

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION TECHNOLOGY

FAKULTEIT INGENIEURSWESE, BOU-OMGEWING EN INLIGTINGTEGNOLOGIE

An Agile and Ontology-Aided Approach

for Domain-Specific Adaptations

of Modelling Languages

By

Emanuele Laurenzi

BSc Information Technology (University of Camerino)

MSc Computer Science (University of Camerino)

MSc Business Information Systems (University of Applied Sciences Northwestern Switzerland)

Submitted in partial fulfilment of the requirements for the degree

Philosophiae Doctor in Information Systems

in the

FACULTY OF INFORMATICS

at the

UNIVERSITY OF PRETORIA

Supervisor

Prof. Dr. Knut Hinkelmann

Co-supervisors

Prof. Dr. Alta van der Merwe

Prof. Dr. Ulrich Reimer

ii

ACKNOWLEDGEMENT

Undertaking this PhD has been an incredible (research) journey during which I have had the

good fortune to meet and work with many great people.

It is nearly impossible to put into words how huge my gratitude is towards my main

supervisor Prof. Dr. Knut Hinkelmann. Knut accepted me as a PhD student at the time when

another door had suddenly closed. In retrospect, I can tell you that the closed door was for the

better. It allowed a far more valuable door to open. Thanks to Knut I have not only increased

my scientific knowledge but have also developed as a person. Discussions with him have

always been highly insightful, enthusiastic and engaging, and from which I have always had

something new to learn. Knut taught me a lifestyle with the motto “Love what you do and do

what you love” by applying it daily. Despite his extremely busy schedule, he has been

constantly available to provide meaningful guidance and detailed feedback, without which, this

PhD would not have been achievable. I will be forever grateful to Knut.

I would also like to say a big thank you to my co-supervisor Prof. Dr. Alta van der Merwe,

who throughout these past 4 years has always been very supportive. Alta’s energy, kindness

and immense knowledge is what convinced me to pursue a PhD from the University of Pretoria

(UP). During the initial preparatory period for the PhD, Alta welcomed me like a family

member in her house in Pretoria. She placed me in the best situations to increase my knowledge

of research methodologies and to get a solid start with my PhD. Thanks to Alta I also learned

a new culture, gained a second family in South Africa and met outstanding researchers at UP.

I greatly appreciate the support received from my co-supervisor Prof. Dr. Ulrich Reimer,

who introduced me to the research field of Domain-Specific Modelling Languages. I thank

Ulrich very much for encouraging me to pursue a PhD and for supporting the initial

development of my scientific profile. His insightful comments and challenging questions

provided me with the incentive to widen my research from different perspectives.

I would also like to thank Rhona van der Merwe, who has always reacted promptly and

kindly to any administrative concerns there have been.

A special thanks goes to both my current and former colleagues for showing constant and

priceless support, also for asking: so, when are you going to finish your PhD? At last I can

finally change my answer. Among my former colleagues, a special mention goes to Stefano

Izzo, who provided the initial significant support in setting up the technical solution. More than

once we stayed late in the office for working and brainstorming sessions. Among my current

colleagues, I am grateful to Charuta Pande for her very kind and highly competent support

about technical aspects of AOAME. It has always truly been a pleasure to exchange opinions

with her, as well as helping me to increase my technical knowledge. My deep appreciation goes

also out to the remaining, but not less important, colleagues from the Intelligent Information

Systems Research Group: Andreas Martin, Barbara Thönssen, Devid Montecchiari, Hans-

Friedrich Witschel, Maja Spahic and Stephan Jüngling. Collaboration with them is awesome.

I would also like to say a heartfelt thank you to my family back in Italy - especially my

Mum Grazia, Dad Omar and Grandmother Amalia - for their unconditional love and I apologize

for my long periods of absence.

Last but not least, I would like to thank all my friends for their genuine and affectionate

friendship throughout the years, with a special mention to George Gontikas and Bugra Ablak.

iii

To my Grandfather Quinto,

who taught me about courage, resilience and kindness

iv

ABSTRACT

Domain-Specific Modelling Languages (DSMLs) offer constructs that are tailored to better

capture the representational needs of an application domain. They provide customized

graphical notations, which facilitate understanding of models by domain experts. As a result,

DSMLs allow the construction of domain-specific models that support collaboration, improve

work processes and enhance decision-making. Given their special purpose, however, a DSML

has to be built each time a new application domain is to be addressed, which is quite demanding

and time-consuming. A valid alternative is the creation of DSMLs through domain-specific

adaptations of existing modelling languages. This solution has the benefits of starting from a

baseline of well-known concepts, which is adapted to fit a specific purpose. Current

engineering processes for building or adapting modelling languages, however, lack agility. It

follows a sequential engineering lifecycle, where modelling and evaluation activities cannot

start before the DSML is deployed for use. Such a sequential approach tends to keep the

language engineer separate from the domain expert, who is hindered from gaining experience

from the DSML until it is created. The separation of the two roles is a threat to the high quality

of the DSML as it requires the joint effort of both experts. On the other hand, the new

requirements that arise from the suggestions of the domain expert have to go through the whole

engineering lifecycle (i.e. capture and document the requirement, conceptualise, implement

and deploy), which is time-consuming. These current drawbacks of present engineering

processes have been explored in two case studies, which report the development of a DSML

for Patient Transferal Management and a DSML for Business Process as a Service.

In this research an agile meta-modelling approach has been conceived to address the

identified drawbacks. Specifically, the approach allows the quick interleaving of language

engineering, modelling and evaluation activities. Hence, the close cooperation between the

language engineers and the domain experts is fostered from an early stage. A set of operators

are proposed to enable on-the-fly domain-specific adaptations of modelling languages, thus

avoiding the sequential engineering phases. This agile meta-modelling aims to promote both

the high-quality and quick development of DSMLs through domain-specific adaptations.

Moreover, to avoid misinterpretation of the meaning of the newly created modelling constructs

as well as ensuring machine interpretability of models, the agile meta-modelling has been

supplemented by an ontology-aided approach. The latter embeds the specification

specifications of modelling languages into an ontology. A set of semantic rules are proposed

to support the propagation of language adaptations from the graphical to the machine-

interpretable representation. In turn, the approach was developed in the modelling environment

AOAME, which allows preserving consistency between the graphical and the machine-

interpretable knowledge while domain-specific adaptations are performed. An evaluation

strategy is proposed, from which three criteria were derived to evaluate the approach. Firstly,

the correct design of the approach is evaluated by the extent to which it satisfies the

requirements. Secondly, the operationability of the approach is evaluated by its ability to

preserve consistency between the graphical and the machine-interpretable representations.

Thirdly, the generality of the approach is evaluated by its ability to be applied in different

application domains. The evaluation of operationability and generality are supported by

implementing real-world use cases in AOAME. Consequently, the approach contributes to the

practice in three different application domains, the Patient Transferal Management, Business

Process as a Service and Innovation Processes. The scientific contribution of the approach

spans research fields of Domain-Specific Modelling Language, Meta-Modelling, Enterprise

Modelling and Ontologies.

v

PUBLICATIONS

The conference papers and books below were prepared and produced as progress was made in

the preparation and completion of this thesis. All the work was conducted by Emanuele

Laurenzi under supervision of Prof. Dr. Knut Hinkelmann, Prof. Dr. Alta van der Merwe and

Prof. Dr. Ulrich Reimer. The additional co-authors in some publications were work colleagues

with either master’s degree or PhD in Information Systems or Computer Science as well as

Master students.

1. Laurenzi, E., Hinkelmann, K., Goel, M., & Montecchiari, D. (2020). Agile Visualization

in Design Thinking. In New Trends in Business Information Systems and Technology.

Springer Berlin / Heidelberg.

2. Laurenzi, E., Hinkelmann, K., & van der Merwe, A. (2018). An Agile and Ontology-Aided

Modelling Environment. In R. Buchmann, D. Karagiannis, & M. Kirikova (Eds.), The

Practice of Enterprise Modelling. PoEM 2018. (pp. 221–237). Vienna: Springer, Cham.

https://doi.org/10.1007/978-3-030-02302-7_14.

3. Laurenzi, E., Hinkelmann, K., Izzo, S., Reimer, U., & van der Merwe, A. (2018). Towards

an Agile and Ontology-Aided Modelling Environment for DSML Adaptation. In R.

Matulevičius & R. Dijkman (Eds.), Advanced Information Systems Engineering

Workshops. CAiSE 2018. Lecture Notes in Business Information Processing (pp. 222–

234). Springer, Cham. https://doi.org/10.1007/978-3-319-92898-2_19.

4. Kritikos, K., Laurenzi, E., & Hinkelmann, K. (2018). Towards Business-to-IT Alignment

in the Cloud. In Z. Mann & V. Stolz (Eds.), Advances in Service-Oriented and Cloud

Computing. ESOCC 2017. Communications in Computer and Information Science (pp.

35–52). Springer, Cham. https://doi.org/10.1007/978-3-319-79090-9_3.

5. Hinkelmann, K., Laurenzi, E., Martin, A., & Thönssen, B. (2018). Ontology-Based

Metamodelling. In Dornberger R. (Ed.), Business Information Systems and Technology

4.0. Studies in Systems, Decision and Control. (pp. 177–194). Springer, Cham.

https://doi.org/10.1007/978-3-319-74322-6_12.

6. Laurenzi, E., Hinkelmann, K., Reimer, U., Van Der Merwe, A., Sibold, P., & Endl, R.

(2017). DSML4PTM: A Domain-Specific Modelling Language for Patient Transferal

Management. In ICEIS 2017 - Proceedings of the 19th International Conference on

Enterprise Information Systems (Vol. 3, pp. 520–531). SciTePress.

https://doi.org/10.5220/0006388505200531.

7. Reimer, U., & Laurenzi, E. (2014). Creating and maintaining a collaboration platform via

domain-specific reference modelling. In EChallenges e-2014 Conference : 29-30 October

2014, Belfast, Ireland. (pp. 1–9). IEEE.

8. Laurenzi, E. (2014). A Model-Driven Approach to Create and Maintain an Executable

Transferal Management Platform. In Doctoral Consortium - DCSOFT, (ICSOFT 2014)

(pp. 14–20). Vienna, Austria: SciTePress.

vi

Table of Contents

ACKNOWLEDGEMENT .. II

ABSTRACT ... IV

PUBLICATIONS .. V

1. INTRODUCTION AND MOTIVATION .. 1
1.1 RESEARCH PROBLEM ... 3

1.1.1 Need for Domain-Specific Modelling Languages ... 3
1.1.2 Research Problem 1: Lack of Agility in DSML Engineering 4
1.1.3 Research Problem 2: Inconsistency between the Graphical and Machine-

Interpretable Representation of Modelling Languages .. 7
1.1.4 Consolidated Research Problems ... 7

1.2 RESEARCH OBJECTIVES AND RESEARCH QUESTIONS 10

1.2.1 Main Research Objective and Main Research Question 10
1.2.2 Research Objectives and Questions ... 10

1.3 RESEARCH STRATEGY ... 12

1.4 SCOPE OF THE STUDY .. 12

1.5 THESIS OVERVIEW .. 12

2. LITERATURE REVIEW .. 15

2.1 ENTERPRISE MODELLING AND MODELS .. 16

2.2 MODELLING LANGUAGE DEFINITION ... 18

2.3 META-MODELLING ... 19

2.4 META-MODELLING FOR ENTERPRISE MODELLING LANGUAGES ... 21

2.5 GENERAL-PURPOSE AND DOMAIN-SPECIFIC MODELLING

LANGUAGES ... 23

2.5.1 DSML vs GPML: A Practical Example ... 25
2.5.2 Terminology Definitions .. 26

2.6 APPLICATION AREAS FOR DSML .. 28

2.6.1 DSML for Software Development ... 28
2.6.2 DSML for Knowledge Retention ... 28

2.7 ROLES IN DSML.. 31

2.8 APPROACHES FOR DSML ENGINEERING .. 33

2.8.1 Advantages of Domain-Specific Adaptation.. 33
2.8.2 Strengths and Weaknesses of Common Techniques for Domain-Specific

Adaptations .. 35

2.8.3 Reflections and Considerations .. 39

2.9 DSML ENGINEERING: MAIN CHALLENGES .. 40

2.10 DOMAIN-SPECIFIC MODELLING LANGUAGE ENGINEERING

LIFECYCLES .. 42

2.10.1 Domain-Specific Language Engineering Lifecycles...................................... 42
2.10.2 DSML Engineering Lifecycles... 44
2.10.3 Advances of DSML Engineering Lifecycles ... 46
2.10.4 Agile Principles for DSML Engineering Lifecycles and Considerations 48

vii

2.11 AGILITY IN ENTERPRISES: DEFINITIONS, PRINCIPLES, TRENDS AND

NEW CHALLENGES ... 52

2.12 MACHINE-INTERPRETABLE KNOWLEDGE AND ENTERPRISE

MODELLING .. 55

2.12.1 Ontology Definition ... 55
2.12.2 Prominent Ontology Languages: RDF(S) and OWL 56
2.12.3 Ontologies in Enterprise Modelling ... 57

2.12.4 Approaches combining Ontologies with Modelling Languages 58
2.13 CONCLUDING SUMMARY ... 60

3. METHODOLOGY .. 61
3.1 PHILOSOPHICAL UNDERPINNING – LAYER 1 ... 63

3.2 INDUCTIVE RESEARCH APPROACH – LAYER 2 66

3.3 RESEARCH STRATEGY – LAYER 3 .. 67

3.3.1 Design Science Research ... 67
3.3.2 Design Science Research in this Research Work ... 71
3.3.3 Case Study Research .. 75
3.3.4 Case Study Research in this Research Work ... 76

3.4 METHODOLOGICAL CHOICE – LAYERS 4.. 77

3.5 TIME HORIZON – LAYER 5 .. 79

3.6 DATA COLLECTION AND DATA ANALYSIS – LAYER 6 79

3.6.1 Source Triangulation in the Case Study Research ... 81
3.6.2 Source Triangulation in the Design Science Research................................... 82

3.6.3 Literature Review ... 83
3.6.4 Interviews ... 83

3.6.5 Data Analysis ... 85
3.6.6 Ethics of the Research .. 87

3.7 CONCLUDING SUMMARY ... 87

4. PROBLEM RELEVANCE AND CASES .. 88

4.1 CASE 1: PATIENT TRANSFERAL MANAGEMENT 90

4.1.1 Introduction and Motivation... 90
4.1.2 Methodology .. 91

4.1.3 Create Phase ... 92
4.1.4 Design Phase .. 121
4.1.5 Develop Phase .. 138

4.1.6 Deploy/Validate Phase ... 142
4.2 CASE 2: BUSINESS PROCESS AS A SERVICE (BPAAS) 150

4.2.1 Introduction and Motivation... 150
4.2.2 Related Work.. 151
4.2.3 Methodology .. 152

4.2.4 BPaaS Design Environment Architecture .. 152
4.2.5 Create, Design, Formalize, Develop and Deploy/Validate Phases 153
4.2.6 Engineering Lifecycle Iterations for BPaaS DSML 160

4.3 PROBLEMS HINDERING AGILITY IN DSML ENGINEERING AND MAIN

CHALLENGES ... 185

4.4 NEEDS FOR DOMAIN-SPECIFIC ADAPTATIONS: EXPERTS

INTERVIEWS ... 188

viii

4.4.1 Interviewees Selection and Expertise ... 188

4.4.2 Interview Approach .. 189
4.4.3 Interviews Results .. 190
4.4.4 Three Complexity Levels of Modelling Language Adaptations 194

4.4.5 Requirements for Domain-Specific Adaptations of Abstract Syntax and

Notation 196
4.5 CONCLUDING SUMMARY ... 197

5. AN AGILE AND ONTOLOGY-AIDED META-MODELLING APPROACH 198

5.1 AN AGILE META-MODELLING APPROACH ... 199

5.1.1 Comparison of an Agile Meta-Modelling Approach with Profile Mechanisms

for Domain-Specific Adaptations .. 200
5.1.2 An Example of the Tight Cooperation in the Integrated Component 201
5.1.3 Towards the Conceptualisation of On-the-Fly Domain Specific Adaptations

in the Integrated Component .. 202
5.1.4 Semantic Mapping of Abstract Syntax to Domain Knowledge 203
5.1.5 Requirements for the Domain-Specific Adaptations of Semantics 204

5.1.6 Operators for Domain-Specific Adaptations On-the-Fly 205
5.2 TOWARDS A MACHINE-INTERPRETABLE SEMANTICS FOR THE

AGILE META-MODELLING .. 212

5.2.1 Semantic Lifting ... 212
5.2.2 Problems of Semantic Lifting in the Agile Meta-Modelling 213

5.3 AN ONTOLOGY-AIDED APPROACH FOR THE AGILE META-

MODELLING .. 216

5.3.1 The Ontology-based Meta-Modelling .. 216

5.3.2 Ontology Architecture for an Agile and Ontology-Aided Meta-Modelling

Approach 219

5.3.3 Designing Semantic Rules for the Propagation of Domain-Specific

Adaptations .. 229

5.3.4 Syntactic and Semantic Validation of Semantic Rules 232
5.4 CONCLUDING SUMMARY ... 261

6. THE AGILE AND ONTOLOGY-AIDED META-MODELLING ENVIRONMENT

(AOAME) .. 262
6.1 THE AOAME ARCHITECTURE ... 263

6.1.1 Technological Solution for the Triplestore .. 265
6.1.2 Technological Solution for the Graphical User Interface 266
6.1.3 The Model-View-Controller Design Pattern for the AOAME Architecture 267

6.2 THE PALETTE ... 269

6.2.1 The Three-Step Approach to Populate the Palette 269

6.3 AOAME’S MAIN FEATURES FOR ON-THE-FLY DOMAIN-SPECIFIC

ADAPTATIONS .. 275

6.3.1 Feature 1: Extending Modelling Constructs .. 277

6.3.2 Feature 2: Editing Modelling Constructs ... 286
6.3.3 Feature 3: Hiding Modelling Constructs .. 290

6.3.4 Feature 4: Deleting Modelling Constructs ... 291
6.4 CONCLUDING SUMMARY ... 292

7. EVALUATION OF THE AGILE AND ONTOLOGY-AIDED META-

MODELLING APPROACH ... 293

ix

7.1 EVALUATION IN DESIGN SCIENCE RESEARCH 294

7.2 EVALUATION STRATEGY FOR THE ARTEFACT 298

7.3 EVALUATING THE CORRECT DESIGN OF THE ARTEFACT 300

7.4 EVALUATING THE OPERATIONABILITY AND GENERALITY OF THE

ARTEFACT ... 305

7.4.1 Validation of the Functionality that Integrates Modelling Languages 308

7.4.2 Validation of Functionalities for Creating New Modelling Constructs,

Domain Ontology Concepts and Semantic Mappings ... 313
7.4.3 Validation of Functionalities for Creating New Bridging Connectors and

Datatype Properties .. 324
7.4.4 Validation of Functionalities for Deleting Modelling Constructs and

Properties 334
7.4.5 Validation of Functionalities for Editing Modelling Constructs and Properties

 342
7.4.6 Validation of Functionality for Hiding Modelling Constructs 350
7.4.7 AOAME for Innovation Processes ... 352

7.5 EVALUATION CONCLUSION AND CONSIDERATIONS 354

8. CONCLUSION AND FUTURE WORK .. 356
8.1 SUMMARY RESULTS... 358

8.1.1 Problems Hindering Agility in Domain-Specific Adaptations (Research

Question 1) ... 358
8.1.2 Needs for Domain-Specific Adaptations (Research Question 2) 359

8.1.3 Fostering Agility in Domain-Specific Adaptations (Research Question 3) . 359
8.1.4 Automating the Agile and Ontology-Aided Meta-Modelling Approach

(Research Question 4) .. 361

8.2 CONTRIBUTION.. 362

8.2.1 Artefact and Sub-Artefact Contributions ... 362
8.2.2 Contribution to Practice ... 366

8.2.3 Contribution to the Body of Knowledge .. 367
8.3 METHODOLOGICAL SUITABILITY .. 368

8.4 RESEARCH LIMITATIONS, EXCLUSIONS AND FUTURE DIRECTIONS

 370

8.5 CONCLUDING SUMMARY ... 371

BIBLIOGRAPHY .. 372

ABBREVIATIONS AND ACRONYMS .. 391

LIST OF FIGURES ... 393

LIST OF TABLES ... 400

APPENDIX A: PATIENT TRANSFERAL MANAGEMENT DOCUMENTATION .. 403

APPENDIX B: BUSINESS PROCESS AS A SERVICE DOCUMENTATION 405

APPENDIX C: MODELLING EXPERT INTERVIEWS DOCUMENTATION........... 407

APPENDIX D: VALIDATION SPARQL RULES DOCUMENTATION 408

APPENDIX E: PROTOTYPE DOCUMENTATION ... 409

x

APPENDIX F: EVALUATION DOCUMENTATION .. 410

1

1. INTRODUCTION AND MOTIVATION

Enterprise Engineering is “the body of knowledge principles and practices to design an

enterprise” (Giachetti, 2010). An enterprise in the context of Enterprise Engineering is defined

as a “complex socio-technical system that comprises interdependent resources of people,

information, and technology that must interact with each other and their environment in support

of a common mission” (Giachetti, 2010).

The research discipline Enterprise Modelling is the part of Enterprise Engineering that

supports the design of enterprises through models (also known as enterprise models) and

ultimately leverage value for enterprises (Vernadat, 2003; Frank, 2014a; Braun, 2016). Models

are means to abstract the complexity of an enterprise in order to focus on relevant aspects, e.g.

business processes, business decisions, information systems. The abstraction facilitates

interpretation towards better decision making, which ultimately adds value to enterprises. For

example, enterprise architecture models support decision makers in business transformation

(Zachman, 2008). Decision making is also supported by automation and the information and

conclusions gained from models, i.e. analysis, simulation and recommendations. For example,

in Business Process Management models are used to improve organisations by reducing costs,

execution time and error rates (Dumas et al., 2018).

There exist various enterprise modelling languages that provide sets of pre-defined

constructs from which enterprise models can be created. Standard modelling languages such

as BPMN (OMG, 2011) for business process modelling, CMMN (OMG, 2016a) for case

modelling, DMN (OMG, 2016b) for decision modelling, ArchiMate (The Open Group, 2017)

for enterprise architecture modelling, offer modelling constructs that aim for broadly known

global consensus. Although such languages bring the benefit of creating uniform and sharable

models across enterprises, they are not sufficiently expressive to address every application

domain.

As an example, such inadequacy was manifest in the Business Process as a Service (BPaaS)

case, conceived in the European project CloudSocket1 (Woitsch & Utz, 2015). The objective

of BPaaS was to bring whole business processes into the cloud. A model-based approach aimed

to align business requirements with cloud offerings, which are typically specified in IT

language. BPMN 2.0 was adopted to model the business processes (e.g. invoicing business

process), but it was not sufficiently expressive to model the business requirements and IT

specifications of cloud offerings.

A similar problem arose in the patient transferal management case addressed in the Swiss

research project Patient-Radar2 (Reimer & Laurenzi, 2014). The objective of the patient

transferal management case was to make the transfer of patients from hospital to other sites of

post-treatment more efficient. To achieve this objective, a model-based approach aimed to

provide all the relevant concepts (events, activities and decisions) of the underlying application

domain to all the involved stakeholders. It highlighted the existing modelling language’s lack

of specific elements such as hospital-related documents or activities. Besides, available

modelling languages were too complex for physicians and transferal managers (i.e. domain

experts) to understand. The BPMN 2.0 specification, for instance, spans more than 500 pages

and the definition of elements is distributed across different sections and sometimes even with

conflicting semantics (Natschläger, 2011).

In both examples, the lack of domain-specific aspects can be overcome by adapting a

modelling language. However, the adaptation of a modelling language is not a one-off

1https://site.cloudsocket.eu/
2https://www.fhsg.ch/en/projects/project/patient-radar-226/

2

engineering process. Since domain-specific aspects reflect the underlying enterprise reality,

they are subject to continuous changes. Reasons for changes are mainly due to the need to

accommodate new requirements that arise from stakeholders’ wishes (Karagiannis, 2018),

from a better understanding of the domain (Götzinger et al., 2016), or from the targeted

application domain such as new business strategy (e.g. due to mergers and acquisitions) leading

to a new enterprise architecture, new business processes as well as new regulations and

policies. For instance, the recent European law General Data Protection Regulation (GDPR),

led companies to include new concepts for the treatment of personal data in their business

processes (Robol et al., 2017). The inability to provide such information within a time limit

would have resulted in a huge fine for enterprises. That is, enterprises do not only face the

challenge of ever-changing requirements but are also under pressure to deliver quickly.

According to Horkoff et al. (2018), enterprises are increasingly under pressure due to the

current challenging environment, i.e. high competition and cross-organisation cooperation.

In order to keep up with the fast pace, ever-changing and domain-specific requirements

should be continuously accommodated in models, in a timely manner while keeping the high

quality of models. This is a major challenge in Enterprise Modelling and recalls for new agile

and supportive modelling approaches.

3

1.1 Research Problem

This section presents the research problem, which aims to set the ground for the formulation

of the research questions. First the need for creating domain-specific modelling languages

(DSMLs) is emphasised. This includes the reasons for integrating domain-specific aspects into

modelling languages instead of directly into models. Thus, approaches for creating DSMLs are

briefly mentioned and the domain-specific adaptation is motivated. Then, drawbacks of the

approach are elaborated leading to the two main research problems tackled in this thesis. The

section ends with a consolidated version of the research problem, which follows the writing

style and guidelines suggested by Ellis and Levy (2008).

1.1.1 Need for Domain-Specific Modelling Languages

General-Purpose Modelling Languages (GPMLs) allow the modelling of any kind of reality

even if the domain is not yet clear. For instance, the Unified Modelling Language (UML) Class

Diagram (OMG, 2017) and Entity Relationship Diagram (ERD) can be considered as GPMLs.

When adopting GPMLs, basic generic concepts such as “classes”, “relations” and “attributes”

are typically used to conceptualise specific enterprise aspects, e.g. an order, a product, an

invoice, a customer, a contract. Whereas the domain knowledge is represented in the model the

modelling language remains general. Therefore, domain-specific concepts are created through

general-purpose concepts. According to Frank (2010), this requires great skills as both

expertise in modelling and in domain-knowledge are greatly needed every time a

conceptualisation is performed. Moreover, modellers have a quite high degree of freedom in

creating models. Along with this is the risk of creating inconsistent and ambiguous models,

which results in a threat to model quality (Frank 2010). Petre (2013), France and Rumpe (2007)

and France et al. (2006), for example stress the complexity and imprecise interpretation of

models created with UML. An additional problem concerns the absence of uniformity among

models that are built with a GPML, which makes their comparison unfeasible.

To overcome these problems Pérez and Porres (2013), Lodderstedt et al. (2002) and

Felfernig et al. (2000) proposed the supply of modelling concepts with semantics such as

constraints, i.e. cardinalities, restriction on attribute types and on values. Along with the same

lines, the OMG introduced the Object Constraint Language (OCL) standard (OMG, 2014b) to

add constraints on UML class diagram concepts.

This approach, however, has the disadvantage of increasing complexity for modellers as

they either have to learn a separate language to express all the constraints (e.g. the OCL in

UML), or they are hindered by the modelling tool to make certain modifications to a model

when this would violate a constraint (Reimer & Laurenzi, 2014). Constraints might be hidden

or hardwired in tools (e.g. in the form of software code), thus are difficult to interpret or not

accessible for change (Walter et al., 2014; Atkinson, et al. 2015).

A promising alternative that reduces the degree of freedom of the modeller while not

increasing complexity is by integrating requirements directly into a modelling language. This

can be done with the widely-adopted technique known as meta-modelling (see Section 2.3).

That is, domain-specific concepts and constraints are assimilated in the meta-model. A meta-

model is a model of a model, i.e. a specification of the elements of the modelling language

(Karagiannis et al., 2016). Integrating domain-specific aspects directly in meta-models create

modelling languages that are tailored to a specific domain, and are known as Domain-Specific

Modelling Language (DSML) (van Deursen et al., 2000; Mernik et al., 2005; Gray et al., 2008;

Frank, 2008; Fowler, 2011; Clark et al., 2015).

Concepts of a DSML are typically represented with graphical notations that are familiar to

domain experts. It increases understanding of models among the targeted domain experts, and

4

thus it promotes their involvement in the creation and adaptation of models (see a concrete

example in Sub-section 2.5.1). The inclusion of constraints facilitates the modeller during

design time and restricts the variety of models, which fosters the creation of uniform models.

In turn, DSMLs promote the creation of quality models (Kelly and Tolvanen, 2008). Given the

highlighted benefits, DSMLs are increasingly adopted in both research and industry (Braun et

al., 2015; Karagiannis et al., 2016; Neumann et al., 2016).

1.1.2 Research Problem 1: Lack of Agility in DSML Engineering

As already mentioned, DSMLs incorporate domain-specific aspects. Therefore, DSMLs carry

a certain degree of domain specificity or domain semantics. It is a challenge to find an

appropriate degree of domain specificity (Frank, 2008; Frank 2010; Frank, 2013a; Zečević et

al., 2017).

On the one hand, the language must be specific enough to cover the relevant aspects of an

application domain. This need can be addressed by developing a dedicated DSML from scratch,

where the modelling constructs are completely newly built (Burwitz et al., 2013). On the other

hand, there might also be the need to re-use the DSML in other application scenarios with a

different degree of domain specificity. In this case, a new dedicated DSML must be re-built for

addressing a new purpose. Moreover, instead of re-inventing the wheel, it is convenient that a

language benefits from broadly established experiences and lessons learned from an existing

modelling language.

The domain-specific adaptation approach allows the combination of all the listed needs

(Jablonski et al., 2008; Chiprianov et al., 2012; Atkinson et al., 2013). The approach foresees

existing modelling languages, which provide a baseline of concepts with well-known notations

and a widely accepted semantic. This baseline can then be further adapted to cover others of a

more specific domain. Recent publications show increasing interest on the adoption of the

domain-specific adaptation approach, e.g. (Becker, 2014; Braun et al., 2015; Braun et al., 2016;

; Hinkelmann et al., 2016; Karagiannis et al., 2016; Neumann et al., 2016; Zečević et al., 2017;

Laurenzi et al., 2017). The domain-specific adaptation refers to the practice of extending or

customizing existing modelling languages to tailor them to the needs of an application domain.

In this sense, the approach allows increasing the degree of domain specificity of an existing

language as domain-specific requirements are incorporated (Jablonski et al., 2008).

There exist different forms of domain-specific adaptations and the most common are

known as in-built, model annotation, ad-hoc customisation and multi-level modelling

(Atkinson & Kuhne, 2003; Atkinson & Kühne, 2008; Del Fabro & Valduriez, 2009; Robert et

al., 2009; Atkinson et al., 2013; Braun & Esswein, 2014; Frank, 2014b; Atkinson et al., 2015;

Braun, 2015a; Braun, 2015b; Salehi et al., 2016). Section 2.8.3 provides a comparison of the

different approaches. It has been found that the ad-hoc approach has several advantages. In

particular, it supports agility by offering a higher degree of freedom in adapting the meta-

model, being more intuitive and not restricted to dedicated tools. This results in a wider

adoption in both research and industry. In this research, domain-specific adaptations of

modelling languages refer to the ad-hoc customisation approach.

The development of DSML through domain-specific adaptations, however, still faces

several problems (Braun et al., 2015). Braun et al. (2015), Bork and Fill (2014) and Frank

(2013a) stress the still scarce availability of methods, guidelines and best practices for

developing a DSML. Heitkötter (2012) and Cho et al. (2012) claim that the design of a meta-

model for a DSML remains a crucial task even for language engineers with high expertise. In

fact, the development and adaptation of DSMLs, requires both expertise in language

engineering and domain knowledge, and few people have both (Mernik et al., 2005; Cho et al.,

2012; Chiprianov et al., 2013). The domain knowledge mostly resides in the minds of domain

5

experts and needs to be extracted by the language engineer. Barišić et al. (2018) and Izquierdo

et al. (2013) suggest solutions to foster cooperation between the language engineers and the

domain experts or end-users from an early stage of the DSML engineering lifecycle.

On the one hand such solutions improve the quality of the final DSML. On the other hand,

they are a quite time-consuming engineering effort. Typically, engineering a DSML is done in

several phases (Ceh et al., 2011; Cho et al. 2012). During these phases two prominent

components are distinguished: the language engineering component and the modelling

component (Bork et al., 2019). In the language engineering component, the domain analysis is

conducted first. Then, the DSML is conceptualised according to the requirements elicited from

the domain analysis. Next, the DSML is implemented, and deployed into a modelling tool. A

modelling tool implements the modelling component, in which the evaluation and model

creation takes place.

Such subsequent chain of phases reverts to the waterfall methodology of software

development: a follow-up phase cannot start before the previous one has been completed. In

software engineering, the sequential issue was problematic as it resulted in the inability to keep

up with the continuous demand for rapidly delivering software. Such inability was the

prominent reason for the advent of agile-based methodologies like SCRUM (Schwaber &

Beedle, 2002). Similarly, the rigid and sequential phases in DSML engineering lifecycles

hinder the quick development (and versioning) of DSMLs.

In response to this lack of agility in DSML engineering, the AMME Lifecycle (also known

as OMiLab lifecycle) was proposed in (Karagiannis, 2015; Karagiannis, 2018). The AMME

Lifecycle foresees feedback channels along different engineering phases. Channels support

agility as are able to interweave between engineering phases. Thus, DSMLs can be developed

incrementally.

A closer look to the AMME Lifecycle (Figure 1) reveals that there is still distinction

between the language engineering component (engineering cycle on the left-hand side of

Figure 1) and the modelling component (evaluation cycle on the right-hand side of Figure 1).

Although this approach promotes the correct creation of a DSML, the above-mentioned

waterfall-like approach manifests again. A model cannot be designed until a modelling

language is deployed (see left-hand side of Figure 1) and, thus the evaluation cannot start (see

right-hand side of Figure 1). The separation of the two components can, therefore, be harmful

for the quick adaptation of a DSML. In fact, the component for language engineering is

dedicated to the language engineers while the component for the evaluation is dedicated to the

end-users (i.e. modellers and domain experts). As above stated and reported by Barišić et al.,

(2018) and Izquierdo et al., (2013), such separation is not ideal in the creation of DSMLs as it

tends to hinder the collaboration between the language engineer and the end-users, which is a

threat for the quality of the resulting DSML.

6

These problems show the need to further address the agile principles to quickly engineer

high quality DSMLs. According to the pioneers of agile principles - Agile Manifesto (Beedle

at al., 2001) for software engineering and Burlton et al., (2017) for business development - an

agile approach should

- avoid sequential phases while being incrementally engineered,

- foster collaboration with end-users from an early stage of each engineering lifecycle.

Specifications of modelling standards like UML, BPMN, and ArchiMate foresee

approaches for an “on-demand” extension, such as those which are employed in modelling

tools. These approaches seem to embrace the two above-mentioned agile principles, as one can

add new modelling constructs, attribute types and values on-the-fly into a sort of joint

component engineering-modelling. As an example, the tool Visual Paradigm3 implements

profiling mechanisms like stereotype and tagged values to adapt both modelling concepts and

data structure of ArchiMate. Hence, such an adaptation has no sequential engineering phases

and cooperation with end-users can be fostered by the joint component. In contrast, however,

it does not allow ad-hoc customisations of meta-models. In fact, this adaptation approach is

known as built-in and due to the several limitations and drawbacks (e.g. inflexibility and

abstraction conflicts) is highly criticised by many authors (Robert et al. 2009, Atkinson et al.,

2013; Braun & Esswein, 2014; Braun, 2015a; Braun, 2015b; Salehi et al., 2016).

The two identified agile characteristics from the built-in approaches are, however, valid

concepts and could be transferred into an ad-hoc customisation approach. That is, domain-

specific adaptations could be performed on-the-fly in a joint component engineering-

modelling. As in the built-in approaches, the sequential phases would be avoided and

cooperation between different experts would be supported, resulting in the quick creation of

high quality DSMLs.

It is the first objective of this research to conceive an agile approach that allows on-the-fly

domain-specific adaptations in a joint component for both engineering and modelling.

Achieving this objective, however, opens an additional research problem, and one which is

presented in the following sub-section.

3 https://www.visual-paradigm.com/

Figure 1. The AMME Lifecycle (extracted from Bork et al., 2019)

7

1.1.3 Research Problem 2: Inconsistency between the Graphical and

Machine-Interpretable Representation of Modelling Languages

A new modelling construct comes with a new meaning. The meaning is typically implicit in a

graphical representation or notation of a modelling construct. Sometimes, the meaning of a

modelling construct is made explicit in a separate description using natural language, which is

considered an informal specification. The explication of the meaning aims to increase a shared

understanding of the new modelling construct, e.g. its context, its purpose and perhaps how to

use it when creating models.

An informal specification of the meaning, however, is open to subjective interpretations.

This is in contrast to the aim of DSMLs to foster shared understanding among the stakeholders

(Selic, 2007). The specification of the meaning in a meta-model increases its degree of

formality. According to Harel and Rumpe, (2004) a formal specification of semantics makes

its interpretation unambiguous. Bork and Fill (2014a) argue that grounding modelling

constructs with formal semantics enables intersubjective understanding. Ontology languages

such as RDF(S) or OWL (Allemang & Hendler, 2011), allow specifying semantics in a

machine-interpretable representation, which brings the benefit of powerful automation

(Hinkelmann et al., 2016).

A common approach that provides a machine-interpretable representation is called

semantic lifting (Kappel et al., 2006; Azzini et al., 2013), also known as semantic annotation

(Fill et al., 2013; Bork & Fill, 2014; Liao et al., 2015). On the one hand, there is the graphical

representation of the modelling construct, i.e. the graphical notation. On the other hand, there

is an ontology, which is the machine-interpretable representation of the modelling construct.

The two representations are associated with each other in a relationship that provides graphical

notations with formal semantics (Hrgovcic et al., 2013).

Although associated with each other, the graphical and the machine-interpretable

representations are strictly separate. This is problematic when performing domain-specific

adaptations as inconsistency issues arise between the two representations if these are not kept

aligned (Hinkelmann et al., 2016). When a change occurs in one of the two representations, the

other has to be adapted accordingly. For instance, when inserting a new modelling concept the

correspondent ontology concept has to be entered. This alignment is mainly done manually or

semi-automatically, which is not only error-prone and time-consuming, but also requires

ontology expertise. Although there exist mechanisms for the automatic generation of

ontologies from models, e.g. (Emmenegger et al., 2017; Karagiannis & Buchmann, 2018), they

still require manual actions to perform transformation from the graphical to the machine-

interpretable representation, which again can be time-consuming and cause inconsistencies in

cases when transformations are not made after some change.

It is the second objective of this research to ensure seamless consistency between the

graphical and the machine-interpretable representation of a modelling language while domain-

specific adaptations are performed.

1.1.4 Consolidated Research Problems

The research is motivated by the inability of current approaches to keep up with the continuous

demand for quickly accommodating domain-specific modelling requirements into models

(Step 1 in Figure 2).

Domain-specific adaptations allow integrating these requirements directly in the modelling

language. The approach promotes the creation of models with higher quality compared to the

domain-specific models created with GPMLs (Frank, 2013a). Additionally, the adaptation of

existing modelling languages is preferable over the creation of DSMLs from “scratch”, because

8

it comes with a baseline of known graphical notations and semantics. Therefore, it promotes

shared understanding of a DSML. The model-based approach adopted to perform the domain-

specific adaptations is meta-modelling, also known as ad-hoc customisation of meta-models.

Meta-modelling requires high expertise in both the application domain and in language

engineering (Frank, 2013a; Bork & Fill, 2014; Braun et al., 2015), but a few people have both

(Cho et al., 2012; Heitkötter, 2012). A lack of one of expertise in one of the two fields is a

threat to the quality of the resulting DSML (Frank, 2013a). To ensure the inclusion of both

expertise Barišić et al. (2018) and Izquierdo et al. (2013) suggest starting cooperation between

language engineers and domain experts from an early engineering phase of the DSML. This

approach, however, supports agility only partially as a DSML is built through different

sequential phases, which are typically conceptualise, implement and evaluate. This waterfall-

like approach shows a lack of agility (Step 2 in Figure 2) in DSML engineering.

The AMME lifecycle (Karagiannis, 2015) takes agility a step forward by foreseeing

feedback channels along with the different phases of the lifecycle, and several DSMLs were

developed supported by the latter (Karagiannis et al., 2016). However, it still distinguishes

between the language engineering and the modelling component, which address two different

expertise. The two-component approach reverts to two main issues:

- The cooperation between the language engineers and domain experts is hindered

because of the use of different components (engineering and modelling), which keep

separate the engineering from the modelling and evaluation activities;

- The accommodation of new requirements in the DSML is time-consuming. Each new

requirement still needs to go through the different engineering phases, sequentially.

Ideally, an agile meta-modelling approach should (step 3 in Figure 2):

- Promote cooperation between the language engineer and domain expert from an early

engineering phase.

o This challenge can be addressed by allowing the interleave of language

engineering, modelling and evaluation activities in one single joint component;

- Incrementally develop DSMLs while avoiding sequential engineering phases.

o This challenge can be addressed by allowing domain-specific adaptations in the

joint component on-the-fly.

Approaches that incorporate these two agile principles exist such as profiling mechanisms.

Such mechanisms are commonly implemented in modelling tools. However, among other

drawbacks, they suffer from potential misinterpretation of newly defined concepts (Selic 2007;

Battistutti & Bork 2017) and from limited automation (Step 4 in Figure 2).

Making the meaning of the concepts explicit in a machine-interpretable form would tackle

these drawbacks (Emmenegger et al., 2013; Natschläger 2011; Rospocher et al., 2014; Walter

et al., 2014; Hinkelmann et al., 2016) (Step 5 in Figure 2).

Semantic lifting and semantic annotation (Kappel et al., 2006; Azzini et al. 2013; Fill et al.,

2013; Hrgovcic et al., 2013; Bork & Fill, 2014; Liao et al., 2015) define the meaning of a

modelling language using an ontology. However, because of the separation of modelling

language and ontology, the correct machine-interpretable semantics is not ensured when

performing domain-specific adaptations. Similarly, if a change occurs in the ontology, the

graphical modelling language has to be adapted, accordingly. That is, if for each change the

graphical or machine-interpretable representation is not adjusted, inconsistencies can be

created (Hinkelmann, Gerber, et al., 2016) (Step 6 in Figure 2).

9

Figure 2. Map of the Consolidated Research Problem

10

1.2 Research Objectives and Research Questions

In keeping with Creswell (2002) and Ellis and Levy (2008), research objectives point to what

the research study intends to do in order to address the problem. Then, research questions

operationalize research objectives. Namely, research questions serve to restrict the research

objectives into specific questions that should be addressed in the study. The answer to a

research question enables meeting the corresponding research objective, thus contributing

towards solving the research problem (Leedy & Ormrod, 2005).

Section 1.2.1 presents the main research objective followed by the main research question

of this thesis. As suggested in (Cronje, 2011), a constructive approach is used to achieve the

answer to the main research question. This consists of the formulation of research questions,

which contribute to answering the main research question.

The main research question is broken down into more detailed research objectives and

research questions, which contribute to solving the two main research problems identified in

the previous section.

1.2.1 Main Research Objective and Main Research Question

The first research problem is about the lack of agility in the engineering of DSMLs. As stressed

in the research problem, engineering DSMLs through domain-specific adaptation can

contribute to the solution of this problem. For this, a machine-interpretable approach addresses

the drawbacks facing the new modelling constructs, i.e. ambiguous interpretation and limited

automation. Considering a machine-interpretable approach, led to identify the second research

problem to solve in this work: the occurrence of inconsistencies between the graphical and the

machine-interpretable representation of modelling languages during domain-specific

adaptations.

In order to contribute towards a solution of the two identified problems, the main research

objective (MRO) of this work is to conceive an approach that fosters agility for domain-specific

adaptations of modelling languages while preserving the seamless consistency between their

graphical and the machine-interpretable representation. The main research objective is

operationalized in the main research question as follows:

Main Research Question (MRQ): How can agility for domain-specific

adaptations of modelling languages be fostered while preserving seamless

consistency between their graphical and machine-interpretable

representations?

1.2.2 Research Objectives and Questions

The main research objective (MRO) is broken down into four research objectives, which are

operationalized into research questions. The answers of all the research questions contribute to

answer the main research question (MRQ).

The first research objective (RO1) is to identify the problems that hinder agility in domain-

specific adaptations of modelling languages. Thus, the following research question is posed:

1. Research Question 1 (RQ1): What are the problems that hinder agility in domain-specific

adaptations of modelling languages?

To answer this research question first there is the need to increase understanding of how

domain-specific adaptations are performed over modelling languages for the creation of

11

DSMLs. The increased understanding provides the basis for the answer to the first research

question (RQ1). In turn, challenges to be addressed by the new artefact are derived.

The follow-up research objective (RO2) aims to increase understanding of the needs for

domain-specific adaptations from practice. This objective is operationalized by research

question 2:

2. Research Question 2 (RQ2): What are the needs for domain-specific adaptations of

modelling languages?

The answer to RQ2 is used to create a list of requirements for domain-specific adaptations.

Both the above-mentioned challenges and the requirements are considered to meet the next

research objective (RO3). RO3 aims to propose an approach that fosters agility when domain-

specific adaptations are performed. In turn, the objective is operationalized by research

question 3:

3. Research Question 3 (RQ3): How can agility be fostered when performing domain-specific

adaptations of modelling languages?

The answer to RQ3 provides a new agile approach that tackles both of the above-mentioned

research problems: (1) the lack of agility in DSML engineering, and (2) inconsistency between

the graphical and the machine-interpretable representations of modelling languages.

The next research objective (RO4) then aims to develop a technical prototype that

automates the conceived approach. The prototype should preserve consistency between the

graphical and the machine-interpretable representations while domain-specific adaptations are

performed on modelling languages. The objective is operationalized through research question

4:

4. Research Question 4 (RQ4): How can the agile approach for domain-specific adaptations

that preserves seamless consistency between the graphical and the machine interpretable

representation be automated?

12

1.3 Research Strategy

This research work follows the design science research (DSR) methodology proposed by

Vaishnavi and Kuechler (2004) (see Chapter 3). The methodology consists of five phases:

Awareness of Problem, Suggestion, Development, Evaluation and Conclusion. To ensure both

theoretical foundation and relevance in the practice of the research, the rigor and relevance

cycles proposed in (Hevner, 2007) are considered.

Research questions 1 (RQ1) is answered in the awareness of problem phase. For this, the

case study research is adopted, which contributes to a deeper understanding of the problems

hindering agility of DSML engineering. Research question 2 (RQ2) is also answered in the

awareness of problem phase. For this, the need for domain-specific adaptations of modelling

language is gained from modelling experts’ interviews. In the suggestion and development

phases, the research questions 3 (RQ3) and 4 (RQ4) are addressed, respectively. The main

artefact of this research work is conceived in the suggestion phase. Its prototypical

implementation is then described in the development phase. In the evaluation phase the artefact

is evaluated, which is underpinned by an evaluation strategy. In the conclusion the research

results are communicated, and future research is proposed. Section 3.3 provides the theoretical

background of the research strategy as well as an extensive description of how it is applied in

this research work.

1.4 Scope of the Study

This study deals with the domain-specific adaptation approach for Domain-Specific Modelling

Languages (DSMLs) engineering. The approach refers to the meta-model customisation

technique, also known as meta-modelling. The study extends to machine-interpretable

knowledge approaches to ground DSMLs with ontologies. For this, ontologies and semantic

rules are considered. The application domains focus on Enterprise Modelling. For evaluation

purposes the scope has been extended to innovation processes.

The elaboration of constraints to further specify semantics of modelling language is left to

future work. A more detailed list of limitations and future works is reported in Section 8.4.

1.5 Thesis Overview

Figure 3 graphically depicts an overview of the thesis. The thesis is divided into eight main

chapters:

Chapter 1 introduces the motivation of this research work. Next, the research problem

description is formulated. The latter is introduced in two versions: (1) the research problem is

split into two sub-problems extensively articulated with theoretical underpinnings; (2) The

second one is a consolidated version of the research problem. Next, the research objectives and

research questions are described, respectively.

Chapter 2 presents the literature review for this research work. It contains the relevant

aspects underpinning the formulation of the research problem, research objectives and research

questions. It also includes theoretical background needed to support attaining answers for the

research questions.

Chapter 3 deals with the research methodology and design. It covers a description of the

methodology components selected to conduct this research study, and how they are applicable

to it. In this thesis, the research questions and the main research question are answered by

adopting the Design Science Research methodology. The methodology is supplied with a case

study research to increase understanding of the problem.

13

Chapter 4 introduces the practical relevance of the research problem. It contains two

sections with two different cases “Patient Transferal Management” and “Business Process as a

Service”, respectively. The two cases are designed following a case study strategy and are used

to answer the first research question (RQ1). Material produced in the creation of the two cases

and source documents are reported in two respective Appendixes A and B. The third section

of the chapter contains the modelling expert interview results. The interviews are performed to

answer to the second research question (RQ2). Sources of the interviews are reported in

Appendix C. The two cases are analysed to identify the problems hindering agility of the

domain-specific adaptations. The problems are then combined with findings from the literature

so to derive the two main challenges to be addressed by the new artefact. The interviews

identify the needs for domain-specific adaptations. The needs are then combined with findings

from the literature to convey a list of requirements used for the tentative design of the artefact.

Chapter 5 describes the tentative design of an agile and ontology-aided meta-modelling

approach. In this chapter the third research question (RQ3) is answered. The challenges and

the list of requirements listed in the previous chapter are addressed here. In particular, an agile

meta-modelling approach is first conceived, in which the two components for language

engineering and modelling are integrated to enable on-the-fly domain-specific adaptations of

modelling languages. For the adaptations, a set of operators was proposed. Then, Next, the

agile meta-modelling is incorporated into an ontology-aided approach to ensure consistency

between the graphical and the machine-interpretable representation while performing domain-

specific adaptations. Hence, the specification of a modelling language into an ontology

language is provided as well as semantic rules that aid the propagation of the adaptations from

the modelling language to the ontology language. The semantic statements are transformed into

SPARQL rules.

Chapter 6 describes the technical implementation of the agile and ontology-aided meta-

modelling approach. This chapter addresses the fourth research question (RQ4). That is, the

approach is instantiated into a working modelling environment named “AOAME”. The source

code, ontologies and graphical notations of the prototype are reported in Appendix E.

Chapter 7 deals with the evaluation of the agile and ontology-aided meta-modelling

approach. For this, an evaluation strategy is designed, from which evaluation criteria are

identified. Next, the approach is evaluated with respect to the criteria and through the use of

the AOAME prototype. For the evaluation, real-world use cases are considered. Additional

material produced during the evaluation phase as well as a getting started guide is reported in

Appendix F.

Finally, Chapter 8 introduces the conclusion and future work. First, a summary of the

research results is provided for each research question. Then, the contribution of the research

is reported in terms of practice and body of knowledge. One section shows the adherence of

the research work with respect to the chosen methodology Design Science Research. Next,

limitations of this research work are discussed as well as early results of the future research

directions are reported.

14

Figure 3. Thesis chapter layout

15

2. LITERATURE REVIEW

For research projects of an explorative nature, Mouton (2001) suggests to organise the literature

in to distinct topics that are relevant to the research. Research always originates with a problem,

and the literature review serves as a foundation upon which the research is built (Ellis & Levy

2008). In line with this suggestion, the literature reviewed in this chapter focuses on the relevant

topics identified in the problem descriptions.

16

2.1 Enterprise Modelling and Models

Enterprise Modelling (EM) is a pivotal field in Information Systems (IS) research (Frank,

2014a). An enterprise can be defined as a highly complex heterogeneous socio-technical

information system, whose parts are interrelated within a nexus of interdependencies on

different abstraction levels (Vernadat, 2003; Braun, 2016). Similarly, Giachetti (2010) defines

an enterprise as a “complex socio-technical system that comprises interdependent resources of

people, information, and technology that must interact with each others and their environment

in support of a common mission”.

EM strives to cope with such a complexity through the creation of models. Benyon et al.

