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Submitted in partial fulfilment of the requirements for the degree

Master of Engineering (Mechanical Engineering)

supervised by

Prof. PS Heyns Prof. DN Wilke

2019

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



Abstract

Keywords: Deep learning, Bearing Fault Detection and Diagnosis, Non-Stationary oper-
ating conditions, Unsupervised learning, Information maximisation

Faults in bearings usually manifest as marginal defects that intensify over time, allowing for
well-informed preventative actions with early Fault Detection and Diagnosis (FDD) proto-
cols. Detection of the fault begins with capturing, for example, acceleration signals from a
machine. Traditionally, handpicked descriptive statistical features (mean, RMS, skewness,
kurtosis, etc.) or spectral diagrams obtained from these signals are then used for FDD.
However, machine signals are often generated under non-stationary operating conditions of
varying loads and speeds, requiring further intervention. More advanced signal processing
techniques (spectral kurtosis, or cyclostationary analysis) are hence used to account for the
non-stationarity of the signal. This is usually done by separating acceleration signals into
deterministic and random components [Abboud et al., 2019]. Fault detection in bearings is
possible by observing the random components of the signal.

A wealth of research [Zhao et al., 2019, Cerrada et al., 2018, Khan and Yairi, 2018, Liu
et al., 2018] has been invested in machine learning based techniques to circumvent the prob-
lems associated with non-stationary signals. Many of these methods require vast amounts of
historical data to train. Machines typically spend most of their life operating in a healthy
condition, therefore, most historical data is occupied with data that comes from a healthy
machine condition, training these methods are difficult, due to the shortage of data from a
machine running in an unhealthy condition. Furthermore, well-performing machine learn-
ing algorithms still require a domain expert to extract features that are known to be fault
sensitive. Deep learning is a recent approach in data analysis whereby feature extraction is
incorporated within the training of the algorithm. The algorithm is given the ability to find
and extract its own features. The architecture of the algorithm allows for the extraction of
complex hierarchical non-linear features. To the author’s knowledge, no attempt has been
made to make full use of the power of deep learning together with the known structure of
bearing acceleration signals to perform FDD.

In this work, a bearing FDD methodology is developed using deep learning approaches.
A model based on Generative Adversarial Networks (GANs) and Variational Autoencoders
(VAEs) is used to learn a lower dimensional representation of an acceleration signal. A reg-
ularization strategy based on information maximization is used, which allows deterministic
and random components of the signals to be learned separately. This representation is subse-
quently used to perform bearing FDD. The algorithm is trained in a completely unsupervised
manner on exclusively healthy data and requires no preprocessing of that data. Furthermore,
no auxiliary signals such as a shaft encoder, which contains information about the machine
operating condition, is required for the algorithm to work. The methodology was tested
on well known benchmark datasets, and it was shown to be robust against non-stationary
operating conditions. The algorithm can learn its own fault metric and by observing the
trajectory of the signal representation, it is also able to diagnose the type of fault.
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Chapter 1

Introduction

1.1 Background

Many industries, such as those in the mining or power generation sector, have a large number
of high valued legacy assets. The productivity of these companies often relies on these ageing
assets. Increasing the reliability and availability of such ageing assets remains an important
business goal, if they are to remain competitive. One way of achieving higher reliability is
through prognostics and health management (PHM). Some of the ways in which PHM can
improve the reliability of an ageing asset are [Roy et al., 2016]:

• Engineering for extending life of high value assets with optimum costs

• Better understanding of the foundations of asset in-service degradation

• Applying new technologies to improve efficiency and effectiveness of the maintenance:
large scale data analysis, automation and autonomy

Rotating machinery is one of the main asset classes with industry and, hence, has driven
research for PHM. Rotating machinery is generally supported by bearings whose failure can
lead to entire system shutdown. As a result, the bearings of a machine are considered one of
its most critical components. Bearing related faults can account for as much as 40% of the
total number of failures in induction motors [Zhang et al., 2011]. As a result, bearing fault
detection and diagnosis (FDD) are important if one is to avoid the more catastrophic failure
consequences of large rotating machinery. Faults, however, usually manifest as marginal de-
fects that intensify over time, allowing for well-informed preventative maintenance schedules
with early FDD.

PHM consists of three distinct stages, namely: data acquisition, data processing and main-
tenance decision-making. During data acquisition, signals are captured from the machine
in various forms. These include, for example, vibration-, acoustic-, or temperature-signals.
Data can also come in the form of oil analyses, where debris in the oil can indicate the ensu-
ing fault. Data, in whatever form, contains information about the condition of the machine
to various degrees. During the second stage of PHM, advanced data processing techniques
can be used to extract machine condition information from the data. Using a suitable signal
processing technique, the location of the fault can be identified. However, estimating the
severity of the fault is a bit more challenging and thus, is an active area of research.

The data acquisition method most often used in practice is the vibration signals obtained
from accelerometers. This is due to the ease of installation of accelerometers and the high
amount of diagnostic and prognostic information contained within the signal. Due to the high
sampling rate and large amount of noise in vibration signals, it has always been necessary
to improve the quality of the data or extract features before any faults could be detected.
Traditionally, these features are generally extracted from either the time domain or frequency
domain or a combination of both. A useful feature is one that is only sensitive to faults and
performs well in signals that have a low signal-of-interest (fault) to noise ratio. Statistical
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features in the time domain are a popular choice for bearing diagnostics. For example,
kurtosis is used as it is a measure of the signals impulsiveness [Randall and Antoni, 2011].

Alternatively, in the frequency domain, spectral diagrams are used to manually track the
excitation of certain system resonances, usually at much higher frequencies, indicating a
fault. More commonly, fundamental fault frequencies can be calculated from the bearing’s
geometry and tracked in the envelop spectrum can provide diagnostic information. However,
machines are frequently operated under non-stationary conditions, such as varying speeds or
loads. This makes extracting features with these methods more challenging, as they all work
under the assumption that the signal is stationary. As a result, more advanced techniques
are required to offset the effects of non-stationary conditions.

Once the dataset is clean, and a good set of features have been extracted, the final stage of
PHM can commence with the maintenance decision making. This is done by diagnosing the
incipient fault and making a prognosis. Fault classification is normally done by comparing
the values of the extracted features for healthy machines with those of unhealthy machines.
The fault is identified by comparing the characteristics of the features to those of known
fault modes using statistics, machine learning or model-based methods. This philosophy of
training is known as supervised learning. Clearly labelled historical data of what is healthy
and unhealthy is required to build these models.

Once a fault is identified, a degradation metric or fault severity index (FSI) is selected and
used to trend the fault over a predetermined monitoring interval. The resulting trend is then
used to make a prediction about the remaining useful life (RUL) of the machine. Using the
RUL together with the associated risk of the machine, a decision on how to appropriately
maintain the machine can be made.

The diagnosis of the fault is depends mainly on the feature types extracted during the second
stage. Features that are also sensitive to operating conditions may result in a misdiagnosis.
Figure 1.1 shows the typical impact of wear severity adapted from El-Thalji and Jantunen
[2014], specifically for a bearing. The wear severity is a typically increasing function with
three distinct phases which indicate the progressively worsening condition of the bearing.
A healing phenomenon is typically seen at the initiation of the defect and the just before
damage growth.

Healthy Stage Degradation 
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Critical Stage

Running in

Fault initiation

Failure
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Figure 1.1: Typical dynamic impact of wear severity in a bearing, adapted from El-Thalji and Jantunen [2014].

Knowing what fault features to extract and what fault modes to expect requires expert
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knowledge or intricate physics-based modelling of the system, both of which can be extremely
costly or time-consuming to implement. Furthermore, data driven methods often require large
amounts of historical data augmented with event data in order to perform well. Event data,
such as breakdowns and overhauls, are usually manually entered by operators, and thus
have high variability and sparsity. Above all that, historical process data mainly consists
of data from a healthy machine condition because the machine usually spends most of its
life operating in a healthy condition. This class imbalance complicates the training of these
methods. Hence a supervised approach is neither viable nor reliable.

Furthermore, data driven methods require good discriminative features, and hence careful
hand designed features are necessary to create a successful diagnostic algorithm, especially
for non-stationary cases. A proposed framework can become very specific to both the asset
and the type of faults for which it was developed. A dedicated framework for each individual
component is then often needed when a diverse range of assets require monitoring. This adds
further costs to the maintenance of machines.

More recently, advancements in deep learning has allowed algorithms more flexibility to auto-
matically find complex hierarchical representative features by exploiting deep network archi-
tectures. A comparison of deep learning models against conventional approaches [Zhao et al.,
2019] is shown in Fig. 1.2. These algorithms can represent complex functions and as a result,
they can extract more discriminative features over a broader range of signals. As industries
are preparing to move into Industry 4.0, a new set of industry goals and standards are being
formalized. An increase in automation and data capturing is the drive behind achieving these
goals. This allows for more data to be captured and new analysis techniques to extract useful
information. If industries are to stay competitive, adoption of these techniques is essential.
In PHM the ultimate goal is to increase machine availability and reliability, without extensive
re-engineering between assets.

Figure 1.2: Comparison of various fault diagnosis frameworks [Zhao et al., 2019].

1.2 Literature review

It is important to understand how faults in bearings develop before embarking on fault
detection and diagnosis. The presence of faults will affect the measured vibration response.
Furthermore, non-stationary operating conditions will also influence the vibration waveform.
It is crucial to understand all the fault mechanisms before an effective FDD strategy can be
developed. This section covers the details behind faults in bearings that are operating in
non-stationary conditions. It continues with a review of some of the conventional data driven
methods used to diagnose faults, which includes data preprocessing, feature extraction and
models for trending.
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1.2.1 Bearing faults and detection

Bearing faults

A bearing comprises four main components as shown in Fig. 1.3: (1) the rolling elements, (2)
the inner race, (3) the outer race, and (4) the cage. By varying any of these main components,
a wide selection of bearings are commercially available, the design of which is based on the
function that the bearing has to perform within a rotary machine. Faults can manifest in any
number of these components. These faults can be grouped either as a single point defect, a
multiple point defect or as a distributed fault.

Figure 1.3: Typical ball bearing components.

A single point defect usually occurs during the early stages of fault development. They are
characterised by small localised areas of damage appearing on any of the aforementioned
components. Examples of such defects are spalls, corrosion, pits, scratches or dents. These
types of faults can produce a series of impulses as a result of the sharp discontinuity presented
by the fault on the bearing’s rolling surface. These impulses excite the system, causing it
to resonate which results in a series of broadband bursts. The amplitude of these bursts are
modulated by two factors [Randall and Antoni, 2011]:

• The strength of the burst is proportional to the load on the rolling elements, which is
modulated at the same rate at which the fault passes through the load zone.

• The transfer function of the path between the fault and the response transducers (ac-
celerometers) varies.

Hence, different faults give rise to predictable bearing characteristic frequencies (BCFs) at
which the amplitude of the response is modulated. The BCFs can be calculated from the
bearing’s geometry, with each main component of the bearing having a unique frequency:
FIRF = inner race fault frequency, FORF = outer race fault frequency, FCF = cage fault
frequency, and FBF = ball or rolling element fault frequency. These frequencies can be
calculated from the shaft rotation frequency FS ,

FIRF =
NB

2
FS

(
1 +

DB cos(θ)

DP

)
(1.1)

FORF =
NB

2
FS

(
1− DB cos(θ)

DP

)
(1.2)

FCF =
1

2
FS

(
1− DB cos(θ)

DP

)
(1.3)

FBF =
DP

2DB
FS

(
1− D2

B cos2(θ)

D2
P

)
, (1.4)

where NB is the number of rolling elements or balls, DB is the ball diameter, and DP is
the ball pitch diameter as shown in Fig. 1.4. The ball contact angle θ, is the angle between
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the centre line of the bearing and the direction of force the rolling elements make with the
outer race [Stack et al., 2003]. These equations reveal the dependence of these frequencies on
the shaft rotational speed. Thus these frequencies are sensitive to the operating condition of
the machine, and therefore do not make ideal fault features in variable operating conditions.
This is further exacerbated by the modulation due to loading on the shaft.

𝜃

𝐷𝐵

𝐷𝑃

Figure 1.4: Ball bearing geometry used for BCF calculation.

It should be noted that some bearing faults are not continuously impulsive and dynamically
change as the wear progresses. This is known as a bearing self-healing phenomenon, whereby
for example, faults such as spalls start with sharp edges, which the become rounded off,
before a new edge is formed. All the while, the impulsiveness of the signal will increase due
to the sharp edge, then decrease when the edge is rounded off, and the subsequently the
impulsiveness of the signal will increase again.

Nevertheless, understanding single point defects is important towards understanding how
faults produce vibrations in rotating machinery. Single point defects are seldom observed in
practice. In reality, in-service defects are often a combination of several, possibly overlapping,
single point defects. The vibration signal may produce spectral lines at the expected BCF
in the envelope spectrum, however their relative amplitudes may be different from what is
expected [McFadden and Smith, 1985].

Another diagnostic approach is physics-based models. These types of models attempt to
simulate the vibration caused by faults using lumped mass/spring/damper or finite element
models. Early models assumed a deterministic and periodic series of impulses, caused by
the fault, with a constant impulse period, T . This was later improved by introducing a
stochastic component to the modelling of the impulses. The stochastic component was at-
tributed to the random slippage of the rolling elements that occurs during operation. This
slippage results in an uncertainty of the arrival time between the impulses. The nature of the
stochastic behaviour of fault bearing signals was then well approximated as a cyclostationary
signal [Antoni, 2009]. As a result, cyclostationary based methods worked well for bearing
diagnostics.

The vibration response of a bearing operating in non-stationary conditions can also be ap-
proximated as the response of a linear system, shown in Fig. 1.5, where the transfer function
is itself a function of time, H(t, τ) [Antoni, 2009]. The amplitude modulation of a signal is
due to two factors. First, the entry and exit events of the rolling elements of the fault into the
load zones. And second, the variations in the signal due to changes in the transmission path
from the fault to the transducer. The amplitude modulation effects can all be represented
by H(t, τ). The signal, as measured by the accelerometer is given by X(t), with the source
signal of interest represented as u∗(t). In bearing FDD the signal of interest u∗(t), is the
impulse signal generated by the fault. In reality, the measured response contains vibration
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components from various other sources from the machine, such as signals produced by gear
meshing. These additional sources are all lumped in ui(t). Measurement noise is represented
by n(t). Often at times, an auxiliary signal, represented as ai(t), is measured by a tachometer
or shaft encoder (represented by Li) and provides the instantaneous shaft rate of the machine.
Many signal processing techniques require this auxiliary signal to remove the effects of the
non-stationary operating conditions.

ui(t)

u∗(t)

H(t, τ)

Li ai(t)

n(t)

X(t)

Figure 1.5: Schematic of a linear system H(t, τ) that can be used to approximate the response of a machine
to a bearing fault.

Throughout its lifetime a bearing fault can start out as a single or multiple localised faults,
which gradually evolves and spreads over a larger area producing a distributed fault. Dis-
tributed faults, also known as generalized roughness, usually indicate imminent failure. These
types of faults are generally further accelerated by a lack of proper lubrication or misalign-
ment. The resulting vibration signal produced by this type of fault has varying degrees of
complexity, often with no BCFs present in the signal spectrum, thus making these types of
faults harder to predict. Consequently, researchers tend to focus more on diagnostic method-
ologies based on single or multiple point defects alone [Dolenc et al., 2016]. Antoni and
Randall [2002] modelled the acceleration response of a bearing with distributed faults as a
combination of periodic components and random components, as Eq. 1.5:

Xb(t) = p(t) +B(t) (1.5)

E[B(t)] = 0, (1.6)

where p(t) accounts for the periodic components and B(t) for the purely random with zero
mean, but cyclostationary components of the signal. This assumes that the vibration response
of a bearing measured by an accelerometer has two components namely the deterministic
component and the random component.

