making maintenance-related decisions, the criticality of the decisions cannot be based on 

discussions and experience alone. Fixed modelling techniques and methods need to be employed to ensure 

more certainly around specific decisions. However, it is essential that the decision-making tools utilised are 

clearly understood and documented to ensure their ease of use and validity.  
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To develop a powerful decision-making tool, Von Petersdorff (2013) states that it should incorporate some 

sort of risk association element in which the implementation of confidence intervals is recognised as highly 

beneficial. In addition, system boundaries and limitations of the decision-making tool should always be 

stated clearly to ensure the correct application of the methodology. This allows a vastly improved 

understanding of the functioning of an engineering system in terms of its maintenance. As the result of such 

a tool, the optimal maintenance decision can be chosen for a system. It must also be noted that the human 

element can never be eliminated from a decision-making tool as this would result in the acceptance of a 

solution without any careful thought and evaluation. Thus, in the application of a technical decision-making 

tool, it is vital to maintain a balance between the technical aspects of the tool and the human interactions 

and understanding of the tool. From this, integrated maintenance decisions can be made that will directly 

affect the success and output of an organisation by reducing downtime and implementing an integrated 

maintenance plan.  

2.8.1 Integration of multiple modelling techniques  

As noted above, one of the largest contributors to any decision-making process is the use of some sort of 

tool that will enable a decision maker to determine the best decision for a certain scenario. Various different 

models and methods are available to ensure these decisions can be made. The methods range from the 

implementation of simple linguistic models to complex mathematical models that use a variety of 

techniques to ensure the best decisions are reached. It is evident, therefore, that modelling plays a vital role 

in the overall decision-making process. The outcome of a model can completely change a decision choice. 

Von Petersdorff (2013) states that a model can be defined as a simplified description of a system within a 

certain environment. The model describes the relationships between the system itself and all its 

components. For a model to be developed, three elements are needed: system boundaries, input parameters 

and output parameters. The first two elements allow the output parameters to be determined, which directly 

results in the information a decision maker utilises for computation (Von Petersdorff, 2013).  

In Section 2.7, a variety of maintenance modelling techniques were briefly discussed. These techniques all 

placed optimisation at the forefront of their implementation, related to profitability in an organisation. The 

implementation of these maintenance techniques has proved to be hugely beneficial in terms of the 

development of an optimised maintenance plan. However, one element that all these techniques require is 

accessibility to maintenance data to enable their implementation. A central flaw in the use of these 

modelling techniques is that each one is used for a different scenario, dependent on the available data, and 

resulting in a segmented approach. No generic maintenance model has been developed. Limited literature 

was found on the integration of all these maintenance optimisation techniques into one overall maintenance 

model. Although approaches such as RCM, BCM and TPM (discussed in Section 2.6) have been developed 

to look at maintenance from an overall point of view, these maintenance techniques lack quantitative 

measurements that allow cost benefit relations to be computed. The development of any maintenance model 

should always be based on models that can quantify their benefits and contribute significantly to the 

decision-making process in maintenance (Von Petersdorff, 2013).  

 

2.9 Conclusion  

The literature study presented in Section 2 outlines a substantial number of the different issues and elements 

involved in maintenance optimisation. It began by looking at the broad spectrum of physical asset 

management and asset care. This plays an integral role in the understanding of how maintenance can affect 

an organisation, and how crucial the optimisation of this process is to the success of many organisations. 
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The literature study then moved on to the topic of maintenance and considered all the different maintenance 

techniques in depth. It was found that preventive maintenance can be hugely beneficial to an organisation. 

The implementation of this maintenance technique needs to be carefully examined in all maintenance 

departments as it can result in significant cost savings. It was also determined that the practice of only using 

corrective maintenance can be detrimental to an organisation in terms of loss of income. However, it was 

recognised as imperative to consider all the different maintenance techniques for the varied systems within 

an organisation. This is essential because one maintenance technique cannot fit all systems. Different 

systems require different techniques, which all need to be examined in order to attain an optimal 

maintenance department.  

The literature study then continued to explain the different maintenance approaches currently in use. Soft 

approaches such as TPM and BCM were discussed in order to understand the managerial side of 

maintenance. It was determined that correctly implementing and managing the different maintenance 

strategies is just as important as developing the right strategy for a system. Hard approaches such as RCM 

and LCC were also considered to gain insight into their benefits and an awareness of the diverse elements 

needed to ensure the success of the maintenance approach. It was found that LCC plays a vital role in the 

overall optimisation of a capital-constrained environment since it considers and extrapolates into the future 

all the lifetime costs of a specific system to enable important decisions to be made.  

Finally, different maintenance modelling techniques were examined. It was determined that techniques such 

as the Weibull analysis, the NHPP model, the block replacement model and the optimum grouping strategy 

are excellent to implement when historical data is accessible. Simulation can also be applied to these 

techniques in order to create variability in the models and to validate them. From the literature study 

presented, it was found that the Weibull analysis, the NHPP model, the block replacement model and the 

optimum grouping strategy are all valid methods for the analysis of failure data; however, their 

implementation is dependent on the type of failure data being analysed. The outcomes of these different 

analysis techniques can be incorporated into an overall maintenance model to gain a better understanding 

of maintenance in terms of overall physical asset management and asset care. From this, capital budgetary 

decisions can be made based on actual relevant systems data and by examining a specific system over its 

entire lifetime. In addition, an overview of the decision-making process within the maintenance 

environment was presented. It was found that limited literature is available on the integration of the 

quantitative maintenance techniques into one overall maintenance model that can be used in the process of 

making decisions on capital. 

The following section presents the theory and conceptual application of a comprehensive set of different 

models found in the literature. These are aimed at either optimising preventive maintenance strategies for 

different types of equipment or systems in different operational scenarios where sufficient data is available 

or estimating future costs where sufficient data for optimisation is unavailable. 
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3 Preventive maintenance budgetary decision model 

This section introduces all the different modelling techniques that will be used to make verified decisions 

about their budgetary benefits and whether to implement preventive maintenance tactics within an 

organisation. The aim of Section 3 is to give a basic overview of different types of failure data that can be 

found throughout the different systems within an organisation. Different modelling and optimisation 

techniques will be used to analyse this failure data, resulting in calculated decision making in terms of 

budgetary requirements.  

The methodology process in this section first explains the mathematics associated with the different 

techniques. Second, an illustrative example is presented for each technique where the previously explained 

mathematics is implemented and verified. Different failure statistics methods are explained, namely 

repairable and non-repairable systems modelling, block replacement modelling and opportunistic/grouping 

replacement modelling. Forecasting models and life cycle cost models are also presented. An overview of 

the application of each budgetary decision model is given in Figure 3.1. The decision outcome of all these 

models is one optimal capital budget that identifies the effects of implementing these preventive 

maintenance techniques.  

3.1 Budgetary decision model overview  

 

 

Figure 3.1: Complete budgetary decision model overview 
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In order to develop a complete budgetary decision model, it is important to first understand how all the sub-

budgetary decision models interlink, depending on the type of data available and the system being analysed. 

The overall methodology behind this model is given in Figure 3.1. 

It is evident from Figure 3.1 that a vast number of steps and sub-models need to be developed before a 

complete budgetary decision can be made for a certain organisation about the implementation of preventive 

maintenance and its allied cost. As stated in Section 1, the main outcome of this research is to create an 

overall budgetary preventive maintenance decision model for an organisation. This means that not only one 

part of an organisation will be considered, but rather the organisation in its entirety. This results in a large 

variety of data being drawn from the different systems within an organisation. Each set of data will not lead 

to the application of the same model due to variability in the datasets. Before the development of any 

budgetary decision model takes place, the first step that needs to occur is the acquisition of data from which 

certain models can be developed. A substantial amount of historical data is needed for this development to 

occur (Shaalane, 2012). The data can be in two forms: either historical failure data or historical operation 

and maintenance cost data for a certain piece of machinery. Shaalane (2012) states that the greater the 

amount of data available, the more reliable the prediction of a model will be.  

Once the data has been drawn from all the different systems within an organisation, it needs to be separated 

into two different categories, namely historical failure data with failure/maintenance costs and historical 

cost data only. This process is outlined by the dark blue section in Figure 3.1. The reason for this separation 

within the dataset is that the same modelling logic cannot be used to analyse these two types of datasets. 

Different techniques need to be applied to the datasets.  

 

3.2 System/components life cycle stages 

Once the data has been collected and all the relevant boundaries have been applied, it can be separated into 

two categories, namely failure data with costs, and cost data only. If failure data is collected, it is first 

important to understand the stages that a typical system undergoes during its lifespan before failure data 

models can be developed. Figure 3.2 shows the bathtub curve, which is typical of most components. The 

failure rate is plotted as a function of time.  

 

Figure 3.2: Bathtub curve (Shaalane, 2012) 
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Figure 3.2 shows that a system can go through three phases during its lifetime, namely burn-in, useful life 

and wear-out.  

1. Burn-in: This is the phase when a component is new; it shows reliability improvement as time 

progresses. The failure rate is initially high, but it decreases fast. Failures in this phase can be 

attributed to manufacturing faults or design flaws. 

 

2. Useful life: In this phase the failure rate of a component is reasonably constant over time, and there 

is a lower risk of failure. The duration of this phase demonstrates the durability of the 

system/component. Wear does occur during this phase, but the system/component can still perform 

its task.  

 

3. Wear-out: This is the phase in which the component increasingly wears out until failure occurs. It 

is imperative to try to avoid failure in this phase as it can cause knock-on damage for the rest of the 

system, resulting in exponentially larger cost implications.  

From the above analysis, it is evident that a system/component goes through various phases in its lifetime. 

Different techniques and models will be needed to analyse the failure data, depending on the life phase of 

the system/component and the trends found in the data. Nevertheless, the modelling process for failure data 

can now begin. The first step in this process determines the trends that lie in the data. 

 

3.3 Trend test methods  

In deciding on the correct analysis technique to use on a set of failure data, it is imperative to determine the 

correct trend in the data. This will enable one to ascertain whether an upward trend technique or a no-trend 

technique should be used, as shown by the green outline in Figure 3.1. Asekun and Fourie (2015) state that 

statistical hypothesis tests such as the graphical method, the Laplace trend method, and the Lewis-Robinson 

method are effective ways to establish if a trend is present in the inter-arrival failure times for different sets 

of data.  

Figure 3.3 outlines the process that will be used to determine what type of analysis technique will be utilised 

to analyse the failure data.  
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Figure 3.3: Trend test logic, adapted from Coetzee (1997) 

 

It is clear from Figure 3.3 that establishing the type of trend present in the data is at the core of the final 

decision about the analysis technique that should be used to analyse the failure data. This suggests the need 

to put a strong emphasis on trend test methods since they play a vital role in the outcome of the analysis. 

 

3.3.1 Graphical trend test  

The graphical trend test is the most basic method that can be used to determine whether a trend is present 

in a given set of data. The test is achieved by plotting the cumulative number of failures against the 

cumulative operating time. This can be seen in Figure 3.4. 
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Figure 3.4: Graphical trend test analysis (Asekun & Fourie, 2015) 

From Figure 3.4 it is evident that if the plot results in a straight line, no trend is present in the failure data; 

if the plot results in a convex shape, it indicates an increasing failure trend; and, if the plot results in a 

concave shape, there is an improvement with age (Asekun and Fourie, 2015). Coetzee (1997) states that the 

graphical method cannot be used on its own to reach a conclusive answer about the trend in the data. To be 

effective, it must be used in conjunction with another method.  

3.3.2 Laplace test 

The Laplace test, also commonly known as the centroid test, is a data trend test that compares the centroid 

value of an observed set of data to the midpoint of the period of observation. The main purpose of this test 

is to determine whether a trend exists in the dataset. The appropriate data analysis tool can then be applied 

to analyse the failure data. The hypothesis test is: 

𝐻0: HPP 

𝐻𝑎: NHPP 

Asekun and Fourie (2015) state that under Ho and conditional Tn, …, Tn–1, the assumption is that the first 

(n – 1) arrival times are uniformly distributed on (0, Tn). The test statistic for the Laplace trend test can be 

seen in Equation 3.1:  

𝐿 =  

1
𝑛 − 1

∑ 𝑇𝑖 −
𝑇𝑛
2

𝑛−1
𝑖=1

𝑇𝑛 [
1

12(𝑛 − 1)
]

1/2
 

where 𝑛 = number of failures and 𝑇𝑖 = 𝑖𝑡ℎ failure arrival time. 

[3.1] 
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Coetzee (1997) states that L has a standard normal distribution at a 5% level of significance with the 

assumption that the null hypothesis of the data is independent and identically distributed. Figure 3.5 shows 

the results of the Laplace trend test. 

 

 

 

 

 

 

 

 

Using Figure 3.5, the results of the Laplace trend test are as follows: if 𝐿 ≥ 1.96, there is a 95% certainty 

that a significant upwards trend of the data exists, which indicates reliability degradation in the failure data. 

If 𝐿 ≤ −1.96, there is a 95% certainty that a significant downwards trend of the data exists, which indicates 

reliability improvement in the failure data. If −1 ≤ 𝐿 ≤ 1, then there is no evidence of a trend in the data, 

which suggests a noncommittal dataset. In the last two cases, when 1.96 > 𝐿 > 1 and −1 > 𝐿 > −1.96, 

this is called a grey area (Coetzee, 2015) in which the Laplace trend test is unable to give a definite answer 

about whether there is a trend present in the failure data. As a result, another trend test is needed in order 

to determine what to do with the failure data when it lies in between that range. Shaalane (2012) states that 

the Lewis-Robinson test is an alternative test that can be used, which is explained in Section 3.3.3. 

3.3.3 The Lewis-Robinson test  

As stated in Section 3.2.2, the Laplace trend test cannot give a definite answer about what trend lies in the 

data when 1.96 > 𝐿 > 1 and −1 > 𝐿 > −1.96. To overcome this, the Lewis-Robinson test has been 

developed. It is a build-on to the Laplace trend test in order to provide a definite answer about what to do 

when the failure data lies in the grey areas in Figure 3.5.  

The hypothesis test is: 

𝐻0: Renewal process 

𝐻𝑎: Non − renewal process 

The Lewis-Robinson test statistic is derived by dividing the Laplace trend test value by the coefficient of 

variation for the failure inter-arrival times (Asekun & Fourie, 2015). This can be seen in Equation 3.2. 

𝑈𝐿𝑅 =
𝐿

𝐶𝑉
 

Non-committal 

(No trend)  

-1 

Grey area 

1.96 1 0 -1.96 

Downward trend 

(Reliability 

improvement)  

Upward trend 

(Reliability 

degradation)  

Grey area 

Figure 3.5: The Laplace trend test, adapted from Shaalane (2012) 

[3.2] 
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CV is derived by using Equation 3.3 (Asekun & Fourie, 2015). 

𝐶𝑉 =  
√𝑉𝑎𝑟|𝑋|

�̅�
 

Now the rejection criteria of the Lewis-Robinson test are similar to those of the Laplace trend test, which 

are given by Reject 𝐻0 if 𝑈𝐿𝑅 > 𝑍𝛼/2 or 𝑈𝐿𝑅 < −𝑍𝛼/2 , also at a confidence interval of 95%. 

3.3.3.1 Laplace trend test example  

An example of how the Laplace trend test works in practice is shown in this section. The reason is to better 

illustrate the use of the test in practice and to show the outcome of the test results. An example set of data 

from Coetzee (1997), comprised of 23 failure events, can be seen in Table 3.1 which shows the inter-arrival 

times and the failure arrival times of the data points. 

Table 3.1: Laplace trend example data 

Observed example 

failure point 

Failure inter-arrival 

times (𝒕𝒊) (hours) 

Observed example 

failure point 

Failure inter-arrival 

times (𝒕𝒊) (hours) 

1 74 13 60 

2 84 14 71 

3 62 15 43 

4 21 16 104 

5 49 17 84 

6 52 18 94 

7 59 19 79 

8 92 20 123 

9 44 21 95 

10 110 22 45 

11 76 23 76 

12 92   

Using the information in Table 3.1 as well as Equation 3.1, the following results from a Laplace trend test 

were found: 

where: 

∑ 𝑇𝑖

𝑛−1

𝑖=1

= 17296 

[3.3] 
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∴ 𝐿 =  

1
23 − 1

× 17296 −
1686

2

1689 [
1

12(23 − 1)
]

1/2
= −0.561 

From the result it is evident that the Laplace value is –0.561. This suggests there is no trend in the dataset, 

according to Figure 3.5, and that an appropriate model can now be used to analyse the failure data.  

3.4 Goodness of fit tests  

Goodness of fit (GOF) tests are used to determine whether a certain model fits a given dataset with enough 

certainty. In technical terms, GOF tests determine how well a specific probabilistic distribution fits an actual 

dataset and whether the probabilistic distribution can be used to emulate the actual dataset. Some of the 

most common GOF tests available in the literature are analytical tests. These involve specifying a test 

statistic, which is the distance between the probabilistic distribution and the actual data. From here, the 

model accuracy can be obtained. GOF tests are imperative to the development of the overall maintenance 

model as they determine certainty and trust around the application of the different failure models. In the 

literature, various GOF tests are available to test whether a certain distribution is suited to a dataset. The 

most common tests include the Chi-squared test, the Anderson-Darling test, the Shapiro-Wilk test and the 

Kolmogorov-Smirnov test. For the balance of the discussion in this section, the GOF test is limited to the 

Kolmogorov-Smirnov (K-S) test.  

The K-S test is a non-parametric test used to model adequacy tests for continuous distributions. It is used 

to compare the empirical cumulative distribution function with a fitted or hypothesised parametric 

cumulative distribution function, as stated by Leemis (2009). Unlike many of the other GOF tests such as 

the Chi-squared test, the K-S test does not suffer from arbitrary interval limitations or dataset sizes, which 

suggests it is a dynamic test that can be used in different scenarios (Leemis, 2009).  

The basis of the K-S test is two hypotheses, as seen in Equations 3.4 and 3.5. 

𝐻0: The data follows a specified distribution 𝐹𝑛(𝑥) = 𝐹0(𝑥) 

𝐻1: The data does not follow the specified distribution 𝐹𝑛(𝑥) ≠ 𝐹0(𝑥) 

If the null hypothesis, as seen in Equation 3.4, is failed for rejection, it suggests that the fit between the 

actual data and the probabilistic distribution is a good enough fit. This means that the probabilistic 

distribution can be used to approximate the actual data. If the null hypothesis is rejected, it means that the 

probabilistic distribution cannot be used to approximate the actual data as the fit is not good enough. The 

main outcome of the K-S test is to determine a test statistic, which is the largest vertical distance between 

the empirical cumulative distribution and the fitted cumulative distribution. This can then be compared to 

a critical value to determine whether the null hypothesis can be rejected. In order to establish the K-S test 

statistic, the following methodology can be used. 

The empirical distribution function 𝐹𝑛(𝑥) is given in Equation 3.6. 

𝐹𝑛(𝑥)  =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 ≤ 𝑥

𝑛
=  

1

𝑛
∑ 𝑋𝑖 ≤ 𝑥

𝑛

𝑖=1

 

[3.5] 

[3.4] 

[3.6] 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

37 

 

The K-S test statistic determines the largest vertical difference between the empirical function and the 

hypothesised function at each 𝑋𝑖 and can be calculated using Equation 3.7. 

𝐷𝑛 =  𝑠𝑢𝑝𝑥 |𝐹𝑛(𝑥) −  𝐹0(𝑥)| 

Leemis (2009) states that one of the best methods to compute 𝐷𝑛 is to follow Equations 3.8 – 3.10:  

𝐷𝑛
+ =  max

𝑖=1,2,…𝑛
(

𝑖

𝑛
− 𝐹0(𝑥𝑖)) 

𝐷𝑛
− =  max

𝑖=1,2,…𝑛
( 𝐹0(𝑥𝑖) −

𝑖 − 1

𝑛
) 

𝐷𝑛 = {𝐷𝑛
+, 𝐷𝑛

− } 

Once 𝐷𝑛 has been computed, it can be compared to some critical value. If 𝐷𝑛 exceeds this critical value, 

the null hypothesis is rejected. The test condition for this is given in Equation 3.11. 

𝐷𝑛 >  𝑐𝑛 

The critical value for the K-S test can be obtained from the K-S one-sample statistical table. 

  

3.5 Repairable systems analysis 

Once a trend test has been applied to a certain dataset that results in an upward trend, then the following 

budgetary modelling technique should be applied to that set of data, as seen by the orange outline in Figure 

3.1. A repairable system can be defined as a system that undergoes some form of repair that restores it to a 

functioning operation using any possible method, other than replacement of the entire system. Coetzee 

(1997) states that renewal theory is common practice in many instances, especially when only a component 

is being examined and not an entire system. However, when there is reliability degradation and an increase 

in the failure rate, repairable systems analysis is the correct choice.  

Coetzee (2015) states that by using repairable systems, a system can be returned to one of the following 

states of repair (see Section 2.4.2), depending on the type of system and the disrepair of the current system: 

‘as good as new’, ‘as bad as old’, ‘better than old but worse than new’, ‘better than new’ and ‘worse than 

old’ (Coetzee, 2015). When conducting the analysis for non-repairable systems, it can be assumed that the 

failure data is identically distributed and independent. This same assumption cannot be made for repairable 

systems, which means that a different technique is needed to analyse the failure data.  

Coetzee (1997) affirms that there are generally two models accepted in literature related to the analysis of 

repairable systems. Both models analyse the non-homogenous data using the non-homogenous Poisson 

Process (NHPP). The first NHPP model was introduced by Cox and Lewis (1966), and the rate of change 

of frequency (ROCOF) for this model can be seen in Equation 3.12. 

𝜌1(𝑇) =  𝑒𝛼0+𝛼1𝑇 

with:      −∞ < 𝛼0, 𝛼1 < ∞ and 𝑇 ≥ 0 

[3.12] 

[3.7] 

[3.11] 

[3.10] 

[3.9] 

[3.8] 
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Coetzee (1997) states that the first model represents repairable systems best when 𝛼1 > 0. The second 

proposed NHPP model is the ‘Power Law Process’, and the ROCOF for the model can be seen in Equation 

3.13, as stated by Crow (1974).  

𝜌2(𝑇) =  𝜆𝛽𝑇𝛽−1 

with:         𝜆, 𝛽 > 0 and 𝑇 ≥ 0 

Coetzee (1997) states that the second NHPP model represents repairable systems best when 𝛽 > 1. If 𝛽 =
2, it results in a linearly increasing failure rate.  

3.5.1 Standard functions  

The regression model that describes the failure rate of a certain system over a long-term period or time (T) 

is described in this section for both the first and second NHPP models. This model will be used to optimise 

the maintenance strategy by employing the cost-optimisation techniques explained in Section 3.5.3.  

First model: 

From the definition of a non-homogenous Poisson process (see Section 2.7.3), the expected number of 

failures (N) in a certain interval (T1, T2) can be computed using Equation 3.14. 

𝐸{𝑁(𝑇2) − 𝑁(𝑇1)} =  
𝑒𝛼0

𝛼1

(𝑒𝛼1𝑇2 − 𝑒𝛼1𝑇1) 

with:      −∞ < 𝛼0, 𝛼1 < ∞ and 𝑇1, 𝑇2 ≥ 0 

Next, the survival function for the first NHPP model in an interval (T1, T2) can be computed using Equation 

3.15. This function gives the probability that a system will survive up to a certain point in time.  

𝑅(𝑇1, 𝑇2) =  𝑒
−

𝑒𝛼0

𝛼1
(𝑒𝛼1𝑇2−𝑒𝛼1𝑇1)

 

with:      −∞ < 𝛼0, 𝛼1 < ∞ and 𝑇1, 𝑇2 ≥ 0 

Finally, the mean time between failures (MTBF) in an interval (T1, T2) can be calculated using Equation 

3.16. This function is important in terms of optimising the maintenance strategy as it gives a finite answer 

to the MTBF. This allows for the prevention of failure if the correct strategy is implemented using the 

MTBF.  

𝑀𝑇𝐵𝐹(𝑇1, 𝑇2) =  
𝛼1(𝑇2 − 𝑇1)

𝑒𝛼0(𝑒𝛼1𝑇2 − 𝑒𝛼1𝑇1)
 

with:      −∞ < 𝛼0, 𝛼1 < ∞ and 𝑇1, 𝑇2 ≥ 0 

 

 

[3.13] 

[3.14] 

[3.15] 

[3.16] 
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Second model: 

As in the first NHPP model, all the NHPP functions of the second model can be seen in Equations 3.17 – 

3.19. Equation 3.17 shows the expected number of failures.  

𝐸{𝑁(𝑇2) − 𝑁(𝑇1)} = 𝜆(𝑇2
𝛽 − 𝑇1

𝛽) 

with:         𝜆, 𝛽 > 0 and 𝑇1, 𝑇2 ≥ 0 

Equation 3.18 shows the survival function for the second NHPP model.  

𝑅(𝑇1, 𝑇2) =  𝑒𝜆(𝑇2
𝛽−𝑇1

𝛽) 

with:         𝜆, 𝛽 > 0 and 𝑇1, 𝑇2 ≥ 0 

Equation 3.19 shows the MTBF of the second NHPP model.  

𝑀𝑇𝐵𝐹(𝑇1, 𝑇2) =  
(𝑇2 − 𝑇1)

𝜆(𝑇2
𝛽 − 𝑇1

𝛽)
 

with:         𝜆, 𝛽 > 0 and 𝑇1, 𝑇2 ≥ 0 

 

3.5.2 Parameter estimation  

To solve all the standard function equations as seen in Section 3.5.1 for the first and second NHPP models, 

a number of variables need to be resolved first. Coetzee (1997) proposes a method in which this can be 

done.  

First model:  

Using the maximum likelihood theory, the parameters for the first NHPP model can be computed. These 

parameters include α1 and α0 which can be seen in Equation 3.12. The first parameter α1 can be computed 

through an iterative process using Equation 3.20. The iterative process can be performed using 

mathematical tools such as Microsoft Excel.  

∑ 𝑇𝑖 + 𝑛𝛼1
−1 − 𝑛𝑇𝑛{1 − 𝑒−𝛼1𝑇𝑛}−1 = 0 

𝑛−1

𝑖=1

 

Once α1 has been computed, α0 can be found by substituting α1 into Equation 3.21. 

𝛼0 = ln {
𝑛𝛼1

𝑒𝛼1𝑇𝑛 − 1
} 

 

[3.17] 

[3.18] 

[3.19] 

[3.20] 

[3.21] 
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Second model: 

As in the first NHPP model, the parameters of the second model can be estimated using the maximum 

likelihood theory which results in the computation of Equations 3.22 – 3.23. 𝛽 𝑎𝑛𝑑 𝜆 from Equation 3.5 

are the two variables that need to be calculated in order to compute the standard function.  

𝛽 =
𝑛

∑ 𝐿𝑛
𝑇𝑛
𝑇𝑖

𝑛
𝑖=1

 

𝜆 =
𝑛

𝑇𝑛
𝛽

 

Unlike the first NHPP model, no iteration is needed to calculate the parameters; thus, the failure data can 

be substituted straight into Equation 3.14 to calculate 𝛽. Once 𝛽 has been calculated, it can be substituted 

into Equation 3.23 and 𝜆 can be computed.  

3.5.3 Cost modelling  

Using all the parameters and estimates found in Sections 3.5.1 and 3.5.2, an optimum cost model for both 

the first and second NHPP models can be obtained, as found by Coetzee (1997). The output of this cost 

model results in an optimum cost per unit time in maintaining a certain system, as well as an optimum 

replacement age for the system. These two factors can be used to determine the budgetary requirements of 

the system in a specific year. Coetzee (1997) states that two different types of cost policies can be 

implemented to find the optimum replacement interval. The first policy involves determining the optimum 

replacement age based on minimal repairs at breakdown at a certain age. The second policy involves 

replacement of the system after the optimum number of failures of the system have been minimally repaired. 

Coetzee (1997) asserts that the second policy is superior to the first policy since the system is only replaced 

at the end of the last minimal repair, meaning that the entire life of the final repair is utilised and not cut 

short, as in the first policy. 

First model: 

Equation 3.24 shows the optimum replacement time for the first NHPP model, using the first policy. An 

iterative process is used to calculate the optimum replacement time 𝑇∗.  

𝑃𝑜𝑙𝑖𝑐𝑦 1: 𝑒𝛼1𝑇∗
(𝑇∗ −

1

𝛼0
) =

𝐶𝑝

𝐶𝑓𝑒𝛼0
−

1

𝛼1
 

Equation 3.25 shows the optimum number of failures that need to occur before replacement takes place, 

using the second policy. The variable 𝑚 is needed to find the solution. An iterative process in Equation 

3.26 is used to calculate this variable, as seen in Coetzee (1997).  

𝑃𝑜𝑙𝑖𝑐𝑦 2: 𝑛∗ =
(𝑚 − 1)𝑒𝛼0

𝛼1
 

𝑚

𝛼1
(ln(𝑚 − 1)) =

𝐶𝑝

𝐶𝑓𝑒𝛼0
−

1

𝛼1
  

[3.23] 

[3.22] 

[3.24] 

[3.25] 

[3.26] 
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Once both 𝑇∗ 𝑎𝑛𝑑 𝑛∗ have been computed, an optimum decision can be reached. 

Second model: 

For the second model, Equations 3.27 and 3.28 show the optimum replacement age based on time and the 

number of failures respectively. The second NHPP cost model does not require any iterations and values 

can be substituted directly into Equations 3.27 and 3.28. 

𝑃𝑜𝑙𝑖𝑐𝑦 1:  𝑇∗ =  [
𝐶𝑝

𝜆(𝛽 − 1)𝐶𝑓
]

1
𝛽

 

𝑃𝑜𝑙𝑖𝑐𝑦 2:  𝑛∗ =
𝐶𝑝

𝐶𝑓(𝛽 − 1)
 

The final step in the cost-optimisation analysis is to give a graphic representation of the replacement cost 

versus time to illustrate the importance of cost optimisation. This is done using Equation 3.29. 