(1999) defines a model as “a representation of something, constructed and used for a particular

purpose”. The “representation of something” can be further defined as a commonly agreed

abstraction, which describes and represents the relevant aspects of a “system under study”

(SUS, also known as the “Universe of Discourse”, “subject” or “domain”) (Rodrigues & Silva,

2015; Hinkelmann et al., 2017; Efendioglu et al., 2017).

Many different kinds of models exist, such as graphical models, conceptual models,

mathematical models, logical models or formal-based models like enterprise ontologies(Dietz,

2006; Hinkelmann et al., 2013).

According to Vernadat (2003), models are used to capture relevant-enterprise related

aspects, which include not just structure and organisation (i.e. static phenomena of Information

Systems), but also behaviour, i.e. dynamic phenomena of Information Systems. More

specifically, these aspects can relate to activities, processes, information, resources, people,

goals, and constraints of a business (Fox & Gruninger, 1998). These are not limited by the

boundaries of a particular organisation, for example, an enterprise model may also represent

inter-organisational aspects (Frank, 2014b).

Enterprise models such as business processes, organisational models, and enterprise

architecture models, can be seen as means through which enterprise knowledge is externalised.

The ultimate goal of models is of creating value to an enterprise (Sandkuhl et al., 2018). For

this, models support producing a common understanding, inter-subjective communication,

documentation, analysis and operations, i.e. answering queries, simulating behaviour,

performing reasoning, verification and validation and software generation of software code

(Fox & Gruninger 1998; Vernadat, 2003; Fill & Karagiannis, 2013; Bork & Fill, 2014;

Hinkelmann, Gerber, et al., 2016; Braun, 2016). Models are also used to support business

transformation (Zachman, 2008). This is primary focus of enterprise architecture models,

which describe the structural dependencies between different perspectives of an enterprise:

organisational, product, business process, data, application and technical infrastructure

perspectives (Zachman, 2008).

Bridgeland and Zahavi (2009) describe eight ways of generating business value through

models:

- Communication between people - models are used to convey complex business

information among stakeholders.

- Training and learning - models are built on expert’s knowledge and effectively

communicate how-to knowledge, i.e. task-by-task on how a job should be performed.

- Persuasion and selling - models as a communication means to persuade on taking

actions.

- Analysis of a business situation - models are analysed to provide insights (e.g. into

customer problems), which is of competitive advantage.

17

- Compliance management - models to manage compliance with respect to law,

government regulations, and other guidance.

- Development of software requirements - models can contain specification of what a

software application should do and it does it more effectively than long documents.

- Direction in software engines - a model can be used by software to make decisions.

- Knowledge management and reuse - models are used to systematically capture

enterprise knowledge so that it can be re-used by other people to when needed, e.g. to

solve company tasks.

In the Model-Driven Engineering (MDE) (Schmidt, 2006; Rodrigues & Silva, 2015)

paradigm, models are transformed into executable specifications for the selected target

platform. In this case, models are used to abstract from the complexity of systems by focusing

on the problem space rather than the solution space. That is, the abstraction expresses the design

in terms of concepts in application domains (healthcare, supply chain management,

manufacturing) rather than through the underlying computing environment, e.g. CPU, memory

and network device (Schmidt, 2006). The abstraction promises to produce high quality

software rapidly, by automatically generating code from models or configuring the behaviour

of existing systems (Stahl & Völter, 2006). In support of the MDE paradigm, the Object

Management Group (OMG) launched the Model-Driven Architecture (MDA) (Miller Joaquin

Mukerji, 2003) paradigm that follows the model-driven approach for the development of

software systems. Further implementations of the MDE paradigm are Model-Driven Software

Development (MDSD) (Völter et al., 2013) and Model-Driven Development (MDD) (Stahl &

Völter, 2006).

The purpose of the model in question determines the requirement for the modelling

languages. Modelling language plays a key role as it is used to create models (Selic, 2011).

The next section elaborates on the definition of modelling languages.

18

2.2 Modelling Language Definition

In their framework, Karagiannis and Kühn (2002) define a modelling language with three

specifications: notation, syntax and semantics (see Figure 4). There exist two kinds of syntax,

one refers to the concrete syntax (or notation) of a language whereas one refers to the abstract

syntax. The component labelled as “Syntax” depicted in the Figure 4 refers to the abstract

syntax.

Abstract syntax refers to the class hierarchy of modelling constructs (or modelling concept)

together with their relations and attributes, through which the language terminology is defined.

Modelling constructs are syntactic elements typically expressed through a graphical or textual

notation. The notation is the concrete syntax of a modelling language, though which it is

possible to create a model. Graphical notations should be cognitively adequate to ensure users’

understanding of models (Hinkelmann et al., 2018).

There is a distinction between a relation in the abstract syntax and the modelling relation

expressed through a graphical notation. A graphical notation is also known as visual connector

(Karagiannis & Buchmann, 2018) and are used in conjunction with modelling elements to

design a model. Thus, both modelling elements and modelling relations can be regarded as

modelling constructs.

The semantics allows determining the truth value of elements in the model with respect to

the underlying reality being conceptualised (Parreiras, 2012). In other words, the semantics

defines the meaning of syntactic elements. Semantics can be subdivided into structural and

behavioural semantics (Harel & Rumpe, 2000). The structural semantics are specified in the

form of structural relations, i.e. class-instance relationships or class-class relationships such as

specialisation, generalization, aggregation, composition. Behavioural semantics, on the other

hand, specify the behaviour such as the flow of a business process or pre- and post- conditions

of a process. Petri nets have a formally specified behavioural semantics.

In this work the focus is on the structural semantics as it regards models as a means to

represent knowledge and does not focus on models that represent behaviour. Therefore, in this

research work the general term semantics refers to the structural semantics.

Figure 4. Components of modelling methods. Three modelling language specifications within the red box

(Karagiannis & Kühn, 2002)

19

2.3 Meta-modelling

Meta-modelling is a model-based technique (or knowledge representation paradigm)

commonly used to specify modelling languages (Karagiannis et al., 2016). Meta-modelling

distinguishes different levels of abstraction (Völter et al., 2013). Although the number of

abstraction levels can be undefined (𝑛𝑡ℎ levels), in practice it is common to have three levels.

Starting from the top, the language at level three is self-represented, meaning there is no need

for a higher level of abstraction for its definition. As an example, this can be compared with

the Extended Backus-Naur Form (EBNF) notation, which can be realised with a few EBNF

statements (Bézivin, 2005). Level three contains the model having concepts and relations (i.e.

meta2model) that specify a meta-modelling language. The latter is then used to create models

at level two, i.e. the meta-model. For instance, in the meta-modelling framework MOF (Meta-

Object Facility) (OMG, 2016c), UML elements and relations residing at level three are used to

create a meta-model to specify modelling languages such us BPMN, CMMN, DMN. A meta-

model is a model of a model. A meta-model contains both concept taxonomy and descriptive

properties in the form of a model, which correspond to a modelling language specification, i.e.

abstract syntax (including constraints) (Favre, 2005). Thus, the terminology of a modelling

language is defined by the meta-model. In graphical modelling languages, elements from the

abstract syntax are associated with graphical notation to create graphical models at level one.

The graphical notations are not just shaped boxes that rely on human-interpretation. Instead,

each notation is instantiated from a higher abstraction concept with explicitly defined

semantics, which are based on both a concept taxonomy and descriptive properties. Finally,

graphical models represent a subject under consideration of an underlying reality, which resides

at level zero.

Figure 5 presents MOF’s definition for each layer and an example for a model, meta-model

and meta-meta-model (OMG, 2016c). As a practical example, the meta-model of UML resides

in level two, and the UML class diagram model is in level one (level zero is omitted as it is

often referred to the run-time data).

Figure 6 is an extension of MOF. It distinguishes between meta-model and modelling

language (Stahringer, 1996). Namely, a model at level one is created using a modelling

language that is described by a meta-model and, in turn, a meta-model is created using a meta-

modelling language that is described by a meta2model. Respectively, this implies that a model

conforms to (and is an instantiation of) a meta-model and a meta-model conforms to (and is an

instantiation of) a meta2model (Höfferer, 2007).

Figure 5. Definition of levels by MOF (OMG 2016c)

20

The meta-modelling hierarchy is widely used and in some cases adapted in both academia

(Karagiannis & Kühn, 2002; Atkinson & Kuhne 2003) and industry (OMG, 2016c).

Figure 6. Meta-modelling hierarchy (Strahringer, 1996)

21

2.4 Meta-Modelling for Enterprise Modelling Languages

Enterprise modelling languages (Braun, 2015b) like Archi-Mate (Open Group, 2017), Business

Process Model and Notation (OMG, 2011), Case Management Model and Noration (OMG,

2016a), Decision Model and Notation (OMG, 2016b) are typically modelled as UML class

diagrams in level two. Figure 7 shows that most of the industry modelling standards from well-

known standardisation organisations have UML-class diagram as a graphical mean to represent

the abstract syntax.

Figure 8 shows the three layers through which a modelling language is defined. The meta-

meta-layer presents general concepts and relations of a UML class diagram. These are further

specified in the meta-model to represent, in this case, the abstract syntax of BPMN. Concepts

in the meta-model are then instantiated in the modelling layer to design a BPMN process

model.

Figure 7. Representation of standard modelling languages, adapted from (Efendioglu et al., 2017)

22

Adopting the meta-modelling technique provides the benefits of a model-driven approach,

namely:

 models can abstract away from unnecessary aspects while focusing on the relevant

ones of an underlying domain;

 the problem domain is better understood while conceptualising it in the meta-

model;

 a vocabulary for modelling constructs in the considered domain is defined.

While (a) and (b) help reduce the design effort of a modelling language, (c) creates the

semantics of a modelling language, which results in tangible artefacts that may be exchanged,

inspected, and discussed. The latter enhances the comprehensibility of a modelling language.

When a meta-model contains concepts that capture a particular domain, it can be

categorised as a domain-specific modelling language (DSML). For example, the meta layer in

Figure 8 contains concepts for process modelling, i.e. task, sequence flow, start and end event.

Conversely, when there are no pre-defined concepts and relations in the meta-model layer, any

kind of reality can be modelled. In turn, the modelling language can be categorised as general-

purpose modelling language (GPML).

Figure 8. Abstraction layers of BPMN in meta-modelling (Karagiannis et al., 2016)

23

2.5 General-Purpose and Domain-Specific Modelling Languages

According to Zečević et al. (2017), languages can be classified into two categories: General

Purpose Modelling Languages (GPMLs), which are applicable in every domain; and Domain

Specific Modelling Languages (DSML), which are designed for a specific domain, context or

industry.

A GPML provides rudimentary concepts such as “class”, “relation”, “attribute”. Frank

(2010) defines a GPML as “a GPML is a modelling language that is thought to be independent

from a particular domain of discourse. Instead, it should be suited to cover a wide range of

domains. It consists of generic modelling concepts that do not include any specific aspects of

a particular domain of discourse”.

In line with this definition, the Unified Modelling Language (UML) can be categorised as

a GMPL.

With the time, however, UML class diagram was deemed to be inappropriate when creating

model, which was due its complexity and imprecise interpretation (France et al., 2006; Petre,

2013).

UML constructs do not directly address a specific problem domain. Thus, when modelling

a reality within a specific application domain the so called “conceptual gap” between the

problem domains and the solution domains is created (Mernik et al., 2005; France & Rumpe,

2007; Frank, 2010). Figure 9 helps to understand the conceptual gap. On the left-hand side of

Figure 9 the abstraction from the underlying domain (i.e. the problem domain) is shown. On

the right-hand side the reconstruction of an underlying information system, e.g. data structure,

or software programs, (i.e. the solution domain) are depicted through rudimentary IT concepts

such as “class”, “attribute”, “data type”, “state”, “state transition”.

When creating models from generic modelling constructs the general IT concepts are to be

mapped to domain concepts, which consequently (according to Frank (2010)) raises unintended

complexity. It can be compared to a business work written in primitive generic concepts only.

Frank (2010) claims that this mapping induces a tremendous effort and is a threat to the model

quality.

Another significant drawback of reconstructing a problem domain from general concepts

is the high degree of freedom while modelling, afforded by GMPL to the modeller. Such

Figure 9. Language Barrier between Application Domain and Information Technology (Frank, 2010)

24

freedom at modelling might lead to integrity problems, inconsistencies, unmeaningful

representations and ambiguity of models. Thus, it makes it hard to understand the real meaning

of models. Moreover, even if models are well designed, there is no way to enforce uniformity

among them. The same reality can be modelled differently, and comparison among models

becomes unfeasible.

In contrast to GPMLs, DSMLs (van Deursen et al., 2000; Frank, 2008; Clark et al.,

2015(Frank, 2008)) are more expressive and concise (Zečević et al., 2017) as concepts and

relations, and their notations are tailored to a specific problem domain. Tailored concepts and

relations, together with constraints, are assimilated in to the meta-model. This provide the

modeller with a less degree of freedom, which according to Kelly & Tolvanen (2008) allows

designing in a less-error-prone manner. This supports the creation of consistent, meaningful

and uniform models. As a consequence, productivity and integrity are fostered at inception

(Mernik et al., 2005), leading to an increased quality of models (Frank 2013b).

Frank (2010) defines a DSML as “a DSML is a modelling language that is intended to be

used in a certain domain of discourse. It enriches generic modelling concepts with concepts

that were reconstructed from technical terms used in the respective domain of discourse. A

DSML serves to create conceptual models of the domain, it is related to”.

The enrichment of generic modelling concepts with domain aspects takes place in the meta-

model. UML class diagrams are often used to specify abstract syntax and constraints of

DSMLs. As already mentioned, UML class diagram is used at level two of the meta-modelling

hierarchy to specify modelling languages such as BPMN, CMMN, DMN and ArchiMate.

Enriching generic modelling concepts with domain aspects does not necessarily mean that

more concepts or higher variety of concepts should be introduced in the meta-model. This

mistake was the fate of many modelling languages like SADT (Marca & McGowan, 1988), or

PSL (IEEE-SA Standards Board, 2005), where meta-models were enriched, inducing the side

effect of increased complexity. Therefore, it is desirable to keep a lean meta-model with only

necessary constructs and constraints. Consistently, van Deursen et al. (2000) define a DSML

as a “a language that offers, through appropriate notations and abstractions, expressive power

focused on, and usually restricted to, a particular problem domain”. This definition also

intimates to the main benefit of DSML: the appropriate notations. Empirical studies conducted

by Kosar et al. (2010) demonstrate a superior cognitive adequacy of domain-specific languages

over general-purpose languages. The studies were conducted with respect to the 13 cognitive

dimensions identified in Green and Petre (2008), namely:

- abstraction gradient, closeness of mapping, consistency, diffuseness, error-proneness,

hard mental operations, hidden dependencies, premature commitment, progressive

evaluation, role-expressiveness, secondary notation and escape from formalism,

viscosity: resistance to local change, visibility and juxtaposability.

In a DSML, model users deal directly with language constructs that they are familiar with,

leading to a significant positive impact on their learning curve. It was previously observed by

Hudak and Paul (1996) that if domain experts can quickly learn the language its applicability

improves. In turn, models that resemble an underlying reality are better understood among

domain experts, which contributes to support optimisation phases. Paint points are rapidly

identified, and actions can be taken accordingly. Ultimately decision-making is enhanced.

25

Domain experts performing modelling themselves is not just a trend. In some fields it has

already become a reality. In enterprises, stakeholders use and design models to achieve

common human interpretation so that decisions can be made, e.g. Business-IT alignment

decisions. In the healthcare domain, modelling languages are also already widely used by

physicians (or alternatively by quality managers), especially in process modelling as

demonstrated by Braun et al. (2015).

The notion “domain” does not have a fixed definition as it might refer to a paradigm, a

business sector, an application area or a single case in an enterprise (Karagiannis et al., 2016).

Frank (2010) states that it has never been used consistently in conceptual modelling. Also the

difference between “specific-domain”, “crossed-domain” and “general purpose” is not clearly

defined. A domain can, however, be less narrow - or narrower than others - and this determines

the difference between languages that are less or more domain-specific, respectively.

Karagiannis et al. (2016) introduce the notion of the domain-specificity degree, where a higher

specificity degree means assimilating concepts in the metamodel that target a more specific

domain.

For example, the modelling language BPMN embeds aspects for process modelling and it

targets a more specific domain compared to UML class diagram. This higher domain-

specificity degree or domain dependency is enough to categorise BPMN as a DSML. BPMN

is more domain-specific than flow charts, which also contain activities, but has additional

concepts for events, message flow and different types of tasks.

2.5.1 DSML vs GPML: A Practical Example

Figure 10 shows an excerpt of an IT infrastructure conceptualisation adapted from (Frank

2013b). The figure shows a comparison on level two (𝑀2) and level one (𝑀1) of how concepts

are conceptualised in a DSML and in a GPML. Level two of the DSML contains two specific

classes “Server” and “ERP” that are linked with each other with the specific relation “runs on”

and contain attributes and attribute types. The instantiations of the three objects is

straightforward and each are represented by appropriate graphical notations at level one. In this

sense, level two already contains domain-specific knowledge. On the contrary, on the right-

hand side of Figure 10, level two contains two general objects that are then classified in level

one.

A Domain-Specific Modelling Language in this work is defined as a graphical language

that offers expressive power focused on a particular problem domain, through cognitive

adequate notations and abstractions for humans. A DSML in this context serves to visualise,

specify, construct and document aspects of an enterprise.

26

2.5.2 Terminology Definitions

In literature, the acronym DSML is sometimes interchanged with DSL, which is the acronym

for Domain-Specific Language (Gray et al., 2008). However, the DSL mostly refers to domain-

specific programming languages (DSPLs) (e.g. Ranabahu et al. (2012)), which differ from

DSMLs as they are developed as extensions for dynamic programming languages and not in a

model-based context. DSPLs have been widely adopted in software engineering, and like in

DSMLs, they allow solutions to be expressed in the idiom and at the level of abstraction of the

problem domain. According to van Deursen et al. (2000), a DSPL is defined as “[…] a

programming language or executable specification language that offer, through appropriate

notations and abstractions, expressive power focused on, and usually restricted to, a particular

problem domain”.

DSPLs can be seen as both programming languages and specification languages. As such,

they need dedicated tools with the capability to compile the (DSPL) program in order to

function. The main purpose is to generate applications.

Research on DSPLs is more extensive and less recent than the research on DSMLs, which

is relatively young. Domain-specific programming languages originated in Computer Science

within the software engineering paradigm. Old programming languages like COBOL,

FORTRAN, Lisp were already solving problems in certain areas, i.e. business processing,

numeric computation and symbolic processing, respectively (van Deursen et al., 2000). van

Deursen et al. (2000) introduce a wide list of key publications in the area of domain-specific

programming languages and group them in different areas, i.e. financial products, behaviour

control and coordination, software architectures and databases in the area of software

engineering; simulation, mobile agents, robot control, solving partial differential equations and

digital hardware design.

DSPLs are also called micro-languages and little languages (van Deursen et al., 2000).

Hudak and Paul (1996) coined the name domain-specific embedded languages to refer to the

result of extension syntactic mechanisms, such as definitions of functions or operators, from a

base language. Extension mechanisms are common on model-based approaches as described

in Sub-section 2.8.1.

Figure 10. DSMLs vs. GPMLs adapted from (Frank, 2013b)

27

DSMLs, in contrast to DSPLs, embrace the model-based paradigm. In the software

engineering field, DSMLs fit to the above introduced MDE methodology, where models are

used for the generation of executable code (Kelly & Tolvanen, 2008). Aquino et al. (2011)

refer to it as the “modelling is programming” paradigm.

On the other hand, there are DSMLs that are instead employed with the purpose of creating

knowledge bases to support decision making. These were created within the context of

Enterprise Modelling (EM) that goes beyond the software development and aims at an holistic

representation of the enterprise. EM spans research fields like Business Process Management

(BPM), Enterprise Architecture Management (EAM), and, Knowledge Management (KM)

(Karagiannis, 2018).

Both DSMLs for software development and those for the creation of knowledge bases share

the same benefits of higher expressivity, conciseness, productivity, quality and direct

involvement of domain experts (as introduced in Section 2.5). DSMLs for software

development are subject to a series of model transformations (Avazpour et al., 2015; Jouault

& Bézivin, 2006) until a code is generated. This approach demands for the specification of

behavioural semantics of the language as it defines how the language elements can interact at

runtime. In particular, the purpose of this specification is to dictate how the mapping of

platform-independent language specifications should take place with respect to a specific

software platform (Strembeck & Zdun, 2009). The behaviour can be specified in many ways,

e.g. as a high-level control flow or over detailed behavioural models.

On the contrary, when the purpose of DSMLs is to retain knowledge like in enterprise

modelling, the behavioural semantics are not considered.

As introduced in 2.2, in this work the focus is on DSMLs that retain knowledge and only

structural semantics is considered.

28

2.6 Application Areas for DSML

This section presents some relevant DSMLs that were developed in different application areas.

The DSMLs are grouped by their purpose: software development and knowledge retention.

2.6.1 DSML for Software Development

Frantz et al. (2011) presented a proposal called Guaranà with the aim to increase the level of

abstraction of Enterprise Service Bus (ESB) as well as making it easier for software engineers

to create, implement and deploy their Enterprise Application Integration (EAI) solutions.

Guaranà provides explicit support to devise EAI solutions using enterprise integration patterns

by means of a graphical notation. The DSML offers a view of the whole set of processes of

which EAI solutions are composed, enabling software engineers to devise EAI solutions at a

high-level of abstraction. Furthermore, a graphical tool editor was implemented with a set of

scripts to transform the models into Java code ready to be compiled and executed.

Nunes and Schwabe (2006) describe their “HyperDe” system as an environment to support

the rapid prototyping of web applications with the use of DSMLs. The latter allows developers

to create code by manipulating models that specify the application. The HyperDe environment

supports designing web application through a meta-model instantiation. Furthermore, the

HyperDe extends the Ruby on Rails (RoR) framework into a domain-specific language,

allowing direct manipulation of both the model and the meta-model within Ruby scripts.

Similarly, Cadavid et al. (2009) developed a DSML that aimed at simplifying the web

application development through models. The work describes the elements used in the process

of transforming a UML domain model into a deployable web application. In this way they

demonstrate that models can be transformed and executed for the automatic generation of

applications.

Zhou et al. (2011) propose a language, called WL4EA (Web Language for Enterprise

Application) for interactive development of Enterprise Applications (EAs). In this case, the

model-driven approach was adopted to lower technology complexity and improve productivity.

Meta-models were used to specify the WL4EA and contain the three layers: user interface,

business logic and data persistence.

All the presented approaches allow for an automatic generation of applications and claim

to significantly accelerate the development process. Whereas the first two address the same

domain (i.e. general web applications), the latter targets the more specific domain of enterprise

applications. The main difference between the first two approaches is, however, the technology

adopted to generate applications, i.e. Eclipse platform by Cadavid et al. (2009) and the web

development framework Ruby on Rails. Ruby on Rails implied an extension of the

programming language from which a DSPL was developed.

2.6.2 DSML for Knowledge Retention

DSMLs that are created for knowledge retention are used either only to document enterprise

knowledge or for knowledge automation (Karagiannis & Woitsch, 2015; Hinkelmann et al.,

2018). Knowledge documentation is practiced in the field of Knowledge Management while

automation of knowledge is a common practice in the field of Knowledge Engineering

(Karagiannis & Woitsch, 2015).

As mentioned in (Karagiannis & Woitsch, 2015; Hinkelmann, Gerber, et al., 2016;

Hinkelmann et al., 2018) Knowledge Engineering (KE) focuses on the machine interpretation

of knowledge (see Section 2.12), whilst Knowledge Management (KM) focuses on the human

interpretation of the knowledge. The interpretation is one of the four dimensions of the

29

knowledge space depicted in Figure 11. According to Karagiannis and Woitsch, (2015) the

term knowledge space refers to what is represented in a model. The other three dimensions are

the form, content and use. The form reflects to specification in terms of syntax and semantics.

The content is the actual knowledge contained in the model, which abstracts from a certain

problem domain. Finally, the use refers to the part of the content that is used for a particular

purpose.

There has been an increased development of DSMLs for knowledge retention over the past

few years. For instance, Karagiannis et al. (2016) contains a wide list of DSMLs, some of

which are used only for knowledge documentation while others are also used for knowledge

automation. The ultimate goal is to support decision making.

For instance, the Fundamental Conceptual Modelling Language (FCML) (Karagiannis et

al., 2016) integrates and extends concepts from five different modelling languages (i.e. Entity-

Relationship, Event-driven Process Chain, BPMN, UML, Petri Nets) addressing the domains

of business process management and software engineering. FCML enables a multi-purpose

modelling in the same tool. Concepts contained in FCML are extended with domain-specific

properties and hyperlinks to connect models with each other. This provides the appropriate

syntax and semantics for process-based simulations, based on which, process improvement

decisions can be made.

Another DSML is the Business Process Feature Model (Cognini et al., 2016), which

supports variability for Business Process modelling. The authors developed this modelling

notation from the need to represent variability in the domain of Public Administration (PA).

PA offices from different institutions have similar rules to comply with when providing

services to citizens. However, different offices have different characteristics affecting the way

a service is delivered. This most often leads to internal rules to be adapted the characteristics

of each different office. For this, the BPMN meta-model was adapted so that activities forming

a configurable business process model could be successively refined to consider specific

characteristics of a deployment context.

The Knowledge Work Designer (Hinkelmann, 2016a) is a modelling tool, which combines

modelling languages for both structured and non-structured process logic and business logic as

well as a new integration of business process and case modelling. BPMN and CMMN are

deeply integrated resulting in a new modelling language BPCMN. With respect to modelling

business logic, the modelling language spans, on one side, the standard Decision Model and

Notation (DMN) to model structured decision logic. On the other side, the language spans the

Document and Knowledge modelling language (adopted also by De Angelis et al. (2016)) to

Figure 11. The four dimensions of a knowledge space (Karagiannis & Woitsch, 2015)

30

model unstructured decision logic such as guidelines, checklist, sample outputs, or templates.

Figure 12 depicts the mentioned modelling languages integrated with each other.

The new modelling language was applied to the admission process of the Master of Science

study programs at School of Business FHNW (Hinkelmann, 2016a).

In Emmenegger et al. (2017) and in De Angelis et al. (2016), modelling languages are

adapted and integrated to create models used to support decision-making of unexperienced

employees in workplaces. Namely, several recommendations are provided for which certain

knowledge needed to be made explicit. For example, to recommend experts like (a) line

managers, (b) more experienced employees covering the same role in other organisations, and

(c) people who executed a specific task most often, the following knowledge was modelled:

- Work context of the learner: current executed task and the business process. For this

BPMN was adopted.

- Work experience of the learner. For this, logs of processes and tasks instances of each

performer are analysed.

- The role of the learner and his/her position in the organisation. For this, BPMN was

integrated with the Organisational modelling language where tasks are related to

employees and lanes are related to the roles performed by each employee.

- Organisational structure, which was modelled by the Organisational model.

Similarly, learning materials like links, video files or simulation are derived from the

knowledge modelled by integrating several modelling languages. Namely, the Document

(Data) modelling language was used to model all possible acquired competency levels of an

employee and the required competency level to fulfil a role. Hence, the modelling language is

integrated with the Organisation modelling language. A higher required company level than

the level acquired implies that some learning materials should be recommended. To specify the

competency levels a new modelling language was developed, which is based on The European

Qualifications Framework (EQF). Thus, an integration between the Document (Data) meta-

model and the Competency meta-model was necessary. The Competency meta-model allows

for categorizing of the competency levels in different learning outcomes. In turn, the learning

Figure 12. Integrated modelling languages in the Knowledge Work Designer modelling tool. Adapted from

(Hinkelmann, 2016)

31

outcomes are related to learning goals that are specified in the Business Motivation Model

(OMG, 2014a).

The use and development of a DSML involve several roles. The following section aims to

clarify the distinction between the different roles around a DSML.

2.7 Roles in DSML

In keeping with Karagiannis and Kühn (2002), Kleppe (2009) and Barišić et al. (2018), the

language engineer or the DSML developer is skilled in the engineering discipline of developing

modelling languages. This role is responsible for an adequate definition of the syntax,

semantics, and notation. Within the engineering life-cycle of a DSML (see Section 2.9), this

role is involved in the modelling language specification, implementation and evaluation.

In DSMLs that are used for knowledge retention (see Section 2.6.2), the language engineer

is also considered to be skilled in both KE and KM. Namely, expertise in KE enables the

language engineer to create knowledge bases or models that are used and interpreted by

machines, thus their knowledge representation is required to be formally structured like in

ontologies (see ontologies in Section 2.13.1). Expertise on KM, on the other hand, refers to the

ability of creating models used and interpreted by humans, thus their knowledge representation

is required to be cognitively adequate. Both KE and KM are typical knowledge approaches that

use models to conceptualise an underlying reality. This concept is depicted in Figure 13, where

models for human-interpretability are typically separate from those for machine-

interpretability.

Thus, with respect to the definition of a modelling language introduced in Section 2.2, KE

and KM enable a language engineer to specify abstract syntax, constraints, additional semantics

and graphical notations so that models created with these can be interpreted by both human and

machines.

Figure 13. Typical modelling approach: separating models for human and machine interpretation (Hinkelmann

et al., 2018)

32

The modelling tool engineer is any person skilled in the development of modelling tools.

This role is responsible for the implementation of a DSML in a correspondent tool. Hence,

capabilities and procedures pertinent to a modelling language should adhere to the modelling

tool in which the model is used. According to Karagiannis and Kühn (2002), this role has the

ability to configure mechanisms of a meta-modelling platform for particular meta-models. The

language engineer is most likely to also have expertise in modelling tool engineering.

The modelling expert or DSML user is any person who is skilled in modelling and is

applying one or more modelling languages. The modelling expert uses modelling languages to

create models and might provide guidance or explanations to domain experts. He or she is

should be involved in the evaluation of a modelling language to provide feedback, hence they

will also be in direct contact with the language engineer. Karagiannis and Kühn (2002) refer to

this role as the process engineer, while in industry it is likely to be called a modelling (senior)

consultant. The modelling expert works at level one if referring to the meta-modelling

hierarchy introduced in Section 2.3.

According to Kelly and Tolvanen (2008), in software engineering the modelling expert is

in charge of creating applications that relate to specific characteristics of configurations like

specifying deployment of software units to hardware. Thus, human interpretation plays a minor

role as the aim of these models is to be read by machines.

Conversely, in enterprise modelling, the modelling expert creates models either for the

human interpretation (e.g. for enterprise architecture stakeholders), for the machine

interpretation (e.g. automation of processes or knowledge inferencing), or both.

The domain expert is any person who is skilled in a specific domain, which is targeted by

a DSML. He or she can cooperate with the modelling expert to create models pertaining to the

underlying domain. Evaluation of the modelling language is most likely to be performed

directly between the language engineer(s) and the domain expert(s), with no involvement of

modelling experts (Völter et al., 2013). In some case this role has the ability to create models

without assistance of the modelling expert. In other cases, a domain expert is just requested to

understand or use a model, or simply interact with a model instantiation (e.g. interaction of

end-users with process instances in Business Process Management). The domain expert

operates at level one or zero of the meta-modelling hierarchy.

In software engineering, the domain expert does not need to have the software development

background, but has the ability to specify the application for code generation (Barišić et al.,

2018).

In enterprise modelling, the domain expert relates to the human interpretation of models

only. Thus, ideally, modelling constructs of a DSML have cognitively adequate graphical

notations, which can easily be understood by a domain expert (Hinkelmann et al., 2018).

Karagiannis and Kühn (2002) refer to this role as the method user, who creates models by using

the modelling language, following the modelling procedure and applying the available

mechanisms. According to the above definition, a method user can also be a modelling expert.

One can distinguish between two approaches of DSML engineering. The following section

introduces both and motivates the focus on one over the other in this thesis.

33

2.8 Approaches for DSML Engineering

Engineering a DSML can be done “from scratch” by building dedicated DSMLs with a

complete new set of modelling constructs targeting a given domain. One example is the work

of Burwitz et al. (2013), where the CPmod modelling language was developed to model clinical

pathways. In this case, benefits of a DSML like higher expressivity of the language and thus

higher productivity at design time, increased quality of the final product. However, the direct

inclusion of the final user to the engineering process resulted in high development costs

(Mernik et al., 2005). These costs include the designing, the implementation and maintenance

of both a DSML and a corresponding modelling tool, from which the language can be used.

Frank (2013a) claims that these high costs are difficult to justify beforehand as they are

highly dependent on how well the language and the corresponding tool are designed,

implemented and maintained. For instance, bad decisions made during the development phase

of a DSML (see Section 2.9 for more challenges) leads to a poorly designed DSML affecting

the tool upon which the language is implemented.

It might also be the case, however, that a well-designed DSML is limited by the

corresponding tool. If the tool is not appropriately developed, on the one hand, it can limit the

capabilities of the language (Gray et al., 2008); and on the other hand, it can hinder the model

exchange across systems (Braun 2015b).

These issues make the benefits of a DSML rather difficult to predict, e.g. high quality of

models and increased decision support. In turn, based on the experience of Frank (2013a),

managers are difficult to persuade when it comes to initial investment in DSMLs.

An additional drawback of dedicated DSMLs regards the limited reuse of language

concepts. Dedicated DSMLs prevent the reusability of the language concepts in at least the

following three scenarios:

- in projects where the domain-specificity degree is different, e.g. if a project requires to

abstract away from a DSML or bringing more details to it;

- in projects that require the same domain-specificity degree but address new

stakeholders. Different stakeholders most likely have a different understanding or a

different perception of the underlying reality, of simply different requirements. This

leads to a different conceptualisation of the language;

- within the modelling community as syntax and semantics of the DSML would only be

known by those stakeholders involved in the project.

A solution to remedy the presented drawbacks of dedicated DSMLs is to rely on domain-

specific adaption approaches, which are performed on existing modelling languages. A

domain-specific modelling approach promises to significantly decrease the development costs

of a DSML (Chiprianov et al., 2013).

In the next sub-sections, the approach for domain-specific adaptations is expanded together

with the existing different techniques. A comparison among the different techniques is

provided, which leads to motivate the choice of one technique for this research work.

2.8.1 Advantages of Domain-Specific Adaptation

Existing modelling languages address a wide class of stakeholders and allow modelling

patterns and invariants that are recurring across application areas. BPMN, for example, is used

to model business processes in many different business sectors. Developing a DSML by

adapting modelling languages provides the benefit of considering established experience and

lessons learned and notations from these languages (Karagiannis et al., 2016). Particularly,

34

modelling standards come with sets of proven and well-known concepts with a clear syntax

and a widely accepted semantics. In turn, DSMLs remain more intuitive for modelling experts.

As claimed in (Braun, 2015b), this approach also avoids to create yet another modelling

language, which possibly has redundant overlaps with basal concepts from standard enterprise

modelling languages. In the same line, Robert et al., (2009) motivates the adaptation approach

based on the fact that a lot of DSMLs end up having shared equivalent concepts and

representations.

Jablonski et al. (2008), specify the modelling language adaptation as an “extension or

extensibility so that domain specific requirements can be integrated or domain specific

semantics are better reflected”.

Atkinson et al. (2013) consider the extensibility of modelling languages extremely relevant

in the enterprise modelling domain, especially to the vast amount of stakeholders in relation to

their perspectives on the enterprise. Also, extensibility comprises the opportunity of improving

and evolving an enterprise modelling language (Braun, 2015b). Recurring extensions can act,

for instance, as evidence for changing a standard language. For example, this was the case of

BPMN that was subject to many improvements from version 1.0 to version 2.0, e.g. the

choreography extension was integrated in BPMN 2.0 (Decker et al., 2007).

Braun et al. (2015) built a DSML through an extension of BPMN. They provide insights

on the approach adopted by comparing it to their previous work in Burwitz et al. (2013), in

which a dedicated DSML was built from scratch addressing the same application domain, i.e.

clinical pathways in healthcare. The comparison includes eleven criteria. The criteria and the

comparison results are reported in Figure 14, where a filled dots means fulfilled criteria, an

empty dot means partly fulfilled criteria, and “-“ means not fulfilled criteria).

From the comparison results, one can observe that a domain-specific adaptation approach

presents more advantages in terms of reusability of concepts, tool support, dissemination,

integration, and execution.

A further example of domain-specific adaptation is provided in Chiprianov et al., (2013).

The authors extended the enterprise modelling language ArchiMate 2.1 (The Open Group,

2012b) to model the “Design Rationale” (DR), which is the justification behind decisions

regarding the design of an artefact. Figure 15 shows the language extension applied on the

meta-model of ArchiMate. The new concepts are defined as sub-concept of “ArchiMate

Figure 14. Comparison between "domain-specific adaptation" of BPMN and "from scratch" approach to develop

DSMLs (Braun et al., 2015)

35

Element”, which is a root concept in the ArchiMate meta-model made available to specify

extensions. Figure 16 shows the DR DSML as a result of such an extension.

In both research works, extensions for BPMN (Braun et al., 2015) and for ArchiMate

(Chiprianov et al., 2013) a profiling mechanism is utilised as a domain-specific adaptation

technique. In the following sub-section, the common domain-specific adaptation techniques

are described.

2.8.2 Strengths and Weaknesses of Common Techniques for Domain-

Specific Adaptations

Multiple different types of techniques exist for domain-specific adaptations of modelling

languages. Atkinson et al. (2015) distinguish among three main techniques: In-built, Model

Annotation, and Meta-models Customisation. Braun, (2015b) builds upon this distinction to

further elaborate on them. The three technique types are described below, along with their

related strengths and weaknesses.

In-built techniques are also called integrated extensibility mechanisms as they inherent

mechanism for language extension from the meta-level (𝑀2). These mechanisms allow to

customise the meta-model without changing it. A widely used in-built extension mechanism is

the profiling mechanism. Here, well-defined language elements residing in 𝑀2 can be applied

for the specification of new elements on the model level (𝑀1). Specifications of some standard

Figure 15. The abstract syntax of DR DSML (Chiprianov et al., 2013)

Figure 16. The concrete syntax of the DR DSML (Chiprianov et al., 2013)

36

languages like UML 2.5.1 (OMG, 2017), Business Process Management and Notation 2.0

(OMG, 2011), and ArchiMate 3.0 (The Open Group, 2017) foresee these special “built-in”

mechanisms. These should eventually be implemented in a modelling tool. As an example, the

tool Visual Paradigm (Visual Paradigm, 2018) implements extensibility mechanisms (like

stereotype and tagged values) foreseen by ArchiMate. Such in-built mechanisms, however, are

criticised by many authors within the practice of enterprise modelling as they suffer from

several problems. Some of these problems are listed in the following list:

1. Limited to language extensions: the core classes in the meta-model cannot be changed

(Atkinson et al., 2013).

2. Abstraction conflicts: the extension occurs in the meta-model by instantiating the core

classes, thus creating a new version of the meta-model with a lower degree of

abstraction. This goes in contrast with the definition of the MOF’s four-layer

architecture (OMG 2016c) as an extra layer would be created between the model and

meta-model layer (Braun, 2015a) (see the four-layer architecture in Section 2.3);

3. Limited specification of extensible concepts and language adequacy issues: profiling

mechanisms (the most known and used in-built extensible mechanism) originated to

extend classes in UML, wherein the general class type is extended to define new types.

The generic class type is, however, not available in enterprise modelling languages that

are more purpose- (or domain-) specific like BPMN (Braun, 2015a). Consequently, the

definition of new types are hampered (Braun, 2015a). In BPMN, although generic

concepts like Artefacts can be used for extension, adaptations result in limitations to

expressiveness and adequacy of language (Braun, 2015a; Braun, 2016). Additionally,

the limited specification of extensible concepts can also derive by the fact that

mechanisms are not fully implemented by tools (Atkinson et al., 2013).

4. Additional complexity due to the limited expressiveness: the limited expressiveness of

the extensibility mechanism may lead to the need for the constraint of language such as

OCL (OMG, 2014b), which can be problematic. Salehi et al., (2016), for example,

stress the need to not only use OCL but also extend them to the considered application

domain, which was inconvenient.

5. Domain-specific dependencies between extended elements are not always possible or

unclear: the possibility to establish relationships between extension concepts is rather

unclear (Braun, 2015a). In BPMN, aggregations or directed relations between extension

concepts is not considered (Braun, 2015a).

6. Difficulties in handling extensibility mechanisms: studies on the main OMG standard

profiles conducted by Robert et al., (2009) showed not only the uneven quality of the

resulting language but also the severe difficulties in mastering such mechanisms due to

inappropriate use.

7. Lack of both a systematic approach and methodical guidance for the language

extension (Robert et al., 2009; Braun, 2015a; Salehi et al., 2016): this is problematic for

the good language extension. Salehi et al., (2016) investigated existing designed

(standardised and non-standardised) UML profiles and found them to be technically

invalid, in direct contradiction of the UML meta-model, or of poor quality.

8. Problems of validation and consistency for models created with extended modelling

languages: these problems arise when the extensibility mechanisms do not allow the

detailed specification of extended modelling elements (see also problem 3). For

instance, this is the case of BPMN. In BPMN every extended class has to instantiate the

37

super class Base Element (Braun, 2015a). Only then it can be assigned to a particular

definition;

9. Compatibility and interoperability problems: in-built extensibility mechanisms are not

standardised across tools and modelling languages, which leads to significant

compatibility and interoperability problems within the extended language (Atkinson et

al., 2013).

10. Exchangeability problems: these problems raise due to the lack of detailed

consideration in mechanisms regarding the exchangeability of both the abstract syntax

and the concrete syntax of the extended elements (Braun, 2015a) (see Section 2.2 for

definitions of concrete and abstract syntax);

11. Mechanisms not applicable to all modelling languages: as depicted in Figure 17, most

of the reported modelling languages do not fully foresee extensibility mechanisms for

both abstract and concrete syntaxes and neither have supportive procedures (Braun

2015b). Although others, like ArchiMate, consider such mechanisms, they do not

provide a well-defined meta-model of all extension-relevant concepts nor do they

present a procedure model for its application (Braun 2015b). For languages like CMMN

and DMN there is no conceptual understanding of extensibility, but only forbidden

extension operations (Braun 2015b).

An alternative to the in-built approach is the Model Annotation. In this approach the

language extensions are not defined as part of the language, but rather attached to the language

as an external language. The attachment is achieved by the model weaving (Didonet Del Fabro

& Valduriez, 2009), which stores the additional information needed by the extended language.

The model annotation approach keeps the two languages (i.e. the language to be annotated and

the one for annotation) completely separate. This implies the support of two separate tools, i.e.

one for the annotated information and one for the target model (i.e. the model that is annotated).

Atkinson et al. (2015) regard this approach as a valid one for modelling language

augmentation. That is, the extension of the original language is performed with concepts,

attributes and rules from a different domain (Braun (2015b) calls it vertical extension). For

Figure 17. Extensibility of abstract and concrete syntax within MOF-based languages and their provision of

methodical support for extension design (Braun, 2015b)

38

instance, the enhancement of BPMN with data for performance simulation. This approach

would also be an option in case language engineers are somehow forced to adopt a modelling

tools that are either closed-source (i.e. meta-model hardwired and thus not accessible for

changes), or do not implement “built-in” extension. For instance, the meta-model Ecore from

the Eclipse Modelling Framework is used to implement a modelling tool as an Eclipse plugin,

which has no built-in extension mechanism (Atkinson et al., 2015). The same approach is not

advisable, however, when extending a language with elements from the same domain (e.g. a

new gateway type is introduced within BPMN), i.e. language enhancement (Atkinson et al.,

2015), or horizontal extension according to Braun (2015b). The drawback is that unnecessary

duplicated model elements are often created, i.e. same elements appear in two languages.

A further alternative to these two approaches is the Meta-models Customisation (also

known as ad-hoc customisation of meta-models). This approach performs a straightforward

language adaptation (both language augmentation and enhancement) by directly changing the

language’s meta-model. This approach avoids the drawbacks presented for both in-built and

model annotation approaches, and (according to Atkinson et al. (2013)) it often leads to

extension definitions that are better structured and to a higher quality in terms of system

engineering maxims such as “separation of concerns”, “high cohesion” and “low coupling”.

Notably this approach does not hinder the integration of concepts from different modelling

languages. Conversely, this is the case of built-in mechanisms (see above drawbacks (d) and

(e)). In a systematic literature review focusing on BPMN extensions, Braun and Esswein (2014)

found that most of the extensions (approx. 80%) do not use the built-in approaches, but rather

the meta-model customisation.

However, the meta-model customisation lacks the methodological support for the meta-

model customisation (Braun et al., 2015) and shares some of the challenges afflicting the design

of a dedicated DSML (see Section 2.9). Hence, the correct customisation remains up to the

language engineer. Some practical issues that might obstacle the adoption of this approach

pertain to the chosen modelling tool. As stressed by Atkinson et al., (2013), many frameworks

and tools have either an hardwired meta-model, which are not accessible for changes, or

extensions are made possible but cannot be used in the modelling tool. The latter requires the

modelling tool to be re-compiled and re-deployed to implement the performed extensions.

Braun (2015b) classifies the Multi-Level Modelling (introduced in Atkinson and Kühne,

(2003), Atkinson and Kühne (2008), Atkinson et al. (2013)) as a further and novel extension

mechanism. The approach proposes a flexible multi-level architecture based on two completely

orthogonal dimensions of classification - one dealing with linguistic classification and the other

dealing with domain (i.e. ontological) classification (Atkinson & Kuhne, 2003). The approach

addresses the abstraction limitation caused by the dichotomy of “class” and “instance”, which

occurs when changing the language level (for a detailed understanding see the concept of

“clabject” described by Atkinson and Kühne (2008)). The authors stress the fact that this

limitation is carried by the rigid four-layered OMG architecture. However, this approach is not

yet widely diffused, especially in industry (Atkinson & Kühne, 2017). According to Atkinson

et al. (2015), one of the key shortcoming in this approach is the support of the above-defined

language augmentation, as it needs the dedicated modelling tool MelanEE to be implemented.

The latter induces to the drawbacks of designing a DSML from scratch introduced in Section

2.8.

Similarly, Frank (2011; 2014) proposes a multi-perspective enterprise modelling (MEMO)

and a correspondent modelling environment. The author uses a three level modelling hierarchy

for conceptualisation purposes and, similar to Atkinson et al. (2015), addresses the abstraction

issue caused by the dichotomy of “class” and “instance”. According to Frank (2014), his

approach is designed to be far easier to use than Atkinson and Kuhne's approach (2003). The

approach is limited to the linguistic view only, and suffers from similar drawbacks to the

39

previous approach, i.e. scarce diffusion in industry and language implementation that requires

a dedicated tool.

2.8.3 Reflections and Considerations

This research work aims to conceive an agile approach for the quick delivery of high quality

DSMLs. It is therefore, fundamental, to identify an appropriate approach supporting this aim.

For this, an in-depth literature investigation was performed starting from the prominent

engineering approaches for DSMLs. Findings revealed the significant benefits of domains-

specific adaptations of modelling languages over dedicated DSMLs. Therefore, the

investigation focused on techniques for domain-specific adaptations, from which strengths and

weaknesses were highlighted. In the following, reflections and considerations are provided to

motivate the choice of one domain-specific adaptation technique supporting the afore-

mentioned aim of this research work.

There are two major problems with built-in and model annotation techniques that prevent

the quick engineering of DSMLs and hamper the quality of the resulting DSMLs: the increased

complexity in the practice of the language adaptation and the introduction of redundant

concepts, respectively (Atkinson et al., 2015) - see Sub-section 2.8.2. Another limitation

afflicting both the built-in and model annotation techniques, is about their restriction to

language extension. That is, the core meta-model of a modelling language cannot be changed.

Such a limitation contrasts with agile approaches wherein a high degree of flexibility in

language adaptation is required.

These limitations are enough to conclude that both the language adaptation techniques

built-in and model annotation are not conducive to the agile meta-modelling approach that is

targeted by this work.

The two meta-modelling approaches proposed in (Frank, 2014; Atkinson & Kühne, 2008),

address common abstraction issues carried by approaches that follow the four-layered OMG

architecture. While the abstraction issue is an important point to consider in meta-modelling,

one of the major problems of the two approaches is that they are not intuitive for practical use.

For example, as stated in (Atkinson et al., 2015) extra effort would be needed to implement

workarounds to address the language augmentation issue (see language augmentation in Sub-

section 2.8.2). For this reason the two approaches of Frank (2014) and Atkinson and Kühne,

(2008) are not considered, because the agile approach targeted by this research work aims to

be relevant for the practice. The abstraction issue in this research work is handled as follows:

The meta-model customisation (or ad-hoc customisation) seems to be the most appropriate

technique to support the desired agile approach. In contrast to the built-in and annotation

techniques, it offers a high degree of flexibility in the language adaptation. That is, it allows

The abstraction issue is, ultimately, strictly related to the kind of reality that needs to be

conceptualised. It might be that for a given application domain, the conceptualisation over

two levels (model and meta-model) is enough, like the work in (Reimer & Laurenzi, 2014).

Sticking to the required levels, avoids adding unnecessary complexity when creating

models. Refined capabilities can then be added only if required by the application domain.

In keeping with this argument, in this research work the kind of reality that needed to be

conceptualized in the two addressed application domains (see Sections 0 and 4.2)

determined the level of abstraction. From the two application domains, the conceptualisation

over two levels (model and meta-model) was enough.

40

not only to extend but also to adapt the meta-model. Moreover, it does not request to follow

particular rules to overcome abstraction issues while adapting the language (like in the built-in

techniques). It trades simplicity of use for abstraction limitations when compared to the multi-

perspective modelling of Frank (2014) and multi-level modelling of Atkinson et al. (2015).

However, as already described, the abstraction limitations are not a problem in this research

work. The simplicity of use is preferred as it supports agility in the quick delivery of DSMLs

and models.

The meta-model customisation approach also benefits from the advantages of dedicated

DSMLs (i.e. higher expressivity, conciseness, productivity, quality and better cognitive

adequacy of notations - see Section 2.5) together with the advantages of considering existing

languages (i.e. experience and lessons learned from existing languages, reusability of well-

known and establishes set of concepts, increasing integration with recognised standards).

Lastly, the meta-model customisation is a widespread approach in both research and industry

to adapt modelling languages, which increases the confidence of its adoption.

Engineering a DSML through domain-specific adaptations of modelling languages is still

in its infancy. Braun (2016) and Braun et al. (2015) claim there are few research articles

explicitly addressing the topic of extending a modelling language that evokes alteration of the

underlying meta-model. An in-depth investigation on the challenges related to such an

approach was consequently conducted. The main challenges from the findings are consolidated

in the next section.

2.9 DSML Engineering: Main Challenges

Research concerning problems related to the domain-specific adaptations (or meta-model

customisation) for DSML engineering has shown that the design of the meta-model is the most

critical challenge. A summary of these findings is given below.

The complexity of when designing conceptual models, which in GPMLs resides in level

one, in DSMLs shifts to level two, i.e. to the meta-model (Mernik et al. 2005; Gray et al. 2008;

Fowler 2011). That is, abstract syntax, constraints need to be specified in the meta-model. Bork

and Fill (2014) stress the scarce availability of guidelines and best practices. Consistently,

Frank (2013a) asserts that there is still lack of methods to guide the designing phase. As Cho

et al. (2012) highlight, the design of a meta-model remains a crucial task even for language

engineers with high expertise. It requires both language development expertise and domain

knowledge, and few people rarely have both (Mernik et al., 2005; Cho et al. 2012; Chiprianov

et al., 2013). The domain knowledge mostly resides in users or domain experts’ minds.

Therefore, it is fundamental for the language engineer to cooperate with them to extract and

make explicit the needed knowledge (Izquierdo et al., 2013; Barišić et al., 2018). Izquierdo et

al. (2013) and Barišić et al. (2018)claim that the lack of cooperation with end-users while

developing a DSML is likely to cause misinterpretations, which hamper the development

process and the quality of the DSML. This can also lead to problems on finding, setting and

maintaining a suitable scope for the DSML (Frank 2010).

The notion “domain-specific adaptation” in this research work refers to the meta-model

customisation approach (also known as ad-hoc customisation approach). Domain-specific

adaptations, thereby, not only allow for extending an existing modelling language but also

to change it and integrate it with other modelling languages.