Fault detection and diagnosis

Bearing fault detection and diagnosis is performed in three distinct stages [Cerrada et al.,
2018]:

• Fault detection

• Fault diagnosis

• Fault severity

The aim of fault detection is simply to assess whether the bearing is operating as expected or
not. More formally, healthy rotating machinery can be expected to vibrate, either due to its
inherent operation or due to its manufacturing/installation flaws. After an extended period of
observation, the response of the machine due to normal operating conditions forms a unique
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vibration signature. The presence of a fault will, however, alter this vibration signature.
Hence, a fault can be detected by comparing a sample of unknown bearing condition to a
vibration sample of a healthy bearing. Note that the vibration signals of machines are often
dominated by strong deterministic signals, such as shaft and gear mesh harmonics, and thus
changes in the bearing condition leads to only very minor changes in the overall vibration
level. Therefore a more targeted approach is required to track the severity of the fault.

In the second stage, fault diagnosis aims to identify what type of fault is present and where
it is located. This is especially important if the fault is located in a critical part of the
machine that demands immediate action. The final stage, aims to identify the severity of
a fault using a fault severity index (FSI). Here the severity refers to the overall health of
the bearing and not the exact dimensions of the fault. Fault size estimation is still an
underdeveloped research area. As the fault grows, the FSI’s value will proportionally increase.
Using prior failure data of the machine, an estimation into the condition of the machine can
be made. Knowing the type of fault for the third stage, although potentially important for
final maintenance decisions, is not necessary for the assessment of the severity of fault, and
thus can be performed independent of the second stage. Conversely, knowing the type and
location of a fault does not require knowledge of the severity of that fault. Hence, these two
stages of bearing FDD can be separated into two independent methodologies.

With this background, some of the methods researchers have proposed to detect and diagnose
faults in bearings are next presented.

1.2.2 Signal processing approaches

Signal processing used in bearing diagnostics involves techniques in which deterministic or
discrete components of the signal are removed and the remaining residual signal, containing
the random components, are used to make a judgement on both the fault severity and fault
type. After the separation of the signal, the fault component of the remaining signal is then
enhanced with further signal processing techniques or feature extraction methods which are
known to be sensitive to the faults. Some of the methods used to remove the deterministic
signals are detailed in this subsection.

Deterministic/random separation

Separating a vibration signal into deterministic and random components is a very powerful
tool in diagnostics and is often the first step for many diagnostic methods. Some of the
most effective methods of performing this separation include Time Synchronous Averaging
(TSA), linear prediction models, adaptive noise cancellation and discrete/random separation
[Randall et al., 2011].

Time synchronous averaging (TSA) is the oldest technique used to separate deterministic
components. In this method, periodic components of a signal are obtained from averaging a
number of signal elements, corresponding to one period of interest. Speed fluctuations have to
be taken into account by order tracking or sampling the signal in the angular domain, before
applying TSA. A downside to this method is that it must be performed for each periodic
signal of interest separately. Randall [2011] showed this by removing the periodic vibration
signals of a gearbox taken from a mining shovel.

Linear prediction models are used to predict the deterministic component of a signal at a time
step based on a certain number of samples from the previous time steps. A residual signal
can then be obtained by taking the difference between the predicted and actual signals. The
resulting residual signal contains the impulses and random components associated with the
bearings. Avendano-Valencia and Fassois [2014] did a review on stationary vs non-stationary
modelling methods for the analysis of an in-operation wind-turbine. Among the models that
were studied were autoregressive (AR), AR-moving average (ARMA) as stationary models
and time-varying-AR (TAR), functional series-TAR (FS-TAR) and adaptive functional series
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TAR (AFS-TAR) models as the non-stationary models. They found that non-stationary TAR
models are sufficient to model wind turbine signals. The linear predictive models allowed for
the separation of deterministic components through residual analysis or similar techniques.

Adaptive noise cancellation (ANC) is a method whereby a filter is obtained from a reference
signal containing some relationship to the component of interest within a primary signal.
In many cases a self adaptive approach is used, whereby a delayed version of the primary
signal is used as the reference signal. The resulting filter, filters out the periodic components
of the signal, again leaving the random components associated with bearing faults. Antoni
and Randall [2004] showed examples where adaptive noise cancellation was used to separate
bearing signals from gear signals. Similarly, Wang et al. [2015] used an ANC algorithm to
remove the interfering gearbox signal from the bearing signal tested both numerically and
experimentally. Their method used only one accelerometer, without the need for a speed
reference signal, showing that the information content of a single accelerometer is sometimes
enough to perform diagnostics.

Discrete/random separation is similar to the adaptive noise cancellation approach, with the
difference being the filtering process takes place in the frequency domain as opposed to the
time domain. Abboud et al. [2016] used generalised TSA to perform discrete and random
separation of signals operating in non-stationary domains. A deterministic signal is produced
by tracking a specific speed profile using a known reference speed signal such as a tachometer.

Enhancement and feature extraction

Separating the vibration signal is the first step of diagnosis. The next step used by researchers
is to enhance the fault carrying signal using more advanced signal processing technique. This
is crucial to ensure a robust fault detection methodology.

Envelope analysis is the de-facto standard method used for bearing diagnostics [McFadden
and Smith, 1984]. The vibration signal is bandpass filtered in a frequency range corresponding
to structural resonance caused by fault impulses. This is followed by amplitude demodulation
to obtain an enveloped signal. The frequency range of the bandpass filter is normally high and
thus low frequency components normally associated with gear mesh frequencies are filtered
out [Randall and Antoni, 2011]. This approach is not exclusive to acceleration signals as
Nguyen et al. [2015] used envelope analysis to detect symptoms of defected bearings using
acoustic emission (AE) signals. Furthermore, the method has been adopted for non-stationary
cases, such as Ming et al. [2016]. They used an iterative approach to perform envelope analysis
to extract fault features of a bearing operating in fluctuating load conditions.

Borghesani et al. [2013] explained that the method of using squared envelope analysis spec-
trum (SES) has gained popularity as a bearing diagnostic tool. Especially, when the SES
is paired with computed order tracking (COT) to extend its use to cases with small speed
fluctuations. He went on to further highlight the importance of extending this methodology
to cases for high speed variance and load transients. Borghesani et al. [2013] then developed
a SES and COT based approach for use in highly variable operating conditions.

Wavelet analysis is well suited for application in non-stationary signal analysis. Wavelet
analysis is performed by choosing a basis function and expanding a signal in terms of this
basis function. Wavelet analysis is similar to Fourier analysis, where the basis function for
Fourier analysis is the sinusoid ei2πt. Wavelet expansions allows for more localised spatial and
frequency information through the translation and dilation of the basis function. Ericsson
et al. [2005] conducted an investigation on techniques used for the automatic detection of
local defects in bearings. They concluded that wavelet based approaches are well suited for
the task. Rafiee et al. [2010] proposed a wavelet-based signal processing technique to extract
features for gear and bearing diagnosis. Kumar and Singh [2013] provided a methodology
in which outer race defect sizes of taper roller bearings can be estimated using a wavelet
based approach. The same authors also provided a wavelet based fault localizing technique
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[Singh and Kumar, 2013]. Khanam et al. [2014] also provided a technique in which fault size
estimation is performed for a bearing using the discrete wavelet transform.

Kurtosis based approaches can be used to obtain frequency bands with the highest levels
of impulsivitity. The use of spectral kurtosis as a tool for bearing diagnostics was first
introduced by Antoni and Randall [2006]. One of the strongest diagnostics tools developed
using kurtosis is the kurtogram. Lei et al. [2011b] improved the feature extraction methods
of kurtogram using Wavelet Packet Transform (WPT). Wang et al. [2016] reviewed the use
of spectral kurtosis for diagnosing faults in rotating machinery. More recently, Miao et al.
[2017], provided an improved method for using kurtosis especially for bearings operating in
harsh working conditions.

Cyclostationary analysis based methods were introduced after it was realised that faulty
bearing signals can be approximated as cyclostationary signals [Antoni et al., 2004]. Antoni
[2009] went on to provide a wealth of examples of cases where cyclostationary models can
be useful in the diagnosis of mechanical systems. [Urbanek et al., 2013] proposed a method
whereby second order cyclostationary components of a vibration signal were extracted and
used for the diagnosis of bearings in wind turbines, which naturally operate with fluctuating
speeds and loads.

Recently, Antoni and Borghesani [2019] investigated the evolution of signal characteristics
during various phases of machine degradation. The investigation was sparked by the sen-
sitivity of traditional diagnostic indicators being sensitivity to non-stationary conditions in
the form of cyclostationarity and non-Gaussianity (or an increase in impulsiveness). Tradi-
tionally, these factors have been dealt with separately. For example, testing non-Gaussianity
using kurtosis knowing effects of cyclostationary signals will be ignored. They developed a
systematic approach whereby these factors of non-stationarity are tracked independently and
producing a new FSI based on the most factors that are most dominant in the signal.

All these methods highlight the importance for robust features for a well functioning di-
agnostic method, especially in non-stationary operating conditions. What is interesting to
note is that all these methods are based on hand designed features. Intricate knowledge
(sampling rates, shaft speeds, machine loads etc.) of the machine and its signal are often
required before performing any one of these methods. Further more, auxiliary signals are
almost always needed to ensure the effects of operating conditions can be filtered from the
signal. Since learning based approaches offer a chance to learn based purely on the data, it
will be discussed next.

1.2.3 Learning based approaches

Learning based approaches are often incorporated with the signal processing techniques dis-
cussed previously. The main goal of learning based approaches, is to model the probability
distribution of the features extracted and subsequently matching these distributions to known
fault cases. In some cases, the features extracted from the model itself are far more discrim-
inative when they are compared to hand designed features.

Artificial Neural Networks

Inspired by the biological model of our brain and its many neural pathways, an artificial
neural network (ANN) creates a non-linear mapping between input variables and targets.
The ANN is trained in a supervised manner, meaning the targets need to be known. In
bearing diagnostics, this means a dataset is required with fault labels already attached to
signals. Regardless, many fault detecting algorithms have been constructed using ANNs. By
combining neural network with wavelet analysis, Lei et al. [2011a] were able to identify faults
and fault severity of locomotive roller bearings. De Moura et al. [2011] performed a com-
parison between Principal Component Analysis (PCA) and ANN on features extracted from
vibration signals of bearings for fault diagnosis. Although supervised learning dominates, it
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is not the only approach that can be used with ANNs; Heyns et al. [2012] proposed a residual
analysis technique in which dominant vibration signals are filtered out using an ANN. Also,
an ANN can be used as a feature extractor as is the case with Muruganatham et al. [2013],
who extracted features from a vibration signal and used them in an ANN for further fault
classification.

Support Vector Machines

Support vector machines (SVMs) aim to model the boundaries between classes represented
by the data in the input space. Kernel functions are used to transform data into higher
dimensions where hyperplanes can be used to easily separate classes. Again, SVM models
are trained in a supervised manner. That is, a dataset complete with the fault classes is
required. Diagnosis is performed by comparing a data point to its nearest neighbour, and
assigning that class to the unknown data point. Rojas and Nandi [2006] proposed a method
in which SVM were used to perform fast classification of bearing faults. The input vector
of their method was based on time statistical features. In their approach two cases were
analysed; one where the full signal was used and another where only signal segments were
used. This is an example where learning is used to improve hand designed features. In a
similar approach, both Abbasion et al. [2007] and Wen et al. [2016] proposed using wavelet
coefficients as input vectors for a SVM. They were then able to accurately classify faults in
signals with unknown class labels. SVMs are not limited by the type of input features that
can be used. Alternative feature vectors that have also been used include: features based
on ensemble empirical mode decomposition [Zhang and Zhou, 2013], or higher order spectral
features [Saidi et al., 2015].

Gaussian Mixture Models

Gaussian mixture models (GMM) is a group of methods that attempt to model the probability
distribution of features by approximating it as a linear combination of Gaussian distributions.
This approach can model any continuous density by adjusting their means and variances based
on model evidence (input data). It is a model that is very easily trained, however it requires
a large amount of data to improve accuracy. Nevertheless, Yu [2011] developed an approach
in which a feature extraction approach was optimized to find the best features pertaining to
bearing faults. A fault degradation metric was then defined as the log-likelihood of a GMM
based model of these features. Liu et al. [2015] defined a fault metric as a GMM modelled
on a baseline historical factor when presented with new results. This showcases a method
in which a probability model can be used as a fault metric, for cases where the data class
balance is skewed. Again, GMMs are not limited in their approach or type of data used,
such as Aye and Heyns [2017], who predict remaining useful life of bearings using acoustic
emissions and GMM based models.

Hidden Markov Models

Hidden Markov Models (HMMs) is a learning framework used especially for sequential data.
Markov models can be used to represent the distribution of a sequence of events, or the
probability of one event following another. It is assumed that in this sequence, one event
is dependent on a finite number of previous events. Hidden Markov models assume that
a hidden sequential variable is used to generate a single point, and models the sequential
relationship between the hidden variables. The hidden variable is some unseen process that
generated the data. Ocak and Loparo [2005] used features from an amplitude modulated
vibration signal from both healthy and a faulty bearing to train a HMM. The HMM model
was used as a fault detector by calculating the probability of new features, given the features
from the training set. Marwala et al. [2006] compared HMM models to GMM models in
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their ability for fault detection in bearings. Features were extracted from vibration signals
and used to train one of either models. For this application, they concluded that HMMs
outperformed GMMs. However, it was noted that HMM models are far more computationally
expensive than GMM, and the latter should be preferred when time constraints are an issue.
There have been many approaches in the way HMM models have been used: Boutros and
Liang [2011] developed a methodology in which bearing faults were detected and diagnosed
using HMMs, with features obtained from a filter bank. Tobon-Mejia et al. [2012] were able
to estimate the RUL of bearings using HMM and features obtained using Wavelet Packet
Decomposition (WPD). This allowed them to provide confidence intervals along with their
RUL metric further supporting maintenance decision making. Liu et al. [2014] used HMM
together with zero crossing features to assess the performance and degradation of bearings.
Zhang et al. [2015] used a locality preserving projection for features in a continuous HMM
model. The feature extracting method was used to specifically preserve the local structure of
the data manifold. Zhou et al. [2016] likewise used a dimensionality reduction technique on a
set of traditional signal processing features to feed into a coupled-HMM to diagnose bearings.
This shows the versatility that the HMM model has by simply introducing a hidden (latent)
variable into the modelling of sequential processes.

1.2.4 Supervised, semi-supervised and unsupervised learning

The majority of machine learning tasks can be considered a special case of determining
the joint probability of two random variables, p(X,Z), where X ∈ Rn×k,X = {x1, ...,xn}
(xn ∈ Rk) is any observed input variable and Z ∈ Rn×m,Z = {z1, ..., zn} (zn ∈ Rm) is any
unobserved/latent or target variable. The form of the variables X and Z gives rise to some of
the many common tasks that a machine learning algorithm can solve. For example, a discrete
variable Z will give rise to a classification type problem. A continuous Z, however, will give
rise to a regression type problem. The data used to train the model will define whether the
algorithm is supervised or unsupervised.

Supervised learning approaches can be categorized as approaches that are trained using both
input data (X) along with their target vector (Z) [Bishop, 2006]. In bearing FDD, input
data can be the features obtained from the raw vibration signal and the target vector can
be the machine condition (healthy or unhealthy). The target could also be the RUL directly.
Obtaining these target labels requires an extensive collection and storage of historical data
with an equal distribution of data over all the classes to train a model. In some cases the
data may just not be available, as is the case with new machines.