𝐶(𝑡) =  
𝐶𝑓𝐸[𝑁(𝑡)] + 𝐶𝑝

𝑇
 

The optimum cost determined from the minimum point in the graphic developed from the use of Equation 

3.29 can be transformed into a yearly cost. This will be the annual budgetary cost in the preventive 

maintenance of a certain system.  

3.5.4 Illustrative example  

To illustrate the repairable systems model, an example is given. The failure data used in the example is for 

a Caterpillar 789 180 ton haul truck, as published by Coetzee (1996). The failure data can be seen in 

Appendix C. The cost figures for replacement of the system are $1 300 000 and the cost of minimal repair 

is $7 165 (Coetzee, 1997). Using this information, the analysis can begin.  

The first step in the analysis is to determine whether there is a trend in the dataset. This is done through the 

Laplace test, using Equation 3.1. The outcome of the Laplace test using the data seen in Appendix C is 6.94, 

which shows there is a significant trend in reliability degradation. This means that repairable systems 

analysis can be used for the analysis.  

The first NHPP model was used for the rest of the analysis. Using an iterative process, 𝛼1 𝑎𝑛𝑑 𝛼0 were 

found, as seen in Table 3.2.  

 

Table 3.2: Repairable systems parameters 

Parameter Value 

𝛼1 0.000107 

𝛼0 –6.545 

 

[3.27] 

[3.28] 

[3.29] 
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From Table 3.2 it can be seen that 𝛼1 > 0, which means that the original assumption to use the first NHPP 

model was correct. Using 𝛼1 and 𝛼0, Figure 3.6 was produced to show the results of all the standard 

functions in Section 3.5.1. 

 

Figure 3.6: Repairable systems standard function graphs 

 

It is clear in Figure 3.6 that the failure data results in an increasing failure rate and an increasing expected 

number of failures versus time. Again, this shows the presence of reliability degradation and the benefit of 

using maintenance optimisation to reduce overall system costs. By applying the failure data and Equations 

3.27 and 3.28, the optimum replacement time based on age and the number of failures can be found using 

an iterative process in Microsoft Excel. 

𝑇∗ = 21 284 hours and 𝑛∗ = 118 failures 

Thus, according to the repairable systems model, it would be most economical to replace the system after 

21 284 hours or after 118 failures have occurred with minimal repair actions taken. Using Equation 3.29, 

the optimum cost graph was computed as seen in Figure 3.7.  
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Figure 3.7: Repairable systems cost graph, recreated from Coetzee (1997) 

Figure 3.7 shows that the optimum replacement cost is $100.74/hour, which correlates to the optimum 

replacement time 𝑇∗. It also demonstrates that the system is sensitive to this optimum replacement time, 

which means that system replacement too early or too late will result in a large additional cost. This 

indicates the importance of maintenance optimisation for repairable systems analysis. The optimum 

replacement cost can be transformed into a budgetary cost of $882 482 per year, which is the annual cost 

that an organisation needs to budget to ensure the system keeps up and running with the implementation of 

preventive maintenance. 

 

3.6 Non-repairable systems analysis  

Non-repairable systems analysis deals with components and, in rare cases, systems in which replacement 

and/or reconditioning occurs. It is assumed that the component or system is left in as ‘good as new 

condition’. The most common process used in this analysis is the renewal theory, as stated by Coetzee 

(1997), which applies a statistical approach to solve the problem. The renewal theory makes use of the 

Weibull distribution, which has proved to be the most versatile distribution in terms of its ability to emulate 

other distributions. Further discussions can be found in Section 3.6.5.  

For non-repairable systems analysis to take place, no trend in the failure data can be present, as found by 

using the Laplace test. It is also assumed that the data being analysed is independent and identically 

distributed.  

3.6.1 Standard functions  

This section explains the renewal theory standard functions that will be used throughout the analysis, in 

which the two-parameter Weibull distribution is used. 

The failure density of a component is given in Equation 3.30, which shows the probability of failure of a 

component over its own life, as stated by Coetzee (1999). At any specified point in the life of the component, 

the probability of failure is given at that exact moment in time.  
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𝑓(𝑡) =  
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

𝑒
−(

𝑡
𝜂

)
𝛽

 

The cumulative failure distribution of a component is given in Equation 3.31. It states the probability that 

a component would have failed before or at that point in time during its life, as stated by Coetzee (1999). 

The cumulative failure distribution always starts at zero since the probability of failure is assumed zero for 

a new component. It will always end at one since it is a given that components will eventually fail.  

𝐹(𝑡) = 1 − 𝑒
−(

𝑡
𝜂

)
𝛽

 

The survival function of a component is given in Equation 3.32, which states the percent probability that a 

component will survive up to a certain point in time. This is a useful function as it indicates the exact 

percentage of the number of components that have survived up to a specific point in time.  

𝑆(𝑡) =  𝑒
−(

𝑡
𝜂

)
𝛽

 

Equation 3.33 shows the hazard function of a component, which Coetzee (1999) states is the most useful 

function. It presents the probability that a component will fail at a certain age, given that it has survived up 

to that age. It can also be regarded as a measure of the risk of failure of a component at a certain age 

(Coetzee, 1999).  

𝑧(𝑡) =
𝛽

𝜂
(

𝑡

𝜂
)

𝛽−1

  

The hazard function can tell a lot about the type of maintenance strategy that should be employed in a 

system to result in the most economical decision. If the hazard function decreases with time, meaning that 

β < 1, then it is not viable to apply preventive-based maintenance since the risk of failure will not be lower 

than before the maintenance took place. If the hazard function increases, meaning that β > 1, preventive 

maintenance actions can be employed since these will result in a decrease in the hazard of the component. 

However, before any maintenance task can be applied to a system or component, it is essential to consider 

the economics to ensure the implementation of the most economical option. 

3.6.2 Parameter estimation  

In order to determine the standard functions in Section 3.6.1, two parameters – β and η – need to be 

established first. While β is the shape parameter – meaning changes in this parameter will directly change 

the shape of the results of the standard functions, η is the scale parameter – meaning changes to this 

parameter will alter the scale of the results of the standard functions. To determine the two parameters, the 

maximum likelihood method is used. This results in a likelihood function as seen in Equation 3.34, stated 

by Coetzee (1997).  

𝑙𝑛𝐿(𝛽, 𝜂) =  ∑(𝑙𝑛𝛽 − 𝛽ln (

𝑛

𝑖=1

𝜂) + (𝛽 − 1) ln(𝑡𝑖) − (
𝑡𝑖

𝜂
)

𝛽

)  

[3.30] 

[3.31] 

[3.32] 

[3.33] 

[3.34] 
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Solving for Equation 3.34 results in Equations 3.35 and 3.36. 

1

𝑛𝑖
∑ ln (𝑡𝑖)

𝑛

𝑖=1

=
∑ 𝑡𝑖

𝛽𝑙𝑛(𝑡𝑖)𝑛
𝑖=1

∑ 𝑡𝑖
𝛽𝑛

𝑖=1

−
1

𝛽
 

𝜂 =  [
∑ 𝑡𝑖

𝛽𝑛
𝑖=1

𝑛
]

1
𝛽⁄

 

An iterative approach is used to solve for β in Equation 3.35. Once β has been iteratively computed using 

a tool such as Microsoft Excel, η can be computed to find the standard functions.  

3.6.3 Cost modelling  

One of the most important outcomes of the entire renewal analysis is to determine the optimum cost of 

replacement of the component on which the analysis is being performed. This is a major aspect that must 

be considered when making a decision about a specific component, and the main factor to incorporate into 

a yearly budget for an organisation. To calculate this, the standard functions in Section 3.6.1 will be used 

as well as the expected life of the system, resulting in an optimum cost function as seen in Equation 3.37 

(Coetzee, 1997). 

 

𝐶(𝑡𝑝) =  
𝐶𝑝𝑅(𝑡𝑝) + 𝐶𝑓[1 − 𝑅(𝑡𝑝)]

(𝑡𝑝+ 𝑇𝑝)𝑅(𝑡𝑝) +  ∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑡𝑝

−∞
+ 𝑇𝑓[1 − 𝑅(𝑡𝑝)]

 

 

Equation 3.37 works by adding up the total cost of prevention and failure and dividing this by the total 

expected life of the component. 𝐶𝑝𝑅(𝑡𝑝) is seen as the preventive cost, while 𝐶𝑓[1 − 𝑅(𝑡𝑝)] is regarded as 

the cost of failure. 𝐶𝑝 is the cost of preventive maintenance and 𝐶𝑓 is the cost of failure. The resulting 

equations for these variables can be seen in Equations 3.38 and 3.39 respectively.  

𝐶𝑝 = Labour costs + Material costs + Reconditioning costs 

𝐶𝑓 = Labour costs + Material costs + Downtime × Production loss + Reconditioning costs 

The use of Equation 3.37 will result in a cost-optimisation graph that will allow the user to make various 

decisions leading to the determination of the most economical replacement age of the component. It will 

also enable the user to ascertain the cost consequences if the optimum replacement age is not followed. 

This makes this graph one of the most important functions of decision making. The output of this graph 

will also be incorporated into the annual budget of an organisation for preventive maintenance. 

3.6.4 Illustrative example of non-repairable systems analysis  

A hypothetical example is given to illustrate the decision-making process related to using the non-repairable 

systems analysis techniques. The data is the same as that used in the illustrative example in Section 3.3.3.1 

[3.36] 

[3.35] 

[3.37] 

[3.39] 

[3.38] 
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from Coetzee (1997). Table 3.1 outlines the life of a bearing given in days; it is assumed that if the bearing 

fails, the entire assembly fails too. It is also assumed that all maintenance activities take place during 

planned maintenance periods. The cost of preventive maintenance is R4 808 and the cost of failure is 

R28 808, as outlined by Coetzee (1997).  

In Section 3.3.3.1 it was already found that the Laplace value is –0.561, which means that the data is 

noncommittal and non-repairable systems analysis can take place. Using Equations 3.35 and 3.36 and an 

iterative process on Microsoft Excel, β and η can be computed, as seen in Table 3.3. 

Table 3.3: Weibull parameters 

Weibull parameters Value 

β 3.38 

η 81.80 

 

Using the values in Table 3.3 and Equations 3.30 – 3.33, Figure 3.8 can be produced to show the results of 

all the standard functions given in Section 3.6.1. All the standard function graphs will allow various 

decisions to be made about the component as they show the probability of survival and the risk of failure 

as time progresses.  

 

Figure 3.8: Non-repairable systems standard function graphs 

Figure 3.8 shows that the example results in an increasing hazard function with time. This means that 

preventive maintenance tactics can be applied since they will result in a hazard reduction when implemented 
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(Coetzee, 1999). Using the information given in the standard function graphs, the optimum cost graph can 

be computed using Equation 3.37, as seen in Figure 3.9. 

 

Figure 3.9: Non-repairable systems optimum cost graph, recreated from Coetzee (1997) 

Figure 3.9 shows a major dip in the graph, which suggests that preventive maintenance actions will result 

in a large reduction in cost when compared to leaving the component to fail. The optimum results and run 

to failure (RTF) results can be seen in Table 3.4. 

 

Table 3.4: Non-repairable systems decision-making data 

Decision factor Value 

Optimum replacement age  40 days 

Optimum replacement cost  R174.07 

Probability of failure @ optimum 8.5% 

Run to failure cost  R392.11 

 

Table 3.4 demonstrates that there is a huge difference between the optimum replacement cost and the run 

to failure cost. The difference between the two costs is 125.3%, which shows that if the component was left 

to run to failure, the company would experience huge cost detriment. In addition, the probability of failure 

at the optimum is only 8.5%. This indicates that the optimum replacement cost is a safe option and the 

replacement age could be extended if needed, although it would result in additional cost. The above example 

emphasises that it is imperative for non-repairable systems analyses to take place to ensure the correct 

expenditure within a company and to reduce maintenance costs.  
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3.6.5 Flexibility of the Weibull distribution  

The Weibull distribution is a highly versatile distribution that can take on the shape of a variety of other 

distributions just by altering the shape parameter β. Figure 3.10 outlines this versatility simply by altering 

β. 

 

Figure 3.10: Flexibility of Weibull distribution with varying beta values 

Von Petersdorff (2013) lists some of the distributions that the Weibull distribution can model by changing 

the β value: 

 β = 1 is equivalent to the exponential distribution  

 β = 2 is equivalent to the Rayleigh distribution  

 1 < β < 3.6 approximates the log normal distribution  

 3 < β < 4 approximates the normal distribution  

 β = 5 approximates the peaked normal distribution.  

Figure 3.10 shows that the Weibull distribution can model different failure distributions just by changing 

the value of β. This is an important characteristic of the Weibull distribution because it means there is no 

need to develop different models for various types of failure data. In addition, different factors can be 

obtained by looking at the β value and the hazard function graph in Figure 3.10. If β is less than 1, the result 

is a decreasing hazard rate. This suggests that preventive maintenance should not be implemented since it 

will not decrease that hazard. If β is greater than 1, the result is an increasing hazard rate in which the larger 

the value of β, the greater the increase. This makes it imperative to implement a preventive maintenance 

technique. 
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3.7 Non-repairable systems yearly budgetary validation model  

As stated is Section 1, one of the main outcomes of this research is to determine the yearly budget of an 

organisation through the implementation of all the different preventive maintenance techniques discussed 

in Section 2. In Section 3.6 the non-repairable systems analysis model was discussed; it found the optimal 

age to replace a component within a system based on the minimisation of cost. This was done using the 

renewal theory. A core disadvantage of this model is that it outputs an average cost per unit time as a result 

of the integral function in Equation 3.37. This means that determining an annual budget for an organisation 

using the optimal cost outputted by the model would result in an average yearly budget. This suggests that 

a lot of variability exists around this budget. It also implies that the budget presented is more likely to be 

an average representation of the cost in a specific year rather than an accurate representation of the probable 

budget. In terms of the overall budgetary requirements of an organisation, this variability in the budget may 

not be acceptable. More certainty around the budget is sure to be needed. This section outlines a 

methodology that can be followed in order to create more certainty around the answers found using the 

model discussed in Section 3.6. It was achieved through the development of an extensive program using 

Monte-Carlo simulations. 

 

3.7.1 Development of yearly budget using renewal theory only 

This section outlines the process that is used to determine the budgetary requirements of an organisation if 

the model presented in Section 3.6 is utilised. This model focuses on determining the optimal age to replace 

a component within a system by finding an optimum balance between the number of failure and preventive 

actions in a certain time frame, as stated by Coetzee (1997). It is evident from Section 3.6.3 and Equation 

3.37 that this optimal age is found by minimising the cost that is given per unit time. However, using the 

output of Equation 3.37, Equation 3.40 can be applied to determine the cost of maintaining a certain 

component over a specified time period.  

𝐶𝑏𝑢𝑑𝑔𝑒𝑡 =  𝐶(𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑎𝑔𝑒) × 𝑇𝑏 

where:  𝑇𝑏 is the specified budgetary time period considered.  

Thus, from Equation 3.40, it is evident that the budgetary cost outputted is an average over the specified 

time period as a result of the cost per unit time being computed as an average in Section 3.6.3. Since this 

budget is an average, there is only a 50% chance of it being reached within the specified time period. This 

uncertainty around the budget is not ideal as there is insufficient confidence around this output. The result 

is too risky if the answer were to be taken as the final budgetary requirement. Aware of the flaw in this 

preventive maintenance model, the author developed a novel model that allows for a choice with confidence 

around the budget.  

 

3.7.2 Development of yearly budget using renewal theory and confidence intervals  

In Section 3.6 it was found that using the renewal theory with the relevant cost optimisation model resulted 

in a budget that represented an average for a specific period with limited confidence surrounding it. This 

section illustrates a methodology that can be implemented in conjunction with the renewal theory in order 

to create more confidence around an outputted budget.  

[3.40] 
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In order to aid the simulation methodology to be explained, a general diagrammatic overview of the 

functioning and processing of the simulation is illustrated in Figure 3.11. 

 

 

Figure 3.11: Diagrammatic simulation methodology 

The optimum replacement time has been determined as the time at which, on average, the minimum cost 

per unit time, calculated using Equation 3.40, would be incurred.  By definition, should this minimum 

average cost be used to determine an annual budget, in approximately 50% of years, the actual cost would 

be lower (fewer than the average failures would precede a preventative replacement) and in 50% of years, 

the actual cost will be higher  (more than the average failures would precede a preventative replacement).  

This implies that using the average optimal cost as a budget, gives only a 50% confidence level that the 

budget would not be exceeded in any given year. 

Since the outcome required from this exercise is an annual budget, given that the optimal replacement 

strategy is implemented, it is argued that it is necessary to provide a budget value as a function of confidence 

level, to decision makers.  To achieve this goal, a Monte Carlo simulation was employed. 

Figure 3.11 outlines the processes and functions used to generate the simulation. The first step of the 

simulation process is to fit the Weibull distribution to the original field data. Thereafter, the KS test is used 

to determine whether the Weibull distribution can be used to approximate the original data. Once this test 

has been completed, new random failure data can be generated using the original Weibull parameters from 

the field data. This random failure data is stored in an array. From this array, another array can be generated 
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to store the number of failures within a yearly period ascertained from the random failure data. The 

simulation can then be repeated a number of times in order to store all the data in an array. Once this process 

has been completed, the Weibull distribution is chosen again to be fitted to the failure count array. Using 

the outputted Weibull parameters, confidence intervals around the budget can be computed for a yearly 

period. 

This model is built on the basis that, instead of assuming an average cost of preventive maintenance for a 

specific period as the renewal theory does, simulations are run that generate failure data using the Weibull 

parameters. The actual number of failure and preventive actions within a certain period are recorded, which 

then allows a budgetary cost to be computed. The simulations are run n times in order to create confidence 

intervals around the outcome. Figure 3.12 outlines the simulation methodology that is followed where the 

Monte-Carlo methodology is seen as the driving element behind the simulation. 

 

Figure 3.12: Novel Monte-Carlo simulation methodology for yearly budget 

 

It is evident from Figure 3.12 that, before a simulation can take place, a state needs to be chosen for a 

specific annual period. Either a state of ‘0’ which refers to a corrective maintenance strategy, or a state of 

‘1’ which refers to a preventive maintenance strategy, can be chosen for a respective yearly period. Once a 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

52 

 

state is chosen, it allows for a corrective strategy to be compared to a preventive strategy for a yearly 

interval. This enables the impact of preventive maintenance to be determined.  

The next step in the simulation process is to generate failure data that is used throughout the balance of the 

simulation, following the steps presented in Figure 3.12. For the preventive case, the optimal age is 

determined by using the model presented in Section 3.6. The output of the simulation results in an array of 

data containing the number of preventive and failure actions that occur during a certain yearly period for a 

specific component. The length of the array is directly dependent on the number of simulations that are run. 

The greater the number of simulations run, the more accurate the outcome due to repeatability. The final 

step in this modelling process is to convert the array of failure and preventive actions within a yearly period 

into a cost array. This can then be compared to the average answer determined by the method discussed in 

Section 3.6. Equations 3.41 – 3.42 and Equations 3.43 – 3.47 are used to calculate this for the corrective 

and preventive case respectively.  

3.7.2.1 Corrective case  

Simulation array = [𝑓1, 𝑓2,∙ ∙ ∙ , 𝑓𝑛]  

where:   𝑓𝑛 is the number of failures counted in a yearly period.  

Simulation cost array = [𝐶𝑓 × 𝑓1, 𝐶𝑓 × 𝑓2,∙ ∙ ∙ , 𝐶𝑓 × 𝑓𝑛]  

From Equation 3.42 it is evident that only failure costs are considered in the corrective case since no 

preventive actions take place. 

 

3.7.2.2 Preventive case  

Simulation array (failures) = [𝑓1, 𝑓2,∙ ∙ ∙ , 𝑓𝑛]  

Simulation array (preventions) = [𝑝1, 𝑝2,∙ ∙ ∙ , 𝑝𝑛]  

where: 𝑓𝑛 is the number of failure actions counted in a yearly period and 𝑝𝑛 is the number of 

preventive actions counted in a yearly period.  

Simulation cost array (failures) = [𝐶𝑓 × 𝑓1, 𝐶𝑓 × 𝑓2,∙ ∙ ∙ , 𝐶𝑓 × 𝑓𝑛]  

Simulation cost array (preventions) = [𝐶𝑝 × 𝑝1, 𝐶𝑝 × 𝑝2,∙ ∙ ∙ , 𝐶𝑝 × 𝑝𝑛]  

Simulation cost array (total) = [𝐶𝑓 × 𝑓1 + 𝐶𝑝 × 𝑝1 , 𝐶𝑓 × 𝑓2 + 𝐶𝑝 × 𝑝2 ,∙ ∙ ∙ , 𝐶𝑓 × 𝑓𝑛 + 𝐶𝑝 × 𝑝𝑛 ]  

Unlike the corrective case, Equation 3.47 shows that both the preventive costs and the failure costs are 

considered when working out the total cost of preventive maintenance on a certain component.  

3.7.3 Generation of failure data 

As seen in Figure 3.12, failure data is one of the inputs into the simulation. This is not historical data but 

rather random data that has been generated using the historical data as well as the Weibull distribution. The 

[3.41] 

[3.42] 

[3.44] 

[3.43] 

[3.47] 

[3.46] 

[3.45] 
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failure data is produced utilising a Monte-Carlo simulation. The first step to running the Monte-Carlo 

simulation is determining a governing equation as the basis for the entire Monte-Carlo simulation. The 

Weibull cumulative probability density function is used as the governing equation, as seen in Equation 3.48. 

The reason is that a Monte-Carlo simulation works by creating a large quantity of random numbers which 

can then be used to generate a specific output. The output in this case is failure time, while the input is a 

random number between 0 and 1 which is the y-axis of a cumulative probability density function plot. 

Thus, it is evident that the cumulative probability density function is the appropriate equation to generate 

this failure data.  

𝐹(𝑡) = 1 − 𝑒
−(

𝑡
𝜂

)
𝛽

 

Figure 3.13 outlines how the failure data was generated using a Monte-Carlo simulation and Equation 3.48.  

 

 

 

 

 

 

 

 

 

Using Equation 3.48, Figure 3.13 was produced, which is the cumulative probability density function of a 

component. Coupled to a Monte-Carlo simulation, this function can generate failure data. The process is as 

follows: a random number of 0.6 is produced, which value is then matched to the cumulative probability 

density function. A corresponding value of 100 days is found as the failure point, as illustrated in Figure 

3.13. This process can be repeated n times in order to create n failure points. 

Through the generation and use of this random data utilising the simulation model presented in Figure 3.12, 

the variability of the model in Section 3.6 can now be found and confidence around the model can increase. 

 

3.7.4 Generation of confidence intervals through the fitting of the Weibull distribution  

Section 3.7.2 shows that the final output of the simulation is an array of cost data in which each element 

within the cost array represents the output of one simulation run. To create confidence levels in this 

outputted simulated data, it was necessary to fit it with a statistical distribution to indicate the variability 

around the dataset and the overall simulation. The Weibull distribution was chosen for this purpose. The 

[3.48] 

Figure 3.13:  Random failure data generation using Monte Carlo simulation 
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reason for the choice is the versatility of the Weibull distribution, as outlined in Section 3.6.5. Thus, 

Equation 3.35 was applied to the simulated data array to compute β and η using the method outlined in 

Section 3.6.2. This resulted in the computation of the cumulative distribution function, which showed the 

probability of a certain value being reached. It thereby enabled the determination of the variability and 

confidence levels of the simulation, which were then compared to the outcome of the average answer found 

in Section 3.6.  

3.7.5 Simulation solution procedure  

This section outlines the simulation solution procedure that is followed to gain the results from the 

simulation. These can then be compared to the average solution computed in Section 3.6. The solution 

procedure is as follows: 

1. Apply the renewal theory and cost optimisation model in Section 3.6 to gain the average optimum 

cost per unit time, as well as the optimum replacement age of a component. 

2. Generate failure data by following the procedure in Section 3.7.3. 

3. Run the simulation as outlined in Figure 3.12 with the given failure data inputs and the optimum 

replacement age input. 

4. Repeat simulation n a number of times with the results of each simulation stored in an array. 

5. Fit the Weibull distribution to the total outputted array of data using the method outlined in Section 

3.7.4. 

6. Apply Equation 3.48 to the Weibull outputted parameters. 

7. Apply the statistical test in Section 3.4 to determine whether the Weibull distribution fits the actual 

data. 

 

3.7.6 Illustrative example  

An illustrative example is presented here to outline the methodology of the simulation process and to show 

the exact workings of the model. The example uses the same bearing data published by Coetzee (1997), as 

presented in Section 3.3.3.1. The solution procedure outlined in Section 3.7.5 is followed in order to gain 

all the desired results. Following this procedure, it is evident that the first step in the simulation process is 

the application of the renewal theory and the cost optimisation model to the given set of failure data. This 

process was implemented in Section 3.6.4 where it was found that the optimum age to replace the bearings 

is every 40 days with an optimum average cost of R173.58 per day.  

Next, the average yearly budget was computed as follows: 

 

𝐶𝑏𝑢𝑑𝑔𝑒𝑡 =  𝐶(optimal age) × 𝑇𝑏  = 𝑅 173.58 × 365 = 𝑅 63 356.7 per year 

 

This average annual budget represents what it will cost an organisation per year to maintain the bearings 

preventively. Thereafter, the simulation procedure outlined in Figure 3.11 was implemented in which 

random failure data was generated using the methodology in Section 3.7.3. Following steps 2 to 6 in the 
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solution procedure with 1000 simulations run, Figure 3.14 was developed to show the results of the 

simulation.  

 

Figure 3.14: Monte-Carlo simulation results: yearly budget vs probability 

 

Figure 3.14 shows the probability of having a specific budget within a yearly period for both a preventive 

strategy and a corrective strategy. From Figure 3.14 it can be seen that the result found in Section 3.6.4 

using Coetzee (1997) method correlated to a value of R 63 356.7 which is seen as an average or 50% 

confidence if using Figure 3.14. This is shown by the red dot in Figure 3.14. From this it can be noted that 

organisations are unlikely to be satisfied with such low confidence in their annual budget for a year. 

Therefore, using Figure 3.14 allows the choice of a higher confidence and a corresponding budgetary value. 

This process enables organisations to gain a lot more certainty around their budget and a higher chance of 

not exceeding their budget within a yearly period. Figure 3.14 also shows that a preventive maintenance 

strategy results in a budget that is substantially less than a corrective maintenance strategy. This showcases 

the importance of the implementation of preventive maintenance.  

The last step in the simulation process is to determine whether the Weibull distribution can be used to fit 

the actual data outputted from the simulation. This is achieved through the choice and implementation of 

the Goodness of fit test known as the Kolmogorov-Smirnoff (K-S) test.  

The overall process for the K-S test is detailed in Section 3.4. A brief overview is presented here to illustrate 

its workings. The output of the test is defined by the following two hypotheses: 

𝐻0: The data follows a specified distribution 𝐹𝑛(𝑥) = 𝐹0(𝑥) 

𝐻1: The data does not follow the specified distribution 𝐹𝑛(𝑥) ≠ 𝐹0(𝑥) 
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The main outcome of the K-S test is to determine the maximum vertical distance between the cumulative 

probability function and the empirical distribution. This is done using Equation 3.49. 

𝐷𝑛 = 𝑚𝑎𝑥|𝐹𝑛(𝑥𝑖) − 𝐹0(𝑥𝑖)| 

 

The maximum vertical distance known as 𝐷𝑛 is the test statistic, which is then compared to a critical value 

to determine whether the null hypothesis can be rejected. Equation 3.50 gives this test condition: 

𝐷𝑛 >  𝑐𝑛 

where:   𝑐𝑛 is determined from one sample K-S test statistical table.  

Carstens (2012) states that if 𝐷𝑛 exceeds 𝑐𝑛 then there is significant evidence to reject the null hypothesis, 

which suggests that the two distributions do not fit each other well. In the simulation, there were six events 

for both the corrective case and the preventive case. Therefore, using the one sample K-S table at a 

confidence interval of 95%, 𝛼 = 0.05 results in a test statistic of 0.519 for both the corrective case and the 

preventive case. Using the procedure explained in Section 3.4, the empirical distribution function can be 

computed for the simulated data. Thus, the empirical distribution function was plotted against the Weibull 

distribution to enable the K-S test to take place. This is shown in Figure 3.15. 

 

 

Figure 3.15: Kolmogorov-Smirnoff (K-S) test: empirical vs fitted cumulative distribution functions 

 

Using Figure 3.15 and Equation 3.49, the 𝐷𝑛 critical value for the corrective case and the preventive case 

were computed. These values were found to be 0.24 and 0.25. According to Equation 3.50, therefore, these 

[3.49] 

[3.50] 
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values are both smaller than their respective test statistics which suggests there is not enough evidence to 

reject the null hypothesis. This results in an acceptable fit between the actual simulated data and the Weibull 

data. Thus, it is evident that this simulation method creates a lot more certainty around a budgetary 

requirement by using confidence intervals. This allows for the choice of a more realistic budget with a 

certain level of confidence rather than an average budget of possibilities that could take place within a 

specific yearly period. 

3.8 Non-repairable systems budgetary validation over longer periods  

In Section 3.7 a simulation methodology was outlined that showed the variability of a budget computed by 

using the renewal theory with its relevant cost optimisation model. This was achieved by developing 

confidence intervals around the budget for a yearly period. The budget for a preventive strategy was 

compared to that of a corrective strategy to enable conclusions to be drawn about the type of maintenance 

strategy to implement, based on the budget. This allows room for improvement within the model. Instead 

of simply looking at a certain annual period in which a preventive strategy can be compared to a corrective 

strategy, a finite period in years can be considered, enabling the application of a different maintenance 

technique each year within that finite period. The development of this model allows for budgets longer than 

just a year to be computed, demonstrating the effect of preventive maintenance compared to corrective 

maintenance over a finite period.  