41

Moreover, language engineers face an array of challenges, from complex decisions relating

to the appropriate abstraction level (Wegeler et al., 2013; Karagiannis et al., 2016) (or domain-

specificity degree as above mentioned) of modelling constructs. Therefore, trade-off decisions

between productivity and re-usability have to be made (Frank, 2013a) – for example, the more

a language construct is reusable across domains, the lower the degree of domain-specificity (or

level of semantic as defined by Frank (2010)) and thus the language construct is more generic

(see Figure 18). In such a case, the modeller may need to conceptualise some more domain-

specific concepts (at level one), which leaves room for broader interpretation. This, however,

leads to a decrease in the productivity of a DSML and, consequently lowers the effective

support of a DSML. Conversely, increasing the domain-specific degree of modelling

constructs, increases the productivity level of the modelling language, and it lowers the

possibility to reuse the DSML (or single language constructs) across domains or even in

different areas, processes or projects of the same domain. Frank (2013b) refers to this trade-off

as the conflict between the benefits and drawbacks of semantics, and it is considered as a

fundamental challenge for information system design in general.

In conclusion, involving the end-user in an early phase in the engineering lifecycle of a

DSML promises to alleviate the above-mentioned pain-points. This strategy leads to engineer

a high quality DSML. The recent works in (Pérez et al., 2011; Cho et al., 2012; Sánchez-

Cuadrado et al., 2012; Izquierdo et al., 2013; Kurhmann et al., 2013; Villanueva et al., 2014;

Wüest et al., 2017; Barišić et al., 2018) show not only promote the validity of such strategy but

also demonstrate its increasing adoption in the practice DSML engineering. Literature on

engineering lifecycles is further elaborated in the next section.

Figure 18. DSMLs: Potential Productivity Gain vs. Scale of Reuse (Frank, 2010)

The end-user collaboration from an early stage is considered as one of the fundamental agile

principles in both software development (Beedle at al., 2001) and business development

(Burlton et al., 2017). Implementing an agile principle is one of the requirements to be

incorporated in the new agile approach proposed in this research work.

42

2.10 Domain-Specific Modelling Language Engineering Lifecycles

As described in the research problem (Section 1.1), the lack of agility in DSML engineering

lifecycles is one of the two main problems that this research work aims to solve. This section,

therefore, provides the theoretical background relevant to deepen knowledge on domain-

specific modelling language engineering lifecycles.

The literature investigation revealed that one can distinguish between (a) language-

oriented and (b) model-oriented engineering lifecycles. Language-oriented approaches are also

known as domain-specific language (DSL) engineering life-cycles (Gabriel et al., 2011). The

latter revert to the typical development process of Software Languages Engineering (SLE)

(Kleppe, 2009). Hölldobler et al. (2017) define SLE as “the discipline of engineering software

languages, which are not only applied to computer science, but to any form of domain that

deals with data, their representation in form of data structures, smart systems that need control,

as well as with smart services that assist us in our daily life”. Principles of DSL engineering

lifecycles were first proposed to develop domain-specific programming languages (DSPLs)

(Mernik et al., 2005). These principles were recently transferred to model-oriented approaches

to engineer DSMLs (Strembeck & Zdun, 2009). Hence, the model-oriented approach refers to

DSML engineering lifecycles. Nowadays, SLE investigates disciplines and systematic

approaches that stretch over both language-oriented and model-oriented engineering lifecycles

(Hölldobler et al., 2017).

In the following sub-sections, literature about DSL engineering lifecycles is first provided,

which introduces the basic and historical principles of engineering lifecycles. Next, research

findings on the most recent DSML engineering lifecycle are provided followed by their

respective research advances.

2.10.1 Domain-Specific Language Engineering Lifecycles

The seminal work of Mernik et al. (2005), provides solid foundations of domain-specific

language (DSL) engineering lifecycles. The authors propose five engineering phases to develop

a DSL: decision, analysis (CDA – Classic Domain Analysis), design, implementation, and

deployment. In addition, the work of Ceh et al. (2011) suggest to add Testing and Maintenance

as final phases, resulting in a total of seven engineering phases. Figure 19 depicts the seven

engineering phases in a flow chart. In the following, each phase is described.

- In the decision phase, decision patterns should be identified for which, in the past,

developing a new DSL was profitable. According to Mernik et al. (2005), these patterns

could be describing, for instance, task automation, domain-specific Analysis, Verification,

Optimisation, Parallelisation, and Transformation (AVOPT).

- The domain analysis (CDA) phase is a detailed analysis that serves as a precondition for

the design and implementation of a DSL. The objective of CDA is to determine the specific

domain and collect appropriate information, which should be integrated into a coherent

domain model. The latter is usually in the form of domain system properties and their

dependencies (Mernik et al., 2005). Also, the systematic and organised collection of

existing information should encourage the extension of information with new knowledge.

CDA may be informal or more formal by following methodologies, e.g. FODA (Feature-

Oriented Domain Development) (Kang et al., 1990). Notably classic domain analysis CDA

can be replaced by an ontology-based domain analysis (OBDA). That is as the overall

development of a DSL would benefit from an already existing domain knowledge and

representation. Ceh et al. (2011) compare the two approaches and show the superiority of

OBDA over CDA. Namely, OBDA is capable of what CDA is capable of doing (e.g.

43

providing concept vocabulary, enabling the display of property and class hierarchies, and

providing a constraint mechanism), with the added advantage of reasoning and querying

capabilities. These enable the validation of the ontology, and this reduces or even prevents

errors in the development of the language. Ceh et al. (2011) also claim that this approach

greatly helps the development of the semantics as an ontology inherently defines semantics.

Moreover, already available ontologies can be employed such that the domain analysis

phase can be eliminated, thus significantly reducing the time needed for language

development. Ceh et al. (2011) conclude by asserting that the OBDA approach leads to

minimising the cost of the DSL development as well as providing everything needed for

DSL development and adds new capabilities.

- The design phase includes the definition of constructs and language semantics. According

to Mernik et al. (2005), in this phase existing languages can be partially reused, limited or

extended.

- In the implementation phase the language is implemented so that is ready to be used. To

achieve this, Mernik et al. (2005) suggest to adopt one approach, e.g. interpreter,

compiler/application generator, embedding, pre-processing, extensible

compiler/interpreter, or a Commercial Off-The-Shelf (COTS) approach.

- In the testing phase an evaluation of the DSL is performed. According to Gabriel et al.

(2011), this phase should not be skipped or relaxed as it may lead to the development of

inadequate languages. The outcome of this phase can directly impact the domain analysis

as adjustments or amendments might be required (see arrow back to the domain analysis

phase in Figure 19).

- In the deployment phase the DSL and related applications or models are used.

- In the maintenance phase, the DSL is updated to accommodate new requirements (see loop

back to the domain analysis phase in Figure 19).

44

2.10.2 DSML Engineering Lifecycles

Differently from the DSL engineering lifecycle, a DSML engineering lifecycle includes the

engineering of a meta-model, which is considered the core activity (Cho et al., 2012). A

common meta-model engineering lifecycle is described in Izquierdo et al. (2013) and is

depicted in Figure 20. The lifecycle spans three phases:

1. In the first phase language engineers and domain experts come together to elicit relevant

domain knowledge. The cooperation between the two roles may take place in focus groups

or via interviews. Domain knowledge is documented mostly in natural language.

Figure 19. DSL engineering lifecycle (Ceh et al., 2011)

45

2. The language engineers design the meta-model, i.e. abstract syntax, constraints, additional

semantics.

3. Domain experts evaluate the designed meta-model. Feedback is taken into account and the

meta-model may be adapted accordingly. Izquierdo et al. (2013) suggest to implement this

process iteratively until the meta-model assimilates all the needed domain concepts. Only

then is the correspondent DSML tool considered to be developed and ready to be used.

As stated in (Izquierdo et al., 2013) the lifecycle presents drawbacks in every phase.

1. In the first phase the domain knowledge documented in natural language is not as

effective as having a knowledge in machine-readable models.

2. In the second phase there is lack of cooperation between end-users and language

engineers as the latter just build the meta-model and then hand it over to the end-users.

This is not optimal as it leads to heavy iterations until a good enough meta-model is

designed.

3. In the third phase, the end-user is expected to evaluate the meta-model. The evaluation

is rather difficult as the end-user would need an IT background to understand a class

diagrams and its implications, e.g. concept of inheritance or composition (Izquierdo et

al., 2013). An intuitive concrete syntax should be provided, particularly to domain

experts, as well as a corresponding modelling tool. This creates the conditions for an

appropriate evaluation of a DSML as the end-user can use the DSML. In fact, most of

the time, amendments on the language occur only after the end-user starts designing

with the DSML. Izquierdo et al. (2013) assert that, sometimes, defects on a DSML can

only be found after the correspondent tool is available, in which end-users can detect

missing elements. Similarly, Cho et al. (2012) claim that “an iterative and incremental

DSML development process can be mundane and error-prone if there is no tool

support”.

Figure 20. Meta-model Engineering Lifecycle (Izquierdo et al., 2013)

46

2.10.3 Advances of DSML Engineering Lifecycles

Several authors contributed to improve DSML engineering lifecycles, e.g. (Atkinson & Kuhne

2003; Stahl & Völter, 2006; Selic, 2007; Kleppe, 2009; Strembeck & Zdun, 2009; Cho et al.,

2012; Izquierdo et al., 2013; Karagiannis, 2015; Barišić et al., 2018). The afore-mentioned

drawbacks were addressed leading a refinement of the lifecycle (Figure 21). When comparing

the latter with the lifecycle in Figure 20, at first sight one can note the increased number of

engineering phases.

The decision phase (see Figure 21) is typically the first phase of the lifecycle and has the

goal to identify the need for a DSML and its validity, including justifications for its investment.

The lifecycle occurs iteratively until the DSML is mature enough to be released. Multiple

research works (Cho et al., 2012; Izquierdo et al., 2013; Barišić et al., 2018) propose to engage

end-users in a DSML engineering lifecycle from the decision phase. This proposal aims to

address the lack of cooperation between the language engineer and the domain expert (see

drawback in the second phase of the lifecycle shown in the previous Section Figure 20). For

instance, Barišić et al. (2018) introduced a conceptual framework supporting the engineering

of DSMLs by focusing on the Usability evaluation (see red box in Figure 21). Barišić et al.

(2018) argue that “a timely systematic approach based on User Interface experimental

evaluation techniques should be used to assess the impact of DSMLs during their development

process”. The purpose is to reduce the development costs from adjustments that originate from

usability problems, which arise at the end of the engineering lifecycle. According to Barišić et

al. (2018), in the long-run, the approach is expected to improve the productivity of the language

engineers and the language users.

Analysis and design phases relate to the identification of relevant knowledge performed at

the first phase in the previously shown lifecycle (see Figure 20). Analysis and design are

sometimes considered as a single phase. In the design phase the relevant knowledge is captured

in conceptual models, avoiding the issue of leaving requirements in natural language (see first

drawback from phase two in previous section). Conceptual models can therefore be machine-

processable. Additionally, for the design phase, Cho et al. (2012) suggest in which order the

modelling language components should be developed: concrete syntax, abstract syntax and

then semantics (see Figure 22).

Figure 21. Typical DSML engineering life-cycle (Barišić et al., 2018)

47

Similarly, Strembeck and Zdun (2009) proposed several sequential and detailed sub-

processes for the engineering lifecycle. The sub-processes have a different focus but are

interrelated through their input and output, namely: definition of the core language, definition

of the language behaviour, definition of the concrete syntax and finally the integration of the

language with the platform.

As shown in Figure 21, recent lifecycles also include the implementation phase between

the design and the evaluation phase. A language can be implemented through one of the

available workbench tools such as MetaEdit+4 (Kelly, Lyytinen, & Rossi, 2013), ADOxx5 (Fill

& Karagiannis, 2013), Cubetto6 or Eclipse Modelling Framework (EMF) (Moore, 2004),

DiaGen7, the Generic Modelling Environment (Ledeczi et al., 2001), and Eclipse-based tools

like ATL8 (Jouault, Allilaire, Bézivin, & Kurtev, 2008), Eugenia9, GMF10 (Gronback, 2009)

and Sirius11, and AToMPM12 (Syriani et al., 2013). The outcome of this phase addresses the

drawback saw above in phase (3). In fact, during the implementation phase, constructs from

the abstract syntax are furnished with graphical notations, which facilitate domain experts in

the testing phase (see testing phase in Figure 21). Workbench tools typically also provide a

modelling environment in which models can be designed, thus the language can be evaluated

before the deployment phase.

In the deployment phase, a new modelling tool, tailored to the DSML is created (see

deployment phase in Figure 21). If already existing, the tool is updated to incorporate the new

version of the DSML.

Frank (2013a) proposes a macro process with seven steps for a DSML engineering (see

lifecycle in Figure 23): (1) clarification of scope and purpose, (2) analysis of general

requirements, (3) derivation of specific requirements using a set of scenarios, (4) specification

of language (abstract syntax), (5) provision of a graphical notation (concrete syntax), (6)

optional development of a modelling tool, and (7) evaluation and iterative refinement of

developed artefacts.

4 http://www.metacase.com/products.html
5 https://www.adoxx.org/live/home
6 http://www.semture.de
7 http://www2.cs.unibw.de/tools/DiaGen/
8 https://www.eclipse.org/atl/
9 https://www.eclipse.org/epsilon/doc/eugenia/
10 https://www.eclipse.org/modelling/gmp/
11 https://www.eclipse.org/sirius/
12 https://atompm.github.io/

Figure 22. DSML Development Process (Cho et al., 2012)

48

Different engineering lifecycles differ in some phases. For instance, the decision phase may

be considered in the design phase in some approaches or not considered at all. The lifecycle of

Gabriel et al. (2011) starts with the domain analysis, Barišić et al. (2018) starts a step earlier

with “decision”, and Frank (2013a) another step earlier with “clarification of scope and

purpose”. In other approaches both the domain analysis and design phase may be considered

in the same phase albeit with different objectives. For instance, in the work of Kleppe (2009)

the domain analysis aims to elicit domain concepts whilst the design phase is devoted to capture

concepts and relationship and shape the conceptual model.

In response to such lack of agility, Karagiannis (2015) proposed the AMME Lifecycle,

which is described in the following section.

2.10.4 Agile Principles for DSML Engineering Lifecycles and

Considerations

Agile principles have been recently applied in DSML engineering lifecycle by Karagiannis,

(2015). The AMME Lifecycle (Karagiannis, 2015; Karagiannis, 2018; Bork et al., 2019) is also

Figure 23 The seven steps in the macro process (Frank, 2013a)

Further research investigation about DSML engineering lifecycles revealed a common

agreement on considering design (or conceptualisation), implementation and evaluation as the

three essential phases when engineering DSMLs (Gabriel et al., 2011; Chiprianov et al., 2013).

These phases share the characteristic of being sequential to one another. Therefore, the

implementation cannot start before the conceptualisation has been completed. Consequently,

the evaluation phase that cannot start before the DSML has been completely implemented. This

demonstrates a lack of agility in the existing DSML engineering lifecycles.

49

called the OMiLab lifecycle in (Karagiannis, 2015; Karagiannis, 2018) and has been introduced

as an agile management approach in response to the rigid DSML engineering lifecycles. Like

in software engineering, where the principles in the Agile Manifesto (Beedle et al., 2001) aimed

to overcome the shortcomings of sequential approaches (e.g. waterfall), the AMME Lifecycle

aims to keep up with changes in modelling requirements and deliver DSMLs in a timely

manner. Specifically, the principles from the Agile Manifesto are applied to the fundamentals

of the modelling method framework (Karagiannis & Kühn, 2002) (see framework in Section

2.2). The applied agile principles described in (Karagiannis, 2015) are the following:

- Iterative development - work cycles allow for revisiting the same work items;

- Incremental development - successive usable versions are built upon previous versions;

- Version control - the output of each iteration is traceable across multiple versions and

in relation to their requirements;

- Team control - small groups of people are assigned to backlog items with shared

accountability.

The AMME Lifecycle introduces feedback channels along five phases (see backward

arrows at the bottom of Figure 24) with the aim of supporting the engineering process during

the propagation and evolution of modelling requirements. Consequently, various DSMLs were

created following this agile modelling method engineering (Karagiannis et al., 2016;

Buchmann, 2016).

Karagiannis (2015) describes the five phases as follows (see bottom of Figure 24):

1. The Creation phase is a mix of knowledge acquisition and requirements elicitation

activities that capture and represent the modelling requirements;

2. The Design phase specifies the meta-model, language grammar, notation and

functionality;

3. The Formalise phase aims to describe the outcome of the previous phase in non-

ambiguous representations with the purpose of sharing results within a scientific

community;

4. The Develop phase produces concrete modelling prototypes;

5. The Deploy/Validate phase deals with the deployment of the modelling language in a

modelling tool as well as the use of the language in the tool for validation purposes.

Bork et al., (2019) further elaborates on the Deploy/Validate phase by stressing the

distinction between the engineering and modelling component (see engineering cycle

and evaluation cycle in Figure 24, respectively). Hence, a modelling language has to be

deployed in a modelling tool before it can be used for modelling, and thus for

evaluation.

50

As already reported in the research problem (Sub-section 1.1.2), the AMME Lifecycle

distinguishes between two components: the language engineering component (see engineering

cycle in Figure 24) and the modelling component (see evaluation cycle in Figure 24). The two

components are typically implemented in a meta-modelling and a modelling tool, respectively.

For instance, this is the case of the already mentioned ADOxx and MetaEdit, which are among

widely adopted in research.

On the one hand, this approach promotes the correct creation of a DSML, and on the other

hand it prevents a DSML from being used for evaluation purposes before the deployment has

been accomplished. Additionally, the engineering component does not involve the domain

expert (or as above-mentioned stakeholders) until the DSML is deployed. As described already

(in Sub-section 1.1.2 and Section 2.9), this aspect is in contradiction of the agile principle of

involving an end-user since an early stage of a lifecycle.

Another consideration concerns the engineering phases of the AMME Lifecycle. Although

the phases can intertwin (i.e. create-design, design-formalize and design-develop), if a new

Figure 24. The AMME (or OMiLab) Lifecycle. Taken from (Bork et al., 2019; Karagiannis, 2018; Efendioglu et

al., 2017; Karagiannis 2015)

51

requirement is to be integrated it has to be propagated through all the phases, sequentially.

(Efendioglu et al., 2017). First, the new requirement needs to be captured and represented in

the form of modelling requirement in the creation phase. Next, the requirement is designed

such that it fits other modelling constructs. The formalisation phase may be skipped. Next, the

new version of the DSML is implemented in a meta-modelling tool (development phase). Then,

the DSML can be deployed to release a modelling tool tailored to the new version of the DSML.

Finally, the new DSML can be used to design models. In this case also, the correct creation of

a DSML is promoted. However, going through all the engineering phases subsequently is time-

consuming. Moreover, the longer the propagation of a new requirement the higher the risk to

have outdated requirements (Hepp et al., 2005).

In the next section, the concept of agility is further elaborated on the context of enterprises.

Currently, the AMME Lifecycle is the most advanced lifecycle within Enterprise Modelling

striving to incorporate the agile principles that revert to the Agile Manifesto (Beedle et al.,

2001). As discussed, however, there is still room to inject more agility into DSML

engineering lifecycle. It is the objective of this research work to propose an agile approach

that avoids sequential engineering phases and promotes the cooperation between the

language engineer and the domain expert.

52

2.11 Agility in Enterprises: Definitions, Principles, Trends and

New Challenges

Giachetti (2010) defines an enterprise as a “complex socio-technical system that comprises

interdependent resources of people, information, and technology that must interact with each

other and their environment in support of a common mission”. Enterprises are increasingly

characterised by high competition, cross-organisation cooperation, and continuous and

unexpected change. According to Hinkelmann et al., (2016) “ability of keeping up with

continuous and unexpected change is an essential quality of modern enterprises and will

become a necessity for existence”. Kidd (1994) coins this ability as “agility” and defines it as

the rapid and proactive adaptation of enterprise elements to unexpected and unpredicted

changes. Similarly, Dove (1999) defines agility as “the ability of an organisation to thrive in a

continuously changing, unpredictable business environment”. For Bohdana et al. (2007), an

agile enterprise is synonym of “adaptable” and “flexible” enterprise. “Adaptability” and

“flexibility”, together with “sensitivity”, “responsiveness”, “autonomy”, and “interoperability”

are defined by Horkoff et al., (2016) as emerging quality attributes for advanced enterprise

models. Horkoff et al., (2016) assert that addressing these quality attributes “will allow all

components of an enterprise to operate together in the cooperative manner for the purpose of

maximising overall benefit to the enterprise”.

The pioneers of agile principles are Beedle et al., (2001), who proposed the Agile Manifesto

in response to the inability of software engineering to deliver in a timely manner. Several agile

methodologies have been thereafter conceived, which embrace these agile principles. Among

the widely used methodologies there are Scrum (Schwaber & Beedle, 2002), eXtreme

Programming (XP) (Beck & Kent, 2000) and the Lean Software Development (Poppendieck,

2007).

In their recent work, Burlton, Ross and Zachmann (2017) argue that it is no longer sufficient

to apply agile principles on software development or organisational schemes only. According

to Burlton et al., (2017) agile principles should instead be extended to the whole business. Thus,

the they refer to “Business Agility” as the “ability to modify dynamically the concepts and

structures of the business itself for maintaining relevance in the context of a dramatically

changing, complex and uncertain operational environment” (Burlton et al., 2017). In support

of this view, Burlton et al., (2017) formulated ten principles in what they call “The Business

Agility Manifesto”. The principles are summarised below and supplied with further literature.

1. Perpetual Changes. This principle refers to the need within a business for

accommodating unceasing innovation and fast-paced change. Change should be

scalable and sustainable.

2. Business Solution Agility. This principle stresses the insufficiency of faster software

development in keeping up with continuous and rapid change. Burlton et al., (2017)

argue that we are in the “Knowledge Age”, where models are used to retain business

knowledge. Nonaka et al. (2000) state that the capability to create and use knowledge

is considered as the source of sustainable competitive advantages. Drucker (2001)

predicted that knowledge will replace machinery, equipment, capital, row material and

labour to become the most important factor. Burlton et al. (2017) sustain that an agile

business solution is measured on how much knowledge is configured into it and how

easily that knowledge can be changed or reconfigured. This action can be enabled by

models having the above-mentioned quality attributes (Horkoff et al., 2016). Burlton et

al., (2017) further argue that business knowledge is to be deployed into business

processes and products in a timely, effective, selective, repeatable, pervasive, traceable,

and retractable manner.

53

3. Business Value Creation. In this principle business value must be the over-riding

justification for expending resources for all investments. Knowledge should be such

that scrap and rework can be performed avoiding unintended consequences. Burlton et

al., (2017) suggest to use the value chain model for planning and managing value

creation. This can be then used to design, change, manage, operate, and analyse the

value chain.

4. Value Chain. This principle stresses the importance of stakeholders in the value chain

as well as the importance of concept models representing end-to-end processes in a

value chain. Knowledge about dependencies in a value chain enables the prediction of

the impacts of change as well as contributing to the scoping of the boundaries of

business design and software implementation initiatives.

5. Business Knowledge. This principle refers to the importance of a business knowledge

and distinguish it from the limited software development knowledge. Also, business

knowledge should have a shared understanding in order to be effectively and

unambiguously communicated. Concept models should be used to retain this

knowledge and to enable its reuse.

6. Business Knowledge Management. This principle focuses on the importance of

expressing business knowledge explicitly in a form that is accessible to all business

audience. Namely, knowledge should be explicit, accessible, protected, sharable, re-

usable, retainable, and updatable. This makes for the effective management of business

knowledge.

7. Business Knowledge-Base. This principle defines the business knowledge-base as the

end result of transforming tacit (mental) knowledge to explicit (stored, common,

sharable) knowledge. The knowledge base should support design decisions in

configuring business processes and products. The latter is essential for both automation

and for assembling business capabilities. The knowledge-base is considered a business

asset and not a mere implementation of technology.

8. Single Source of Business Truth. This principle refers to the importance of the

Business Knowledge-Base for the business concept definitions and business policy

decisions. Additionally, the separation of concerns in the Business Knowledge-Base is

a must, i.e. business capabilities or business solutions. For example, separating concepts

from business rules, business rules from processes, processes from events, and roles

from all technical design descriptions.

9. Business Integrity. This principle stresses the importance of consistency in business

results towards external stakeholders. Conceptual models properly design the structure

of business concepts and thus ensure consistency in business results. The design of

conceptual models avoids needless subsequent redesign and reconstruction of databases

and systems. Consistency should also embrace behaviour and repeatable operational

decisions, business rules. Else, data quality problems can arise.

10. Business Strategy. This principle focuses on the importance of managing business

knowledge. The latter provides a huge competitive advantage if used to execute the

business strategy and to configure business processes and products. Hence, the need for

explicit business knowledge is emphasised in this principle as well. Business

knowledge is needed by every new business or technology channel.

As we can see, knowledge plays a fundamental role in solutions that want to embrace

business agility principles. In their visionary paper, Sandkuhl et al. (2018) predict that such

knowledge will be captured via enterprise modelling by the majority of stakeholders:

54

“Ten years from now, the majority of organisational stakeholders uses enterprise modelling

(often without noticing it) to capture, store, distribute, integrate and retrieve essential

knowledge relevant for their local practices in a way that supports long-term, cross- concern

organisational objectives”.

According to Horkoff et al. (2018) the remarkable effort required in the creation, retention

and use of knowledge is currently cumbersome to business agility. Approaches, modelling

methods and tools tend remain formal and inflexible at present (Bork & Alter, 2018).

Sandkuhl et al. (2018) claim the need for lightweight approaches that shift from the

traditional Enterprise Modelling qualities such as completeness and coherence to usefulness

and impact. In doing so, such approaches should be able not only to support specialised roles

like architects or IT specialists, but can open up to a wider range of organisational stakeholders

who can benefit from models for analysis, design and, or decision problems (Sandkuhl et al.,

2018). In line with this argument, Sandkuhl et al., (2018), predict that modelling will be

incorporated in every day work wherein “non-experts in modelling will do modelling, even

without knowing it”. This hypothesis gains confidence from the work of Braun et al., (2015),

who showed that the practice of modelling by domain experts is a reality in some application

areas of healthcare, i.e. in some hospital physicians and quality managers who are involved in

process modelling.

This trend, however, comes with the expenses of a high synergy between domain experts

and modelling experts, which might be time consuming and quite a demanding engineering

effort, and thus a further threat to agility. Sandkuhl et al., (2018) propose to tackle this problem

with assistive technologies, which facilitate the practice of modelling. As an example, in

Laurenzi et al., (2019) an assistive and pattern learning-driven process modelling approach is

proposed. The aim of Laurenzi et al., (2019) is to create good quality BPMN process models

while relieving the burden of the intensive cooperation between modelling and domain experts.

To achieve this, machine-interpretable knowledge is employed. Similarly, machine-

interpretable knowledge is employed by Delfmann et al., (2010) to investigate model patterns,

and by Fill (2011) to interpret the meaning of labels and detect similar constructs in other

models. Machine-interpretable knowledge (Hinkelmann, Gerber, et al., 2016) is concerned

with the type of knowledge representation that is interpretable by machines and reverts the

Artificial Intelligence sub-field Knowledge Representation and Reasoning (Van Harmelen,

Lifschitz, & Porter, 2008). Machine-interpretable knowledge allows automation and enables

machines to solve complex problems. In order for assistive technologies like recommendation

systems to be intelligent, they have to build upon a knowledge-base that is machine-

interpretable. The intelligence lays on the ability of machines to explain how certain

recommendations were deduced (Van Harmelen & Ten Teije, 2019). Hinkelmann, Gerber, et

al., (2016) regard the continuous alignment between graphical enterprise models and the

underlying machine-interpretable knowledge as one of the innovative grand challenges of

today’s enterprise. Mastering this challenge means that graphical models, which are

interpretable by people, are continuously synchronised with an underlying knowledge, which

is interpretable by machines. Such continuous alignment is thereby key aspect in fostering

agility and enabling the creation of the intelligent enterprises of the future.

The objective stimulated further investigation of the literature on approaches that foresee

the adoption of machine-interpretable knowledge within the context of Enterprise Modelling.

The investigation included approaches for the alignment of graphical and machine-

The new agile approach should be able to seamlessly align the graphical and machine-

interpretable representation of a modelling language.

55

interpretable representation of modelling languages. An overview of these research findings is

reported in the next section.

2.12 Machine-Interpretable Knowledge and Enterprise Modelling

Graphical notations facilitate the human understanding and interpretability of models. When

models are used for automations and operations purposes, the model should be machine-

interpretable or at least machine-readable. A machine-interpretable representation of

knowledge enables decision making, analysis, adaptation and evaluation (Hinkelmann et al.,

2018). In business process automation, for instance, process models determine the workflow

executed by the workflow engine. For decision-making purposes, it is common practice to work

with models, such as the Decision Model and Notation (OMG 2016). According to

Hinkelmann, Gerber, et al. (2016), there is a distinction between machine- interpretable models

and machine-readable models. The former are represented in a format on which reasoning can

be performed. Hence, machine-interpretable models can turn passive data storage into an active

device.

Logic-based languages such as ontologies (Guizzardi, 2007; Guizzardi, 2012) can be used to

express knowledge in a machine-interpretable format. The following sub-sections introduce

first the definition of an ontology. Then, the two most common and widely-used ontology

languages are described. Next, recent work that successfully used ontologies in the context of

Enterprise Modelling is provided. Finally, research advances on approaches that foresee the

combination of ontologies with models and modelling languages are described.

2.12.1 Ontology Definition

Etymologically, the term “ontology” means the study of existence and comes from philosophy

(Guizzardi, 2007). The term reverts to the attempt of Aristotle of classifying the things in the

world. In computer and information science, an ontology assists in specifying and clarifying

the concepts employed in specific domains and helps formalising them within the framework

of a formal theory with a well-understood logical (syntactic and semantic) structure (Guizzardi,

2012). In Artificial Intelligence (AI) the term “ontology” is used to describe what can be

(computationally) represented of the world in a program (Studer, Benjamins, & Fensel, 1998)

or in a model. This representation enables reasoning about models of the world.

Ontology is a fundamental concept in knowledge representation (Van Harmelen et al.,

2008). Several definitions about ontologies exist in the literature (Gruber, 1993; Guarino et al.,

1995; Russ 1997; Guarino, 1998; Studer et al., 1998; Staab & Studer 2009; Guizzardi 2007;

Gomez-Perez et al., 2004). Definitions have changed and evolved over the years. One of the

very first and widely cited definition was given by Gruber (1993), who stated that an “ontology

is a specification of a conceptualisation”. Based on this definition Studer et al. (1998) defined

an ontology as a “[…] formal, explicit specification of a shared conceptualisation”.

In Gaševic et al. (2009), the authors further elaborate the two keywords “specification” and

“conceptualisation” of this definition. Conceptualisation represents an abstract and simplified

view of the world. Thus, it addresses a particular domain. Every conceptualisation is based on:

concepts, objects, entities assumed to exist in an area of interest and relationships among them.

The term specification, on the other hand, means a formal and declarative representation of the

conceptualisation. The type of concept and the constraints in the ontology’s data structure are

stated in a declarative and explicit way using a formal language. Such formal representation

allows an ontology to be machine-interpretable and although it cannot be run as a program, it

represents some declarative knowledge to be used by programs.

56

Ontologies are expressed in ontology languages. Well-known and widely adopted ontology

languages relate to the concept of Semantic Web: “Semantic web originated from the vision

that machines are enabled to conduct automated reasoning and can thus infer information from

resources on the world-wide-web” (Berners-Lee, Hendler, & Lassila, 2001). Within the vision

of Semantic Web classes, properties and instances are all web-based resources. Two prominent

ontology languages exist (Allemang & Hendler, 2011): the Resource Description Framework

Schema13 (RDF(S)) and the Ontology Web Language14 (OWL). The following sub-section

describes them in detail.

2.12.2 Prominent Ontology Languages: RDF(S) and OWL

The ontology language RDF(S) (W3C, 2014c) builds upon the Resource Description

Framework (RDF) (W3C, 2004b) and is in compliance with its formal semantics specified in

W3C (2014b). RDF is a data model that provides a way to express simple statements about

resources by using properties and values. RDF(S) is a (W3C) recommendation and the latest

specification version is RDF(S) 1.1 (W3C, 2014c). The abstract syntax of this specification

provides structure to web (or RDF) resources so that they can be expressed in the form of

triples: subject-predicate-object. A set of triples forms an RDF graph, which is typically stored

in a knowledge graph database (also known as triplestore). RDF(S) is used to define object-

oriented concepts such as classes and properties.

Specifically, in RDF(S) any resource can be specified as either a class, or a property or

both. RDF(S) extends RDF by providing a set of classes and properties that allow for a more

expressive description of RDF resources. For instance, the property rdfs:subClassOf is a

specialisation relationship between classes, which allows the definition of a taxonomy of

classes; rdfs:domain and rdfs:range allow the specification of the source and target of a

property, i.e. a relation between two classes or a relation between one class and one datatype

like xsd:string, xsd:Boolean, xsd:integer. Datatypes denote the built-in datatypes defined in

XML Schema Definition Language (XSD) (W3C, 2012) and a restricted list of it is

recommended by the W3C as RDF-compatible (see (W3C, 2014a). When a resource is a

member of a class, the resource is an instance of the specified class. The membership of a class

is indicated with the property name rdf:type. At hand, RDF(S) defines RDF vocabularies and

for this are considered to be supportive in the ontology specification. Additionally, the W3C

recommendation (W3C, 2014b) defines 13 RDF(S) entailments patterns, which interprets both

RDF and RDF(S) vocabulary that correspond to inference rules. One example of such

entailment patterns is that if a class “uuu” is sub-class of the class “xxx”, and the resource

“vvv” is a member of the class “uuu”, it is then deduced that “vvv” is also a member of the

class “xxx”. This entailment pattern corresponds to rule “rdfs9” in W3C (2014b). Therefore, at

hand, in addition to RDF, RDF(S) can define some taxonomies and can do some basic inference

about them.

OWL (W3C OWL Working Group, 2009) builds on RDF(s). It adds more expressivity

power to RDF(S) by injecting a set of axioms that further constraints the ontology language

RDF(S). These axioms allow the equivalence or disjointness between classes, or the numerical

limitation (i.e. cardinality) of a particular property to be stated. Three decreasingly expressive

sublanguages of OWL exist: OWL-Full, OWL-DL and OWL-Lite (Baader, 2011). OWL-Full

is fully compatible with RDF(S) as all the primitives available in RDF and RDF(S) are

available and usable in OWL-Full. This makes the latter the most expressive version of OWL

but also with the main drawback that the computational decidability (i.e. all computations will

13 https://www.w3.org/TR/rdf-schema/
14 https://www.w3.org/OWL/

57

finish in a finite time) cannot be retained (Horrocks, Patel-Schneider, & van Harmelen, 2003).

Thus, the reasoning support is rather unpredictable. This reverts to the basic undecidable

reasoning problems in the First-Order Logic (FOL) (Staab & Studer, 2009). To overcome the

decidability issue, OWL-DL was developed as a sub-language of OWL-Full. The OWL-DL

has a direct correspondence to the Description Logics (Baader & Nutt 2003), which is

considered as a decidable subset of FOPL. The knowledge representation in OWL-DL is

restricted to two levels: the TBox (i.e. containing the declaration of classes) and the ABox (i.e.

containing individuals of classes defined in the TBox). The restricted representation comes

with limitations to ensure decidability. For instance, a class cannot be an instance at the same

time. OWL-Lite is a further restriction of OWL-DL, which aims to lower the language

complexity of the latter. There exist further sub-languages of OWL-DL featuring more

limitations. A comprehensive description of the three OWL sub-languages can be found in

(McGuinness & van Harmelen, 2014).

Different kinds of reasoning can be applied, depending on the expressivity of the ontology

language. Ontologies expressed in RDF(S), for example, can be combined with semantic rules

to draw new insights from the ontology. Conversely, given the higher expressivity of OWL,

reasoning services are directly applied over the constrained ontology, e.g. for classifying

individuals or instances.

2.12.3 Ontologies in Enterprise Modelling

The term ontology is often used to refer to semantic technologies (Allemang & Hendler, 2011),

which includes not only the representation of facts (or as above-mentioned web-based

resources) but also semantic rules and inference engines for reasoning services.

Semantic technologies are widely adopted in enterprise modelling and make use of

ontologies for describing models in an ontology format (Hinkelmann et al., 2013; Emmenegger

et al., 2013), for transforming model into ontologies (Rospocher et al. 2014; Emmenegger et

al. 2013; Natschläger 2011; Thomas & Fellmann 2007), or to semantically annotate models

(Fill, Schremser, Karagiannis, 2013).

The purpose for the use of semantic technologies can vary. Recent works that successfully

implemented semantic technologies are subsequently reported.

Gailly et al., (2017) present a recommendation-based conceptual modelling and ontology

evolution framework (CMOE+) that makes use of enterprise-specific ontologies. The latter are

used as reference to overcome the lack of consistency and interoperability in the creation of

models.

Martin, (2016) developed a new ontology-based case-based reasoning (OBCBR) approach,

to facilitate accessibility of experiential knowledge obtained from previous cases or projects.

Emmenegger et al., (2017) transferred the OBCBR approach conceived in Martin (2016)

to the workplace learning application area. The approach aims to support inexperienced

employees in public administrations by suggesting historical cases and providing

recommendations of experts and learning resources.

Walter et al., (2014) use ontologies with reasoning services to support the domain-specific

modelling language designers and users through the development and usage of DSMLs.

Designers benefit from constraint analysis whereas users benefit from progressive verification,

debugging, support and assisted modelling. for addressing constrain definition, progressive

evaluation, suggestions and debugging.

Research by Rospocher et al. (2014) presents a formal ontological description of the

language standard BPMN (i.e. the BPMN Ontology). Reasoning services such as consistency

checking and query answering are applied to detect the compliance of process models with the

BPMN specification.

58

Emmenegger et al. (2013) developed an Early-Warning-System (EWS) that integrates

semantic technologies for the assessment of procurement risks. Enterprise ontology that

reflects the standard ArchiMate (i.e. ArchiMEO (Hinkelmann et al., 2013)) is extended to

represent procurements risks. Semantic rules are used together with the extended ontology to

assess and monitor procurement risks in real-time.

Thönssen and Lutz (2013) used semantic technologies to automate and improve a contract’s

lifecycle management. Information like contract begin, contract end, contract parties and

obligations were automatically extracted using automated metadata generation.

2.12.4 Approaches combining Ontologies with Modelling Languages

Approaches that strive to combine graphical modelling languages with ontologies are

characterised by two kinds of semantics: one that is defined in the meta-model and one that is

defined in the ontology.

Aßmann, Zschaler and Wagner (2006) assume that model-based approaches and ontologies

were developed in isolation and investigate the role of ontologies, models, and meta- models

to bridge the gap between the model-driven engineering (MDE) and Semantic Web,

respectively.

Höfferer (2007) discusses the relationship between meta-models and ontologies stating that

“[…] there is no a commonly agreed view on the relationship between meta-models and

ontologies in the scientific community”. Moreover, he emphasises that meta-models and

ontologies are different but complementary concepts.

Sutii et al., 2014) offer a systematic literature review, and report similarities and differences

between ontologies and domain-specific languages, including meta-models. Similarly to

Höfferer (2007), Sutii et al. (2014) conclude that both ontologies and meta-models have

complementary benefits, which make them suitable for combination.

It is common to combine concepts of meta-models and their instances with formal

semantics, i.e. ontology concepts and instances, respectively (Kappel et al., 2006; Dietz, 2006;

Fill & Burzynski, 2009). The main purpose of the combination is to supply meta-models and

models with formal semantics. Namely, ontologies provide (1) the semantics of the modelling

language constructs, and (2) the semantics of model instances (Kramler et al., 2006; Hrgovcic

et al., 2013).

The practice of combining meta-models and models with ontologies is known as semantic

lifting (Hinkelmann, Gerber, et al., 2016). Semantic lifting is defined as “[…] the process of

associating content items with suitable semantic objects as metadata to turn ‘unstructured’

content items into semantic knowledge resources” (Azzini et al., 2013). Semantic lifting is also

known as semantic annotation (Liao et al., 2015; Fill et al., 2013). In these approaches, the

ontologies are independent from the concepts of the human-interpretable, graphical languages.

The ontology comprises class definitions which represent the formal semantics of modelling

elements. The class definitions serve to annotate modelling elements (i.e. in the meta-model

layer) and model elements (i.e. in the model layer). The basis for interoperability is provided

by linking elements of the models and meta-models with ontology concepts.

Figure 25 shows the conceptual architecture for semantic lifting. Different model types in

the enterprise architecture are created which correspond to different meta-models. The meta-

models primarily define syntactical aspects as well as certain semantic aspects of model

elements. The ontologies define the machine-interpretable semantics of the modelling

concepts. This approach requires the relationship between the graphical and the machine-

interpretable modelling language to be defined (Hrgovcic et al., 2013).

59

Just as with the use of ontologies, the application domains for the semantic lifting can vary.

For instance, business-IT alignment (Nicola et al., 2008), process mining (Azzini et al., 2013),

learning (De Angelis et al., 2016) and cloud service specifications (Hinkelmann, Laurenzi et

al., 2016).

The drawback of this approach, however, lies in the consistency of the semantics between

(meta) models and their representation in ontologies. Keeping them separate tends to cause

incompatible semantics. To avoid that, the manual or semi-automatic alignment between meta-

model concepts and ontology concepts has to be performed. However, this might be error-

prone and time-consuming. Such drawbacks could be alleviated by mechanisms for the

automatic generation of ontologies from models. Examples of such mechanisms range from

the creation of knowledge graphs (Karagiannis & Buchmann, 2018), to more expressive

ontologies, e.g. OWL-FA (Emmenegger et al., 2017). Nevertheless, the consistency issue

remains due to the strictly separate representations. For instance, if a change occurs in the

ontology, the human-interpretable model has to be adapted accordingly. Also, if changes occur

in the meta-model, transformation patterns for the ontology generation might need to be

adapted.

Figure 25. Architecture for semantic interoperability using both metamodels and ontologies

It is objective of this research to provide an agile approach able to preserve the seamless

consistency between the graphical and machine-interpretable representation of a modelling

language after changes occur on one another.

60

2.13 Concluding Summary

This chapter provides the theoretical background for the relevant aspects introduced in the

research problem. The chapter starts by framing the context of the research within the

Enterprise Modelling research discipline. Definitions for models and modelling languages are

provided together with the widely adopted technique meta-modelling to create modelling

languages. Some background about the notion model-based approach is also provided before

diving into the definition of a DSML. For this, a comparison between DSMLs and GPMLs is

presented, including a practical example. Then, terminology definitions about DSL, DSML and

DSPL are given, in which the notion “domain” is clarified. Next, several application areas for

DSMLs are reported which focus either on software development or knowledge retention. After

that, the different roles around DSMLs are introduced as it clarifies the importance of the

language engineers and domain experts in approaches for DSML engineering. Among these

approaches, it was identified that domain-specific adaptations of modelling language have

greater benefits than dedicated DSMLs. Therefore, the literature investigation explored the

common techniques for domain-specific adaptations by analysing strengths and weaknesses of

each of the techniques. It resulted that the meta-model customisation is the most appropriate

technique as it supports agility in DSML engineering. Therefore, it is in line with the research

objective of conceiving an agile approach. The main challenges that DSML engineering face

are then reported together with related work that strive to overcome them. Next, an overview

about existing domain-specific modelling language engineering lifecycles and their advances

is provided. The current lack of agility was then elaborated by analysing the AMME Lifecycle,

which is the only example striving to embrace agile principles. The first problem this research

work aims to solve was thereby framed. Subsequently, to increase understanding around the

concept of agility in enterprises, an overview is provided containing definitions, agile

principles and trends, as well as new challenges. Findings led to the conclusion that knowledge

is key enabler of agile approaches. Moreover, the importance of having a machine-interpretable

knowledge was emphasised as it provides the basis to build intelligent information systems

and, in turn, intelligent enterprises. Within this context, one of the major challenges is the

continuous alignment between graphical and machine-interpretable representations of

knowledge. Hence, this investigation aimed to deepen understanding on approaches that allow

for such alignment. Findings show that current approaches separate the modelling languages

and models from ontologies (i.e. machine-interpretable knowledge), which causes

inconsistencies when changes occur on one another. The second problem that this research

work aims to solve was thereby framed.

61

3. METHODOLOGY

62

This chapter describes the scientific procedure that is embraced to address this research work.

The description of the chapter is underpinned by the “research onion” proposed by Saunders,

Lewis, and Thornihill (2009). Figure 26 depicts the research onion and it contains six layers

(starting from the outermost) we have at first the philosophy foundation of a work, the research

approach, the research strategy, the methodological choice, the time horizon and finally

techniques and procedures.

The research design includes a few choices for the research strategy, the methodology for

data collection techniques, the procedures for analysis and time frame over which the research

work is undertaken (see the three layers in Figure 26).

The centre of the research onion is about detailing data collection and analysis. Saunders,

Lewis, and Thornihill (2009) consider it as ‘tactics’ rather than design and include clear

explanation of the chosen data collection and data analysis procedures, each of which can be

both quantitative and qualitative. Both research design and tactics explain the way research

questions are addressed, which itself is influenced by the chosen research philosophy and

approach (Saunders et al., 2019).

The stance of the layers in the research onion, from the outermost layer to the innermost

layer contributes to ground the decisions around data collection, thus leading to a solid and

credible approach of answering research questions. According to Crotty (1998), this is a way

to show that a research work can be taken seriously.

In the following sections, each layer of the research onion is elaborated and contextualised

relative to this particular research.

Figure 26. The “research onion”. Adapted from (Saunders, Lewis & Thornihill, 2009)

63

3.1 Philosophical Underpinning – Layer 1

The philosophical underpinning refers to the root concepts supporting the research which

essentially includes a system of beliefs and assumptions about the development of knowledge

in a particular field (Saunders et al., 2009). Such beliefs or assumptions help researchers to

understand and investigate the phenomenon under study (Saunders et al., 2009; Mouton, 2001).

In other words, understanding of research questions, used methods and interpretation of

findings are all shaped by assumptions (Crotty 1998). According to Saunders, Lewis, and

Thornihill (2009), a well-thought-out consistent set of assumptions underpins the

methodological choice, research strategy along with data collection techniques and analysis

procedures (see layers of the research onion in Figure 26).

The main philosophical assumptions can be grouped into three categories: ontological,

epistemological and axiological assumptions (Saunders et al., 2009). The ontological

assumption refers to the nature of the reality under investigation and what can be known about

it. The epistemological assumption is concerned with the type of knowledge that is acceptable

in the realm of study, and how to communicate it to the world. The axiological assumption is

about the ways and to what extent in which the researcher’s values influence the research

process. To better clarify the role of each type of assumption, Table 1 not only summarizes

their purposes but also reports some of the typical questions with answers that aid in a better

comprehension from a philosophical stance:

- What is the nature of reality? (ontology);

- What is considered acceptable knowledge? (epistemology);

- Should the research be morally neutral, or should it be allowed to be influenced by

one’s values? (axiology).

Along with each type of philosophical assumption there are two positions one may choose

to take: objectivism or subjectivism. Without digging much into the detailed application of

each of the two positions with respect to individual philosophical assumptions, the two

contrasting positions can be described as follows (Saunders et al., 2009):

- objectivism holds that social and physical phenomena (i.e. social reality) exists

independently of individual’s view;

- subjectivism holds that social reality is made from perceptions and consequent actions

of individuals.

The most dominant philosophical paradigms (foundations) in the field of Information

Systems are known as positivism, interpretivism, constructivism and pragmatism (Gregg et al.,

2001; Deng & Ji, 2018). Each paradigm is characterized by a specific stance in relation to the

ontological, epistemological and axiological assumptions, including an objectivism or

subjectivism position. The choice of a paradigm, thereby, influences the way research is carried

out, i.e. the way research queries are tackled (Saunders et al., 2009).

The set of philosophical assumptions that most suit this research work is the pragmatism

paradigm, because it focuses on a specific problem for which a practical solution could be

provided. In particular, the main research investigation should be solved by constructing a

novel artefact, which makes a significant contribution into an application environment.

The need of a practical research approach recalls the epistemological stance of pragmatism,

which is “knowing through making”. Unlike other paradigms, in this epistemological stance,

the validity of a concept or hypothesis is dependent not only on the truthfulness, but also on its

usefulness in practical scenarios.

64

In line with the above, Lee and Nickerson (2010) define pragmatism as a school of thought

where an idea can be better understood in terms of its practical consequences rather than its

theoretical descriptions. Hence, we arrive at the ontological stance of pragmatism, where

reality matters as a practical consequence of ideas.

From an axiological point of view, pragmatism recognizes the constructive role of

researchers in the research process, which, according to Deng and Ji (2018), is analogous to

the value of designers in the design process.

Both “focus on usefulness” and “constructive role of researchers” make pragmatism the

most suitable paradigm to serve design science research (Deng & Ji, 2018; Hevner, 2007),

which in turn, itself focuses on creation. The design science research will be elaborated later in

this chapter along with research strategy.

The ontological, epistemological and axiological stances of pragmatism are summarized in

the last row of Table 1. Each of these philosophical stances is below, further elaborated using

the relevant aspects proposed in (Goldkuhl, 2011) (see the aspects also in Table 2).

 Ontological assumption

Nature of reality or being

Epistemological assumption

What constitutes acceptable

knowledge

Axiological assumption

Role of values in research

Purpose Shaping the way in which

the researcher sees and

studies research objects

(e.g. artefacts). The stance

influences the focal point

in a research project.

Identifying what can be considered as

acceptable, valid and legitimate

knowledge. The stance influences the

choice of research methods, e.g.

elicitation of insights rather relies on

qualitative methods than quantitative.

Identifying the values of researcher

and (if any) research participants.

The stance influences the choice of

data collection techniques, e.g.

valuing data collected by personal

interaction may lead to face-to-

face interviews.

Questions What is the nature of

reality?

What is the world like?

How can we know what we know?

What is considered acceptable

knowledge?

What constitutes good-quality data?

What kind of contributions can be

made to knowledge?

What is the role of moral values in

research? Should we try to be

morally neutral with our re-search,

or should we allow our values to

shape our research?

How should we deal with values of

research participants?

Pragmatism “Reality” is the practical

consequence of ideas.

External, multiple, views

are chosen to enable best

answering of research

question.

Flux of processes,

experiences and practices

Practical meaning of knowledge in

specific contexts.

‘True’ theories and knowledge are

those that enable successful action to

be taken.

Either or both observable phenomena

and subjective meanings can provide

acceptable knowledge.

Focuses on problems, practices and

relevance.

Integrating different perspectives to

help interpret the data.

Problem solving and informed future

practice as a contribution.

Value-driven research.

Research initiated and sustained by

researcher’s doubts and beliefs.

Values play a large role in

interpreting results: the researcher

can adopt either or both objective

and subjective points of view.

In adopting the pragmatic assumption, the role of the researcher is of promoting changes

(Haack, 1976). Simon (1996), in his seminal work, asserts that changing existing situations

into preferred ones is the main aim behind all courses of action. Both actions and change

characterize the ontological essence of the pragmatism (Goldkuhl, 2011). This, together with

the interplay between action and knowledge, allow the researcher to intervene into the

knowledge world where it can be applied. The purpose is to create utility (truth of this

paradigm) by means of either creating novel artefacts or changes in organizations which are

again related to the research approaches, namely design research (DR) and action research

(AR) respectively. Both approaches provide constructive knowledge, which is the type of

Table 1. Ontological, epistemological and axiological assumption. Adapted from (Saunders et al., 2019)

65

acceptable knowledge in the pragmatic assumption, i.e. in epistemological aspect. The

pragmatist researcher is oriented towards explaining and understanding prospective,

prescriptive and normative aspects of knowledge. Based on these, guidelines, exhibit values

and possible suggestions for practical improvements of the existing are provided. In other

words, knowledge is created, so it can be practiced and is proven useful for action. Knowledge

is constructed via inquiry, which is the mode of investigation sought to in some cases, in order

to control the change in reality. The investigation is conducted by adopting methods, techniques

and procedures to obtain and analyse data (Goles & Hirschheim, 2000).