Unsupervised learning algorithms are trained using examples only from the input data (X).
In the unsupervised case the input is known as the observed data. It is important to note that
the collected data in this instance is available without any labels. These types of algorithms
learn using the structure in the data. In bearing FDD the vibration signal is used as the
observed data.

Semi-supervised learning occurs when both labelled and unlabelled examples of data are
available and used to estimate the posterior distribution p(Z|X) or to predict Z from X. The
goal of semi-supervised learning is to learn a representation of the data such that examples
from the same class are represented in a similar manner [Goodfellow et al., 2016].

It is not always easy to distinguish between unsupervised and supervised learning as there
is no formal definition as to what constitutes a target or a label. As a result, at the inter-
section between a supervised and a unsupervised learning algorithm, the definition can vary
between authors. This confusion can be highlighted with a small example. The chain rule of
probability states for a random vector X ∈ Rn where X,

p(X) =
n∏
k=1

p(xn|x1, ...,xn−1),
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therefore the task of estimating p(X) which is inherently unsupervised, may be cast as n
supervised learning problems, by individually estimating p(x1), ..., p(xn−1).

Supervised Learning Unsupervised Learning

𝐗𝟏, … , 𝐗𝒏−𝟏 𝐗𝒏

𝐗 =

𝐙 =
healthy

unhealthy

𝐗 =

𝐙 =
healthy

?

𝐗 =

𝐙 =
?
?

Figure 1.6: Example of cases that illustrate the definition of supervised and unsupervised learning used in this
work.

In this work, a supervised algorithm will be defined as an algorithm that explicitly uses labels
given by some external expert or through verified fault cases. An unsupervised learning
algorithm is an algorithm that is trained purely on examples of the machine in question,
regardless if the algorithm is trained using a supervised approach. Note, by this definition,
semi-supervised learning (i.e. cases in which only partial labels are available), would be
defined as supervised learning, as external labels are used in the training of the algorithms.
Figure 1.6 shows cases which are considered supervised and unsupervised as per definition
used in this work.

1.3 Scope of research

Performing accurate and reliable fault detection and diagnosis of bearings that are operating
in non-stationary conditions remains an important and challenging task. With the fourth
industrial revolution (4IR) upon us, it is imperative for industries to keep up to date with
the latest trends and techniques in data analysis in order to achieve a competitive edge.
Bearing FDD offers a good opportunity in which new deep learning techniques can be utilized
to assist, together with current diagnostics techniques, and reach Industry 4.0 goals [Wang
et al., 2018].

Currently, there are two dominant approaches towards bearing diagnostics. With the first
approach, signal processing techniques are used to initially filter the signal to improve the
signal of interest. This is followed by a transformation of the signal from the time domain into
the frequency or order domain. Fault specified frequencies are then identified and tracked.
The second approach requires a user to manually engineer fault specific features and track
their degradation using a statistical model. Both of these approaches rely heavily on user
experience and domain knowledge. This makes scaling and implementing the framework
more challenging when a diverse range of similar assets needs monitoring.

An improvement in computational power has allowed a closing of the gap between con-
ventional FDD approaches and deep learning based approaches. For a machine diagnostic
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algorithm to be implemented within the new framework of industry 4.0, the decisions have to
be made as autonomously as possible. Deep learning incorporates feature extraction within
its training protocol, as shown in Fig. 1.7. The deep learning extracted features can be used
to augment subject matter experts’ knowledge with new insights.

Input:
Raw signal

Hand-
designed
features

Mapping from
features

Output

Input:
Raw signal

Simple
features

Additional
layers of more

abstract
features

Mapping from
features

Output

Trainable
components

Classic machine learning: Deep learning:

Figure 1.7: Comparison between classic learning and deep learning frameworks [Goodfellow et al., 2016].

With this in mind, the goal of this study is to investigate the use of deep learning algorithms
for a bearing fault diagnosis methodology to provide a scalable and robust FSI for machines
operating in non-stationary conditions [Gao et al., 2015]. To keep in line with the current
diagnostic approaches, the proposed method should:

• Require no signal processing of the data.

• Require no expert intervention when training.

• Require no labelled or historic data to function.

• Require no auxiliary signal (eg. tachometer or shaft encoder).

• Be easily interpreted by machine operators.

The data that will be analysed in this study will be vibration signals from accelerometers. The
acceleration of a machine containing a bearing, as measured by an accelerometer, provides
a wealth of information about the internal forces experienced by that machine. Therefore,
the acceleration signal is able to provide details about the severity and location of a bearing
fault. Vibration signals are sufficient and no other data is needed in order to make a diagnosis.
Accelerometers are relatively easy to install on many parts of a machine, further justifying
their use in many diagnostic methods. Before any deep learning algorithm can be used it is
assumed that the data lies on a lower dimensional manifold embedded in a higher dimensional
space. Validation of the methodology is done using open source benchmark datasets.

The Current state of the art (SOTA) approaches in bearing diagnostics is to separate the de-
terministic and random components of the signal. Separating the deterministic components of
the signal often requires knowledge of the instantaneous phase of a shaft within the machine.
This requires additional measuring components and channels. To include such components
in some machines, can be difficult or impractical. Furthermore, installing shaft encoders or
tachometers in legacy assets is challenging. The sampling rate of these components needs to
be high enough to get accurate resolution of the shaft rate when using time-domain based in-
terpolation methods. This adds to the expense of the methodology. Therefore a methodology
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that does not require auxiliary signals would be advantageous. Researchers have proposed
tacholess order tracking methods that extract phase information from the acceleration signals
themselves, indicating that phase information is already contained within the accelerometer
signal. The idea of separating random and deterministic components of the signal is a very
important diagnostic concept and will be incorporated in this work.

Since all the diagnostic information is within the acceleration signal, the goal of the model
is to learn the structure of the acceleration data. With the knowledge that the data has
deterministic and random components, the algorithm is set up and regularized in a way that
allows a representation of the random and deterministic components to be learned separately.
The models are taken from deep learning work aimed at image generation, and hence some
adjustments are required for acceleration data. A limitation of this study is the optimization
of the many hyper-parameters that are involved in constructing a deep learning model. Where
possible, hyper-parameters are taken from literature and adjusted until the algorithm works.

To summarize, this work uses existing knowledge of the data structure of bearing faults
[Abboud et al., 2019] and incorporates it together with a deep learning model that is then
trained in an unsupervised manner. The contribution of this work is as follows:

• This work shows how a deep learning model can be used as a FSI using an acceleration
signal without the need for feature engineering or expert knowledge, providing a scalable
FSI in accordance with Gao et al. [2015].

• This work shows how a deep learning model can be used as a FSI in non-stationary
operating conditions without the need of auxiliary signals (eg. tachometer or shaft
encoder).

• This work shows how a deep learning model can be used to diagnose bearing faults with
little to no historical data.

1.4 Document overview

The remainder of this document is structured as follows. In the second chapter, a thorough
literature review is performed on both machine learning concepts and their application to-
wards bearing FDD. In the third chapter, the proposed methodology is presented along with
a detailed outline of the model structure and parameters that were used for training purposes.
All the experimental investigations that were conducted using the proposed method are then
presented in Chapter 4. Finally, this study concludes with a summary of all the work and
some recommendations for future work in Chapter 5.
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Chapter 2

Deep learning: A review

2.1 Introduction

The goal of this chapter is to introduce the reader to some of the important concepts in deep
learning. Using these concepts, an in-depth discussion is included on the similarities between
a bearing diagnosis problem and an inference type problem. Furthermore, the important
concept of dimension reduction and representation learning is presented within the context
of bearing diagnostics. This chapter reviews some of the proposed deep learning methods
for bearing diagnostics that are covered in literature. Please note that the emphasis of this
chapter is on bearing diagnostics. Therefore, the derivation of some of the mathematical
proofs used in deep learning is out of the scope of this work. Nevertheless, the absence of
these derivations should not impact the understanding of the concepts. Where possible, a
clear description of their meaning is given. Furthermore, references to original papers are
made where the full derivation of the proofs can be found.

2.2 Inference

The problem of bearing FDD can be recast as a problem of evaluating the posterior distribu-
tion p(Z|X), given measured or observed variables X ∈ Rn×k, to infer latent or unobserved
variables Z ∈ Rn×m. The typical observed variables for a bearing diagnostics problem are the
measured acceleration (vibration) response of the machine. The latent variables on the other
hand, are those variables that influence the vibration of the machine, yet are not measured
directly. In rotating machines some examples of these variables can include the condition of
the machine as well as machine operating conditions. The machine condition is the goal of
the diagnostic algorithm. The latent variables that contain the machine operating conditions
include operating speeds and loads. Both the condition of the machine and the machine
operating conditions will change the distribution of the measured signal. Hence, if we can
compute the posterior distribution, p(Z|X), we can use it to estimate the condition of the
machine based on the observed accelerometer signal. Estimation of the posterior distribution
is known as approximate inference. And to do this we need the joint density between the two
variables, p(Z,X). With the joint density, the posterior can then be calculated using Bayes’
theorem (Eq. 2.1), as follows

p(Z|X) =
p(Z,X)

p(X)
. (2.1)

The denominator of Eq. 2.1 is known as the evidence, and it is obtained by marginalizing
the latent variables from the joint distribution following
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p(X) =

∫
p(Z,X)p(Z)dZ. (2.2)

Unfortunately, performing the calculation of Eq. 2.2 is not tractable. This is due in part be-
cause the dimensionality of X of most practical applications is far too large to calculate these
probabilities efficiently or in closed form. Therefore, an approximation method is required
to estimate the marginal likelihood of Eq. 2.2. Two approximation schemes exist, namely:
sampling methods and variational methods. Sampling methods are often computationally
expensive to train on a large dataset and require some form of dimension reduction before
making it viable. Thus, carefully hand engineered features are designed together with di-
mension reduction techniques to make sampling methods viable. An alternative approach to
this is variational inference. Variational inference is an approach that is much better suited
for probabilistic models that are far too complicated for sampling methods and its scalability
makes it well suited for large input dimensions [Bishop, 2006].

2.2.1 Variational inference

Variational inference recasts the estimation of the posterior distribution, p(Z|X) as an op-
timization problem. Applying a suitable gradient based optimization method then resolves
the posterior distribution. To do this, a family of densities, q(Z) ∈ D is introduced on the
latent variables. The optimum density requires the following minimization problem

q∗(Z) = arg min
q(Z)∈D

KL
(
q(Z)||p(Z|X)

)
, (2.3)

to be solved, where KL(q||p) is the Kullback-Liebler divergence or KL-divergence between
two densities q and p. The KL-divergence is a measure, adopted from information theory, of
similarity between two densities. Note that the closer the densities, the smaller the divergence,
KL(q||p) ≥ 0. KL(q||p) = 0 if, and only if q(Z) = p(Z|X) [Bishop, 2006]. Once optimized,
q∗(Z) can then be used as an approximation to the actual p(Z|X). Figure 2.1 shows the
variational inference optimization problem schematically. Starting with an initial parameter
guess, the parameters q(Z) are updated until the KL(q||p) distance between the variational
distribution, q(Z) and the actual distribution, p(Z|X) is at a minimum. Here the optimal
parameters refer to the model parameters which are used to define the probability density
within the family of densities D.

The choice of the family of distributions D on q(Z) is based in part on the tractability of the
calculations, while any parametric distribution can be used. Highly flexible models are thus
encouraged when using this method, since more flexibility equates to a better approximation.
However, as the complexity of the model increases, the complexity of the optimization in-
creases as well. Fortunately no over fitting occurs even when highly flexible models are used.
Normally, neural networks are used because these models are flexible enough to sufficiently
approximate the target distribution, while still being relatively easy to train.

2.2.2 Evidence lower bound

Note that the divergence presented in Eq. 2.3 still requires p(Z|X), which depends on the
joint p(Z,X) and the marginal p(X). This problem is solved by mathematical manipulation
of Eq. 2.3 to recover what is known as the evidence lower bound (ELBO) [Blei et al., 2017].
By expanding the KL-divergence term in Eq. 2.3,

KL
(
q(Z)||p(Z|X)

)
= Ez∼q(Z)[log q(Z)]− Ez∼q(Z)[log p(Z|X)] (2.4)

= Ez∼q(Z)[log q(Z)]− Ez∼q(Z)[log p(Z,X)] + log p(X) (2.5)
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Figure 2.1: Variational inference schematic, Blei [2019].

the dependence of the optimization problem on the evidence, Eq. 2.2 is revealed. The last
term in Eq. 2.5 is constant and does not effect the optimization path. By dropping log p(X),
we can define what is known as the ELBO,

ELBO(q) = Ez∼q(Z)[log p(Z,X)]− Ez∼q(Z)[log q(Z)]. (2.6)

The ELBO is equal to the negative KL-divergence plus the log of the evidence, log p(X). The
log evidence is constant with respect to the latent distribution, q(Z). Therefore maximising
the ELBO is equivalent to minimizing the KL-divergence, and can be used as a substitute
for the KL-divergence when optimizing.

This concept is well illustrated by the following mixture of Gaussians example. In this exam-
ple, the observed variables are the samples taken from a Gaussian mixture model (GMM),
and the latent variables are the means and the mixture components of the model. The task
is to recover these means and mixture components, through only the samples of the observed
variables. Maximization of the ELBO a nonlinear problem and therefore requires iteration.
Fig. 2.2 depicts the result of variational inference at various iterations. We can see at ini-
tialization, the variational factors used to approximate the data distribution overlap and do
not cover the entire support of the problem. This however is no problem, as the iterations
progress we can see the algorithm explores the data space until it converges correctly to each
Gaussian mixture component.

One can rewrite the ELBO as the sum of the log likelihood and the KL-divergence of the
prior distributions, p(Z) and q(Z),

ELBO(q) = Ez∼q(Z)[log p(Z)] + Ez∼q(Z)[log p(X|Z)]− Ez∼q(Z)[log q(Z)] (2.7)

= Ez∼q(Z)[log p(X|Z)]−KL
(
q(Z)||p(Z)

)
. (2.8)

This reveals that when optimized, the first term in Eq. 2.8 will encourage densities that
place their mass on configurations of the latent variable, that explains the observed data.
The second term in Eq. 2.8, encourages the densities to stay close to the prior. Thus the
optimal solution balances the likelihood and the prior densities. By plotting the ELBO at
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(a) Initialization (b) Iteration 6

(c) Iteration 14 (d) Iteration 25

(e) Iteration 40 (f) Iteration 48

(g) Iteration 50 (h) Iteration 60

Figure 2.2: Progression of variational inference performed on a simple 2-Dimensional Gaussian Mixture Model
(GMM). The grey ellipse shows a 2σ standard deviation of the learnt variational approximating factor.
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Figure 2.3: Evidence lower bound (ELBO) of the 2D GMM model in Fig. 2.2. Convergence can be seen in
Fig. 2.2 after Iteration 48.

each iteration we can get a glimpse into the convergence of this maximization problem. In
Fig. 2.3 the red lines correspond to the iterations seen in Fig. 2.2. Here you can see why the
name ELBO is given. During each iteration a trade-off is made between the likelihood and
the prior which causes these sharp elbow like bends to occur. The first term will encourage
the algorithm to explore the input space, while the second will optimize what is already
known. Again, this can be seen in Fig. 2.2e, where two of the mixture components have been
found whilst the remaining three are still being explored. Although this is a basic example,
it clearly demonstrates the power of variational inference to use the observed data to infer
the unobserved latent variables.