 

3.8.1 Model development  

The model developed in this section is based on an extension of the simulation algorithm presented in 

Section 3.7. It looks at a longer period in years in which each year can be assigned a different maintenance 

technique. Figure 3.16 illustrates this methodology.  

 

 

 

 

 

 

 

 

 

 

Year 1 . Year 3 Year 2 Year m 
Strategy 1 

. 

Strategy 2 

Strategy 3 

. 

Strategy n 

Figure 3.16: Yearly maintenance technique assignment 
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According to Wu and Lewins (1992), the first step to any simulation is to define the state of the system 

before any simulation is performed. The state of a certain component within the span of a year in the finite 

period can be denoted by 𝑏𝑖. The state of the system over the entire finite period can be described by the 

vector seen in Equation 3.51 (Wu & Lewins, 1992).  

𝐵 = (𝑏1, 𝑏2,∙ ∙ ∙, 𝑏𝑖) 

In terms of this study, 𝑏𝑖 can have two possible states: one is an ‘up’ state in which preventive maintenance 

is being practised during a yearly period; the other is a ‘down’ state in which preventive maintenance is not 

being practised during the span of a year within the finite period. Wu and Lewins (1992) state that the vector 

B, given in Equation 3.51, contains the perception of what is happening in the system at a time point in its 

life. This logic is visually presented in Figure 3.16 where the solid black circles represent the practice of 

preventive maintenance and the outlined circles represent the practice of corrective maintenance.  

In Figure 3.16 it is evident that a number of different strategies exist, depending on the longer period being 

considered. Here a strategy is defined as the maintenance plan over a longer period than a year. There can 

be a full corrective strategy or a full preventive strategy over the entire period. However, in-between these 

two full strategies, a number of other strategies exist that comprise a mixture of preventive maintenance 

techniques in some years and corrective maintenance techniques in other years.  

To determine the total number of maintenance strategies that exist for a certain component over a longer 

period, binary values need to be assigned to the states that the system can be in. The author chose to assign 

a value of 1 to a system in an ‘up’ state and a value of 0 to a system in a ‘down’ state. Therefore, the total 

number of maintenance strategies that can exist for a component with two possible states over a finite period 

is:  

2𝑓𝑖𝑛𝑖𝑡𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 

 

The ‘free flight’ period is the interval in which nothing changes. The states given by Equation 3.51 are what 

occur during that interval. A collision point is where the state changes at an interval end from an ‘up’ state 

to a ‘down’ state, from a ‘down’ state to an ‘up’ state, from an ‘up’ state to an ‘up’ state, and finally from 

a ‘down’ state to a ‘down’ state. Thus, is evident that the system can change in four different ways at its 

collision points. To account for this, an algorithm must be developed that can factor in all these changes at 

the collision points over the entire finite period of the simulation.  

Continuing from the simulation methodology outlined in Figure 3.12 in Section 3.7.2, Figure 3.17 was 

developed. It demonstrates the entire simulation process that is followed when the finite period considered 

is greater than a year and collision points are present.  

[3.51] 
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Figure 3.17 shows that the outlined simulation methodology follows on from the methodology presented 

in Figure 3.11. Each of the four collision points uses one of the methods indicated by the coloured sections 

in the figure. Applying binary values to each of the collision points results in the latter being presented as 

follows: (0, 0), (0 ,1), (1, 0) and (1, 1). The development of these collision points allows the full life of the 

component to be considered when determining the age to replace the component within a specific yearly 

period. Depending on the collision point, this replacement age varies.  

In Figure 3.17, the replacement age for a collision point of (0, 0) can be found by following the green 

section; the replacement age for a collision point of (0, 1) can be found by following the red section; the 

replacement age for a collision point of (1, 0) can be found by following the blue section; and, finally, the 

replacement age for a collision point of (1, 1) can be found by following the orange section. Thus, by 

following the methodology outlined in Figure 3.17 for all the different maintenance strategies over a long 

period, cost arrays such as those developed in Section 3.7.2 can be computed. This enables the comparison 

of all the different maintenance strategies over a longer period, which shows the effect of implementing 

certain maintenance strategies over others.  

Figure 3.17: Novel Monte-Carlo simulation methodology for extended periods 
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3.8.2 Simulation solution procedure  

This section outlines the simulation solution procedure that is followed to gain the results of implementing 

all the different maintenance strategies for a certain component over a finite period. Thereby, a comparison 

between the strategies can occur. 

1. Apply the renewal theory and cost optimisation model in Section 3.6 to gain the average optimum 

cost per unit time and the optimum replacement age of a component. 

2. Develop all the maintenance strategies, depending on the finite period considered. 

3. Generate failure data, following the procedure in Section 3.7.3. 

4. Run the simulation on one maintenance strategy, as outlined in Figure 3.17, with the given failure 

data inputs and the optimum replacement age input. 

5. Terminate the simulation once the finite period has been reached. 

6. Repeat the simulation n number of times and store the results of each simulation in an array. 

7. Repeat steps 3 – 6 until all the maintenance strategies have been looked at. 

8. Fit the Weibull distribution to the total outputted array of data for each maintenance strategy, using 

the method outlined in Section 3.7.4. 

9. Apply Equation 3.48 to the Weibull outputted parameters. 

10. Apply the statistical test in Section 3.4 to determine whether or not the Weibull distribution fits the 

actual data. 

11. Compare all the different maintenance strategies over a finite period. 

3.8.3 Illustrative example  

An example is presented here to illustrate the workings of the simulation model in Figure 3.17. Following 

on from the illustrative example presented in Section 3.7.6, it was decided that instead of only looking at a 

yearly budget, a three-year budget needed to be represented, accompanied by its relevant maintenance plan. 

The number of maintenance strategies that could be implemented over the three-year period are computed 

as 23 = 8. Each maintenance strategy is presented in Table 3.5 by a vector B, in which a binary value of 0 

or 1 is used, depending on whether a preventive or corrective maintenance technique is being practised 

within a certain year.  

Table 3.5: Varying maintenance strategies over three years 

Strategy 1 𝐵 = (0, 0, 0) 

Strategy 2 𝐵 = (0, 0, 1) 

Strategy 3 𝐵 = (0, 1, 0) 

Strategy 4 𝐵 = (0, 1, 1) 

Strategy 5 𝐵 = (1, 0, 0) 

Strategy 6 𝐵 = (1, 0, 1) 

Strategy 7 𝐵 = (1, 1, 0) 

Strategy 8 𝐵 = (1, 1, 1) 

Figure 3.18 was developed by applying the simulation solution procedure outlined in Section 3.8.2, with 

1000 simulation runs for each maintenance strategy. 
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Figure 3.18: Monte-Carlo simulation results: 3 year budget vs probability for                                                    

varying maintenance strategies 

 

Figure 3.18 shows the probability of having a specific budget within a three-year period for all the different 

maintenance strategies outlined in Table 3.5. It is evident from Figure 3.18 that an entirely preventive 

maintenance strategy over the three years results in a budget that is substantially smaller than an entirely 

corrective strategy. All the other strategies lie between the entirely preventive strategy and the entirely 

corrective strategy. This indicates that an organisation can choose any one of the maintenance strategies, 

depending on how much preventive maintenance it is willing to do over a finite period of time. The effect 

of each strategy can be portrayed in terms of a budget that selects a confidence level in terms of the amount 

of reliability and certainty an organisation requires in its budget.  

The final step in the simulation process is to determine whether the Weibull distribution can be used to fit 

the actual data outputted from the simulation. This can be achieved using a Kolmogorov-Smirnoff (K-S) 

Goodness of fit test. The same procedure as outlined in the illustrative example in Section 3.7.6 was 

followed, which resulted in the computation of Figure 3.19. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

62 

 

 

Figure 3.19: K-S test 

Using Figure 3.19, Table 3.6 was drawn up to show the results of the K-S test in which 𝑐𝑛 was found at a 

value of 95% confidence where 𝛼 = 0.05. 

Table 3.6: K-S test results 

Strategy Strategy vector Number of events 𝑫𝒏 𝒄𝒏 

Strategy 1 𝐵 = (0, 0, 0) 9 0.178 0.430 

Strategy 2 𝐵 = (0, 0, 1) 33 0.157 0.231 

Strategy 3 𝐵 = (0, 1, 0) 32 0.139 0.234 

Strategy 4 𝐵 = (0, 1, 1) 33 0.137 0.231 

Strategy 5 𝐵 = (1, 0, 0) 31 0.127 0.238 

Strategy 6 𝐵 = (1, 0, 1) 42 0.145 0.210 

Strategy 7 𝐵 = (1, 1, 0) 32 0.139 0.234 

Strategy 8 𝐵 = (1, 1, 1) 20 0.148 0.294 

 

Table 3.6 shows that there was not enough evidence to reject the null hypothesis for any of the strategies, 

resulting in an acceptable fit between the actual simulated data and the Weibull data. In this illustrative 

example, it is evident that the simulation method allows for the development of a budget greater than one 

year. Certainty around the budget can also be developed using confidence intervals. Different maintenance 

strategies can be considered and the best strategy in terms of budgetary constraints can be chosen. The 
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outputted budget in this case is not an average budget as it would be if the renewal theory alone were 

applied. This results in a more realistic budget and minimises the probability of exceeding it as a confidence 

around the budget can be chosen. 

 

3.9 Opportunistic/indirect grouping model to optimise the preventive maintenance 

strategy of a multi-component system 

Section 3.6 shows that a component-based preventive maintenance strategy has been developed in which 

an optimum age and associated replacement cost have been computed. This strategy works well for 

components that do not belong to the same system and are not directly related to one another. An area in 

which it has been found that a strategy improvement can take place is the development of a multi-

component preventive maintenance strategy for one system, comprised of various components. The 

functioning of the system relies on the functioning of all the components. The reason behind the 

development of this strategy is the recognition that it is more cost effective to group maintenance activities 

for components with similar failure statistics than to optimally replace each component separately. This is 

due to the fact that it can cost a company more to shut down a system for a preventive action than not to 

replace a component at its optimum age.  

Therefore, continuing from the red section in Figure 3.1, the next model in the overall budgetary decision 

process considers n components within a system connected in series. Failure of any component in the 

system results in system failure, thus leading to complete shutdown. The overall model is based on a 

‘minimal repair and partial periodic renewal’ policy for the complete system. This means that a specific 

number of components within the system will undergo partial renewal at a certain time period during the 

life cycle of the system. Laggoune et al. (2008) state that the system undergoes partial renewal at times:  

 𝑡𝑗 = 𝑗𝜏; 𝑗 = 1, 2, … , 𝐾  

where: τ is the time interval between optimum replacements and K is the number of cycles until a 

complete overhaul.  

In contrast to this, when a failure occurs before the preventive maintenance optimum replacement age, it is 

handled using a minimal repair strategy in which the component failure rate after the minimal repair is seen 

to be the same as just before the repair (Laggoune et al., 2008). Following this ‘minimal repair and partial 

periodic renewal’ policy, after a certain number of periods (Kτ) have been reached, an opportunity arises to 

replace all the components within the system simultaneously. This is regarded as a complete system 

overhaul, resulting in the return of the system to an ‘as good as new’ state.  

The diagram in Figure 3.20 was created to outline how the different maintenance actions for the separate 

components within the system are scheduled. It shows that multiple component replacements can occur at 

different intervals, depending on the characteristics of the different components within the system. Here, τ 

is chosen as the smallest time interval based on an optimisation algorithm that is calculated using all the 

components within a system.  
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With τ as the smallest time interval in the optimisation algorithm, Figure 3.20 can be explained as follows. 

At time 𝑡1 = 𝜏, the system undergoes a partial renewal in which component 3 is the only replacement. At 

time 𝑡2 = 2𝜏, the system undergoes its second partial renewal in which components 1, 3 and 4 are all 

preventively replaced. This process continues until time 𝑡𝑘 = 𝐾𝜏, in which all the components are replaced. 

This results in a completely overhauled system, returning it to the ‘as good as new’ state.  

The total cost of system maintenance throughout the process of ‘minimal repair and partial periodic 

renewal’ includes all the failure costs over the time period analysed. These comprise, first, the cost due to 

minimal repair 𝐶𝑚𝑟; second, the partial renewal cost which is seen as the preventive maintenance cost that 

occurs at the end of each period 𝐶𝑝𝑟; and, third, the cost of a complete system overhaul which occurs at the 

end of a renewal cycle 𝐶𝑜𝑣. Equation 3.52 shows the total expected cost of maintaining a system over its 

life cycle using this method.  

𝐶𝑚𝑟 + 𝐶𝑝𝑟 + 𝐶𝑜𝑣 

Finally, the optimum cost of per unit time can be calculated using Equation 3.53, as stated by Laggoune et 

al. (2008).  

𝐶(𝑡) =  lim
𝑡 → ∞

𝐶(𝑡)

𝑡
 

 

3.9.1 Comparison of maintenance models 

To determine whether this indirect multi-component grouping method delivers better results than other 

models, a comparison is required. This section outlines the mathematics behind the variety of approaches, 

which enables this comparison to be performed. 

τ 4τ 3τ 2τ Kτ 5τ 0 

Comp 1 

Comp 2 

Comp 3 

Comp 4 

Time 

[3.52] 

[3.53] 

 

 

Figure 3.20: Grouping interval methodology 
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3.9.1.1 Single component policy 

This is the first policy to be outlined. The method makes use of a single component that is maintained 

according to the scheme of minimal repair with complete periodic renewal instead of minimal repair with 

just periodic renewal. Each component that follows this policy is maintained according to its own optimum 

strategy in which no grouping of preventive actions will occur. Laggoune et al. (2008) state that, under this 

policy, a component will fail according to the non-homogeneous Poisson process (NHPP). Gertsbakh 

(2000) states that the expected number of failures that will occur over the life cycle of the component can 

be given by Equation 3.54. 

Λ𝑖(𝜏) =  ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝜏

0

 

In Equation 3.54, 𝜆𝑖(𝑡) can be seen as the intensity function that represents the failure rate for a non-

repairable component. If the components being analysed are of a Weibull type, then the intensity function 

can be presented as seen in Equation 3.55, where 𝛽𝑖 𝑎𝑛𝑑 𝜂𝑖  are the unknowns of the Weibull function 

(Coetzee, 1997). 

λ𝑖(𝑡) =
𝛽𝑖

𝜂𝑖
(

𝑡

𝜂𝑖
)

𝛽𝑖−1

  

The integral of the intensity function in Equation 3.56 results in the computation of the mean number of 

failures for a certain component over a time period (Laggoune et al., 2008).  

Λ𝑖(𝜏) =  ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝜏𝑖

0

=  (
𝜏𝑖

𝜂𝑖
)

𝛽𝑖

  

Thus, using Equation 3.56 and incorporating cost, the cost function per unit time for the single component 

policy can be derived as seen in Equation 3.57 (Barlow & Hunter, 1960; Laggoune et al., 2008).  

𝐶(𝜏𝑖) =  
 𝐶𝑖

𝐶 ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝜏𝑖

0
 +  𝐶𝑖

𝑃

𝜏𝑖
 =  

𝐶𝑖
𝐶 (

𝜏𝑖
𝜂𝑖

)
𝛽𝑖

 +  𝐶𝑖
𝑃

𝜏𝑖
  

To determine the optimum time at which a component replacement should occur, two methods can be used. 

The first method involves plotting the function in Equation 3.57 where the optimum replacement time can 

be found by looking at the corresponding minimum cost. The second method involves deriving Equation 

3.57 to result in Equation 3.58 in which the optimum replacement time interval can be established.  

𝜏𝑖
∗ =  (

𝐶𝑖
𝑃𝜂𝑖

𝛽𝑖

𝐶𝑖
𝐶(𝛽𝑖 − 1)

)

1
𝛽𝑖 

 

3.9.1.2 Multi-grouping approach 

This section describes the detailed process that is followed to determine the best grouping strategy for a 

number of different components within one system. This reduces the downtime of the system as a whole 

and increases the availability, resulting in a more optimised model. Canh et al. (2015) state that the main 

advantage of maintenance grouping is to take advantage of the economic dependence between the different 

[3.57] 

[3.54] 

[3.55] 

[3.58] 

[3.56] 
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components. This implies that performing maintenance actions on a number of different components at 

once is cheaper than performing maintenance on the components separately.  

The first assumption in this multi-grouping approach is that the downtime due to the performance of 

maintenance operations is negligible. This assumes that each maintenance action is performed 

instantaneously on the series system of components. Next, Equation 3.59 can be developed using the same 

failure rate as Equation 3.55 in Section 3.9.1.1 and knowing that each component cycle within the system 

will be repeated 𝐾 𝑘𝑖
⁄ times. K is the total number of cycles until a complete overhaul and ki is the interval 

at which each preventive action takes place for the separate components. Equation 3.59 shows the expected 

number of failures of a component over the life cycle of the system (Laggoune et al., 2008).  

 

𝐾

𝑘𝑖
Λ𝑖(𝜏) =  

𝐾

𝑘𝑖
∫ 𝜆𝑖(𝑡)𝑑𝑡

𝑘𝑖𝜏

0

 

Using the same methodology as in Section 3.9.1.1, the failure cost for each component over the life cycle 

of the system can be computed using Equation 3.60.  

𝐶𝑖
𝐶 ∙

𝐾

𝑘𝑖
∫ 𝜆𝑖(𝑡)𝑑𝑡

𝑘𝑖𝜏

0

 

From this, and under the assumption that simultaneous failures of the components within the system cannot 

occur (Laggoune et al., 2008), the total cost of the system over its life cycle due to failure can be expressed 

using Equation 3.61.  

𝐶𝑚𝑟 = ∑ [𝐶𝑖
𝐶 ∙

𝐾

𝑘𝑖
∫ 𝜆𝑖(𝑡)𝑑𝑡

𝑘𝑖𝜏

0

]

𝑛

𝑖=1

 

The cost of prevention is the next cost to make up the total maintenance cost, using this method. Figure 

3.20 shows that specific components are replaced preventively only at certain intervals. Thus, at each 

𝑗𝑡ℎrenewal, a group of components are replaced preventively, expressed as 𝐺𝑗. Using this rationale, the 

preventive cost at the 𝑗𝑡ℎrenewal can be expressed as shown in Equation 3.62, which also considers the 

preventive setup cost. 

𝐶𝑝𝑟𝑗 = ∑ 𝐶𝑖
𝑃 +  𝐶0

𝑖∈𝐺𝑗

 

Using Equation 3.62, the total expected preventive cost can be computed using Equation 3.63. 

𝐶𝑝𝑟 = ∑ 𝐶𝑝𝑟𝑗

𝐾−1

𝑗=1

 
[3.63] 

[3.61] 

[3.62] 

[3.60] 

[3.59] 
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The last element to make up the total system costs endured is the cost of a complete overhaul, which occurs 

after 𝐾𝑡ℎrenewal. This cost comprises replacement of all the components and the setup cost for prevention, 

as expressed in Equation 3.64.  

𝐶𝑜𝑣 = ∑ 𝐶𝑖
𝑃  +  𝐶0

𝑛

𝑗=1

 

The final cost equation can be computed by adding the preventive and failure costs. The total cycle length 

is given by 𝐾𝜏. Equation 3.65 shows this cost equation. 

𝐶(𝜏, 𝑘1, 𝑘2,∙ ∙ ∙ 𝑘𝑛 )  =  
∑ [𝐶𝑖

𝐶 ∙
𝐾
𝑘𝑖

∫ 𝜆𝑖(𝑡)𝑑𝑡
𝑘𝑖𝜏

0
]𝑛

𝑖=1 +  ∑ 𝐶𝑝𝑟𝑗
𝐾−1
𝑗=1 + 𝐶𝑜𝑣  

𝐾𝜏
 

Laggoune et al. (2008) state that, at the 𝐾𝑡ℎperiod, Equation 3.65 can be simplified to Equation 3.66 if it is 

assumed that 𝐶𝑜𝑣 =  𝐶𝑝𝑟𝑘. 

𝐶(𝜏, 𝑘1, 𝑘2,∙ ∙ ∙ 𝑘𝑛 )  =  
∑ [𝐶𝑖

𝐶 ∙
𝐾
𝑘𝑖

∫ 𝜆𝑖(𝑡)𝑑𝑡
𝑘𝑖𝜏

0
]𝑛

𝑖=1 + ∑ 𝐶𝑝𝑟𝑗
𝐾
𝑗=1  

𝐾𝜏
 

To gain an optimum result using this multi-component grouping approach, Equation 3.66 needs to be 

optimised. This can be achieved by looking at different time intervals τ and by iterating through all the 

different grouping intervals 𝑘𝑖 for the various components.  

 

3.9.1.3 Mono-grouping approach 

The mono-grouping approach is a variation of the multi-grouping approach in which one optimum 

replacement age is found for all the components instead of replacing certain components at specific 

intervals. A disadvantage of this method is that systems are usually made up of components with varying 

failure statistics. This means that if all the components are replaced at one age, it could result in a large 

percentage of life being lost in certain components, thus increasing the overall system cost.  

At the optimum age of replacement, a complete system overhaul is performed which means that the only 

costs involved in the model are the failure costs and the costs of a complete overhaul. The failure costs due 

to minimal repair on the system can be expressed using Equation 3.67.  

𝐶𝑚𝑟
𝑚𝑜𝑛𝑜 = ∑ 𝐶𝑖

𝐶 ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝜏

0

𝑛

𝑖=1

 

The total cost per unit time for this method can be expressed by Equation 3.68. Here, the optimum cost can 

be found by minimising the time variable τ. 

𝐶𝑚𝑜𝑛𝑜(𝜏) =
∑ 𝐶𝑖

𝐶 ∫ 𝜆𝑖(𝑡)𝑑𝑡
𝜏

0
𝑛
𝑖=1 + ∑ 𝐶𝑖

𝑃  +  𝐶0
𝑛
𝑖=1

𝜏
 

[3.65] 

[3.64] 

[3.68] 

[3.67] 

[3.66] 
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3.9.1.4 Multi-grouping approach with an annual plant shutdown 

The author has encountered various articles in literature, such as the one by Laggoune et al. (2008) on which 

this model is based, that outline different multi-grouping methods to optimise the overall cost of a system. 

One aspect that these articles fail to consider is the scenario of an annual plant shutdown over the festive 

season. The reasons this shutdown occurs are the inefficient work that takes place during this period and 

the safety aspect due to the poor condition in which some employees arrive at work. A number of 

organisations (certainly in South Africa) have found it more worthwhile to have a complete plant shutdown 

over this period during which only maintenance activities take place. The loss of production is accounted 

for in the annual budget. Bearing this factor in mind, the author decided to investigate the effect of pushing 

all the preventive maintenance activities into one annual shutdown compared to the other models.  

This line of enquiry required a slight modification to the normal multi-grouping approach. The cost of lost 

production and the setup cost due to failure needed to become a separate variable factor. Thus, by modifying 

Equation 3.66 in Section 3.9.1.2, Equation 3.69 was developed.   

𝐶(𝜏, 𝑘1, 𝑘2,∙ ∙ ∙ 𝑘𝑛 )  =  
∑ [(𝐶𝑖

𝐶 + 𝐶0) ∙
𝐾
𝑘𝑖

∫ 𝜆𝑖(𝑡)𝑑𝑡
𝑘𝑖𝜏

0
]𝑛

𝑖=1 +  ∑ 𝐶𝑝𝑟𝑗
𝐾
𝑗=1  

𝐾𝜏
 

where:  𝐶0 is the cost due to lost production that occurs throughout the yearly period, except for 

the annual plant shutdown.  

 

3.9.1.5 Mathematical solution procedure  

Laggoune et al. (2008) have outlined a solution procedure that can be followed to determine the optimum 

maintenance cost using this grouping methodology. Simple optimisation techniques cannot be used to find 

the best maintenance cost since the optimisation of τ is seen as a real variable and the optimisation of 𝑘𝑖, 

which is the best interval for all the components, is seen as an integer. To solve this problem, a combinatory 

optimisation algorithm is used in which both 𝜏 and 𝑘𝑖 are optimised simultaneously. The solution procedure 

is as follows: 

1. Determine the single component optimum replacement ages and costs using Equations 3.58 – 3.59.  

2. Using these optimum replacement ages for all the components, an initial guess for the different 

component intervals can be computed using Equation 3.70. 

 

𝑘𝑖
0 =  

𝜏𝑖
∗

min(𝜏𝑠
∗)

 

3. Next, each component interval can only vary between a certain range, given by: 

 1 ≤ 𝑘𝑖
0 ≤ min (𝑘𝑠

0|𝑘𝑠
0 > 𝑘𝑖

0)   

since the optimum replacement age for components is not expected to become larger than that of 

the components with higher reliabilities. This also reduces the search space for the model as it 

eliminates looking at unnecessary intervals. Using these intervals, all the different interval 

combinations for the grouping method can be computed.  

[3.69] 

[3.70] 
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4. All the combinations of intervals determined in step 3 are considered. A corresponding τ value is 

computed for each interval using optimisation techniques on Microsoft Excel.  

5. From the optimum τ value found in step 3, the corresponding optimum interval can be computed. 

Thus, the optimum maintenance results are determined using this method.  

 

3.9.1.6 Illustrative example 

This section outlines an illustrative example using actual data to show how the model works and to 

demonstrate its effectiveness. Laggoune et al. (2009, 2010) have published data for a centrifugal compressor 

used in a Skikda refinery that will be utilised for this illustrative example. Table 3.7 shows all the reliability 

statistics and cost data. Note that R stands for rand, the South African currency (with the ISO currency code 

ZAR). 

 

Table 3.7: Illustrative example Weibull parameters and associated costs (Laggoune et al., 2009, 2010) 

 

Using all the data in Table 3.7, and the mathematical model presented in Section 3.9, a comparison of all 

the different methods was completed, as represented in Table 3.8.  

 

 

   

Failure cost Prevention cost 

Components Beta (β) Eta (η) 𝑪𝒊
𝑪 𝑪𝒊

𝑷 

Common cost 𝑪𝟎 

  

R100 000.00 R4 000.00 

1 1,73 486 R14 868.00 R3 639.00 

2 1,88 507 R39 204.00 R5 438.00 

3 2,43 286 R44 880.00 R7 398.00 

4 2,53 898 R57 876.00 R8 277.00 

5 2,14 905 R73 860.00 R13 554.00 

6 3,55 736 R46 752.00 R14 130.00 

7 2,68 1094 R48 568.00 R21 356.00 

8 2,09 1388 R74 232.00 R24 348.00 

9 1,73 486 R11 281.84 R263.89 

10 2,43 286 R33 244.00 R339.95 
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Table 3.8: Analysis results 

 

Table 3.8 shows that the best solution to implement in this case is the multi-grouping shutdown approach. 

The final grouping was found to be (1, 1, 1, 1, 1, 1, 2, 2, 1, 1), which suggests that, to result in the optimal 

maintenance strategy, the components 1, 2, 3, 4, 5, 6, 9 and 10 should be replaced every 365 days and 

components 7 and 8 should be replaced every 730 days.  

The single component strategy resulted in a better optimum value than the mono-grouping strategy. The 

reason was that, in the single component strategy, the optimum replacement ages for components ranged 

from 86 days to 558 days. Therefore, the optimum replacement age for the mono-grouping strategy resulted 

in a lot of wasted life in the components with a longer life, accounting for the increased optimum cost. A 

visual representation of this outcome is shown in Figure 3.21. 

 Single component Mono-grouping Multi-grouping Multi-grouping 

shutdown 

Component 𝒕𝒊
∗(days) 𝑪𝒊

∗ (R/day) 𝒕𝒊
∗(days) 𝑪𝒊

∗ 

(R/day) 

𝒕𝒊
∗(days) 𝑪𝒊

∗ 

(R/day) 

𝒕𝒊
∗(days) 𝑪𝒊

∗ 

(R/day) 

1 121,67 148,79  

 

 

 

 

136 

 

 

 

 

 

1409.98 
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985.02 

 

 

 

 

 

365 

 

 

 

 

 

812.52 

2 129,67 155,49 

3 86,71 223,38 

4 276,59 73,39 

5 291,55 113,02 

6 313,71 80,46 

7 466,06 86,79 

8 558,67 97,29 

9 88,47 114,22 

10 60,32 122,27 

Total  1215.11       
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Figure 3.21: Optimum cost curves: grouping policy comparisons 

 

Figure 3.21 shows that the grouping policies result in a much better maintenance strategy than a once off 

replacement for all the components, as well as individual separate replacements. The reason for the dip in 

the blue line in the multi-grouping approach with shutdown is the failure to consider the R100 000.00 for 

lost production because there is no lost production during this shutdown period.  

The author found that a main uncertainty in the model centred around the variable cost of lost production. 

It became evident that if the cost of lost production is low, then the multi-grouping approach results in the 

best solution. In other words, this approach delivers the optimum if the cost of pushing all the components 

into one annual shutdown is greater than the cost of lost production for the interval groupings. If the cost 

of lost production is high, then the multi-grouping approach with an annual shutdown is the best solution. 

In other words, it was found to be optimal not to endure this cost at set intervals and rather to push all the 

maintenance activities into one annual shutdown where this cost did not feature, as seen in Figure 3.21.  

 

3.10 Block replacement model 

In Sections 3.5, 3.6 and 3.9, system replacements have been managed using repairable systems analysis; 

non-dependent component replacements have been managed using non-repairable systems theory; and, 

finally, multiple component replacements within one system have been managed using indirect grouping 

methodologies. One untouched area is the scenario of multiple identical components within one system. In 

order to tackle this topic, the block replacement model was developed as outlined by Jardine and Tsang 

(2013) (see also Section 2.7.4). This model falls under a similar category in preventive maintenance to the 

indirect grouping model discussed in Section 3.9. The major difference between the block replacement 

model and the indirect grouping model is that the former assumes all the components to be replaced are 

identical, such as the idlers in a conveyor system, while the latter compares a number of different 
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components with varying failure statistics for an optimum replacement interval. Jardine and Tsang (2013) 

state that the main reason for the development of the block replacement model is that sometimes replacing 

all components with identical failure statistics can result in a more economical solution than replacing them 

individually when they fail. Certain resource requirements stay constant whether one component or a 

number of components are replaced. Thus, replacing many identical components at once results in an 

overall cost reduction. A typical example is streetlights.  