Empirical focus Actions and changes

Type of knowledge Constructive knowledge

Role of knowledge Useful for action

Type of investigation Inquiry

Data generation Through assessment and intervention

Role of researcher Engaged in change

Table 2. Aspects of the pragmatism. Adapted from (Goldkuhl, 2011)

66

3.2 Inductive Research Approach – Layer 2

The second layer (starting from the outermost one) of the research onion proposed in (Saunders

et al., 2009) deals with the research approach. The research approach is concerned with the use

of theory, which can either be for testing or for building purposes. Although theory testing is

associated to a deductive research approach, theory building is portrayed with an inductive

approach (Saunders et al., 2009). The choice of one or the other steers the design of a research

in aspects related to data collection techniques and analysis procedures as well as data sources

and interpretation of findings.

This research work embraces an inductive approach as it aims to build a theory (i.e. a new

artefact) rather than testing an existing one. In the following, the inductive research approach

is first explained and then is described how the different aspects of the approach are relevant

to this research.

Keeping in line with Saunders et al. (2019), inductive research starts with understanding

the nature of a problem by collecting data. It is then the task of the researcher to extract meaning

from the collected data through analysis. During this phase, patterns and regularities are,

thereby, identified on the basis of cause-effect relationships. Based on the findings, a tentative

hypothesis is then formulated; leading to a general conclusion and theories (e.g. a conceptual

framework) finally completes the study. In contrast to the counterpart deductive approach, the

inductive one is used for exploratory studies. According to Robson (2002), an exploratory study

is useful to clarify the understanding of a problem by means of seeking new insights, asking

questions, and assessing existing phenomena in a new light. Hence, reasoning is applied to

produce theory, i.e. theory follows data and not the other way around, which would rather be

the deductive approach. Since the reasoning is likely to be about the context of a subject under

study, Saunders et al. (2019) suggest that a small sample of subjects is more appropriate in

inductive approach, as compared to a large subject sample in deductive approach. The same

authors add that “researchers in this tradition are more likely to work with qualitative data and

use a variety of methods to collect these data in order to establish different views of

phenomena” (Saunders et al. 2019).

Table 3 contains the described characteristics of an inductive research approach grouped

by logic, generalisability, use of data and theory.

Inductive Research Approach

Logic Generating untested conclusions using known premises.

Generalisability Generalising from the specific to the general.

Use of data Using of collected data for exploring a phenomenon, identifying themes and patterns and creating an

artefact.

Theory Generating and building a theory.

As depicted in Figure 27, in this research the observation bit is not only performed by two

real-world cases of domain-specific adaptations of modelling languages but also by

interviewing modelling experts. Data from these two research activities are analysed to

improve understanding of problems and needs in domain-specific adaptations of modelling

languages, respectively (see the pattern phase in Figure 27). The nature of the collected data is,

thereby, qualitative. Once the patterns are identified, a set of design requirements is populated

which is then used in the tentative hypothesis to conceive the new approach. Finally, a theory

is devised in the form of a new approach for domain-specific adaptations of modelling

languages.

Table 3. Characteristics of an inductive research approach. Adapted from (Saunders et al., 2019).

67

3.3 Research Strategy – Layer 3

According to Saunders et al. (2019) there is no research strategy that is more important than

others. The question rather is, whether the chosen research strategy enables to answer the

research question(s), and thus meets the research objectives. For this purpose, more than one

research strategies can be adopted and combined (Saunders et al., 2019). Possible research

strategies are: experiment, survey, action research, case study, grounded theory, ethnography

and archival research (Saunders et al., 2019) and design science research (Hevner et al., 2004).

The choice of an appropriate research strategy is influenced by the philosophical

underpinnings (Easterby-Smith et al., 2008; Saunders et al., 2019). As anticipated in Section

3, pragmatism is considered as the most suitable paradigm to serve the research strategy design

science research (DSR). Deng and Ji (2018) claim that pragmatism is the only philosophy able

to fully address the unique requirements of DSR, which focuses on creation. Additionally,

Hevner (2007) states that “design science research is essentially pragmatic in nature due to its

emphasis on relevance; making a clear contribution into the application environment”.

The design science research is the main research strategy followed in this research.

Additionally, a case study research strategy is adopted to further increase the awareness of the

research problem, which corresponds to the initial phase of design science research.

In the following, the theoretical background of both strategies the design research and the

case study are first introduced. Next, the two strategies are contextualised in this research work,

further describing how they support answering to the research questions creating an interlink

between one another.

3.3.1 Design Science Research

Design science research (DSR) is a research strategy that focuses primarily on problem-solving

(March & Storey, 2008). In contrast to other sciences, like natural science and social science,

whose aim is understanding reality, design science has its roots in engineering and the sciences

Figure 27 The adopted research approach. Adapted from (Saunders et al., 2009)

68

of the artificial (Simon, 1996). Hence, design science endeavours to build artefacts that serve

human purposes (March & Smith, 1995). In other words, research in design science transforms

the “present situation” to the “desired situation” by constructing and evaluating artefacts that

address organizational problems.

Now, what do we understand by the term ‘artefacts’? Hevner et al. (2004) define artefacts

as “innovations that define the ideas, practices, technical capabilities, and products through

which the analysis, design, implementation, and use of information systems can be effectively

and efficiently accomplished”. An artefact is an innovative product that is derived through a

design process, i.e. a sequence of expert activities (Hevner et al., 2004). According to Deng

and Ji (2018) “Information Systems is one area that exhibits increasing adoption of Design

Science as an epistemological paradigm of the advancement of knowledge”.

To increase high quality design science research in Information Systems, Hevner (2007)

proposed a conceptual framework containing three design science research cycles: (1) the

design cycle (2) the relevance cycle, (3) the rigor cycle (Figure 28).

The design cycle (centre of the framework shown in Figure 28) is essentially where the

artefact is built and evaluated iteratively. The iteration continues until a satisfactory design is

achieved catering to requirements (Simon, 1996). As Hevner (2007) states, requirements for

the construction of the artefact are derived from the relevance and design cycle while evaluation

theories and methods are from the rigor cycle. The cardinal industrious work takes place in the

design cycle, paying adequate significance to both relevance and rigor cycles throughout the

design process. (Hevner, 2007).

The relevance cycle aims to improve the environment by introducing innovative artefacts.

The environment (left extreme block of the framework shown in Figure 28) can be defined as

the problem space in which the application domain resides. An application domain consists of

people along with organizational and technical systems that interact with each other, working

towards a goal (Hevner, 2007). Business needs or problems raise from an application domain

and are related to existing technology infrastructure, applications, communication

architectures, and development capabilities (Hevner et al., 2004). Such business needs or

problems are perceived by people within the organization, from whom they can be captured by

the researcher. The latter should, thereby, conduct research activities that address business

needs or problems in order to assure the relevance of the research. Hevner (2007) suggests that

a relevance cycle initiates the design science research with an application context to provide

requirements for the research (e.g. business needs or problems) and define acceptance criteria

for the evaluation of the research results. The cycle then, returns the output from the design

science research into the environment for further studies and evaluation in the application

domain, eventually coming to an end. From the field testing, if limitations (on the utility of the

produced artefact) arise, the relevance cycle will iterate again, starting with the new

requirements from the environment.

The rigor cycle ensures that the produced artefact is innovative and rigorously designed

from a theoretical point of view. As shown by the block on the right extreme of Figure 28, the

knowledge base provides not only the theoretical foundations and methodologies, but also the

experiences and expertise that define a state-of-the-art application domain of the research

including the existing artefacts and processes found in the application domain (Hevner, 2007).

The selection and application of the appropriate theories and methods for building and

evaluating the artefact is solely determined by the researcher’s skills. The rigor cycle concludes

by adding the extended theories, methods and experiences that were gained while conducting

the design science research back in the knowledge base.

69

Vaishnavi and Kuechler (2004) elaborate on the design cycle by proposing a general design

cycle (GDC), which foresees five sequential research phases, namely: Awareness of Problem,

Suggestion, Development, Evaluation and Conclusion (see Figure 29). The two cycles for

relevance and rigor are engaged in each of the phases.

- In the Awareness of Problem phase, a research problem is raised and may originate from

multiple sources including the above-mentioned environment and knowledge base. Thus,

Figure 28. Design science research conceptual framework and cycles. Adapted from (Hevner, 2007)

Figure 29. Reasoning in the general design cycle (GDC) (Vaishnavi and Kuechler, 2004)

70

in this phase, both the relevance and rigor cycles are used to input the design cycle. In this

phase, additional research strategies can be adopted to increase the understanding of a

problem. For instance, with an inductive approach, the case study strategy would be best

way to ensure deep understanding, whereas with a deductive approach the survey strategy

would be more appropriate (Saunders et al., 2019).

- In the Suggestion phase, the problem identified in the previous phase is tackled by

proposing a tentative design of the new artefact. An artefact must be in the form of a

construct, a model, a method or an instantiation (Hevner et al., 2004). Its tentative design

is drawn from the knowledge acquired. According to Vaishnavi and Kuechler (2004),

suggestion is essentially a creative step.

- In the Development phase, the proposed design of the artefact is further refined and

implemented into an IT artefact. An IT artefact is a tangible socio-technological instance

of the suggested theoretically grounded artefact (see suggestion phase), which according to

Koppenhagen, et al. (2012), can be experienced, discussed, tested, evaluated, changed,

improved and extended. The relevance is provided by the real-world socio-technological

context in which the artefact is implemented (e.g. suggestion about the technological

adoption). The fact that the IT artefact derives from a theoretically grounded construct

(model, method or an instantiation) assures rigor. This implies to make the relations

between the artefact and its instantiation explicit and traceable (Koppenhagen et al., 2012).

- In the Evaluation phase the artefact is evaluated. March and Storey (2008) state that “the

representation of design problems and the generation and evaluation of design solutions are

the major tasks in design science research”. In line with this claim, Iivari (2007) further

stresses the importance of the Evaluation phase by asserting that it is “the essence of

Information Systems as design science lies in the scientific evaluation of artefacts”. An

artefact evaluation aspires to determine the progress achieved by designing, constructing,

or using an artefact in relation to the identified problem and the design objectives (March

& Smith 1995; Aier & Fischer, 2011; Sonnenberg & vom Brocke, 2012). To achieve

improved rigor in DSR, an evaluation strategy can be proposed wherein evaluation criteria

is made explicit. The formation of an evaluation strategy in DSR can be underpinned by

existing strategic frameworks such as the one proposed in (Pries-Heje, Baskerville &

Venable, 2008). To assure relevance, we should consider naturalistic evaluations, which

are critical to prove the artefact’s utility for practice (Hevner et al., 2004). This type of

evaluation considers aspects of real-world environment, which aim to accomplish real tasks

in real settings, which can include real users, real systems and/or real problems (Pries-Heje

et al., 2008). According to Sonnenberg and vom Brocke (2012), such evaluation types could

incorporate the organizational context partially or entirely. Artefact evaluation results are

then used to iterate the (above explained) design cycle, probably giving rise to new

requirements for the artefact. When the evaluation results are satisfactory with respect to

the imposed criteria, the evaluation phase ends.

- The Conclusion phase is the end of the research cycle and of the research effort (Vaishnavi

& Kuechler, 2004). The research results are considered as good enough and are

consolidated together with the knowledge gained and produced. Hence, contributions to the

knowledge of body and to the practice should to be made explicit. This aims to assure rigor

and relevance of the research, respectively (Hevner et al., 2004). To demonstrate the

produced high quality design science research, the results can be compared to the seven

design science research guidelines proposed in (Hevner et al., 2004). Finally, limitations

and future research directions should be addressed. Future directions are particularly

71

important as the truth builds only on previous discoveries (Keith, Vitasek, Manrodt, &

Kling, 2016).

3.3.2 Design Science Research in this Research Work

This research work encompasses the just introduced research strategy, design science research

(DSR). The DSR methodology adopted in this research is shaped from the two works of Hevner

et al., (2004) and Vaishnavi and Kuechler, (2004) and is graphically depicted in Figure 30. The

five DSR phases of the generic design cycle (GDC) are shown in the centre of the figure while

the environment and the knowledge base are depicted on the left and right-hand side of the

DSR phases, respectively. The outputs of the five DSR phases are shown in a separate column

(Right extreme of Figure 30). This chapter further discusses each DSR phase elaborately,

pointing the output as well as the relation with both the environment and the knowledge base.

Awareness of Problem: This phase starts by identifying the research problem, which

includes the research problem description (Section 1.1), research objectives and research

questions (Section 1.2). The literature review is then presented in Chapter 2 and it backs up the

research problem. Next, the first research question RQ1 “What are the problems that hinder

agility in domain-specific adaptations of modelling languages?” is addressed, which aims to

raise the awareness of problems in the environment. The case study research strategy supports

in tackling this research question. Two case studies were executed, which address two different

application domains: the patient transferal management (i.e. a digital healthcare application

domain) and business process as a service (i.e. a Cloud Computing application domain) (see

Sections 4.1 and 4.2, respectively). While the former was conceived during the Swiss research

project Patient-Radar15 (Reimer & Laurenzi, 2014), the latter was structured during the

European research project CloudSocket16 (Woitsch & Utz, 2015). Both the above-mentioned

case studies not only facilitated the data collection as experts were available for workshops and

interviews but also shared material like real-world use cases and relevant documents from

industry partners among the project participants. In both case studies two domain-specific

modelling languages (DSMLs) were developed by adopting the Agile Modelling Method

Engineering (AMME) lifecycle (Karagiannis 2015; Karagiannis 2018; Bork et al., 2019). The

choice of the AMME lifecycle is driven by the findings from the literature investigation of

methodologies for meta-modelling. While the two case studies assure relevance, the literature

investigation assures rigor (see both relevance and rigor cycles in Figure 30). Since the AMME

lifecycle was already broadly adopted to create modelling methods, tools and languages in the

meta-modelling toolkit ADOxx (see (Karagiannis, et al. 2016)), the latter was chosen to create

the two DSMLs. Both the case study strategy and its design (which underpins the answer for

the two research questions) are elaborated in the Sub-sections 3.3.3 and 3.3.4. From the analysis

of the two cases, a list of problems hindering agility were derived. The problems were then

compared to literature findings to derive the two main challenges to address (Section 4.3).

The second research question RQ2 “What are the needs for domain-specific adaptations of

enterprise modelling languages?” was also addressed in this phase. To address this question,

data were further collected by modelling expert interviews (Sub-section 4.4.2) were conducted.

Findings were then consolidated and analysed to derive the first set of requirements to address

by the new approach of this research work (Sub-section 4.4.5).

Suggestion: In the suggestion phase the third research question RQ3 “How can agility be

fostered when performing domain-specific adaptations of modelling languages?” is addressed.

15https://www.fhsg.ch/en/projects/project/patient-radar-226/
16 https://site.cloudsocket.eu/

72

For this, the challenges and requirements derived in the previous phase were addressed, to

provide a tentative design of the artefact. While designing the agile meta-modelling artefact

(Section 5) additional literature inquiry was conducted about the semantic specifications. This

reflects the use of the rigor cycle also in the suggestion phase, which led to additional

requirements (see Sub-section 5.1.5). As a result, a set of operators for an agile meta-modelling

were conceived, which addressed all the requirements (Section 5.1.6). The relevance cycle in

this case was used once more to validate the set operators through interviews with modelling

experts. Next, a critical reflection on the tentative design led to list of limitations (Sub-section

5.1.6.3). The artefact was then extended to overcome these limitations, by grounding the agile

meta-modelling with an ontology-based approach (Section 5.2). The rigor cycle was iterated

again to inject ontology approach experiences, such as Semantic Lifting (5.2.1) and ontology-

based meta-modelling (5.3.1). Since the latter resulted to be more appropriate for the agile

approach, artefacts were built upon the ontology-based meta-modelling. Thus, an ontology

architecture is proposed (Sub-section 5.3.2), which is followed by a set of semantic rules (Sub-

section 5.3.3). The semantic rules were conceived by following the methodology of Grüninger

& Fox (1995), meaning that the rigor cycle was implemented in this phase, one more time. At

the end of the phase, the delivered artefact was an agile, ontology-aided meta-modelling.

Development: This phase answers the last research question RQ4 “How can the agile

approach for domain-specific adaptations that preserves seamless consistency between the

graphical and the machine interpretable representation be automated?”. For this, the artefact

suggested in the previous phase is instantiated and implemented into the so-called AOAME

(Agile and Ontology-Aided Meta-modelling Environment). The instantiation assured the rigor

of the artefact. Functionalities in AOAME are thereby implemented to allow automation of the

on-the-fly domain-specific adaptations while preserving consistency between the human and

the machine-interpretable representations (Section 6.3). The Model-View-Controller design

pattern was adopted to implement the approach (Sub-section 6.1.3). This design pattern belongs

to the practice of web-based software development, which comes from the environment (left-

hand side of Figure 30). Hence, the relevance cycle was used in this phase.

Evaluation: The evaluation phase starts by reporting literature about evaluation strategies

in design science research (Section 7), which is the further demonstration on the use of the

rigor cycle. Based on the findings, a suitable research strategy for this research work is built

(Section 7.2.). From the research strategy three main evaluation criteria were derived:

1. Correct design of the artefact: The extent to which requirements are satisfied by the

implemented approach AOAME.

2. Operationability of the artefact: The ability of the approach to preserve consistency

between the human- and the machine interpretable representation while performing on-

the-fly domain-specific adaptions of modelling languages.

3. Generality of the artefact: The ability of the approach, characteristic to this research, to

be applied in different application domains.

For all the three criteria the evaluation was conducted qualitatively and AOAME was used

as a means of evaluation. The evaluation with respect to the first criteria is done against all the

eight design requirements elicited during the awareness of problem and suggestion phases.

This evaluation is described in Section 7.3. The operationability and generality of the approach

was demonstrated by the implementation of real-world cases in AOAME, addressing different

application domains (see Section 7.4).

73

The evaluation phase triggered the design cycle (see between development and evaluation

phase in Figure 30), which in turn refined the artefact iteratively. The improvements are

discussed in the conclusive section of the evaluation phase (Section 7.5).

Conclusion: In this conclusive phase, a comprehensive summary about how the research

questions were answered is provided in Section 8.1. The contributions of the research are

reported as follows (Section 8.2). The main artefact is presented together with its sub-artefacts.

The contributions to the practice and the body of knowledge are then presented. The two

contributions correspond to the two grey arrows in Figure 30 that from the design science

research go to the environment and the body of knowledge, respectively. To manifest that the

research adhere to a high quality design science research, aspects of this research work are

compared to the seven guidelines proposed in (Hevner et al., 2004) (Section 8.3). Limitations

of the research are presented together with the possible future work (Section 8.4).

74

Figure 30. Design Science Research (DSR) methodology applied in this research work. Adapted from Vaishnavi

and Kuechler (2004) and DSR cycles from Hevner (2007)

75

3.3.3 Case Study Research

According to Yin (2003), the case study research is an empirical inquiry that investigates the

case or cases by addressing the “how” or “why” questions concerning the phenomenon of

interest. Robson (2002) defines the case study as “a strategy for doing research which involves

an empirical investigation of a particular contemporary phenomenon within its real life context

using multiple sources of evidence”. This definition is in line with what Yin (2003) defines as

a case, i.e. “a contemporary phenomenon within its real life context, especially when the

boundaries between a phenomenon and context are not clear and the researcher has little control

over the phenomenon and context”.

The case study strategy allows gaining a rich understanding of the context of the research

(Yin, 2003), and is often used in explanatory and exploratory research (Saunders et al., 2019).

Yin (2003) suggests adopting multiple cases over a single case. This contributes to the

generalisation of the findings. Yin (2003) also defines the unit of analysis for a case study

strategy: holistic vs. embedded. A holistic design requires one unit of analysis, whereas an

embedded design requires multiple units of analysis.

Yazan (2015), in a comparison among most influential case study strategies in social

science research, stresses the different positions related to design approaches. Whereas Yin

(2003) suggests a tight and structured design for case study strategies, Stake (1995) promotes

a flexible design allowing the researchers to make changes midway of conducting the research.

According to Stake (1995), in an initial design, pointing out issues and issue questions are

sufficient, which then to research questions. In contrast, Yin (2003) advices to rigorously

design a case study comprising of the following five proposed components:

1. question(s): represent the queries that the case should address;

2. proposition(s): it highlights the issues that should be examined within the scope of the

case study;

3. unit(s) of analysis: it specifies what should be analysed elucidating what the case is; it

is related to the way the research questions are defined;

4. logic linking the data to the propositions: anticipates the possible steps involved in the

data analysis (e.g. pattern matching);

5. criteria for interpreting the findings: different patterns are sufficiently contrasting such

that findings can be interpreted alluding to at least two rival propositions.

Yin (2003) suggests that the five components are cohesive to and consistent amongst each

other. Before commencing data collection, Yin (2003) suggests to review the relevant literature

and include theoretical propositions regarding the case under study.

The employed data collection techniques to create a case may vary or merge, e.g.

interviews, observation, documentation, questionnaires and physical artefacts (Saunders et al.,

2019; Yin; 2003). The analysis of data then “consists of examining, categorizing, tabulating,

testing, or otherwise recombining both quantitative and qualitative evidence to address the

initial propositions of a study” Yin (2003). According to the author, there are five dominant

techniques for data analysis: pattern matching, explanation building, time-series analysis,

program logic models, and cross-case synthesis.

Finally, in order to maintain the quality of the investigation, Yin (2003) suggests to measure

the case with respect to four criteria namely:

1. Construct validity: through the triangulation of multiple sources of evidence, chains of

evidence, and member checking. Similarly, in (Saunders et al., 2019) the authors stress

76

the triangulation of multiple sources of data, which aim at ensuring credibility of data

collection.

2. Internal validity: using one of the above-mentioned techniques for data analysis (e.g.:

explanation building or pattern matching). According to Merriam (1998), the internal

validity can be improvised by triangulation, member checks, long-term observation,

peer examination and participatory research.

3. External validity: through analytic generalization. As mentioned above, the adoption of

multiple cases contributes to the generalization.

4. Reliability: through case study protocols and databases. Reliability can also be ensured

for strategies for triangulation such as data source triangulation (Stake 1995; Yazan

2015).

3.3.4 Case Study Research in this Research Work

In this sub-section, the design of the case study strategy adopted in this research is described.

Following the suggestion of Yin (2003), our proposed case study strategy includes the creation

of two cases (multiple case) as well as focuses on one unit of analysis (holistic design). The

five components suggested by Yin (2003) are applied in the design of the two cases:

1. Questions: the first research question (RQ1) is addressed in both cases: What are the

problems that hinder agility in domain-specific adaptations of enterprise modelling

languages?

2. Proposition: as suggested by Yin (2003), relevant literature has been reviewed and is

described in Chapter 2. Each case created a DSML by following the AMME Lifecycle.

Findings from the literature review have shown that the AMME Lifecycle is the most

suitable methodology. Namely,

o it allows creating DSML through domain-specific adaptations,

o it is wide-spread, and

o it embraces agile principles. Research findings have also shown that a DSML

have not only the purpose of documenting knowledge but also automating

knowledge. Therefore, one case fell within the field of Knowledge Management

(KM) while the second one is extended to the field of Knowledge Engineering

(KE).

3. Unit of analysis: is the only unit of analysis and this is the language engineering

lifecycle, through domain-specific adaptations. Therefore, in order to raise the problems

hindering agility, the two cases are analysed by focusing on the language engineering

lifecycle of AMME.

4. Logic linking the data to the propositions: where explanation building and pattern

matching are used as techniques for data analysis. The former is used to present the

problems and to allude them to the data. Since a few activities of the creation of the two

DSMLs overlap, pattern matching is used to identify such problems afflicting the

creation of both DSMLs.

5. Criteria for interpreting the findings: that are consolidated and compared to the existing

theoretical ones.

77

In order to ensure the quality of the investigation, the four criteria proposed by Yin (2003)

are considered:

1. Construct validity: triangulation of data sources. Each case is constructed through

workshops with modelling and domain experts, relevant documentation and real-world

use cases from the respective application domains and literature review.

2. Internal validity: member checks and peer examination are used to ensure the internal

validity of both cases. Members and peers are from the project members (CloudSocket

for the BPaaS case and Patient-Radar for the Patient Transferal Management).

3. External validity: the external validity is ensured by the publications in conference

proceeding made for each of the two cases. Additionally, the multiple case

considerations ensure the generalization of the findings.

4. Reliability: the triangulation of different data sources ensures the reliability of each

case.

3.4 Methodological Choice – Layers 4

This sub-section presents the last two layers of the research onion that (according to Saunders

et al. (2019)) have the purpose of designing the research: (1) the methodological choice for

both collecting and analyzing data and (2) the time horizon. Below, the methodological choice

is described first.

The methodological choice refers to the way one may combine data collection techniques

and data analysis procedures. One significant distinction in the collection techniques and

analysis procedures is about their focus on either numeric (quantitative) or non-numeric data

(qualitative). Any data collection technique or data analysis procedure that is quantitative

generates or uses numerical data. An example is the survey technique from which results can

be subject to statistical methods. In contrast, any qualitative data collection technique or

analysis procedure generates or uses non-numerical data, i.e. words or phrases. An example is

the interview technique from which results can be categorised. A qualitative research is,

therefore, rather concerned with rich data including opinion, description and personal accounts.

According to Saunders et al. (2019), there are mainly three methodological choices that can

be considered to answer each research question: mono-method, mixed-method and multi-

method (see picture Figure 31). The mono-method refers to a single (qualitative or quantitative)

data collection technique and corresponding analysis procedures. In contrast, both mixed-

methods and multi-methods use more than one data collection techniques and analysis

procedures. When more than one quantitative data collection techniques are adopted, the multi-

methods design refers to multi-method quantitative studies. On the other hand, if the multiple

data collection techniques are qualitative, the methodological choice is called multi-method

qualitative studies. Moreover, in multi-method studies, the type of procedures used for data

analysis (i.e. qualitative or quantitative) must correspond to the same type chosen for the data

collection. This implies, a qualitative data collection cannot be associated with a quantitative

analysis of data. It becomes rather the case of mixed-methods in which qualitative and

quantitative techniques and procedures are mixed up.

78

Saunders et al. (2019) suggest that the philosophical underpinning of a research work

provides a direction towards an appropriate methodological choice. In philosophies such as

interpretivism and positivism the methodological choice is narrowed into either qualitative or

quantitative techniques, respectively. This is different in pragmatism (the philosophical stance

of this research – see Section 3) where the methodological choice is driven by the research

problem and questions. The range of methods, thereby, varies from qualitative or quantitative;

mono, mixed or multi methods.

According to Tashakkori and Teddie (2003), the adoption of multiple methods creates

better opportunities to answer research question(s) than mono methods. The main advantage

of the use of multiple data collection methods is that it increases the trust in the research

findings (Tashakkori & Teddie, 2003). An examination of 232 social science articles conducted

by Bryman (2006), skimmed down to the result that the adoption of multiple methods creates

a wealth of data way above the researcher’s expectations.

Whereas quantitative multi-methods are more appropriate for deductive research

approaches, qualitative multi-methods are typically used for inductive approaches and problem

solving (Klein & Myers, 1999; Kaplan & Maxwell, 2005). Klein and Myers (1999) suggest

qualitative methods to attain a deep understanding of the phenomenon under study.

As described in Section 3.2, this research is characterized by an inductive approach.

Moreover, the main research question can be answered only after the following deep

understandings are achieved:

- the way domain-specific adaptations are performed to create domain-specific modelling

languages – from this understanding problems in the practice of domain-specific

adaptations can be derived.

- the relevant domain-specific adaptations in industries – from this understanding needs for

domain-specific adaptations can be derived.

Therefore, the methodological choice in this research falls into the qualitative multi-

methods. In order to corroborate the research findings, a triangulation approach is adopted, in

which more than two independent sources of data are considered as well as more than two data

collection methods. According to Saunders, et al. (2019), a triangulation approach helps

ensuring credibility of data, i.e. that “the data are telling you what you think they are telling

you” (Saunders et al., 2019). The specification of the data collection techniques and data

Figure 31. Methodological choices (adapted from Saunders et al. 2019)

79

analysis procedures belong to the “tactics” of the research onion (i.e. layer 6) and therefore are

described in the next sub-section.

3.5 Time Horizon – Layer 5

The last aspect of the research design is concomitant with time horizons. According to

Saunders, et al. (2019), time horizons can be distinguished between cross-sectional and

longitudinal approaches. The cross-sectional studies refer to “a particular phenomenon (or

phenomena) at a particular time” (Saunders et al., 2019). Most research projects are cross-

sectional as they are time constrained. In contrast, longitudinal refers to the studies conducted

over a long period of time in which the phenomenon (or phenomena) is investigated at multiple

time points.

Since this research is about investigating a phenomenon within a constrained time period,

it is essentially a cross-sectional study.

3.6 Data Collection and Data Analysis – Layer 6

As afore-mentioned, at the beginning of the chapter, the focal point is the way to answer

research questions and what data are collected as well as how data are analysed. In the research

onion of Saunders et al. (2019) the specifications of these aspects falls under the last layer. In

the following, the focus is first on data collection techniques and then on analysis procedures.

Data can be distinguished between primary and secondary. For both the types a qualitative

or quantitative method can be adopted. Primary data refers to data collected by the researcher

himself or herself. Hox and Boeije (2005) assert that the primary data are “collected for a

specific research problem at hand, using procedures that fit the research problem best”. On

the other hand, the term secondary data refers to data that are collected by someone else and

can have a different research goal, a different research question or, a different context, thus it

is a data that already exists. Qualitative secondary data can be existing documents, transcripts

or models.

Hox and Boeije (2005) argue that for secondary data with qualitative nature their easy

access (i.e. lower costs and faster access) may come at the expenses of a difficult interpretation.

On the other hand, although the collection of primary data is costly and time consuming, they

are tailored to resolve the problem.

In this research work, primary and secondary data were collected qualitatively using

multiple independent data sources as well as techniques. As already mentioned in the previous

section, this is also known as a triangulation scientific approach, which helps acquiring a richer

understanding of the phenomenon under study and it enhances the trustworthiness of data, i.e.

credibility and validity (Saunders et al., 2019).

The triangulation occurs on two dimensions: source triangulation and method

triangulations. Source triangulation refers to different data sources from different time

horizons or different data capturing settings, while method triangulations refer to multiple data

collection techniques (Patton, 2015).

In this work, the two triangulation dimensions were first employed to support the case study

research (see Sub-section 3.3.4), and hence to answer the first research question RQ1: What

are the problems that hinder agility in domain-specific adaptations of enterprise modelling

languages?

The objective is to derive a list of problems that hinder agility when performing domain-

specific adaptations on modelling languages as well as setting the challenges. For this, two

DSMLs were created to increase understanding of how domain-specific adaptations are

80

performed. The following data collection aspects were therefore considered (see also right

hand-side of Figure 32):

- Source triangulation: (1) project partners with domain expertise; (2) project-related

documentation (including real-world use cases) from both projects CloudSocket and

Patient-Radar; (4) theories.

- Triangulation methods: (1) interviews (2) focus group (3) literature review.

The two triangulation dimensions are further employed to spread the awareness of problem

phase of the design science research. In particular, the data collection should support the

objective of conceiving a set of requirements to be fulfilled by the new artefact (see left hand-

side of Figure 32). To ensure credibility each requirement was crossed-supported by the

triangulation among problems (identified by analysing the two cases), needs (identified by

interviewing the modelling experts) and literature. Since the two cases are independent from

each other they can be considered as two separate data sources. The needs for domain-specific

adaptations are identified by answering to RQ2: What are the needs for domain-specific

adaptations of enterprise modelling languages?

As a result, the following data collection aspects were considered (see also Figure 32):

- Source triangulation: (1) Patient Transferal Management application domain, (2) Business

Process as a Service application domain, (3) modelling experts, and (4) theories.

- Triangulation methods: (1) case study; (2) interviews; and (3) literature review.

The details about the source triangulation adopted in the case study research and the design

science research are provided in Sub-sections 3.6.1 and 3.6.2, respectively.

Three of the four considered data collection techniques (1. literature investigation, 2. expert

interviews and 3. focus group) were considered as the three principal ways of conducting

exploratory research (Saunders et al., 2019). Respectively, in Sub-sections 3.6.3, 3.6.4.1 and

3.6.4.2 the three triangulation methods are further elaborated with theoretical background. The

case study was already described in Sub-section 3.3.3.

81

3.6.1 Source Triangulation in the Case Study Research

For the first case (i.e. Patient Transferal Management) the following data sources were

considered:

- Partners of the project Patient-Radar were: physicians, transferal managers and process

modelling experts. The project facilitated the interaction with the experts.

- Documentation:

o Project-related standards (secondary data) - DefReha© (Gli Ospedali Svizzeri,

2017), International Classification of Functioning, Disability and Health (ICF)

standard (World Health Organization, 2016) and International Statistical

Classification of Diseases and Related Health Problems17 (ICD-10).

o Documents developed during the project (primary data) are retrievable in

Appendix A: Patient Transferal Management.

17 http://apps.who.int/classifications/icd10/browse/2016/en

Figure 32. Source triangulation and method triangulation employed in this research

82

- Related scientific work (secondary data) - see Sub-section 4.1.3.

For the second case (i.e. Business Process as a Service) the following data sources were

considered:

- Partners of the project CloudSocket namely: business process managers, cloud

computing experts and cloud brokers. The project facilitated the interaction with the

experts.

- Documentation:

o Project-related standards (secondary data) - APQC Process Classification

Framework (APQC 2014) and Cloud Service Level Agreement Standardisation

Guidelines (EC Cloud Select Industry Group (C-SIG), 2014).

o Deliverables produced during the project (primary data) are retrievable in

Appendix B: Business Process as a Service.

- Unstructured interview with the industrial project partner Mathema18 (primary data) -

an Italian company operating in the IT field since the 1987 and expert in supporting

SMEs – to identify appropriate Cloud solutions. The interview had the purpose to

increase understanding on how to ask business-like questions to retrieve Cloud

solutions. The results of the interview are retrievable in Appendix B: Business Process

as a Service, folder B7 while the consolidated result is reported in Sub-section 4.2.6.5.

- Data about cloud services were collected from four cloud marketplaces - Ymens19,

IBM20, Also21 and UK digital marketplace22 - (primary data) contributed to create the

non-functional requirements for Cloud solutions as well as real-world cloud services in

the ontology (see Sub-section 4.2.6.5).

- Related scientific work (secondary data) – see Sub-section 4.2.2. This includes the

analysis of 46 scientific papers (i.e. from 2009 to 2018) focusing on the description of

non-functional requirements of cloud services (see Sub-section 4.2.6.5).

3.6.2 Source Triangulation in the Design Science Research

As already mentioned at the beginning of the sub-section, different data sources were

considered in this research with the objective of conceiving a set of requirements to be fulfilled

by the new artefact. The data sources, thereby, are the following:

- One case targeting the Patient Transferal Management application domain (Section

4.1).

- One case targeting the Business Process as a Service application domain (Section 4.2).

- Modelling experts, who were interviewed to identify the needs for domain-specific

adaptations of modelling languages in the industry. Sub-section 4.4.2 describes the

technique used for the semi-structure interview as well as the results. The interview had

a second part from which the tentative design of the artefact was introduced. Namely,

a set of operators for the agile meta-modelling was presented. The results from the

second part of the interview, therefore, helped to refine the set of operators (see Sub-

18 https://www.mathema.com/
19 http://www.ymens.ro/en/frontpage
20 www.bluemix.net
21 www.alsocloud.ch
22 https://www.digitalmarketplace.service.gov.uk/g-cloud

83

section 5.1.6.1). In turn, the interview also contributes to answer the third research

question (RQ3: How can agility be fostered when performing domain-specific

adaptations of modelling languages?). The data sources for the results of both parts of

the interview can be found in Appendix C: Modelling Expert.

- Theories – relevant literature was considered to buttress the list of requirements

conceived at the end of the awareness of problem phase (see Sub-section 4.4.5).

3.6.3 Literature Review

The literature review helps to determine the state-of-the-art field of study (Mouton, 2001). This

serves to generate and refine the research ideas. Hence, the more the literature is recent and

credible (i.e. retrieved from reliable sources) the better. However, according to Saunders et al.

(2009) the literature review aims at not just identifying but also critically reviewing the existing

literature in a particular area of interest. The critical stance aims at ensuring validation of the

literature which is fundamental to support the research question(s). For these reasons the

literature search is an activity that starts early in a project research and continues along with

the whole project’s lifespan. The interested reader can find an extensive discussion about the

literature review process as well as suggestions on how to conduct a critical review in (Saunders

et al. 2009).

Saunders et al. (2009) identify two precise purposes of conducting literature review. One

is of adopting a deductive approach, where theories and ideas are identified and tested by using

data. The other is of adopting an inductive approach, where data are explored and a body of

knowledge of the subject area of interest is created.

Gall et al. (2006), list some other purposes for conducting literature review. Among others,

literature review helps researchers to refine the research question(s) and objectives. It helps to

discover explicit recommendation for further research. It avoids repeating work that has been

done already by someone else. Finally, it helps to discover insights into research approaches,

strategies and techniques that may be appropriate to address the research question(s) and

objectives.

Chapter 2 presents an exhaustive literature review, organised according to the relevant

topics of this research work. As mentioned in Sub-section 3.3.2, additional literature was

investigated to support the different phases of the design science research cycle: awareness of

problem, suggestion, development, evaluation and conclusion.

3.6.4 Interviews

According to Kahn and Cannell (1957) interviews are purposeful discussions among people.

This data collection technique is well-known to provide valid and reliable data that is beneficial

to address research question(s) and objectives. An interview enables the researcher to get a

close contact with interviewees, creating environments for welcoming opinions and

suggestions, which enrich the data collection (Shneiderman & Plaisant, 2004). There exist

several types of interviews. According to Saunders et al. (2009) three categories can be

distinguished, i.e. structured interviews, semi-structured interviews and unstructured (or in-

depth) interviews and focus groups. Based on the work of Healey and Rawlinson (1994), each

of these type can be further distinguished as either standardized or non-standardized typologies.

While structured interviews are considered as being standardized and often referred to as

quantitative data collection, the semi-structured, unstructured interviews and focus groups are

non-standardised and referred to as qualitative data collections (King, 2004). Saunders et al.

84

(2009) suggest adopting the type of interview according to the research question(s), objectives,

the purpose of the research and the adopted research strategy.

In this work, unstructured, semi-structure interviews and focus groups are employed. In the

following, these three data collection techniques are further elaborated together with their

strengths and weaknesses. At the end of each Sub-section the data collection technique is

contextualised to this research work.

3.6.4.1 Unstructured and Semi-Structured Interviews

Unstructured interviews are informal, one-to-one interviews using which researchers can

explore in depth the area of interest by asking open-ended questions to the participant (Robson,

2002). These do not follow any fixed protocol with predetermined list of questions like it is for

the structured interviews and partially for the semi-structured interviews. However, aspects to

be explored must be clear to the interviewer. This type of interview embeds a high degree of

freedom, which allows collecting a rich and detailed set of data. According to Saunders et al.

(2009), the interview is usually guided by the interviewee’s perception. The latter are likely to

lead the discussion into not previously considered areas, but which are relevant for the

understanding of the particular research topic, and thus helps addressing the research

question(s) and objectives.

In the semi-structure interview, the researcher has a list of questions to be covered and these

may vary from interview to interview (Saunders et al., 2009).In other words, depending on the

relation between the context and the research topic, some questions may be omitted. Depending

on the flow of the conversation, the order of the questions may shuffle. Questions that were not

foreseen beforehand may be required to explore the topic under investigation. Saunders et al.

(2009) suggest using techniques of audio-recording or note taking during the conversation

because the nature of the questions and the ensuing discussion.

Saunders et al. (2009) suggest conducting unstructured and semi-structured interviews via

face-to-face meetings, phone calls or internet such as email, internet forums or chat rooms.

Each one of them has some advantages and disadvantages, like for instance in an early stage a

phone call could result to be more appealing than a face-to-face meeting due to financial,

resources and time reasons. However, the latter allows building a better personal relationship

between interviewer and the interviewee which (if appropriate) increases the quality of data

and ensures a better response rate. Despite the rich data that can be gathered via unstructured

and semi-structured interviews, the way of interacting with subjects and asking questions is

crucial to determine a good quality of data (Silverman, 2007). Hence, it is up to the

interviewer’s skills to ensure quality in the collected data, which enables him/her responding

the research questions. Saunders et al. (2009) identify three issues related to the quality of data

when using non-standardized interviews, i.e. reliability, forms of bias, validity and

generalizability of data. Silverman (2007) associates the reliability issue with the retrieved

information being independent from the interviewer; in other words repeating the same

interview with a different interviewer should result with similar data. Saunders et al. (2009)

link the reliability issue with forms of bias in the sense that interview’s responses’

interpretation or presumptuous inclination may result in bias data, hence reducing reliability of

the collected data. Also in this context validity of data is threatened since it is characterized by

the way a researcher extrapolates knowledge from interviews. Saunders et al. (2009) suggest

that in order for the data to have a high level of validity, questions should be clarified, meanings

of answers should be investigated, and topics should be discussed from several facets. Finally,

the generalizability (or transferability) issue is given by the small number of cases that the

qualitative nature of the study imposes. In this case, the researcher should promulgate that

his/her findings apply on a broader spectrum. This can refer to settings of a case that can be

85

extended to a larger scale as well as can prove that findings advance existing theoretical

propositions (Marshall & Rossman, 1999).

In this work the performed interviews were the following:

- Two unstructured interviews in each of the created case. Details are reported in Sub-

section 3.6.1.

- Semi-structure interviews to modelling experts. Details are reported in Sub-section

3.6.2.

3.6.4.2 Focus Groups

Focus groups are effective and well-established methods to evaluate an artefact in design

science research (Stewart et al., 2007). According to Hevner and Chatterjee (2010) focus group

methods are adopted on one hand to refine the artefact design (also known as exploratory focus

group “EFGs”), and on the other hand to establish the utility of the artefact in the application

field (also known as confirmatory focus group “CFGs”). A focus group comprises of a

discussion of a topic, generally up to two hours, among 6-12 people under the direction of a

moderator. As the term “focus” suggests, questions should be addressing a small number of

concerns. Hevner and Chatterjee (2010) state that focus groups are utilized as a source of

primary data in basic and applied behavioural disciplines such as health sciences, sociology,

management, and organizational behaviour. Recently, it has become much relevant in

Information Systems research (Baker & Collier, 2005) as well as in software engineering

(Kontio, Lehtola, & Bragge, 2004). Krueger and Casey (2000) believe that in focus groups

people interact and influence each other, therefore focus groups provide more natural settings

than individual interviews. In such an environment shared understandings and individual

differences of opinion are raised. As Stewart et al. (2007) suggest, there persists additional

advantages to adopt focus group as an evaluation technique for design science research. Among

others, focus groups are flexible as they can handle a broad spectrum of design topics and

domains, they create a direct interaction with respondents, and they provide a large amount of

rich data. Finally, focus groups allow building on other respondent’s comments which

(according to Stewart et al. (2007)) might be missing with individual interviews. From this

aspect new issues regarding the proposed artefact may arise.

There are no ordained steps to define and design focus groups. Authors like Hevner and

Chatterjee (2010) suggest certain steps, however, the ultimate determination of the these steps

depends only on the research intent.

In this research work, a focus group was executed to evaluate only the first DSML

developed within the Patient Transferal Management application domain. For the second

DSML, it was not necessary as feedback were continuously provided by the project consortia

on each new version of the DSML. As mentioned in Sub-section 3.6.1, the focus group

(including the design in line with the research intent) is described in Sub-section 4.1.6.4 and

the data source is reported in Appendix A: Patient Transferal Management, folder A11.

3.6.5 Data Analysis

The objective of data analysis in qualitative research is to create an understanding and

interpretation of the collected data, which contribute to answer the research question(s)

thoroughly (Newton, 2012; Merriam, 2009; Saunders et al., 2009; Kaplan and Maxwell, 2005).

Maxwell (2013) states that analysis of data commences at the beginning of a research and

concludes with the research findings. According to various authors, such as Merriam (2009)

and Kaplan and Maxwell (2005), qualitative data collection and analysis take place

86

simultaneously. It is an on-going activity that makes sense of any piece of data just as it comes

in. Newton (2012) refers to this as a process of “organization, reduction, consolidation,

comparison, and reconfiguration”. Agar (1980) describes it as follows:

“you learn something (“collect some data”), then you try to make sense out of it

(“analysis”), then you go back and see if the interpretation makes sense in light of new

experience (“collect more data”), then you refine your interpretation (“more analysis”), and so

on. The process is dialectic, not linear”.

According to Saunders et al. (2009) the qualitative data analysis techniques assist

researchers to develop theory from data, which best suits the inductive research approach. The

inductive approach (see Section 3.2) sets forth by collecting data which are then interpreted to

determine what subsequent themes to focus on. This process leads to the construction of theory

(Glaser & Strauss, 1967). Yin, (2003) argues that difficulties arise if data are not analysed as

they are collected. Although data collected with qualitative techniques are rich in meaning, it

is likely to deteriorate over time unless it leaves the researchers’ heads and takes another useful

form. This would lead to a distorted outcome, which according to Yin, (2003) fails the purpose

of data analysis. To assist in this collection-analysis process, some authors suggest qualitative

analysis techniques such as summarising (condensation) of meanings (Saunders et al., 2009),

coding (Myers, 2009), and analytical memos (Kvale, 1996). Saunders et al. (2009) suggest

developing a sort of conceptual framework with the result of each qualitative analysis. The

conceptual framework can then guide the data collection follow up and analysis sessions.

Condensation and analytical memos were used in this research work as qualitative analysis

techniques and are briefly described below.

3.6.5.1 Condensation

Condensation or summarising of meanings “involves condensing the meaning of large amounts

of text into fewer words” (Saunders et al., 2009). As soon as the researcher starts summarising

information, he or she is already in the process of analysing data. This process let emerge; the

relevant themes from the conducted interview and the route of exploring these in the upcoming

data collections. Additionally, this technique allows identifying relationships between themes,

upon which theories can be developed (Kvale, 1996).

In this work, the collected data (including their meaning) from interviews and

collaborations with project members were transcribed in documents or Power-Point

presentations in the form of a written summary or conceptual model. Power-Point presentations

were mainly used to store information from collaboration as one could quickly draw

meaningful sketches. Documents created from unstructured, semi-structured and focus group

interviews were all acknowledged by the subjects and sometimes even completed with

additional remarks. As mentioned in Sub-section 3.6, available documents pertaining to the

application domain and therefore relevant to increase understanding were also considered as

data source. This qualitative analysis of data from multiple sources (i.e. triangulation) allowed

acquiring a richer understanding of the phenomenon under study.

3.6.5.2 Analytical Memos

According to Kaplan and Maxwell, “an analytical memo is anything that a researcher writes in

relationship to the research, other than direct field or transcription” (2005). Analytical memos

can be set out informally. They can also take forms of written comments to attach on

transcript(s), either notes about an idea concerning the research or a complete essay. Their

purpose is to facilitate reflection, an analytical insight to a researcher and apply any

manipulation on them (Strauss & Corbin, 2015).

87

Saunders et al. (2009) argue that memos should be written while engaging in interviews,

while interviews are written and/or transcribed, while data are categorised and refined, while

studying organizational documents, while writing the research project and so forth.

The memo is considered to be an important analysis technique, and as Wolcott (2001)

suggests it should be produced prior to the commencement of the research. Miles and

Huberman (1994) add that it is helpful to write down the date for each memo and if they are

grounded in data, to associate them to the data source. When necessary moms can also be

categorised and used in the coding process (Saunders et al., 2009).

In this work analytical memos are applied on the collected data and combined with the

condensation technique.

3.6.6 Ethics of the Research

All participants involved in data collection activities of this research work volunteered and

have signed the consent. The Faculty Committee for Research Ethics and Integrity of the

University of Pretoria has granted approval for the application with reference number

EBIT/11/2018. Therefore, this research study meticulously adheres to the ethics of The

University of Pretoria.

3.7 Concluding Summary

This chapter described the scientific procedure that manoeuvres this research work. The

relevant aspects of this procedure was supported by the ‘research onion’ proposed in (Saunders

et al., 2009; Saunders et al., 2019). A layer of this research onion comprises of certain stances,

each of which has been buttressed by a theoretical background. The philosophical underpinning

of this research work is pragmatism and the research approach is inductive. A case study

research supplements the main research strategy of this work, namely design science research.

The multi-method qualitative research conducted is characterized by a triangulation approach,

which corroborate the research findings and is employed on both data sources and methods to

amplify the reliability of data, in terms of credibility and validity. Details on employed data

collections techniques and data analysis procedures were described and are tailored to the

research questions and objectives.

88

4. PROBLEM RELEVANCE AND CASES

89

This chapter addresses the research questions RQ1 and RQ2:

(RQ1) What are the problems that hinder agility in domain-specific adaptations of

modelling languages?

(RQ2) What are the needs for domain-specific adaptations of modelling languages?

The answers to the two research questions contribute to the first phase of the design science

research (DSR) approach, which is the Awareness of Problem phase (see Sub-section 3.3.2).

Specifically, in order to answer RQ1, understanding of the addressed problems was

increased by embracing a case study research strategy. As already clarified in Sub-section 3.3,

the case study research supplements the main research strategy of this work, which is the

Design Science Research (DSR). The case design is reported in Sub-section 3.3.4 and follows

the guidelines of Yin (2003). Given higher benefits of multiple cases (see Sub-section 3.3.3),

two case studies have been created and analysed. Both cases follow the same case design,

which has the following proposition:

The creation of the DSML for each case follows the AMME Lifecycle methodology for

three main reasons, which were identified from the investigation of the literature (see Sub-

section 2.10.4). Namely, the AMME Lifecycle

- is the most advanced in incorporating agile principles.

- allows performing direct domain-specific adaptations of the meta-model.

- is widespread in the Enterprise Modelling research field, and it has already successfully

followed to develop other DSMLs.

To further increase the generalisation of findings, each case addresses a different

application domain:

- Patient Transferal Management (Section 4),

- Business as a Service (BPaaS) (Section 4.2).

As reported in the literature findings (see Sub-section 2.6.2), the type of knowledge

representation is a distinguishing factor for DSMLs. Namely, DSMLs are used for the human-

interpretable representation of knowledge (i.e. through the graphical models), but can also be

interpreted by machines, through ontologies. In order to enrich findings, the Patient Transferal

Management case focuses on the human interpretation of knowledge while BPaaS extends to

the machine-interpretability of knowledge. Moreover, both DSMLs were implemented with

ADOxx23 Development Toolkit (Fill & Karagiannis, 2013), which allows for the customisation

of meta-models (see Sub-section 2.8.2) and is widely adopted within the Enterprise Modelling

research community.

As the results of the case analysis, Section 4.3 reports a consolidated list of problems and

challenges to be tackled by the new agile meta-modelling approach.

Next, to answer research question RQ2, there was the need to understand the relevancy of

domain-specific adaptations in practice thoroughly. Therefore, interviews were conducted with

modelling experts from the industry, and results are consolidated in Section 4.4. A triangulation

among (1) the findings from the interviews (2) the lessons learned from the development of the

two DSMLs, and (3) literature review, led to conceive the requirements (Section 4.4.5) to

address by the new agile meta-modelling approach.

23 https://www.adoxx.org/live/home

90

4.1 Case 1: Patient Transferal Management

During the project Patient-Radar24 (Reimer & Laurenzi, 2014), it turned out that the standard

BPMN is not appropriate for modelling transferal management processes. Therefore, a DSML

for patient transferal management (DSML4PTM) was developed (Laurenzi at al. 2017). This

development gave the chance to analyse the issue from a practical perspective – in addition to

the theoretical findings. DSML4PTM focuses on the human interpretation of knowledge.

This case study is structured as follows; first, the motivation to create the DSML is

provided, then methodology AMME Lifecycle is shortly discussed. In remaining chapter,

different phases of AMME cycle are discussed.

Each phase is reported in a dedicated sub-section. Problems hindering agility of the

domain-specific adaptation are reported at the end of each phase.