2.3 Dimension reduction

A very important concept in PHM is dimension reduction. Many proposed algorithms work
well but require some form of dimension reduction in order to improve computational effi-
ciency or accuracy of the model. In this section we take a look at some of the technicalities
behind dimension reduction as well as some of the important assumptions we need to make
about PHM data for any of these techniques to work.

Dimension reduction techniques can be either classified as linear or non-linear. Many pro-
posed methods of bearing diagnostics rely on either technique. One may ask the question,
however, why is it that observations in high dimensions can be reduced to a lower dimension
representation? An alternative name for dimension reduction is manifold learning, and a very
important assumption is made about the structure of the data that allows for the dimension
reduction to take place. The assumption is known as the manifold hypothesis.
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2.3.1 The manifold hypothesis

Training a bearing diagnostics model is often done under the assumption that the high di-
mensional feature space sits somewhere on a low dimensional manifold. Data from physical
systems tend to reside in high dimensional spaces, but they may have been generated by
only a few degrees of freedom in some underlying process. If this is not the case, we would
not be able to perform machine learning. Therefore, we make the assumption that the data
resides on or near a lower dimensional manifold embedded in the higher dimensional space in
this study. We then use a suitable manifold learning technique to extract it from the higher
dimensional observations. Put differently, we simply reduce the dimension of the data, whilst
retaining the important information about the structure of the data. This assumption is rea-
sonable as the data is generated by machines that only allow for restricted motion within the
realm of what is allowed by physics. This significantly constrains the subset of signals that
can be observed. Earlier works of vibration condition monitoring refer to this phenomenon
as a vibration signature.

The latent variable Z ∈ Rm, with m << n is a lower dimensional representation of the
observed variables X ∈ Rn, since Z explains all the details and anomalies observed in X in
a structured and compact form. Deep learning relies on this, as the layers get deeper, the
algorithm is able to unfold the lower dimensional manifold within the higher dimensional
observations to construct decision boundaries in this lower dimensional space.

In unsupervised dimensional reduction, the data observed in isolation is reduced. However,
because of the manifold hypothesis, similar data is likely to lie in close proximity on the data
manifold and as such can be used to classify unlabelled data.

Figure 2.4: The Swissroll dataset is a typical manifold dataset in 3-dimensions. The dataset can easily be
reduced to 2-dimensions, however a non-linear method is required to preserve local structure on the manifold.
Two methods, PCA (linear) and ISOMAP (non-linear) are shown as an example.

The choice of dimension reduction technique will depend on how the manifold is embedded
within the high dimensional space. If the manifold is embedded linearly, a simple PCA works
very well. However if the embedding of the manifold is non-linear and more local structure
of the manifold must be preserved, a non-linear technique (for example ISOMAP) may be
better suited. Figure 2.4 shows a classic Swissroll dataset in 3D. This dataset can easily
be represented in 2D. It is important, however to note how the dimensionality reduction
technique will affect the representation of the dataset in 2D. Nevertheless, manifold learning
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is a powerful idea which has been successfully used in condition monitoring. Yuan and Liu
[2013] used manifold regularization to take advantage of unlabelled data. This allowed them
to create an algorithm that clustered vibration signals measured under the same machine
operating conditions, and subsequently perform bearing diagnostics.

2.3.2 Entropy and Mutual Information

In information theory, entropy is a measure of the amount of randomness (or destruction)
held by a variable. To put it differently, entropy is a measure of the amount of information in
a variable. Given the probability of a variable, p(X), entropy is calculated as [Bishop, 2006]

H[X] = −
∫
p(X) ln p(X)dX. (2.9)

That is, the entropy is the average amount of information needed to fully define the state of
a variable, X. Furthermore, given a joint distribution, p(X,Z), the entropy of two variables
can be calculated in a similar manner. Stemming from this, the conditional entropy, H[Z|X]
can equally be defined as [Bishop, 2006]

H[X,Z] = H[X] +H[Z|X]. (2.10)

The conditional entropy states that the amount of information needed to define the pair
(X,Z), is equal to the amount of information needed to describe X plus the amount of
information needed to describe Z given X. Therefore the conditional entropy is the amount
of extra information a variable contains, given that a different variable is already known.

In addition, a measure known as mutual information can also be defined using entropy and
conditional entropy by the following [Bishop, 2006]

I[X,Z] = H[X]−H[X|Z] (2.11)

= H[Z]−H[Z|X]. (2.12)

Mutual information is, therefore, a measure of the amount of information given about X, by
merely observing the variable Z or vice versa. In the context of dimension reduction, we can
assess the amount of information lost in our reduction technique, by measuring the mutual
information between X and Z. Thus if I[X,Z] = 0, it can be said that no information was
lost during the dimension reduction process, as knowing Z, is as good as knowing X. (ie.
no additional information is needed). The reader does not need to know how these measures
are derived in order to understand the remainder of this work. However, it is important to
understand the basic idea behind each measure and what it represents as the remainder of
the study relies on this understanding.

Representation learning

Representation learning is a philosophy within deep learning in which a semantic, organised
structure, is learned automatically by a machine. This is done by utilizing the concepts
presented previously when training the model. Usually, we as humans have no problem
identifying semantic characteristics in data, which we conduct mostly instinctively. However
it is a challenge to define how a machine must learn it. Representation learning based
algorithms learn semantics through the structure of unlabelled data, which is well suited
for diagnostics of bearings under non-stationary operating conditions. This is even more
so, because the model is not centred around the data, but incorporates whatever data is
available, making it suitable for cases where only sparsely labelled data is available.
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2.4 Machine learning basics

Neural networks are needed to have a model with enough flexibility to approximate the
manifold from bearing data. Machine learning is the class of methods by which these neural
network models are defined, assembled and subsequently trained. This section covers some
of the basic concepts in this regard.

2.4.1 Model building blocks

There are a vast number of ways neural network (NN) based models can be built, however
deep learning is interested in a class of models based on a feed forward NN with multiple
layers. NNs are considered universal function approximators, and are comprised of several
layers of functions feeding into one another. Each layer extracts features from the previous
layer. As the layers get deeper, more discriminative features are then able to be extracted.
Shallow layers extract local features whilst deeper layers tend to extract more global features.
Hence, a hierarchy of features can be learnt by using a NN. A discussion of all the NN layer
configurations is outside the scope of this work, however two important layers used in this
work are discussed next, namely, fully connected (FC) and convolution (Conv) layers.

Fully connected layers

h1

h2

hn

...

1

a1

a2

a3

am

...

Output:
Wlhl−1 + bl

Input:
hl−1

Wl

bl

Figure 2.5: Concept of fully connected layers. Every input value or feature is connected to every output value.
The size of the input, n can be greater or less than the output, m, resulting in a n×m weight matrix Wl and
a m bias vector, bl.

The most basic function for a layer consists of a transformation of an input variable followed
by a non-linear activation function σ(·),

al = Wlhl−1 + bl (2.13)

hl = σ(al), (2.14)

where Wl and bl are a set of model parameters known as weights and biases respectively
that require training. The superscript l indicates the layer number. Many layers can be
added together consecutively, where the output of one layer is the input to the next layer.
Such a network is known as a fully connected neural network. al are the activations which
are passed through some non-linear activation function σ(·). The output of the activation
function is known as the hidden unit, hl, which is subsequently fed into the next layer of the
network.
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The activation function is a vital aspect of the neural network, as it introduces non-linearity
into the model. Without these activation functions, the model would essentially be a collec-
tion of linear transformations, which in itself is a linear transformation, and learning would
be limited. The activation functions are, in essence, what allows the stacking of layers and
the learning of hierarchical features to occur.

The activation functions are generally sigmoid functions such as the logistic sigmoid or the
tanh function, both of which are examples of the exponential class of functions. More re-
cently, non-exponential functions have gained increasing popularity over functions from the
exponential class to improve the convergence of training. There are many activation functions
to choose from, and investigating each is beyond the scope of this work. Shao et al. [2018],
however, included a full investigation into the use of 15 activation functions in their intelli-
gent rolling bearing fault diagnosis model. They concluded that no one specific activation is
better than another, but an ensemble of various activation functions within a network allows
for overall improved accuracy.

Convolution layers

A special case of a FC layer, is a 1D convolution layer or a temporal convolution layer.
Similar to a FC layer it consists of a transformation followed by a non-linear activation
function. However, the function has a smaller set of weights Wl, which are convolved over
the input layer,

al = Wl ⊗ hl−1 + bl (2.15)

hl = σ(al). (2.16)

Figure 2.6 shows a schematic layout of the function of a convolution layer. Here, the convo-
lution weights, Wl, are convolved over the input, X, to produce as set of new features.

…

…

𝑾𝒍

𝒙 = 𝒉𝒍 →

𝑾𝒍⨂𝒉𝒍 + 𝒃𝒍 →

Figure 2.6: Conceptual design of convolution layers. A set of trainable kernels, Wl are convolved across the
input values X, where each kernel represents a feature of importance.

The fact that fewer weights are used in convolution layers means they are far more efficient
than FC in terms of training time and memory requirements. Performance is not lost when
using convolution layers as they provide a strong and useful inductive bias as to what the
convolution neural network (CNN) algorithm can learn [Huszar, 2018].
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Convolution layers are equivariant to translation. A function f is equivariant to function g if

f(g(x)) = g(f(x)).

Suppose we have a time series x = {x1, ..., xT } and x̄ = {xα, ..., xα+l} is some subset of x
of length l, where α ∈ {Z|α > 1} and α + l < T − 1. Furthermore, suppose there is some
shifting function g such that x̄′ = g(x̄) = {xα+1, ..., xα+l+1}. Then

W ⊗ x̄′ = g(W ⊗ x̄).

This basic property, gives the convolution layer immense power to extract features within a
time series signal, regardless of when the event that produced the feature occurred. Thus
the features that are extracted are not time or phase dependent, making them useful feature
extractors for fault prediction algorithms. Many researchers have investigated the use of
CNNs to analyse time series data [Cui et al. [2016], Wang et al. [2016], Wang et al. [2017],
Serrà et al. [2018]], and designated them to be simple yet powerful and versatile building
blocks.

2.4.2 Model training

A deep learning model’s performance is judged by a metric that is defined by the overall
goal of the algorithm. Usually, this metric is intractable and thus not optimized directly.
Instead, the metric is normally optimized indirectly with a cost function L(θ) (where θ is
the collection of all trainable parameters), chosen by some tractable relation to the metric.
The ELBO in Eq. 2.4 is a very good example of a cost function that indirectly optimizes
another function (KL-divergence) that approximates the posterior distribution p(Z|X). The
cost function for machine learning algorithms is usually taken as the expectation over the
training data or the empirical data distribution p̂data [Bishop, 2006]

L(θ) = E(x)∼p̂dataL(f(x, θ)) (2.17)

=
1

m

m∑
i=1

L(f(x̄i, θ)) (2.18)

where f(x, θ) represent the neural network layers with model parameters, θ. The cost function
can be decomposed as a sum over the training examples, where m is the number of training
samples. Gradients of the cost function

∇θL(θ) =
1

m

m∑
i=1

∇θL(f(x̄i, θ)), (2.19)

are computed using back propagation [Rezende et al., 2014]. Almost all optimization algo-
rithms used for training of a machine learning algorithm are based on stochastic gradient
descent (SGD). The reason is the large size of the training set that is required to get good
generalization capacity from these models. Increasing the size of the training set, increases
the cost of calculating the gradients. With SGD, smaller batches of the training data are used
to estimate noisy expectations of the cost function instead of using the entire dataset at once.
The minibatch of size m′ is drawn randomly from the training data and used to estimate
the gradient from the minibatch, followed by a descent downhill from that estimation, with
a learning rate of λ.

∇θL′ =
1

m′
∇θ

m′∑
i=1

L(f(x̄i, θ)) (2.20)

θ ← θ − λ∇θL′ (2.21)
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Figure 2.7: Gradient descent paths of 3 stochastic optimization techniques after 25 iterations in the parameter
space of a convex function. Optimum is at value (1, 1). Note the slow convergence of SGD compared to
ADAM and RMSProp.
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Although SGD solves the issue of large training datasets, it is slow to converge to optimum
points. Figure 2.7 shows the SGD algorithm on a convex function compared to two popular
algorithms, RMSProp and ADAM, which are discussed next. A discussion on all the opti-
mization techniques are out of the scope of this work, however two methods which have been
used in this work, RMSProp and ADAM are briefly highlighted.

RMSProp

RMSProp is based on resilient back propagation adapted for mini batch learning [Hinton
et al., 2012]. In resilient back-propagation (RProp), the magnitude of the partial derivatives
gradients are ignored and only the sign is taken into consideration for each upgrade of param-
eters [Riedmiller and Braun, 1992]. When used as a minibatch optimizer, RProp may result
in unstable behaviour. RMSProp prevents this from happening by averaging the gradients
over the minibatches, which keeps the updates bounded.

ADAM

ADAM [Kingma and Ba, 2014], standing for adaptive moments, is the de-facto optimizer for
a large number of machine learning and deep learning cases. It is well suited for problems
with large data and parameters. ADAM computes an individual adaptive learning rate for
each parameter from different estimates of the first and second moments of the gradients.

2.5 Deep learning for bearing FDD

Aided by the enhancement of computational power, improved data acquisition, increased data
storage capacity and multi-disciplinary research, deep learning approaches towards bearing
FDD are gaining traction within academic research. Researchers are making use of the
ability of deep learning algorithms to extract complex features without the need for expert
intervention, or signal processing techniques. These algorithms come in many shapes and
forms which depend on the data availability and the end goal of the CBM strategy. This
section covers a few of these methods, considering deep learning models that are trained
end-to-end to perform FDD on rotating machines.

2.5.1 Deep neural nets

Because of their ability to extract hierarchical features, deep neural nets have been used
in bearing diagnostics in the following ways. Janssens et al. [2016] were some of the first
researchers to apply deep learning towards fault detection of rotating machinery using vibra-
tion data, in what they called a feature learning approach. They used the discrete fourier
transform (DFT) of a normalized data from two accelerometers as inputs to a network that
comprised one convolution layer, one fully connected layer and a classification layer in a su-
pervised setting. Interestingly, they concluded that a deeper architecture would not yield
better results.

Nevertheless, Guo et al. [2016] used a deep convolution neural network and proposed a hi-
erarchical based training strategy to classify bearing faults from vibration signals. Their
network comprised of three convolution layers followed by two fully connected layers ending
in a softmax layer. The whole network was trained end-to-end using a softmax loss function
and gradient descent. Once the fault was classified, they further trained another network to
evaluate the size of the fault.

Ince et al. [2016] used raw motor signals to perform fault detection by fusing fault feature
extraction and classification into one deep neural network. The network comprised of four
1D adaptive convolution layers followed by three fully connected layers. The network was
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trained end-to-end with labelled data to classify the signals into one of two classes: healthy
or faulty.

Jia et al. [2018b] used a deep neural network comprising two sets of normalized convolution
layers and pooling layers followed by three fully connected layers to classify raw vibration
signals into one of 8 bearing fault classes. Examples of both single point and multi-point
faults were used. The authors used a weighted softmax loss function to deal with the class
imbalance, where the weights were chosen based on the imbalanced degree of the dataset.

Zhang et al. [2018] proposed a 6 layer CNN network followed by a fully connected layer and
a softmax layer respectively, to classify raw vibration signals into one of 10 different fault
classes. The authors deal with the issue of varying machine loads and noisy environments
by suggesting a training procedure that includes drop-out, mini-batch training and ensemble
learning.

An alternative approach was offered by Ding and He [2017], where they used the wavelet
packet transform to generate wavelet-images which were fed into a network consisting of 3
convolution layers to learn features. These features were fed into a fully connected layer and
used to classify faults in bearings in a full end-to-end algorithm using labelled data.