This section gives a detailed explanation of the block replacement model (Jardine & Tsang, 2013). In 

normal circumstances, when an item within a system fails, it is replaced with a new one and the process 

continues. However, if a number of similar components within a system have similar failure statistics, the 

option of block replacement at fixed intervals can be viable based on the economics involved. To optimise 

the economics and reach the best solution that can be compared to single component replacement, the 

balance between how often a block replacement occurs and how many failure replacements are mitigated 

needs to be investigated. Obviously, the earlier a block replacement occurs, the less failure replacements 

will happen. However, it will also cost more due to an increased number of block replacements and the 

increased loss of life of a component. Therefore, a balance between these two factors needs to be 

determined.  

This model is based on the underlying assumption that the cost of a group replacement is less than that of 

a failure replacement. The model performs group replacements at certain intervals and failure replacements 

when necessary (Jardine & Tsang, 2013). This rationale can be seen in Figure 3.22.  

 

 

 

 

 

 

 

The total expected cost per unit time for a block replacement at a certain interval 𝑡𝑝 can be given as 𝐶(𝑡𝑝), 

as seen in Equation 3.71 (Jardine and Tsang, 2013). 

𝐶(𝑡𝑝) =  
Total expected cost in interval (0, 𝑡𝑝)

Interval length
 

 

The total expected cost in an interval of (0,  𝑡𝑝) can be regarded as the cost of prevention due to group 

replacement, plus the total cost of the expected number of failures within that interval. This is expressed in 

Equation 3.72. 

Group replacement 
Failure replacements 

One cycle 

tp 0 

[3.71] 

Figure 3.22: Replacement cycle 
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𝐶(𝑡𝑝) =  
𝐶𝑔 +  𝐶𝑓𝐻(𝑡𝑝)

𝑡𝑝
 

 

Equation 3.72 shows that 𝐻(𝑡𝑝) is the expected number of times one component fails within a certain 

interval. Jardine and Tsang (2013) have outlined a discrete approach to determine 𝐻(𝑡𝑝). An example is 

presented to demonstrate this aspect. 

Assuming a three-month interval between preventive replacements, H(3) can be computed as follows: 

 

𝐻(3) =  number of failures that occur in interval (0, 3) when the first failure occurs in month 1  

×  probability of failure occurring in interval (0, 1) 

+ 

number of failures that occur in interval (0, 3) when the first failure occurs in month 2  

×  probability of failure occurring in interval (1, 2) 

+ 

number of failures that occur in interval (0, 3) when the first failure occurs in month 3  

 ×  probability of failure occurring in interval (2, 3)  

 

The mathematical representation of this discrete process can be seen in Equation 3.73. 

𝐻(3) = [1 + 𝐻(2)] ∫ 𝑓(𝑡)𝑑𝑡
1

0 

+ [1 + 𝐻(1)] ∫ 𝑓(𝑡)𝑑𝑡
2

1 

+ [1 + 𝐻(0)] ∫ 𝑓(𝑡)𝑑𝑡
3

2 

 

 

Thus, simplifying Equation 3.73 to a generic equation results in Equation 3.74. 

𝐻(𝑡) =  ∑[1 + 𝐻(𝑇 − 𝑖 − 1)] ∫ 𝑓(𝑡)𝑑𝑡, 𝑇 ≥ 1
𝑖+1

𝑖 

𝑇−1

𝑖=0

 

𝐻(0) = 0 and 𝑓(𝑡) are the probability density function for a Weibull distribution with a set β and η. 

[3.72] 

[3.74] 

[3.73] 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

74 

 

Using this discrete approach, the calculation of 𝐻(𝑡) always requires 𝐻(𝑡 − 1) to have been calculated first, 

which suggests a recurrence relation. Therefore, an iterative method must be implemented for the 

calculation of 𝐻(𝑡). 

Once 𝐻(𝑡) has been computed, the total expected cost per unit time for multiple components can be 

calculated using Equation 3.75. 𝑁 is the number of components to be block replaced.  

𝐶(𝑡𝑝) =  
𝑁𝐶𝑔 +  𝑁𝐶𝑓𝐻(𝑡𝑝)

𝑡𝑝
 

Thus, using Equation 3.75, an optimum block replacement interval can be found that determines the most 

economical replacement age for a group of similar components within a system. 

 

3.10.1 Illustrative example  

An illustrative example is presented to demonstrate the workings of the block replacement model. It uses 

data from the Weibull Database (2010) for mechanical couplings that connect shafts together. The database 

gives a value of 2 for β and 3125 days for η. Using these values for β and η, 𝐻(𝑡𝑝) was computed using 

Microsoft Excel for 𝑡𝑝 values ranging from (0, ∞). From Incledon (2019), it was found that the cost of shaft 

couplings ranges from between R450 and R2 500. By selecting a value around the midpoint of this range, 

the preventive maintenance cost per component was taken to be R1000. It was assumed that a failure would 

result in a cost 10 times greater than the prevention cost due to lost production and immediate setup costs. 

It was also assumed that the system had 50 couplings for block replacement. Therefore, using all this data 

and Equation 3.75, Figure 3.23 was computed. It shows the optimum replacement age vs cost of 

replacement for the 50 couplings, utilising the block replacement method.  

 

Figure 3.23: Optimum cost curve: block replacement of identical components 

[3.75] 
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From Figure 3.23 it was determined that the optimum block replacement interval for the couplings is 1047 

days at a cost of R99.71 per day. For a single component replacement policy, using the mathematics in 

Section 3.10, it was assumed that the preventive maintenance cost is 1.5 times greater than the preventive 

block replacement cost. The reasons for the increase in cost for this method are the rise in setup costs, labour 

hours and system availability since only one component is being replaced at a time compared to a number 

of components. Using the same data, it was determined that a single component replacement policy would 

result in a cost of R145.33 per day. This cost is 45.8% greater than the block replacement cost, which 

demonstrates the advantage of using the block replacement maintenance method compared to the single 

component method.  

 

3.10.2 Model development  

In Section 3.10 the block replacement model was discussed. The optimum replacement age and the 

optimum cost associated with a replacement were found by minimising the cost function, expressed in 

Equation 3.75. Like the non-repairable systems model presented in Section 3.6, a main disadvantage of the 

block replacement model is that it outputs an average cost per unit time due to the computation of H(t) and 

the division by the time constant, as seen in Equation 3.75. This results in the computation of an average 

yearly budget, if the method illustrated in Section 3.10 is used alone, which suggests that the budget 

presented is an average representation of the yearly cost rather than an accurate representation of the likely 

budget. In terms of the overall budgetary requirements of an organisation, this budget variability may not 

be acceptable and more certainty around the budget may be required.  

This section outlines a methodology that can be followed to create more certainty around the answers found 

using the model discussed in Section 3.10. It was achieved by developing an extensive program using 

Monte-Carlo simulations. 

 

3.10.3 Simulation methodology  

As stated previously, the general block replacement model discussed in Section 3.10 results in the output 

of an average yearly cost associated with this optimisation model. This section illustrates a methodology 

that can be implemented on the general block replacement model, resulting in confidence and certainty 

around the optimum output to be obtained. The model is based on a simulation methodology, as outlined 

in Figure 3.24. Failure data is generated in the same manner as in Section 3.7.3, after which the data can be 

put into the simulation to generate confidence around the average solution. The simulation is run n number 

of times in order to create confidence intervals around the outcome. Figure 3.24 outlines the simulation 

methodology that is followed. 
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Figure 3.24: Novel Monte-Carlo simulation methodology for block replacement model 

 

Figure 3.24 shows that, before a simulation can take place, a state needs to be chosen for a specific annual 

period. Either a state of ‘0’, which refers to a corrective maintenance strategy, or a state of ‘1’, which refers 

to a preventive maintenance strategy, can be chosen for a respective yearly period. Once a state has been 

chosen, it enables the comparison of a corrective strategy to a preventive strategy for a yearly interval. This 

allows the impact of preventive maintenance to be determined.  

The next step in the simulation process is to generate failure data. This is used during the balance of the 

simulation, following the steps presented in Figure 3.24. For the preventive strategy, the optimal age is 

determined using the model presented in Section 3.10. The output of the simulation results in an array of 

data containing the number of preventive and failure actions that occur during a certain period for a specific 

component. The length of the array is directly dependent on the number of simulations that are run. The 

greater the number of simulations run, the more accurate the outcome due to repeatability.  

The final step in this modelling process is to convert the array of failure and preventive actions within a 

yearly period into a cost array that can be compared to the average answer determined by the method 

discussed in Section 3.10. Equations 3.41 – 3.42 and Equations 3.43 – 3.47 in Section 3.7.2 are used for 

this purpose for the corrective and preventive strategies respectively.  
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Following the methodology in Section 3.7.4, the Weibull distribution can be used to fit the cost arrays 

outputted. This enables the development of the confidence intervals around the general block replacement 

model. 

 

3.10.4 Solution procedure  

The solution procedure for the generation of confidence and certainty around the block replacement model, 

using Figure 3.24, is presented as follows: 

1. Apply the general block replacement model in Section 3.10 to gain an average optimum 

replacement cost per unit time and the optimum replacement age of a component. 

2. Generate failure data, following the procedure in Section 3.7.3. 

3. Run the simulation as outlined in Figure 3.24, using the given failure data inputs and the optimum 

replacement age input. 

4. Repeat the simulation n number of times and store the results of each simulation in an array. 

5. Fit the Weibull distribution to the total outputted array of data, using the method outlined in Section 

3.7.4. 

6. Apply Equation 3.48 to the Weibull outputted parameters. 

7. Apply the statistical test in Section 3.4 to determine whether the Weibull distribution fits the actual 

data. 

 

3.10.5 Illustrative example 

The illustrative example in Section 3.10.1 is extended into this section for two reasons: to show the 

functioning of the simulation methodology, and to show how to develop certainty and confidence around 

the general block replacement model. Following the solution procedure in Section 3.10.4, the first step in 

the simulation process is the application of the general block replacement model to gain optimum values. 

From Section 3.10.1, the optimum replacement age and cost for the illustrative example were found to be 

1047 days and R99.71 per day respectively, following the general block replacement model. This is the 

average daily cost that an organisation must carry per year to maintain the bearings preventively using this 

maintenance strategy.  

With these optimum values determined, the simulation procedure outlined in Figure 3.24 can now be 

implemented. The random failure data for the simulation was generated using the methodology in Section 

3.7.3. Following steps 2 to 6 in the solution procedure with 1000 simulations run, Figure 3.25 was developed 

to demonstrate the results of the simulation.  
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Figure 3.25: Monte-Carlo simulation results: maintenance cost vs probability 

 

Figure 3.25 shows the confidence intervals around having a specific budget within a yearly period for both 

a preventive strategy and a corrective strategy. There is only 50% confidence in keeping to the budget 

obtained just using the method outlined in Section 3.10.1, which is shown by the red dot in Figure 3.25. 

Like the case in the illustrative example presented in Section 3.7.6, organisations are unlikely to be satisfied 

with such a low confidence in their yearly budget. By developing Figure 3.25, higher confidence levels 

around a budget can now be chosen. This process gives organisations a lot more certainty around their 

budgets and a higher chance of not exceeding their budgets within a yearly period. At a higher confidence 

level, there will be more certainty around a budget, but the budget will also be substantially more. Therefore, 

a number of factors need to be considered when making decisions about the choice of confidence interval. 

In addition, Figure 3.25 demonstrates that a preventive maintenance strategy results in a budget that is 

substantially less than a corrective maintenance strategy. This showcases the importance of the 

implementation of preventive maintenance.  

The last step in the simulation process is to determine whether the Weibull distribution can be used to fit 

the actual data outputted from the simulation. Again, this is achieved by using the Kolmogorov-Smirnoff 

(K-S) Goodness of fit test. Following the methodology in Section 3.4, the empirical distribution function 

was plotted against the Weibull fitted function, resulting in the development of Figure 3.26. 
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Figure 3.26: K-S test results 

 

Using the one sample K-S table, the critical values for the preventive case and the corrective case were 

found to be 𝑐𝑛 = 0.327 and 𝑐𝑛 = 0.17 respectively, at a confidence interval of 95% where  𝛼 = 0.05. 

Using Figure 3.26, the test statistic 𝐷𝑛 could be computed as 𝐷𝑛 = 0.069 for the preventive case and 𝐷𝑛 =
0.125 for the corrective case. In both cases it is evident that 𝐷𝑛 <  𝑐𝑛, which suggests there is not enough 

evidence to reject the null hypothesis. This means that the Weibull distribution fits the data with a good 

enough fit.  

Since the fit of the Weibull data to the Monte-Carlo simulated data is acceptable, the cumulative distribution 

function of the Weibull distribution can be used to generate confidence intervals for the block replacement 

model. In Section 3.10.1 it was found that the optimum age to replace the components in the block model 

was at 1047 days, resulting in a cost of R99.71/day. The Monte-Carlo simulation determined only a 50% 

certainty of having a cost of R99.71/day. This reveals the uncertainly around taking just the answer in 

Section 3.10 into account. Thus, it is evident that this simulation method creates a lot more certainty around 

a budgetary requirement by using confidence intervals. This allows a more realistic budget to be chosen 

with a certain level of confidence rather than just an average budget of what could happen within a certain 

yearly period. Figure 3.25 also indicates that there is significant benefit to performing preventive 

maintenance compared to corrective maintenance, as shown by the confidence intervals. 

 

3.11 Forecast model  

Thus far, in the mathematical Section 3, only models pertaining to historical failure data have been 

considered. The question that remains is what happens when no historical failure data is present, but a 

budgetary estimate is still needed for certain components/systems. The one piece of information that is 

rarely not recorded is the amount spent on a certain piece of machinery within one financial year due to 
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maintenance and repair. The presence of this information enables a better answer than just heuristics with 

regard to the expected cost of maintenance and repair in the next financial year using forecasting methods. 

Hyndman et al. (1998) affirm that a number of different forecasting techniques are available in literature. 

These include quantitative techniques, such as time series and explanatory modelling, if sufficient 

quantitative data is available; qualitative techniques if little or no quantitative data is available but sufficient 

qualitative knowledge exists; and, finally, unpredictable techniques that give a forecast when there is little 

or no information available. To apply the quantitative forecasting technique, three conditions first need to 

be met. These conditions are: first, information about the needs of the past is available; second, the 

information from the past can be quantified into numerical data; and, third, it can be assumed that aspects 

of the past pattern of the historical data can be continued into the future (Hyndman et al., 1998).  

This research study uses the quantitative technique as it meets all three criteria. First, sufficient historical 

maintenance cost data can be drawn from industry; second, the data is in the form of a cost, thus it meets 

the numerical criterion; and, third, it can be assumed that the past pattern in the historical data can be 

continued into the future since maintenance actions and repairs such as major overhauls and service repairs 

are seasonal.  

 

3.11.1 Exponential smoothing  

Bagio (2017) states that exponential smoothing forecasting techniques are some of the most robust and 

widely used as they can be employed in a vast number of different applications. According to Chase and 

Jacobs (2018), a major reason for the emergence of exponential smoothing was the finding that more recent 

occurrences in the historical data offer more indicative predictions about the future than those in the distant 

past. Exponential smoothing is a time series forecasting method that uses weights which decrease 

exponentially for each past period (Chase & Jacobs, 2018). A number of different weights and methods are 

associated with exponential smoothing. The choice of the method and weights is dependent on the available 

data and whether trends, seasonality or both are present within the data.  

There are a variety of exponential smoothing methods (Bagio, 2017). Only the three main methods will be 

discussed, which include simple exponential smoothing, double exponential smoothing and triple 

exponential smoothing. The simple exponential smoothing model requires minimal computation and is only 

used when there is no trend or seasonal variation within the historical data. For the model to be 

implemented, only one past actual value and one past predicted value are needed, as seen in Equation 3.76, 

illustrated by Bagio (2017):  

𝑆𝑡 = 𝛼𝑦𝑡−1 + (1 − 𝛼)𝑆𝑡−1 

where:  𝑆𝑡 represents the predicted value at time 𝑡 and 𝛼 ranges between 0 𝑡𝑜 1, which is seen as 

the smoothing factor.  

Since the computation of 𝑆𝑡 only needs two numerical values, a major advantage of this exponential 

smoothing method is its computational efficiency. This means it can be used on very large datasets (Bagio, 

2017).  

The double exponential smoothing model, also commonly known as Holt’s exponential smoothing method, 

is used extensively when a trend is present within the historical dataset (Bagio, 2017). The presence of a 

trend within this data always causes the exponential forecast to lag behind the actual occurrences (Chase & 

[3.76] 
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Jacobs, 2018). Therefore, to minimise the effect of lag, the double exponential smoothing model was 

developed to introduce an additional parameter to allow for some correction to the forecast. This new 

parameter accounts for the trend within the data and adjusts the forecast, thus reducing the error between 

the forecasted values and the actual values. The development of Holt’s exponential smoothing model, as 

stated by Bagio (2017), is expressed in Equations 3.77 – 3.79: 

𝑆𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑆𝑡−1 + 𝑇𝑡−1) 

𝑇𝑡 = 𝛾(𝑆𝑡+ 𝑆𝑡−1) + (1 − 𝛾)𝑇𝑡−1 

�̂�𝑡+𝑘 =  𝑆𝑡 + 𝑘𝑇𝑡 

where:  𝑆𝑡 𝑎𝑛𝑑 𝑇𝑡 are the smoothed level and trend respectively; 𝛼 𝑎𝑛𝑑 𝛾 are the smoothing 

parameters; and �̂�𝑡+𝑘 is the forecast into the future with 𝑘 as the step ahead forecast made 

from origin 𝑡.  

To solve Equations 3.77 – 3.79, initialisation values are needed for 𝑆1 𝑎𝑛𝑑 𝑇1. Equations 3.80 – 3.81 are 

the governing equations for these values. 

𝑆1 =  𝑦2 −  𝑦1 

𝑇1 = 0 

The triple exponential smoothing method is also commonly known as the Holt-Winters technique. The 

significant advantage of this forecasting method is that, if the historical data shows signs of both a trend 

and seasonality, it can take these into account. Bagio (2017) states that the formulation of the Holt-Winters 

method treats the level, trend and seasonality as separate factors, thus allowing all these factors to be 

considered in the forecasting model.  

There are two types of triple exponential smoothing methods: additive and multiplicative (Bagio, 2017). 

The additive method assumes that the seasonal fluctuations within the data are stable, while the 

multiplicative method assumes that they are variable. The additive triple exponential smoothing model is 

expressed in Equations 3.82 – 3.85: 

𝐿𝑡 = 𝛼(𝑌𝑡 − 𝑆𝑡−1)  + (1 − 𝛼)(𝐿𝑡−1 + 𝑇𝑡−1) 

𝑇𝑡 = 𝛽(𝐿𝑡+ 𝐿𝑡−1) + (1 − 𝛽)𝑇𝑡−1 

𝑆𝑡 = 𝛾(𝑌𝑡+ 𝐿𝑡) + (1 − 𝛾)𝑆𝑡−1 

�̂�𝑡+𝑝 =  𝐿𝑡 + 𝑝𝑇𝑡 +  𝑆𝑡−1+𝑝 

 

where:  𝐿𝑡 represents the level affected by 𝛼; 𝑇𝑡 represents the trend affected by 𝛽; 𝑆𝑡 represents 

the seasonality affected by 𝛾; 𝑝 represents the seasonal period of the historical data; and 

�̂�𝑡+𝑝 represents the forecast for a certain time period.  

[3.78] 

[3.79] 

[3.77] 

[3.81] 

[3.80] 

[3.83] 

[3.82] 

[3.85] 

[3.84] 
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As with the double exponential smoothing method, to solve Equations 3.82 – 3.85 initialisation values of 

some sort are needed for 𝐿𝑡 ,  𝑇𝑡  𝑎𝑛𝑑 𝑆𝑡. Equations 3.86 – 3.88 outline the process of determining these 

initialisation values where s is the seasonal length.  

𝐿𝑠 =
1

𝑠
(𝑌1 + 𝑌2+ . . . + 𝑌𝑠) 

𝑇𝑠 =
1

𝑠
[
𝑌𝑠+1 −  𝑌1

𝑠
+

𝑌𝑠+2 −  𝑌2

𝑠
+ . . . +

𝑌𝑠+𝑠 − 𝑌𝑠

𝑠
] 

𝑆1 =  𝑌1 − 𝐿𝑠, 𝑆2 =  𝑌2 − 𝐿𝑠 , . . .  𝑆𝑠 =  𝑌𝑠 − 𝐿𝑠  

 

Amiruddin (2016) and Bagio (2017) state that one of the main problems with the triple exponential 

smoothing forecasting method is determining the optimum values of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾, which will minimise the 

error between the actual values and the forecasted values. To establish these optimum values, an 

optimisation algorithm needs to be developed that outputs the optimum 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 based on the minimum 

error.  

3.11.2 Optimisation algorithm  

As stated in Section 3.11.1, an optimisation algorithm needs to be developed for this forecasting method 

that optimises 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 by minimising the error function between the actual data and the forecasted data. 

To obtain these optimum values of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾, a forecasting error function is needed. The three most used 

error functions in forecasting are the mean absolute error (MAE), the mean squared error (MSE) and the 

mean absolute percent error (MAPE) (Amiruddin, 2016; Bagio, 2017).  

Mean absolute error function: 

 For each value within a given dataset, the MAE function takes the absolute error between the actual value 

and the forecasted value. The sum of these values from the dataset is then computed and divided by the 

number of values within the dataset to reach the MAE. The MAE can be seen in Equation 3.89. 

MAE =  
∑ |𝑋𝑖 − 𝐹𝑖|𝑛

𝑖=1

𝑛
 

Mean squared error function: 

The MSE gives the squared average between the actual values and the forecasted values within a dataset. 

Hyndman et al. (1998) state that this method for determining the error function is the most used in statistical 

analysis. It has the advantage of being easy to handle mathematically while, at the same time, gives an 

answer that is interpretable. Equation 3.90 outlines the MSE.  

MSE =  
∑ (𝑋𝑖 − 𝐹𝑖)2𝑛

𝑖=1

𝑛
 

 

[3.89] 

[3.90] 

[3.88] 

[3.87] 

[3.86] 
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Mean absolute percent error: 

The MAPE is calculated as the absolute average differentiation between the actual values and the forecasted 

values within a dataset. It is expressed as a percentage of the actual value for each value within a dataset. 

This method of determining the error for a specific forecast gives a clear and interpretable answer in which 

quantity ranges can be assigned to the error to determine the accuracy of the forecast. Equation 3.91 outlines 

the MAPE mathematics and Table 3.9 gives the linguistic forecast ranges of the MAPE function to establish 

the accuracy of the forecast, as stated by Amiruddin (2016).  

 

MAPE =  
∑ |

𝑋𝑖 −  𝐹𝑖
𝑋𝑖

× 100|𝑛
𝑖=1

𝑛
 

Table 3.9: MAPE linguistic representation 

 

 

 

 

The optimum values of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 can be computed using Equations 3.89 – 3.91.  

 

3.11.3 Selection of optimum values 

It is evident from the equations in Section 3.11.1 for single, double and triple exponential smoothing that 

all describe a repetition relationship in which the next value is computed using the previous value. This 

means that the choice of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 plays a significant role in the accuracy of the forecast model and needs 

to be determined precisely. The best way to achieve this accuracy is by doing testing on data training as 

many as n times with different combinations of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾 with specific values (Anggrainingsih et al., 

2015).  

Using Equations 3.89 – 3.91, the combination that gives the lowest error is chosen as the optimum constants. 

Since there are three constant values that need to be optimised, all of which are bounded between 0 𝑎𝑛𝑑 1, 

numerous different combinations exist among the constants. A trial and error approach to find the optimum 

values will not work as it would take too long to go through all the different combinations. For this reason, 

the author developed an optimisation algorithm in Python with the use of the scipy.optimize function to 

determine the optimal values of  𝛼, 𝛽 𝑎𝑛𝑑 𝛾. The MSE error function was optimised in the algorithm and 

the MAPE function was also computed to show the accuracy of the forecast linguistically.  

 

 

MAPE Definition 

< 10% Excellent 

10%–20% Good  

20%–50% Adequate  

> 50% Poor  

[3.91] 
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3.11.4 Determination of the seasonality index 

Before the triple exponential smoothing model can be applied to any dataset with seasonality and a trend, 

the seasonality index needs to be determined. This is the index that shows how often a pattern repeats itself 

within a dataset. It can be determined by simply plotting the data and establishing how often the points 

repeat themselves. A problem with this manual method is that, in the event of needing to apply the model 

to a large number of datasets, the process will take far too long, which makes it unviable.  

Microsoft Excel 2016 has a built-in triple exponential smoothing function – forecast.ets – which can 

automatically determine the seasonality index of a given dataset. The author found that the automatic 

function does not detect seasonality effectively and works a lot better when data is inserted manually. For 

this reason, a VBA macro was coded to run through a number of different seasonality indexes. The output 

was a confidence interval at a certain value. The confidence interval was chosen as the output parameter 

because it looks at the uncertainty and risk within an answer. The seasonality index that gave the smallest 

confidence interval at the certain value was chosen because it directly results in less uncertainty around the 

answer and hence provides a more accurate forecast.  

 

3.11.5 Illustrative example  

To demonstrate the functioning of the exponential smoothing forecasting model, an illustrative example is 

presented. Hyndman et al. (1998) have published a set of data, as seen in Table 3.10, which details the sales 

of a company over a certain time period.  

Table 3.10: Illustrative example dataset 

Period Sales Period Sales 

1 362 13 544 

2 385 14 582 

3 432 15 681 

4 341 16 557 

5 382 17 628 

6 409 18 707 

7 498 19 773 

8 387 20 592 

9 473 21 627 

10 513 22 725 

11 582 23 854 

12 474 24 661 
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The first step to applying any exponential smoothing model to a dataset is to determine the correct type of 

method to be applied. This is done by establishing whether there is a trend and/or seasonality within the 

data. The slope function of Microsoft Excel 2016 is used for this purpose. If the outputted value is positive, 

it suggests an increasing trend in the data. If the slope is negative, it suggests a decreasing trend in the data. 

A positive or negative trend within the dataset suggests that the single exponential smoothing model cannot 

be used, and either the double or triple exponential smoothing model should be applied, depending on 

whether seasonality is present or not. To determine the presence of seasonality within the data, it is 

necessary to implement the method described in Section 3.11.4. If the seasonality index outputted is greater 

than 2, it means that the outputted value is the seasonality index and the triple exponential smoothing 

method must be applied to the dataset. If the value outputted is 0, it means there is no seasonality within 

the data and the double exponential smoothing method must be applied to the dataset. Applying this 

rationale to the dataset in Table 3.10, the slope was found to be 17.8 and the seasonality index was found 

to be 4. To validate these findings, the data in Table 3.10 was plotted, as shown in Figure 3.27. 

 

Figure 3.27: Illustrative example of actual costs 

 

The increasing trend in the dataset, as seen in Figure 3.27, validates the positive increasing trend of 17.8, 

as found by the slope function in Microsoft Excel. The seasonality index of 4, computed using the method 

described in Section 3.11.4, is also validated since it is evident in Figure 3.27 that the same pattern repeats 

itself every 4 data points. Therefore, knowing that both a trend and seasonality are present within the data, 

the triple exponential smoothing model is clearly the best model to apply to the dataset for the forecast.  

Knowing that the triple exponential smoothing model can be applied to the dataset, the next step in the 

forecasting process is to determine the optimum values of 𝛼, 𝛽 𝑎𝑛𝑑 𝛾. This was done using the process 

explained in Section 3.11.2 in which the MSE is minimised, resulting in optimum values of 𝛼 = 0.512,
𝛽 = 0.025 and 𝛾 = 0.977. Utilising these optimum values and Equations 3.82 – 3.85, Figure 3.28 was 

developed to show the actual sales vs the forecasted sales for the dataset. 
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Figure 3.28: Illustrative example of forecasted costs 

Figure 3.28 shows that the forecasted data follows the actual data closely. The MAPE was found to be 

2.11%. Thus, using Table 3.9, it was established that the forecast is regarded as Excellent. This suggests 

that it can be used to predict values into the future, as seen by the red line in Figure 3.28. 

This section has outlined all the mathematics around forecasting datasets, whether trends, seasonality or 

neither of these are present. The main outcome is to show the reader what methods can be used to predict 

costs when no failure data is available, which means that the methods discussed in Sections 3.5 – 3.10 

cannot be used. As in any prediction method, there is always uncertainty around the answer. However, this 

method does give more validated answers than just pure heuristics and can be applied to gain information 

about the budgetary requirements of an organisation. 

 

3.12 Life cycle cost analysis  

The forecasting model described in Section 3.11 is an excellent model to implement when only historical 

maintenance cost data is available and an estimate is needed for the budgetary requirements of the 

succeeding year. However, if a piece of capital equipment is being analysed in which maintenance costs, 

capital acquisition costs and resale costs are available, a more accurate model can be developed for the 

budget than simply a cost estimate from a forecast. The model developed in this section is a life cycle 

costing model that determines the optimum replacement age of a piece of capital equipment by minimising 

the total cost. Jardine and Tsang (2013) state that the main reason for the development of such a model is 

the fact that equipment deteriorates over time. This deterioration is measured by the increase in the 

maintenance costs over the lifespan of the equipment. Due to this increase, a point in time will eventually 

come when replacement of the equipment will be economically justifiable. For the model developed, it was 

assumed that the piece of equipment is replaced by an identical item, thereby bringing the system back to 

an as ‘good as new condition’. It was also assumed that the trend in the maintenance costs after each 

replacement, in which periodic replacements occur at certain intervals, remains the same. 
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Jardine and Tsang (2013) state that the underlying equation to such a model is Equation 3.92, in which the 

objective is to minimise the optimal interval between replacements by minimising the total discounted cost.  