4.1.1 Introduction and Motivation

Recent statistical findings released by Eurostat (2017) revealed that healthcare is still the main

expenditure in developed countries. Germany is leading the list among EU members with

current healthcare expenditure equivalent to 11.0% gross domestic product (GDP), while

Switzerland has an even higher expenditure with 11.4%. More increase is expected according

to World Bank (2014). And the governments are reacting to this situation by imposing pressure

on healthcare providers, especially on hospitals to lower the cost. However despite these tough

conditions, hospitals should provide a high quality of service (Lenz et al., 2012). Which is

only possible if processes and activities are as optimal as possible. This is a huge challenge due

to the complexity of the domain. Many structured and ad-hoc processes that involve a broad

range of crucial decisions typically can take place across organizations and among actors with

different expertise. One process that reflects such a complex environment is the so-called

transferal management process, also known as transitional care or hospital discharge

management or planning. Parry et al. (2008) defined transferal management as “a set of actions

designed to ensure the coordination and continuity of care received by patients as the transfer

between different locations or levels of care”. This set of actions, also called administrative

pathways, includes medical information and excludes the treatment of the patient, which is

referred to as clinical pathways (Lenz & Reichert, 2007). The Patient Radar Project (Reimer &

Laurenzi, 2014) addresses the issues mentioned above by enabling intersectoral collaboration

between acute hospitals and rehabilitation clinics, where (a) rehabilitative expertise is brought

early into the acute somatic treatment loop, and (b) demand for rehabilitation treatment is

needed as early as possible. Such collaboration takes place within the complicated settings of

the transferal management domain, where many domain experts are involved, i.e. from acute

hospitals, rehabilitation clinics, and health insurance for cost reimbursements.

In order to provide all the relevant concepts and decision types of the transferal

management application domain, a DSML was developed, called DSML4PTM. This DSML

offers graphical notations which are known to domain experts such as physicians and transferal

managers. This is done so that domain experts design and adapt models.

24https://www.fhsg.ch/en/projects/project/patient-radar-226/

91

4.1.2 Methodology

As depicted in Figure 33, the AMME Lifecycle (Karagiannis, 2015; 2018) (see also Sub-

section 2.10.4) was instantiated to create DSML4PTM. Each phase was considered except the

“formalize” phase, as it was not required from the application domain. Two types of

requirements were considered to create the DSML; first, the theory-based requirements (TBRs)

and second, the application domain-based requirements (ADBRs). The requirements were

considered in the initial phase “create”, see TBRs and ADBRs on the bottom-left-hand side of

Figure 33. Theory-based requirements refer to the requirements elicited from the knowledge

base of scientific foundations and experience. Mainly, existing DSMLs in the healthcare that

are built through domain-specific adaptations are considered to derive the TBRs (see Section

4.1.3). This approach provides the theoretical foundation for the design of DSML4PTM.

Workshops with modelling and domain experts were conducted to ensure relevancy of the

DSML4PTM in the application domain. Further on, hospital-related documentation and health

care standards were also considered. All this knowledge was used to derive the application

domain-based requirements.

Each instantiated phase of the AMME Lifecycle is briefly and elaborated below.

- Create phase: This phase aims to increases understanding of the application domain and

relevant scientific theories (Sub-section 4.1.3). On one hand, existing domain-specific

adaptation approaches that studied DSMLs in healthcare are investigated. From this

investigation, theory-based requirements (TBRs) are derived. Further on, understanding is

deepened by analysing the application domain. From this activity, the domain-based

requirements (ADBRs) are derived.

Figure 33. Instantiation of the AMME Lifecycle (Karagiannis, 2015; Karagiannis, 2018) for creating

DSML4PTM

92

- Design phase: This phase deals with the conceptualization of the meta-model (Sub-section

4.1.4). For this, both requirements TBRs and ADBRs elicited in the previous phase are

addressed

- Development phase. This phase deals with the development of the DSML4PTM (Sub-

section 4.1.5). The meta-model conceptualised in the previous phase is implemented in the

ADOxx Development Toolkit, i.e. meta-modelling tool. Each new modelling construct is

implemented with a new graphical notation.

- Deploy/Validate phase. The deploy/validate phase deals with the deployment of the

modelling language in a modelling tool as well as evaluation of the modelling language

and models (Sub-section 4.1.6). That is first, the developed DSML4PTM is deployed from

the meta-modelling tool into an ADOxx-based modelling tool. The modelling language

was then used in the modelling tool for evaluation purposes. The evaluation of

DSML4PTM was performed (1) Concerning the elicited requirements; (2) by modelling

both the reference model and application scenario created in the awareness of the problem

(3) by conducting a focus group with modelling and domain experts. In the focus group,

models had to be adjusted by both domain and modelling experts. This activity was used

to evaluate the perceived usefulness and cognitive effort of the created DSML4PTM. From

this phase feedback generated loop back to the first phase.

As shown in the AMME Lifecycle in the intertwining of phases was considered to inject

agility in the development of the DSML.

4.1.3 Create Phase

This section describes the instantiation of the Create phase of the AMME Lifecycle. First,

literature is investigated to derive theory-based requirements. After that, the domain analysis

is performed from which application domain-requirements are elicited.

4.1.3.1 Theory-based Requirements (TBRs)

The DSML4PTM focuses on administrative pathways of the patient transferal management. At

the time of conducting the project Patient-Radar there was no DSML with the purpose of

modelling administrative pathways at general level and neither specifically for the patient

transferal management.

However, several DSMLs exist in healthcare. It is increasingly common to support experts

such as physicians (or other hospital personnel) with domain-specific models that conceptualise

an underlying reality. Most recent works mainly focus on modelling clinical pathways (CPs),

which include treatment activities, e.g. (Burwitz et al. 2013; Heß et al. 2015; Herzberg et al.

2015; Braun, Schlieter, et al. 2015; Braun et al. 2016).

Other DSMLs in healthcare were developedto model:

- Intraoperative surgical workflows in operating rooms (Neumann et al., 2016);

- Communication aspects within hospitals for hospital personnel (Wu et al., 2012);

- Business process knowledge of healthcare workers (Jun et al., 2009);

- Patient’s treatment protocols and guidelines (Mathe et al., 2009);

- Electronic Patient Care Records (ePCR) (Shenvi et al., 2007).

Relevant DSMLs for this work were selected. The relevance is based on the following

criteria:

93

- The healthcare application domain of the DSMLs;

- The creation of a DSML through adaptation of the meta-model;

- The successful development and or use of the DSML either in research or in industry.

Each selected work was analysed with respect to the following three questions:

- What are the needs for the development of a DSML?

- What are the procedures for designing a DSML?

- How does the resulting DSML look like?

The analysis increased awareness of what needs lead to the creation of a DSML and how

DSMLs are commonly developed in healthcare. The gained knowledge provides the theoretical

foundation underpinning the design of our DSML.

The selected DSMLs are elaborated in coming Sub-sections. The sub-section ends with the

list of relevant notions from the analysed DSMLs. These notions set the basis for the theory-

based requirements (TBRs).

4.1.3.1.1 CP-Mod

Burwitz et al. (2013) present a dedicated DSML to model clinical pathways. The need for the

domain-specific adaptation was due to the inability of existing modelling languages to model

all the relevant aspects of clinical pathways. The relevant aspects were grouped into three main

categories: (a) evidence-based medicine and decision support, (b) the classification of different

treatment alternatives, (c) time events and waiting periods.

The engineering approach follows the following steps:

1. Elicitation of requirements;

2. Comparison of requirements with respect to concepts of existing modelling languages;

3. Aspects of existing modelling languages that fulfil the formulated requirements are

considered as baseline;

4. Direct adaptation of the meta-model to accommodate the new requirements (i.e.

domain-specific adaptations);

5. Abstract syntax and concrete syntax of the DSML are developed in the CASE-Tool;

6. The evaluation of the DSML is done by:

a. showing that all the formulated requirements are fulfilled,

b. demonstrating the modelling of the wisdom tooth treatment scenario.

Burwitz et al. (2013) elicited the following four requirements:

- “Requirement R1. A language for modelling clinical pathways should provide the

basic concepts of the medical business process modelling (patient state, treatment

step, decision, process flow) and the ability to integrate information objects and

responsibilities.”

- “Requirement R2. A language for modelling clinical pathways should provide

concepts for describing indefinite order relations as well as compulsory parallel

relations between treatment steps and iterating treatment steps.”

- “Requirement R3. A language for modelling clinical pathways should provide

concepts for describing evidence-class of any recommendation and linking the

94

source of evidence. Additionally, a concept to describe evidence-based decision is

required”.

- “Requirement R4. A language for modelling clinical pathways should provide

concepts to describe temporal dependencies and explicit time events.”

Figure 34 shows the table created in Burwitz et al. (2013) that evaluates whether a

requirement is met, partially met or not met with a modelling approach. For example, see

aspects of the requirement R3, which were mainly not met.

Some basic concepts were taken from existing modelling languages, e.g. Clinical

Algorithm notation and BPMN (lane concepts to define responsibility roles). These concepts

were adapted, whereas other concepts were built from scratch to create a new DSML called

CP-Mod. As an example, Figure 35 shows a meta-model excerpt from CP-Mod that fulfils

requirement R3.

Figure 34. Compliance of requirements of the modelling approaches (Burwitz et al., 2013)

95

Figure 36 shows a model developed with CP-Mod.

Figure 35 CP-Mod meta model excerpt – Evidence-based Decision and categorised Action (Burwitz et al., 2013)

Figure 36. CP model using CP-mod (Burwitz et al., 2013)

96

4.1.3.1.2 DSML4CP

Similarly, Heß et al. (2015) evaluated several modelling approaches with respect to the

gathered requirements in the CPs domain. None of the existing approaches fully satisfied the

requirements. Although CP-Mod was among the most appropriate candidates, it was excluded

due to its inability to represent relevant aspects of hospitals as organisations. The latter were

fulfilled by the MEMO OrgML, which is the main motivation for choosing it as a baseline for

domain-specific adaptations. In result the authors developed DSML4CPs, with a special focus

on oncology.

The design of DSML4CP was underpinned by the method proposed in (Frank 2013a; Frank

2010) (see Figure 23). The authors went through the following seven steps:

1. Clarification of scope and purpose;

2. Analysis of general requirements;

3. Derivation of specific requirements using a set of scenarios;

4. Specification of abstract syntax;

5. Provision of a graphical notation;

6. Implementation of both abstract syntax and graphical notations in the MEMO’s

modelling tool MEMOCenterNG (Gulden & Frank, 2010);

7. Evaluation with respect to the application of the DSML4CP.

Like in the previous DSML, requirements were elicited and then compared to the possible

modelling languages to adopt. Figure 37 shows the comparison and for each requirement Heß

et al. (2015) indicated whether it is fulfilled, partially fulfilled or not fulfilled at al by the

modelling languages.

Figure 37 Compliance of requirements of the modelling approaches (Heß et al., 2015)

97

Figure 38 shows an excerpt of the meta-model of DSML4CP, which extends MEMO

OrgML. For example, the top-left of the figure depicts the three concepts identified in the

requirement R3, i.e. Evidence Classification System, Level of Evidence and Grade of

Recommendation (see classes with headers in grey colour).

Figure 38. Meta-model excerpt of DSML4CP (Heß et al., 2015)

98

Finally, Figure 39 depicts a model built with DSML4CP.

4.1.3.1.3 BPMN4CP

Braun et al. (2015) also faced the challenge to model Clinical Pathways (CPs). However, their

focus was more into modelling the sequence flow of CPs. Therefore, the authors decided to

perform domain-specific adaptations over BPMN. The authors also motivate the choice of

adapting a modelling language like BPMN by stressing the benefits from the combination

between a standard language and domain-specific aspects, i.e. widely established semantics

and higher expressivity, respectively. As an additional argument, the authors claim that the

model usage of dedicated DSML is limited from the tool chain in the DSML-world. That is, a

dedicated DSML always requires its dedicated modelling tool to be used. In contrast, DSML

that originate from modelling standard are better supported by existing tools and by capabilities

for the model interchange. Therefore, in contrast to the previous two works, which tend to

increase method pluralism (Becker, 2014; Loos et al., 2013). Braun et al. (2015) suggest to

focus on (one or more) modelling standards, from which adaptations should be performed.

The development of the DSML followed the DSR methodology of Vaishnavi and Kuechler

(2004). Additionally, to ensure standard-conform BPMN extensions the authors rely on the

model-transformation based procedure proposed in Stroppi et al. (2011). However, the

procedure lacks a deeper domain analysis and design preparation, which (according to Braun

et al. (2015)) is key for an appropriate language extension. Its absence raises the risk of

redundancy in the extension and can cause missing extension opportunities. Therefore, the

authors adapted the Stroppi et al.'s procedure (2011). Figure 40 shows the adapted procedure,

and consists of the following seven Steps:

1. Domain requirements.

2. Domain analysis and equivalence check. In the domain analysis, the authors develop

a lightweight ontology to get a proper understanding of the domain. The equivalence

Figure 39. Excerpt from the Soft Tissue Sarcoma clinical pathway process model (Heß et al., 2015)

99

check compares the semantics of the needed concepts with the semantic of the

concepts from the existing modelling language. In case of equivalence, there is no

need to extend a concept; in case of no semantic equivalence, the new aspects need

to be inserted; in case of conditional equivalence there is no apparent semantic

matching. Thus, the case could fall either into equivalence or no equivalence. An

extensive list of equivalence check and derivation of concepts can be found in (Braun

et al., 2015).

3. BPMN concepts are extended according to the results of Step 2.

4. CMDE (Conceptual Domain Model of the Extension) model is created in UML class

diagram.

5. Transforming the CDME model into an extension model (BPMN+X model). This

activity creates the extended BPMN meta-model for BPMN4CP.

6. Creation of the concrete syntax for the extended concepts.

7. Evaluation of the new modelling language by demonstrating its applicability on a use

case.

Eventually, BPMN4CP fulfilled the same requirements elicited for CP-Mod (Burwitz et

al., 2013). Figure 41 shows an excerpt of the BPMN4CP meta-model. The classes with the tag

<<Extension Concept>> (e.g. see Diagnosis Task, Therapy Task, Supporting Task) depict the

new modelling elements, which extend the BPMN classes Data Object, Task and Parallel

Gateway.

Figure 40. Procedure for BPMN extensions (Braun et al., 2015)

100

Figure 42 depicts a concrete model built with BPMN4CP. The model depicts a wisdom

tooth treatment process.

Due to additional requirements from the application domain, BPMN4CP was subject to

further domain-specific adaptations (Braun et al., 2016). The new version is called BPMN4CP

2.0 and integrates the need to model resources, documents, objectives and quality indicators.

Moreover, the new version of the DSML foresees the multi-perspective modelling and

separation of concerns. Thus, it allows modelling separate and interlinked diagrams for

resources and documents so that different stakeholder-specific perspectives can be addressed.

According to Braun et al. (2016), enabling the selection of aspects for particular model users

avoids the cognitive overload and misinterpretations. Further, Braun et al. (2016) stressed on

necessity of transparent and replicable procedures to ensure the well-definition of BPMN

extensions. Braun et al. (2016) strive to address such a need by extending the procedure

depicted in Figure 40. The new procedure for the BPMN extension is shown in Figure 43 and

consists of three main categories: Domain Analysis, Extension Preparation and Extension

Meta-Model. The new steps are concrete syntax and interchange specification. To define the

Figure 41. An excerpt of the BPMN4CP meta-model

Figure 42. A wisdom tooth treatment process model built with BPMN4CP (Braun et al., 2015)

101

concrete syntax, Braun et al. (2016) use the Diagram Definition standard from OMG. For the

interchange format of the language extension, they specify the extensions with the XMI model

interchange specifications and the Diagram Interchange (DI) definition.

Figure 44 outlines the abstract syntax, where the classes <<Extension Concept>> depict

the new extensions for resources and documents.

BPMN4CP 2.0 was validated by applying it to a stroke case. Specifically, Braun et al.

(2016) modelled a treatment process for stroke patients that is used in the Stroke Network of

Eastern Saxony. Figure 45 shows the stroke case modelled with BPMN4CP 2.0. Concepts from

the main process model are linked to new diagrams with the dedicated views (see red dashed

arrows that lead to the resource diagram and the document diagram in Figure 45). Additional

Figure 43. Integrated BPMN extension method (Braun et al., 2016)

Figure 44. Abstract syntax of BPMN4CP 2.0 (Braun et al., 2016)

102

language extensions allow modelling the involved participants, time-constraints and quality

indicators. The DSML was implemented in a telemedical system.

Further on, Braun et al. (2016) suggest investigating on the adoption at the Case

Management Model and Notation CMMN (OMG, 2016a). The authors consider CMMN as a

suitable modelling standard to address the high degree of deviation of medical processes during

run-time.

4.1.3.1.4 BPMN-SIX

Neumann et al. (2016) had to model intraoperative surgical processes and workflow in

integrated operating rooms (OR). In contrast to Scheer and Nüttgens (2000), who used Event-

driven Process Chain (EPC) to model OR, Neumann et al. (2016) preferred to adopt BPMN for

the following reasons:

- BPMN’s suitability to model surgical procedure;

- BPMN’s process automation capabilities;

- BPMN’s widespread distribution in academia and industry;

- BPMN’s large tool support;

- BPMN 2.0 is declared ISO/IEC standard (19510:2013) for modelling and executing

business processes.

Due to the general aspects of BPMN, the authors extended the abstract and concrete syntax

of BPMN. The extension allows modelling domain-specific aspects of surgical workflow.

Specifically, the domain-specific aspects consist of intraoperative processes, surgical activities,

Figure 45. Stroke scenario modelled with BPMN4CP 2.0 (Braun et al., 2016)

103

anatomical structures, medical devices and clinical IT systems. The resulting DSML is called

BPMN Surgical Intervention eXtension (BPMNsix).

Neumann et al. (2016) followed the same procedure proposed in Braun et al. (2015).

Namely:

1. Requirements analysis. In order to get a better understanding of the domain, the

authors developed a lightweight ontology containing all the relevant concepts. This

was done to get an idea about how concepts are related with each other.

2. Modelling languages analysis with respect to their applicability to the modelling

domain and the intended use case.

3. Equivalence check for the identification of BPMN extension elements (see point two

of previous section).

4. Extension of BPMN concepts according to the results of Step 3.

5. Development and implementation of the CMDE. The meta-model was designed in

UML class diagrams (same as point 4 in the procedure of Braun et al. (2015)).

6. Implementation of the concrete syntax, which includes the definition of graphical

notations for the new modelling constructs.

Figure 46 shows an excerpt of the meta-model of BPMNsix. As in the previous section,

classes in grey are extended by the new concepts. The latter are shown in white colour.

Figure 47 shows the graphical notations developed for the new modelling constructs of

BPMNsix.

Figure 46. An excerpt of the meta-model of BPMNsix (Braun et al., 2015)

104

Further on, Neumann et al. (2016) suggest the future research towards the adoption of the

standard Decision Model and Notation (DMN) (OMG, 2016b). According to Neumann et al.

(2016), it would be a valid approach to integrate DMN in to the DSML to model situation-

aware surgical assistance. The DMN would be used to model rule-sets and combine them with

process models and medical device models.

4.1.3.1.5 Theoretical Findings and Derivation of Theory-based Requirements

(TBRs)

Four DSMLs have been presented, which fall within a healthcare application domain. Among

other reviewed DSMLs, the four DSMLs were selected as they provide relevant theoretical

findings for engineering our DSML. The findings are below turned into theory-based

requirements for DSML4PTM. Theory-based requirements are presented in three distinct Sub-

sections. Each Sub-section corresponds to one of the three questions with which the DSMLs

were analysed (see also Section 4.1.3). Namely:

- Finding 1: Reasons to develop a DSML;

- Finding 2: Procedures to design a DSML;

- Finding 3: Look and feel of a DSML.

Finding 1: Reasons to Develop a DSML

The common reason for developing DSMLs in a healthcare application domain is to enable

domain experts to design, adapt and use models. A DSML can help in managing following two

drawbacks.

- The insufficient expressivity of existing modelling languages to model specific

realities.

- Graphical notations are not cognitive adequate for domain experts (e.g. physicians or

other hospital personnel).

The goal of DSML models is to support decision-making of domain experts. For this

purpose, DSML models make explicit the relevant aspects (chain of activities, documents and

decisions) of the addressed domain. DSML models are also integrated with run-time

environments. The integration allows feeding models with aggregated data to show real-time

values, e.g. to report real-time patients’ conditions. Most of the above listed DSMLs contain

status for certain indicators, which change according to the aggregated value of data. In

alternative, run-time data are aggregated and displayed in dashboards (Mathe et al., 2009).

Figure 47. An excerpt of the concrete syntax for BPMNsix

105

Within this context, a domain-expert is put in the conditions not only to use DSML models but

also to support their design and to adapt them as well. Hence, the first theory-based requirement

is derived as follows:

Theory-based Requirements 1 (TBR1): A DSML should enable domain-

experts to design, adapt and use models.

The common reason to consider modelling standards when developing a DSML is the

reusability of well-established semantics and concepts. For DSMLs where models should

mainly depict a sequence flow (e.g. clinical pathways), the BPMN is rather adopted as a

backbone of the DSML. BPMN (OMG, 2011) is widely used in both academy and industry, it

is supported by many well-known and successful modelling tools (e.g. Bizagi25, Camunda26,

Signavio27, Trisotech28). BPMN 2.0 is declared ISO/IEC standard (19510:2013) for modelling

and executing business processes.

An additional lesson learned from the analysis of the DSMLs, is about the suggestion to

consider not only BPMN but also other modelling standards. Braun et al. (2016) and Neumann

et al. (2016) strongly suggested to investigate the use of CMMN (OMG, 2016a) and DMN

(OMG, 2016b). Both standards are considered more appropriate to model cases (i.e. activities

for which a predefined flow cannot be ensured beforehand) and decisions, respectively.

The adoption and integration of CMMN and DMN with BPMN have been successfully

shown in the Knowledge Work Designer (KWD) modelling method (Hinkelmann,

Pierfranceschi, & Laurenzi, 2016). Although the KWD does not target the healthcare domain

its principles can be applied in any application domain where processes, decisions and cases

need to be modelled. The KWD includes the combination of modelling languages for both

structured and non-structured process logic (i.e. which activities take place – including

prescribed flow and more ad hoc activities) and business logic (i.e. how to make decisions –

including structured and unstructured logic). The differentiation of procedural from declarative

information also recommended in (von Halle & Goldberg, 2010). Moreover, the KWD also

integrates business process and case modelling. In the latter, BPMN and CMMN are deeply

integrated resulting in a new modelling language BPCMN. With respect to modelling business

logic, the modelling language spans, on one side, DMN to model structured decision logic. On

the other side, the language spans the Document and Knowledge modelling language (adopted

also in (De Angelis et al., 2016)) to model unstructured decision logic such as guidelines,

checklist, sample outputs, or templates.

Given the additional theoretical foundation, theory-based requirements 2 and 3 are

formulated as follows:

Theory-based Requirements 2 (TBR2): Application domain-based

requirements should be distinguished between procedural and declarative

information type as well as between structured and unstructured form. If

needed, other categories should be created, e.g. documentation and

organisational management or data representation.

Theory-based Requirements 3 (TBR3): The choice of the modelling

languages to adapt and integrate should be driven by requirements

categorization (done after fulfilling TBR2).

25 https://www.bizagi.com/en
26 https://camunda.com/de/
27 https://www.signavio.com/
28 https://www.trisotech.com/

106

Finding 2: Procedures to design a DSML

An additional finding that arose by analysing the above-mentioned DSMLs, is about the

procedures for designing DSMLs. Such procedures supplement the Design Science Research

methodology, which is, otherwise, considered too generic to develop a DSML. Hence, a design

procedure is considered beneficial for the rigorous definition of the meta-model. A procedure

can include steps for selecting an appropriate modelling language as well as for determining

the concepts to extend. The related theory-based requirements are formulated as follows:

Theory-based Requirements 4 (TBR4): The design of a DSML through

domain-specific adaptations should be underpinned by a design procedure.

A further finding concerns the domain analysis. Namely, it appears beneficial the creation

of a lightweight ontology for the appropriate understanding of the domain. The requirement is,

therefore, formulated as follows:

Theory-based Requirements 5 (TBR5): During the domain analysis a

lightweight ontology should be developed with the relevant concepts and

relations of the domain.

Finding 3: Look and feel

According to Frank (2014b), an important aspect when visualizing enterprise models is the

multi-perspective and separation of concerns. Frank stresses the importance of the term

cognitive perspective, which “represents a specific professional background that corresponds

to cognitive dispositions, technical languages, specific goals and capabilities of prospective

users. Hence, it is not an implicit feature of an enterprise model, but characterizes its intended

purpose - to satisfy prospective users’ perspectives.” (Frank, 2014b).

Braun et al. (2016), for instance, provides separate diagrams for different stakeholder-

specific perspectives. By building single diagrams while having their concepts linked to other

diagrams, reduces the complexity of modelling and avoids cognitive overload.

The separation of concerns manifest itself in the Knowledge Work Designer (Hinkelmann

et al., 2016), as for each type of information there is a dedicated view or diagram, i.e. the

structured and unstructured procedural information type is shown in a business process

diagram, the structured declarative information type is shown in decision tables, and the

unstructured declarative is managed in a document view. Given the gained theoretical

knowledge, the theory-based requirement is formulated as follows:

Theory-based Requirements 6 (TBR6): The visualization of a DSML

should foresee the multi-perspective and separation of concerns.

DSMLs that mainly focus on representing a prescribed flow of activities consider BPMN

as a backbone. That is, it reflects the main view or diagram, which may lead to further

secondary diagrams. For instance, Figure 45 shows concepts from the process model lead to

new diagrams (red arrows). The theory-based requirement is formulated accordingly:

Theory-based Requirements 7 (TBR7): For application domains where

the main focus is the representation of prescribed flow, BPMN should be

considered as the main view.

107

4.1.3.2 Application Domain-based Requirements (ADBRs)

In this sub-section application domain-based requirements are elicited by conducting an in-

depth domain analysis. Figure 48 shows the focus of this section: domain analysis to derive

application domain-based requirements (ADBRs).

This phase mainly relied on the early stage activities conducted in the Swiss research

project Patient-Radar, where I was actively involved with the role of language engineer and

modeller (see roles in Section 2.7). The aim of this phase was to increase understanding of the

domain. Thus, several workshops were conducted with project partners. The following

documents were considered as sources of requirements:

1. Information Model document (Sub-section 4.1.3.2.1).

2. Conceptual Model (Sub-section 4.1.3.2.2).

3. Reference process model (in BPMN) for an elective entry case of a patient with a

somatic disease (Sub-section 4.1.3.2.3).

4. Application scenario for an emergency entry case of a geriatric patient with a stroke

(Sub-section 4.1.3.2.4).

For the standard compliance of the new DSML, the following healthcare standards were

considered as additional sources: DefReha© (Gli Ospedali Svizzeri, 2017), International

Classification of Functioning, Disability and Health (ICF) standard (World Health

Organisation, 2016) and International Statistical Classification of Diseases and Related Health

Problems29 (ICD-10).

29 http://apps.who.int/classifications/icd10/browse/2016/en

Figure 48. Instantiation of the Create phase for DSML4PTM: In depth domain analysis

108

In the following an overview of each of the above-mentioned document type is provided.

Sub-section 4.1.3.2.5 describes the requirements elicitation based on the four afore-mentioned

documents and the considered standards.

4.1.3.2.1 Information Model

The information model document contains the definitions of all the relevant terms pertaining

to the addressed domain, i.e. the transferal management. The document aims to increase a

shared understanding among the project stakeholders about the used terminology. Thus, the

document was mainly useful for modelling experts and language engineers who are external to

the application domain to get familiar with it as well as to identify relevant concepts.

Among others, it was identified that information documents and time play a crucial role for

the transferal management. Fundamentals are documents containing medical and

administrative data. These documents are created, modified and exchanged among actors at a

certain point in time or within the transferal management process. The process starts in the

acute hospital and ends in a rehabilitation clinic. Hence, the information model also presents a

rough sketch of the transferal process, including actors and the flow of information documents.

Table 4 shows an excerpt of the document. The complete document can be retrieved in

Appendix A: Patient Transferal Management, folder A1.

Actors Description

Surgeon (in Acute

Hospital)

He/she performs the surgery in the acute hospital. The surgeon also performs the activity of

consulting the patient before the surgery, in which the surgeon explains the procedure and suggests

the surgery date (e.g. asap or next months). In this activity, no decisions with respect to rehab

clinics are made.

Hospital

Administrative

Personnel (in Acute

Hospital)

He/she is responsible for the registration of the patient and opening the patient case. Hence, he/she

ensures the correct acquisition of patients’ data, e.g. check of the insurance card when patients are

hospitalized, informing the health insurance about the patient hospitalization (in the hospital of

Walenstadt: this role is covered by employees at the reception).

Transferral Manager

(in Acute Hospital)

He/she is responsible for the registration and the transfer of patients from acute hospitals to rhea

clinics. The transferral manager is in charge of discussing with the patient about his/her

rehabilitation as well as selecting together with the patient a rehab clinic. Additionally, he/she

interacts with the health insurance for cost reimbursement submission, i.e. the KoGu form., The

KoGu form is prepared by the physician, edited by the transferral manager, who then submits it to

the health insurance. Hence, the transferral manager must collect that information concerning

patient treatments that are relevant for both the health insurance and the rehab clinic. Transferal

managers must deal with decisions regarding cost reimbursement. If necessary, the consultant or

the case management expert contact the health insurance.

Patient A patient is hospitalized in an acute hospital. After the patient completes the treatment in the acute

hospital, he/she can be transferred to a rehab clinic to receive further rehabilitative treatments.

Bed scheduler The Bed scheduler arranges and provides the hospitalization date to the patient, opens the case and

associates it with a DRG code (von Eiff, Schüring, Greitemann, & Karoff, 2011).

Physician He/she is responsible for the patient treatment in the acute hospital and for the briefing

prescriptions to send to the rehab clinic. Contact information on the physician is included in the

briefing prescription and it is available in case of questions/clarifications. He/she is responsible for

ensuring that information of the patient questionnaire is transmitted to the transferral manager. The

physician does not have to be necessarily the surgeon.

4.1.3.2.2 Conceptual Model

Next, a conceptual model was created based on the information model. This activity addresses

the theory-based requirement TBR5, which suggests creating a lightweight ontology of the

addressed application domain. The lightweight ontology is represented in the form of a

conceptual model containing classes, relations and attributes relevant in the transferal

Table 4. An excerpt of the definition of actors in the research project Patient Radar

109

management domain. Figure 49 shows an excerpt of the conceptual model (see Appendix A:

Patient Transferal Management, folder A2 for the complete version of the model). An example

of relevant concepts regarding the treatment is Patient, Rehabilitation Clinic, Rehabilitation

Type, Medical Data, Diagnosis, Indication, Care Documentation, Surgery and Disease.

4.1.3.2.3 Reference Process Model of an Elective Entry Case

As a third step, the knowledge gained in the application domain was used to create the first “to-

be” reference process model, named “Happy Path”. The latter reflects the administrative

process of an elective entry case of patients with somatic diseases. This type of entry case is

on requested appointment of patients, and mainly follows a smooth end-to-end sequence of a

prescribed set of activities. In particular, the process starts when the transferal manager receives

the patient case and ends when the patient is successfully hospitalized in a rehabilitation clinic.

Project stakeholders were mainly interested in having defined the Happy Path, therefore it

was the source of requirement most subject to changes. Figure 50 shows the whole 11 different

versions of the reference process model that were created during the project (these can be found

in Appendix A: Patient Transferal Management, folder A3).

Since it was a source of requirements, each time a new version of the process model was

issued, requirements changed accordingly. In turn, the change of requirements had to be

accommodated into our DSML throughout the project, continuously. The integration of new

requirements led to re-iterate DSML engineering lifecycle (create-design-implement-

deploy/validate) several times. The current version of DSML4PTM incorporates requirements

that refer to the last version of the reference process model v11.

Three main reasons were identified for changes in requirements, and they are described

below.

Figure 49. An excerpt of the conceptual model derived from the Information Model Document

110

The main reason for new changes reverts the two different background of expertise between

the language engineers and the transferal managers or physicians. Specially in the early phase

of the project, the different background sometimes led to misunderstandings or unclear

requirements. As the project advanced, the understanding of the problem deepened, which led

to narrowing the scope of the project. At the beginning of the project patients’ treatment aspects

were considered too, e.g. surgery activities as well as the information about the actor surgeon.

As the project advanced, the focus narrowed to administrative aspects, concerned with the acute

hospital. The changes are visible in the reference process models. For instance, see the left-

hand side of Figure 51, in which the fifth version of the model is reported. The upper pool of

the model shows process activities, events and decisions about clinical pathways in the acute

hospital (see red rectangle on the left-hand side of the figure). In contrast, the representation of

the process logic in the same pool was clearly not needed anymore in the last version of the

reference process model (see right-hand side of Figure 51).

Figure 50. Versions of the Reference Process Models: from the firs (v1) to the last version (v11)

111

4.1.3.2.4 Application Scenario of an Emergency Entry Case

After the elective entry case, another important entry type in transferal management is the

emergency entry case. An emergency case offers a more interesting scenario than an elective

entry case. That is, the administrative set of activities are rather unpredictable (in contrast to

the elective entry cases) as well as many decisions must be taken under time pressure.

Moreover, a DSML that covers these aspects appear more complete with respect to the

underlying reality of the transferal management. To deepen understanding on the emergency

entry case, an application scenario was created.

The application scenario was developed in a workshop conducted by myself with a

transferal manager (i.e. a domain expert) from the hospital of Grabs30 (i.e. one of the project

partners). The domain expert helped to identify the most common and complex patient case:

the geriatric patient with a stroke. For this, a descriptive document was developed after the

workshop and subsequently approved by the domain expert (see Appendix A: Patient

Transferal Management, folder A4). Since the domain expert preferred to conduct the

workshop in German, the terminology was translated into English. A cross check was

performed between the two so to ensure consistency in the terminology between the document

and the above-mentioned information model (Sub-section 4.1.3.2.1). For the new terms, the

work in (Walker & Betz, 2013) was considered, as it contains the commonly used terminology

in hospital emergency cases.

30 https://www.srrws.ch/ueber-uns/organisation/spitaeler/spital-grabs.html

Figure 51. Changes in the Reference Process Model: version 5 vs. version 11

112

4.1.3.2.5 Requirements Elicitation

This sub-section presents the requirements derived from the above-mentioned document types

and standards. Three different sources of group requirements are:

- Requirements from the application scenario (Sub-section 4.1.3.2.5.1). As mentioned

above, the application scenario focuses on an emergency entry case of a geriatric patient

with a stroke.

- Requirements from the reference process model (Sub-section 4.1.3.2.5.2). As mentioned

above, the reference process model focuses on the typical elective entry case of a patient

with a somatic disease.

- Additional requirements from workshops that focused on the elective entry case (Sub-

section 4.1.3.2.5.3).

All requirements further consider healthcare standards such as DefReha©, ICF and ICD-

10.

Requirements from the both the application scenario and the reference process model are

further divided into four categories:

1. Process requirements,

2. Documents requirements,

3. Information systems and data requirements,

4. Decisions requirements.

Each category is shown in the table containing the number of following requirements, a

name of requirement, one or more elements to conceptualize and knowledge category of

requirement.

In order to address the theory-based requirement TBR2, the knowledge category should

distinguish among: process logic (structured), process logic (unstructured), business logic

(structured), business logic (unstructured), organisational management, document

management, information systems representation, data representation.

113

 Requirements from Application Scenario – Emergency Entry Case

This section presents the requirements derived from the application scenario divided into four

tables. Each table focuses on one of the categories mentioned above. The process requirements

are shown in Table 5, document requirements in Table 6, information systems and data

requirements in Table 7 and decision requirements in Table 8.

Number Requirement Element Category

R1.1.1 The DSML should

accommodate

constructs to model

specific actors.

Elements reflecting administrative staff, rapid assessment

nurse, emergency medical technician, patient, family member,

expert nurse, resident physician, specialist physician, transferal

manager.

Organisation

management

R1.1.2 The DSML should

accommodate

constructs to model

different units.

Elements reflecting Care unit, intensive care unit, non-intensive

care unit, hospital, rehabilitation clinic, insurance, emergency

room, site of care.

Organisation

management

R1.1.3 The DSML should

accommodate

modelling constructs

to model specific

activities.

Elements reflecting Perform Physical Admission, Perform

transfer, Create Transfer Case Record, Conduct First

Assessment

ApplyDefReha Criteria, Re-apply DefReha Criteria, Choose

Reha Criteria.

Release Patient Record, Open Patient Record

Close Transfer Case Record, Prepare rehab Admission, Finalize

KoGu, Release Transfer Case, Prepare KoGu, Prepare Rehab

Admission, Make Disposition of Case, Prepare Medical Record

Admission.

Process logic

(structured)

R1.1.4 The DSML should

accommodate

constructs to model a

suitable rehabilitation

type.

Elements reflecting criteria for Geriatric Rehabilitation

Suitability, Internistic and Oncological Rehabilitation

Suitability, Neurological Rehabilitation Suitability, Choose

Rehabilitation Clinic, Cardiovascular Rehabilitation Suitability,

Musculoskeletal Rehabilitation Suitability, Neurological

Rehabilitation Suitability, Pediatric Rehabilitation Suitability,

Paraplegic Rehabilitation Suitability, Psychosomatic

Rehabilitation Suitability, Pneumological Rehabilitation

Suitability, Inpatient Rehabilitation Suitability, Compulsory

Medical Monitoring Rehabilitation Suitability, Compulsory

Medical Monitoring to Inpatient Rehabilitation Suitability

Business logic

(structured)

R1.1.5 The DSML should

accommodate

constructs to model a

system.

Elements reflecting the Patient Administration System (PAS),

Hospital Information System (HIS).

Information

Systems

representation

R1.1.6 The DSML should

accommodate

constructs to model

time.

Element reflecting the length of stay. Data

representation

R1.1.7 The DSML should

accommodate

constructs to model

alternative process

flow.

Element reflecting alternative process flow are based on health

severity, complexity, and admission criteria.

Process logic

(structured and

unstructured)

R1.1.8 The DSML should

accommodate

constructs to model a

status.

Elements reflecting changing status: medication, indication,

care status, diagnosis.

General patient status in the hospital and the rehab: patient

conditions are improving or worsening.

Data

representation

R1.1.9 The DSML should

accommodate

constructs to model an

information exchange.

Element reflecting information exchange among actors:

medical data, administrative data, care status from transferal

manager to rehab clinic.

Process logic

(structured)

R1.1.10 The DSML should

accommodate

constructs to model

condition-based

Elements reflecting activities that are triggered based on

conditions.

Elements reflecting conditions.

Business logic

(structured)

Table 5. Process requirements - application scenario

114

activities and

conditions.

R1.1.11 The DSML should

accommodate

constructs to model a

reoccurring activity.

Elements reflecting a recurring activity. For instance, re-

applying DefRehab criteria.

Process logic

(unstructured)

R1.1.12 The DSML should

accommodate

constructs to model the

transfer of a patient.

Element reflecting the transferal of the patient from acute

hospital to rehabilitation

Process logic

(structured)

Number Requirement Element Category

R1.2.1 The DSML should

accommodate constructs to

model the patient admission

form.

Element reflecting the hospitalization

document that is stored in the Patient

Administration System (PAS) and

contains administrative data of patient.

Document management

R1.2.2 The DSML should

accommodate constructs to

model the rehabilitation form

for cost reimbursement, i.e.

KoGu.

Element reflecting the KoGu form (3.2

of the application scenario) is the cost

reimbursement.

Document management

R1.2.3 The DSML should

accommodate constructs to

model the long report.

The long report contains medical

related data, administrative data and

investigation results. The transferal

manager sends it to the reha clinic.

Document management

Number Requirement Element Category

R1.3.1 The DSML should accommodate

constructs to model the Hospital

Information System (HIS)

containing the short report.

Elements reflecting the short report include

medical diagnosis, medication list and indication.

Information

systems and data

representation

R1.3.2 The DSML should accommodate

constructs to model the Hospital

Information System (HIS) that

includes the medical data.

Elements reflecting ICD-10 version 2016 (main),

ICD-10 version 2016 (secondary) (several),

CHOP, Functional deficits – ICF Standard

(several), Flag disease or accident; already allows

to choose relevant data for the case.

Information

systems and data

representation

R1.3.3 The DSML should accommodate

constructs to model the Patient

Administrative System (PAS) that

includes the administrative

data/master data.

Elements reflecting Master Patient ID, Patient ID,

Case Number, SwissDRG31 code, Name, Street,

City, Nation, Nationality, Date of birth, Mobile

number, Mother tongue, Job, AHV-Number, Entry

Type, Health insurance with policy number,

Health insurance status, Date of hospitalization.

Information

systems and data

representation

R1.3.4 The DSML should accommodate

constructs to model the Hospital

Information System (HIS) that

includes the care status.

Elements reflecting Assistance in Mobility,

Assistance in Nutrition, Assistance in Excretion,

Assistance in Personal Hygiene, Assistance in

Cognition, Necessity of Medical devices, already

allows to choose relevant data.

Information

systems and data

representation

R1.3.5 The DSML should accommodate

constructs to model the Hospital

Information System (HIS) that

includes standard codes that

classify the patient problems, i.e.

Tessiner code.

Elements reflecting the main and secondary codes

that classify the patient’s problems.

Information

systems and data

representation

31 www.swissdrg.org

Table 6. Document requirements - application scenario

Table 7. Information systems and data requirements - application scenario

Table 8. Decision requirements - application scenario

115

Number Requirement Element Category

R1.4.1 The DSML should accommodate

constructs to assign the

emergency severity to a case (i.e.

ESI triage).

Elements to reflecting the level of severity of a case

from 1 to 5 (Emergency Severity Index) based on

urgency of treatment.

Data

representation

R1.4.2 The DSML should accommodate

constructs to model the

examination conducted by a

specialist physician.

Element reflecting the first examination and

provides both prescription and diagnosis.

Data

representation and

document

management

R1.4.3 The DSML should accommodate

constructs to model the

complexity assignment of a case.

Element reflecting the classification of a case as

complex or not complex. This depends on the

number of diseases/co-morbidities.

Business logic

(structured)

R1.4.4 The DSML should accommodate

constructs to assign the ICD-10

code to a case.

Element reflecting the ICD-10 code. Every ICD-10

code is associated with a specific length of stay.

Data

representation

R1.4.5 The DSML should accommodate

constructs to assign the

SwissDRG code to a patient

case.

Elements reflecting the SwissDRG code: primary

and secondary code.

The SwissDRG code is calculated at discharging

time in the acute hospital and then sent to the

insurance. The code calculation is based on both

administrative aspects (e.g. age, sex, degree of

severity) and medical aspects (e.g. main and

secondary diagnosis in terms of ICD-10 code, and

the surgery category).

Data

representation

R1.4.6 The DSML should accommodate

constructs to assign ICF

qualifiers.

Elements reflecting three scales of severity for the

ICF qualifier: generic qualifier, qualifier for

environmental factors, qualifier for body structure.

Data

representation

R1.4.7 The DSML should accommodate

constructs to model the need or

not need for rehabilitation.

Element reflecting the conditions for inclusion or

exclusion to rehabilitation.

Business logic

(structured)

R1.4.8 The DSML should accommodate

constructs to model the decision

for the type of rehabilitation

clinic and for the specific

rehabilitation clinic.

Element reflecting the criteria for choosing a

rehabilitation clinic and the type, e.g. main disease

of the patient, specialisation of clinic, partner clinic,

family member or contact person live close by the

clinic.

Business logic

(structured)

R1.4.9 The DSML should accommodate

constructs to model the activity

of checking correctness of KoGu

and checking compliance with

respect to DefReha© standard.

Elements reflecting the activity of checking KoGu

for its consistency with patient’s information and

compliance with the content of the DefReha©.

Business logic

(structured)

R1.4.10 The DSML should accommodate

constructs to model the

assessment for the admission to

a rehabilitation.

Elements reflecting criteria of inclusion and

exclusion to a rehabilitation.

Business logic

(structured)

R1.4.11 The DSML should accommodate

constructs to model the status of

the patient getting worse.

Elements reflecting patient conditions getting worse. Data

representation

R1.4.12 The DSML should accommodate

constructs to model the status of

a patient getting better.

Element reflecting patient conditions getting better. Data

representation

 Requirements from Reference Process Model – Elective Entry Case

This sub-section describes the requirements derived from the reference process model. As

already mentioned, the reference process model describes the most common entry case of the

application domain: the elective entry case of patients having somatic diseases. As mentioned

already, the different versions of this source led to a continuous change in requirements. The

requirements below described refer to the latest version of the reference process model v11.

Figure 52 depicts the continuous intertwin required between the domain analysis and the

requirement elicitation activity.

116

In a later stage of the project, new requirements had to be accommodated too. It was

requested to create an executable workflow for the reference process model. This led to create

a different level of abstraction for the reference process model. For instance, a distinction

between activity types was needed, i.e. manual task, service task, business rule task.

Additionally, each process activity was analysed in detail to define the input and output data.

Hence, for each process activity, one or more mock-ups were created as well as validated by

domain experts.

Therefore, the mock-ups were considered as an additional source of requirement (see the

additional list of requirements in Sub-section 4.1.3.2.5.3).

A total of 47 mock-ups were created. One mock-up is depicted in Figure 53 and shows the

process activity “Prepare KoGu”, i.e. prepare cost reimbursement activity. The document

containing all the mock-ups can be found in Appendix A: Patient Transferal Management,

folder A6.

A total of 18 process activities were identified for the reference process. Activities are

assigned to a sequence of numbers, which reflects the execution flow in the process. Figure 54

shows all the 18 activities. The document source can be found in Appendix A: Patient

Transferal Management, folder A7.

Figure 52. Intertwin between the domain analysis and the requirement elicitation activities

Figure 53. Mock-up for the process activity “Prepare KoGu”

117

Below, the requirements derived from the reference process model are grouped in four

tables: process requirements in Table 9, document requirements in Table 10, information

systems and data requirements in

Figure 54. Reference Process Model Activities

118

Table 11, decision requirements in Table 12.

Number Requirement Element Category

R2.1.1 The DSML should accommodate constructs to

model different actors.

Elements reflecting actors:

Physician, exit management,

patient disposition, rehabilitation

physician.

Organisational

management

R2.1.2 The DSML should accommodate constructs to

model different units/processes.

Elements reflecting units: Acute

hospital, rehabilitation clinic.

Organisational

management

R2.1.3 The DSML should accommodate constructs to

model activities.

Elements reflecting generic and

specific activities.

Process logic

(structured and

unstructured)

R2.1.4 The DSML should accommodate constructs to

model a decision/business rule activity.

Elements reflecting

decisions/rules.

Business logic

(structured)

R2.1.5 The DSML should accommodate constructs to

model parallel activities.

Element reflecting the possibility

to execute two task elements in

parallel.

Process logic

(structured and/or

unstructured)

R2.1.6 The DSML should accommodate constructs to

model manual activity.

Element reflecting a manual task. Process logic

(structured and/or

unstructured)

R2.1.7 The DSML should accommodate constructs to

model time.

Element reflecting time, e.g. time

until transfer.

Process logic

(structured and/or

unstructured)

R2.1.8 The DSML should accommodate constructs to

model separate paths (AND and XOR).

Elements reflecting paths: select

rehabilitation clinic, first

assessment, prepare entry.

Process logic

(structured)

R2.1.9 The DSML should accommodate constructs to

model information.

Elements reflecting information to

be sent to other actors (e.g.

Hospitalization document).

Data representation

R2.1.10 The DSML should accommodate constructs to

model the transfer of a patient.

Element reflecting the need to

transfer a patient from acute

hospital to rehabilitation.

Process logic

(structured)

R2.1.11 The DSML should accommodate constructs to

model the activity rehab conference, which can

start at any time on request of the rehab

physician

Element reflecting the execution of

a task on request and not by

following a prescribed flow.

Process logic

(unstructured)

Number Requirement Element Category

R2.2.1 The DSML should accommodate constructs to

model the patient admission form.

Element reflecting administrative data

of patient.

Document

management

and data

representation

R2.2.2 The DSML should accommodate constructs to

model the rehabilitation form for cost

reimbursement (KoGu).

Element reflecting the cost

reimbursement (KoGu) and the

relevant data of it.

Document

management

and data

representation

Table 9. Process requirements - reference process model

Table 10. Document requirements - reference process model

119

Number Requirement Element Category

R2.3.1 The DSML should accommodate

constructs to model the Hospital

Information System (HIS) that

includes medical data.

Elements reflecting system

element and related medical data.

Data representation

R2.3.2 The DSML should accommodate

constructs to model the Patient

Administrative System (PAS) that

includes administrative data.

Elements reflecting system

element and related administrative

data.

Data representation

R2.3.3 The DSML should accommodate

constructs to model the Hospital

Information System (HIS) and the

Patient Administrative System

(PAS) that include documents.

Elements reflecting system

elements with applicable attributes

and/or data/document elements.

Document management and

data representation

Number Requirement Element Category

R2.4.1 The DSML should accommodate

constructs to model the creation of

the transferal case.

Elements reflecting criteria for

business rules.

Business logic (structured)

 Additional Requirements

Additional requirements were elicited from the above-mentioned mock-ups that was a new

source. In additional, the standard DefReha© had to be further considered as well as additional

requirements derived from project workshops.

On the one hand, mock-ups mainly supported the detailed specification of documents and

data elements, status elements and relevant attributes.

On the other hand, the DefReha© standard defines the inclusion and exclusion criteria for

nine different rehabilitation types. Each criterion corresponds to a set of rules that leads either

to admit or to discharge a patient to or from a rehabilitation clinic. The execution of these rules

should be used to support the transferal manager on the choice of both the type and the

rehabilitation clinic. The additional requirements are reported in Table 13.

Table 11. Information systems and data requirements - reference process model

Table 12. Decision requirements - reference process model

120

Number Requirement Element Category Source

R3.1.1 The DSML should

accommodate

constructs to model

organisation and roles

in a hierarchical way.

Elements are allowed to view the involved

organisations, roles and actors in a hierarchical

way.

Organisational

management

Project

workshop

R3.1.2 The DSML should

accommodate

constructs to allow

automation in a later

stage.

Elements reflecting data/documents should be

filled in with patient data.

Document and

data

representation

Project

workshop

R3.1.3 The DSML should

accommodate

constructs to reflect the

different rehabilitation

types according to the

DefReha© standard.

Elements reflecting rehabilitation types

(possibility for the user to choose it).

Data

representation

DefReha©

Standard

R3.1.4 The DSML should

accommodate

constructs to model

criteria according to the

DefReha© standard.

Elements reflecting entry, exit, inclusion and

exclusion criteria for the different rehabilitation

types, i.e. rules defined in the DefReha©.

Business logic

(structured)

DefReha©

Standard

R3.1.5 The DSML should

accommodate

constructs to reflect

attributes corresponding

to the attributes of the

mock-ups.

Element reflecting attributes for all documents,

data, groups and status elements.

Data

representation

Mock-ups

R3.1.6 The DSML should

accommodate

constructs to model

documents/data

elements corresponding

to the mock-ups.

Elements reflecting the following

documents/data objects with hierarchical

visualization: Administrative Data with sub

elements Patient Data, Patient Health Insurance

Data, Acute Physician Data, Rehabilitation

Data, KoGu, Hospitalization Document,

Medical Data with sub elements Medical

Information, ICF Standard, Medication List,

Care Status with sub elements Assistance Data,

Special Medication Data, Process Progress with

sub element Process Data.

Document

management and

data

representation

Mock-ups

R3.1.7 The DSML should

accommodate

constructs to model

relevant status elements

and their attributes

corresponding to the

mock-ups.

Elements reflecting the following status

elements with hierarchical visualization: Status

with sub elements Process Status, Physical

Transfer Status, KoGu Status, ICF Qualifiers

Status, Medication List Status and Acceptance

Status.

Data

representation

Mock-ups

R3.1.8 The DSML should

accommodate

constructs to model

KoGu templates.

Elements reflecting the KoGu templates: Stroke

template, Orthopaedic template, Paediatric

template, Psychiatric template.

Data

representation.