It is evident from all these approaches that deep learning was used as the feature extractor
in the algorithm. Very few methods used hand designed features, however the underlying
framework of their approaches are similar. In all the cases presented above, the features
which had been extracted using deep learning methods were then subsequently used in a
supervised setting, still requiring the need for expensive labelled data.

2.5.2 Variational Autoencoders

An autoencoder (AE) is an unsupervised dimension reduction deep feed forward neural net-
work that attempts to reconstruct the input data from reduced dimensional latent variables.
A variational autoencoder (VAE) [Kingma and Welling, 2013], applies this concept to perform
inference. A variational autoencoder performs variational inference using a neural network
as the family of distributions for the variational model. Training of the VAE is done by
optimizing the ELBO presented in Eq. 2.8. A re-parametrization trick [Kingma et al., 2015]
is used to allow for gradient based optimization. The network learns to represent the data
in lower dimensions by encoding the input data into a latent space, Z. Z takes the form of a
mean and a variance, Z = E(X) = µ+ ση ≈ qφ(Z|X), where η ∼ N (0, I) and φ =(µ, σ).
The input data is then reconstructed using a decoder network, X̃ = D(Z) ≈ pθ(X|Z).

An example of an encoder-decoder network is shown in Fig. 2.8. The encoder network takes
as an input, a portion of the signal, X and encodes it down to its latent representation Z. This
network can comprise of many of the neural network building blocks mentioned previously.
Similarly, the decoder network takes the latent representation Z and attempts to reconstruct
the input to produce X̃. With the re-parametrization trick, Eq. 2.8 now takes the form of
Eq. 2.22. By encoding into a latent dimension that is much lower than the input dimension,
the features that are extracted retain important discriminative information. With a VAE,
the posterior distribution, p(Z|X), is approximated by the fully trained encoder and learnt
entirely through optimization of the loss function

L =
1

2
(1 + log(σ2)− µ2 − σ2) + log(pθ(X|Z)). (2.22)

A few authors have used autoencoders in their approach towards bearing diagnostics. A two
step methodology of training using unlabelled data in a feature extraction step followed fine
tuning a classifier utilizing the labelled data is the predominant diagnostic methodology used
with autoencoders. This methodology was first introduced in the work of Sun et al. [2016],
where they used a sparse autoencoder to learn features represented by the encoded vibration
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Encoder: 𝑞𝜙(𝐙|𝐗) Decoder: 𝑝𝜃(𝐗|𝐙)

𝐙 ≈ 𝑝(𝐙)

Figure 2.8: Schematic layout of the structure of an autoencoder.

signals of an induction motor. They encouraged sparsity within the weights of the network
using a KL-based penalty function. The features that were extracted were entirely machine
learned. These features were then used in a neural network classifier trained and fine tuned
using labelled data.

Thirukovalluru et al. [2016] used stacked de-noising autoencoders on traditional features
extracted from a vibration signal in the time and frequency domains respectively. The AE was
used to extract higher level features from these traditional approaches. Layer-wise training
was used in the first phase of training in order to initialize the weights. The weights were
then fine-tuned to increase classification performance. Although deep learning was used,
hand engineered features were still being used as inputs, and the full power of deep learning
not yet exploited.

Similarly, Shao et al. [2017] used a deep auto-encoder to learn features from a bearing signal in
non-stationary environments. The AE was trained using an entropy based loss function mak-
ing the features insensitive to complex and non-stationary background noises. The learned
features were then fed into a softmax classifier and fine tuned using labelled data. The same
authors went on to propose another deep AE where weighted majority voting was used to
classify bearing signals into one of twelve fault states [Shao et al., 2018].

Following a same structure, Jia et al. [2018a] trained a normalized sparse auto-encoder with
local connection network to get features from raw vibration signals of a gearbox and bearing
using data in the frequency domain. The features were then used in a ten class fault classifier.
Again, we see labelled data that was used to pre-train and improve the weights of the network.

Lu et al. [2017] used a stacked de-noising autoencoder (SDAE) for signals from machines
working in fluctuating operating conditions. The SDAE was trained in an unsupervised
manner in order to extract features. Again, these features were then used in a supervised
learning protocol to create a classifier for bearing faults.

Even with advanced models such as VAEs, we can see that the deep learning model does all
the heavy lifting by extracting the most discriminative features. However, these proposed
methodologies often require the user to use these machine learned features in a supervised
setting with labelled data.
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2.5.3 Generative adversarial networks

Generative adversarial networks (GANs) [Goodfellow et al., 2014] exploits deep learning archi-
tecture to build a representation of a target distribution density without explicitly parametriz-
ing a set of density functions. A GAN, like an autoencoder, is comprised of two sub-networks
known as a generator network, Gθ(Z) and a discriminator network, Dφ(X). Here θ and φ
are the trainable parameters of the network (such as the weights and biases) and X is again
a portion of the vibration waveform. An example of a GAN network with the generator and
the discriminator is shown in Fig. 2.9.

Training of the networks is achieved by setting the generator network against the discrimi-
nator network in a two player non-cooperative game expressed as the min-max optimization

min
θ

max
φ

L
(
Dφ(X), Gθ(Z)

)
= EX∼Pdata [logDφ(X)] +

EZ∼U/N [0,1][log(1−Dφ(Gθ(Z)))]. (2.23)

Generator: 𝐺𝜃(𝐙)

𝐙~𝑝(𝐙)

Discriminator: 𝐷𝜙(𝐗)

𝓨 = 𝟏/𝟎

Figure 2.9: Schematic layout of the structure of a Generative Adversarial Network (GAN).

The generator network passes random noise, Z ∼ U [0, 1] or Z ∼ N [0, 1] through the network
and produces a sample from a parametrized distribution, X̃ ∼ qθ. The discriminator network
tries to estimate the probability that the query sample was either produced by the generator
or from the training set, X ∼ pdata(X). Each sub-network updates its own parameters
with gradients derived from the cost function defined in Eq. 2.23 and back-propagation of
the error. The generator improves the produced samples based on the feedback (gradients)
obtained from the discriminator. Theoretically, training is completed, when Nash-equilibrium
is reached. In game theory, Nash-equilibrium occurs when a player has reached a point that
no participant can gain by a unilateral change of strategy if the strategies of the others
remain unchanged. At Nash-equilibrium, the discriminator can no longer distinguish between
samples produced by the generator and samples drawn from the target data distribution, and
thus q ≈ pdata. The discriminator, now unsure of whether the sample is real or generated,
outputs a probability of Dφ

(
X or Gθ(Z)

)
≈ 0.5.

We can link the GAN back to inference in the following manner. In variational inference
models, learning is achieved by optimizing for the KL-divergence between the real data and
the model. Learning in GANs can be achieved by optimizing the density ratio between the
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Figure 2.10: Progression of a GAN as it learns the distribution that generated samples of X. In this example,
X was sampled from a Gaussian with two mixture components.
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real data and the model [Mohamed and Lakshminarayanan, 2016]. The discriminator is
trained to classify between observed data and generated data. For the problem we have the
true observed data density, pdata(X) , as well as the generator’s model of the observed data,
qθ(X). To build a classifier, we introduce a random variable y. When the sample is from
the true data distribution, we assign the label y = 1, and similarly for the generated sample
we assign the label y = 0. We can now represent the samples as follows; for the true data,
pdata(X) = p(X|y = 1) and for the generated data, qθ(X) = p(X|y = 0). Through some
manipulation and applying Bayes’ rules, the problem of density estimation is equivalent to
that of class probability estimation [Mohamed and Lakshminarayanan, 2016]. Now all that
remains is simply to choose an appropriate cost function to learn the parameters. For binary
classification the sensible choice is the logarithmic loss function:

L = Ep(X|y)p(y)
[
− y logDφ(X)− (1− y) log(1−Dφ(X))

]
. (2.24)

Since we know the process that was used to generate the samples, we can add this to the
cost function in Eq. 2.24 to recover the cost function in Eq. 2.23. The power of this training
protocol to approximate a bimodal data distribution is shown in Fig. 2.10. Here you can see
a GAN learn a simple Gaussian distribution, at various stages of its training.

Booyse [2018] used GANs to propose a completely unsupervised PHM framework for machine
diagnostics. In his method a GAN is trained on a set of baseline data. The baseline data
could correspond to healthy data, however knowledge of the actual condition of the machine
is not a requisite. Upon convergence, the trained network has learnt the distribution of
this baseline data. The discriminator output was then successfully used as a FSI. Upon
convergence, a GAN trained on the baseline data would result in a fault metric with an
output of approximately 0.5. However, when presented with new samples, the fault metric
would be 0.5 only when the signal corresponds to the baseline data. If the fault severity
increased, the distribution of the input data would be different from the baseline data and
the output of the discriminator decreases from 0.5 at the same rate. This was the first case
of the application of using the discriminator of a GAN as a FSI.

2.6 Summary

The task of diagnosing a fault in a bearing can be considered as an inference type problem.
This inference problem has been solved with classic data driven approaches, predominately
based on sampling methods. In this chapter the concept of variational inference is summarised
in the context of fault detection. With variational inference, inference can be solved through
optimization by the introduction of a variational model. Models with greater complexity are
encouraged with variational inference, as it improves approximation of the posterior distri-
bution. Deep learning models offer a good balance between complexity and optimization,
making them suitable for use in variational inference type cases. Some suitable neural net-
work building blocks were introduced. To develop an unsupervised algorithm, an assumption
of a data manifold was made as well as presenting measures about the dimensionality re-
duction capacity. Cases where deep learning has already been used in bearing diagnostics
are summarised in Table 2.1. Evidence shows that deep learning is capable of extracting
very good PHM features, without performing any feature engineering, but authors are still
using these features in a supervised manner, with the exception of GANs, which are trained
in an unsupervised manner on raw data. Since gathering labelled data for bearing FDD is
especially difficult and feature engineering on that data often requires auxiliary signals in
non-stationary operating conditions, there is capacity to explore deep learning in providing
an unsupervised bearing FDD approach using raw vibration signals.
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Table 2.1: Summary of machine learning based approaches towards FDD.

Approach Paper Supervised/Unsupervised Feature Engineering

Neural Networks: Janssens et al. [2016] Supervised Yes

Guo et al. [2016] Supervised No

Ince et al. [2016] Supervised No

Jia et al. [2018b] Supervised No

Zhang et al. [2018] Supervised No

Ding and He [2017] Supervised Yes

VAE: Sun et al. [2016] Supervised No

Thirukovalluru et al. [2016] Supervised Yes

Shao et al. [2017] Supervised No

[Shao et al., 2018] Supervised No

Jia et al. [2018a] Supervised No

Lu et al. [2017] Supervised No

GAN: Booyse [2018] Unsupervised No
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Chapter 3

Proposed methodology

3.1 Introduction

Up to now, we have seen how the problem of detecting and diagnosing a fault in a bearing
can be solved using an inference model. Again, the goal of the model is to estimate the joint
distribution between the observed variables (vibration signals) and the unobserved variables
(machine condition, operating conditions), p(X,Z). We have seen how this problem can
be solved by a machine with gradient based optimization schemes. In this chapter we will
consider the non-stationary characteristics of the signal from a machine operating with fluc-
tuating speeds and loads, and develop a methodology that is able to take these characteristics
into account. Furthermore, we will develop a full end-to-end algorithm that will do all the
heavy lifting, producing a fault metric that can be used to diagnose the bearing’s condition.

3.2 Latent space regularization

Armed with the knowledge of the structure of faulty bearing signal data, this section will
cover how this knowledge can be used with deep learning to achieve the goal of fault detection
and diagnosis. With VAEs and GANs, the latent space Z has been mapped randomly to
the observed variable X. There is no regulation on how this mapping takes place. Thus,
the information contained in latent space of these models is not very useful for diagnostic
purposes. We can use the knowledge of the structure of the vibration signal to regularize
the latent space, and use it to our advantage. Doing this will allow the model to learn the
deterministic and random components from an acceleration signal. To do so we first need to
have an untangled latent space without any random mappings.

To get an estimation model for the posterior distribution from a GAN, we will need a two
way mapping between the latent variables and the observed variables (Z↔ X), as opposed to
the original GAN’s one way mapping, (Z→ X). This will allow us to perform inference using
a GAN with an encoding network approximating the posterior distribution p(Z|X). Fortu-
nately, two models have already been developed to allow for the two way mapping; Adversar-
ially Learnt Inference (ALI) by Belghazi et al. [2018] and Bi-directional GANs (BiGANs) by
Donahue et al. [2016]. However, these models still require some form of regularization as the
mappings they learn are still random. The key here is to regularize with mutual information
to improve the structure within the latent space and prevent tangled random mappings.

Adding mutual information as a cost term in the training objective will ensure that when a
mapping between the observed space and the latent space is learnt, the mapping will remain
uniquely identifiable. A consequence of this procedure is that the structure of the latent
space is more consistent with the data manifold in question. An example of the latent space
entanglement is given in the subsection 3.2.1.

Maximizing mutual information has proven a key aspect in representation learning. Adver-
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sarial Autoencoders (AAE) proposed by Makhzani et al. [2015] and infoGAN by Chen et al.
[2016] are two models that incorporate mutual information into their objective function in
an attempt to improve the representation learning capacity of the models on which they are
based, ie: VAEs and GAN respectively. These two models represent alternative approaches
in which mutual information can be used to regularize the structure of the latent space,
with both models maximising mutual information in some form. The mutual information
is maximized between the latent variable and the observed data distribution. Between the
two models, the only difference is the lower bound that is used to approximate the mutual
information. As a result an AAE is good at reconstruction, whilst an infoGAN performs
better at classification Zhou et al. [2018]. The details of these two models will follow after a
small example on latent space entanglement.

3.2.1 Example: Latent space entanglement

This example illustrates the mapping that occurs between the latent space of a model with
and without the mutual information regularization. In the case without regularization, the
mapping is completely random. In contrast, the regularized mapping has more structure.
The training data for this example consists of the following: The observed variables are
taken from a GMM with 5 mixture components as shown in Fig 3.1b. These will be mapped
using ALI to a latent space consisting of a single Isotropic Gaussian distribution, shown in Fig.
3.1a. The same mapping will then be repeated, this time maximizing the mutual information
between the latent space and the observed variables. The regularized model in this case is
known as ALICE [Li et al., 2017], which is simply ALI with (C)onditional (E)ntropy (Mutual
Information) added to its cost function.

In Fig. 3.1c we have the inferred latent space (X → Z∗) of the model trained without
any regularization. We can see that although there is evidence of some clustering of the
various mixture components, many of the mapped latent variables overlap. This makes in-
ference using the latent variable impossible as 1 latent variable can be mapped to multiple
classes/domains in the observed space. This is exactly what we see in Fig. 3.1d with the
reconstructed observed data (X → Z∗ → X∗). Here, the reconstructed observed data re-
tains the structure of the original 5 mixture components, however the mapping is completely
random, and the data is not mapped back to their correct mixture components or classes.

When we regularize with mutual information, we can see immediately that the inferred latent
space in Fig. 3.1e retains far more of the structure of the original latent space, with very few
overlaps. Furthermore, in the latent space you can immediately and accurately infer from
which mixture component the original observed data point came. When this inferred latent
variable is mapped back to the observed space we can see, in Fig. 3.1e, that the mapping
retains its original structure. Thus the mapping in the latent space remains unique and
identifiable.

By simply maximising the mutual information between the two variable spaces, we can create
more structure within the latent space allowing us to perform far more accurate inference,
than a model with no structure.