𝐸𝐴𝐶(𝑛) =  
𝐴 +  ∑ 𝐶𝑖𝑟𝑖−1 −  𝑟𝑛𝑆𝑛

𝑛
𝑖=1

1 − 𝑟𝑛
× 𝑖 

Equation 3.92 gives the equivalent annual cost of operating and maintaining a piece of equipment if this 

model is followed. To solve Equation 3.92, the acquisition cost (A), the operations and maintenance cost 

(𝐶𝑖), the resale value (𝑆𝑛) and the discount factor (r) are all needed. For the model developed here, it is 

assumed that the acquisition cost is incurred at the beginning of the replacement cycle and the costs 

associated with each year are also incurred at the start of the year. This results in year 1 costs not being 

discounted, which suggests a more realistic model as outlined by Jardine and Tsang (2013). Figure 3.29 

depicts all the assumptions around the cash flows of the piece of capital equipment.  

 

 

 

 

 

 

Thus, if capital cost data is available for a piece of capital equipment, Equation 3.92 can be followed to 

obtain the optimal point of replacement and a relevant annual cost of implementing such a method. The 

cost flows in Figure 4.5 are used for this procedure. The results can be put into an overall budgetary 

requirement for the maintenance of such a piece of equipment within an organisation.  

3.12.1 Illustrative example 

In this section, the methodology of the life cycle cost analysis is presented, as outlined by Jardine and Tsang 

(2013), using an illustrative example. A sample set of equipment cost data is shown in Table 3.11. 

Table 3.11: Illustrative example of O & M and disposal costs 

Year Operation and maintenance cost (R) Resale value (R) 

1 500 7000 

2 1000 5000 

3 2000 4000 

4 3000 3000 

5 4000 2000 

 

Sn 

C1 

Replacement cycle 

n 0 

C3 C2 Cn 

2 1 n–1 

A 

[3.92] 

Figure 3.29: LCC replacement cycle 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

88 

 

Table 3.11 outlines all the operation and maintenance costs and the resale value of the piece of equipment 

over a five-year period. An interest rate of 10% was assumed for use in the model. The capital acquisition 

cost of the piece of equipment was assumed to be R10 000. The LCC analysis could be applied using all 

the information in Table 3.11 and Equation 3.92, resulting in the development of Figure 3.30. 

 

Figure 3.30: Equivalent annual cost vs replacement age 

 

Figure 3.30 shows the results of the life cycle cost model implemented on the information on the piece of 

equipment, as given in Table 3.11. From Figure 3.30 it is evident that the optimum time to replace the 

equipment is at an age of 3 years, with an associated cost of R4 044 per year. This is the amount it would 

cost an organisation each year if this maintenance strategy were to be followed. It is also evident that the 

curve on either side of the optimum value is steep. This suggests that any deviation from the optimum 

replacement age is going to result in a significantly increased cost as the penalty for extending the life of 

the piece of capital equipment.  

This section has presented a life cycle cost model. A detailed description of all the mathematics has been 

given, as well as the benefits of such a model in an overall maintenance model. An illustrative example has 

been presented to show the functioning of the model with all the relevant outputs. It was demonstrated that 

the model outputs an optimum replacement age with an associated cost which can be used in an overall 

budgetary requirement for an organisation within a yearly period.  

 

 

 

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

89 

 

3.13 Conclusion  

In this chapter, a detailed methodology and mathematical outline of the overall maintenance model was 

presented in order to provide the tools to apply a complete maintenance analysis. The overall maintenance 

model developed made used of six different maintenance models, namely: a repairable systems analysis, a 

non-repairable systems analysis, a block replacement model, a grouping model, a forecasting model and a 

life cycle costing analysis. This resulted in the development of a generic model that can be used in a variety 

of scenarios where different types of datasets do not affect the implementation of the model. Monte-Carlo 

algorithms were developed for certain models within the overall maintenance model to create more 

certainty and less risk around the final outputted budgetary requirement for a specific application. Goodness 

of fit tests were employed to validate the use of the models. Finally, a complete maintenance methodology 

was presented, as shown in Figure 3.1, which demonstrated how all the individual models interlink to 

produce one budgetary requirement in which all the inputs and outputs to the model are evident.  
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4 Case study  

Section 4 outlines a case study performed on a contrived plant with the aim of demonstrating the application 

of the proposed solution methodology outlined in Section 3. The case study aims to show that an overall 

maintenance decision model can be applied to a real-world problem. The outcome of the implementation 

of such a model results in a condensed budgetary requirement for the preventive maintenance of an entire 

plant. This section initially provides an overview of the case study, outlining all the system boundaries, data 

requirements and assumptions made in the case study. Thereafter, a detailed analysis is performed on a 

variety of different systems and components with varying requirements in the plant, following the 

methodology in Figure 3.1.  

4.1 Overview of Anglo American  

For the case study presented in this section, real-world data was acquired from the Anglo American PLC 

group to validate the model detailed in Section 3. Anglo American PLC is a British mining company with 

its main headquarters based in London in the United Kingdom and Johannesburg in South Africa. Anglo 

American also operates in numerous other countries throughout Africa, Asia, Europe, and North and South 

America. Its primary listing is on the London Stock Exchange and it has a secondary listing on the 

Johannesburg Stock Exchange. 

Anglo American is the largest producer of platinum, with 40% of the world’s annual production. The 

company is also a major contributor to the production of diamonds, copper, iron ore and nickel. It has $31 

billion in property, plant and equipment assets, which are the main contributors to the total assets of the 

company, and $39 billion in non-current assets (Anglo American, 2018).  

The case study considered here makes use of data from the Sishen and Kolomela mines, both of which are 

situated in the Northern Cape province, South Africa. Other data was also extracted and used from the 

Mogalakwena mine in Limpopo, South Africa and the Minas Rio mine in Brazil. The Sishen, Kolomela 

and Minas Rio mines are some of the largest iron ore mining operations in the world, while the 

Mogalakwena mine is the largest open-pit platinum mine globally. Anglo American has the largest stake in 

all the mines – it controls operations and distributes tasks to other companies. The data extracted from the 

different mines comprises failure and operations data, as well as failure cost data.  

4.2 Case study design  

As stated in Section 1, a major gap found in the literature on the topic of maintenance is the development 

of an overall maintenance model that can be implemented on any plant with a variety of data inputs. In the 

literature, a number of different maintenance models have been looked at on an individual basis. The 

incorporation of all these individual models into one overall maintenance model has not commonly been 

considered in literature. There is also limited literature on the development of a systematic approach on 

when to use what model. 

In this study, with the acquisition of real-world data from Anglo American, a solution to the problem 

outlined in Section 1 is given to determine whether the proposed overall maintenance methodology 

presented in Section 3 will give a valid outcome to the problem. The main aim of this case study is to 

present a detailed integrated analysis of the methodology in Section 3 on a real-world problem. Different 

maintenance models found in literature are used to analyse available plant data, resulting in an annual 

overall budgetary requirement for a specific plant.  
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In addition, the analysis procedure can be used as a decision-making tool. The individual models outlined 

in Section 3 utilise a number of different statistical distributions as well as forecasting and LCC methods, 

depending on the available data, in order to gain one budgetary requirement for an overall plant. Ultimately, 

by following the entire methodology detailed in this dissertation, a deep understanding and validation of 

the overall maintenance model developed should be gained, resulting in a decision tool that can be used to 

develop an annual budgetary requirement for the preventive maintenance of an organisation. 

As stated earlier, the main intention of this case study was to implement the overall maintenance model in 

Section 3 on a real-world problem. In any industrial plant, there are a huge number of different systems and 

components, all in need of their own maintenance strategy. Thus, a large variety of different components 

and systems could be chosen for the implementation of the proposed maintenance model. In terms of the 

outcome of this work, an entire power plant or mining operation was considered too large; the validation 

of this procedure on a smaller operation was regarded as justifiable. It is believed that similar outcomes 

could be expected if the model was implemented on a larger scale example. Therefore, a simpler 

representative plant was contrived, comprising a number of different systems and components that allowed 

for the functioning of the maintenance model to be illustrated and validated.  

After numerous discussions with various staff members from industry who were directly responsible for 

the extraction of the available system/component data, it was concluded that the plant would comprise all 

the systems and components seen in Figure 4.1. 

 

Figure 4.1: The composition of the plant to be analysed 

 

Figure 4.1 shows that the plant developed is made up of various different systems and components, 

including a rigid dump truck, a selection of conveyor systems, a variety of different pumps, and an overhead 

crane. The reason for the choice of the systems and components was the availability of data for each element 

within the plant, and to illustrate the functioning of all the sub-models and maintenance methods in the 

overall maintenance model described in Section 3.  
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4.3 System boundaries and data requirements  

Section 4.2 indicates that the plant being analysed comprises a number of different systems and 

components, which make up the contents of the entire plant for the case study. Figure 4.1 outlines the 

composition of the plant. The plant functions by taking material from a mine using a dump truck. Different 

conveyor systems transport the material from the truck to a plant consisting of pumps and an overhead 

crane where a refining process can begin. Figure 4.2 outlines the system boundaries of the different elements 

in the plant. 

 

 

 

 

 

 

 

 

 

Figure 4.2 shows that each element within the plant has individual boundaries. The reason is that one single 

maintenance technique will not suit all the varied types of data that were gathered for the different elements. 

This suggests that different maintenance methods may be needed to analyse each element. Figure 4.2 also 

shows an overall boundary around the entire plant to include all the different budgetary requirements of the 

individual elements. The outcome is one overall budgetary requirement for the entire plant.  

To enable the application of the maintenance methodology in Figure 3.1, the plant in Figure 4.1 has specific 

data requirements. Each different model outlined in Section 3 needs either historical failure data or 

historical cost data, depending on the type of model used. For each individual element within the plant, 

either failure data, cost data or both were extracted, depending on their availability. The data was drawn 

from the Anglo Operating Platform, which is the data base used by the company to store all its data records. 

It was obtained for all the relevant elements within the plant for varying periods between 2007 and 2019, 

contingent on the available historical records in the stored data for each element. A long extraction period 

was used to ensure that a sufficient number of historical data points were available for the analysis. The 

data was stored in Microsoft Excel for future post-processing. 

All the historical failure data extracted was classified as a failure point for the maintenance analysis. The 

cost data obtained was classified as the cost incurred by an organisation as the result of a failure. 
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Figure 4.2: System boundaries 
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4.4 Analysis of 777 rigid dump truck 

This section outlines the preventive maintenance methodology that was implemented on the 777 rigid dump 

truck to gain a yearly budgetary requirement for its maintenance. A selection of maintenance data was 

collected from the Anglo Operating Platform with a time period for the dataset from 1 January 2012 – 31 

May 2019. General assumptions were made throughout the analysis, as seen in Section 3, due both to certain 

factors being unattainable and to the selection of the optimisation model used. 

4.4.1 Dataset analysis  

The data collected for the 777 rigid dump truck was only in the form of historical maintenance cost data as 

historical failure data could not be obtained. It considered the cost of materials and resources used, as well 

as labour costs for maintenance actions during a certain period. Production losses as a result of the downtime 

due to maintenance actions on the dump truck were not taken into account. The historical maintenance cost 

data was collected in yearly periods, that is, the total sum spent on different maintenance activities on the 

dump truck within a specific year was recorded. There were 92 different maintenance-related activities 

recorded for the dump truck each year, as well as the cost surrounding each one. The records indicated 

every maintenance cost related to the dump truck, ranging from electrical, flexible hose and general service 

costs to complete engine repair costs. 

With this relevant cost data available, the next step in the analysis process was to determine which 

maintenance optimisation technique to apply to the dump truck dataset to result in an optimum yearly 

budgetary requirement for an organisation. From Figure 3.1, it was evident that none of the historical failure 

data models could be used to analyse the dataset since this data was not accessible. This left the option of 

either the forecasting model or the LCC analysis. The data collected from the Anglo Operating Platform 

was in the form of maintenance cost data for one complete system – the dump truck, which can be regarded 

as a piece of capital equipment due to its finite life and substantially high acquisition cost. For these reasons, 

the life cycle cost analysis (LCC) was chosen as the best optimisation model to implement.  

4.5 Life cycle cost analysis implementation  

The life cycle costing model is explained in detail in Section 3.12, with Equation 3.92 as its main output. 

This equation allows the computation of the equivalent annual cost of maintaining a piece of capital 

equipment for a certain life. A number of inputs are needed in order to solve Equation 3.92. These include 

the capital acquisition cost of the dump truck; the resale value of the dump truck per year in use; every 

maintenance-related cost over the analysis period; the useful life of the dump truck; and the interest rate per 

year. This data was all obtained after extensive conversations with Anglo personnel.  

Table 4.1 outlines the capital acquisition cost of a new dump truck, the useful life of the dump truck before 

it is decommissioned by the company, and the company interest rate. 

 

Table 4.1: Life cycle costs for rigid dump truck 

Capital acquisition cost R16 368 833 

Useful life 8 years  

Interest rate (per year) 6.5% 
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Table 4.1 outlines all the maintenance-related costs of the dump truck over the eight-year period analysed. 

The costs in Table 4.2 detail the total maintenance cost of the dump truck within a specific year.  

Table 4.2: Maintenance cost for rigid dump truck 

Year Maintenance cost (R) 

1 12 490 

2 16 382 

3 41 234 

4 2 280 937 

5 1 020 210 

6 1 014 028 

7 986 018 

8 67 242 

 

Two other costs extracted from the Anglo Operating Platform were those of a midlife service and a rebuild. 

These costs were part of company policy in which, after every 2 years of use, the dump truck underwent a 

midlife service costing R562 020 and, after every 4 years in use, it underwent a complete rebuild costing 

R8 390 630. To ensure an accurate model, all these costs needed to be included.  

The final cost required was the resale value of the dump truck per year in use. To obtain these costs, a 

depreciation value was needed. Anglo personnel supplied a disposal percentage, which is the percent of the 

acquisition cost at which the company values the worth of the dump truck after a year in use. For the dump 

truck’s useful life of 8 years, a disposal percentage was obtained for each year, as seen in Table 4.3. The 

corresponding resale value was also calculated. 

 

Table 4.3: Disposal costs for rigid dump truck 

Year Disposal percentage (%) Resale value (R) 

1 58 9 493 923 

2 43 7 038 598 

3 30 4 910 649 

4 24 3 928 519 

5 18 2 946 389 

6 14 2 291 636 

7 10 1 636 883 

8 8 1 309 506 
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Therefore, using all the information available in Tables 4.1 – 4.3 and implementing Equation 3.92, Figure 

4.3 was computed to demonstrate the equivalent annual cost of the dump truck over its useful life. 

 

Figure 4.3: Equivalent annual cost graph for a 777 rigid dump truck 

 

In Figure 4.3 there are two distinctive dips in the graph which occur at a replacement age of 4 years and 7 

years. The equivalent annual cost at a replacement age of 4 years was found to be the optimum, with a cost 

of R5 815 182. This represents the cost that an organisation will endure each year if this replacement policy 

is followed. The large increase in cost between the fourth and fifth year resulted from the rebuild cost 

incurred at the end of the fourth year. After the fifth year, the cost graph again decreases until the seventh 

year. The reason for this decrease is the major rebuild that occurred in the fourth year, which reduces 

maintenance costs for a few succeeding years because the dump truck has been restored to a nearly ‘as good 

as new’ condition.  

To show the cost effect of not replacing the dump truck at its optimum of every 4 years, Figure 4.4 was 

developed.  
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Figure 4.4: Equivalent annual penalty cost for a 777 rigid dump truck 

 

Figure 4.4 shows the equivalent annual penalty if the dump truck is not replaced every 4 years. Again, two 

dips are evident in the graph. The first is at 4 years with no penalty present as this is the optimum. The 

second is at 7 years with an equivalent annual penalty of R57 649. A decision needs to be made, either to 

replace the dump truck every 4 years, resulting in an equivalent annual cost of R5 815 182 and the need for 

the capital acquisition cost of R16 368 833 to be available every 4 years; or, to extend the life of the dump 

truck by another 3 years and replace it every 7 years with an extra equivalent annual penalty cost of 

R57 649, but a capital acquisition cost that only needs to be available every 7 years. Therefore, in terms of 

the model presented here, and assuming that the capital acquisition cost will be available when replacement 

is needed for the dump truck, it is evident that the best age to replace it is every 4 years to result in the 

lowest equivalent annual cost. 

 

4.5.1 Summary  

This section outlined the preventive maintenance optimisation technique that was implemented to analyse 

the dump truck dataset present within the plant. It was found that the best model to implement was the life 

cycle costing model since the dump truck was a capital asset and maintenance-related costs were attainable, 

but historical failure data was not. On implementation of the model, an equivalent annual cost of R5 815 182 

was computed and it was determined that the best maintenance strategy to follow would be replacement of 

the dump truck every 4 years. Under this policy, maintaining the dump truck would cost a company the 

amount stated above each year within the 4-year period.  

A penalty cost graph was also developed, which indicated the cost effect of not replacing the dump truck 

at the optimum age of 4 years. It was found that, if the 4-year rebuild cost was endured, the next best age 

to replace the dump truck would be every 7 years, resulting in an equivalent annual penalty of R57 649. 
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Therefore, a financial decision needed to be made to determine whether an organisation could endure the 

cost of acquiring a new dump truck every 4 years, or would benefit from extending the life of the dump 

truck by 3 years, paying an equivalent annual penalty each year and only acquiring a new dump truck every 

7 years. In this case, it was assumed that the organisation would have the funds to acquire a new dump truck 

every 4 years, which was the optimal choice. Thus, the optimum equivalent annual cost of R5 815 182 will 

be used in the overall yearly maintenance budget of the plant. 

 

4.6 Analysis of conveyor 1 

This section analyses the preventive maintenance methodology for the first of the three conveyors within 

the plant. The time period used for the data collected from the Anglo Operating Platform was 1 November 

2014 – 30 September 2018. As seen in Section 3, specific assumptions were made throughout the analysis 

as a result of certain factors not being attainable.  

4.6.1 Failure dataset analysis  

The maintenance data collected was in the form of failure data, along with a recorded corresponding cost 

for each failure activity. This represented the cost an organisation incurred when the failure happened. The 

cost of lost production due to downtime was not considered. The failure data collected was for one conveyor 

that comprised various different components, including idlers, troughing idlers, pulleys and belts. The 

failure data was given in days and 409 failure points were collected within the analysis period. 

Since failure data and cost data were collected, Figure 3.1 shows that a trend test needed to be performed 

first to determine the most appropriate preventive maintenance optimisation method to apply to the dataset. 

The test performed was the Laplace trend test, as outlined in Section 3.3.2. Using Equation 3.1 for the given 

dataset, the result was 𝐿 = 6.01. This clearly shows a strong trend in reliability degradation within the 

dataset, as seen in Figure 3.5, which suggests that the Lewis-Robinson test is irrelevant in this case.  

As indicated above, the results of the Laplace trend test demonstrate a strong trend in reliability degradation 

within the dataset. From Figure 3.1, this suggests that the repairable systems analysis methodology 

(following the first NHPP model) should be used as the preventive maintenance optimisation method for 

the dataset on conveyor 1. The methodology is discussed in Section 3.5, which presents all the related 

mathematics for repairable systems analysis. The first NHPP model, described in Section 3.5, was used to 

model the system to determine the expected number of failures at a certain time. From here, an optimum 

replacement age with a corresponding cost was computed, which could then be added to a yearly budget if 

this maintenance strategy is followed. The parameters of the first NHPP model were computed using the 

maximum likelihood method, as outlined in Section 3.5 (Coetzee, 1997). These parameters were found 

utilising the Goal Seek optimisation tool in Microsoft Excel. Table 4.4 gives the optimised parameters. 

 

Table 4.4: NHPP model parameters 

Parameter Value 

𝛼0 –5,346483 

𝛼1 0,000022 
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Therefore, using the parameters in Table 4.4, the modelled NHPP function for the first model found to 

follow the actual failure events (see Section 3.5) is shown below:  

𝜌1(𝑇) =  𝑒−5.3464+0.000022𝑇 

A main outcome of using this NHPP method was to show that it could be utilised to model actual failure 

events at a specific time instance, which could then be converted into a cost analysis for the conveyor. To 

demonstrate this, the actual failure events were plotted against the modelled failure events using Equation 

4.1 (Coetzee, 1997).  

𝐸{𝑁(𝑇)} =  
𝑒𝛼0

𝛼1

(𝑒𝛼1𝑇 − 1) 

Thus, using Equation 4.1, Figure 4.5 was developed. 

 

Figure 4.5: Actual vs modelled failure events 

From Figure 4.5, it is clear that the modelled failure events using the first NHPP model follow a similar 

trend to the actual failure events of the conveyor. This suggests that the first NHPP model is ideal to model 

the failure events of the conveyor. 

 

4.6.2 Budgetary calculation for conveyor 1 

The yearly budgetary calculations for conveyor 1 are shown in this section. In Section 4.6.1, it was found 

that the dataset for conveyor 1 follows a reliability degradation trend. Therefore, it was modelled using the 

repairable systems analysis, following the first NHPP model as described in Section 3.5. The parameters 

[4.1] 
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𝛼0 and 𝛼1 were computed in Section 4.6.1 and will be needed for the cost analysis. To determine the yearly 

budgetary requirements of the conveyor, the methodology described in Section 3.5.3 will be used.  

In Section 3.5.3, Coetzee (1997) outlines three methods that can be utilised to determine the point in time 

to replace the conveyor and the relevant cost associated with that point. The three methods are, namely, an 

optimum replacement time method using Equation 3.24; an optimum number of failures method using 

Equation 3.25; and, lastly, a graphical method using Equation 3.29. All three methods should yield similar 

answers and each method will be investigated here.  

It is evident from Equations 3.24, 3.25 and 3.29 that the main driving factors behind determining this 

budgetary cost are the cost of failure and the cost of an entire new system, in this case, the conveyor. As 

mentioned above, for each recorded failure point, an associated cost of failure was also recorded on the 

Anglo Operating Platform. This cost of failure did not consider the cost of lost production due to downtime. 

For the cost optimisation model, an average of all these failure points was taken as the cost of failure. The 

cost for an entire new conveyor was not attainable. However, a study performed by Sandvik for Anglo 

Platinum estimated that the cost of a new conveyor is R15 000 per metre. In this plant, it was assumed that 

conveyor 1 was 250 m long. Thus, using this information, Table 4.5 was generated to show all the costs 

associated with conveyor 1. 

 

Table 4.5: Conveyor 1 associated costs 

Failure cost 𝑪𝒇 Conveyor replacement cost 𝑪𝒑 

R61 395.77 R3 750 000 

 

Using the cost data in Table 4.5, the first NHPP model parameters in Table 4.4, and Equations 3.24, 3.25 

and 3.29, the optimum replacement point and the cost of the conveyor for all three methods was computed, 

as seen in Table 4.6.  

 

Table 4.6: NHPP model optimum outcomes 

Method (Equation) Optimum replacement 

point 

Optimum replacement cost 

(R/day) 

1 (3.24) 27 669 days 539.37 

2 (3.25) 182 failures 537.15 

3 (3.29) 27 650 days 538.71 

 

From Table 4.6, it is evident that all three methods give similar answers in terms of the optimum age to 

replace the entire conveyor, as well as the price incurred each day to maintain the conveyor. Using Equation 

3.29, Figure 4.6 was computed to demonstrate the effect of the replacement age vs the cost of replacement.  
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Figure 4.6: Conveyor 1 optimum cost curve 

Figure 4.6 shows that the cost associated with the replacement of the conveyor is more sensitive to the 

lagging end than to the leading end of the graph. This suggests that it would be preferable to extend the life 

of the conveyor by a set period than to replace it early. It is also evident that, after 40 000 days, the cost of 

replacement increases more sharply, which indicates that any extension over this time frame will result in 

a large cost increase per day.  

The final step in the repairable systems analysis is to present the results found in terms of a yearly budgetary 

requirement for use in the overall budget of an organisation. To achieve this, Equation 4.2 can be applied 

to convert the daily cost of maintaining the conveyor to a yearly cost.  

𝐶𝑦𝑒𝑎𝑟𝑙𝑦 =  𝐶𝑑𝑎𝑖𝑙𝑦 × 365 

Using Equation 4.2, the annual budgetary requirement for maintaining conveyor 1 was calculated to 

be R196 871.40. This is the amount that needs to be set aside each year in order to maintain the conveyor 

in terms of the repairable systems analysis.  

 

4.6.3 Summary  

This section indicates that the cost model utilised for conveyor 1 in the plant was the repairable systems 

analysis approach. The Laplace test found that the failure data gathered showed reliability degradation, 

which suggested that this approach was the best method for the analysis. Using the repairable systems 

analysis approach, it was determined that the conveyor should be entirely replaced after 27 650 days or 76 

years, with an associated cost of R196 871.40 per year. This optimum yearly cost did not consider 

production losses due to downtime since these were not attainable. However, if they could be obtained, it 

would be straightforward to implement them into the optimum yearly cost model.  

[4.2] 
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Figure 4.6 showed that the replacement age was more sensitive to an early replacement than a late 

replacement, which suggests it is more cost effective to extend the replacement age than to reduce it. 

However, neither of these methods are better than replacing the conveyor at its optimum age. Finally, the 

optimum yearly cost of maintaining the conveyor can be implemented into the overall budgetary 

requirements of an organisation for a year. Decisions surrounding whether to follow this budget can be 

made based on the sensitivity of Figure 4.6 and the budget of an organisation within a certain yearly period. 

 

4.7 Analysis of conveyor 2 

In this section, the preventive maintenance methodology for the second of the three conveyors within the 

plant is analysed. The time period for the dataset collected from the Anglo Operating Platform was 1 

December 2014 – 31 October 2018. As seen in Section 3, specific assumptions were made throughout the 

analysis as a result of certain factors not being attainable.  

 

4.7.1 Failure dataset analysis  

The selection of failure data collected for conveyor 2 was for one component, namely, an idler. A number 

of idlers exist within the conveyor system. For each failure point collected, its associated failure cost to the 

organisation was recorded, as well as the replacement cost of the component. The failure data points were 

recorded in days and 8 idler failure points were found in the given study period.  

As for conveyor 1, failure data and cost data were available for the analysis. Using this information, Figure 

3.1 indicates that the next step in the analysis process for conveyor 2 was to perform a trend test on the 

dataset to determine what preventive maintenance optimisation method should be chosen. The Laplace 

trend test was used, as outlined in Section 3.3.2. The Laplace value was computed using Equation 3.1 and 

a value of 𝐿 = −0.286 was found. Using Figure 3.5, it is clear that this value lies within the non-committal 

area, which suggests that no trend is present within the dataset and there is no need to perform the Lewis-

Robinson test.  

As stated above, the failure data collected for conveyor 2 was one set of idler data. A number of identical 

idlers are present within the conveyor system. Since the Laplace value showed no trend within the dataset, 

it is clear from Figure 3.1 that the best preventive maintenance optimisation method to implement in this 

case is the block replacement model, as outlined in Section 3.10. The reasons are the multiple identical 

components within one system with identical failure characteristics for analysis and no trend in the failure 

data. The mathematics surrounding the block replacement model is presented in Section 3.10, in which 

Equation 3.75 is the underlying function of the entire model. It is evident in Equation 3.75 that the main 

input into the equation is 𝐻(𝑡), which is the expected number of times a component fails within a certain 

interval. To calculate 𝐻(𝑡), 𝑓(𝑡) is needed, which is the probability density function for a Weibull 

distribution. To calculate 𝑓(𝑡), the Weibull analysis outlined in Section 3.6.2 needs to be performed to find 

β and η.  

Following the methodology in Section 3.6.2 and using the maximum likelihood method (Coetzee, 1997), β 

and η were computed, as seen in Table 4.7.  
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Table 4.7: Weibull parameters 

Parameter Value 

β 2.354 

η 311.94 

 

Using the parameters in Table 4.7, 𝑓(𝑡) could be computed: 

𝑓(𝑡) =  
2.354

311.94
(

𝑡

311.94
)

2.354−1

𝑒
−(

𝑡
2.354

)
311.94

 

Before 𝑓(𝑡) can be used conclusively in the block replacement model, it first needs to be determined 

whether the Weibull distribution fits the failure data with a good enough fit. As discussed in Section 3.4, 

the K-S test will be used to test the fit of the actual data to the modelled Weibull distribution. Following 

the methodology for the K-S test in Section 3.4, the critical value was found to be 𝑐𝑛 = 0.454 at a 

confidence interval of 95% where 𝛼 = 0.05. Plotting the cumulative distribution function over the 

empirical distribution function, Figure 4.7 was computed. 

 

Figure 4.7: Graphical K-S test: empirical vs fitted cumulative distribution functions 

 

Using Figure 4.7, the test statistic 𝐷𝑛 was computed as 𝐷𝑛 = 0.154. It is evident, therefore, that 𝐷𝑛 <  𝑐𝑛 

which suggests there is not enough evidence to reject the null hypothesis. This means that the Weibull 

distribution fits the data with a good enough fit.  
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4.7.2 Budgetary calculation for conveyor 2 

In Section 4.7.1 it was determined that the block replacement model needs to be implemented on the set of 

idler conveyor data as the optimum preventive maintenance strategy. It was also found that the Weibull 

distribution fits the idler failure data with a good enough fit, which enables the use of the block replacement 

model to analyse the failure data. This section outlines the process that was followed to establish the 

budgetary cost of maintaining the idlers in conveyor 2, utilising the block replacement model. In Section 

3.10, it was indicated that the underlying equation for this model is Equation 3.75. The first step in 

calculating the budgetary requirement using this method is the computation of 𝐻(𝑡). Applying the results 

of Section 4.7.1 and Equation 3.74, 𝐻(𝑡) was computed by developing an extensive Microsoft Excel 

program.  