Project

workshop

R3.1.9 The DSML should

accommodate

constructs to

differentiate between

tasks performed by a

user or by a system.

Elements reflecting user tasks and service tasks.

The latter allows automating the transferal

management process.

Process logic

(structured

and/or

unstructured)

Project

workshop

R3.1.10 The DSML should

accommodate

constructs to execute

activities based on

conditions

Elements reflecting tasks triggered by

conditions. This is needed in case the document

KoGu gets rejected. For instance, the DefReha

criteria will need to be re-applied.

Process logic

(unstructured)

Project

workshop

Table 13. Additional requirements

121

4.1.3.2.6 Conclusion and Problems in the Create phase

The elicitation of the application domain-based requirements addressed the theory-based

requirement TBR2 by indicating the different knowledge categories: process logic (structured),

process logic (unstructured), business logic (structured), business logic (unstructured),

organisational management, document management, information systems representation or

data representation.

Given the different identified categories of knowledge (e.g. business logic, data

representation etc.) other modelling languages should be considered. This activity is shown in

the design phase of the AMME Lifecycle (Sub-section 4.1.4) fulfils the theory-based

requirement TBR4.

Additionally, from the domain analysis the need to execute models created with the

DSML4PTM was identified. For example, execution of business rule tasks like re-apply

DefReha©, which determines the suitable type of rehabilitation for a patient as well as

displaying the progress of an indicator according to some aggregated data. As reported in the

theory-based requirement TBR1, a DSML should enable domain experts to design, adapt and

use models and this is also the case of DSML4PTM.

Finally, the above-reported experience in the Creation phase led to identify three major

problems that can hinder agility in DSML engineering:

Problem 1: Language engineers and domain experts have different

types of expertise. This might result in misinterpretation of requirements.

As a consequence, the quality of the new version of DSML is hampered.

Other engineering iterations are required as well. This problem manifests

particularly in the beginning of the project. As the language engineers have

little knowledge about the addressed domain.

Problem 2: The extraction, documentation, prioritization, and

categorization of requirements is a time-consuming manual task. All

requirements were categorised, documented, and prioritized. The more the

requirements, the more time consuming this task gets.

Problem 3: The update and synchronization of requirements is a time-

consuming task. Although it is a good practice, it slows down the

engineering of the DSML. Change of requirements led to update and

synchronize requirements on each other. The synchronization was

performed to ensure consistency among requirements that are dependent

with each other. Especially in the early stage of the project, requirements

changed frequently, which made it difficult to quickly move on to the

subsequent phase (Design phase). The longer the list of requirements and

the more the dependencies among requirements, the more time-consuming

this update and sync.

The next sub-section describes the design of the meta-model of DSML4PTM, which

addresses the elicited requirements.

4.1.4 Design Phase

In this phase, a tailored procedure for the development of DSML4PTMwas initially suggested.

Next, the design of the meta-model is presented, which addresses all the requirements elicited

in the previous phase.

122

As suggested by the theory-based requirement TBR4 in Sub-section 4.1.3.1.5, a procedure

should be followed as per the rigorous design of the meta-model. The procedure proposed in

(Braun et al., 2016) and derived from (Stroppi et al., 2011) could be eligible for this purpose..

However, the procedure is limited to the extension of BPMN only. In our case, several

modelling languages should be selected, and where required, concepts from different languages

should be integrated with one another, for example, the integration between structured and

unstructured process logic performed in (Hinkelmann, 2016). The procedure followed by

Burwitz et al. (2013) seems to be of a suitable basis for our work. It foresees the direct

customization of the meta-model and integration among concepts that belong to a different

language. We build on top of this procedure, to provide more thoroughness in the construction

of the DSML.

The proposed procedure finds its fundamentals in two principles suggested in (Karagiannis

et al. 2016):

- The inclusion of existing standard modelling languages, with related applications

and lessons learned.

- The specialisation of language constructs according to requirements elicited from a

specific domain.

As Figure 55 shows, the procedure is regarded as a concrete instantiation of the Design

phase of the AMME Lifecycle.

The violet light bubbles in Figure 55 (from (a) to (e)) show the suggested procedure steps.

The five steps are performed according to the elicited application domain-based

requirements (ADBRs):

(a) Identify the most suitable existing modelling languages.

(b) Remove the unneeded modelling elements (as Silver (2011) suggests) from the

selected languages.

(c) Identify modelling constructs to be extended and extend them.

(d) Integrate the language constructs that belong to different modelling languages. It

also includes bridging connectors between elements of different meta-models.

Figure 55. Instantiation of the Design phase: the DSML4PTM meta-model

123

(e) Add additional semantics in the form of constraints among the remaining language

constructs.

Steps (b) and (c) can also be inverted. These steps were embedded into a two-tier approach

that refers to the meta-modelling hierarchy introduced in Section 2.3.

(a), (b), (c), and (d) are all part of the abstract syntax, which resides in level 2 of the meta-

model stack (see Figure 56). They all contain semantics. The identified meta-models in (a), for

example, already contain their semantics. Moreover, while for (b) semantics is removed, it is

added for (c). Integrating model elements with each other also implies additional semantics,

(see (d) in Figure 56). Additional semantics is added in terms of new relations among meta-

model elements, (see (e) in Figure 56).

Similar concept is presented by Laurenzi (2014) and Reimer and Laurenzi (2014), the two-tier

approach allows the following:

- On Level 1, administrative pathways from acute hospitals and rehabilitation clinics

are combined into a coherent discharging process. New processes can be

accommodated, or the existing ones adapted as the discharging process that fits one

acute hospital might differ for another clinic.

- On Level 2, the new meta-model can be extended further to cover new domain

requirements, e.g. transferring patients from acute hospitals to nursing facilities.

In total, the DSML4PTM meta-model consists of about 100 concepts and 300 attributes. In

contrast to single modelling language extensions, all the unneeded concepts were removed.

Thus, the meta-model remains lean and tailored for the targeted application domain.

According to the different knowledge types that were identified in the requirement

elicitation, five distinct and interconnected modelling views were proposed:

1. A process modelling view, which is the main view (Section 4.1.4.1).

2. A control element modelling view (Section 4.1.4.2).

3. A decision modelling view (Section 4.1.4.3).

4. A document and knowledge modelling view (Section 4.1.4.4).

5. An organisational view (Section 4.1.4.5).

Below, each modelling view is motivated with respect to the gathered requirements, and

for each view a suitable meta-model is chosen (Step (a) of Figure 55). Next, elements of the

chosen meta-model are kept or extended (Step (c) of Figure 55) or they are removed (Step (b)

Figure 56. Steps to design the meta-model of DSML4PTM

124

of Figure 55) according to the language requirements. Also, the integration among concepts of

different meta-models (Step (d) of Figure 55) is shown along with the introduction of meta-

models. Next, additional semantics is added (Step (e) of Figure 55) for the extended modelling

constructs.

4.1.4.1 Process Modelling View

According to the elicited requirements, there is the need to represent structured and

unstructured process logic (category of knowledge type). Some activities and conditions are

known in advance while the execution of others depends on human judgment or external

events. Thus, it is required to combine predefined, clearly structured process parts with more

ad hoc process steps.

The reference process depicting the elective entry case is mainly characterized by a

prescribed flow of activities. For example, the patient’s disposition in the rehab clinic cannot

start before the transferal manager releases all the necessary data and documents related to the

patient (see Figure 57).

In contrast, the responsible physician from the rehabilitation clinic might discuss with the

main physician from the acute hospital about the patient’s therapy. The activity execution of

this activity is up to the responsible physician rather than dictated by a sequence flow (e.g. see

requirement R2.1.11 in Sub-section 4.1.3.2.5.2).

Figure 57. Example of prescribed flow in the reference process

125

4.1.4.1.1 BPMN

As above-motivated BPMN 2.0 was selected to model activities and conditions, which are

known in advance and their flow can thus be modelled. In addition, unnecessary BPMN

elements were removed and others were extended with new elements to satisfy our list of

requirements (see concepts in light blue bubbles in Figure 58).

A more detailed list of elements is reported as follows:

- Activities: The concept “Task” and its specification (“Manual”, “User”, “Service” and

“Business Rule”) are needed. Extended elements are as follows:

o Manual Task: “PerformPhysicalAdmission”, “PerformTransfer”,

“CreateTransferCaseRecord”, “ConductFirstAssessment”.

o User Task: “ConfirmTransfer”, “PrepareMedicalRecordAdmission”,

“MakeDispositionOfCase”, “PrepareRehabAdmission”, “PrepareKoGu”,

“ReleaseTransferCase”, “FinalizeKoGu”, “PrepareRehabAdmission”,

“CloseTransferCaseRecord”.

o Service Task: “ReleasePatientRecord”, OpenPatientCase”.

o Business Rule Task: “ApplyDefRehaCriteria”, “ChooseRehabClinic”,

“ReapplyDefRehaCriteria”.

- Tasks need to be linked with “Sequence Flow”. “Task” can be marked as “Loop” and

“Parallel”. Other concepts regarding the concept activity are removed from the BPMN

meta-model.

Figure 58. Extended BPMN

126

- Gateways: The concepts “Exclusive Gateway” and “Parallel Gateway” are needed.

Other concepts regarding gateways are removed from the BPMN meta-model.

- Events: The red marked elements in Figure 59 depicts the required events.

The selected events will be implemented to be selected by the user. Domain-specific events

are included in the meta-model as subclasses of “Event”. The rest of the events are removed

from the BPMN meta-model.

- Data: The concept “Data Object” is needed. It may represent both data and documents.

“Data Object” is extended with the following concepts: “KoGu”, ”Medical Data”,

“Administrative Data”, “Process Progress”, “Care Status” and “Hospitalization

Document”. Data objects is linked with “Data Associations”. The requirement for the

process progress was addressed by adding a new concept “Status”. This includes the

percentage attribute that reflects the actual state of the process (see the related concrete

syntax in the point 6 of Figure 71). The rest of the concepts regarding data object are

removed from the BPMN meta-model.

- Swim lanes: All concepts regarding swim lanes are needed. Namely, “Pool”, “Lane”

and “Message Flow”. The “Pool” concept is extended with “Acute Hospital”,

“Rehabilitation Clinic” and “Health Insurance” pools. The “Lane” concept is extended

with “Transferal Manager”, “Acute Physician”, “Rehabilitation Physician”, “Nurse”

and “Patient Disposition” lanes.

- Choreography/Collaboration/Conversation: No concepts to model a choreography, a

collaboration or a conversation are needed. Hence, choreography, collaboration and

conversation concepts are removed from the BPMN meta-model.

Table 14 shows an overview of the BPMN concepts needed by the requirements listed in

the first column.

Figure 59. Relevant events according to requirements. Adapted from (Silver, 2011).

127

Req. Number Concepts for the BPMN meta-model

R1.1.1-R1.1.4, R1.1.6-

R1.1.9, R1.2.2,

R1.4.1-R1.4.10, R2.1.1-

R2.1.9, R2.2.2, R3.1.3,

R3.1.5-R3.1.7-R3.1.9

Task;

Manual Task: PerformPhysicalAdmission, PerformTransfer, CreateTransferCaseRecord,

ConductFirstAssessment;

User Task: ConfirmTransfer, PrepareMedicalRecordAdmission, MakeDispositionOfCase,

PrepareRehabAdmission, PrepareKoGu, ReleaseTransferCase, FinalizeKoGu,

PrepareRehabAdmission, CloseTransferCaseRecord”;

Service Task: ReleasePatientRecord, OpenPatientCase;

Business Rule Task: ApplyDefRehaCriteria, ChooseRehabClinic, ReapplyDefRehaCriteria;

Loop Marker; Parallel Marker; Sequence Flow; Exclusive Gateway; Parallel Gateway;

Pool: Acute Hospital, Rehabilitation Clinic, Health Insurance;

Lane: Transferal Manager, Acute Physician, Rehabilitation Physician, Nurse, Patient

Disposition;

Message Flow;

Data Object: KoGu, Medical Data, Administrative Data, Process Progress, Hospitalization

Document, Care Status;

Data Association;

None Event: Standard Start, Throwing Intermediate, Standard End; Message Event: Standard

Start, Catching Intermediate, Throwing Intermediate, Standard End;

Timer Event: Catching Intermediate;

Status.

4.1.4.1.2 CMMN

In order to model the activities and conditions that cannot be embedded in the process flow,

CMMN (OMG, 2016a) was chosen (i.e. the OMG standard for case management modelling).

Again, we removed the unneeded elements as well as extended new ones. “Sentry” and “Entry

Criterion” were kept, while for “Discretionary Task” specialisation like Update Disposition

and Perform Rehab Conference were introduced.

The integration with the BPMN elements was done by connecting the sentry to the task.

According to our proposed semantics, a task can be performed either as a subsequent activity

as part of a flow, or as soon as the sentry evaluates to true. Moreover, a task can have one or

more sentries. Two or more sentries express the “OR” condition. Thus, if one sentry evaluates

to true, the token steps into the task. The same also applies in presence of one input flow and

at least one sentry.

The discretionary task concept is a sub-class of the manual task (see the bubbles with blue

outline in Figure 60). At run-time, discretionary tasks that are involved in the sequence flow

are skipped if none of the attached sentry evaluates to true. For example, the

PerformRehabConference is a discretionary task that can be executed by the rehab if the patient

case is complex or simply if he or she wants to discuss the case with the physician in the acute

hospital.

Table 14. Overview of the covered requirements

128

4.1.4.2 Control Element Modelling View

Complex decisions are made along with the discharging process. For example, the acute

hospital decides on whether to start performing the admission for the incoming patient (e.g.

preparing all the needed resources). Such decision can be made only after the transferal date

has been agreed upon between the acute hospital and rehabilitation clinic and after the cost

reimbursement form has been sent to the health insurance. Another example is about decisions

that require to be taken if the patient’s situation worsens.

As stated in (Hinkelmann 2016), sentries can be specified in the so-called Control Element

Model in order to enable reuse of conditions and events. The metamodel elements that are

considered from the Control Element Model are “On-Part” and “If-Part”. Figure 60 shows the

extended elements in the light orange bubbles as well as their integration with the sentry

element of the CMMN.

Table 15 shows an overview of the concepts in both meta-models CMMN and Control

Element Model that are needed to fulfil the requirements listed in the first column.

Req. Number Concepts for the CMMN meta-model and for the Control Element meta-model

R1.1.10-R1.1.11,

R1.4.11-R1.4.12

R2.1.11-R3.1.10

CMMN: Discretionary Task, Sentry, Entry Criterion

Control Element Model: Sentry, Connection, On-Part, If-Part

Figure 60. Extended CMMN, extended Control Element Meta-Model and their relation

Table 15. Overview of the needed concepts from CMMN and Control Element Meta-Model

129

4.1.4.3 Decision Modelling View

The decision logic for complex decisions along with the discharging process must be modelled

on the activity level. For example, the application of the right discharging criteria permits to

derive the most suitable rehabilitation type and interface (e.g. from acute hospital to inpatient

neurological rehabilitation, rather than to a rehabilitation with compulsory medical

monitoring). The output is then used as input for another set of rules to identify suitable

rehabilitation clinics. Figure 61 depicts this scenario as an excerpt of the reference process.

In Switzerland, discharging criteria are specified in the DefReha© standard issued by the

organisation H+ Swiss Hospital (Gli Ospedali Svizzeri, 2017).

In order to model decision logic we selected the DMN standard (OMG, 2016b). The

metamodel concerning the Decision Requirements and the Decision Logic were reused and

integrated into the metamodel of the new DSML. The analysis of the DefReha© document has

shown, that the decision to determine the rehabilitation category and relevant inclusion and

exclusion criteria are of central importance for the domain in Switzerland. Figure 62, shows

some of relevant extended elements in light green bubbles (the complete list is shown below).

The integration took place via the decision element, which refers to the business rule task and

the discretionary task (see the two concepts connected to decision on the bottom left part of

Figure 62).

Additional constraints were added among the extended elements. In Section 4.1.5 an

example about how the DMN elements are related with each other is described.

Figure 61. Example of decisions logic modelled in the reference process

130

The complete list of extended elements is following listed:

- Decision: “Choose Rehab Clinic”, “Geriatric Rehabilitation Suitability”, “Internistic

and Oncological Rehabilitation Suitability”, “Cardiovascular Rehabilitation

Suitability”, “Musculoskeletal Rehabilitation Suitability”, “Neurological

Rehabilitation Suitability”, “Paediatric Rehabilitation Suitability”, “Paraplegic

Rehabilitation Suitability”, “Psychosomatic Rehabilitation Suitability”,

“Pneumological Rehabilitation Suitability”, “Inpatient Rehabilitation Suitability”,

“Compulsory Medical Monitoring Rehabilitation Suitability”, “Compulsory Medical

Monitoring to Inpatient Rehabilitation Suitability”.

- Business Knowledge: “Exclusion Criteria”, “Inclusion Criteria”, “Combination

Inclusion and Exclusion Criteria”.

- Decision Table: “Entry Criteria Decision Table”, “Exit Criteria Decision Table”,

“Suitability Decision Table”, “Inclusion to Inpatient Geriatric Rehabilitation Entry”,

“Inclusion to Inpatient Geriatric Rehabilitation Exit Home/Long-term Facility”,

“Exclusion to Inpatient Geriatric Rehabilitation Entry”, “Exclusion to Inpatient

Geriatric Rehabilitation Exit”.

- Knowledge Source: “DefReha©”.

The listed concepts allow to model all possible decisions of the DefReha©. This implies

that criteria for decision tables like “Entry Criteria Decision Table”, “Exit Criteria Decision

Table”, are entered at the time of their instantiation.

However, for elective entry cases we learned that specific decision tables for geriatric

patient cases can be useful for the transferal manager. The advantage would have been to have

this decision table already available with specific criteria. Thus, for the decision Geriatric

Rehabilitation Suitability, predefined decision tables were created. These are above

emphasised in italics style, e.g. Inclusion to Inpatient Geriatric Rehabilitation Entry. The result

in terms of concrete syntax is shown in the development.

Figure 62. Extended DMN and references with other meta-models

131

Table 16 shows the overview of needed concepts from the DMN meta-model as well as the

extended modelling elements.

Req. Number Concepts for the DMN meta-model

R1.1.4, R1.4.1, R1.4.7-

R1.4.10, R2.1.4, R3.1.4

Decision: Choose Rehab Clinic, Geriatric Rehabilitation Suitability, Internistic and

Oncological Rehabilitation Suitability, Cardiovascular Rehabilitation Suitability,

Musculoskeletal Rehabilitation Suitability, Neurological Rehabilitation Suitability, Pediatric

Rehabilitation Suitability, Paraplegic Rehabilitation Suitability, Psychosomatic Rehabilitation

Suitability, Pneumological Rehabilitation Suitability, Inpatient Rehabilitation Suitability,

Compulsory Medical Monitoring Rehabilitation Suitability, Compulsory Medical Monitoring

to Inpatient Rehabilitation Suitability, Knowledge Source: DefReha©;

Input Data;

Business Knowledge: Exclusion Criteria, Inclusion Criteria, Combination Inclusion and

Exclusion Criteria;

Decision Table: Entry Criteria Decision Table, Exit Criteria Decision Table, Inclusion to

Inpatient Geriatric Rehabilitation Entry, Inclusion to Inpatient Geriatric Rehabilitation Exit

Home/Long-term Facility, Exclusion to Inpatient Geriatric Rehabilitation Entry, Exclusion to

Inpatient Geriatric Rehabilitation Exit.

Relations: Information Requirement; Knowledge Requirement; Authority Requirement; Has

Decision Table.

4.1.4.4 Documents and Knowledge Modelling View

The modelled documents have to comply with healthcare standards like the International

Classification of Functioning, Disability and Health (ICF) standard (World Health

Organisation, 2016).

Representing the relevant documents and data is also required. For example, the cost

reimbursement form (abbreviated as KoGu) is the most important document in the transferal

management process. In case it is rejected, the discharging process most likely comes to an end

due to the lack of financial support.

Another essential document is the hospitalization form, which contains all the needed

information for the transferal manager to start the process. The process progress along with the

patient hospitalization should provide visibility to crucial events such as case and patient

accepted by the clinic, first assessment performed, discharging date agreed. Then, the

medication list form that must be updated after the transferal is confirmed.

Finally, each document belongs to a category. For instance, the hospitalization document

belongs to the administrative data, the medication list belongs to the medical data, whereas the

assistance list belongs to the care status data.

There is also the need to represent the status and versions of the document. For example,

the KoGu document should include the status (i.e. ready, sent, rejected or accepted), while the

ICF document should include both the trend and the status of each category.

Complying with many standards as well as accommodating many relevant documents were

addressed by selecting the Documents and Knowledge Model adopted in the European project

LearnPAd (De Angelis et al., 2016). This provides a way to structure documents and

knowledge representations. For example, we introduced the new concept “KoGu data object”

as a specialised data object. The required status of the KoGu data object was modelled by

means of attributes (Figure 63 shows the concrete syntax of the KoGu data object with related

status as well as the hospitalization document with related version on top of the icon).

Table 16. Overview of the needed concepts from the DMN meta-model

132

Constraints for defining the structure of data and documents were also added. Due to the

very large collection of data and documents, we grouped them into medical data,

administrative data, care status data and process progress. Each group contains several data

and documents (e.g. see assistance data and special medication data connected with the care

status in Figure 64).

Additional constraints addressed the need for indicating the status of data or documents.

For instance, the metamodel contains a connection between the ICF standard and the ICF

qualifier status, and between the KoGu document and its status (see Figure 64). The same

applies on other four elements, i.e. process status, physical transfer status, medication list

status, and acceptance status. These “Status” elements are determined based on the progress

of the data collection and are used to aggregate the overall “Status” in the DSML4PTM model.

Bubbles with light yellow in Figure 64 depict some of the specialised elements, while

connections to other coloured bubbles show their reference to other meta-model elements, i.e.

from BPMN (in light blue) and DMN (in light green). This reference relation allows the

navigability to a different diagram (or views) at model level.

Table 17 shows the needed concept from the document and knowledge meta-model such

that correspondent requirements are fulfilled.

Figure 63. Example of status and version on extended data objects

133

Req. Number Concepts for the Documents and Knowledge Meta-Model

R1.2.2, R1.3.2-R1.3.5,

R1.4.1, R1.4.3-R1.4.6,

R2.2.2, R2.3.1-R2.3.3,

R3.1.2-R3.1.5-R3.1.8

Status: Process Status, Physical Transfer Status, KoGu Status, ICF Qualifiers Status,

Medication List Status, Acceptance Status; Data/Document: Patient Data, Patient Health

Insurance Data, Acute Physician Data, Rehabilitation Data, KoGu, Hospitalization Document,

Medical Information, ICF Standard, Medication List, Assistance Data, Process Data, Special

Medication Data;

Group: Medical Data, Administrative Data, Process Progress, Care Status;

Relations: Belongs to, has Subdocument

4.1.4.5 Organisational Modelling View

This view deals with organisational modelling. Making the structure of the organisation explicit

in a model supports the domain expert to identify quickly and easily who is performing what

role in which care unit or rehab clinic.

The Organisational Meta-Model (as proposed in Emmenegger et al. (2016)) provides

constructs for assigning individuals to roles, which in turn are assigned to organisation units.

This structure ensures that a user can easily browse through an organisation and find a suitable

person or business unit.

The organisational meta-model was extended as follows (see also Figure 65):

The role element was specialised in Administrative Staff, Nurse, Acute Physician,

Rehabilitation Physician, Patient, Patient Disposition and Transferal Manager.

Next, the organisational unit was specialised in Acute Hospital, Rehabilitation Clinic, Care

Unit, Non-intensive Care Unit, Intensive Care Unit, Emergency Room, Site of Care and Health

Insurance.

The organisational meta-model was then connected with the process model as follows:

- Extended organisational unit elements are referenced with the extended pool elements

from BPMN.

Figure 64. Extended Document and Knowledge Meta-Model and references to other meta-models

Table 17. Overview of the needed concepts from the Document and Knowledge Meta-Model

134

- Extended role elements are referenced with the extended lane elements from BPMN.

For example, the transferal manger role (sub-class of role) is associated with the

transferal manager (sub-class of Lane).

Table 18 shows the concepts for the Organisational meta-model in a way that correspondent

requirements are fulfilled.

Req. Number Concepts for the Organisational Meta-Model

R1.1.1-R1.1.2, R2.1.1-

R2.1.2, R3.1.1

Organisational Unit: Acute Hospital, Rehabilitation Clinic, Care Unit, Non-intensive Care

Unit, Intensive Care Unit, Emergency Room, Site of Care and Health Insurance;

Team; Performer;

Role: Administrative Staff, Nurse, Acute Physician, Rehabilitation Physician, Patient

Disposition, Patient, Transferal Manager;

Relations: Is Subordinated; Belongs to; Is manager; Has role.

4.1.4.6 Additional semantics

According to the followed procedure, this Step aims to the add additional semantics to the

meta-model in the form of constraints. Each modelling construct inherits the semantics from

the correspondent modelling language. The inherited semantics is not reported as can be found

in the referenced specification of each selected modelling language.

Conversely, the additional semantics (i.e, constraints and attributes) of each modelling

construct are described in natural language. An excerpt of the semantics is shown in Table 19.

The table shows only modelling constructs that were extended from the BPMN. The complete

table containing all DSML4PTM can be found in Appendix A: Patient Transferal Management,

folder A12.

Figure 65. Extended Organisational Meta-Model and references to BPMN

Table 18 Overview of the needed concepts from the Organisational Meta-Model

135

Meta-

Model

Modelling construct Additional semantics

BPMN Task It cannot be “Discretionary”.

Manual

Task

PerformPhysicalAdmission,

PerformTransfer,

CreateTransferCaseRecord

ConductFirstAssessment

It can be a “Discretionary” task.

User

Task

PrepareMedicalRecordAdmission

ConfirmTransfer

MakeDispositionOfCase

PrepareRehabAdmission

PrepareKoGu

ReleaseTransferCase

FinalizeKoGu

PrepareRehabAdmission

CloseTransferCaseRecord

It cannot be “Discretionary”.

Service

Task

ReleasePatientRecord,

OpenPatientCase

Business

Rule

Task

ApplyDefRehaCriteria

ChooseRehabClinic

ReapplyDefRehaCriteria

It cannot be “Discretionary”.

It can have a connection to a decision of the DMN

requirements diagram.

Loop Marker

Parallel Marker

It cannot be attached to a “Discretionary” task.

Sequence Flow

Exclusive Gateway

Parallel Gateway

It can be connected to and from “Discretionary” tasks.

Pool It is linked to the “Organisational Unit” element of the

Organisation Model (i.e. bridging connector).

Pool Acute Hospital It is linked to the “Acute Hospital Organisational Unit”

element of the Organisation Model (i.e. bridging

connector).

Pool Rehabilitation Clinic It is linked to a “Rehabilitation Clinic Organisational Unit”

element of the Organisation Model (i.e. bridging

connector).

Pool Health Insurance It is linked to a “Health Insurance Organisational Unit”

element of the Organisation Model (i.e. bridging

connector).

Lane It is linked to a “Role” element of the Organisation Model

(i.e. bridging connector). It can include “Discretionary”

tasks.

Lane Transferal Manager It is linked to a “Transferal Manager” “Role” element of

the Organisation Model (i.e. bridging connector). It can

include “Discretionary” tasks.

Lane Acute Physician It is linked to a “Acute Physician” “Role” element of the

Organisation Model (i.e. bridging connector). It can

include “Discretionary” tasks.

Lane Rehabilitation Physician It is linked to a “Rehabilitation Physician” “Role” element

of the Organisation Model (i.e. bridging connector). It can

include “Discretionary” tasks.

Lane Nurse It is linked to a “Nurse” “Role” element of the

Organisation Model (i.e. bridging connector). It can

include “Discretionary” tasks.

Lane Patient Disposition It is linked to a “Patient Disposition” “Role” element of

the Organisation Model (i.e. bridging connector). It can

include “Discretionary” tasks.

Message Flow It can be connected to “Discretionary” tasks.

Data Object It can be connected to either a “Group” or a

“Data/Document” of the Documents and Knowledge

Model (i.e. bridging connector).

Table 19. Additional semantics for BPMN modelling constructs and extensions

136

KoGu Data Object It is connected to the “KoGu” “Data/Document” of the

Documents and Knowledge Model (i.e. bridging

connector).

It has KoGu template and KoGu Status as attributes.

Medical Data Data Object It is connected to the “Medical Data” “Group” of the

Documents and Knowledge Model (i.e. bridging

connector).

Administrative Data Data Object It is connected to the “Administrative Data” “Group” of

the Documents and Knowledge Model (i.e. bridging

connector).

Process Progress Data Object It is connected to the “Process Progress” “Group” of the

Documents and Knowledge Model (i.e. bridging

connector).

Care Status Data Object It is connected to the “Care Status” “Group” of the

Documents and Knowledge Model (i.e. bridging

connector).

Hospitalization Document Data Object It is connected to the “Hospitalization Document”

“Data/Document” of the Documents and Knowledge

Model (i.e. bridging connector).

Data Association Can also connect all new “Data Objects” with all tasks

(also “Discretionary” tasks).

None Event (Standard Start)

None Event (Throwing Intermediate)

None Event (Standard End)

Message Event (Standard Start)

Message Event (Catching Intermediate)

Message Event (Throwing Intermediate)

Message Event (Standard End)

Timer Event (Catching Intermediate)

It can be connected to “Discretionary” tasks.

Status It is connected to six status elements of the Documents and

Knowledge Model.

Attributes: Data released, First assessment done, Reha

conference done, Transfer date, Hospital approval, Reha

approval, Patient in reha, KoGu ready, KoGu sent, KoGu

accepted, KoGu rejected, Information filled in, Medication

list complete, Medication list sent, Case accepted, Patient

accepted.

Changes progress and color based on data collection of

attributes, 15 possibilities from 0 (0%) to 14 (100%) filled

in (Rehab conference and KoGu rejected are not relevant

for progress).

137

4.1.4.7 Conclusion and Problems in the Design phase

The design for the meta-model of DSML4PTM has been presented. A design procedure

fallowed to support the creation of the meta-mode. Thus, theory-based requirement TBR4 was

addressed. TBR3 was also addressed as the choice for the selected modelling languages was

made according to the elicited requirements. Since the main purpose of the language is to

represent a prescribed flow, BPMN was chosen as the main language. Hence, TBR7 was also

addressed. TBR1 is fulfilled as the language is conceived to be designed, adapted and used by

the domain experts. The DSML, e.g. foresees progress status for certain indicators as well as

decisions that can be automated. Finally, TBR6 was fulfilled by providing bridging connections

between concepts of different meta-models. This type of relationships (reference to) allow for

the navigation to different views, i.e. from the main view process modelling, to one of the

secondary views, i.e. decision modelling, document and knowledge modelling or

organisational modelling.

During the design phase a problem was identified that prevented the fast-forward

movement in the engineering lifecycle. The problem concerns the practice of updating the

requirements if changes occur in the meta-model. Changes occurred because of additional

aspects that were thought after the conceptualisation started. For example, this was the case

with the process status, in which the requirements did not have specified how to aggregate data.

The data aggregation was first conceptualised and then presented as a proposal. Therefore, in

such a case, if the conceptualisation is approved, the description of the requirements might

need to be updated. That is, one should go form the Design phase back to the Create phase in

this case. This action reverts to the back channel between the two phases of the AMME

Lifecycle. Although it is a good practice to keep the meta-model synchronised with the

requirements, it is another time-consuming activity.

The problem is following formulated:

Problem 4: The synchronization between the meta-model and

requirements is a time-consuming task. When changes originated from in

the meta-model, requirements were updated accordingly. Although it is a

good practice (see the backward arrow from the “Design” phase back to

the “Create” phase in the AMME Lifecycle), it prevents moving fast-

forward to the Develop phase.

138

4.1.5 Develop Phase

This sub-section describes the instantiation of the Develop Phase of the AMME Lifecycle (see

the yellow light bubbles in Figure 66). In this phase, the implementation of the DSML4PTM

meta-model was carried with the support of ADOxx Development Toolkit. The implementation

included the creation of all the graphical notations and their association to modelling

constructs.

The document containing all the graphical notations of DSML4PTM can be found in

Appendix A: Patient Transferal Management, folder 8. A few of them are shown in Table 20.

In result, the ADOxx library DSML4PTM.abl was created. The library can be found in

Appendix A: Patient Transferal Management, folder 9. The library is ready to be imported in

ADOxx Modelling Toolkit, in which the DSML can be used to create models. Tutorials on

how to upload ADOxx libraries to create models in ADOxx Modelling Toolkit are reported in

the OMiLab webpage32.

32 https://www.adoxx.org/live/tutorial;jsessionid=C7C7389BF6CD92868BA5DA0D463947CB

Figure 66. Development phase instantiation for DSML4PTM

139

Table 20. An excerpt of the graphical notation of DSML4PTM

Role Organisational Unit Data Object Document Decision

Administrative

Staff:

Intensive Care Unit:

General Data

Object:

General KoGu:

General Decision

Nurse:

Emergency Room:

General KoGu

Data Object:

KoGu Stroke:

Decision Choose Rehab

Clinic:

Acute Physician:

Site of Care:

Medical Data

Data Object:

Patient Data:

Decision Geriatric

Rehabilitation Suitability

Rehabilitation

Physician:

Health Insurance:

Administrative

Data Data

Object:

Acute Physician

Data:

Decision Musculoskeletal

Rehabilitation Suitability:

Patient

Disposition:

Rehabilitation Clinic:

Process

Progress Data

Object:

Patient Health

Insurance Data:

Decision Neurological

Rehabilitation Suitability:

Patient:

Intensive Care Unit:

Care Status

Data Object:

ICF Standard

Decision Inpatient

Rehabilitation Suitability

Transferal

Manager:

Acute Hospital:

Hospitalization

Document Data

Object:

Special Medication

Data

Decision Compulsory

Medical Monitoring to

Inpatient Rehabilitation

Suitability:

140

4.1.5.1 Changes from the Develop phase

The implementation of the meta-model faced some technical constraints of the adopted ADOxx

Development Toolkit. These constraints led to change the design of the meta-model, thus to

loop back to the Design phase. As an example, some elements that initially were conceptualised

as sub-concepts (e.g. User Task, Manual Task, Service Task and Business Rule Task as sub-

concepts of the class Task) had to be changed into typeOf concepts. In this way, the

specification of an element is done while modelling (in the modelling tool) by selecting the

type of elements of the selected element. For instance, after selecting a model element Task, it

is possible to choose among the available types such as User Task, Manual Task, Service Task

etc. (Figure 67). If such elements were left as sub-class, they had to be made visible for

selection from the palette, which would overcrowd the palette. However, in terms of

conceptualisation, it is more appropriate to have a sub-concept rather than a type, if its purpose

is to specialise a class. Modelling elements like User Task, Manual Task, Service Task

specialise the element Task (Rospocher et al., 2014).

Figure 67. Result of implementation of task types and names

141

As Figure 68 depicts, the need for changes led to the adjustments of the meta-model (Step

1) as well as adapt the requirement specifications, accordingly (Step 2). Then, based on the

new design of the meta-model, a new implementation for DSML4PTM was performed (Step

3).

4.1.5.2 Conclusion and Considerations for the Develop phase

The changes generated during the Development phase were due to the technical constraints of

the meta-modelling tool. The changes were not foreseen as, according to the AMME Lifecycle,

a meta-model should be designed first. Hence, both the meta-model and the requirement

specifications were adapted. Only then, the new meta-model could be re-implemented. The

fourth problem hindering agility of the DSML engineering is formulated as follows:

Problem 5: The sequential approach of first designing and then

implementing a DSML is problematic due to the changes that can generate

while implementing the DSML. Such changes lead back to the Design

phase to conceive a new meta-model and eventually to adjust the

requirement specifications. Only then, the meta-model can be re-

implemented. This engineering effort prevents to quickly move on to the

next phase, i.e. the Deploy/Validate phase. Moreover, the engineering

effort even increases if language engineers are not experienced with a

meta-modelling tool as some technical constraints can be learned only with

practice.

Figure 68. Propagation of changes from the Develop phase of the AMME Lifecycle

142

4.1.6 Deploy/Validate Phase

In this phase, the implemented DSML is deployed in a modelling tool as well as evaluated. The

phase corresponds to the instantiation of the Deploy/Validate phase of the AMME Lifecycle,

i.e. see bottom-right of Figure 69.

DSML4PTM was first evaluated against the elicited application domain-based

requirements (ADBRs) (see Sub-section 4.1.3.2). The evaluation was also conducted by

modelling real-world scenarios with DSML4PTM (see Sub-section 0). The models in PDF

format can be found in Appendix A: Patient Transferal Management, folder A10. The folder

contains three sub-folders KoGu accepted, KoGu rejected and Scenario. In each folder there

are the graphical models generated from the ADOxx Modelling Toolkit. Models in the sub-

folder KoGu accepted represent the happy path, which focus on the elective entry case. Models

in the sub-folder KoGu rejected also focus on the elective entry case. Finally, the third sub-

folder Scenario contains models of the emergency entry case - geriatric patient with stroke.

The models can also be opened in the ADOxx Modelling Toolkit. For that, both the

DSML4PTM library (file with the extension “.abl”) and models (files with the extension

“.adl”) can be found in Appendix A: Patient Transferal Management, folder A9.

Finally, a focus group session was performed to evaluate the perceived usefulness and

cognitive effort of the language. Results of the focus group are described in Sub-section 4.1.6.4

(for documentation see Appendix A: Patient Transferal Management, folder A11).

4.1.6.1 Changes from the Deploy/Validate Phase

New requirements to amend DSML4PTM mainly originate in this phase. With the practical

use of the DSML, modelling and domain experts could better understand whether the

abstraction level of the language was appropriate and pitfalls were identified.

As depicted in Figure 70, new design decisions generated during the Deploy/Validate phase

affected the list of requirements that were previously derived from the Create phase. Table 21

contains the changed requirements. In turn, The new requirements were addressed by designing

a new version of the meta-model (Step 2 in Figure 70), which was then implemented in the

ADOxx Meta-modelling Toolkit (Step 3 in Figure 70). Finally, the DSML was deployed once

again (Step 4 in Figure 70).

Figure 69. Deploy/Validate phase instantiation for DSML4PTM

143

Number Old Requirement Design Decisions

R1.1.1 The DSML should accommodate constructs to model

specific actors.

Most relevant actors will be designed with a

dedicated role element in the organisation model.

R1.1.5 The DSML should accommodate constructs to model a

system.

It is no longer relevant to show the system for the

data storage. Content of the system is rather more

relevant, e.g. administrative and medical data.

R1.1.12 The DSML should accommodate constructs to model the

transfer of a patient.

This activity is modelled as standard BPMN task.

No need any longer to create a dedicated element.

R1.2.1 The DSML should accommodate constructs to model the

patient admission form.

The form can be included in the hospitalization

document. In this way the need to create dedicated

element will no longer be needed.

R1.2.3 The DSML should accommodate constructs to model the

long report.

The report can be included in the administrative

data. In this way the need to create dedicated

element is no longer needed.

R1.3.1 The DSML should accommodate constructs to model the

Hospital Information System (HIS) that includes the short

report.

It is no longer relevant to show the system for the

data storage.

R1.3.5 The DSML should accommodate constructs to model the

Hospital Information System (HIS) that includes standard

codes that classify the patient problems, i.e. Tessiner code.

It is no longer relevant to store the Tessiner code

in a predefined way.

R1.4.1 The DSML should accommodate constructs to assign the

emergency severity to a case (i.e. ESI triage).

It is no longer relevant to assign severity of a case.

This is only relevant for the treatment of the

patient.

R2.2.1 The DSML should accommodate constructs to model the

patient admission form.

The form can be included in the hospitalization

document. The creation of a dedicated element is

no longer needed.

The following two sub-sections report the evaluation of DSML4PTM which addresses the

latest list of the requirements.

Figure 70. Propagation of changes from the Deploy/Validate phase of the AMME Lifecycle

Table 21. New Design Decisions

144

4.1.6.2 Evaluation of DSML4PTM Against the Elicited Requirements

This sub-section describes the evaluation of the DSML against the derived requirements. For

this, several tables were created containing the following three columns:

- The number of requirements,

- A small description of the requirement,

- Description about how DSML4PTM fulfils the requirement.

Each table addresses a type of requirements:

- Process requirements,

- Document requirements,

- Information systems and data requirements,

- Decisions requirements,

- Additional requirements.

Table 22 shows how document requirements were fulfilled. The rest of the tables can be

found in Appendix A: Patient Transferal Management, folder A13.

145

Number Document

Requirement

Fulfilment

R1.2.1 The DSML should

accommodate

constructs to model the

patient admission form.

DSML4PTM features a new data object in the modelling process view and in the

document and knowledge modelling view, which is called the hospitalization

document. As it is shown in the below screenshot, three notebook Sections are

available to enter relevant data.

R1.2.2 The DSML should

accommodate

constructs to model the

rehabilitation form for

cost reimbursement, i.e.

KoGu.

DSML4PTM features a new data object in the process modelling view and

document and knowledge modelling view called KoGu. Thirteen pages are

available in the notebook and each Section presents dedicated relevant data.

R1.2.3 The DSML should

accommodate

constructs to model the

long report.

DSML4PTM features new documents Medical Information, Hospitalization

Document and Patient Data. Each of them contains dedicated attributes.

R2.2.1 The DSML should

accommodate

constructs to model the

patient admission form.

Fulfilled by R1.2.1.

R2.2.2 The DSML should

accommodate

constructs to model the

rehabilitation form for

cost reimbursement

(KoGu).

Fulfilled by R1.2.2.

Table 22. Fulfilment of document requirements

146

4.1.6.3 Evaluation through the Creation of Real-World Cases

The evaluation of DSML4PTM was also conducted by using the DSML to model real-world

scenarios. To provide an impression of it, Figure 71 depicts an excerpt of the model

representing the emergency entry case introduced in Section 4.1.3.2.4 (see model in Appendix

A: Patient Transferal Management, folder A9).

Figure 71 shows how the relevant concepts and decisions that belong to different views are

related to each other. The different arrows in the figure are below explained.

Arrow 1 shows the bridging connector from the pool Acute Hospital in the process model

view to the correspondent element Organisation Unit in the organisational modelling view.

Arrow 2 shows the bridging connector from the data object Hospitalization in the process

model view with the related document, which is modelled in the document and knowledge

modelling view.

Arrow 3 shows the notebook with all data values of the KoGu document.

Arrow 4 shows the bridging connector from the sentry attached to the discretionary task

Re-apply DefReha Criteria in the process model view, to the related sentry element in the

control element modelling view. The latter shows the sentry with optional events (ON part) and

conditions (IF part). According to the semantics inherited from CMMN, the execution of the

task is possible if both ON-part and IF-part evaluate to true.

Arrow 5 shows the bridging connector from the business rule task Apply DefReha Criteria

in the process model view to the decision construct Decide on Rehabilitation Suitability

modelled in the Decision Requirements Diagram, i.e. decision modelling view. The latter

construct takes the input patient data and medical information (both modelled in the Document

and Knowledge model). Moreover, the decision construct has the knowledge source DefReha©

which refers to the external PDF containing the actual document. Additionally, rules for

selecting the rehabilitation type are expressed in decision tables. Hence, all the sub-decisions

that reflect rehabilitation types are modelled and used as input for the construct Decide on

Rehabilitation Suitability. For example, the neurological rehabilitation type has three

interfaces: Inpatient Rehabilitation, Compulsory Medical Monitoring and Medical Monitoring

to Inpatient Rehabilitation. The three interfaces are modelled as further decision constructs that

in the meta-model relate to Neurological Rehabilitation Suitability.

Arrow 6 leads the process status element in the process model view to the notebook

containing all the attributes for which the status is determined, i.e. data released, first

assessment done, Rehab conference done, transfer date, KoGu ready, and so on.

Noteworthy is the integration of CMMN and BPMN in the process model view, which

allows specifying the actor who would perform a discretionary task by placing the task on the

appropriate lane. This specification is not foreseen in the current version of CMMN 1.1 (OMG,

2016a).

147

Figure 71. Part of the reference model implemented in the ADOxx Development Toolkit

148

4.1.6.4 Focus Group Evaluation

Models created in the previous evaluation were used in a two-hour focus group session with

four modelling experts and one domain expert for an evaluation on the perceived usefulness of

the language and its cognitive effort. In the first hour, the new modelling language was

introduced to the participants and then a walk-through session explained how the new language

can be applied. In the following hour, the participants were given a hands-on session and they

were asked to extend the reference process with two new scenarios:

1. Discharging criteria complied with the standard DefReha should be re-applied in case

the cost reimbursement form (KoGu) is rejected.

2. The cost reimbursement form (KoGu) needs to be revised as some information is

missing.

Finally, a questionnaire was provided to perform a qualitative evaluation.

The questionnaire was developed based on the guidelines proposed in (Tullis & Albert,

2013). It was conducted on an individual basis and within a time frame of at least half an hour.

The questionnaire contained five sections, i.e. four questions on general background; eleven

questions on modelling background; three open questions on the perceived usefulness of the

new modelling language; five open questions on the cognitive effort of the new modelling

language; and three open questions as a feedback for future improvements.

In the following, we summarize the outcome of the questionnaire with respect to the

perceived usefulness and cognitive effort.

Perceived usefulness: All participants agreed on the high potential of the DSML in fostering

communication and collaboration among domain experts. Modelling experts stated that the

new language simplifies the modelling process, which helps improve model quality. They also

emphasised that the language can be seen as a basis for the integration of different information

systems (e.g. health information systems, patient administration systems, health records) and

automated verification.

Cognitive effort: All participants agreed on the ease-of-use of the new language. For which

a metric is the amount of time that is required to learn the usage of a language. All the

participants stated that the usage of the language could be learned within a short period of time.

This was backed by the fact that participants could propose meaningful models for the two new

scenarios within less than half an hour. Of course, to apply the language in real settings would

need more time to get acquainted with it. Further metrics we looked at are the appropriate

abstraction of language elements and their default values, the graphical notation of the concrete

syntax, and the support at design time in creating meaningful models. The latter was mentioned

as one of the main strengths as during the hands-on session, participants perceived they could

not connect model elements with each other randomly. In line with this, modelling experts

mentioned the reduction of modelling mistakes as a strength of the new language. One agreed-

upon drawback of the language is the difficulty to understand when to use a sentry rather than

a gateway. We noted that during the hands-on session, those with a strong BPMN background

tended to use gateways only. One suggestion was to encourage the usage of sentries as a best

practice while minimising the use of gateways.

149

4.1.6.5 Conclusion and Problems in the Deploy/Validate Phase

In this phase, DSML4PTM was subject to three types of evaluation: (1) against the application

domain-based requirements, (2) by modelling rea-world scenarios and (3) by conducting a

focus group with modelling and domain experts. The Deploy/Validate phase generated the

highest amount of changes to accommodate in DSML4PTM. The problem is thereby

formulated as follows:

Problem 6: In order to integrate new requirements in the DSML, the

engineering lifecycle is re-iterated from the initial phase (i.e. Create

phase). For each iteration, all the engineering phases (Create, Design,

Develop and Deploy/Validate) are sequentially re-performed until a new

version of the DSML is ready to be used. Going through each phase is an

engineering effort as well as time-consuming, thus it prevents the quick

versioning of a DSML.

150

4.2 Case 2: Business Process as a Service (BPaas)

During a project CloudSocket33 (Woitsch & Utz, 2015) it turned out that existing modelling

languages were not expressive enough for modelling the needs in the application domain

business process as a service (BPaaS). Like the first case, the work in this application domain

gave the chance to analyse the agility issue from a practical perspective.

Differently from DSML4PTM, the BPaaS DSML focuses on both the human and machine

interpretation of knowledge.

This case study, like the Patient Transferal Management case study, follows the case design

described in the introduction of Chapter 4. The remainder of this section is structured as

follows: first, the introduction and motivation of the work are provided. Then, the related work

is reported to provide the theoretical framework for the DSML. Next, the instantiations of the

AMME Lifecycle are introduced and then each phase is summarized along with faced

problems. Differently from DSML4PTM, the BPaaS DSML engineering lifecycle (Create,

Design, Develop and Deploy/Validate) was iterated three times. The iterations were due to the

arise of new requirements after the language evaluation. The three engineering iterations are

described from Sub-section 4.2.6.3 to 4.2.6.5 and the new requirements are reported after the

first and second iterations.

4.2.1 Introduction and Motivation

It is a challenge for today's enterprises to continuously align business and IT in a rapidly

changing environment. According to Gartner (2014) enterprises are facing a new era of

enterprise IT, which is “characterized by deep innovation beyond process optimization,

exploitation of a broader universe of digital technology and information, more-integrated

business and IT innovation, and a need for much faster and more agile capability.” To gain

appropriate benefit from the digitalization business and IT should be deeply integrated.

BPaaS aims to bring end-to-end business processes in the cloud. In this context, the

alignment between business and IT had the purpose of supporting the retrieval of suitable cloud

offerings for the specified business requirements. Cloud offerings are typically specified in IT

language. In contrast, requirements come from the business side, thus are specified in business

language. To support the mapping between the business requirements and the IT specifications

a component was developed. Such components require the modelling of both business

requirements and service specification in an enterprise ontology. The latter allows automating

the Business-IT alignment.

However, the specification of an enterprise ontology is difficult for both business people and

cloud service providers. Therefore, the task was to create a DSML that allows to easily model

both business requirements and service specifications.

33 https://site.cloudsocket.eu/

151

4.2.2 Related Work

BPaaS represents an initial field of research. Most of the research work proposed focuses on

how to define BPaaS and the respective candidate architectures to realize it (Amziani, Melliti,

& Tata, 2012). Some work has concentrated on dealing with security aspects, e.g.

anonymization-based protocols for BPaaS fragments (Azzini et al., 2013). Initial work has been

conducted on how elasticity can be realised for BPaaS through a specific formal model and a

respective elasticity framework (Lynn et al., 2014).

Modelling the business processes, workflows and services is part of Enterprise Modelling

- the description and definition of the processes, structure, information and resources of an

enterprise. According to Fox and Gruninger (1998) an enterprise model must supply the

information and knowledge necessary to support the operations of the enterprise. Enterprise

modelling techniques are developed in several fields such as business process modelling,

information modelling, systems modelling, and enterprise architecture.

As already seen in the literature review chapter, OMG has developed several specialised

modelling languages for enterprise modelling, for example Business Process Model and

Notation (BPMN), Case Management Model and Notation (CMMN), the Decision Model and

Notation (DMN). The primary purpose of these graphical modelling languages is to support

communication between human stakeholders. Adding formal semantics to business processes

enables machine reasoning and allows exploiting the full potential of process models. This

semantic lifting can be achieved by representing a model with ontologies. De Nicola et al.

(2008) already mentioned the use of semantic lifting for the alignment of business and IT. Other

applications for semantic lifting are process automation (Hepp et al., 2005), process mining

(Azzini et al., 2013) or learning (Emmenegger et al., 2017).

The purpose of ontologies in enterprise modelling is to formalize and establish the sharing,

reuse, assimilation and dissemination of information across all organisations and departments

within an enterprise. Developing enterprise ontologies started in the 1990s with TOVE (Fox,

1992), The Edinburgh Enterprise Ontology (Uschold et al., 1998) and the organisational

memory (Abecker et al., 1998).

More recent work is the Context Based Enterprise Ontology (Leppänen, 2007). Den Haan

(Den Haan, 2009) has used an enterprise ontology to realize a Model-Driven Enterprise

Engineering.

In this research an enterprise ontology was used which is based on the concepts of the

ArchiMate Standard (The Open Group, 2012a) and extend it with concepts for BPaaS.

ArchiMate is an integrated modelling language for enterprise architectures (EA). It is consistent

with the TOGAF (The Open Group, 2011) framework. The overall enterprise architecture

comprises a set of closely inter-related architectures: Business Architecture, Information

Systems Architecture, and Technology Architecture. Another well-known EA framework is

the Zachman Framework, a two dimensional matrix, in which the cells contain models

(Zachman, 2008).

Hinkelmann et al. (2016) combined Enterprise Architecture modelling and Enterprise

Ontologies for continuous alignment of business and IT. They show the potential of having

both graphical and ontological representations in one environment. The work in this case study

builds on that approach, where ontologies are eventually used to support the design of graphical

models.