3.2.2 AAE mutual information maximisation

Similar to a VAE, the AAE regularises the latent space by enforcing the latent space structure
with an arbitrarily chosen prior distribution, p(Z). This distribution is normally chosen as
an Isotropic-Gaussian. The difference between a VAE and an AAE is that the former mini-
mized the KL divergence between the prior latent distribution and the posterior distribution,
parametrised by the encoder, whilst the latter does so with an adversarial loss. Here, the
marginal density of the latent variable q(Z), calculated as
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Figure 3.1: Effect mutual information maximization has on inference. The latent space is effectively regularized
to retain more structure, thus improving inference capacity of the latent space. (Generated from code, Li et al.
[2017])

35

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



qθ(Z) =

∫
qθ(Z|X)pdata(X)dX. (3.1)

is adversarially trained to match this arbitrary chosen prior distribution p(Z), whilst still
minimizing the reconstruction loss objective typical of an autoencoder. The effect is that the
latent space is regularized onto the structure of the chosen prior.

The objective function for an AAE is similar to the VAE in Eq. 2.22, however the KL
divergence is replaced by an adversarial loss, represented by the the Jensen-Shannon (JS)
divergence in Eq. 3.2.

LAAE = JS[qθ(Z)||p(Z)]− Eqφ(Z|X)[log pθ(X|Z)] (3.2)

If we take a look at the conditional entropy between X and Z,

H(X|Z) = −Epdata(X)[Eqφ(Z|X)[log qφ(X|Z)]] (3.3)

= −Epdata(X)[Eqφ(Z|X)[log pθ(X|Z)]]− Ep(Z)[KL(qφ(X|Z)||pθ(X|Z))],

≤ −Epdata(X)[Eqφ(Z|X)[log pθ(X|Z)]]

and compare the term the second factor to the last term in Eq. 3.2, it can be seen that these
are exactly the same terms. The difference between the terms being that the loss function
is averaged over the data: Epdata(X)[LAAE ]. Thus, by minimizing the reconstruction loss
objective of the autoencoder, the mutual information between X and Z is maximized.

3.2.3 InfoGAN mutual information maximisation

The infoGAN model is a variation of a GAN, in which a small modification is made to the
objective function, L in Eq. 2.23 of the GAN model.

min
θ

max
φ

LI
(
Dφ(X), Gθ(Z)

)
= L

(
Dφ(X), Gθ(Z)

)
− I(c, G(c,n)) (3.4)

Here, mutual information, I(c, G(c, is optimized together with the original GAN objective
function. The small but powerful modification, shown in Eq. 3.4 allows the algorithm to
learn meaningful salient representations within the structure of the data, in a completely
unsupervised manner. This is achieved by optimizing the mutual information between a
small fixed subset of the latent variables, c and a sample generated from the same c, G(c,n).
Note that Z = c ∪ n.

The choice of distribution of c is arbitrary, with some common choices being a continuous or
categorical distribution or both. The random and deterministic components of the observed
vibration signals can be separated using the latent space. This is done by allowing the variable
n to be mapped without structure, whilst simultaneously allowing the remaining variables, c
to be mapped with structure using mutual information. Note that the mutual information is
only maximized on the deterministic variable c. The incompressible noise in the acceleration
signal will be mapped in to the random variable n, whilst any deterministic components within
the acceleration signal will be mapped deterministically to c. This will allow us to separate
the random and deterministic components, which brings us to the proposed methodology.
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3.3 Bearing FDD methodology

The methodology for bearing fault detection and diagnosis is highlighted in this section. All
the details about the model will follow in the next section. The process of detecting and
diagnosing the fault is split into two frameworks. The fault detection phase is used to trend
the fault and subsequently make a conclusion about the severity of the fault. No labelled
data is required for the fault detection phase. Before training, a baseline or reference subset
of the total dataset is preallocated and used to train the model. Consequently, a sample
presented for inference is assessed against this arbitrarily chosen baseline dataset. In the case
of a new machine, any data that is currently available can be used as the baseline dataset.
No additional historical data is required.

During the fault diagnosis phase, the type of fault is classified. In this phase, the clustering
capacity of the model can be used to classify the type of fault present in the bearing. In
this framework, the model can be adjusted to whatever historical data has been observed,
both labelled or unlabelled. The model can leverage any labelled data that may be available.
However, labelled data is not a prerequisite for functioning of the model.

3.3.1 Fault detection

The severity of the bearing fault can be tracked by using the discriminator for the random
part of the latent variable, Dn(n), where n ∼ qφ(n|X), is the encoded random latent variable
of a query sample X. During training, the discriminator, Dn(n), learns a distance metric
between samples from the random distribution, n ∼ N [0, 1] and samples corresponding to
the encoded random latent variable n. Hence, when trained on a baseline set of data, the
Dn(n) represents a distance metric of the random distribution of baseline dataset. Thus
samples drawn from the baseline distribution and presented to the discriminator will have a
low distance.

The latent variable n, holds most of the random, incompressible information of the signal.
Thus, when a signal which contains a characteristic bearing fault signature is encoded, the
random components of the fault will cause the distribution of the random latent variable to
shift away from the original baseline distribution with which the network was trained. The
discriminator can then be used to quantify this shift.

Furthermore, the metric can be trended in time by presenting sequential examples of the
acceleration signal, thus making a trained model suitable for on-line applications. A threshold
based on the baseline data that was used to train the network can be used for failure detection.
The threshold value can be calculated by obtaining the expected value of the discriminator
for all the samples from the baseline set, and an offset added depending on the criticality of
the asset. In our study, thresholds as published by other authors are used.

Figure 3.2 shows a schematic of the fault detection framework. Note that no labels of the
fault are necessary for this phase of the diagnosis. Because the choice of baseline data is
arbitrary, there is no need to use labelled data. Inference can be made with respect to the
current condition of the asset.

3.3.2 Fault diagnosis

For the diagnosis of the fault, a slightly different approach is used. The regularization and
training of the network ensure samples of similar nature are clustered together within the
latent space. This clustering ability can be utilized to diagnose the type of fault in the signal.
By comparing the latent representation of a query sample with that of a representation of a
known fault mode, a classification can be made. Even in cases where no labels are available,
the algorithm still clusters the data based on its similarity in structure. Once a fault has
been verified, a label can be associated with the cluster, and consequently used to classify
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Figure 3.2: Schematic outline of the fault detection phase of the proposed methodology.

future unlabelled samples.

However, because of the ill-defined nature of the problem, the algorithm will initially struggle
to allocate enough space within the latent space to accurately define each of the fault modes
and hence, the full data manifold of the asset. This can be overcome if a very small set of
labelled samples are available for a semi-supervised setting. These samples can then be used
as anchor points in the latent space. The anchor points give the algorithm a good foundation
on which to represent the remaining unlabelled set of samples. In cases where the distribution
between healthy and unhealthy labels are unbalanced, as is often found in PHM data, the
labels that are available may significantly improve the classification accuracy.

A simple numerical problem is used to illustrate this concept. A phenomenological model
proposed by D’Elia et al. [2018] was used to generate bearing signals of varying fault severity.
A small network is trained with a deterministic dimension of Nc = 2 to allow for visualization.
In reality this dimension is far too small to encode any discriminative features, nevertheless
it is still a good illustrative example. In the first case, no anchor points are used, and a latent
representation is learnt. In the second case one sample of a healthy signal, together with
one sample from each of the fault modes at maximum severity were used as anchor points.
The algorithm automatically aligns unlabelled samples to the anchor points based on their
similarity. Furthermore, samples are aligned in increasing order of severity from the baseline
(or healthy) anchor point to the anchor point of respective maximum fault severity.

3.4 Bearing FDD model

The proposed model is based on the work done by Zhou et al. [2018] and their proposed
Representation GAN (REPGAN). REPGAN is hybrid model of infoGAN and AAE. The
full model is comprised of multiple components or sub-networks together with a training
protocol that uses the advantages of both the infoGAN and the AAE, to facilitate latent
space regularization and increases classification ability. The sub-network components are: an
encoder network Enc(X) ∼ qφ(Z|X), a decoder network Dec(Z) ∼ pθ(X|Z), a discriminator
network for the signal samples Dω(X), and lastly a separate discriminator network for each
of the latent variables, DηZ (Z), where Z =

{
c, s or n

}
∈ R. Here, c refers to a categorical
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Figure 3.3: Schematic outline of the fault diagnosis phase of the proposed methodology.
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Figure 3.4: Latent variable without anchored points.
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Figure 3.5: Latent variable with anchor points.

distribution, whilst s refers to a continuous distribution and n refers to Gaussian noise. It
is this discriminator network that will eventually become the fault severity indicator. The
model trainable parameters are represented collectively by the variables φ, θ, ω, and η for the
encoder, decoder, X-discriminator and Z-discriminator respectively. Training is achieved by
alternating between an infoGAN configuration and an AAE configuration.

3.4.1 Model architecture

Figure 3.6 shows how the components form an AAE configuration. Here, the model encodes
a sample of the signal down to the latent variable space and then back to the signal space,
X → Z → X̃. With this configuration, the model maps multiple points in the latent space
to a single point in the data space. This ensures a good reconstruction ability of the model.

X Enc ĉ

ŝ

n̂

Dec X̃
Dc

Ds

Dn

c

s

n

Figure 3.6: AAE configuration of network components.

Similarly, Fig. 3.7 shows how the same components can be re-ordered to make the infoGAN
configuration. With the infoGAN configuration, the opposite mapping is learnt, Z→ X→ Z̃.
Again, mutual information is maximized by minimizing the conditional entropy between the
generated signal X̂ and the deterministic latent variables: s̃ and c̃. This is a crucial aspect
of this model. More precisely, from Fig. 3.7, it can be seen that when the network is trained

40

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



in an infoGAN configuration, only the deterministic variables are used for the maximization
of the mutual information. This ensures that all the deterministic components of the signal
are enforced and hence, mapped into these two variables. The encoder and decoder in this
configuration, maps multiple points from the data space to a single point in the latent space
Z, and ensures good classification accuracy of the model. The full details of each of the
sub-network components can be found in the Appendix in Section A.1.

c

s

n

Dec X̂ Enc

c̃

s̃

Dx

X

Figure 3.7: InfoGAN configuration of network components.

3.4.2 Training protocol

The objective functions that were used to train the various components are introduced next.
It must be noted that, although the architecture can be assembled into the AAE or the info-
GAN configurations, the network components (Encoder, Decoder, Discriminators) that make
up those configurations are shared between the configurations and have the same trainable
parameters. A summary of all the network components and their respective parameters are
shown in Table 3.1. The iterations of each training protocol were taken from the original
publication [Zhou et al., 2018].

Table 3.1: Summary of model network components and their respective trainable parameters.

Name Symbol Parameters

Encoder qφ(Z|X) φ

Decoder pθ(X|Z) θ

Signal discriminator Dx(X, η) η

Latent variable discriminator Dz(Z, ωz) ωz

Signal distribution p(X) −
Latent variable distribution q(Z) −

AAE-training objectives

During the AAE configuration the objective functions for the network parameters are as
follows:

The first objective is that of the adversarial loss function: Here a Wasserstein GAN (Ar-
jovsky et al. [2017]) is used as the adversarial trainer, which corresponds to one part of the
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objective function for the AAE. The adversarial loss for the discriminator and the generator
(ie: Encoder) is given by

LDz = min
η

EX∼p(X)[Dz(qφ(Z|X), η)]− EZ∼p(Z)[Dz(Z, η)], (3.5)

Lqφ = min
φ
−EX∼p(X)[Dz(qφ(Z|X), η)] (3.6)

The optimizer used for these loss functions is RMSProp and has a learning rate of 5× 10−5.
The second objective for the AAE configuration is the typical reconstruction based loss
function. Here the loss function is taken simply as a `2-norm reconstruction loss between the
real signal, X, and its reconstruction, X̃:

LRecx = min
φ,θ

∑
x

1

2
||X− X̃||22. (3.7)

For the reconstruction the optimizer used is also RMSProp with a learning rate of 1× 10−3.
Note, the `2-norm of a vibration signal, may cause blurring when used as a reconstruction
based loss function. The work done by Georgiou [2007], provides a thorough breakdown of
this issue and proposes a suitable alternative loss function, especially for time based signals
such as vibration signals. However, implementing such a loss function was beyond the scope
of this work.

InfoGAN-training objectives

The first objective function for the infoGAN configuration is also an adversarial type loss
function. Here the objective for the discriminator and the generator (ie: decoder) is given by
[Zhou et al., 2018]

LDx = min
ω
−EX∼p(X)[logDx(X, ω)]− EZ∼q(Z)[1− logDx(pθ(X|Z), ω)], (3.8)

Lpθ = min
θ
−EZ∼q(Z) log

Dx(pθ(X|Z), ω)

1−Dx(pθ(X|Z), ω)
. (3.9)

Note that for the generator loss term, the KL-loss proposed by Salimans et al. [2016] was
used to prevent flat gradients from occurring during optimization. The optimizer used for the
adversarial loss functions was ADAM with a learning rate of 2×10−5. The objective function
for the latent variables however depends on the type of distribution the variable was sampled
from. For the categorical variable, c, the loss function is taken simply as the cross-entropy
loss [Zhou et al., 2018],

LRecc = min
φ,θ
−
∑
c

q(c)[log qφ(c̃|(pθ(X|c)))], (3.10)

For the continuous latent variable s, the reconstruction loss function is taken as the negative
log-likelihood for a Gaussian. Similar to the VAE, a re-parametrization trick is used to allow
for gradient back propagation. The loss function is as follows [Zhou et al., 2018]

LRecs = min
φ,θ
−
∑ 1

2
log(2π)− log(s̃σ)− 1

2

( s̃µ − s

s̃σ

)
(3.11)

For both the loss functions, Eqs. 3.10 and 3.11, ADAM was used as the optimizer with a
learning rate of 2× 10−5.
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3.5 Summary

In this chapter the proposed methodology was presented. The algorithm is based on a hybrid
model between two deep learning models, namely the adversarial autoencoder (AAE) and
infoGAN. Both these models regularize the latent space by maximizing the mutual informa-
tion. However the outcome of each model emphasizes two different aspects of deep learning
respectively, classification and reconstruction. A good balance between classification and re-
construction can be obtained by using a hybrid between the two models. Consequently, the
latent space is regularized forming unique and identifiable mappings. This effectively untan-
gles the latent space and allows for more informative inference to be done using the latent
space. Specifically, this allows the user to target random and deterministic components of the
data, which is very useful for fault detection in bearings. By separating the latent space into
random and deterministic variables, we can effectively isolate each component independently.
By focusing only on the random latent variables, we are able to infer the severity and the
fault types in the bearing.
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Chapter 4

Experimental Investigation

4.1 Introduction

In this chapter, the proposed bearing fault detection and diagnosis algorithm was tested using
benchmark datasets. Three investigations were performed, each showcasing the capacity of
the proposed model. The first dataset, Intelligent Maintenance Systems (IMS) benchmark,
is used to test the effect the signal-to-noise ratio has on the fault metric. This dataset
represents stationary operating conditions, however the transmission path of the signal to the
accelerometer is non-stationary. The second dataset is used to investigate the fault diagnosis
capacity of the model. In this experiment, it is shown that using sparsely labelled data in a
semi-supervised setting, can significantly improve the untangling of the signal representation
space, and consequently fault classification. Finally, the fault methodology is tested on real
world wind turbine data. In this experiment the proposed metric is compared to a model in
which the non-stationary components are not taken into consideration. The model is able
to learn deterministic and random components using the proposed method, thus negating
the need for order tracking or time consuming advanced signal processing. The proposed
metric is tested against two state of the art bearing diagnostic approaches: a minimum
entropy deconvolution (MED) followed by spectral kurtosis (SK) based normalised envelope
spectrum approach (MED-SK-NES) and a cyclostationary based improved envelope spectrum
(IES) approach. These two baseline models are considered efficient and effective procedures
for vibration-based machine diagnostics [Abboud et al., 2019].