Equation 3.75 indicates that the other driving factors behind determining the budgetary cost are the cost of 

failure and the cost of a preventive block replacement for an individual component. As stated in Section 

4.7.1, for each of the failure points recorded, a cost of failure was also recorded which did not consider the 

cost of lost production due to downtime. By extracting these costs from the Anglo Operating Platform and 

averaging them out, a cost of failure for the idlers within conveyor 2 could be determined. The preventive 

cost for the model was not attainable as it had never been recorded. Soccio (2016) states that the true cost 

of a machine breakdown can be reasonably estimated as between 4–15 times the maintenance cost. Thus, 

taking the end value of this interval, and using the block replacement model, it was assumed that the cost 

of preventive maintenance would be 15 times less than the cost of failure. Since the cost of a new component 

is fixed, the costs associated with the model were found as shown in Table 4.8.  

 

Table 4.8: Conveyor 2 associated costs 

Failure cost 𝑪𝒇 Individual group replacement cost 𝑪𝒈 

R21 731.10 R1 855.50 

 

For this plant, it was assumed that conveyor 2 is 500 m long with an idler present on either side of the 

conveyor every 2 m. This results in 500 idlers being modelled. Using the cost data in Table 4.8 and 𝐻(𝑡), 

Equation 3.75 was solved, resulting in the development of Figure 4.8.  
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Figure 4.8: Conveyor 2 optimum cost curve 

Figure 4.8 shows there is a clear optimum point to preventively block replace the idlers within the conveyor. 

The sensitivity around this optimum point is also high, as seen by the steep curve around it. Table 4.9 

outlines the results of the model. 

 

Table 4.9: Conveyor 2 outcomes 

Optimum block replacement 

age (days) 

Optimum block replacement 

cost (R/day) 

Run to failure cost 

(R/day) 

99 16 627.58 38 050.30 

 

Table 4.9 shows that all 500 idlers on the conveyor must be block replaced every 99 days for the optimum 

cost to be endured. If this policy is not followed, it will result in a large cost increase annually due to the 

sensitivity around the optimum replacement point. The run to failure cost was also computed by letting the 

model run until a stable value was reached on the leading edge of Figure 4.8. This cost was found to be 

129% greater than the optimum cost, indicating how vital it is to implement this preventive maintenance 

strategy to result in the lowest possible budget. Finally, applying Equation 4.2, the yearly budget for 

maintaining the idlers was found to be R6 069 065.74. This is the amount of money that needs to be set 

aside each year in order to maintain the idlers within conveyor 2.  

Due to the presence of the integral divided by the time period in Equation 3.75, the output of this block 

replacement model results in an average cost being determined that has only a 50% chance of reaching the 

optimum cost. In terms of a budgetary requirement, too much uncertainty was found in this answer. For 

this reason, the author developed a model that allowed more certainty to be found around the budget. This 

is implemented in Section 4.7.3. 
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4.7.3 Monte-Carlo simulation certainty validation  

As stated in Section 4.7.2, only using the block replacement model (see Section 3.10) results in an optimum 

cost value with too much uncertainty surrounding it to allow its use in an organisation’s annual budget. The 

purpose of this section is to implement the simulation model to create certainty around the optimum budget 

for the maintenance of the idlers in conveyor 2 in the plant. 

The simulation methodology outlined in Section 3.10.3 will be followed. Figure 3.24 shows that a number 

of inputs are needed before the simulation can take place, namely the cost of failure, the cost of group 

prevention and the optimum block replacement age. These values have all been found, as seen in Section 

4.7.2. The next step is to generate failure data that can then be run through the simulation model. The failure 

data for the block replacement model was generated using the method presented in Section 3.7.3. Once the 

simulated failure data was generated, it was run through the simulation model outlined in Figure 3.24. 

Therefore, following the simulation procedure in Section 3.10.4, Figure 4.9 was developed. It shows the 

confidence levels around the average block replacement answer from Section 4.7.2 with 2000 simulations 

run.  

 

Figure 4.9: Confidence intervals around conveyor 2 budgetary requirements 

 

The results of the simulation validate the average possible values of the budget incurred within a certain 

year given by the block replacement model. This can be seen by comparing the values at a confidence of 

50% in Figure 4.9 with the values in Table 4.9 and noting that they are identical. Figure 4.9 indicates the 

importance of running this simulation. In terms of budgetary requirements, a 50% certainty within a budget 

could be regarded as too risky. Therefore, following this model, an organisation has the opportunity to 

increase the certainty and reduce the risk. However, this choice is accompanied by an increased budget. For 

the plant, a certainty of 80% around the budget for the preventive case would result in a cost of R17 725/day. 

This cost is 6.6% greater than the 50% confidence cost, but it allows for more certainty around the answer. 

In terms of a budgetary decision-making process, it is evident that all the odds must be weighed up to 
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determine if it would better to have more certainty around the budget at a higher cost, or a lower budget 

with more risk and uncertainty surrounding it.  

The final step in the simulation process is to determine whether the Weibull distribution can be used to fit 

the simulated data to generate the confidence intervals. The K-S test was used to accomplish this, as 

described in Section 3.4. The critical values for the preventive case and the corrective case were found to 

be 𝑐𝑛 = 0.218 𝑎𝑛𝑑 𝑐𝑛 = 0.259 respectively, at a confidence interval of 95% where 𝛼 = 0.05. Figure 4.10 

was computed by plotting the cumulative distribution function over the empirical distribution function. 

 

Figure 4.10: K-S test validation around conveyor 2 confidence intervals 

Using Figure 4.10, the test statistic 𝐷𝑛 was computed as 𝐷𝑛 = 0.091 for the preventive case and 𝐷𝑛 =
0.108 for the corrective case. In both cases 𝐷𝑛 <  𝑐𝑛 , which suggests there is insufficient evidence to reject 

the null hypothesis. This means that the Weibull distribution fits the data with a good enough fit.  

 

4.7.4 Summary  

This section illustrated the block replacement method that was used to determine the yearly budget for 

maintaining the 500 idlers on conveyor 2 in the plant. The failure data of the idlers showed no trend. 

Multiple identical idlers were present in the conveyor system, which allowed the block replacement model 

to be implemented. Through its application, it was determined that all the idlers should be replaced every 

99 days, resulting in an annual maintenance cost of R6 069 065.74. This represented the average cost of 

maintaining the idlers using the block replacement model. Production losses were not considered since 

these were not attainable. The answer obtained utilising this model only resulted in a 50% certainty because 

it was an average value. For this reason, the author developed a model that enabled an increase in the 

certainty around the block replacement optimum cost answer. By implementing this new model, confidence 

intervals could be created around the optimum cost. This necessitated decisions about whether to increase 
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the certainty around a budget at a higher cost or have less certainty and more risk in a lower budget. Finally, 

it is evident from this section that the implementation of the preventive block replacement model results in 

a drastically reduced maintenance budget (by 129%) compared to the run to failure strategy. This indicates 

that it is imperative for an organisation to implement this preventive strategy to benefit from the huge cost 

saving in the budget. 

 

4.8 Analysis of conveyor 3 

In this section, the preventive maintenance methodology for the last of the three conveyors in the plant is 

analysed. Eight different sets of component data from one conveyor system were collected from the Anglo 

Operating Platform. The time period used for the dataset was from 1 July 2014 – 30 September 2018. As 

seen in Section 3, specific assumptions were made throughout the analysis as a result of being unable to 

obtain certain factors.  

4.8.1 Failure dataset analysis  

The maintenance data collected was in the form of failure data with a recorded corresponding cost to each 

failure activity. This was the cost that an organisation incurred at the time of the failure. It did not factor in 

the cost of lost production due to downtime, labour costs or setup costs. It was simply a record of the cost 

of the materials and resources needed to fix the failure. The failure data collected was for one conveyor 

comprised of 8 different components, including idlers, troughing idlers, idler sets, pulleys and belts. The 

failure data was given in days and 12–49 failure points were collected within the analysis period, depending 

on the component in the conveyor system being analysed. 

With the available cost and failure data on hand, and using Figure 3.1, the next step in the analysis process 

was to perform a trend test on all the collected data. From the results, the choice of a preventive maintenance 

optimisation technique to determine the budgetary requirements for the conveyor could be made. The 

Laplace trend test was chosen (see Section 3.3.2). If the results of the Laplace test for a given set of 

component failure data ended up in the ‘grey’ area in Figure 3.5, the Lewis-Robinsion test was performed, 

as illustrated in Section 3.3.3. Table 4.10 outlines the results of the trend test performed on all 8 components 

in the conveyor system.  

Table 4.10: Conveyor 3 trend test results 

Component Laplace trend test result Lewis-Robinson test result 

1 0.076 n/a 

2 0.229 n/a 

3 –1.19 –1.459 

4 0.951 n/a 

5 –1.07 –1.208 

6 –0.792 n/a 

7 1.00 n/a 

8 0.224 n/a 
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Table 3.3.3 shows that all the components, except for components 3 and 5, lie within the non-committal 

section of Figure 3.5. This suggests there is no trend for these components in the failure data. Components 

3 and 5 yielded Laplace values which resulted in them lying within the ‘grey’ area in Figure 3.5. This 

indicated that the Lewis-Robinsion test needed to be performed in order to make a correct assumption about 

the trend present within these datasets. Applying this test to components 3 and 5 failure datasets resulted in 

values that still remained in the ‘grey’ area of Figure 3.5. To gain a definite answer on the trend within 

these datasets, the data was plotted for both components. Visually, it was found that neither of the datasets 

possessed any trends. Thus, the datasets for all 8 components within the conveyor showed no trend.  

Following the methodology outlined in Figure 3.5, and noting that multiple components within one system 

require analysis, all of which show no trend within their datasets, it can be concluded that the grouping 

preventive maintenance model should be applied to this conveyor. Section 3.9 discusses all the mathematics 

surrounding this model. It is evident from Section 3.9 that four different models need to be analysed before 

any validation about implementating this grouping model can be made. These include the single component, 

mono-grouping, multi-grouping and multi-grouping shutdown approaches that will all be compared to one 

another. The underlying element of the cost curves in all these different approaches is Equation 3.56, which 

is the intensity function that has been analysed using the Weibull distribution in this case. Thus, two 

unknowns need to be calculated, namely β and η. As for conveyor 2, the Weibull analysis outlined in Section 

3.6.2 needs to be performed to find β and η. Therefore, following the methodology in Section 3.6.2 and 

using the maximum likelihood method (Coetzee, 1997), β and η were computed for all 8 components within 

conveyor 3, as seen in Table 4.11.  

Table 4.11: Conveyor 3 Weibull parameters 

Component β η (days) 

1 1.798 233.26 

2 1.680 505.87 

3 1.294 100.58 

4 1.369 180.68 

5 1.281 251.40 

6 1.137 277.94 

7 1.218 152.14 

8 1.581 413.88 

 

Using the parameters in Table 4.11, the intensity function for component 2 was computed, as shown below. 

The intensity functions of the other components were computed in the same manner. 

λ𝑖(𝑡) =
1.68

505.87
(

𝑡

505.87
)

1.68−1

  

Before λ𝑖(𝑡) can conclusively be used in the group replacement model, it first needs to be determined 

whether the Weibull distribution fits the failure data with a good enough fit. As discussed in Section 3.4, 

the K-S test will be used to test the fit of the actual data to the modelled Weibull distribution. Following 

the methodology for the K-S test in Section 3.4, the critical value for all 8 components within the conveyor 
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was found at a confidence interval of 95% where 𝛼 = 0.05, as seen in Table 4.12. Figure 4.11 was computed 

by plotting the cumulative distribution function over the empirical distribution function for all 8 

components. 

 

Figure 4.11: Conveyor 3 K-S test validation 

Using Figure 4.11, the test statistic 𝐷𝑛 was computed for all 8 components, as seen in Table 4.12. 

 

Table 4.12: Conveyor 3 K-S test results 

Component 𝒄𝒏 𝑫𝒏 

1 0.375 0.211 

2 0.327 0.180 

3 0.194 0.082 

4 0.327 0.126 

5 0.264 0.136 

6 0.318 0.136 

7 0.375 0.55 

8 0.375 0.187 
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Thus, from Table 4.12, it can be seen that 𝐷𝑛 <  𝑐𝑛 for all the components, which suggests there is not 

enough evidence to reject the null hypothesis. This means that the Weibull distribution fits the data with a 

good enough fit for all the components analysed in conveyor 3.  

 

4.8.2 Budgetary calculation for conveyor 3 

This section outlines the process that was followed to determine the budgetary requirements for maintaining 

conveyor 3. In Section 4.8.1, the grouping replacement model was found to be the best preventive 

maintenance strategy to implement on the different sets of component data within the conveyor because 

this data shows no trend and the conveyor system has multiple different components. The use of the Weibull 

distribution within the intensity function for this approach was validated using the K-S test.  

As indicated above, the implementation of this grouping model requires four different methods (see Section 

3.9) to be considered to determine whether they result in the optimal maintenance strategy being applied, 

and to show the cost benefit of using this method compared to others. These four methods include the single 

component approach, the mono-grouping approach, the multi-grouping approach and the multi-grouping 

shutdown approach. To compare these approaches, cost Equations 3.57, 3.66, 3.68 and 3.69 are used. The 

main inputs into these equations are the intensity function as computed in Section 4.8.1, the cost of 

prevention and failure for the different components within the conveyor, and the setup costs for a preventive 

action and a failure action.  

As stated in Section 4.8.1, for each failure point recorded for the 8 components within the conveyor, a cost 

of failure was also recorded which did not take into account the cost of lost production due to downtime, 

labour costs or setup costs. It merely indicated the cost of the materials and the resources needed to fix the 

failure. The preventive cost was not attainable on the Anglo Operating Platform as it had not been recorded. 

In this case, it was assumed that the preventive cost was the same as the failure cost because the latter only 

included the material and resource costs, making it a constant whether there was a failure or a prevention. 

The setup cost for a preventive and failure action was also not attainable. To gain an accurate estimate of 

this cost, the 2017 Sishen mine annual report (from which all the component data was obtained) was 

consulted. The setup cost for a failure was found to be R509 457.76 per hour. The calculations for this cost 

can be seen in Appendix D.  

As for conveyor 2, the true cost of a machine breakdown can be reasonably estimated to lie between 4–15 

times the maintenance cost (Soccio, 2016). Thus, for conveyor 3 it was assumed that the setup cost for a 

preventive action was 10 times less than that of a failure action. Laggoune et al. (2009) also justify this 

assumption by stating that the setup cost, which includes mobilising repair crews, safety provisions, 

transportation and production losses related to these tasks, can be prepared in advance in a preventive 

situation where the production penalty is low. However, in a failure scenario there is an element of 

emergency which does not allow for the advanced preparation, hence the increased setup cost. Therefore, 

bearing in mind all these assumptions and obtaining the failure costs from the Anglo Operating Platform, 

the total preventive and failure costs for all 8 components within the conveyor are presented in Table 4.13. 
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Table 4.13: Conveyor 3 associated costs 

 

 

 

 

 

 

 

 

The cost data in Table 4.13 and the Weibull data in Table 4.11 are used throughout the rest of the analysis. 

 

4.8.3 Single component approach 

This is the first approach to be analysed to determine the optimum age and cost to preventively replace the 

components within the conveyor individually. This general individual replacement strategy will be 

compared to the grouping strategies to ascertain which approach results in the optimal preventive strategy. 

Thus, following the methodology in Section 3.9.1.1 for the single component approach and using Equations 

3.58 and 3.57, the optimum replacement age and cost for all 8 components within the conveyor were 

computed, as seen in Table 4.14. 

Table 4.14: Conveyor 3 single component approach results 

Component Optimum replacement age 

(days) 

Optimum replacement cost 

(R/day) 

1 88 1901.81 

2 303 1512.94 

3 55 5731.33 

4 97 3289.01 

5 159 2441.73 

6 343 2337.15 

7 91 3721.41 

8 251 1782.45 

 

Failure cost Prevention cost 

Components 𝑪𝒊
𝑪 𝑪𝒊

𝑷 

Common cost 𝑪𝟎 R509 457.76 R50 945.78 

1 R23 933.05 R23 933.05 

2 R135038.88 R135038.88 

3 R21 298.98 R21 298.98 

4 R35 518.00 R35 518.00 

5 R34 721.93 R34 721.93 

6 R45 651.98 R45 651.98 

7 R9 958.26 R9 958.26 

8 R113 789.96 R113 789.96 
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The optimal solutions for the individual components are depicted in Table 4.14. It is evident that the optimal 

values for all the separate components within the conveyor are vastly different. To show this visually, 

Equation 3.57 was used to develop Figure 4.12, which shows the cost vs replacement age for all 8 

components within the conveyor system.  

 

Figure 4.12: Conveyor 3 individual optimum cost curves 

Figure 4.12 validates the results in Table 4.14 through the different cost curves it presents. The summary 

of the optimum replacement costs for all 8 components in Table 4.14 and their conversion into an annual 

cost, resulted in a cost of R8 292 011.26 per year being obtained. This is the budget that needs to be set 

aside each year if the conveyor is to be preventively maintained using this method. Thus, with this 

information available, the single component replacement strategy can now be compared to the grouping 

strategies.  

 

4.8.4 Grouping approaches  

This section outlines the method that was followed to develop all the results for the grouping strategies, if 

implemented on conveyor 3. The first approach considered, called the mono-grouping approach, comprises 

jointly replacing all the components within the conveyor in one set replacement interval. Following the 

methodology in Section 3.9.1.3 and applying Equation 3.68, Figure 4.13 was developed to show the results 

of implementing this method. It was found that the optimum age to replace all the components within the 

system was every 90 days, at a cost of R21 134.04 per day.  

The second approach considered was the multi-grouping approach. This comprises replacing all the 

components within the conveyor at variable intervals. Following the methodology in Section 3.9.1.2 and 

applying Equation 3.66 and the solution procedure in Section 3.9.1.5, Figure 4.13 was developed. It was 

established that the optimum interval replacement age is 47 days with an associated cost of R19 382.43 per 

day. The optimum multi-grouping strategy was found to replace components 1, 3, 4 and 7 every interval; 
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component 5 every second interval; components 4 and 8 every fourth interval; and component 2 every fifth 

interval (i.e. 1, 5, 1, 1, 2, 4, 1, 4, 1, 1).  

The third approach considered was the multi-grouping shutdown approach in which all the preventive 

actions were pushed into one annual plant shutdown. The lost production setup cost was assumed to be zero 

during this annual shutdown since the entire plant had ceased operation. Following the methodology in 

Section 3.9.1.4 and implementing Equation 3.69, Figure 4.13 was developed. The highlighted section shows 

the results of implementing the shutdown policy. It was found that an annual shutdown of every 365 days 

resulted in a cost of R31 109.93 per day to maintain the conveyor. The dip in the cost curve resulted from 

the preventive setup cost not being considered due to the planned plant shutdown.  

The results of all the grouping approaches and the single component approach can be seen in Table 4.15. 

 

 

 

 

 

 

 

 

 

Table 4.15: Conveyor 3 analysis results 

Strategy Optimum cost (R/day) Optimum cost (R/year) 

Single component 22 717.84 8 292 011.26 

Mono-grouping 21 134.04 7 713 924.08 

Multi-grouping 19 382.43 7 074 586.79 

Multi-grouping shutdown 31 109.93 11 355 125.63 

 

Figure 4.13: Conveyor 3 optimum cost curves 
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From Table 4.15 and Figure 4.13 it can be seen that the best policy to implement for the preventive 

maintenance of conveyor 3 is the multi-grouping approach. This approach resulted in a cost reduction of 

17.2% compared to the single component replacement policy, indicating how vital it is to implement such 

a policy in terms of overall savings for an annual budget. The multi-grouping shutdown policy was found 

to be the worst policy to implement because the optimum replacement ages for all the single components 

were less than 365 days. This suggests that pushing all the replacements into a yearly shutdown would 

result in many failures prior to the preventive replacements, hence the escalated cost. In addition, the 

preventive setup cost was not high enough to outweigh the cost of failures by pushing all the replacements 

into one annual shutdown. The mono-grouping approach was found to be the next best option, after the 

multi-grouping approach, but still resulted in a cost increase of 9% over the multi-grouping approach.  

4.8.5 Summary 

This section outlined the entire methodology and implementation of the grouping preventive maintenance 

strategy on conveyor 3 in the plant. By following the rationale in Figure 3.1 and the mathematics in Section 

3.9, it was determined that the best grouping approach to implement in order to maintain the 8 components 

within the conveyor was the multi-grouping approach. This resulted in a yearly maintenance cost of 

R7 074 586.79 being computed, which needs to be budgeted each year in order to keep the conveyor up 

and running according to this optimum solution. The multi-grouping approach was also compared to the 

other approaches. It was found to result in a 17.2% cost reduction compared to the single component 

replacement policy, and a 9% cost reduction compared to the mono-grouping approach. This demonstrates 

how essential it is to consider all options before a budgetary decision is made about the maintenance strategy 

to be implemented on a system. The chosen decision can have a huge impact on the yearly cost saving in 

terms of the planned maintenance budget of an organisation.  

 

4.9 Analysis of set of pumps  

This section outlines the preventive maintenance methodology that was implemented on the set of pumps, 

pumps 1–5, within the plant. From this, a yearly budgetary requirement could be determined. Data was 

collected from the Anglo Operating Platform. The time period used for the different sets of pump data 

varied from 1 April 2014 – 31 July 2019. As seen in Section 3, specific assumptions were made throughout 

the analysis as a result of certain factors not being attainable. 

4.9.1 Failure dataset analysis  

In this section, a failure data analysis is performed on all the failure data obtained from the Anglo Operating 

Platform for all the pumps within the plant to determine which preventive maintenance optimisation 

technique is best suited to analyse the failure data. This would result in the development of a yearly 

budgetary requirement for the maintenance of the pumps. There are five pumps present in the plant, each 

one in need of a maintenance strategy. The pumps are not aligned in series, which suggests that the failure 

of one pump will not result in the shutdown of the rest of the pumps. However, one budgetary requirement 

for all the pumps is needed as they are regarded as similar components within a larger system. From the 

Anglo Operating Platform, failure data was recorded for each of the five pumps within the plant. For each 

failure point recorded for each pump, a corresponding cost of failure was also recorded. This was the cost 

incurred by the organisation when the failure occurred. It did not consider the cost of lost production due 

to downtime, labour costs or setup costs, but was simply the cost of the materials and resources needed to 

fix the failure. The failure data collected for each pump in the plant was given in days and 9–22 failure 

points were collected within the analysis period, depending on the pump being analysed. 
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As stated previously, failure data and cost data were attainable for each pump within the plant. Using Figure 

3.1 and this data, the next step in the analysis process is to perform a trend test on all the pump failure data 

to determine which preventive maintenance technique should be applied to each pump. The Laplace trend 

test was chosen for this purpose (Section 3.3.2). If the results of the Laplace test for a given set of pump 

failure data ended up in the ‘grey’ area on Figure 3.5, the Lewis-Robinson test was performed (Section 

3.3.3). Table 4.16 outlines the results of the trend tests performed on all five pumps in the plant. 

Table 4.16: Pumps 1–5 trend test results 

 

 

Table 4.16 shows that the outcome of the Laplace trend test for pumps 2, 3 and 5 all resulted in the failure 

data lying within the non-committal area of Figure 3.5, which suggests there is no trend present for these 

pumps. The results for pumps 1 and 4 led to the failure data lying in the ‘grey’ area of Figure 3.5, indicating 

that another trend test needed to be performed to validate whether a trend is present within the datasets. The 

Lewis-Robinson trend test results for both pumps 1 and 4 still showed the failure data lying within the 

‘grey’ area of Figure 3.5. Therefore, to gain a definite answer on the trend within these datasets, the data 

was plotted for both pumps. Visually, it was found that neither dataset carried any trend. Thus, the datasets 

for the five pumps within the plant showed no trend.  

The next step in the analysis process is to determine which preventive maintenance optimisation technique 

to apply to each pump. Following the methodology in Figure 3.1, the best optimisation technique to apply 

to the pumps is the non-repairable systems analysis technique. The reason is that the pumps can be seen as 

separate components within varying sub-systems because the failure of one pump does not result in the 

shutdown of another pump. This enables the application of the non-repairable systems technique to the 

pump failure data. A detailed description of all the mathematics surrounding this method can be seen in 

Section 3.6. The main outcome of this method is the development of Equation 3.37, which allows the 

optimum replacement age and cost of the maintenance strategy to be computed. The two driving factors 

behind the implementation of Equation 3.37 are 𝑅(𝑡𝑝) and 𝑓(𝑡). These are the reliability and probability 

density functions, respectively, of the Weibull distribution. Section 3.6 indicates that, to calculate these two 

functions, the Weibull parameters β and η need to be determined. Thus, following the methodology in 

Section 3.6.2 and applying the maximum likelihood method, β and η were computed for each of the five 

sets of pump failure data as detailed in Table 4.17. 

 

Pump Laplace trend test result Lewis-Robinson test result 

1 –1.326 –1.919 

2 –0.957 n/a 

3 –0.843 n/a 

4 –1.038 –1.916 

5 0.243 n/a 
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Table 4.17: Pumps 1–5 Weibull parameters 

Pump β η (days) 

1 1.54 110.75 

2 1.57 131.32 

3 2.17 165.31 

4 1.85 505.79 

5 1.71 355.60 

 

Using the parameters in Table 4.17, the reliability and probability density functions for pump 1 were 

computed, as shown below. The other pump functions were computed in the same manner. 

𝑅(𝑡) =  𝑒
−(

𝑡
110.75

)
1.54

 

 

𝑓(𝑡) =  
1.54

110.75
(

𝑡

110.75
)

1.54−1

𝑒
−(

𝑡
110.75

)
1.54

 

 

Before 𝑅(𝑡𝑝) and 𝑓(𝑡) can be used conclusively in the non-repairable systems model, it first needs to be 

determined whether the results of the Weibull distribution fit the different sets of pump failure data with a 

good enough fit. As discussed in Section 3.4, the K-S test will be used to test the fit of the actual data to the 

modelled Weibull distribution. Following the K-S test methodology (Section 3.4), the critical value for all 

five pumps in the plant were found at a confidence interval of 95% where 𝛼 = 0.05, as seen in Table 4.18. 

Figure 4.14 was computed by plotting the cumulative distribution function in Equation 3.31 over the 

empirical distribution function in Equation 3.6. 
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Figure 4.14: Pumps 1–5 K-S test 

Using Figure 4.14, the test statistic 𝐷𝑛 was computed for all five pumps, as seen in Table 4.18. 

Table 4.18: Pumps 1–5 K-S test results 

Pump 𝒄𝒏 𝑫𝒏 

1 0.391 0.125 

2 0.430 0.182 

3 0.430 0.210 

4 0.281 0.123 

5 0.318 0.149 

 

Table 4.18 shows that 𝐷𝑛 <  𝑐𝑛 for all five pumps within the plant, which suggests there is not enough 

evidence to reject the null hypothesis. This means that the Weibull distribution fits the data with a good 

enough fit for all the pumps analysed.  

4.9.2 Budgetary calculation for all five pumps within the plant 

This section outlines the process that was followed in order to gain an overall yearly budgetary requirement 

for maintaining the five pumps within the plant. In Section 4.9.1, it was found and validated that the best 

maintenance optimisation technique to apply to all the sets of pump data was the non-repairable systems 

analysis model. Equation 3.37 is the underlying equation for the output of this technique. It comprises five 

different elements: a time element, which is a variable constant; 𝑅(𝑡𝑝) and 𝑓(𝑡), which have both been 
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calculated in Section 4.9.1; the cost of a preventive action and the cost of a failure action. As stated in 

Section 4.9.1, the data for the cost of a failure action was documented on the Anglo Operating Platform for 

each failure point recorded for each pump. This data was extracted for each pump and averaged out to 

determine the cost of failure for each pump. The preventive maintenance cost for each pump was not 

attainable as it had never been recorded. The true cost of a machine breakdown can be reasonably estimated 

to be between 4–15 times the maintenance cost (Soccio, 2016). Thus, taking a value between this interval, 

it was assumed that the cost of preventive maintenance would be 10 times less than that of a failure action. 

Using this assumption, the fixed costs associated with this non-repairable systems model were found for all 

five pumps, as seen in Table 4.19.  

Table 4.19: Pumps 1–5 associated costs 

Pump Failure cost 𝑪𝒇 Preventive cost 𝑪𝒑 

1 R223 564.85 R22 356.49 

2 R81 700.84 R8 170.08 

3 R117 239.09 R11 723.91 

4 R216 206.05 R21 620.61 

5 R69 417.78 R6 941.78 

Using the cost values in Table 4.19 and the results of 𝑅(𝑡𝑝) and 𝑓(𝑡) found in Section 4.9.1, Equation 3.37 

was applied to each set of pump data to find the budgetary requirement for each pump. This process is 

illustrated in Figure 4.15.  

Figure 4.15: Pumps 1–5 optimum cost curves 
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Figure 4.15 shows the optimum point to replace each pump in the plant. This optimum replacement age, its 

associated cost and the cost of run to failure if no preventive maintenance is implemented, are outlined in 

Table 4.20 for each pump in the plant. 

Table 4.20: Pumps 1–5 analysis results 

Pump Optimum 

replacement cost 

(R/day) 

Optimum 

replacement age 

Run to failure 

cost (R/day) 

1 1 621.18 41 2 243.43 

2 490.65 48 694.23 

3 391.38 56 805.07 

4 281.72 171 483.13 

5 141.02 122 219.52 

 

Table 4.20 shows the optimum replacement ages and optimum replacement costs for each pump. The values 

obtained are vastly different for each pump. The results of Table 4.20 indicate that each pump needs to be 

replaced at its relevant optimum age in order to attain its optimum cost for the preventive maintenance 

strategy. If the strategy is not followed for the pumps, it is evident that their maintenance costs grow 

substantially, as outlined by the run to failure cost. The cost increase was found to range between 38–105%, 

depending on the pump analysed. Therefore, it is clear how important it is to implement a preventive 

maintenance strategy within a plant to ensure the lowest possible budget for system and component 

maintenance. The yearly budget for each pump was computed using Equation 4.2, following the non-

repairable systems analysis technique within the plant. The results are presented in Table 4.21. 