152

4.2.3 Methodology

The development of the BPaaS DSML is supported by the AMME (or OMiLab) Lifecycle

(Karagiannis, 2015). Differently from DSML4PTM, which is limited to a human-interpretable

representation, BPaaS DSML aims for both the human and machine interpretation of

knowledge. The human-interpretable knowledge is enabled by graphical models while an

ontology allows for the machine interpretation of the models. In order to develop BPaaS DSML

the AMME Lifecycle was instantiated twice:

- Instantiation for the human interpretation of BPaaS DSML,

- Instantiation for the machine interpretation of BPaaS DSML.

Both instantiations contributed to conceiving the general architecture of the BPaaS Design

Environment, which is described in Sub-section 4.2.4.

Sub-section 4.2.6 summarizes each engineering phase of both instantiations. Problems

identified during the engineering lifecycle are reported at the end of each phase. This is done

by providing a comparison with the six problems already identified during the development of

DSML4PTM.

4.2.4 BPaaS Design Environment Architecture

The BPaaS DSML was deployed in a hybrid ADOxx-based modelling tool (i.e. the BPaaS

Design Environment – see Figure 72), which foresees the design of domain-specific business

processes and related requirements as well as the design of workflows and related cloud

specifications. As afore-mentioned, the BPaaS Design Environment was conceived by

instantiating twice the AMME Lifecycle, once for the human interpretation of BPaaS DSML

and once for its machine interpretation.

The first one encompasses the BPaaS meta-model for the human-interpretable, graphical

modelling languages. The graphical models can be semantically annotated with the ontological

concepts, which are defined in the BPaaS Ontology. An inference engine uses the BPaaS

Ontology and semantic rules to enable the smart IT-Business alignment in the Cloud.

Both BPaaS Ontology and meta-model development have been synchronised as the

ontology contains class definitions describing the intended semantics of the elements of the

graphical modelling language. This approach provides the possibility of modelling both

business processes and workflows, and annotating elements modelled with corresponding

functional and non-functional requirements and specifications, respectively.

Figure 72. Components of the BPaaS Design Environment

153

4.2.5 Create, Design, Formalize, Develop and Deploy/Validate Phases

Figure 73 depicts the concrete steps (see bubbles) of each phase of the two AMME Lifecycle

instantiations. Bubbles with the same colour mean they belong to the same phase. Dashed

arrows also indicate the reference to a phase. The information flow among steps is shown

through solid blue arrows.

Due to changes in requirements derived by feedback from business process managers,

cloud computing experts and broker from the project team, both instantiations were iterated

three times during the project. Each iteration led to building three new prototypes, i.e. see the

three yellow bubbles that belong to the instantiation for machine interpretation in Figure 73:

Semantic Lifting Prototype (first iteration), Matchmaking Prototype (second iteration), and

Questionnaire Prototype (third iteration). Most of the steps in the bubbles with the same colour

were run in parallel. From Sub-sections 4.2.5.1 to 4.2.5.8 each phase is elaborated including

the faced problems.

154

Figure 73. Two AMME Lifecycle instantiations for the human and machine interpretation of BPaaSDSML

155

4.2.5.1 Create Phase

In this phase, the analysis of business scenarios served as a starting point, since they represent

real situations as they occur in enterprises. The business scenarios were developed in

workshops conducted with project members of the European project CloudSocket, which

included business process managers, cloud computing experts and cloud brokers. Each of the

three iterations corresponds to the creation of a new business scenario. The three scenarios

were the following (from the oldest to the newest):

- the Sending Christmas Card Process (the first iteration – see (Woitsch et al., 2016), for

documentation see in Appendix B: Business Process as a Service, folder B1);

- the Social Media Campaign Process (the second iteration - see (Hinkelmann et al.,

2016), for documentation see in Appendix B: Business Process as a Service, folder B2);

- the Send Invoice Process, (the third iteration - see (Kritikos et al. 2018)).

The first scenario mainly contributed to “derive competency questions”, which served to

determine the scope of the ontology. The following two scenarios contributed cumulatively to

the competency questions, which were implemented directly as semantic rules and queries

through SPARQL. Thus, the scope of the ontology evolved over the iterations. Competency

questions are introduced by Gruninger and Fox (1995) as a method for enterprise engineering

and ontology scope determination (Uschold & Grüninger, 1996). This approach is widely

known and was amongst others adopted in (De Bruijn, 2003; De Leenheer & Mens, 2008;

Cardoso, 2010). One example of a competency question is as follows: Which parts of my

business process can be served by existing workflows? (the list of the first competency

questions can be found in the documentation in Appendix B: Business Process as a Service,

folder B1).

- First iteration. The domain and scope determination correspond to steps 1 to 5 of the

approach for ontology development (Noy & Mcguinness, 2001). Moreover, the

literature review on existing ontologies was performed in parallel to ensure the coverage

of existing material. This was mainly an effort during the first iteration (for

documentation see in Appendix B: Business Process as a Service, folder B1). In the

second and third iteration, ontologies were adapted and extended.

- Second iteration. The BPMN convention to name activities by a verb and a noun

(Silver, 2011); the analysis of existing standards such as APQC Process Classification

Framework (APQC 2014) and Cloud Service Level Agreement Standardisation

Guidelines (EC Cloud Select Industry Group (C-SIG), 2014) resulted in an adaption of

the functional requirement and specification.

- Third iteration. The analysis of 46 recent scientific papers (i.e. from 2009 to 2018)

(Giovanoli, 2019) of cloud services as well as the analysis of four existing cloud

marketplaces, i.e. Ymens34, IBM35, Also36 and UK digital marketplace37 led to

adaptations of the descriptions of non-functional requirements.

Results of each iteration were used as input for the domain analysis of BPaaS DSML. The

results contributed to set the requirements for the design of the meta-model (see information

flow arrows in Figure 73). This phase was subject to continuous adaptation and feedback

through typical collaboration instruments used within the CloudSocket consortia, i.e. physical

34 http://www.ymens.ro/en/frontpage
35 www.bluemix.net
36 www.alsocloud.ch
37 https://www.digitalmarketplace.service.gov.uk/g-cloud

156

meetings, internet workshops, presentations and collaborative development. Thus, further

iterations occurred within each of the three iterations.

4.2.5.2 Problems in the Create phase and comparison with DSML4PTM

The problems identified in the Create phase of DSML4PTM are compared with the experience

in BPaaS. Table 23 shows the comparison. No further problems were identified in this phase.

Problems in DSML4PTM Problems in BPaaS

Problem 1. Language engineers

and domain experts have different

types of expertise. This might

result in misinterpretation of

requirements.

The issue also manifested in the creation phase of BPaaS DSML. The domain

expertise (i.e. specifying Cloud requirements in business-like language) had

to be deepened until a stable list of requirements was delivered. Meetings and

workshops with domain experts helped the language engineers to gradually

increase understanding.

Problem 2. The extraction,

documentation, prioritization, and

categorization of requirements is a

time-consuming manual task.

The time-consuming task includes extracting, documenting prioritizing and

categorizing manifested with the manual job of creating competency

questions. The latter, nevertheless, helped to extract relevant aspects for the

language concisely. The sequential approach in this case reverts to the

transformation of competency questions to ontology concepts and semantic

rules (i.e. from creation phase to design phase), where the ontology was used

as a conceptual meta-model of the DSML.

Problem 3. The update and

synchronization of requirements is

a time-consuming task.

The time-consuming task of updating and synchronizing among different

requirements did not emerge as for each engineering iteration there was only

the literature review and one business scenario as sources.

4.2.5.3 Design Phase and Formalisation Phase

The design and formalisation phases were done in parallel. Results from the previous phase

were considered to design both the meta-model and BPaaS Ontology (see information flow

arrows in Figure 73). The meta-model and the ontology were designed in parallel too so to

ensure consistency. Namely:

1. In the instantiation for the machine interpretation of BPaaS DSML, the BPaaS Ontology

was first conceptualised as an extension of the ArchiMEO38 enterprise ontology and then

formalized into the RDF(S) ontology language. Semantic rules and queries were also

created and formalized in SPARQL. The ontology editor TopBraid39 was adopted (for the

documentation of BPaaS Ontology40 see in Appendix B: Business Process as a Service,

folder B1).

2. In the instantiation for the human interpretation of BPaaS DSML, the steps from (a) to (e)

introduced in Sub-section 4.1.4, were performed to design the meta-model. The

conceptualisation and formalisation of the meta-model can be found in Appendix B:

Business Process as a Service, folder B1. The formal meta-model is specified in first-

order logic-based formalism FDMM (Fill et al., 2012)).

38 http://ikm-group.ch/archimeo
39 https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
40 The full set of BPaaS Ontologies is retrievable at: https://github.com/BPaaSModelling/CloudSocket-

Ontology

Table 23. Comparison of problems identified in the Create phase for DSML4PTM and BPaaS

157

4.2.5.4 Problems in the Design and Formalisation Phase and Comparison with

DSML4PTM

In the Design phase of BPaaS DSML, it was identified a similar as problem 4 in DSML4PTM.

Table 24 shows the description of the problem in relation to problem 4. Below, a new problem

is presented, which did not arise in DSML4PTM.

Problem in DSML4PTM Problems in BPaaS DSML

Problem 4. The synchronization between the

meta-model and requirements is a time-

consuming task.

A similar problem was faced in BPaaS DSML. When a change

occurred in the ontology the related competency questions was

aligned to avoid inconsistencies.

The new problem identified in the phase concerns the Formalize phase, which was not

performed for DSML4PTM. This is a quite a heavy engineering effort, which requires high

expertise in both conceptual models as well as logic-based formalism. If changes are

accommodated in the language, each iteration leads to adapt the formal description of the meta-

model, resulting in a time-consuming task (for documentation see Appendix B: Business

Process as a Service, folder B1). The problem is formulated as follows:

Problem 7: The formalisation of the meta-model is an intensive and

time-consuming engineering task, which requires high expertise. According

to the followed methodology, this activity is in between the design and the

development steps. That is, every new engineering iteration that changes

the meta-model leads to change the correspondent formal representation to

keep consistency. This problem prevents the quick release of new versions

of a DSML.

4.2.5.5 Develop Phase

In this phase, the steps of the two instantiations (human and machine interpretation of BPaaS

DSML) were performed in parallel (see the yellow bubbles in the initially introduced Figure

73). In each iteration a new prototype was developed. BPaaS DSML was iteratively adapted

and used first in the Semantic Lifting prototype and then in the Matchmaking prototype. The

three engineering iterations are elaborated below.

1. In the first iteration, the BPaaS Ontology (including semantic rules and queries) and

BPaaS DSML meta-model were the basis to implement the Semantic Lifting Prototype

(see correspondent information flow arrow in the above Figure 73). Namely, the latter

was built such that classes and instances from the BPaaS Ontology could be selected for

the semantic annotation. Thus, the prototype41 allows performing the semantic annotation

of models created with the from the ADOxx modelling toolkit (for documentation see

Appendix B: Business Process as a Service, folder B2). The BPaaS DSML for human

interpretation was implemented in the ADOxx Development Toolkit. The implementation

included the creation of graphical notations for BPaaS DSML. The resulting DSML

BPaaS was then ready to be used in the ADOxx Modelling Toolkit. In the first iteration

ADOxx libraries were developed around the scenario Christmas Card process (the

41 The prototype can be downloaded from the GitHub repository: https://github.com/BPaaSModelling/BPaaS-

Annotation-WebService

Table 24. Comparison of problems identified in the Design phase for DSML4PTM and BPaaS DSML

158

libraries for the meta-model and model can be found in Appendix B: Business Process as

a Service, folder B3).

2. In the second iteration, the new version of BPaaS Ontology along with semantic rules and

queries were used as basis for implementing the Matchmaking prototype. The latter

enable the smart Business-IT alignment in the cloud such that the suitable workflows and

cloud services are retrieved to serve parts of a business process (the documentation can

be found in Appendix B: Business Process as a Service, folder B2). Thus, transformations

from models to ontologies should occur and the result is then used as input for the

prototype42. Similarly, the meta-model of BPaaS DSML was also adapted, extended and

implemented in the ADOxx Development Toolkit. The first application scenario that

underpinned the iteration was the Social Media Campaign process. Further on, BPaaS

DSML was refined to model the Send Invoice scenario (for documentation see Appendix

B: Business Process as a Service, folder B3).

3. In the third iteration, similarly to the second iteration, a new version of BPaaS Ontology,

along with semantic rules and queries were used as basis for implementing the

Questionnaire prototype. The Send Invoice process underpinned this iteration (the process

can be found in Appendix B: Business Process as a Service, folder B3). The Questionnaire

prototype is stand-alone. It was later embedded in the BPaaS Design Environment so to

be triggered from any process fragments within the design environment. Moreover, the

prototype foresees an ontology-based meta-model (Hinkelmann et al., 2018). A new

version of BPaaS DSML meta-model was, therefore, not required. Specifically, the

Questionnaire prototype consists of two components: (1) the web app43 that allows for the

user interaction with the questionnaire, and (2) the web service44 that allows for the

propagation of the ontologies to the web app so that the questionnaire is graphically

displayed.

4.2.5.6 Problems in the Develop Phase and Comparison with DSML4PTM

The problem faced in the Develop phase for BPaaS DSML was the same as in DSM4PTM.

The problem is described in Table 25. No further problems were identified.

Problem in DSML4PTM Problems in BPaaS DSML

Problem 5. The sequential

approach of first designing and

then implementing a DSML is

problematic due to the changes

that can generate while

implementing the DSML

The same problem partially raised for BPaaS. On the one hand the tool

constraint issue did not raise as most of the new concepts were entered in the

form of attributes. Thus the abstraction level of concepts was not an issue.

On the other hand, it applies the same sequential issue where for each new

requirement, its implementation (i.e. in the development phase) was only

done after its conceptualisation (i.e. in the design phase) in the meta-model.

42 The matchmaking prototype is retrievable at: https://github.com/BPaaSModelling/BPaaS-Annotation-

Matcher
43 https://github.com/BPaaSModelling/Questionnaire_v3-WebApp
44 https://github.com/BPaaSModelling/Questionnaire_v3-WebService

Table 25. Comparison of the problem identified in the Develop phase for DSML4PTM and BPaaS

159

4.2.5.7 Deploy/Validate Phase

Evaluation activities were performed at the end of each engineering iteration. For this, the

scenarios were implemented in the prototpes and the results were shown to project partners so

to collect feedback. Namely:

- In the first iteration the Semantic Lifting approach and first version of the BPaaS DSML

were evaluated by (1) creating models for the two scenarios Sending Christmas Card

and Social Media Campaign through the Semantic Lifting prototype, (2) showing

demos to the project partners.

- In the second iteration, the Matchmaking approach and new version of the BPaaS

DSML were evaluated by (1) creating models for the Social Media Campaign and the

Send Invoice scenarios trough the Matchmaking prototype, (2) showing demos to the

project partners.

- Finally, in the third iteration, the Questionnaire approach and ontology-based meta-

model were evaluated by (1) executing the Send Invoice scenario in the Questionnaire

prototype and (2) showing demos to the project partners.

Figure 69 shows the information flow from the evaluation of the DSML to the evaluation

of the approaches. Such flow indicates that the new versions of BPaaS DSML were used in the

creation of models within the considered scenarios (the models implemented in ADOxx can be

f in Appendix B: Business Process as a Service, folder B3).

4.2.5.8 Problems in the Deploy/Validate Phase and Comparison with

DSML4PTM

Table 26 contains the problem faced in this phase, which is similar to the already introduced

problem 6.

Problem in DSML4PTM Problems in BPaaS DSML

Problem 6. In order to integrate new

requirements in a DSML, the engineering

lifecycle has to be re-iterated from the initial

phase (i.e. Create phase).

The same problem was faced in BPaaS. Significant changes

raised at the end of the first two iterations. Time-wise, each

iteration was equivalent to approximately six to eight

working months.

Table 26. Comparison of the problem identified in the Deploy/Validate phase for DSML4PTM and BPaaS

160

4.2.6 Engineering Lifecycle Iterations for BPaaS DSML

This sub-section presents the relevant aspects that led to iterate the engineering lifecycle three

times. First, the application scenario for the domain analysis is presented. Then, the initial

version of the meta-model is introduced. Next, each of the engineering lifecycle iteration is

briefly described, along with the new requirements that arose before each iteration.

4.2.6.1 Application Scenarios for the Domain Analysis

The domain analysis in the Create phase led to the identification of a set of relevant business

processes. In this sub-section, only the most recent business process is presented “Send

Invoice”. This business process was identified as one of the most widespread processes in

industry.

Figure 74 shows the business process, which starts with the “Manage Customer

Relationship'” activity. Next, an exclusive gateway splits the business process flow between

either creating a new invoice or updating an existing one. Then, invoice completeness is

checked, and finally the invoice is sent.

Figure 74. Send Invoice Business Process

161

A potential workflow model that implements the business process Send Invoice is depicted in

Figure 7545. Workflow activities present a deeper granularity than activities in business

processes, and typically leads to a higher number of activities. Such activities are bounded with

a cloud service. Thus, a workflow is meant to be executable and subsequently deployable in

the cloud. BPMN lanes of workflows represent IT systems or cloud services. This means, all

the activities in a workflow lane are supported by the IT system placed in the lane.

The workflow shown in Figure 75 incorporates the following cloud services:

1.Customer Relationship Management system (CRM) like YMENS46 (see top lane of the

workflow);

2.An invoicing system that includes a document generator like InvoiceNinja47 (see middle

lane of the workflow);

3.An e-mail and file system supported by Invoice Ninja (see bottom lane of the workflow).

Customer data are stored in the CRM, and the invoice is transmitted via an email system.

As afore-mentioned, the business processes and workflows were used to create competency

questions from which the BPaaS Ontology was derived. The BPaaS Ontology supported the

Design phase of the BPaaS DSML. The relevant aspects of the Design phase together with the

Develop and Deploy/Validate phases are described in the following sub-section.

45 A higher resolution of the workflow model can be found in Appendix B: Business Process as a Service,

folder B5
46 http://www.ymens.ro/en/frontpage
47 https://www.invoiceninja.com/

162

Figure 75. A workflow implementing the business process Send Invoice

163

4.2.6.2 Initial Version of BPaaS DSML

During the Design phase of the first engineering lifecycle, the BPaaS meta-model was defined.

Such definition includes (a) domain-specific business layer and (b) the IT-Cloud relevant

technical layer as well as the interaction between them (see Figure 76).

The three blocks bordered in red colour in Figure 76 are of relevance for this work. Namely,

business processes, from the business layer, workflows from the technical layer and the service

description model. These were mainly subject to changes during the project whereas the rest

model types (e.g. Organisational Model and Document Model) remained unaltered.

For BPaaS DSML, the BPMN 2.0 class diagram was considered and an overview is

depicted in Figure 77. The DSML spans to other modelling languages such as the

Organisational modelling language and the Document Knowledge modelling language (for

documentation see in Appendix B: Business Process as a Service, folder B1), which are

integrated with the subset of BPMN 2.0. Like for DSML4PTM, the integration among different

modelling languages occurred through bridging concepts, which allowed navigating between

concepts of different modelling views.

Figure 76. The BPaaS Meta-Models

164

Business processes and IT workflows can be modelled with BPMN 2.0. Each of them

foresees a different modelling view, i.e. the business process modelling view and the workflow

modelling view.

To support the matchmaking between the business and IT layer, the modelling standard

BPMN 2.0 was extended with a cloud-specific description concept. The new modelling concept

was named Activity Specification and belongs to the Service Description modelling (see red-

bordered box between the business process and the workflow one in Figure 76). The concept

contained new attributes describing the requirements derived from the business process for

cloud services. Nearly 50 attributes were created, e.g. Name, Description, General

Functionality, Payment, Costs (see also Appendix B: Business Process as a Service, folder B1).

These were grouped into several dimensions: one (cloud) Service Requirement dimension and

six cloud service description dimensions. The latter were as follows:

a) Functional Description,

b) Input Description,

c) Output Description,

d) Non-functional Description,

e) Business Description,

f) Regulatory Description.

At this stage, attribute types were mainly in the form of either free text to allow free

description of requirements, or enumeration list.

Once the last phase of the engineering lifecycle was achieved, le language could be

evaluated by designing the application scenarios and presenting them to the project experts.

Figure 77. BPaaS Business Process Modelling Language Class Diagram

165

From this evaluation, it raised the need to change most of the free text and enumeration

attributes (except for numerical values such as downtime per minutes) into program calls. Such

program calls aimed promote consistency between the models and the ontology by facilitating

the semantic annotation of models. The semantic annotation of models enables the introduction

of smart semantic technologies when using conceptual business process or workflow models.

The human-interpretable models are enriched with ontology concepts in order to (a) support

the alignment between the human- and machine-interpretable representations and (b) to enable

business and IT alignment with smart technology. The BPaaS Design Environment architecture

in Sub-section 4.2.4 depicts the semantic annotation with an arrow between the ontology and

the graphical model. The adaptation requirement is formulated as follows:

Adaptation Requirement 1: Attributes of the type String should be

changed into program calls for semantic annotations.

4.2.6.3 First Engineering Lifecycle Iteration

To address the adaptation requirement 1, the implementation of the meta-model was adapted,

i.e. Develop phase. Wherever possible, String attributes were turned into program calls. As

afore-mentioned, program calls allowed assigning ontology concepts to attributes, thus

semantic annotation of graphical models (see Figure 78). To support the annotation, a Semantic

Lifting approach was conceived. In turn, a new deploy of the BPaaS Design Environment was

performed.

Following, it is reported an excerpt of the attributes contained in Functional Description

dimension. Each attribute is presented with its name, type, (if applicable) range of concrete

values, and a brief description.

(a) The Functional Description dimension (see corresponding implementation in Figure 79)

indicates the purpose of the service. It contains the following attributes:

- General Functionality [Enumeration], {not applicable; Apply Rule; Manual;

Receive; Transform; Send; Store; Wait; Update; Create; Assign; Others}: defines

the expected service behaviour on a very high level. This semantic lifting is a

predefined flat list in the form of a drop-down menu.

Figure 78. Semantic annotation of models

166

- Annotation of Functional Requirement: (a) Functional Description [INTERREF],

(b) Access External Functional Ontology [PROGRAMMCALL], (c) External

Functional Annotation [STRING]. While (a) refers to a particular process task and

allows to specify IT- relevant aspects of a task within a business process; (b) enables

the selection of ontology concepts representing the functional description. The

button invokes an ontology access while the selected concept is stored in the

External Functional Annotation (see correspondent textbox populated with the term

“invoke” Figure 79).

- Free Functional Keywords [STRING]: In case the afore-mentioned semantic

expressions are insufficient or need further elaboration, the author can describe its

concerns here.

- Comments on Functional Requirements [STRING]: This feedback enables an

evolution based on user feedback.

Figure 80 shows the results of the first iteration in the form of a designed model in ADOxx.

Namely, the upper part presents the business process modelling view while the lower part the

description modelling view (see dashed line in Figure 80). Each process task instantiation leads

to one instance of the Activity Specification construct. Arrow 1 points to the Activity

Specification construct offered in the palette of the modelling language. Arrow 2 shows the

transition from the concrete instantiation of the Activity Specification construct to the attribute

dimensions, which in ADOxx are implemented in the form of a notebook (see also Figure 79).

Figure 79. Functional Description dimension implemented in ADOxx

167

Like in the previous version of BPaaS DSML, the evaluation of BPaaS DSML occurred

once again by showing models representing the business scenarios to the project members.

This activity generated new feedback, which turned into three new main requirements to

accommodate.

The first requirement derived from the need to represent (a) business process requirements

separate from the (b) IT specifications as well as to provide a modelling view to each

representation.

Adaptation Requirement 2: Representations and modelling views for

business process requirements should be separate from IT specifications.

The second requirement derived from the need to specify both business process

requirements and workflow descriptions not only on a single activity level but rather in

different granularity levels, i.e. group of activities and end-to-end business process. This

change aimed to provide flexibility in the identification of workflows and cloud services that

match business processes requirements. That is, the identification would take place on the basis

of requirements related to single activities, group of activities and whole business processes.

Adaptation Requirement 3: Business process requirements and

workflow descriptions should be specified over single, group of activities

and end-to-end business process.

The third new main requirement was derived by the need to comply with the Cloud Service

Level Agreement Standardisation Guidelines (EC Cloud Select Industry Group (C-SIG), 2014)

when specifying the non-functional requirements and IT descriptions.

Adaptation Requirement 4: Non-functional business process

requirements and IT descriptions should comply with the Cloud Service

Level Agreement Standardisation Guidelines (EC Cloud Select Industry

Group (C-SIG), 2014).

Figure 80. First Iteration: Implementation of DSML BPaaS in ADOxx

168

4.2.6.4 Second Engineering Lifecycle Iteration

To address adaptation requirement 2, the “Activity Specification” construct was first adapted.

The name changed into “Workflow Description”. Then, a new modelling construct named

“Business Process Requirement” was entered. The two modelling constructs specified business

process requirements and IT workflow descriptions, respectively. This adaptation implied new

attributes in place as well as the change of most of the attributes of the previous version (the

complete list of the new attributes can be found in Appendix B: Business Process as a Service,

folder B2). For the new list of attributes new standards were consulted (see Service Description

modelling views 4.2.6.4.3). Moreover, two separate modelling views were initialized to model

on the one hand the business process requirements and on the other hand the workflow

descriptions (see Figure 81).

In order to navigate through the different views, the following bridging connectors were

implemented:

- from the business process modelling view to the business process requirement

modelling view,

- from the workflow modelling view to the workflow description modelling view.

The following sub-sections provide a more detailed description of each view and relation

between the different modelling views.

Figure 81. Business Process Requirement modelling view vs. Workflow Description modelling view

169

4.2.6.4.1 Business Process Modelling View

Differently from the first version, in the second version of BPaaS DSML the BPMN concept

“Group” was adapted to add a bridging connector to the “Business Process Requirement”

concept.

The connector starts from the process modelling view and leads to the business

requirements modelling view. In the latter, the modelling construct “Business Process

Requirement” can be instantiated (see upper part of Figure 81). Subsequently, to each “Group”

instantiation corresponds one “Business Process Requirement” instantiation. The former is a

means for annotating a business process in the business process modelling view. The

annotation can take place on a general level, by referring to the whole process, or on a more

detailed level specifying requirements for a group of activities, until down to atomic activities

(addressing adaptation requirement 3).

As an example of the resulting implementation, Figure 82 shows the modelling construct

“Group” being instantiated four times for the Send Invoice business process:

- to annotate the whole process,

- to annotate a group of activities: “create new invoice”, “update invoice” and “check

invoice completeness”,

- to annotate the single activity “manage customer relationship”,

- to annotate the single activity “send invoice”.

Each group annotation has its own business process requirements, which are conceptualised

as attributes in the class “Business Process Requirement”.

In the deployed prototype, these attributes are shown through a notebook interface (see

bottom-left part of Figure 82). Section 4.2.6.4.3 further elaborates on the business process

requirements.

170

Figure 82. Adaptation of the “Group” concept to specify business process requirements

171

4.2.6.4.2 Workflow Modelling View

A workflow model reveals technical aspects of the business process and is meant to be designed

and understood by technical people. In contrast to business processes, workflows do not have

requirements but rather IT descriptions of functional and non-functional properties. As already

mentioned, each workflow lane corresponds an IT system. Hence, the BPMN modelling

construct “Lane” was adapted to add a bridging concept leading to the modelling construct

“Workflow Description”. Like in the business process modelling view, the latter is instantiated

in its dedicated service description modelling view: the workflow description modelling view

(see bottom of Figure 81). The three blue dotted arrows in Figure 83 depict the bridging

connectors from the workflow modelling view to the workflow description modelling view.

The workflow descriptions are conceptualised as attributes of the class “Workflow

Description”. Also, these attributes are shown through a notebook interface (see bottom-right

part of Figure 83) in ADOxx. In contrast to the business layer, attributes representing the

workflow non-functional specifications are represented in IT terms. This is further elaborated

in the “Non-functional specifications” Sub-section of Section 4.2.6.4.3.

Figure 83. Adaptation of the Lane to specify workflow descriptions

172

4.2.6.4.3 Service Description modelling views

The Service Description modelling view contains the two above-mentioned modelling

constructs “Business Process Requirements” and “Workflow Description”. The former

includes functional and non-functional business process requirements whereas the latter

functional and non-functional descriptions of workflows. Business and IT properties are

distinguished only for the non-functional specifications. The rationale is that business non-

functional requirements can be quite different from IT non-functional specifications. For

instance, while for a cloud IT expert the meaning of the data security encryption algorithm

“Blowfish” would be rather clear, for the entrepreneur who lacks IT background might be not.

Rather, the entrepreneur would like to know whether his/her data are securely stored, by

mentioning e.g. a percentage or a category level, i.e. low, medium or high. In contrast,

specification of a business functional requirement and a functional workflow description can

be quite similar as they both express the purpose of either a business process or a workflow,

respectively. For example, the purpose of managing invoices can be associated with both a

business process and a more technically detailed workflow or cloud service.

Following the functional and non-functional specifications are elaborated.

4.2.6.4.4 Functional Specifications

Functional requirements specify the functionality of a task, a group of tasks or the whole

business process. Two ways were proposed to specify the functionality:

- by assigning hierarchies from the APQC Process Classification Framework (APQC,

2014);

- by assigning an action and an object from a predefined taxonomy, which corresponds

to the convention of BPMN to name activities by a verb and a noun (Silver 2011). The

verb corresponds to the action and the noun to the object, whose combination provide

the “what-is-about” knowledge.

In turn, the Functional Description dimension in the BPaaS DSML was implemented with the

following attributes:

- APQC

- Action

- Object

To set the value for each of the attributes, an interface is created to the BPaaS Ontology.

The interface is invoked by clicking the appropriate button. For example, Figure 84 shows the

notebook interface of a Business Process Requirement instance “BPR – 9.2.2.2 Generate

Customer Billing Data” annotated with the APQC category “9.2.2.2 Generate Customer

Billing Data”.

173

Figure 84. Example of Business Process Functional Requirements annotated with APQC, Object and Action

174

4.2.6.4.5 APQC Taxonomy

The APQC Process Classification Framework is the most used process framework in the world

to communicate and define work processes comprehensively and uniformly within and across

organisations. The framework consists of over 1.000 business process categories with an

increasing specificity level over a taxonomy of five tiers. As an example, Table 27 shows the

first tier with the 13 most generic business process categories.

1.0 Develop Vision and Strategy

2.0 Develop and Manage Products and Services

3.0 Market and Sell Products and Services

4.0 Deliver Physical Products

5.0 Deliver Services

6.0 Manage Customer Service

7.0 Develop and Manage Human Capital

8.0 Manage Information Technology (IT)

9.0 Manage Financial Resources

10.0 Acquire, Construct, and Manage Assets

11.0 Manage Enterprise Risk, Compliance, Remediation, and Resiliency

12.0 Manage External Relationships

13.0 Develop and Manage Business Capabilities

The highlighted category in Table 27 (i.e. 9.0) is the top generic categories of the more

specific APQC category: “9.2.2.2 Generate Customer Billing Data”, which was mentioned in

the above example.

An ontology reflecting the APQC taxonomy was created (i.e. APQC Ontology) and was

used to semantically annotate the APQC attribute. The annotation is supported by the Semantic

Lifting prototype, which was developed after going through the first engineering lifecycle

iteration. Through a selection box (see Figure 85), the prototype allows the modeller to navigate

through the taxonomy tiers from the most generic to the most specific one (and vice versa) until

the suitable category is identified.

Once the suitable category is identified, the modeller can select it and store it as APQC

attribute value (as shown above in Figure 84).

Table 27. APQC Top Level Categories

Figure 85. Selection box with the APQC categories of the first tier

175

Figure 86 shows an excerpt of the APQC Ontology. In the excerpt, the APQC category

(“9.2.2.2”) used to annotate the process requirement that is highlighted in Figure 84.

Figure 86. Excerpt of the APQC Ontology

176

4.2.6.4.6 Action and Object Taxonomies

As already mentioned, action and object originated from the BPMN convention to name

activities by a verb and a noun, respectively (Silver, 2011). Accordingly, an ontology with

taxonomies for the both was created and named Functional Business Process Description (i.e.

FBPD Ontology). Like for the APQC attribute, the Semantic Lifting prototype supports the

semantic annotation for both object and action by retrieving the correspondent ontology. Figure

87 depicts an excerpt from the FBPD Ontology. In the example depicted in Figure 84, the

object attribute has the value “Invoice”, which was previously selected from the FBPD

Ontology (see highlighted ontology concept in Figure 87, i.e. fbdpo:Invoice).

Functionality of a workflow and cloud services are specified in the same way with APQC

category, action and object.

4.2.6.4.7 Non-Functional Specifications

To address adaptation requirement 4, the two kinds of non-functional specifications were

proposed: one expressed in business terms (i.e. non-functional business process requirements

- NFBPRs), whereas the second one is expressed in IT terms (i.e. non-functional workflow

descriptions - NFWDs). Both were derived from the Cloud Service Level Agreement

Standardisation Guidelines (EC Cloud Select Industry Group (C-SIG), 2014) and were

consolidated in workshops performed iteratively with the project members.

Both categories were grouped into five categories: Performance, Data Security, Support

Service, Payment, and Target Market. For the NFBPRs, each group presents several attributes

expressed in business terms, e.g. the performance category includes the media type (e.g.

document, video, image and audio) and number of processes executions per time frame (the

Figure 87. Excerpt of the FBPDO Ontology

177

complete list of non-functional business process requirements can be found in Appendix B:

Business Process as a Service, folder B2).

Similarly, for NFWDs each group presents several attributes, but they are expressed in IT

terms. For example, the performance category has capacity, which spans the available data

storage, simultaneous connections and service users (the complete list of non-functional

workflow descriptions can be found in Appendix B: Business Process as a Service, folder B2).

As an example, Figure 88 shows the performance dimension in business terms of the

business process requirement element “9.2.2.2 Generate Customer Billing Data”, while Figure

89 shows performance dimension in IT terms of the workflow description element “WD – Ninja

(Invoicing System)”.

The new proposed attributes in the performance dimension (business layer) are as follows:

- Availability: Downtime in minutes per month [INTEGER]. It refers to the time when a

service is not available.

- Capacity: (1) What would you like to upload? [STRING]; (2) Set Media Type

Annotation [PROGRAMCALL]; (3) Number of Process Execution per Year

[INTEGER]; (4) Number of Simultaneous Users [INTEGER]. (1) refers to the types of

media that the user would like to upload in the business process and it allows to store

the selected action from the invoked ontology, e.g. pdf documents; (2) enables the

invocation of the ontology for the selection of the ontology concept; (3) refers to the

number of times a process is executed in a defined period of time; (4) refers to the

number of separate cloud service customer users that can use the cloud service at one

time;

- Response Time: (1) Response Time Level [STRING]; (2) Set Response Time Level

[PROGRAMCALL]. Response time refers to the time interval between a call of a cloud

service (stimulus) and a response by the cloud service provider. (1) Allows to store the

selected response time level from the invoked ontology, i.e. High, Medium, Low; (2)

enables the invocation of the ontology for the selection of the ontology concept.

178

The new proposed attributes in the performance dimension (technical layer) are as follows:

- Availability: Uptime [DOUBLE]. It describes the time in a defined period (i.e. month)

the service is available over the total possible available time and it is expressed in

percentage;

- Capacity: (1) Max Available Data Storage in GB per Month [Double], (2) Maximum

simultaneous connections [INTEGER], (3) Maximum simultaneous users [INTEGER].

Capacity is expressed in terms of both hardware and network. (1) For hardware

capacity, the modeller can enter the maximum available data storage in Gigabyte. For

network capacity, the modeller can enter (2) the maximum simultaneous connections

and (3) the maximum simultaneous users, which is allowed by a cloud service;

- Response Time: Max Average Response Time [TIME]. It refers to the time that is

required between the requests from the stakeholder to the system and the response of

the request.

In this way, workflow specifications are entered by the expert with IT understanding, while

business requirements are entered by experts with business understanding.

For example, to specify the data capacity the business modeller can mention the media type

he/she wants to upload (e.g. PDF document or a video format) and the number of process

executions in a defined time (e.g. up to 500 invoices sent per year). The workflow description

Figure 88. Performance dimension in business terms

179

specifies the size of the storage. The comparison between the two languages is made by the

smart alignment component, where all models are transformed into an ontology format and

given as input to the Matchmaking prototype (mentioned in Section 4.2.4). The latter includes

semantic rules and queries to identify which workflow description elements satisfy the business

process requirement elements.

During the evaluation of the prototype, two main drawbacks were identified. One drawback

concerned the too much effort for the modeller to specify the business process requirements.

Subsequently, the requirement was to specify business process requirements more intuitively

and quickly than annotating process fragments.

Adaptation Requirement 5: Business process requirements should be

specified in an intuitive and quick manner.

The second identified drawback concerned the non-functional IT specifications. These were

limited to the specific use case scenarios. In turn, specifications were further elaborated to

reflect as much as possible real-world cloud services.

Adaptation Requirement 6: Non-functional descriptions should be

further specified to reflect real-life cloud services.

Figure 89. Performance dimension in IT terms

180

4.2.6.5 Third engineering lifecycle iteration

To address adaptation requirement 5, a context-adaptive questionnaire prototype was

developed. The new prototype aimed to provide a more intuitive requirement specification

from the business perspective. Therefore, process requirements have been expressed in the

form of a questionnaire. Answering meaningful and business-related questions made the

requirements specification more (business) user-centric. The questions were developed through

interviews made with the industrial project partner Mathema48, an Italian company operating

in the IT field since 1987 and expert in supporting SMEs to identify appropriate Cloud solutions

(for documentation see Appendix B: Business Process as a Service, folder B7). In parallel,

further findings about non-functional specification of cloud services were included. The

findings were derived by the analysis of forty-six recent research papers (from 2009 to 2018)

(Giovanoli, 2019). As a result, the following top eight dimensions were derived: Payment,

Security, Performance, Availability, Reliability, Interoperability, Support, Target Market.

The Performance dimension, for example, includes questions mentioned as following:

- Question: What is your preferred monthly downtime in minutes?

o Possible answer: 30 minutes

- Question: Should the process be executed on a daily, weekly, monthly or yearly basis?

o Possible answer: On a weekly basis

- Question: What is your favourite response time level?

o Possible answer: High, Medium or Low

- Question: How many simultaneous users should cloud service support?

o Possible answer: at most 10

For each question, four types of answers were distinguished: (1) single-answer selection

(i.e. the user selects one answer from a predefined set); (2) multi-answer selection (i.e. the user

selects more answers from a predefined set); (3) search-insert; (4) value-insert. Value-insert

and search-insert require user input. While the former enables inserting attribute values (e.g.

downtime), the latter enables crawling predefined values from the ontology and selecting the

suitable one. For instance, answers related to three functional requirement questions (Action,

Object, and APQC category) are of the search-insert type. Users can insert keywords for the

business process they are looking for, and the ontology returns the concepts matching these

keywords. Figure 90 shows this functionality's implementation result, i.e. see a list of APQC

categories appearing below the search box.

48 https://www.mathema.com/

181

Each time a question regarding a business non-functional requirement is answered, a semantic

rule is fired either (1) to transform business terms into IT terms, e.g. from downtime to

availability in percentage, or (2) to explicate implicit knowledge, thus deriving new facts. This

prepares the ground to identify matching cloud services, which is done through a semantic

query on a second step. For example, regarding the derivation of new facts (2), let’s assume

that we have the following:

- A cloud service with the execution constraint of 20 times per day.

Requirements from the filled questionnaire are as follows:

- Should the process be executed on a daily, weekly, monthly or yearly basis?

o Answer: At least on a weekly basis.

- How many times should the process be executed?

o Answer: At least 10 times

Running a process at least on a weekly basis implies that can also run daily. The semantic rule,

therefore, would infer the answer “Daily”, which is then used as additional criteria in the

semantic query. As a result, the cloud service specification matches the requirement.

4.2.6.5.1 A context-adaptive questionnaire for the quick service identification

In order to provide a quick identification of cloud service (see adaptation requirement 5), the

questionnaire was implemented to find the matching cloud service(s) with the least possible

number of questions. The questionnaire presents a set of questions that focus first on functional

process requirements and then on non-functional requirements, both in business terms.

Whereas questions relating to functional requirements are fixed (i.e. same as in the previous

engineering iteration: APQC, action, object), questions relating to non-functional requirements

are displayed according to a prioritisation algorithm (Kritikos, Laurenzi & Hinkelmann, 2018).

In a nutshell, the algorithm considers the following:

1. The user preferences in terms of dimensions/categories, e.g. performance, payment,

support etc.;

Figure 90. Search-insert type function applied on the APQC question

182

2. The entropy of semantic attributes reflecting cloud service specifications. The higher the

entropy value of an attribute is, the higher its service distinguishability degree is, and thus

the higher the assigned priority of the related question becomes. This approach leads to

the least possible number of questions being posed and answered, thus reducing the

requirements-specifications matching time.

The questionnaire is applied on the whole business process first. Next, if no service is

found, the user can move down to groups of activities (i.e. process fragments), and lookup

services for each fragment. The split and search loop continue until the level of activities is

reached and no services have been found for them. The top-down hierarchical service

identification is shown in Figure 91; it fosters the identification of services so that they

implement as many activities as possible.

Figure 91. Hierarchical cloud service identification employing the questionnaire

183

4.2.6.5.2 Ontology-based Meta-Model

The context-adaptive questionnaire adopts the ontology-based meta-modelling approach

introduced in (Hinkelmann, Laurenzi et al., 2018). Hence, the semantic alignment between

meta-model and ontology is no longer needed and neither the semantic annotation of models.

That is, questions and possible answers are displayed in the user interface in the form of

graphical representations of concepts that reside in the ontology-based meta-model, i.e. the

Questionnaire Ontology. As an example, Figure 92 shows the question that resides in the

Questionnaire Ontology in the form of an instance of the concept “Security”, which is one of

the non-functional requirement dimensions. The same question is displayed on the user

interface of the Questionnaire prototype, see Figure 93.

The matching cloud services are displayed after every answered question on the right-hand

side of the user interface of the Questionnaire prototype. For instance, see the two cloud

services shown in Figure 93: “Open Source Billing – Invoicing Systems” and “Ninja Invoicing

System”.

4.2.6.5.3 Non-functional cloud service specifications

To address the adaptation requirement 6, non-functional cloud service specifications were re-

elaborated. Service descriptions of four marketplaces were screened, i.e. Ymens, IBM, Also

and UK digital marketplace. In total, top eight dimensions and related sub-dimensions were

identified. Possible values were entered for most of the sub-dimensions. An excerpt of the

result is shown in Table 28., where only two top dimensions are displayed (the complete table

can be found in Appendix B: Business Process as a Service, folder B8).

Table 28. Non-functional IT Specifications

Figure 93. Business process non-functional requirement specification through the questionnaire

(Kritikos et al., 2018)

Figure 92. Excerpt of the Questionnaire Ontology

184

Top Dimensions Sub-dimensions Values

Payment Payment Plan Customizable Plan

Free of Charge

Fixed Subscription

Per-terabyte

Per-instance

Per-user

Per-day

Per-hour

Initial Base Fee

Per-Item

Utility

Pay-as-you-go

Monthly Fee

None

Prepaid Annual Plan

Try Free First

Other

Not specified

Additional costs yes

no

not specified

Security Encryption type AES

TLS VPN

IP Filtering

SSL (Secure Sockets Layer)

IAAS

Ipsec

TLS

PSN

SOX

HIPAA

FDA

FIPS

ISO:27001

SSH

HIPAA and HITECH

PCI DSS

Privacy Shield

Other

Not specified

185

4.3 Problems Hindering Agility in DSML Engineering and Main

Challenges

As described along with the two cases (Sections 4 and 4.2), seven problems were identified,

which hinder DSML engineering. These problems prevented the quick release of new versions

of the two DSMLs and are consolidated below (see also Figure 94). Next, the problems are

compared with literature findings so to derive the main two challenges to address in this

research work.

- Problem 1: Language engineers and domain experts have different types of

expertise. This might result in misinterpretation of requirements. As a consequence,

the quality of the new version of DSML is hampered. This problem manifests

particularly in the beginning of the project, as the language engineers have little

knowledge about the addressed domain. Further engineering iterations are required

until a DSML is good enough to be released, which is time-consuming.

- Problem 2: Extracting, documenting, prioritizing, and categorizing requirements is

time-consuming and prevents the quick advance of the engineering lifecycle.

- Problem 3: The longer the list of requirements and the more dependencies among

requirements, the more time-consuming becomes their maintenance (i.e.

synchronization and update).

- Problem 4: Aligning requirements from the Create phase to the Design phase is

time-consuming.

- Problem 5: Starting the Develop phase only after the Design phase is finished is not

convenient as changes can arise while implementing the language. One reason for

changes is due to the inability of meta-modelling tools to accommodate the desired

conceptualisation.

- Problem 6: The sequential re-iteration of all engineering phases before a new

version of a DSML is deployed is time-consuming. That is, a new version of the

language cannot be evaluated until the whole lifecycle is ended.

- Problem 7: In the Formalize phase, each new requirement originating from the

Design Phase (see 7a) or Develop phase (see 7b) leads to adapt the formalized meta-

model, which is a tedious, intensive and time-consuming engineering task requiring

high expertise.

186

The most significant needs for changes originated from the modelling component when the

language could be used as domain experts can provide feedback (see Sub-section 4.1.6.1 for

DSML4PTM and Sub-sections from 4.2.6.3 to 4.2.6.5 for the BPaaS DSML). Similar findings

are reported by Frank (2013a), who claim that pitfalls related to inappropriate constraints,

abstraction issues, or ambiguity of modelling constructs are likely to raise after the language is

implemented (see Section 2.9). As shown by the red arrow on the right-hand side of Figure 95,

from the Deploy/Validate phase new requirements should be accommodated in the Create

phase. Then, the language engineer propagates the new requirements throughout the

engineering lifecycle (see right-hand side of Figure 95). After that, the new version of the

DSML is deployed so the domain experts can use that. As already mentioned in Sub-section

2.10.4, there are two different components for language engineering and modelling (see also

Figure 95).

Figure 94. Main problems hindering agility of DSML engineering faced during the development of

DSML4PTM and BPaaS DSML

Figure 95. The separation between the language engineering component and the modelling component

187

Such split leads engineering and modelling activities to be carried out sequentially, thus

separately and at different points in time. Domain experts can provide suggestions for

adaptations, only after the engineering activity is completed. The suggested adaptations (i.e.

new requirements) are not applied on-the-spot as it takes time until a new DSML is released.

Therefore, the requirements are gathered and elaborated by the language engineers. However,

as pointed in Problem 1, such requirements may not reflect the actual needs of the domain

experts due to misinterpretations or miscommunications between the language engineers and

domain experts. The problem is likely to rise due to the different expertise of the two roles.

And also because of little domain knowledge of the language engineers. The little domain

knowledge of language engineers is typical in an early stage of DSMLs projects (Frank, 2013a;

Barišić et al., 2018). In turn, the quality of the DSML is threatened and new engineering

iterations may be required until a version of a DSML is good enough to be released.

A similar problem was identified by Izquierdo et al. (2013), who claim that the

inappropriate communication of new requirements from domain experts to language engineers

hamper the quality of DSMLs. To overcome this issue, Izquierdo et al. (2013) proposed a

collaborative approach between the language engineers and domain experts. They developed

an example-driven and collaborative supported tool to engage domain experts in the

construction of DSMLs. With a similar end, Barišić et al. (2018) proposed the USE-ME as a

methodological approach in which domain experts are involved in the DSML assessment

through user interface experimental techniques.

Although these solutions promote the cooperation with domain experts, they are still

characterized by a sequential phase, which prevents a DSML from being quickly developed.

Ideally a meta-modelling approach should both facilitate the cooperation between the

language engineers and domain experts and avoid the sequential engineering phases while

adapting modelling languages (see above Problem 6). Thus, the two main challenges to be

addressed in this research work are as follows:

Challenge #1: An agile meta-modelling approach should promote the

tight cooperation between domain experts and language engineers by

avoiding the separation between the language engineering and modelling

components.

Challenge #2: An agile meta-modelling approach should avoid

sequential DSML engineering phases while adapting modelling languages.

188

4.4 Needs for Domain-Specific Adaptations: Experts Interviews

As introduced at the beginning of this chapter, this section describes the answer to the second

research question of this work: (RQ2) What are the needs for domain-specific adaptations of

modelling languages?

In order to answer this research question, four industry experts were interviewed. In the

following, a short description of the criteria for the interviewees’ selection and expertise is first

provided. Then, the interview approach is described followed by a consolidation of interview

results. The section ends with a conclusive summary.

4.4.1 Interviewees Selection and Expertise

In order to ensure a high quality of data collection, four experts were selected according to the

following criteria:

- Senior position.

- Modelling is a daily business activity to address the client’s problems.

- At least two years’ experience with enterprise modelling languages in consulting

projects.

- Diversity in enterprise modelling expertise, i.e. each expert has a different

enterprise modelling focus, e.g. process modelling, enterprise architecture

modelling.

- Diversity on the adopted modelling tool, i.e. each expert uses a different modelling

tool in project consulting.

- The consultant’s company operates world-wide or has world-wide recognized

partners.

To differentiate among the four experts, each of them is assigned to a role. In Appendix C:

Modelling Expert Interviews, each role is associated with the source document containing the

interview transcript.

The first senior consultant is assigned to the role of enterprise architect and has more than

seven years’ experience in IT management projects with a focus on Enterprise Architecture,

Business Process Management and Business Analysis. In his daily business, the enterprise

architect uses a professional and world-wide adopted modelling tool for modelling enterprise

architectures. The modelling is mainly done with the standard ArchiMate. The company of the

enterprise architect is an internationally leading manufacturer of software tools for globally

recognised management approaches. The modelling tool is owned by the company and allows

modelling enterprise architecture.

The second senior consultant is assigned to the role of business process modeller and has

more than two years’ experience in projects with focus on Business Process Management and

Enterprise Architecture. In his daily business, the business process modeller uses a professional

and world-wide adopted modelling tool for modelling business processes. The modelling is

mainly done with the standard BPMN. The company of the business process modeller is an

internationally leading manufacturer of software tools for globally recognised management

approaches. The modelling tool is owned by the company and allows modelling business

processes.

The third senior consultant is head of a consulting area and is assigned to the role of

workflow modeller. He has more than two years’ experience on workflow modelling and

execution. In his daily business, the workflow modeller uses a professional and world-wide

adopted modelling tool for modelling, integrating and executing business processes, cases and

decisions. Respectively, the modelling is done with the standards BPMN, CMMN and DMN.

189

The company of the workflow modeller offers an open source platform for modelling and

automating BPMN business process, DMN decisions and CMMN cases as well as operates

world-wide.

The fourth senior consultant is assigned to the role of enterprise modeller and has more

than eighteen years’ experience in project consultancy and training with a focus on Business

and IT modelling. Business modelling includes motivation, vocabulary, rule, process,

document and organisational modelling. IT modelling includes requirements and executable

specifications through Model-Driven Architecture (MDA). In his daily business he uses the

company modelling tool for modelling with Object Management Group (OMG) standards such

as BPMN, BMM (i.e. Business Motivation Modelling (OMG, 2014a)), OSM (i.e. Organisation

Structure Metamodel (OMG, 2006)), SBVR (i.e. for rule modelling (OMG, 2015)) as well as

VDML (Value Delivery Modelling Language (OMG, 2018)) of which he is a contributor. The

company of the enterprise modeller offers a modelling tool to support developing and running

agile enterprises through the model-driven enterprise engineering (MDEE) approach. The

company operates mainly locally and is a partner with the Object Management Group (OMG).

4.4.2 Interview Approach

Each interview was conducted and led by myself in bilateral meetings by using semi-structured

questionnaire. The questionnaire is divided into two parts: the first part contains five open

ended questions while the second part contains questions addressing the suggested artefact of

this thesis. This sub-section focuses on the results of the first part of the interview only. Results

for the second part of the interviews are described in Sub-section 5.1.6 (the template interview

can be found in Appendix C: Modelling Expert Interviews, folder C5).