4.2 IMS benchmark dataset

This IMS dataset, first introduced by Qiu et al. [2006], contains the acceleration response
of four separate accelerometers placed on the housing of four Rexnord ZA-2115 double row
bearings that are installed on a single shaft. The shaft was run by an AC motor and kept
at a constant speed of 2000 RPM with a constant radial load of 2721, 55 kg. The bearings
have a basic dynamic load rating of 13104, 28 kg. A photo and a schematic diagram of the
bearing test rig is shown in Fig. 4.1. The dataset contains four run-to-failure tests. This
study focuses only on the first two test cases (set no. 1 and set no. 2).

Upon completion of the test-to-failure experiment one (set no. 1), an inner race fault was
discovered on bearing 3 and a mixed fault on the roller element and outer race was discovered
on bearing 4. The data shows that the surface defect that was found on bearing 4 had self
healed [Qiu et al., 2006]. The spalling that was formed in the early stages of testing, was
later smoothed over by continuous rolling action. Similarly, an inspection at the end of the
test-to-failure experiment two (set no. 2) had revealed that an outer race fault had occurred
on bearing 1.

Training was performed with parameters as described in Section 3.4. The results of the pro-
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posed methodology are compared against various bearing diagnostic approaches for bench-
marking purposes. RMS and kurtosis values are considered as traditional approaches, wile
following a similar exposition by Abboud et al. [2019], two methods namely, MED-SK-NES
and IES are considered as SOTA. Abboud et al. [2019] use an arbitrary chosen threshold value
for fault detection calculated as µ + 6σ of the initial baseline records. The same threshold
value is adopted for comparative purposes in this study. Lastly, to evaluate the performance
of the fault metric, the receiver operating characteristics (ROC) curve is plotted against the
advanced benchmarks.

Figure 4.1: Bearing test rig for IMS dataset [Qiu et al., 2006].

4.2.1 Test-to-failure set no. 1

For the first dataset two faults were recorded in the original paper, namely, an inner race
fault on bearing 3 and a mixed rolling element fault and outer race fault on bearing 4. The
dataset exhibited a self-healing phenomenon of an initial defect.

Approach

The full dataset consists of the acceleration response from 8 channels, two channels for each
bearing, corresponding to the x- and y- directions respectively. Only the acceleration response
in the y direction for bearing 3 and 4 were used for training purposes. This follows the
approach of Qiu et al. [2006], where they only analysed bearings 3 and 4 in their study. Each
channel consists of 2156 records of data with each record containing 20480 data points. This
equates to a data sampling rate of 20 kHz. A network was trained for each accelerometer
on the first 172 records (8% of the full data), which were treated as the baseline level. The
network trained on this baseline was used for inference on the remaining set of records as
described in section 3.3.

Results

The signals of set no. 1 contain two signatures of interest, specifically the impulse responses
due to the inner race fault in bearing 3 and the outer race and rolling element fault in bearing
4. Figure 4.2 shows the results of all the FSI applied to the signal of bearing 3. The RMS
in Fig. 4.2a shows a dramatic increase in the power of the signal after record 2000. The
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kurtosis in Fig. 4.2b shows an increase in the signal’s peakedness after record 1800. We can
see in Figs. 4.2c and 4.2d that the inner race fault energy increases after record 1800 for the
MED-SK-NES and IES based approaches respectively. The proposed fault metric crosses the
threshold value at record 2123, as shown in Fig. 4.2e. The variance of the baseline records,
with which the threshold was calculated, is high. By ignoring the initial 200 records, we see
the fault metric stabilize until record 1500, after which it increases. Only a slight increase is
observed for IES in Fig. 4.2d. This suggests that the fault can be detected as early as record
1500. The ROC curve in Fig. 4.2f is based on the fault being detected at record 1500 and
indicates that the proposed metric outperforms the two baseline methods employed in this
instance.

The FSIs calculated on the signal obtained from bearing 4 are shown in Fig. 4.3. The
proposed fault metric, crosses the threshold at record 1474 in Fig. 4.3e. In the same figure,
the self-healing phenomenon is seen in the fault metric between records 180 and 950. The
self-healing phenomenon is not evident for RMS in Fig. 4.3a, and only marginally detected
by the kurtosis in Fig. 4.3b. In Fig. 4.2d it can be seen that the self-healing phenomenon is
more apparent using the IES approach than the MED-SK-NES approach in Fig. 4.3c. Both
these approaches show an increase in the inner race energy after record 1600. The ROC
curve of Fig. 4.3f uses record 1400 as the point of fault detection based on the proposed FSI
crossing the threshold. In the figure, the proposed fault metric can be seen outperforming
the two baseline methods. In this instance, a metric that is able to detect the fault earlier
is favoured as the type of fault that is present in this case leads to very quick catastrophic
failure once crack propagation is initiated [Qiu et al., 2006].

Discussion

In this first experiment, the proposed fault metric is seen to outperform two SOTA bearing
diagnostic techniques, namely IES and MED-SK-NES. With the advanced bearing diagnostic
techniques, knowledge of the type of fault, is needed in order to track the correct fault
frequency however, this provided information towards fault diagnosis. It is more difficult to
do this when two or more faults are present in the signal. The proposed fault metric was
most sensitive to the self healing phenomenon that occurred. In this case, the sensitivity may
lead to early fault detection which are crucial to prevent catastrophic failures. We see that
even with as little as 8% of the available data, the proposed metric is able to outperform the
baseline approaches in detecting the fault early.

4.2.2 Test-to-failure set no. 2

In the second test case, a single outer race fault was discovered in bearing 1 upon completion
of the test. The training approach and results were as follows.

Approach

The second set comprises the acceleration response for four bearings. This time using only
one channel for each bearing. In this set, 984 records of 20480 samples were recorded, again
giving a sampling rate of 20 kHz. In a similar manner to the previous set, the first 78 records
(8% of the full data) of the dataset are used as a baseline condition and used to calculate the
threshold of the FSI. In this instance, the data of the first 3 bearings were analysed following
the same approach as Abboud et al. [2019], as these bearings produced the most noteworthy
results. Therefore, 3 independent networks were trained as set out in sections 3.3 and 3.4
respectively.
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Figure 4.2: FSI applied on signal of bearing 3 (accelerometer channel 5) of IMS set No. 1.
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Figure 4.3: FSI applied on signal of bearing 4 (accelerometer channel 7) of IMS set No. 1.
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Figure 4.4: FSI applied on signal of bearing 1 of IMS set No. 2.
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Figure 4.5: FSI applied on signal of bearing 2 of IMS set No. 2.
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Figure 4.6: FSI applied on signal of bearing 3 of IMS set No. 2.
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Results

The signal from the accelerometer placed on bearing 1 corresponds to the case with the
highest as the measurements are taken on the bearing with the outer race fault. . Looking
at the RMS of bearing number 1, in Fig. 4.4a, we can see that the fault presented itself
at record 542. The kurtosis increases around record 600 in Fig. 4.4b. The two traditional
approaches have no trouble detecting the faults due to the high SNR. The advanced bearing
approaches perform just as well by detecting the fault at record 542 for MED-SK-NES in
Fig. 4.4c and 533 for IES approach in Fig. 4.4d. In Fig. 4.4e it can be seen that the fault
metric crosses the threshold at record 541 and follows a trend similar to the SOTA bearing
diagnostic techniques. Figure 4.4f shows that the fault metric performs just as well as the
baseline conditions when record 533 is taken as the fault point.

In Fig. 4.6a we can see that again the RMS approach detects the fault after record 900.
The kurtosis of the signal in Fig. 4.5b does not offer any fault detection capacity for this
accelerometer signal, corresponding to a remote sensor. We can see similarly, the MED-
SK-NES based approach also struggles to detect the fault in Fig. 4.6c. The IES approach
performs well for this case by detecting the fault in record 851, as can be seen in Fig. 4.6d. In
Fig. 4.6e, the fault metric can be seen crossing the threshold value at record 917. However,
looking at the ROC curve of Fig. 4.6f, the IES approach performs slightly better than the
proposed approach, and significantly outperforms the MED-SK-NES based approach.

Lastly, in Figs. 4.5a and 4.5b, we see the RMS and kurtosis values of the signals increasing
after record 900. These results are expected, as the SNR of this case is lower since the fault
signal of interest has to travel a longer transmission path to get to the sensor. The advanced
approaches perform significantly better in Figs. 4.5c and 4.5d. The IES approach does the
best out of all the benchmark approaches, detecting the fault at record 700. The proposed
fault metric in Fig. 4.5e is seen to cross the threshold at record 702. The ROC curve in Fig.
4.5f is based on the fault being detected at record 700 and shows the IES approach performing
slightly better than the proposed metric, which in turn performs significantly better than the
MED-SK-NES approach.

Discussion

In test set no. 2, we have a similar situation to the first where signals of varying SNR are
tested by using sensors which get further away from the only fault, namely an outer race
fault at bearing 1. In this case, the SNR is decreasing with each subsequent signal presented.
The first signal corresponds to the case with the highest SNR measured at bearing 1. It
was shown that the proposed metric is able to trend the fault just as well as the benchmark
approaches. As the SNR of the signal decreases, the proposed metric outperforms the MED-
SK-NES approach. It was also seen that the proposed metric performs only slightly worse
than the IES approach.

4.3 Bearing fault dataset

The second dataset was the fault dataset released by the Society for Machinery Failure
Prevention Technology (MFPT) with an accompanying tutorial in bearing envelope analysis
[Bechhoefer]. The intended goal of the dataset was to facilitate research into bearing analysis.
This dataset is comprised of acceleration signals recorded from a bearing test rig that was
equipped with a NICE bearing with 8 rolling elements, with varying operating conditions.
The first case is presented as the baseline condition, and corresponds to signals that were
obtained from a healthy bearing (no fault) at a shaft rotational speed of 25 Hz and a load of
122.47 kg. The second and third cases correspond to the signals obtained from a bearing with
an outer and inner race fault respectively. The signals obtained for the fault datasets were
sampled at varying loads between 0 kg and 136.08 kg at a constant shaft rotational speed
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of 25 Hz. The goal of using this dataset is to test the algorithm with signals of multiple
known fault modes, and thus provide insights into the clustering abilities of the proposed
model. This dataset is used as a proxy for test-to-failure datasets with multiple fault modes
in non-stationary operating conditions of speed and loads.

4.3.1 Approach

The architecture used for this experiment was adjusted slightly for visualization purposes. In
this case, only two continuous dimensions were used in the encoder layer, in contrast to the
proposed categorical, continuous and noise dimensions. This is to illustrate the clustering
power of the proposed method using signal data. Hence, for this experiment the dimension
of the output of the encoder was 2. The mutual information between these two latent dimen-
sions and the signal was maximised during training. Two approaches were used for training
the network. In the first case, the network was trained using all the data in a completely
unsupervised manner. In the second case, anchor points were used to associate areas in the
latent space with signals from known fault modes. In this case, only one of each fault mode
were used as the anchor point, resulting in a semi-supervised setting.

4.3.2 Results

By setting the latent variables to only 2 continuous variables, the algorithm learns a projection
of the data manifold on a 2D continuous sphere. Figure 4.7 shows the two latent dimensions,
namely N1 and N2. This case shows how the algorithm can cluster examples of similar
structure together in a completely unsupervised manner.
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Figure 4.7: Clustering of the latent representation of samples from various fault modes, trained in an unsu-
pervised setting.

In the second case where anchor points were used, as shown in Fig. 4.8, it can be seen that
the anchor point is able to further separate the clusters of fault modes, helping to improve
the classification accuracy of the proposed method.

4.3.3 Discussion

The aim of this experiment was to investigate the clustering ability of the algorithm, which
subsequently can be used as a fault diagnosis tool. Here, two cases of the algorithm were
presented. In the first case, the network is trained on all the data in an unsupervised manner.
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Figure 4.8: Clustering of the latent representation of a sample from various fault modes, trained with a network
using anchor points of each fault mode, resulting in a semi-supervised setting.

That is, no labels were given to the network during training. It is assumed that we are working
with a limited set of the data, anticipating new data as the machine runs. Regardless, all
the data available can be used to diagnose the fault. From Fig. 4.7, it can be seen that the
algorithm does provide some unsupervised clustering capacity. In this instance, there would
be no diagnosis possible, in the absence of labels, without the help of an established bearing
fault diagnostic method. When a diagnosis has been made using the established method, the
proposed methodology can then be used to cluster similar samples.

In the second instance anchor points were added to the training protocol. It can be seen
that the model clusters similar faults around the anchor points, thus helping to separate the
various fault modes. When compared to the first part of this experiment, it was noted that
adding only one labelled example of each fault mode increased the ability for the mutual
information to be optimized.

4.4 High speed shaft bearing fault dataset

The third and final experiment was conducted on the high-speed bearing dataset (HSBD),
which was collected from a 2MW commercial wind turbine [Bechhoefer et al., 2013]. This
dataset represent a real-world dataset and is inherently non-stationary due to the varying
wind speeds and loads found in nature. This dataset consists of the acceleration measurements
captured over a period of 50 consecutive days at an interval of 6s on each recording. The
acceleration signal was captured at a sampling rate of 97656 Hz. A tachometer signal was
also recorded during the same recording window as the acceleration signal, allowing the exact
shaft rate of the wind turbine to be calculated. Doing this shows that the wind turbine had an
average shaft rate of 30.9 Hz with the shaft rate varying as high as 15% of the nominal rate
at times. Figure 4.9 shows the shaft rate of the wind-turbine over the recording window of 6
seconds for each of the 50 days the experiment was conducted, revealing the varying speeds
of each recording window. In the original paper, an inner-race fault was discovered after the
data had been collected and the fault severity, obtained using the envelope spectrum, was
seen to increase over the recording period.
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Figure 4.9: Shaft rate of wind turbine recorded over a window of 6 seconds for 50 consecutive days.

4.4.1 Approach

For this experiment, the network model presented in Section 3.4 was used with all the docu-
mented parameters. The approach used here was to increase the amount of data available to
the network for training, saving a set of weights along the way. This produced three separate
instances of trained networks using data from days 1-3. Initially, the network was trained
with data from only the first day. Upon convergence, the network’s parameters were then
saved and data from the next day of recordings was added to the training pool. This was
repeated until all the data of the first 3 days were seen by the model. This approach simulates
live data coming in batches at a time.

Additionally, a BIGAN [Donahue et al., 2016] based network was trained alongside the pro-
posed model, as a SOTA GAN benchmark for comparison purposes on untangling the latent
space. The BIGAN model represents the case of inference with a deep learning model without
any regularization. The BIGAN thus creates random, unstructured mappings between the
latent space and the observed space. With the BIGAN approach the non-stationary compo-
nents of the signal are not specifically taken into account and can be used for comparison.

The proposed metric was compared against the advanced bearing approaches of Abboud
et al. [2019]. With these approaches, the MED-SK-NES and IES were tracked at the inner-
race fault frequency. Both of these two approaches involved order tracking and filtering the
vibration signal and represent the latest advanced signal processing approaches for bearing
diagnostics.

4.4.2 Results

Figure 4.10 shows the results of the proposed fault metric obtained from a network trained
consecutively using the data from day 1 up until day 3. For comparison, the shaft rates that
were present in the training data of the model was used to calculate the remaining % of the
shaft rate that the network has not yet seen, this % is also included in grey. This allows
an opportunity to empirically compare the fault metric with the shaft rates not yet seen
by the model, subsequently showing the cross correlation of the metric to unseen operating
conditions. It can be seen from Fig. 4.10, that as more data is used for the baseline condition,
the network finds it easier to separate the deterministic and random components of the signal,
since there are more deterministic components to map.