 

Table 4.21: Pump 1–5 yearly maintenance budgets 

Pump Yearly budget (R) 

1 591 730.70 

2 179 087.25 

3 142 853.70 

4 102 827.80 

5 51 472.30 

 

From Table 4.21, it can be calculated that the total yearly budget needed to maintain all five pumps within 

the plant is R1 067 971.75. This value was found to be 52% less than run to failure costs over a yearly 

period, emphasising the importance of implementing this maintenance strategy.  
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As found in Section 3.6, due to the presence of the integral in Equation 3.37, the output of this non-

repairable systems model leads to an average cost being determined for each pump. This results in only a 

50% chance of the optimum cost being reached. In terms of a budgetary requirement, there is too much 

uncertainty around this answer. Thus, the author developed a model, as seen in Section 3.8, that allows 

more certainty to surround the budget. This model is implemented in Section 4.9.3. 

 

4.9.3 Implementation of Monte-Carlo simulation  

This section outlines the process that was followed to gain more certainty and confidence around the 

optimum budgetary costs obtained in Section 4.9.2. These were established by implementing the non-

repairable systems analysis on all five components within the plant. As stated in Section 3.6, the output of 

the general non-repairable systems model results in an average cost per time period being determined due 

to the presence of the integral function and the time step in the cost Equation 3.37. For a basic budgetary 

estimate in which the effect of exceeding budget is not important to an organisation, this general non-

repairable systems model will suffice. For most organisations, however, the effect of going over budget is 

significant and can be detrimental to their success. Therefore, the model developed in Section 3.8 was 

applied to the pump data in order to gain more confidence and certainty around the budget required to 

maintain the five pumps in the system within a specific annual period.  

Sections 3.7 and 3.8 demonstrate that two possible models can be applied to gain confidence around the 

budget. These include a yearly validation model that runs a simulation only looking at a yearly period, as 

outlined in Section 3.7, and a longer period validation model that considers a certain preventive 

maintenance strategy over a set period to determine the best maintenance strategy to implement for a period 

longer than a year, as described in Section 3.8. The latter model allows organisations to plan in advance if 

they require funds and gives them a future budgetary outlook that can be hugely beneficial. For the plant in 

this case study, the second model will be applied to establish the best maintenance strategy over a finite 

period from which the yearly budgetary requirements can be found. 

A five-year future budgetary outlook was utilised for the five pumps within the plant. Each year within the 

overall five years could either implement a preventive strategy or a corrective strategy. By applying the 

methodology in Section 3.8, a total of 32 different maintenance decisions could be looked at for a five-year 

finite period, ranging from a fully preventive strategy to a fully corrective strategy with a number of mixed 

strategies in-between. Using all the cost data, the outputted optimum replacement ages, and the β and η 

values found in Section 4.9.1, the model in Figure 3.17 was applied to the pump data. The solution 

procedure in Section 3.8.2 was followed, resulting in the generation of Figure 4.16. For each pump within 

the plant, 1000 simulations were run through the model in Figure 3.17, enabling the development of the 

confidence intervals seen in Figure 4.16. 
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Figure 4.16: Pump 1 five-year budgetary confidence intervals with varying decisions 

Figure 4.16 outlines the results of the simulation for pump 1 in the plant for all 32 maintenance decisions 

looked at over the five-year period. It is evident that a large difference exists in the confidence intervals 

found for each of the 32 decisions. The two extreme cases of a purely preventive tactic and a purely 

corrective tactic enclose all the other mixed decisions. A purely preventive maintenance tactic over the five-

year period analysed results in the smallest cost interval developed. This suggests that this would be the 

best tactic to implement for pump 1 to result in the lowest maintenance budget for the period under review. 

Therefore, from the development of these confidence intervals, it is clear that a certain level of confidence 

can be chosen for a budget. The higher the confidence chosen, the less the risk of exceeding budget; 

however, the budgetary requirement for the organisation will be higher. In addition, decisions can be made 

regarding the type of maintenance action to perform within a certain year by looking at the outcome of the 

confidence intervals developed for all the decisions within a certain period. Evidently, the most cost-

effective decision should be chosen.  

The same procedure that was followed for pump 1 was implemented for pumps 2–5. The results of the 

simulation for all 32 decisions for each pump can be seen in Appendix A. Figures A.1 – A.4 in Appendix 

A show that the purely preventive maintenance strategy over the five-year period analysed also resulted in 

the smallest cost interval for each of the pumps from 2 to 5. This suggests that this strategy would be the 

best approach to implement for all the pumps in the plant to result in the lowest maintenance budget for this 

period.  

To determine whether the information gathered in this section can be used to develop the yearly budget for 

the pumps, a statistical validation needs to occur. This process determines whether the Weibull distribution 

can be used to fit the simulated data for the generation of confidence intervals. The K-S test described in 

Section 3.4 was used for this purpose. The results for each of the five pumps can be seen in Appendix A in 

Tables A.1 – A.5. It was found that, for each of the 32 decisions for each pump, there was insufficient 

evidence to reject the null hypothesis, which suggests that the Weibull distribution fits the data with a good 

enough fit. Thus, with this information available, the yearly budgetary confidence interval for each pump 

can now be developed. 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

122 

 

The application of the model described in Section 3.8 on all five pumps within the plant over a five-year 

period determined that the preventive maintenance strategy is the best choice to implement for each pump 

for each year within the period analysed. By extracting only the first year of simulated cost data over the 

five-year period for each pump, the confidence intervals for the yearly budget for the same period were 

computed, following the methodology in Section 3.7.4, as seen in Figure 4.17. 

  

 

Figure 4.17: Pumps 1–5 yearly cost confidence intervals 

Figure 4.17 demonstrates that the analysis results of the general non-repairable systems model for pumps 

1–5, as outlined in Table 4.20, can be compared to the confidence intervals for a yearly period for each 

pump, developed in Figure 4.17. This comparison reveals that the results of the yearly budget developed in 

Section 4.9.2 only lead to an approximate 50% confidence in the maintenance budget being reached. In 

terms of the budgetary maintenance requirement of an organisation, this 50% confidence could be regarded 

as too low with too much uncertainty surrounding the budget. Thus, the development of the confidence 

intervals for the yearly budget of each pump allows for the choice of a certain level of confidence by an 

organisation’s budgetary department. Increased confidence in the budget results in less uncertainty and risk 

around it, but this is accompanied by a higher budgetary requirement. For the plant, the choice of an 80% 

level of confidence as the budgetary requirement for the pumps would result in a budget of R1 503 313.0 

per year to maintain all the pumps. This value is 40% greater than the 50% confidence found in Section 

4.9.2, but it results in 30% more certainty that the budget will not be exceeded in a specific year. Thus, it is 

evident that a number of decisions need to be weighed up before a conclusive decision about the budgetary 

requirement for the pumps can be made. These decisions include selecting either more certainty around the 

budget at a higher cost, or a lower budget with more risk and uncertainty attached to it. 

The final step in the simulation process was to determine whether the Weibull distribution can be used to 

fit the simulated yearly data for the generation of confidence intervals. For all five pumps, the K-S test 

determined that there was insufficient evidence to reject the null hypothesis, which means that the Weibull 
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distribution fits the data with a good enough fit. The results of this K-S test for each of the pumps can be 

seen in Appendix A, Figure A.5. They suggest that this method can be used to generate confidence intervals 

utilising the non-repairable systems model. The variability in the output of the cost model can be seen in 

the development of these confidence intervals. 

4.9.4 Summary  

This section outlined the detailed process that was followed to gain a yearly maintenance budget for the 

five pumps within the plant. It was found that the optimum preventive maintenance technique to implement 

was the non-repairable systems model. The output of this model resulted in an average yearly budget of 

R1 067 971.75. This answer gives a better budgetary requirement than no model being implemented at all, 

but it only results in a 50% confidence that this budget will be achieved. The simulation model developed 

in Section 3.8 was implemented on all the pump data to gain more certainty around the budgetary answer 

found in Section 4.9.2. From this, confidence intervals could be developed around the budget and a certain 

level of confidence could be chosen.  

For all the pumps it was determined that the best maintenance technique to implement over the five-year 

analysis period was a preventive strategy. The failure strategy resulted in the worst budget being computed. 

It must be noted that a detailed decision-making process needs to be prescribed when making budgetary 

decisions using this model. The choice of a higher confidence level results in more certainty and lower risk 

around the budget, but it also requires a larger budget. Therefore, depending on the particular organisation, 

different decisions can be made using this tool, dictated by organisational needs. 

 

4.10 Analysis of overhead crane  

This section outlines the preventive maintenance methodology that was implemented on the overhead crane 

in the plant to gain a yearly budgetary requirement for its preventive maintenance. A selection of 

maintenance data was collected from the Anglo Operating Platform and the time period used for the dataset 

was from 1 January 2007 – 31 March 2019. As seen in Section 3, general assumptions were made throughout 

the analysis both as a result of certain factors not being attainable and due to the selection of the optimisation 

model. 

4.10.1 Dataset analysis  

The data collected from the Anglo Operating Platform for the overhead crane was only in the form of 

historical cost data since historical failure data was not attainable. This historical cost data only recorded 

the cost of materials and resources used during the specific analysis period. The cost of labour and 

production losses due to maintenance actions on the overhead crane were not taken into account. The 

historical maintenance cost data was collected in yearly periods. For each year, the total sum spent on 

different maintenance activities on the overhead crane was recorded. There were 35 different maintenance-

related activities documented for the overhead crane each year, along with the cost surrounding each of 

these activities. In the time period analysed, 13 historical cost data points were recorded for each of the 

different maintenance activities, one for each year in the period between 2007 and 2019.  

The next step in the analysis process was to determine the best maintenance optimisation technique to be 

applied to the overhead crane dataset to result in a yearly budgetary requirement for an organisation. It is 

clear from Figure 3.1 that none of the historical failure data models could be used to analyse the dataset 

since no historical failure data was attainable. Either the forecasting model or the LCC analysis remained 
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to be used. Since the data collected was in the form of maintenance cost data for different sub-systems 

within the total overall overhead crane system, the forecasting model was selected for use.  

 

4.10.2 Preventive maintenance model implementation  

As stated above, for the given set of historical cost data available and using Figure 3.1, it was found that 

the forecasting model was the best optimisation technique to apply to the set of overhead crane data. Section 

3.11 outlines all the mathematics behind the use of this model. The forecasting model has a choice of three 

different models that can be implemented on historical cost data, namely the single, double and triple 

exponential smoothing models. For each model, different requirements are needed within the failure data 

to enable the application of the model to a specific set of data. These requirements include whether a trend 

and seasonality are present within the dataset. For the 35 sets of cost data related to the overhead crane, it 

was assumed that both a trend and seasonality were present within the datasets. This assumption was 

validated by plotting each set of cost data over its period in which the trend and seasonality could be seen. 

This validation process was performed on each of the 35 sets of cost data related to the overhead crane 

system. For all the datasets, it was found that a trend and seasonality were present. Figure 4.18 outlines this 

validation process for one of the 35 sets of cost data. 

 

Figure 4.18: Seasonality and trend validation 

 

Figure 4.18 shows that a trend is present in the dataset, as well as three clear seasons. Therefore, it can be 

concluded that the triple exponential smoothing forecasting model will be used to analyse all 35 sets of cost 

data for the overhead crane system.  

 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 

 
 
 



 

125 

 

4.10.3 Budgetary calculation for the overhead crane 

This section outlines the methodology that was followed to calculate the yearly budgetary requirement for 

the maintenance of the overhead crane in the plant. Section 4.10.2 found that the best optimisation technique 

to apply to the given dataset is the triple exponential smoothing forecasting method. This method is 

described in detail in Section 3.11. From Section 3.11 it can be seen that three equations needed to be solved 

for the triple exponential forecasting model to be implemented. These included the smoothing equation 

(Equation 3.82), the trend equation (Equation 3.83) and the seasonality equation (Equation 3.84). For each 

equation, a constant must be solved that is dependent on all the other equations. These constants were solved 

using an optimisation algorithm, as discussed in Section 3.11.2. This optimised the MSE error function to 

gain the best values for the constants. Before the optimisation algorithm for the computation of the constants 

could be implemented, the seasonality index for each set of data needed to be determined. Section 3.11.3 

was applied for each dataset to establish this index. 

The triple exponential forecasting model was implemented on each of the 35 datasets for the overhead crane 

system. A 15-year forecast was presented to show what the trend and seasonality effects would be on the 

maintenance budget in successive years. The sum of each of the 35 forecasted datasets was calculated to 

gain one overall yearly budget for the overhead crane. The actual cost data was compared to the forecasted 

data to ascertain whether this forecasting method could be accepted as a way to determine this yearly 

maintenance budget. The overall results of the implementation of this forecasting method on the overhead 

crane data can be seen in Figure 4.19. 

 

Figure 4.19: Overhead crane cost forecast 

Figure 4.19 outlines the total actual maintenance costs found in the following ways: by summing all 35 

datasets over their respective periods; from the forecast of the total actual costs; and from a 15-year future 

forecast of the overhead crane’s maintenance costs. From Figure 4.19 and by applying Equation 3.91, it 

was established that the MAPE of the forecast resulted in a value of 15.67%. Table 3.9 shows that this 

forecast resulted in a ‘good’ outcome, which suggests that the method of determining the yearly budget for 

the overhead crane can be used with reasonable certainty and gives a better estimate than not budgeting at 
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all. For the succeeding year of 2020, the yearly budgetary requirement to maintain the overhead crane was 

found to be R2 277 212.36. This is the budgetary estimate established by using this forecasting technique. 

It needs to be set aside in the year 2020 to maintain the overhead crane in the plant.  

4.10.4 Summary  

This section has outlined the preventive maintenance optimisation technique that was implemented on the 

set of overhead crane data within the plant. The triple exponential smoothing forecasting model was found 

to be the best model to use on the 35 sets of maintenance cost data relating to the overhead crane. By 

implementing this model with its relevant optimisation algorithms, it was found that the succeeding year of 

2020 needs to budget for a yearly cost of R2 277 212.36. The accuracy around this forecast was established 

as 15.67%, which was labelled ‘good’ according to Table 3.9. This suggests that the budget gives a good 

estimate of the probable maintenance-related costs in 2020. Since a forecast is being used to determine the 

budget for a succeeding year, there will always be uncertainty around the outcome. However, the 

uncertainly around this budget is better than a complete guess or not budgeting at all. The actual budget for 

2020 can be compared to the forecasted budget for 2020 in terms of the accuracy of the model. In addition, 

as the years progress, more historical data can be added to the forecasting model to result in a more accurate 

outcome. Finally, the budget computed in this section can be included in an organisation’s overall budgetary 

requirement for a yearly period. If the findings are followed, an organisation will be less likely to exceed 

the budget for an annual period due to the implementation of this preventive maintenance optimisation 

technique. 

 

4.11 Analysis of pump 6 

This section outlines the preventive maintenance methodology that was implemented on pump 6, the final 

element in the plant for analysis, to gain a yearly budgetary requirement for its preventive maintenance. 

Data was collected from the Anglo Operating Platform. The time period used for the dataset was from 1 

July 2016 – 31 August 2018. As seen in Section 3, general assumptions were made throughout the analysis 

both as a result of certain factors not being attainable and due to the selection of the optimisation model. 

4.11.1 Failure data analysis  

The data collected for pump 6 was historical failure data recorded over a certain period. For each failure 

point recorded, an associated cost of failure was also recorded. The historical failure data was recorded in 

days and 13 data points were documented for the pump in the time period examined. 

Failure data and cost data were attainable for pump 6 within the plant. Figure 3.1 indicates that the next 

step in the analysis process was to perform a trend test on the data to determine which maintenance 

technique should be applied for the balance of the analysis. Using the Laplace trend test, a value of 𝐿 =
 −1.26 was found. This resulted in the failure data lying in the ‘grey’ area of Figure 3.5. This shows that 

another trend test needed to be performed in order to validate whether a trend is present within the dataset. 

The test chosen was the Lewis-Robinson test. The results of this test still showed that the failure data was 

lying within the ‘grey’ area of Figure 3.5. Therefore, to gain a definite answer regarding the trend within 

the dataset, the data for pump 6 was plotted against itself. Visually, it was found that the dataset did not 

possess any trends. Thus, it could be assumed that no trends were present in the dataset for pump 6. 
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With the available historical data and the outcome of the trend test, it could be determined from Figure 3.1 

that the best maintenance optimisation model to implement for further analysis of pump 6 was the non-

repairable systems model. This model is outlined in depth in Section 3.6. The underlying equation for this 

model is Equation 3.37, which allows for an optimum maintenance strategy to be developed by minimising 

the cost function, resulting in the computation of an optimum replacement age with an associated cost. 

Equation 3.37 shows that the two driving factors behind the implementation of this equation 

are 𝑅(𝑡𝑝) and 𝑓(𝑡). These are the reliability and probability density functions, respectively, of the Weibull 

distribution. Section 3.6 indicates that, to calculate these two functions, the Weibull parameters β and η 

need to be determined. Following the methodology in Section 3.6.2, and applying the maximum likelihood 

method, β and η were computed for pump 6, as seen in Table 4.22. 

 

Table 4.22: Pump 6 Weibull parameters 

Parameter Value  

β 1.26 

η (days) 262.88 

 

Using the parameters in Table 4.22, the reliability and probability density functions for pump 6 were 

computed, as follows: 

𝑅(𝑡) =  𝑒
−(

𝑡
262.88

)
1.26

 

 

𝑓(𝑡) =  
1.26

262.88
(

𝑡

262.88
)

1.26−1

𝑒
−(

𝑡
262.88

)
1.26

 

 

Before 𝑅(𝑡𝑝) and 𝑓(𝑡) can be used conclusively in the non-repairable systems model, it first needs to be 

determined whether the results of the Weibull distribution fit the set of pump failure data with a good 

enough fit. As discussed in Section 3.4, the K-S test is used to test the fit of the actual data to the modelled 

Weibull distribution. Following the methodology for the K-S test in Section 3.4, the critical value of pump 

6 within the plant was found to be 0.361 at a confidence interval of 95% where 𝛼 = 0.05. Figure 4.20 was 

computed by plotting the cumulative distribution function in Equation 3.31 over the empirical distribution 

function in Equation 3.6 for pump 6. 
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Figure 4.20: K-S test 

Using Figure 4.20, the test statistic 𝐷𝑛 was computed as 0.20. Thus, it can be seen that 𝐷𝑛 <  𝑐𝑛, which 

suggests there is insufficient evidence to reject the null hypothesis. This means that the Weibull distribution 

fits the data with a good enough fit.  

4.11.2 Budgetary calculation for pump 6 

In Section 4.11.1 it was found that the best maintenance optimisation technique to implement on the set of 

pump data was the non-repairable systems analysis. The use of this optimisation technique on the pump 

failure data was verified in Section 4.11.1 and by utilising the K-S test. The next step in the overall analysis 

process was to determine an overall budgetary requirement for the maintenance of pump 6 within the plant. 

Since the non-repairable systems model is being implemented, Equation 3.37 is the underlying equation of 

this cost optimisation process (Section 3.6). The equation shows that two of the unknowns have already 

been computed, namely 𝑅(𝑡𝑝) and 𝑓(𝑡), as seen in Section 4.11.1. The last two unknowns that make up 

the equation are the cost of prevention and the cost of failure. As stated above, the data for the cost of a 

failure action was documented on the Anglo Operating Platform for each failure point recorded for the 

pump. This data was extracted for the pump and averaged out, resulting in a cost of failure being determined 

for the pump. The preventive maintenance cost for the pump was not attainable as it had never been 

recorded. The true cost of a machine breakdown can be reasonably estimated to lie between 4–15 times the 

maintenance cost (Soccio, 2016). Thus, taking a value between this interval, it was assumed that the cost 

of preventive maintenance would be 10 times less than that of a failure action. Using this assumption, the 

fixed costs associated with this non-repairable systems model were found for pump 6, as seen in Table 4.23.  

Table 4.23: Pump 6 associated costs 

Failure cost 𝑪𝒇 Preventive cost 𝑪𝒑 

R113 983 R11 398 
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The cost information in Table 4.23 and the Weibull parameters computed in Table 4.22 allow Equation 

3.37 to be applied to the pump 6 failure data. This resulted in the development of Figure 4.21. 

 

 

Figure 4.21: Pump 6 optimum cost curve 

Figure 4.21 shows the cost curve of pump 6 following the non-repairable systems analysis. It can be seen 

that no clear optimum point exists to practise preventive maintenance as the graph has no definite dip. 

However, an optimum replacement point can be found at 148 days and at a cost of R422 per day. To 

determine whether this optimum replacement point needs to be strictly followed, the run to failure cost was 

also computed. It was found to be R466 per day. The increase from the optimum replacement cost to the 

run to failure cost was found to be only 10%. In terms of an overall maintenance strategy, this cost increase 

can be seen as insubstantial, which suggests that it would be more worthwhile to let pump 6 run to failure 

than to actively partake in preventive maintenance. The reason is that, in the long run, downtime and setup 

costs for the implementation of the preventive maintenance activities could result in costing more than just 

letting the pump run to failure and replacing it at failure. If an organisation regarded the 10% cost increase 

as too large, a 5% increase in the optimum replacement cost could be found. This would result in a 

replacement interval of between 78–362 days, indicating that the pump could be replaced anywhere in this 

interval and result in only a 5% cost increase. Clearly this replacement interval is large, which shows the 

insensitivity around the optimum replacement age. Taking the run to failure cost into account, the yearly 

budgetary requirement to maintain pump 6 under this strategy was computed as R170 090. 

 

4.11.3 Summary  

This section has outlined the optimum preventive maintenance strategy for implementation on pump 6 

within the plant. This should ensure the lowest possible maintenance costs, which can be incorporated into 

a yearly budgetary requirement for the maintenance of the entire plant. It was found that the non-repairable 

systems analysis would be the best maintenance technique to implement due to the available data and the 
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results of the trend tests. This approach found that the optimum age to perform preventive maintenance is 

every 148 days, with an associated cost of R422 per day. It was also determined that the cost curve generated 

was extremely insensitive to the extension of the replacement age whereas, if the pump was replaced at 

failure, it would only result in a 10% cost increase. This indicates that it is imperative to consider the 

implementation of maintenance actions and the outcome if they were not to be applied. In some scenarios, 

it could be regarded as more worthwhile not to implement preventive maintenance as its effect would be 

insubstantial. Therefore, it is essential to weigh up all scenarios before making a conclusive decision about 

the implementation of specific maintenance action.  

4.12 Case study summary  

So far in Section 4, the model developed in Section 3 has been demonstrated on a contrived plant consisting 

of a number of different components and systems. Varying data has been attainable for the different 

elements within the plant. The model outlined in Figure 3.1 has been implemented on the plant to find a 

budgetary requirement for each section. All the challenges put forward in the problem statement have been 

addressed. The final challenge to address is to combine all the separate budgetary requirements into one 

concise budget that can be used by the finance department of an organisation to make decisions about the 

yearly maintenance budget of a plant.  

4.12.1 Overall budgetary requirement  

Figure 4.1 shows that the plant consisted of a number of different components and systems, including a 

dump truck, conveyor systems, an overhead crane and a selection of pumps. As described throughout 

Sections 4.4 – 4.1, different types of datasets were available for the different elements within the plant from 

the Anglo Operating Platform. No set preventive maintenance optimisation method could be used to analyse 

all the different datasets due to variability within the datasets themselves. The model developed in Section 

3 was implemented on the plant and the process outlined in Figure 3.1 was followed. The yearly budgetary 

requirement to maintain all the different elements within the plant was determined using a selected 

optimisation model. Table 4.24 shows the relevant optimisation model for each element, found through the 

implementation of the methodology in Figure 3.1, and its accompanying yearly budgetary requirement.  

 

Table 4.24: Individual budgetary breakdown 

Component/system Model applied Yearly budgetary 

requirement 

Dump truck Life cycle costing model R5 815 182.00 

Conveyor 1 Repairable systems model R196 871.00 

Conveyor 2 Block replacement model R6 069 065.00 

Conveyor 3 Grouping model R7 074 586.00 

Overhead crane Forecasting model R2 277 212.00 

Pumps 1–5 Non-repairable systems model R1 067 971.00 

Pump 6 Run to failure model R169 725.00 
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Table 4.24 indicates that an optimum maintenance cost for each separate system/component within the 

plant has been computed. This is the average cost that should be budgeted for the succeeding year in order 

to maintain the plant according to this optimum policy. Figure 4.22 was developed to demonstrate the 

distribution of the different models within the plant and how the output of each optimisation model affected 

the total overall budgetary requirement of the plant. 

 

  

 

Figure 4.22 illustrates the distribution of each individual cost model in the overall budgetary requirement. 

It shows a clear separation between the different models and a substantially greater contribution by certain 

models compared to other models. The reason is the cost information obtained from the Anglo Operating 

Platform in which some elements in the plant have greater failure costs associated with them than others. 

This results in the maintenance costs of these elements being significantly higher than some of the other 

elements. Figure 4.22 gives a strong visual representation of the percentage of the overall budget needed to 

maintain the specific elements within the plant, thereby allowing the budgetary department of an 

organisation to see exactly where their budget is being spent and on what.  

Section 3 demonstrated that the output of certain models throughout the analysis resulted in average costs 

being computed for the yearly budget for specific elements within the plant. These models included the 

block replacement model implemented on conveyor 2 and the non-repairable systems model implemented 

on pumps 1–5. Thus, in terms of a budgetary requirement, an average budget could result in too much 

uncertainty and risk as there is only a 50% chance of this budget being reached. Figure 4.23 was developed 

to show the confidence levels around the overall yearly maintenance budget to maintain the entire plant. 

Figure 4.22: Budgetary distribution within the plant 
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Figure 4.23: Overall varying maintenance budget for the plant 

Figure 4.23 indicates clear confidence levels surrounding the overall maintenance budget for the plant. It 

shows that, at a confidence of 50%, the resultant budget is identical to the average budget obtained using 

the standard models – without the implementation of the two simulation models in Sections 3.7, 3.8 and 

3.10.2. This validates that these general maintenance optimisation models do output the average cost of a 

maintenance action for a certain period. However, extended modelling needs to occur to create more 

certainty around the outcome of the general models. The implementation of the models developed by the 

author in Sections 3.7, 3.8 and 3.10.2 enables confidence around the budget to be computed, allowing more 

certainty and less risk to be outputted for a budget. This is evident in Figure 4.23 in which a certain level 

of confidence can be chosen for the overall budgetary requirement for the plant. A higher level of 

confidence will result in less uncertainty and less risk around the budget, but it will also require a larger 

budget to maintain the plant within a specific yearly period. Thus, the development of this overall budgetary 

maintenance model allows maintenance departments to make various decisions about the budget they are 

willing to put aside each year. The risk and uncertainty surrounding this budget can be obtained by using a 

figure such as Figure 4.23 that will guide the department to make the best decision in terms of the yearly 

maintenance budget of an organisation.  

 

4.12.2 Case study summary  

From the detailed scope of research presented in Section 1 and the literature study presented in Section 2, 

it can be noted that a definite gap exists in the literature. This gap relates to the availability of an overall 

maintenance model that is generic to a number of variable scenarios, in which the output of a budgetary 

requirement lies at its forefront. Section 3 presented a proposed overall maintenance methodology that 

incorporated a large variety of individual maintenance models. This principle was applied to the case study 

presented in Section 4. 
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The case study utilised a contrived mining plant comprised of a variety of different systems and 

components. Available data was collected from the Anglo Operating Platform to form the basis of the entire 

analysis. Due to the variety of data collected, the overall maintenance model outlined in Figure 3.1 was 

exercised to its full potential since every element in the overall model was illustrated in the case study.  

It is evident that the overall maintenance model effectively produces one overall budgetary requirement for 

a plant, presenting the results in a relatively simplified manner for the complex problem at hand. This 

enables the results to be easily understood by a budgetary decision maker. However, the final budgetary 

requirement can also be completely misunderstood. This suggests that the overall maintenance model 

developed needs to be completely understood by an organisation before its implementation to ensure it is 

utilised to its full potential.  

By implementing the overall maintenance model, it was found that each element within the plant required 

the application of a different individual model. The model enabled the computation of an individual 

maintenance plan for each element, consisting of an optimum replacement age and an associated cost. 

Through the various elements present within the plant and the nature of the data analysed, the generic use 

of the model developed could be illustrated to demonstrate that it is not confined to one specific scenario. 

The use of all the individual failure models within the overall model were validated using goodness of fit 

tests in which it was found that the null hypothesis could not be rejected.  

The final overall budgetary requirement for the plant being analysed in this research was developed by 

incorporating all the individual cost requirements found by utilising the model presented in Figure 3.1. The 

implementation of Monte-Carlo simulations in the maintenance model allowed certainty around the budget 

to be determined, resulting in the mitigation of risk. In the evaluation of the final budgetary decision tool, 

it was concluded that the implementation of such a maintenance model into an organisation will result in a 

total plant optimised cost for the preventive maintenance of the plant. Such a tool could result in significant 

cost reductions due to its variability, ease of use and application.  
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5 Conclusion and recommendations  

 

5.1 Conclusion 

An extensive literature study was presented in Section 2 that reviewed the overall thought process and view 

on plant asset management as a whole. The latest advanced modelling methods and techniques were 

investigated, and the benefits related to an overall maintenance model were extracted and examined. It was 

determined that a substantial amount of literature is available on all the individual maintenance models that 

have been developed over the years and that cost optimisation could be applied to a number of these models. 

A large gap in the literature in terms of maintenance optimisation was observed in one area. This was in the 

field of an overall maintenance optimisation model that could be implemented in a variety of unique 

scenarios to develop one comprehensive budgetary requirement for an organisation as the main output. To 

ascertain how to develop such an extensive model for application to multiple situations, Sections 2 and 3 

presented an exhaustive review on a significant number of the individual maintenance models that already 

exist. The individual models were then critically analysed, allowing for their implementation into an overall 

model. In-depth modifications to the existing models were applied and additional models were developed 

to enable the overall maintenance model to be as generic as possible.  

This dissertation proposes an integrated overall maintenance optimisation methodology with the 

capabilities to be implemented into a wide variety of plants and resulting in the development of an all-

inclusive budgetary requirement for the preventive maintenance of a specific plant for a given period. The 

model developed incorporates a number of maintenance methodologies that have already been tried and 

tested. These include non-repairable systems analysis, repairable systems analysis, block replacement 

models and optimum maintenance grouping methodologies. The four maintenance techniques considered 

all deal with in-depth statistical analysis that requires the acquisition of failure data in order to implement 

the models. All these models are based on analysing the failure characteristics of a certain piece of 

machinery or equipment. The output is the optimisation of a cost function that results in the optimum cost 

and age of replacement of the element under scrutiny. In terms of the outcome of an overall budgetary 

maintenance model, considering these four models alone would result in a methodology that could only be 

used on elements in a plant with failure data attached to them. To address this issue and to develop a more 

general maintenance model, two other modelling techniques were investigated: a forecasting technique and 

a life cycle modelling methodology. These two methods were considered because, in any organisational 

setting, the one piece of data that is rarely not attainable is the cost data spent on a specific action. This can 

range from failure cost data to replacement cost data. Thus, it was concluded that the development of a 

model which could incorporate all these different types of data, based on availability, would be more 

beneficial than simply neglecting this aspect altogether.  

It was established that significant modifications could be made to the already developed maintenance 

models found in the literature by introducing a simulation methodology that quantifies the risk around the 

cost outputs of the models. This was implemented on both the non-repairable systems model and the block 

replacement model.. This methodology utilised Monte-Carlo simulations to construct confidence intervals 

around the outputted cost. Instead of just an average cost being budgeted for a certain period, the 

significance was that a confidence around a budget could be chosen, increasing certainty and reducing risk. 

To illustrate the actual functioning of the overall maintenance methodology developed in this dissertation, 

a case study was presented. It made use of a contrived plant comprised of a number of different systems 

and components with varying types of available data attached to them. The data was gathered from the 

Anglo Operating Platform from a number of different mines. The elements within the plant were chosen 
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directly based on attainable data and to illustrate the functioning of all the sub-models within the complete 

maintenance model developed. The use of the case study validated the maintenance methodology that was 

developed in terms of its potential effectiveness in establishing an overall preventive maintenance 

budgetary requirement for a plant with a variety of data inputs.  

The research presented in this dissertation led to the development of an overall preventive maintenance 

model that met all the aims and outcomes initially stated. The model developed can be used in a diverse 

range of scenarios and situations, resulting in the final outcome of one comprehensive budgetary decision 

that can be put forward to management. A novel simulation method was implemented on a number of the 

sub-maintenance models in order to create certainty around the outcomes. Historical failure and cost data 

were necessary for the implementation of this model, and the model’s effectiveness was validated using the 

case study. It was found that the outcome resulted in an effective decision-making tool with significant 

potential for implementation in a variety of organisations in search of optimal budgetary requirements.  

 

5.2 Recommendations  

As stated in Section 5.1, the overall maintenance model developed in this research resulted in an effective 

decision-making tool for use in establishing an annual budgetary requirement for an organisation. In any 

research, areas exist in which future improvements can occur. This section outlines all these areas. 

1. The model developed is a general maintenance model that can be applied to a number of different 

industries in which varying systems and components occur. This study considered equipment from 

the mining sector only. To validate the model further, it would be beneficial to implement it in a 

variety of different sectors and in an actual plant environment. The output of the model could then 

be compared to a current maintenance strategy and conclusions could be drawn. 

 

2. One area that the overall maintenance methodology does not presently consider is condition-based 

maintenance. This section of maintenance could be incorporated into the current model to make it 

even more general and open.  

 

3. In the grouping model developed in Section 3.9, the optimum strategy devised was based on 

considering the optimum replacement times of all the components involved and optimising the 

replacement interval. A more detailed model on the topic of opportunistic maintenance could be 

developed using genetic algorithms. 

 

4. Monte-Carlo simulations could be implemented into the repairable systems analysis, resulting in 

the development of an output that is not just an average but rather has confidence intervals 

surrounding it.  

 

5. As with any model built on historical data, the quality of the data plays an integral role in the 

accuracy of the outcome. The data collected in this research allowed the expression of all the 

fundamental processes. To further improve the results, future studies could be performed with 

better data integrity that should lead to improved results.  

 

6. Unfortunately due to time constraints the industry surveys could not be completed. Future industry 

surveys could be implemented into a number of different organisation to prove the validity of the 

model. 
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Appendix A  Case study result curves 

 

Appendix A presents the results of the case study outlined in Section 4.9. 

 

Figure A.0.1: Pump 2 five-year budgetary confidence intervals with varying decisions 

 

 

Figure A.0.2: Pump 3 five-year budgetary confidence intervals with varying decisions 
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Figure A.0.3: Pump 4 five-year budgetary confidence intervals with varying decisions 

 

 

Figure A.0.4: Pump 5 five-year budgetary confidence intervals with varying decisions 
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Figure A.0.5: K-S test for yearly budgetary confidence intervals 
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Table A.1: Pump 1 K-S test results 

Strategy Strategy vector Number of events 𝑫𝒏 𝒄𝒏 

Strategy 1 𝐵 = (0, 0, 0, 0, 0) 19 0.119 0.301 

Strategy 2 𝐵 = (0, 0, 0, 0, 1) 84 0.111 0.148 

Strategy 3 𝐵 = (0, 0, 0, 1, 0) 91 0.107 0.143 

Strategy 4 𝐵 = (0, 0, 0, 1, 1) 99 0.078 0.137 

Strategy 5 𝐵 = (0, 0, 1, 0, 0) 77 0.081 0.155 

Strategy 6 𝐵 = (0, 0, 1, 0, 1) 107 0.087 0.131 

Strategy 7 𝐵 = (0, 0, 1, 1, 0) 107 0.089 0.131 

Strategy 8 𝐵 = (0, 0, 1, 1, 1) 110 0.075 0.130 

Strategy 9 𝐵 = (0, 1, 0, 0, 0) 91 0.087 0.143 

Strategy 10 𝐵 = (0, 1, 0, 0, 1) 103 0.083 0.134 

Strategy 11 𝐵 = (0, 1, 0, 1, 0) 103 0.081 0.134 

Strategy 12 𝐵 = (0, 1, 0, 1, 1) 110 0.090 0.130 

Strategy 13 𝐵 = (0, 1, 1, 0, 0) 99 0.081 0.137 

Strategy 14 𝐵 = (0, 1, 1, 0, 1) 120 0.080 0.124 

Strategy 15 𝐵 = (0, 1, 1, 1, 0) 113 0.078 0.128 

Strategy 16 𝐵 = (0, 1, 1, 1, 1) 108 0.085 0.131 

Strategy 17 𝐵 = (1, 0, 0, 0, 0) 68 0.105 0.165 

Strategy 18 𝐵 = (1, 0, 0, 0, 1) 104 0.068 0.133 

Strategy 19 𝐵 = (1, 0, 0, 1, 0) 102 0.089 0.135 

Strategy 20 𝐵 = (1, 0, 0, 1, 1) 106 0.065 0.132 

Strategy 21 𝐵 = (1, 0, 1, 0, 0) 97 0.100 0.138 

Strategy 22 𝐵 = (1, 0, 1, 0, 1) 115 0.076 0.127 

Strategy 23 𝐵 = (1, 0, 1, 1, 0) 107 0.083 0.131 

Strategy 24 𝐵 = (1, 0, 1, 1, 1) 113 0.074 0.128 

Strategy 25 𝐵 = (1, 1, 0, 0, 0) 99 0.096 0.137 

Strategy 26 𝐵 = (1, 1, 0, 0, 1) 103 0.089 0.134 

Strategy 27 𝐵 = (1, 1, 0, 1, 0) 108 0.099 0.131 

Strategy 28 𝐵 = (1, 1, 0, 1, 1) 117 0.082 0.126 

Strategy 29 𝐵 = (1, 1, 1, 0, 0) 107 0.081 0.131 

Strategy 30 𝐵 = (1, 1, 1, 0, 1) 105 0.087 0.133 

Strategy 31 𝐵 = (1, 1, 1, 1, 0) 108 0.082 0.131 

Strategy 32 𝐵 = (1, 1, 1, 1, 1) 95 0.085 0.140 
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Table A.2: Pump 2 K-S test results 

Strategy Strategy vector Number of events 𝑫𝒏 𝒄𝒏 

Strategy 1 𝐵 = (0, 0, 0, 0, 0) 16 0.127 0.327 

Strategy 2 𝐵 = (0, 0, 0, 0, 1) 65 0.100 0.169 

Strategy 3 𝐵 = (0, 0, 0, 1, 0) 63 0.103 0.171 

Strategy 4 𝐵 = (0, 0, 0, 1, 1) 79 0.087 0.153 

Strategy 5 𝐵 = (0, 0, 1, 0, 0) 61 0.109 0.174 

Strategy 6 𝐵 = (0, 0, 1, 0, 1) 78 0.097 0.154 

Strategy 7 𝐵 = (0, 0, 1, 1, 0) 76 0.089 0.156 

Strategy 8 𝐵 = (0, 0, 1, 1, 1) 82 0.088 0.151 

Strategy 9 𝐵 = (0, 1, 0, 0, 0) 64 0.106 0.170 

Strategy 10 𝐵 = (0, 1, 0, 0, 1) 83 0.094 0.149 

Strategy 11 𝐵 = (0, 1, 0, 1, 0) 87 0.099 0.146 

Strategy 12 𝐵 = (0, 1, 0, 1, 1) 79 0.090 0.153 

Strategy 13 𝐵 = (0, 1, 1, 0, 0) 82 0.081 0.150 

Strategy 14 𝐵 = (0, 1, 1, 0, 1) 87 0.094 0.146 

Strategy 15 𝐵 = (0, 1, 1, 1, 0) 83 0.078 0.149 

Strategy 16 𝐵 = (0, 1, 1, 1, 1) 80 0.097 0.152 

Strategy 17 𝐵 = (1, 0, 0, 0, 0) 56 0.097 0.182 

Strategy 18 𝐵 = (1, 0, 0, 0, 1) 77 0.092 0.155 

Strategy 19 𝐵 = (1, 0, 0, 1, 0) 75 0.095 0.157 

Strategy 20 𝐵 = (1, 0, 0, 1, 1) 84 0.091 0.148 

Strategy 21 𝐵 = (1, 0, 1, 0, 0) 77 0.088 0.155 

Strategy 22 𝐵 = (1, 0, 1, 0, 1) 85 0.073 0.148 

Strategy 23 𝐵 = (1, 0, 1, 1, 0) 80 0.081 0.152 

Strategy 24 𝐵 = (1, 0, 1, 1, 1) 80 0.075 0.152 

Strategy 25 𝐵 = (1, 1, 0, 0, 0) 73 0.094 0.159 

Strategy 26 𝐵 = (1, 1, 0, 0, 1) 79 0.092 0.153 

Strategy 27 𝐵 = (1, 1, 0, 1, 0) 81 0.092 0.151 

Strategy 28 𝐵 = (1, 1, 0, 1, 1) 84 0.087 0.148 

Strategy 29 𝐵 = (1, 1, 1, 0, 0) 77 0.073 0.155 

Strategy 30 𝐵 = (1, 1, 1, 0, 1) 79 0.089 0.153 

Strategy 31 𝐵 = (1, 1, 1, 1, 0) 80 0.088 0.152 

Strategy 32 𝐵 = (1, 1, 1, 1, 1) 66 0.088 0.167 
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Table A.3: Pump 3 K-S test results 

Strategy Strategy vector Number of events 𝑫𝒏 𝒄𝒏 

Strategy 1 𝐵 = (0, 0, 0, 0, 0) 12 0.140 0.375 

Strategy 2 𝐵 = (0, 0, 0, 0, 1) 43 0.135 0.207 

Strategy 3 𝐵 = (0, 0, 0, 1, 0) 47 0.118 0.198 

Strategy 4 𝐵 = (0, 0, 0, 1, 1) 43 0.136 0.207 

Strategy 5 𝐵 = (0, 0, 1, 0, 0) 49 0.139 0.194 

Strategy 6 𝐵 = (0, 0, 1, 0, 1) 52 0.129 0.189 

Strategy 7 𝐵 = (0, 0, 1, 1, 0) 46 0.135 0.201 

Strategy 8 𝐵 = (0, 0, 1, 1, 1) 42 0.120 0.210 

Strategy 9 𝐵 = (0, 1, 0, 0, 0) 46 0.131 0.201 

Strategy 10 𝐵 = (0, 1, 0, 0, 1) 52 0.118 0.189 

Strategy 11 𝐵 = (0, 1, 0, 1, 0) 56 0.125 0.182 

Strategy 12 𝐵 = (0, 1, 0, 1, 1) 50 0.121 0.192 

Strategy 13 𝐵 = (0, 1, 1, 0, 0) 50 0.126 0.192 

Strategy 14 𝐵 = (0, 1, 1, 0, 1) 51 0.120 0.190 

Strategy 15 𝐵 = (0, 1, 1, 1, 0) 47 0.123 0.198 

Strategy 16 𝐵 = (0, 1, 1, 1, 1) 47 0.123 0.198 

Strategy 17 𝐵 = (1, 0, 0, 0, 0) 34 0.144 0.233 

Strategy 18 𝐵 = (1, 0, 0, 0, 1) 41 0.139 0.212 

Strategy 19 𝐵 = (1, 0, 0, 1, 0) 48 0.125 0.196 

Strategy 20 𝐵 = (1, 0, 0, 1, 1) 48 0.115 0.196 

Strategy 21 𝐵 = (1, 0, 1, 0, 0) 46 0.119 0.201 

Strategy 22 𝐵 = (1, 0, 1, 0, 1) 56 0.129 0.182 

Strategy 23 𝐵 = (1, 0, 1, 1, 0) 47 0.130 0.198 

Strategy 24 𝐵 = (1, 0, 1, 1, 1) 46 0.120 0.201 

Strategy 25 𝐵 = (1, 1, 0, 0, 0) 43 0.121 0.207 

Strategy 26 𝐵 = (1, 1, 0, 0, 1) 52 0.131 0.189 

Strategy 27 𝐵 = (1, 1, 0, 1, 0) 53 0.108 0.187 

Strategy 28 𝐵 = (1, 1, 0, 1, 1) 51 0.125 0.190 

Strategy 29 𝐵 = (1, 1, 1, 0, 0) 40 0.128 0.215 

Strategy 30 𝐵 = (1, 1, 1, 0, 1) 48 0.123 0.196 

Strategy 31 𝐵 = (1, 1, 1, 1, 0) 38 0.120 0.221 

Strategy 32 𝐵 = (1, 1, 1, 1, 1) 29 0.116 0.253 
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Table A.4: Pump 4 K-S test results 

Strategy Strategy vector Number of events 𝑫𝒏 𝒄𝒏 

Strategy 1 𝐵 = (0, 0, 0, 0, 0) 9 0.163 0.430 

Strategy 2 𝐵 = (0, 0, 0, 0, 1) 26 0.140 0.259 

Strategy 3 𝐵 = (0, 0, 0, 1, 0) 25 0.124 0.264 

Strategy 4 𝐵 = (0, 0, 0, 1, 1) 33 0.122 0.231 

Strategy 5 𝐵 = (0, 0, 1, 0, 0) 24 0.158 0.269 

Strategy 6 𝐵 = (0, 0, 1, 0, 1) 32 0.111 0.234 

Strategy 7 𝐵 = (0, 0, 1, 1, 0) 32 0.134 0.234 

Strategy 8 𝐵 = (0, 0, 1, 1, 1) 26 0.131 0.259 

Strategy 9 𝐵 = (0, 1, 0, 0, 0) 20 0.131 0.294 

Strategy 10 𝐵 = (0, 1, 0, 0, 1) 33 0.118 0.231 

Strategy 11 𝐵 = (0, 1, 0, 1, 0) 32 0.115 0.234 

Strategy 12 𝐵 = (0, 1, 0, 1, 1) 26 0.116 0.259 

Strategy 13 𝐵 = (0, 1, 1, 0, 0) 27 0.145 0.254 

Strategy 14 𝐵 = (0, 1, 1, 0, 1) 33 0.115 0.231 

Strategy 15 𝐵 = (0, 1, 1, 1, 0) 25 0.135 0.264 

Strategy 16 𝐵 = (0, 1, 1, 1, 1) 29 0.155 0.246 

Strategy 17 𝐵 = (1, 0, 0, 0, 0) 21 0.181 0.287 

Strategy 18 𝐵 = (1, 0, 0, 0, 1) 28 0.141 0.250 

Strategy 19 𝐵 = (1, 0, 0, 1, 0) 33 0.120 0.231 

Strategy 20 𝐵 = (1, 0, 0, 1, 1) 30 0.134 0.242 

Strategy 21 𝐵 = (1, 0, 1, 0, 0) 27 0.115 0.254 

Strategy 22 𝐵 = (1, 0, 1, 0, 1) 26 0.118 0.259 

Strategy 23 𝐵 = (1, 0, 1, 1, 0) 31 0.118 0.238 

Strategy 24 𝐵 = (1, 0, 1, 1, 1) 23 0.163 0.275 

Strategy 25 𝐵 = (1, 1, 0, 0, 0) 21 0.166 0.287 

Strategy 26 𝐵 = (1, 1, 0, 0, 1) 24 0.128 0.269 

Strategy 27 𝐵 = (1, 1, 0, 1, 0) 24 0.115 0.269 

Strategy 28 𝐵 = (1, 1, 0, 1, 1) 23 0.125 0.275 

Strategy 29 𝐵 = (1, 1, 1, 0, 0) 21 0.155 0.287 

Strategy 30 𝐵 = (1, 1, 1, 0, 1) 26 0.138 0.259 

Strategy 31 𝐵 = (1, 1, 1, 1, 0) 21 0.146 0.287 

Strategy 32 𝐵 = (1, 1, 1, 1, 1) 18 0.186 0.309 
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Table A.5: Pump 5 K-S test results 

Strategy Strategy vector Number of events 𝑫𝒏 𝒄𝒏 

Strategy 1 𝐵 = (0, 0, 0, 0, 0) 10 0.165 0.409 

Strategy 2 𝐵 = (0, 0, 0, 0, 1) 28 0.121 0.250 

Strategy 3 𝐵 = (0, 0, 0, 1, 0) 27 0.115 0.254 

Strategy 4 𝐵 = (0, 0, 0, 1, 1) 32 0.120 0.234 

Strategy 5 𝐵 = (0, 0, 1, 0, 0) 26 0.122 0.259 

Strategy 6 𝐵 = (0, 0, 1, 0, 1) 33 0.102 0.231 

Strategy 7 𝐵 = (0, 0, 1, 1, 0) 37 0.111 0.218 

Strategy 8 𝐵 = (0, 0, 1, 1, 1) 35 0.112 0.224 

Strategy 9 𝐵 = (0, 1, 0, 0, 0) 25 0.123 0.264 

Strategy 10 𝐵 = (0, 1, 0, 0, 1) 35 0.095 0.264 

Strategy 11 𝐵 = (0, 1, 0, 1, 0) 34 0.089 0.227 

Strategy 12 𝐵 = (0, 1, 0, 1, 1) 34 0.092 0.227 

Strategy 13 𝐵 = (0, 1, 1, 0, 0) 31 0.118 0.238 

Strategy 14 𝐵 = (0, 1, 1, 0, 1) 32 0.096 0.234 

Strategy 15 𝐵 = (0, 1, 1, 1, 0) 35 0.099 0.224 

Strategy 16 𝐵 = (0, 1, 1, 1, 1) 34 0.092 0.227 

Strategy 17 𝐵 = (1, 0, 0, 0, 0) 19 0.156 0.301 

Strategy 18 𝐵 = (1, 0, 0, 0, 1) 28 0.122 0.250 

Strategy 19 𝐵 = (1, 0, 0, 1, 0) 32 0.135 0.234 

Strategy 20 𝐵 = (1, 0, 0, 1, 1) 32 0.127 0.234 

Strategy 21 𝐵 = (1, 0, 1, 0, 0) 28 0.110 0.250 

Strategy 22 𝐵 = (1, 0, 1, 0, 1) 36 0.101 0.221 

Strategy 23 𝐵 = (1, 0, 1, 1, 0) 33 0.102 0.231 

Strategy 24 𝐵 = (1, 0, 1, 1, 1) 31 0.103 0.238 

Strategy 25 𝐵 = (1, 1, 0, 0, 0) 25 0.151 0.264 

Strategy 26 𝐵 = (1, 1, 0, 0, 1) 32 0.126 0.234 

Strategy 27 𝐵 = (1, 1, 0, 1, 0) 30 0.120 0.242 

Strategy 28 𝐵 = (1, 1, 0, 1, 1) 34 0.115 0.227 

Strategy 29 𝐵 = (1, 1, 1, 0, 0) 29 0.161 0.246 

Strategy 30 𝐵 = (1, 1, 1, 0, 1) 31 0.107 0.238 

Strategy 31 𝐵 = (1, 1, 1, 1, 0) 30 0.133 0.242 

Strategy 32 𝐵 = (1, 1, 1, 1, 1) 29 0.126 0.246 
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Appendix B Barringer’s LCC analysis step process 

 

Appendix B outlines a step process used by Barringer and Weber (1996) for a total life cycle cost (LCC) 

analysis of a system in order to reach the best decisions on which alternative solution to implement in 

different organisations.  

 

Step 1: Define the problem that requires LCC 

To perform a detailed and accurate life cycle cost analysis, the problem at hand needs to be well developed 

with an in-depth understanding of what the project entails, including all its intricate details. This necessitates 

acquiring all possible information about the project and having a sound awareness of important sources 

from whom/which the information can be obtained.  

The reason for performing the LCC analysis needs to be known and all the alternative methods and 

techniques need to have been considered. The outcome of the LCC analysis is to reach a conclusion about 

what alternative is best for the current system. This is what needs to be achieved at the end of an LCC 

analysis (Barringer & Weber, 1996).  

 

Step 2: Look at all alternative solutions with costs involved  

An LCC analysis would not be regarded as a complete and accurate analysis of an item or system unless it 

compared different solutions to a problem. This means that various alternative methods need to be examined 

to ensure that the best possible solution is implemented for a system.  

In terms of maintenance optimisation for a system, three different methods will be considered, namely ‘run 

to failure’, ‘time-based maintenance’ and ‘condition-based maintenance’. The cost-optimisation models in 

Sections 3.2 and 3.3 will be implemented in the LCC analysis and all the alternatives will be compared to 

ensure that the best and most economical solution is chosen for the system (Barringer & Weber, 1996).  

 

Step 3: Develop a cost breakdown structure  

A cost breakdown structure is a method of separating all the costs involved in a system from acquisition to 

disposal in order to understand exactly which costs can and will affect the decisions made about the system. 

A variety of different costs are involved in the lifetime of a mechanical system. These can be divided into 

acquisition and sustaining costs (Barringer & Weber, 1996).  

Figure B.1 outlines the costs that can be found in different mechanical systems. Depending on the system 

at hand, not all the costs in Figure B.1 will be associated with a specific system. Extra costs could also be 

involved.  
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Figure B.1: Cost breakdown structure, adapted from Barringer and Weber (1996) 

 

Step 4: Develop an analytical cost-optimisation model 

This is one of the most important processes in the whole LCC analysis since it is the tool that will be used 

to determine which alternative method related to maintenance is best suited for a certain system. The model 

needs to look at the net present value (NPV) of the system over a certain time period. This NPV will be 

compared to the alternatives, resulting in a final decision being made.  

All the cost information based on Sections 3.2 and 3.3 needs to be inputted into the model, and the time 

value of money also needs to be taken into account. The present value of the system per time interval can 

be computed for various time intervals, and an optimum can be found based on initial constraints. The NPV 

of a system will allow a capital decision to be made. Maintenance optimisation will be at the forefront of 

this decision since it is one of the greatest contributors towards the NPV (Barringer & Weber, 1996).  

 

Step 5: Develop breakeven charts for all alternative options  

A breakeven chart is used to allow for a visual representation of the alternative methods that could be 

implemented into a system over a certain life period. This chart allows one to see which alternatives pay 

back quickly with big returns. Therefore, the chart allows the most desirable alternative to be chosen for a 

system with a visual comparison to the other alternatives (Barringer & Weber, 1996). 
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Step 6: Develop Pareto charts for cost contributors within the system 

The Pareto chart is a tool that enables all the main cost contributors for each alternative to be itemised and 

identified. This allows a more careful analysis of these cost contributors. Significant attention needs to be 

given to trying to reduce their cost contribution. The Pareto chart can also be used to identify the highest 

cost-contributing components within a system, thus allowing for time to be spent on the items that will be 

most detrimental to a company if failure occurs (Barringer & Weber, 1996).  

 

Step 7: Perform a sensitivity analysis 

The sensitivity analysis allows one to ascertain the level of sensitivity of a specific system in terms of 

replacement and performing certain maintenance actions at other than the optimum time. Reliability, 

maintainability, availability and NVP costs are all examined to determine the sensitivity. The effectiveness 

of a system is often used in this analysis because it assesses reliability, maintainability and availability. This 

is then plotted against the NPV value and time, allowing the sensitivity of the different alternatives to be 

seen over a time period (Barringer & Weber, 1996).  

 

Step 8: Study risks of components  

This section of the LCC analysis considers the main cost contributors and a number of the failure data 

criteria when making a decision. These include the reliability, mean time between failures (MTBF), 

availability, maintainability and survivor functions. The reason is that sometimes a high cost-contributing 

element has desirable failure occurrences. This means that, even though it may have a high cost, it has a 

low probability of failing. Thus it can be surmised that, preferably, more time should be spent on items that 

fail more regularly since these regular failures could add up to more cost than one high cost item failure 

(Barringer & Weber, 1996).  

The data found using the models in Sections 3.2 and 3.3 will be used for this analysis. 

 

Step 9: Make a decision based on cost impact  

This is the final step in the LCC analysis. It involves deciding about which alternative to implement, based 

on all the previous steps. All the data and models need to be considered to ensure that the correct decision 

for the system is made. This process is imperative as the decision will be carried forward for the rest of the 

maintenance optimisation process (Barringer & Weber, 1996). 
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Appendix C  Failure data for Caterpillar 789 180 ton haul truck 

 

Table C.1: Failure data for Caterpillar 789 180 ton haul truck  

Failure 

number  

Value  Failure 

number  

Value  Failure 

number  

Value  

1 78 28 555 55 214 

2 80 29 245 56 98 

3 173 30 20 57 45 

4 50 31 4 58 96 

5 142 32 36 59 180 

6 97 33 412 60 118 

7 44 34 497 61 8 

8 1 141 35 308 62 66 

9 12 36 394 63 62 

10 251 37 532 64 231 

11 1 185 38 243 65 215 

12 1 236 39 165 66 179 

13 236 40 107 67 26 

14 236 41 663 68 1 

15 177 42 58 69 25 

16 62 43 155 70 85 

17 78 44 250 71 82 

18 433 45 77 72 106 

19 689 46 21 73 159 

20 44 47 58 74 16 

21 233 48 10 75 191 

22 1 322 49 64 76 268 

23 2 50 70 77 15 

24 488 51 41 78 209 

25 511 52 453 79 2 

26 86 53 14 80 32 

27 1 176 54 258 81 22 
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Failure 

number  

Value  Failure 

number  

Value  Failure 

number  

Value  

82 99 98 70 114 83 

83 38 99 70 115 41 

84 62 100 6 116 18 

85 13 101 12 117 43 

86 10 102 30 118 61 

87 15 103 28 119 56 

88 1 104 42 120 105 

89 18 105 72 121 45 

90 34 106 16 122 2 

91 19 107 136 123 23 

92 2 108 53 124 1 

93 135 109 442 125 1 

94 15 110 1 126 12 

95 17 111 1 127 3 

96 215 112 264 128 28 

97 39 113 762   
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Appendix D  Conveyor 3 set-up cost calculations  

 

Appendix D outlines the methodology that was followed in order to gain the setup cost for a failure action 

on conveyor 3. This cost is one of the main inputs into the model, which was used to analyse the failure 

data for conveyor 3. 

The historical failure data for the conveyor was obtained from the Anglo Operating Platform for the Sishen 

mine in the Northern Cape, South Africa. As stated in Section 4.8, although failure data from the Anglo 

Operating Platform was attainable for the conveyor set, historical cost data was not. In order to acquire 

historical cost data, the 2017 Sishen mine annual dissertation was consulted. Data on the performance and 

output of the mine was obtained, which allowed for a setup cost to be determined. The calculations for the 

setup cost follow. 

From the 2017 Sishen mine annual dissertation, it was found that 31.1 million tons of iron ore were 

produced in 2017 with a unit cost of R287/ton. It was assumed that two main conveyors led into the 

production plant and that the average downtime to fix a failure action on a conveyor was one hour.  

Using all this information, Equations D.1 – D.3 could be followed, which enabled the computation of the 

setup cost.  

 Using Equation D.1, the hourly production of the plant could be computed. 

Hourly production =
Yearly production

365 × 24
 

Hourly production =
31.1 × 106

365 × 24
= 3550.23 tons per hour 

 Using Equation D.2, the hourly production per conveyor could be computed. 

Hourly production/conveyor =
Hourly production

2
 

Hourly production/conveyor =
3550.23

2
= 1775.11 tons/hour/conveyor 

Therefore, from Equations D.1 and D.2, the downtime setup cost due to a failure action could be computed 

using Equation D.3. 

Downtime setup cost = Hourly production/conveyor ×  unit cost per ton 

Downtime setup cost = 1775.11 × 287 = R509 457.8 

Thus, from Equations D.1 – D.3, the setup cost per failure action was computed as R509 457.8/per hour 

under the current assumptions.  

[D.1] 

[D.2] 

[D.3] 
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