The results of the BIGAN, where the non-stationary components of the signal are not taken
into consideration, are shown in Fig. 4.11. Here it can be seen that the BIGAN based fault
metric is sensitive to the operating conditions that the network has not seen. This shows the
necessity to regularise the latent space to account for deterministic and random components
of the signal.
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Figure 4.10: Proposed fault metric applied to HSBD dataset trended over the 50 day observation window.
Figures (a)-(c) represent the cases of increasing the amount of data used as baseline reference. % Unseen shaft
rate is shown in grey.
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Figure 4.11: BIGAN fault metric applied to HSBD dataset trended over the 50 day observation window.
Figures (a)-(c) represent the cases of increasing the amount of data used as baseline reference. % Unseen shaft
rate is shown in grey.
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The proposed methodology was further compared against a BIGAN using an order tracked
version of the dataset and presented in Fig. 4.12. This experiment is used to show the
proposed method’s capacity to count for the modulations caused by speed fluctuations. In
this instance, the order tracking will remove the frequency modulation caused by speed
fluctuations. Here it can be seen that the BIGAN and the proposed method are both able to
track the fault. However, the proposed methodology using the raw signal can be seen to be
more sensitive than BIGAN using the order tracked signal. The sensitivity can be explained
by the amplitude modulations that are not corrected by order tracking will still influence the
signal, especially since it is not accounted for in the unregularized BIGAN based approach.

The final comparison is done using the SOTA signal processing techniques on the order
tracked vibration signal compared to the proposed method on the raw vibration signal, and
is shown in Fig. 4.13. Figures 4.13a and 4.13b show the baseline approaches in which the
fault specific frequencies and their respective harmonics are tracked as a FSI. The arithmetic
mean of the first three harmonics are used as a FSI [Abboud et al., 2019]. In Fig. 4.13d
we see the proposed fault metric following the same trend as the two baselines approaches.
The ROC curve of Fig. 4.13e is based on detecting the fault at record 15. It shows that the
proposed fault metric performs better than the MED-SK-NES based approach, with the IES
approach performing slighly better.

4.4.3 Discussion

The dataset was chosen as a representation of a real world dataset. From these results we
can see that the network is able to learn a mapping of the deterministic and random com-
ponents of the vibration signal. The mapping provides an FSI that is robust against any
fluctuating conditions. With less than 8% of the total amount of data being seen (first 3
days) by the network, the model has sufficient capacity to separate the deterministic and
random components to perform accurate inference on the remaining set of data, even when,
the majority of the operating conditions have yet to be seen. Alternatively, if we look at
the BIGAN approach, overall the fault metric increases, however, the BIGAN fault metric is
sensitive to the fluctuating operating conditions and may trigger unnecessary early warnings.
This is subsequently reduced when the signal is order tracked as expected. This shows that
the regularization of the latent space is enough to perform inference without the need of a
tachometer signal. The fault metric is shown to be on par with SOTA bearing diagnostic
techniques. In the baseline approaches, after the preprocessing of the data, the FSI is de-
veloped using fault specific frequencies, thus knowledge of the bearing geometry is required.
The proposed approach is able to provide a similar metric using raw unprocessed data.

4.5 Summary

This chapter presented the results of the proposed methodology on three well known datasets.
Each dataset was chosen to highlight an important diagnostic feature of the proposed method.
The IMS dataset represents cases in which the machine operating condition was kept constant,
however the SNR varies from signal to signal. It was seen that the proposed fault metric
is able to provide a good trend of the fault, even in cases of low SNR. The fault diagnosis
capacity of the proposed method was tested with the second dataset. It was found that the
model has good clustering capacity, which can be further improved by adding labelled data.
Small amounts of labelled data, go a long way to regularize the representation of the latent
space and improve fault classification. Lastly, the proposed method was tested on real world
data in the form of signals obtained from a wind turbine. It was seen that the method is
able to account for the operating conditions the network had not yet seen, and performed
better than a model in which the non-stationary components were not taken into account. It
was further seen that the model is able to work just as well as a similar model that has no
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Figure 4.12: Comparison between the proposed diagnostic metric (regularized) in blue on the raw vibration
signal x, against a BIGAN (un-regularized) in orange using an order tracked re-sampled version of the signal,
xrs.
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Figure 4.13: Comparison between the proposed diagnostic metric on raw vibration signal against the MED-
SK-NES and IES signal processing approaches on the order tracked signal. H1, H2, and H3 refers to the first,
second and third harmonics of the fault frequency.
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latent space regularization using an order tracked version of the signal. Lastly, the proposed
metric was able to provide a FSI as good as the SOTA bearing diagnostic techniques requiring
significantly less set-up effort.
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Chapter 5

Conclusion

5.1 Conclusions

With Industry 4.0 upon us, there is a need for scalable maintenance decision making. Fault
detection and diagnosis has been and remains a crucial step towards increasing the reliability
of machines. It also offers the perfect opportunity to allow for new insights provided by deep
learning algorithms, towards achieving Industry 4.0 goals. However, a few key challenges
need to be overcome before this can happen.

Towards this goal, this work proposes a fault detection metric that moves away from using
hand designed features in a supervised learning methodology to an unsupervised learning
methodology utilizing machine learnt features. Unprocessed vibration data from accelerom-
eter sensors are taken as the only input into the model, and after training, an easily inter-
pretable fault metric is produced. This has the result of reducing the amount of human hours
spent hand crafting features and transfers some of the decision making to machine learning.
To do this, the feature extraction step, that is so prevalent in many previously proposed
methodologies, is now performed by the deep learning algorithm. In the past, hand crafted
features were extracted based on years of experience and intuition into the mechanics of the
machine and the fault. These intuitions are then translated into fault metrics using advanced
signal processing techniques. This expert knowledge is often time consuming and expensive
and can be difficult for machine operators to interpret.

In non-stationary operating conditions, protocol suggests that the effects of the non-stationary
operating condition be removed before any fault detection takes place. This often requires
an auxiliary signal of the machine operating conditions, such as a tachometer signal. The
auxiliary signal is used to remove the effects of the change in shaft rotational speed, due to
the fluctuating machine operating conditions. Adding this extra channel can be costly or
impractical at times.

Majority of the data sampled from a machine can be classified as healthy data, whilst a small
subset of the data is from unhealthy cases. Therefore there is a big class imbalance often
found in PHM data. This makes training a model in a supervised manner that much more
difficult. Industries either do not have the historical data or the data suffers from this large
class imbalance. Therefore, the aim of the proposed model is to provide an unsupervised
algorithm that can be trained on data that is available.

These goals were achieved by recasting the problem of bearing diagnostics as an inference
type problem. Using variational inference, the problem of diagnostics can now be easily
optimized by a machine. Most gradient based optimization agents are able to perform this
operation. Most of the heavy lifting is thereby transferred to the deep learning models where
both feature extracting and fault metric are constructed. From the literature, it was seen that
two deep learning frameworks take centre stage for this task, Autoencoders and Generative
Adversarial Networks.
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In order to account for the non-stationary components, the same approach as current bearing
diagnostic techniques of separating the signal into random and deterministic components is
followed. To do this, the latent space of the model was regularized using mutual information,
which allowed the model to learn a representation of the signal in the form of structured
latent variables. These variables were separated into a deterministic part and a random part.
Bearing diagnostics can be performed by measuring the difference that the presence of a
bearing fault will have on the distribution of the random components of the measured signal.
This difference is easily quantified by the discriminator of the proposed model.

It was demonstrated that the proposed method provides an end-to-end model for a bearing
fault metric. The method was tested on a number of benchmark cases, each representing a
different non-stationary condition. The fault metric is able to detect a fault in cases with
low signal-to-noise-ratios over various non-stationary transmission paths from the fault to the
transducer. The methodology can also be used as a fault classifier, and incorporate whatever
data may be available at the time. In real world conditions, where non-stationary conditions
are inherent, the proposed fault metric was able to detect and trend the fault without the
need for a tachometer signal. Furthermore, the model was seen to be robust against the
non-stationary operating conditions, even when these operating conditions were not seen by
the algorithm at the time of training.

The significant contribution of this model is the amount of effort needed by the user to
extract a FSI. This makes implementing the FSI across cloud-based platform, significantly
more scalable. No information about the bearings is needed when training and analysing the
FSI. The model simply takes raw data as the input and returns an easily interpretable FSI.

5.2 Recommendations

This study serves as a platform for future GAN related work in PHM, in particular, studies
that would aim to develop techniques in a fully unsupervised setting. The deep learning liter-
ature is dominated by image based analyses. Many of the model architectures and parameters
in this work were taken from this literature. Therefore intensive parametric studies should
be done in an attempt to improve the model’s accuracy and feature extraction performance.
Incorporating new neural network building blocks for the deep learning models can also be
done in an attempt to extract further discriminative features.

There is a need within the literature to provide a good open source dataset that represents real
world operating conditions of PHM data that can be used to benchmark new and existing
diagnostic methodologies. A dataset linked more closely to industrial practice will help
researchers develop more reliable models, whilst making integration of methods easier.

This work was focused on bearing diagnostics, however there is no reason why it cannot be
implemented on other components and their related faults. Gearbox faults produce more
deterministic components within the signal and as such, performing the same analysis and
focusing on the deterministic components of the latent space, may lead to further break-
throughs in fault diagnostics.

Lastly, on the data science side, work can be done on improving the resolution of the latent
space, by incorporating methods that further disentangle the latent space and offer more
semantic structure learning. This may eventually lead to the extraction of machine operating
condition information, such as shaft speed or loads, directly from the vibration waveform
alone in a fully unsupervised setting.
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Appendix A

Model architecture

A.1 Network components

The architecture of the individual network components which were used for the majority of
the experimental work, and which are different to the original publications, are presented
next.

A.1.1 Encoder

The encoder of the network consists of four convolution layers followed by a fully connected
layer, whose output is then fed into three separate fully connected layers to give each of the
latent variable components. Between each layer, leaky rectified linear unit (leaky-RELU,
Maas et al. [2013]) activation function is used with a leak rate of 0.1. Figure A.1 shows
a schematic diagram of the network. A summary description is given in Table A.1. The
convolution layers all have a kernel size of 25 with a stride of length 5. The number of filters
of each layer increases by a factor of 2, for each layer starting at 32 for the first convolution
layer and ending with 256 in the last convolution layer. The output of the last convolution
layer, is fed into a fully connected layer with a dimension of 1024. The output layer can be
considered as the recognition layer, whose output is fed into three separate fully connected
layers for each of the latent variable representations (deterministic and random).
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Figure A.1: Schematic outline of encoder network. K: Kernel size, S: Stride length, F : No. of Filters.

A.1.2 Decoder

The decoder network is comprised of a fully connected layer followed by four deconvolution
layers. The output dimension of 2048× 16, of the initial fully connected layer is chosen such
that the output decoder has the same dimension as the input to the encoder, namely 4096.
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Table A.1: Summary of encoder network layers.

Layer Structure

Input x = [batch, 4096]

1 Conv1D25×32,stride=5

→ leakyRELU(·)
2 Conv1D25×64,stride=5

→ leakyRELU(·)
3 Conv1D25×128,stride=5

→ leakyRELU(·)
4 Conv1D25×256,stride=5

→ leakyRELU(·)
5 FC1024

→ leakyRELU(·)
6 c: FCNc=3×20

→ softmax(·)
s: FCNs=2×5
→ sµ = 1× 5

→ sσ = exp(1× 5)
n: FCNn=128

In this instance, rectified linear units (RELU) were used as the activation functions between
each layer as shown in Fig. A.2. The output of the decoder has no activation function such
that pre-processing of the data is not required. A summary of the decoder network is given
in Table. A.2. The deconvolution layers also have a kernel size of 25. The stride length,
however, is set to 4 and the filters decrease by a factor 2 for each layer, starting at 128 to
32 at the second last layer. The output layer of the decoder is a deconvolution layer with a
filter size of 1.
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Figure A.2: Schematic outline of decoder network. K: Kernel size, S: Stride length, F : No. of Filters.

A.1.3 Latent variable discriminators

The discriminators used for each of the latent variables, when training with an AAE configu-
ration, each have the same architecture. The only difference between them is that the input
dimension for the respective latent variable changes. Note that three separate discriminators
are used, each with their own set of parameters. Only the structure of the discriminator
remains the same. The discriminators are comprised of two hidden layers, with a hidden
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Table A.2: Summary of decoder network layers.

Layer Structure

Input x = [batch, 193]

1 FC16×2048
→ RELU(·)

2 Deconv1D25×128,stride=4

→ RELU(·)
3 Deconv1D25×64,stride=4

→ RELU(·)
4 Deconv1D25×32,stride=4

→ RELU(·)
5 Deconv1D25×1,stride=4

dimension of 3000 each. Again, leaky RELU is used between each layer as summarized in
Table. A.3. The dimension of the final layer is 1 and is used for adversarial training. Note
the output of the discriminator is left linear. As shown in Fig. A.3.
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FC 1
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00

FC 2

30
00

Dz

1

Figure A.3: Schematic outline of z-discriminator network.

Table A.3: Summary of z-discriminator network layers.

Layer Structure

Input x = [batch,Nc or Ns or Nn]

1 FC3000

→ leakyRELU(·)
2 FC3000

→ leakyRELU(·)
3 Dc/s/n = FC1

A.1.4 Signal discriminator

Lastly, the discriminator that is used in the infoGAN-like structure has an architecture similar
to the encoder, with the difference that the output layer is only 1 dimension, to allow for
adversarial training. The discriminator architecture is shown in Fig. A.4. In this case, the
last layer is passed through a sigmoid activation function as summarized in Table. A.4.
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Figure A.4: Schematic outline of x-discriminator network.

Table A.4: Summary of x-discriminator network layers.

Layer Structure

Input x = [batch, 4096]

1 Conv1D25×32,stride=5

→ leakyRELU(·)
2 Conv1D25×64,stride=5

→ leakyRELU(·)
3 Conv1D25×128,stride=5

→ leakyRELU(·)
4 Conv1D25×256,stride=5

→ leakyRELU(·)
5 FC256

→ leakyRELU(·)
6 Dx = FC1

→ sigmoid(·)

73

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 


	Introduction
	Background
	Literature review
	Bearing faults and detection
	Signal processing approaches
	Learning based approaches
	Supervised, semi-supervised and unsupervised learning

	Scope of research
	Document overview

	Deep learning: A review
	Introduction
	Inference
	Variational inference
	Evidence lower bound

	Dimension reduction
	The manifold hypothesis
	Entropy and Mutual Information

	Machine learning basics
	Model building blocks
	Model training

	Deep learning for bearing FDD
	Deep neural nets
	Variational Autoencoders
	Generative adversarial networks

	Summary

	Proposed methodology
	Introduction
	Latent space regularization
	Example: Latent space entanglement 
	AAE mutual information maximisation
	InfoGAN mutual information maximisation

	Bearing FDD methodology
	Fault detection
	Fault diagnosis

	Bearing FDD model
	Model architecture
	Training protocol

	Summary

	Experimental Investigation
	Introduction
	IMS benchmark dataset
	Test-to-failure set no. 1
	Test-to-failure set no. 2

	Bearing fault dataset
	Approach
	Results
	Discussion

	High speed shaft bearing fault dataset
	Approach
	Results
	Discussion

	Summary

	Conclusion
	Conclusions
	Recommendations

	Model architecture
	Network components
	Encoder
	Decoder
	Latent variable discriminators
	Signal discriminator