The questionnaire was sent approximately a week before each meeting to the interviewee.

Questions were discussed during the interview and notes were transcripted. Each interview

took about two hours. At the end of each interview, the collected notes were further elaborated

and transcripted the result in the questionnaire template. The filled questionnaire was then sent

back to the interviewee via e-mails to (a) confirm answers, (b) to enter additional information

they were specifically asked for, and (c) to edit the transcripted answers. Each questionnaire

was then returned, from which PDFs were created (the filled questionnaires in PDF format can

be found in Appendix C: Modelling Expert Interviews, folders from C1 to C4).

The interview approach was agreed beforehand and was appreciated by both parties for the

following reasons:

1) Sending the questionnaire beforehand allowed each interviewee to prepare and thus to start

the interview with a common baseline. The common baseline led to efficient and focussed

interviews.

2) The transcription of notes in the questionnaires made it easy to collect knowledge from

experts in minimum time. And interview time was wisely utilised to extract relevant

information.

3) The three-step approach of letting experts go through the questionnaire before, during and

after each interview allowed to increase awareness of the matter, which resulted in

insightful answers.

190

4.4.3 Interviews Results

The questionnaire starts by asking for the problems that clients face when using a standard

modelling language in their respective modelling environments:

1. Question 1: Did users face difficulties in learning standard modelling languages and

using them in “name of the tool”?

a. If yes, what are the reasons for that?

b. How could this issue be overcome?

Finding 1: According to all four experts’ past experiences, all clients have difficulties in

learning and using modelling standards.

Finding 2: Modelling standards are generally too complex for most of the clients to

understand and even more challenging to be used. The following three main reasons raised

from the interviews:

- The process modeller asserts that standards like BPMN have too many modelling

constructs (i.e. elements and relations). In the same line, the solution architect claims

that standard languages cover too many aspects that are not needed as project have

specific needs.

- The semantics of modelling standards is also problematic for the solution architect.

Semantics includes not only the meaning of a modelling construct (i.e. elements and

relations) but also constraints, i.e. which elements can or cannot relate to others and by

which relation. Both the solution architect and the workflow modeller say that

modelling standards have a very broad semantics. The solution architect adds that

clients are typically not familiar with such broad semantics.

- The solution architect emphasises the mismatch between the level of abstraction of

modelling standards and the clients’ expertise. He claims that ArchiMate is rather

technical for business people to understand. In line with it, the workflow modeller states

that typically business clients perform worse than IT clients when modelling with

standard languages. The workflow modeller associates the reason for it to the logic-

driven characteristic of these languages, for which IT clients are more predisposed than

business clients. He adds that sometimes case-driven logic like CMMN remains

difficult for IT clients as well. In contrast, DMN is a standard evenly understood by

both business and IT clients.

Finding 3: To overcome the listed problems, the following three approaches were

identified as valid and used approaches:

- Simplification of the meta-model. The solution architect, the workflow modeller and the

process modeller, state that the initially above-listed problem can be addressed by

simplifying the meta-model of the modelling standards, by removing unnecessary

modelling elements and relations. For instance, the workflow modeller stresses that his

modelling tool does not implement the BPMN parallel start event.

- Adopting non-standard modelling languages. According to the solution architect,

another possibility to overcome the complexity of modelling standards is to adopt a

non-standard language. Language that is built on past projects experience as well as

embed some aspects from modelling standards. The expert, in this case, assesses the

requirements derived from the client-side (i.e. project and stakeholders) and pick off

the shelf non-standard modelling languages and mechanisms matching the given

requirements. This approach is, however, less and less adopted as it fosters the creation

191

of non-standard models, which can only be used (and perhaps re-used) within the same

project or company. Hence, model exchange with other companies (e.g. project

partners) becomes problematic, as models would be difficult to interpret. Big

companies tend to avoid this approach, whereas in SMEs might still go for it.

- Providing training and documentation to clients. The solution architect states that

training and documentation are provided to clients at the beginning of each project.

Documentation includes a predefined vocabulary containing the meaning of relevant

terms. For the solution architect such an approach tackles the second and third above-

listed problems. In this respect, the enterprise modeller says that in his company, they

provide a controlled amount of learning to clients by considering their initial skills. That

is clients’ knowledge increases in a piecemeal fashion by adding complexity in each

subsequent workshop. Similarly, the workflow modeller states that his company offers

training that typically consist of two-day workshops where the standard is taught

through best and bad practices.

2. Question 2: Could a DSML address one of the problems identified in question 1? Are

there more problems that can be addressed?

Finding 4: All interviewees are positive about a DSML addressing the problems above

identified. Additionally, it was identified that the adaptation of modelling standards is rather

needed whereas dedicated DSMLs are not considered useful. Following points elaborate this

argument.

- The solution architect considers a DSML as the result of a simplification of a modelling

standard, which is often the case in projects that aim to model enterprise architectures.

- For the process modeller a DSML is undoubtedly eligible to address the complexity of

modelling standards. He considers not only the language simplification of a modelling

standard as a valid approach but also the extension of meta-models with new relation

types and new attribute values.

- The workflow modeller states that it would be useful to have a tool allowing restricting

as well as extending the meta-model. He stresses, indeed, the need to specify existing

modelling constructs with domain-specific ones. Thus, he gives the credit to domain-

specific adaptation of modelling languages. He does not consider useful, however, the

modelling elements built from scratch, which is the case of dedicated DSMLs.

- The enterprise modeller also does not see a dedicated DSML applicable to address the

above-stated problems. On the other hand, he emphasises the company practice of

creating DSML by extending UML, which is mainly done through profiling techniques.

3. Question 3: Have there been situations, where the modelling languages were not

sufficient and where an adaptation could have made sense? Namely, adapting language

constructs to fit a more specific domain?

a. If not, why?

b. Could a functionality for an on-the-fly customisation of modelling constructs be

useful in projects with domain-specific target?

Finding 5: All interviewees stated that there were situations in which the modelling

languages were not enough, and the need of adaptation was either done or it would have been

needed.

192

Finding 6: All interviewees consider useful mechanisms that allow adapting a modelling

language on-the-fly. For this, most of them use profiling mechanisms implemented in their own

modelling tools. This argument is elaborated as follws:

- The solution architect stated that it was often the case that a modelling language had to

be adapted in enterprise architecture consulting projects. The adaptation occurred by

simplifying the language by making modelling constructs invisible, by customizing the

graphical notations, or by specifying modelling constructs, (i.e. creating sub-classes),

by specifying or restricting attribute types as well as by assigning pre-defined values.

For this, the modelling tool he works with implements the profiling mechanism, which

complies with the ArchiMate standard.

- The process modeller claims that the modelling language is adopted in every business

process consulting project. Like in the case of the solution architect, the adaptation

refers mainly to the restriction of the meta-model. One example of performed language

adaptation for BPMN is such that the process hierarchy and process landscape can be

modelled, which are not foreseen by BPMN. Another needed adaptation refers to the

integration of the modelling relation “cross-reference” in the BPMN meta-model. Such

modelling relation allows linking modelling elements that belong to different models.

The process modeller brings two further examples of language adaptation: one about

the Swiss government standard “eCH”49, in which BPMN was simplified and adapted

featuring model guidelines for modelling objects. The other example refers to the

“Analysis Meta-Model”, which was adapted to comply with the new European

“General Data Protection Regulation” (GDPR) in data protection and privacy. An

example of a model with the adapted modelling language can be found in Appendix C:

Modelling Expert Interviews, folder C3.

- The enterprise modeller brings a further example of a modelling standard adaptation.

Through the profiling mechanisms implemented in their modelling tool, they extended

the Value Flow Modelling (VFM) to model organisational elements such as

organisation, organisational units, positions, roles and persons. The extension was

required to model who can produce or consume value. Additionally, they implemented

some domain-specific extensions in the tool, to model the railways application domain.

- The workflow modeller never performed modelling language adaptations, although

there would have been the need. The modelling tool he works with does not implement

profiling mechanisms like the other three tools. He stated that there were situations in

which a modelling language needed to be adapted, especially in projects targeting the

IT-systems, Pharma and Finance domain. For instance, in his past projects he would

have needed to specify modelling elements representing system types like ERP and

salesforce.

4. Question 4: For the situations, where the language was not adequate, what kind of

modifications on the modelling language would have helped? e.g.

creating/deleting/update a modelling construct (i.e. class, attribute and relation on the

metamodel level)

Finding 7: There is a common agreement on adapting the meta-model according to the

possibilities offered by profiling mechanisms. Below a list of the recommended changes by

each expert is provided:

49 https://www.ech.ch/vechweb/page

https://www.ech.ch/vechweb/page

193

- Creating and updating elements and relations extensions, e.g. Compliance Task as a

stereotype of BPMN Task (the enterprise modeller, the solution architect)

- Creating and updating attributes (the solution architect), e.g. by changing name of a

class (the solution architect); adding properties to modelling elements like tags or

stereotypes (the enterprise modeller); integrating aspects of different viewpoints to a

modelling element, e.g. a BPMN Task that integrates the concepts of responsibility with

priority, enforcement and quality (the enterprise modeller); adding user functionality to

modelling element, e.g. a specific consistency check (the enterprise modeller).;

- Customisation of graphical notations, e.g. by assigning colours or changing shape,

providing visibility to attributes that are in the graphical notation (the solution architect,

the process modeller); adding explanatory notes to models (the process modeller).

- Deleting modelling constructs (i.e. elements and relations) and attributes (the workflow

modeller) or make them invisible (the solution architect).

In contrast to the workflow modeller, the solution architect advices not to delete elements

for two reasons: (1) it can create inconsistencies with respect to the already existing elements

and relations in both the meta-model and existing models; (2) it might be useful to use

modelling construct later in the project.

5. Question 5: Could you provide at least a use case where domain-modelling adaptation

would have made sense?

Finding 8: The major findings concern not only the need for adaptation but also the demand

of an approach that allows the quick adaptations to address the need of rapidly addressing the

stakeholders’ s requests. This argument is elaborated as follows:

- The solution architect provided model containing aspects extended from ArchiMate.

These aspects allow modelling Information Security Management Systems (ISMS)

scenarios. The model is retrievable in Appendix C: Modelling Expert Interviews, folder

C1. Additionally, he added a comment emphasizing the need for supporting the quick

adaptation of modelling languages, which promise to deliver value to different IT and

business stakeholders.

- As above mentioned, the process modeller provided the extended meta-model to

accommodate GDPR aspects. Additionally, the process modeller stated that BPM

consultants are continuously under pressure to adapt modelling languages quickly. This

pressure is caused by the need to accommodate requests from different stakeholders’

categories. If the modelling language or modelling tool are unable to accommodate such

requests, it takes quite some time until the development team inserts them. Therefore,

according to the process modeller, an approach that allows developing consistent meta-

models quickly while cooperating with the addressed stakeholder would cope with the

challenge.

- The workflow modeller provided an example of a dynamic batch scenario where an

adaptation was required. He claims it was tough to model this scenario as reactions to

dynamics changes in worklist had to be modelled. To overcome this issue, a second

diagram was created with a custom “multi-instance” modelling construct, where the

adaptation took place in terms of semantics only and not in the notation. In particular,

the custom class of multi-instance call-activity has an attribute "list", which is observed

for modifications. Instances are started or cancelled accordingly to the modifications of

the list. This provides the ability to react to changes in the list (the models can be found

in Appendix C: Modelling Expert Interviews, folder C4).

194

- The enterprise modeller mentioned following use cases in his answers: Safety and Risk

Analysis (RIAL), Extended Responsibility Modelling (RACI with rules), Extended

Requirements Analysis and Evaluation, SEMAT (Software Engineering Method and

Theory), Jackson's Problem Frame Approach (PFA) as well as the domain-specific

modelling language in the railway’s application domain.

4.4.4 Three Complexity Levels of Modelling Language Adaptations

The analysis of all interview findings led to several commonalities. Such commonalities are

categorised into three different complexity levels (see Figure 96):

1. At level one there is the simplification of a modelling language. That means, aspects in

the abstract syntax that do not match with the elicited requirements are removed. The

abstract syntax refers to the knowledge captured by the meta-model, i.e. modelling

elements, relations and attributes (including types and values). Moreover, graphical

notations can be made invisible. Such needs for adaptation arose from findings 3, 4, 6 and

7.

2. At level two we find the change of abstract syntax and notation. Changing attribute values

is mainly used to restrict the possible range they can get, which is a way to constrain the

modelling language. Changing the graphical notation means that it can be replaced with

a new one. Such needs for adaptation arose from findings 6 and 7.

3. Level three adds complexity to level two such that the abstract syntax is extended as well

as new graphical notations are provided. That is, the meta-model is extended or

constrained, which requires a higher level of expertise than the previous two. The meta-

model extension includes also the cross-reference relations for connecting concepts from

different modelling languages or modelling views. Such needs for adaptation arose from

findings from 4 to 7.

195

Figure 96. Adaptation Complexity Levels

196

4.4.5 Requirements for Domain-Specific Adaptations of Abstract Syntax

and Notation

This sub-section presents the requirements in terms of domain-specific adaptations to be

fulfilled by the new agile meta-modelling approach of this research work. As mentioned in

Sub-section 3.6.2, each requirement is conceived with a triangulation approach. The following

three sources are considered:

- Complexity levels derived from the interviews’ findings.

- Experience from the creation of the two DSMLs (DSML4PTM in Section 4 and

BPaaS DSML in Section 4.2).

- Literature review (Chapter 2).

In the following, the list of requirements is described.

Requirement #1: An agile meta-modelling approach should enable the

language engineer to simplify a modelling language.

The first requirement refers to the language adaptations of complexity level 1 (see Sub-

section 4.4). That is, the new approach should enable the language engineer to (1) delete

modelling elements, relations, attributes, and (2) hide modelling elements and modelling

relations. The simplification of meta-models by deleting concepts, relations and attributes falls

within the common practice of the meta-model customisation technique (see Sub-section

2.8.2). Such practice was adopted in the development of DSML4PTM (Section 4).

Requirement #2: An agile meta-modelling approach should enable the

language engineer to change abstract syntax and notation.

The second requirement refers to the language adaptations of complexity level 2 (see Sub-

section 4.4). That is, modelling elements, relations, attributes (including types and values) and

graphical notations can be changed. Also applying changes in the meta-model is a common

practice of the meta-model customisation technique (see Sub-section 2.8.2). This practice was

applied for the creation of DSML4PTM (Section 4) and BPaaS DSML (Section 4.2).

Karagiannis (2015) stresses the importance of agile meta-modelling approaches to change the

meta-model and refers to it with the term adaptability. Similarly, Burlton et al. (2017) list

perpetual changes as one agile principle in business development (see first principle in Section

2.11).

Requirement #3: An agile meta-modelling approach should enable the

language engineer to extend abstract syntax and add new notation.

The third requirement refers to the language adaptations of complexity level 3 (see Sub-

section 4.4). That is, new modelling elements, relations, attributes and graphical notations can

be added to the existing meta-model. In the two presented cases (Sections 4.1 and 4.2) both

meta-models were extended. Karagiannis (2015) stresses the importance for agile meta-

modelling approaches to add new aspects to the meta-model and refers to it with the term

extensibility.

Requirement #4: An agile meta-modelling approach should enable the

language engineer to integrate concepts that belong to different modelling

languages or different modelling views.

197

This requirement also refers to the language adaptations of complexity level 3 (see Sub-

section 4.4). Karagiannis (2015) calls this requirement as integrability. The integration can be

performed in two ways: (1) by entering a bridging connector (or cross-reference) relation

between concepts from different modelling languages or different modelling views; or (2) by

specializing a class with an existing class from a different modelling language. Both ways were

applied to create DSML4PTM (Section 4). In BPaaS DSML, only the bridging connectors were

entered to integrate different modelling languages (Section 4.2).

4.5 Concluding Summary

This chapter presented the relevance of the problem addressed in this research work. For this,

first two cases were described in which two DSMLs were created through a domain-specific

adaptation approach. The two DSMLs were engineered through the AMME Lifecycle. The

latter strives to embrace agile principles and is the most advanced in this respect. To increase

the generalizability of the problems, the two cases address two different application domains:

Patient Transferal Management and Business Process as a Service.

Based on the analysis of the two cases, problems hindering agility of DSML engineering

were raised. The problems led to the formulation of two main challenges to address by a new

agile meta-modelling approach. Therefore, the first research question was answered.

Then, understanding of the needs for domain-specific adaptations of modelling languages

was increased through expert interviews. Interview results were consolidated, and patterns

were identified from which three adaptation complexity levels were conceived. Based on the

interview findings, literature and experience from the creation of the two DSMLs, a list of four

requirements was derived. Like for the challenges, the requirements were proposed to address

the design of the new approach of this research work. Therefore, the second research question

was also answered.

198

5. AN AGILE AND ONTOLOGY-AIDED META-

MODELLING APPROACH

199

In Chapter 4, the understanding of the problems hindering the agility of DSML engineering

was deepened; and hence, the main two challenges were derived. Understanding the need for

domain-specific adaptations was also identified; from which, a list of requirements were

elicited. The problems, challenges and requirements are addressed in this chapter with the

distinct purpose of designing a new approach for meta-modelling. This answers the third

research question of this work:

- (RQ3) How can agility be fostered when performing domain-specific adaptations of

modelling languages?

The chapter is structured as follows: Section 5.1 introduces the conceptualisation of a new

agile meta-modelling approach. The approach includes the introduction of operators for on-

the-fly domain-specific adaptation of modelling languages. To support the semantic

specification and automation of modelling constructs, Section 5.2 extends the agile meta-model

with an ontology-based approach. The approach is then further expanded in Section 5.3 with

semantic rules. These rules ensure the seamless propagation of the domain-specific adaptations

from the modelling language to the ontology.

5.1 An Agile Meta-Modelling Approach

As described in Section 4.3, the difference in expertise between the language engineers and

domain experts could lead to misinterpretations or miscommunications of suggestions for

language adaptations (see problem 1 in Section 4.3). Meta-modelling approaches that separate

language engineering from modelling do not overcome this problem (see also left-hand side of

Figure 97). In fact the contrary is true; since each component addresses a different expertise,

activities for language engineering and evaluation are kept separately and in different points of

time. Hence, cooperation between the two roles is not promoted, as the domain expert is not

facilitated to intervene until the complete DSML is developed. Promoting the cooperation of

the domain experts while engineering a DSML is fundamental to developing a high quality

DSML. Therefore, the first challenge was formulated:

Challenge #1: An agile meta-modelling approach should promote the

tight cooperation between domain experts and language engineers by

avoiding the separation between the language engineering and modelling

components.

Moreover, it was identified that sequentialising model engineering and modelling prevents

the quick development of DSMLs (see problem 6 in Section 4.3). Hence, the second challenge

to be addressed in this research work was derived:

Challenge #2: An agile meta-modelling approach should avoid

sequential DSML engineering phases while adapting modelling languages.

In order to address the two challenges, an agile meta-modelling approach is proposed. An

agile meta-modelling approach is conceived to integrate language engineering and modelling

into one component (see right-side of Figure 97). Thus, activities of language engineering,

modelling and evaluation can be interleaved and iterated. Such an approach addresses the first

challenge as it creates the conditions the language engineer and domain expert to tightly

cooperate while engineering a DSML. To address the second challenge, language adaptations

are performed on-the-fly. That is, language adaptations are applied in a piecemeal manner as

demands arise. While language engineers apply adaptations on the DSML, domain experts can

visualise the results in real-time, and thus they can provide immediate suggestions. The

200

sequential approach is therefore avoided as modelling and evaluation activities do not have to

wait until a new DMSL is deployed to be performed.

Such an approach is also conceived to avoid propagation of changes throughout the whole

engineering lifecycle, i.e. Create, Design, Formalise, Develop and Deploy/Validate phases.

New requirements can be directly implemented into the DSML in a manner that means results

are immediately available for testing. The accommodation of requirements through direct

implementation also overcome other problems identified in Section 4.3:

- the two problems about the documentation of requirements (see problem 2 and 3);

- the problem about the alignment between the Create and Design Phase (see problem 4);

- The problem about waiting for the design phase to be finished until the implementation

starts (problem 5).

The formalisation of the meta-model can be done through the direct implementation of the

requirements into an ontology-based meta-model. Such an approach overcomes problem 7 and

is further elaborated Section 5.2.

5.1.1 Comparison of an Agile Meta-Modelling Approach with Profile

Mechanisms for Domain-Specific Adaptations

Modelling approaches that make use of Profile mechanisms (OMG, 2017) are also

implemented in one component, e.g. the modelling tool Visual Paradigm (Visual Paradigm,

2018). Profile mechanisms are promoted by the OMG Meta Object Facility (MOF) (OMG,

2016c) and describe a lightweight extension mechanism to the UML. As described in Section

2.8, such mechanisms are also specified in other modelling standards such as BPMN and

ArchiMate. Modelling tools that implement profile mechanisms enable an on-the-fly extension

of modelling languages.

Specifically, the extension is allowed by the two extensibility mechanisms stereotypes and

tagged values (OMG, 2017). The two profile mechanisms are as follows:

- Stereotype is a profile class, which defines how an existing meta-class (i.e. modelling

elements and relations) may be extended. Stereotypes specialise meta-classes, thus

creating a new modelling construct. Attributes of the extended classes are inherited

from the classes being extended (The Open Group, 2017). The new modelling construct

therefore has specific properties that are suitable to a problem domain. A new graphical

notation can also be introduced for the new modelling construct.

Figure 97. Meta-modelling vs. an agile meta-modelling

201

- Tagged Values are used to extend the properties of UML. Such properties are attributes

of stereotypes. Tagged values allow the user to specify types and values to be assigned

to attributes. Examples for predefined types are Integer, Boolean, Date and

Enumeration.

Such mechanisms foresee two characteristics that are relevant for an agile meta-modelling

approach:

- on-the-fly introduction of domain-specific modelling elements and specific properties.

As soon as an extension is performed the new modelling elements and attributes are

available to be used in a model.

- Inheritance of properties from the extended modelling elements.

These characteristics are limited to the extension of the abstract syntax and notation.

Instead, from our list of requirements (see Sub-section 4.4.5), domain-specific adaptations also

aim to change and delete aspects of an abstract syntax. Thus, profile mechanisms do not fully

satisfy an agile meta-modelling approach.

Instead, the proposed agile meta-modelling aims to fulfil all the requirements derived in

Sub-section 4.4.5. Therefore, the approach allows for not only the extension of an abstract

syntax and notation, but also for changes and deletions to be made on-the-fly. Moreover, the

above-mentioned inheritance principle also manifests when extending an abstract syntax

through meta-modelling. Therefore, the same principle applies to our agile meta-modelling.

5.1.2 An Example of the Tight Cooperation in the Integrated Component

In the following, an example is described to clarify the idea of an agile meta-modelling.

In the example we assume the request from a physician (i.e. domain expert) to introduce

the concept of an acute hospital as a special class of hospital. The language engineer can

accommodate such a request by extending the class “Hospital” with a class “Acute Hospital”,

in the integrated component (see Figure 98). The two attributes, name, and address are inherited

from the class Hospital. New attributes are then added in the new class, such as a list of main

acute treatments, and a graphical notation. As soon as the extension is accomplished, the

graphical notation of the modelling construct appears among the modelling constructs of the

language, which can be selected to be instantiated as a model element.

The physician can now visualise the new concept and use it. In this way, models can be

created to include the new concept. For instance, the new concept can be integrated into the

context of an organisational model which includes roles and employees. Such straight

implementation of the concept and its immediate use creates the conditions for the physician

to provide immediate suggestions for adaptations, should he or she have them. Eventually,

these suggestions lead to a more accurate representation of the concept. For instance, new

treatment activities might be added, or existing ones deleted, as well as potential desired

changes to the graphical notation. Thus, the language engineer and the domain expert tightly

cooperate to carry out engineering, modelling and evaluation activities until a satisfactory

version of the DSML is achieved.

202

5.1.3 Towards the Conceptualisation of On-the-Fly Domain Specific

Adaptations in the Integrated Component

on-the-fly domain-specific adaptations are actions that shall be performed in the component

that integrates language engineering and modelling. For this, the integrated component foresees

a palette (see left-hand side of Figure 99) in which the graphical notations of the DSML are

displayed. The palette is conceptualised to provide access to the language engineering

component. In the latter, the meta-model can be adapted. Each graphical notation is a gate to

the related concept that resides in the meta-model.

For example, the left-hand side of Figure 99 depicts the palette displaying the graphical

notations of BPMN. From the BPMN Task one can access the language engineering activities

(see orange rectangle in Figure 99, which displays concepts, relations, attributes and notation

about the Task). The language engineering activities shall, thereby, allow for domain-specific

adaptations of the knowledge residing in the meta-model. For this, the following three

specifications should be affected:

- graphical notation,

- abstract syntax,

- semantics.

According to Karagiannis and Kühn (2002), these three specifications define a modelling

language (see also Section 2.2).

On the one hand, domain-specific adaptations of a graphical notation and abstract syntax

revert to meta-modelling activities such as extending, changing or deleting concepts (see, e.g.,

Figure 98. Integrating language engineering and modelling into the same component

203

adaptations performed to create the two DSMLs in Sections 4 and 4.2). On the other hand, the

adaptations of the semantics remain unclear as semantics can be found not only in the abstract

syntax, but also in a language independent domain, i.e. domain knowledge. In order to suggest

an approach that will appropriately adapt semantics, the next sub-section defines semantics,

from which adaptation requirements are derived.

5.1.4 Semantic Mapping of Abstract Syntax to Domain Knowledge

An abstract syntax specifies what kind of knowledge a model can contain. Constraints (or rules)

are typically injected in the abstract syntax to govern how the language constructs can be

combined to produce valid models. Frank (2013a) claims that the abstract syntax and

constraints define the semantics of a modelling language. Such semantic specification is,

however, limited to what Atkinson and Kuhne (2003) call the linguistic view. Atkinson and

Kuhne (2003) stress the importance of not only specifying the linguistic view but also the

domain of discourse view. The latter describes the domain knowledge, which is also known as

the semantic domain (Harel & Rumpe 2000; Harel & Rumpe, 2004). Harel and Rumpe (2000)

state: “The semantic domain can be defined independently of the syntax: in fact, we can use

completely different languages for describing the same kinds of systems, so that these

languages might all use the same semantic domain”.

Furthermore, they suggest that the semantics of a modelling language can be specified in

two parts:

- the semantic domain, that provides information regarding the domain of discourse,

- the semantic mapping, that maps the abstract syntax into the semantic domain.

The related mathematical formula for the semantic mapping is as follows (Harel & Rumpe

2000):

𝑀: 𝐿
𝑚𝑎𝑝𝑠
→ S

Figure 99. Sketch of an Agile Meta-Modelling

204

where the semantic mapping (M) relates concepts from the abstract syntax (L) to the

domain semantic (S).

A similar theoretical foundation is also expressed in the framework proposed by

Karagiannis and Kühn (2002) (see Section 2.2). As the red arrow in Figure 100 shows, the

semantic mapping is connected with the (abstract) syntax. Here, the semantics define the

meaning of the abstract syntax by explicating the connection of the semantic mapping.

Such mapping, therefore, conceptualises the relation between the above-mentioned

linguistic view and the domain of discourse view. According to Harel and Rumpe (2000) the

semantic mapping should be made explicit. It is not satisfactory to define the semantic mapping

by examples as it does not allow for analysis that is sufficient to gain any insight (Harel &

Rumpe 2000).

5.1.5 Requirements for the Domain-Specific Adaptations of Semantics

In order to derive requirements for the semantic specification of modelling languages, the

semantics of a modelling language should be defined:

1. in the abstract syntax (linguistic view),

2. in the semantic domain (domain of discourse),

3. by mapping concepts from abstract syntax and semantic domain (semantic mapping).

Before deriving the list of requirements, further considerations about the specification of

the semantic domain are provided. On the one hand, concepts for the domain semantics might

exist off the shelf and come ready to be mapped with concepts from the abstract syntax. For

example, this is the case of frameworks or standards that provide categories describing domain-

specific and re-usable knowledge, which is independent from any modelling language [(see the

International Classification of Functioning, Disability and Health (ICF) (National Center for

Biomedical Ontology, 2012) or the American Productivity and Quality Center (APQC))]. Such

knowledge can be used to specify the semantic of a modelling construct through semantic

mapping. For instance, ICF categories can be used to specify a BPMN data object or APQC

categories to specify a BPMN task.

On the other hand, there may be a need to create new concepts for the semantic domain.

For example, by adding a new ICF or APCQ category with a higher degree of specificity that

is able to better fit the addressed domain. Another case for support is the Business Process as

a Service (Section 4.2), namely the extension of the two classes “Action” and “Object” with

the classes “Send” and “Invoice”, respectively. Such an extension was done to support the

specification of functional business process requirements of cloud services.

Figure 100. Semantic Specification Components from Modelling Method Components (Karagiannis & Kühn

2002)

205

In conclusion, the further elaboration of the semantic domain shed the light on the need to

not only create the semantic mapping between the abstract syntax and the semantic domain,

but also on the possibility to add new concepts for the semantic domain.

On the basis of the additional findings, four requirements are proposed for the domain-

specific adaptation of the semantic of a modelling language. The requirements extend the list

of requirements for domain-specific adaptations (see Sub-section 4.4.5):

Requirement #5: An agile meta-modelling approach should enable the

language engineer to create new semantic domain concepts.

Requirement #6: An agile meta-modelling approach should enable the

language engineer to create new semantic mappings between concepts

from an abstract syntax (linguistic view) to a semantic domain (domain

view).

Requirement #7: An agile meta-modelling approach should enable the

language engineer to modify the semantic mapping between concepts from

an abstract syntax (linguistic view) to a semantic domain (domain view).

Requirement #8: An agile meta-modelling approach should enable the

language engineer to delete the semantic mapping between concepts from

an abstract syntax (linguistic view) to a semantic domain (domain view).

Note that for the domain concepts there are no delete and modify capabilities. The rationale

is that already existing models should not be affected by domain-specific adaptations. If the

semantics of concepts are changed, then the models that use these concepts, can become

invalid.

5.1.6 Operators for Domain-Specific Adaptations On-the-Fly

In order to perform on-the-fly domain-specific adaptations on one or more modelling

languages, a list of 10 operators has been identified. The operators allow applying changes and

extensions over the specifications of a modelling language, i.e. abstract syntax, notation and

semantics. The four requirements for the domain-specific adaptations of abstract syntax and

notation are described in Sub-section 4.4.5, whilst for semantics an additional four

requirements are described in Sub-section 5.1.5. The complete list of requirements is the

starting point for the generation of the operators. Figure 101 shows an overview of the steps

made to conceive the 10 operators. Namely:

1. Mapping the eight requirements to the CRUD (Create, Read, Update, Delete) paradigm,

2. Deriving the first draft of operators,

3. Refining the list of operators through expert interviews,

4. Publishing the operators in (Laurenzi et al., 2018),

5. Further refining the list of operators according to the reviewers’ comments during

publication.

The deriving process of the operators is further elaborated upon in Sub-section 5.1.6.1.

Then, the operators are introduced (Sub-section 5.1.6.2) and finally a critical reflection

surrounding the use of the operators is provided in Sub-section 5.1.6.3.

206

5.1.6.1 Deriving Process for Operators

As already mentioned, the eight requirements were mapped to the CRUD paradigm (Martin &

James, 1983). The latter foresees four basic functions, which are implemented in relational

database applications: Create, Read, Update, and Delete. Each function can map to a SQL

(Structured Query Language) statement:

- Create maps to INSERT,

- Read maps to SELECT,

- Update maps to UPDATE,

- Delete maps to DELETE.

Table 29 shows the mappings between the requirements and the basic functions of the

CRUD paradigm. Namely, requirements 3 to 6 can be fulfilled by the function Create,

requirements 2 and 7 by Update, and requirements 1 and 8 by Delete. There is no requirement

mapping to the function Read, which is obvious, as the function does not fit the purpose of

changing or extending the modelling language specifications.

Mapping of
requirements to

CRUD

First Draft of
Operators

Expert Interviews Publication
Refined List of

Operators

Figure 101. Derivation of Operators

207

Requirement Number Description CRUD function

Requirement #1 An agile meta-modelling approach

should enable the language engineer to

simplify a modelling language.

Delete

Requirement #2 An agile meta-modelling approach

should enable the language engineer to

change abstract syntax and notation.

Update

Requirement #3 An agile meta-modelling approach

should enable the language engineer to

extend abstract syntax and add new

notation.

Create

Requirement #4 An agile meta-modelling approach

should enable the language engineer to

integrate concepts that belong to

different modelling languages or

different modelling views.

Create

Requirement #5 An agile meta-modelling approach

should enable the language engineer to

create new semantic domain concepts.

Create

Requirement #6 An agile meta-modelling approach

should enable the language engineer to

create new semantic mapping between

concepts from the abstract syntax

(linguistic view) and concepts from the

semantic domain (domain view).

Create

Requirement #7 An agile meta-modelling approach

should enable the language engineer to

modify the semantic mapping between

concepts from the abstract syntax

(linguistic view) and concepts from the

semantic domain (domain view).

Update

Requirement #8 An agile meta-modelling approach

should enable the language engineer to

delete the semantic mapping between

concepts from the abstract syntax

(linguistic view) and concepts from the

semantic domain (domain view).

Delete

Each of the three functions Create, Update and Delete, performs one specific domain-

specific adaptation, e.g. create a new modelling element as a sub-class of an existing modelling

element, create a new sub-class relation between two existing modelling elements, update the

name of a class etc. In this sense, domain-specific adaptations affect one of the following basic

generic modelling concepts:

- Class,

- Relationship,

- Attribute,

- Attribute types and values.

Next, the first draft of operators was determined, presented to- and discussed with-

modelling experts in the second part of the interview introduced in Section 4.4 (the second part

of the template interview can be found in Appendix C: Modelling Expert Interviews, folder

C5). The template contains screenshots for each operator. The screenshots contain an early

design of an agile meta-modelling approach that helped to visualise the purpose of the

operators.

Firstly, experts were asked for critical feedback regarding the operators.

Table 29. Mapping requirements to basic functions CRUD

208

Finding 1: There is a general agreement on the fact that operators make sense. However,

each expert adds a personal comment as follows:

- The solution architect discourages the use of operators that lead to the deletion of

modelling elements, relations and attributes. The delete operators should only be used

on the extended part of the modelling language.

- The process modeller claims that operators that lead to the deletion aspects of the meta-

model are critical, as they can create inconsistencies on existing models as well as risk

the damaging of the meta-model.

- The enterprise modeller also stresses that removing concepts can have severe

consequences to the meta-model. Thus, he suggests that delete operators are only

available to a meta-model expert (i.e. language engineer).

- The workflow modeller claims that all the models he designs in his modelling tool

contain classes. Classes are then instantiated by the workflow management system.

Thus, he never faced the need to distinguish between instances and classes in a model

(i.e. operator 11).

Operator 11 was described as follows:

- Operator 11 allows specifying whether a modelling element is a type or instance.

Hence, the modelling environment can model instances as well as classes. Since a class

can be an instance of another class, the modelling approach enables distinctions to be

made between different levels of abstractions that are not restricted to the class-instance

dichotomy of a description logics representation. For instance, if we consider the data

object in BPMN, depending on the purpose of the process model, there might be the

need to represent it as a class or as an instance containing concrete values.

Operator 11 was the only operator that was subject to criticism when publishing the list of

operators (Laurenzi et al., 2018). In fact, this operator does not deal with domain-specific

adaptations of a modelling language. Rather, it reflects the abstraction issue of a model.

Therefore, it was removed as it is out of the scope of this research work.

Critical consequences about operators removing aspects of an abstract syntax are further

elaborated in Sub-section 5.1.6.3.

Secondly, the experts were asked to suggest any additional adaption operators and actions.

Finding 2: No further operators were suggested. Three experts suggested some possible

functionalities. In detail:

- The solution architect suggests a functionality that hides modelling constructs.

- The process modeller suggests functionalities that insert pictures and notes on a model,

as well as those that can easily change the graphical notations of modelling constructs.

- The enterprise modeller suggests the same functionalities as profile mechanisms (see

also Sub-section 5.1.1), i.e. changing properties, graphical notations, renaming

properties and relationships. Such aspects are already foreseen by the meta-modelling

approach. Additionally, he suggests functionalities to be used while modelling such as

adding/updating/removing context menu, toolbars, reports).

Among these suggestions, the functionalities aiming to improve the modelling experience

remain out of the scope of this research, as the stated aim is not to improve user experience,

but instead to develop an approach for domain-specific adaptations. The other suggestions were

already provided during the first part of the interviews, which are describe in Sub-section 4.4.3.

209

5.1.6.2 Operators for on-the-fly Domain-Specific Adaptations

This sub-section describes the final list of operators that consider feedback from the experts.

Each operator is associated with a corresponding requirement for the on-the-fly domain

specific adaptations (see Table 29 in Sub-section 5.1.6.1). Figure 102 graphically depicts such

associations.

Operator 1: Create sub-class. This operator aims to fulfil three requirements. It allows

modelling elements and modelling relations to be extended (requirement 3). It allows the

integration of modelling elements (classes) from different modelling languages (requirement

4). It allows extension of concepts in the semantic domain (requirement 5).

Operator 2: Update class. This operator allows modifying an existing modelling construct

(requirement 2), which includes attributes such as name, comment, and graphical notations.

Operator 3: Delete sub-class. This operator allows the removal of unneeded modelling

constructs (i.e. modelling elements and modelling relations) from the abstract syntax

(requirement 1).

Operator 4: Create relation. This operator allows the creation of new relations (i.e.

bridging concept) between modelling elements in the abstract syntax (requirement 4) as well

as new relations from modelling elements to semantic domain concepts, i.e. semantic mapping

(requirement 6). Bridging concepts refers to the relations that connect modelling elements

between different modelling languages or modelling views.

Operator 5: Update relation. This operator allows the modification of the existing

relations between modelling elements as well as relations from modelling constructs to

semantic domain concept(s) (requirement 7).

Operator 6: Delete relation. This operator allows the deletion of existing relations

between modelling elements as well as relations from modelling constructs to semantic domain

concept(s) (requirement 8).

Operator 7: Create attribute: This operator allows for adding new attributes to modelling

elements (requirement 3).

Operator 8: Assign attribute type or value. This operator allows for assigning types (e.g.

String, Integer, Boolean) or concrete values to attributes of modelling constructs. A concrete

value is the reference to a graphical notation (requirement 3).

Operator 9: Delete attribute: This operator allows for deleting existing attributes from a

modelling element (requirement 1).

Operator 10: Update attribute: This operator allows for modifying existing attributes

associated to modelling constructs (requirement 2), i.e. the name and the value type of the

attribute.

210

5.1.6.3 Critical Reflection on the Use of Operators

Three issues were identified from the use of the operators for domain-specific adaptations:

(1) One issue regards the operators that implement the function delete, i.e. operators 3, 6 and

9. For instance, deleting a root concept in the class diagram (i.e. abstract syntax) implies

that sub-concepts will also be deleted, which may be undesired. This issue is tackled by

prohibiting the deletion of elements that have sub-elements. Thus, only elements can be

deleted. Such logic has been implemented in the Delete functionality and is described in

Sub-section 0.

(2) The second issue regards the inconsistencies that may arise by the operators implementing

the functions delete and update with respect to the models already created, i.e., operators

2, 3, 5, 6, 9. That is, if a construct is removed or changed from a modelling language, any

model that uses that removed construct becomes inconsistent to the modelling language

(Rose et al., 2009). Four solutions were identified to tackle this issue:

a. Stakeholders shall agree upon a DSML version before creating valid models. Modellers

and domain experts have no rights to change the DSML. If changes are needed, the

language engineer intervenes on the modelling language and provides suggestions on

how to cope with the existing models. Drawback: high workload on the language

engineer and long wait times while the first valid models are created.

b. Propagating alerts throughout existing models that are affected by the language

changes. To timely react on unwanted results, the propagation of alerts should happen

in real-time as soon as a change occurs. Modelling and domain experts can change

models accordingly. The language engineers may oversee the changes. Drawback:

changes are made by humans, which may be error-prone.

c. Keeping track of the language versions and correspondent models. This ability allows

the user to trace back to the language versions that are consistent with the given models.

Drawback: old models are not valid with the most recent version of a modelling

language.

Figure 102 The 10 operators for on-the-fly Domain-Specific Adaptations

211

d. Automated propagation of changes from the modelling language to the models. The

human intervention is avoided. However, modellers and domain experts should still be

able to make changes. Drawback: the automation is not feasible if modelling languages

are not machine-interpretable.

Solution (a) prevents the language evolvement during projects or after a language is

operational. On the contrary, solutions (b), (c) and (d) allow perpetual changes to happen

while projects are running or, in other words, while the language is in its full operation.

Therefore, they are in line with the agile principles of the Business Agility Manifesto

(Burlton et al., 2017). Hence, they can be considered as agile solutions.

The agile solutions (b) and (c) can be realised through technical implementations.

The agile solution (d) requires automation of the modelling language and models. As

described in Section 2.12, automation can be supported by combining models or meta-

models with machine-interpretable semantics. Such a combination, however, presents some

challenges when performing on-the-fly domain-specific adaptations of modelling

languages. While the challenges are discussed in the next section, the implementation of

the solution (d) is left to future work.

(3) The third issue arose when using the function create, i.e., operators 1, 4 and 7. The meaning

of a new language construct (including their relations and attributes) may be ambiguous or

unclear in models that are created with these language constructs. Ambiguous or unclear

models can lead to erroneous interpretations, which can have severe consequences for the

subsequent decision-making process. A modelling approach that makes the knowledge of

modelling constructs explicit can help to reduce their ambiguity and unclarity. As stated by

Battistutti and Bork (2017), it is not only a matter of making the knowledge explicit that is

important, but also the form or representation of that knowledge. The form of knowledge

can lead to an unambiguous interpretation of the meaning by others. Knowledge specified

in natural language is considered informal, and when specified in a meta-model it is

considered as semiformal. Such specifications leave room to subjective interpretations

(Selic, 2007). A formal representation that specifies the meaning of a modelling element

would remove its subjective interpretation. Additionally, Harel and Rumpe (2000) stress

that the formality of the meaning depends on the formalism of the abstract syntax, the

semantic domain and the semantic mapping. This formalism can be provided with an

ontology language, which is machine interpretable. Hence, an approach that grounds

modelling elements with a machine-interpretable semantics is a valid approach. This

approach is further elaborated in the following section.

212

5.2 Towards a Machine-Interpretable Semantics for the Agile

Meta-Modelling

A modelling language whose semantics are not machine-interpretable leads to several

deficiencies in the context of the proposed agile meta-modelling approach:

1. Ambiguity of the meaning of modelling constructs. This issue is particularly relevant

when an adaptation leads to create or update modelling constructs for which a clear

meaning shall be shared among the stakeholders;

2. Semantic interoperability problems among existing modelling languages or DSMLs

(Bräuer & Lochmann 2008; Parreiras 2012; Walter et al. 2014a). This issue is well-known

in the practice of meta-modelling due to the low effort towards interoperability across the

widely adopted meta-modelling tools (e.g. Eclipse Modelling Framework50, ADOxx51,

MetaEdit+52) (Karagiannis et al., 2016).

3. The automation of modelling languages and models is not directly possible.

These three obstacles can be overcome by a semantic that is not only readable but also

machine-interpretable (see also Section 2.12). A machine-interpretable semantics:

1. Supports a clear and unambiguous definition of the meaning of a modelling construct;

2. Provides semantic interoperability among modelling languages or DSMLs (see Bräuer

and Lochmann, 2008; Höfferer, 2007);

3. Provides automation capabilities to the modelling language and the models built with it

(Walter et al., 2014; Kritikos et al., 2018).

5.2.1 Semantic Lifting

A commonly adopted way to achieve machine-interpretable semantics is by establishing a

mapping between the human-interpretable modelling construct and its related formal

representation (e.g. through mathematical formulas, logic-based languages or ontologies). This

creates a separation of models interpretable by humans, and knowledge interpretable by

machines, which is elaborated in Section 2.12. For instance, Berardi et al. (2005) define the

semantics of UML class diagrams by mapping the modelling constructs to description logics

(Baader & Nutt, 2003), which is a fragment of first-order logic. The most widespread way of

turning models into a machine-interpretable format is through the mapping of concepts with

logic-based languages such as ontologies, i.e. semantic lifting or semantic annotation (see

Section 2.12.4).

There is a distinction between the semantic lifting and the semantic mapping introduced in

Section 5.1.4. The former aims to establish an ontological reflection (also called ontological

meta-modelling) of concepts from a model, meta-model or higher abstraction (Höfferer, 2007).

The semantic mapping, on the other hand, maps the abstract syntax into the semantic domain,

where concepts of the abstract syntax are independent from concepts of the semantic domain

(Harel & Rumpe, 2000). Hence, when applying the distinction proposed in (Atkinson & Kuhne,

2003) the ontological representation in the semantic lifting still corresponds to the language

definition, whereas the semantic domain in the semantic mapping corresponds to the domain

definition. Both are relevant when specifying a modelling language.

50 https://www.eclipse.org/modelling/emf/
51 https://www.adoxx.org/live/home
52 https://www.metacase.com/

213

These notions are the theoretical foundations to design the ontology architecture for the

proposed agile meta-modelling approach (see Section 5.3.2).

5.2.1.1 Inconsistency Issues of Semantic Lifting

As already stressed in Section 2.12.4, the main issue of the semantic lifting regards the

consistency between the human-interpretable representation and the related machine-

interpretable representation, which is represented in an ontology. Keeping them separate tends

to cause incompatible semantics. Aligning meta-model concepts and ontology concepts (see

upper part of Figure 103) is error-prone and time-consuming.

Mechanisms for the automatic transformation of models into ontologies partially relieve

this effort (Emmenegger et al., 2017; Karagiannis & Buchmann, 2018). However, the

consistency issue remains if a change occurs in the ontology, as the human-interpretable model

has to be adapted accordingly. If changes occur in the meta-model, transformation patterns for

the ontology generation should also be adapted (Emmenegger et al. 2016). The “input” arrow

in Figure 103 depicts the need to consider the class structure of the ontology before performing

the transformation of the models into ontology instances. Else, inconsistencies between the

class structure and created instances arise.

5.2.2 Problems of Semantic Lifting in the Agile Meta-Modelling

Figure 104 shows the conceptualisation of an agile meta-modelling approach embracing the

semantic lifting. Namely, the component that integrates language engineering and modelling

is for the human interpretability (see right-hand side of Figure 104), while the ontology is for

the machine interpretability (see left-hand side of Figure 104). Both abstract syntax and the

Figure 103. Alignment between meta-model and ontology; and transformation of models into ontology instances

214

corresponding ontological representation refer to the linguistic definition (the semantic

mapping and domain semantic specification are ignored as they are not relevant for the purpose

of this sub-section).

Operators for the on-the-fly domain-specific adaptations are applied to affect modelling

constructs in the human-interpretable part, i.e. abstract syntax and graphical notation (see right-

hand side of Figure 104). The 𝑚𝑒𝑡𝑎2-model of the abstract syntax contains concepts of the

UML class diagram, whereas the 𝑚𝑒𝑡𝑎2-model of the graphical notation contains

specifications or graphical components that allows for drawing of the graphical notation. For

instance, ADOxx implements the GraphRep functionality where a proprietary script is used to

draw the graphical notation. The graphical notation is then associated to the class defined in

the abstract syntax.

Let us assume that the required semantic lifting relationships are established between

modelling constructs of an abstract syntax and the corresponding concepts in the ontology (see

dashed red relations in the upper level of in Figure 104). on-the-fly domain-specific adaptations

may raise the following drawbacks between the human- and machine representations:

Figure 104. Inconsistency between the human- and machine-interpretable representations of modelling

languages in the agile meta-modelling approach. Adapted from (Höfferer, 2007).

215

1. Operators that apply the function Create lead to a lack of reflecting ontology concepts.

For example, a newly created modelling construct in the abstract syntax would not be

grounded with an ontology.

2. Operators that apply the function Update may raise inconsistencies with the

corresponding ontology concept. For example, updating the name of a modelling

construct in the abstract syntax will create an inconsistency with the name or label of

the corresponding ontology concept;

3. Operators that apply the function Delete leads to mismatches between the human and

machine interpretable representations. For example, an ontology concept that

corresponds to a just removed modelling construct would remain in the ontology. This

not only creates a mismatch between the machine and human knowledge

representations, but it can also be problematic in the future when new ontology concepts

are created, as they can create unwanted redundancies, e.g. if concepts are called

differently but with the same meaning.

The red flash in Figure 104 symbolises the occurrence of drawbacks when performing on-

the-fly domain-specific adaptations.

Each drawback can be overcome by adjusting the correspondent ontological representation.

However, manual adjustments would not be convenient as they are time consuming and require

both high maintenance effort and ontology expertise. Also, applying a transformation from the

human- to the machine-interpretable representation each time an adaptation occurs is not an

optimal solution.

This elaboration demonstrates the need to conceive an alternative approach, other than

semantic lifting, to achieve an agile meta-modelling. The new approach should not only

achieve the machine-interpretability of modelling languages but should also preserve model

consistency when changes occur.

216

5.3 An Ontology-Aided Approach for the Agile Meta-Modelling

In order to support consistency between the human- and machine-interpretable representations

for an agile meta-modelling, this section describes an ontology-aided approach. The aim to

achieve a seamless alignment between the human- and machine-interpretable knowledge. A

seamless alignment means that consistency between the two knowledge representations is

preserved after changes occur in one or the other. The first prerequisite is to build upon an

ontology-based meta-modelling (Sub-section 5.3.1), where changes that occur in the ontology

are propagated to the graphical models. Then, Sub-section 5.3.2 introduces the ontology

architecture that supports the proposed agile and ontology-aided meta-modelling approach.

Next, mechanisms are introduced to aid the propagation of domain-specific adaptations from

the graphical modelling language to its machine-interpretable representation (Sub-section

5.3.3).

5.3.1 The Ontology-based Meta-Modelling

The ontology-based meta-modelling approach introduced in (Hinkelmann, Laurenzi et al.,

2018) merges the abstract syntax of meta-models with the corresponding ontological

representation. The abstract syntax includes a semantic definition of the language but not the

semantic domain.

In contrast to semantic lifting where UML class diagram concepts are used to specify the

abstract syntax, in the presented approach the abstract syntax is specified by an ontology. In

this sense, the ontology-based modelling can be regarded as a variant of the MOF meta-

modelling framework (OMG, 2016c); where UML is replaced by an ontology language as a

meta-modelling language, e.g. RDF(S). Ontology concepts are then associated with

specifications of the graphical notation, e.g. a rectangle, square, gateway etc. The graphical

notation for each ontology concept is defined separately from the semantic description (see

separate 𝑚𝑒𝑡𝑎2-models in Figure 105). The association is established through the definition of

a mapping between the concept definition and the graphical definition (Nikles & Brander,

2009).

In the ontology-based meta-modelling approach, the semantics are expressed only once for

both human-interpretable and machine-interpretable representations. Hence, the ongoing

alignment between the modelling constructs of an abstract syntax and corresponding ontology

concepts (see upper part of Figure 103) are not needed. The semantics in the ontology consists

of classes, attributes, relations and constraints.

217

In the ontology-based meta-modelling approach, the ontology itself is the meta-model for

the graphical modelling environment (see model layer of Figure 105). A model is an

instantiation of both ontology and related notations that reside in the meta-model layer. Thus,

the model in the bottom layer benefits from both a semantics that is machine-interpretable, and

a graphical notation, that makes it human-interpretable. Models are also ontology-based as they

are instances of the class ontology. Such an approach avoids transforming the graphical models

into ontology instances, in contrast to the approach described in Sub-section 5.2.1.1. Moreover,

if changes occur in the ontology, these are propagated to the graphical models.

The validity of the approach was demonstrated by implementing it a context-adaptive

questionnaire (Kritikos, Laurenzi, Hinkelmann 2018), where changes in the ontology directly

led to changes in the questionnaire. Thus, the propagation of machine- to human-interpretable

knowledge was ensured. Figure 106 shows the ontology-based meta-modelling for the context-

adaptive questionnaire and corresponding question.

Figure 105. Ontology-based meta-modelling (Hinkelmann, Laurenzi et al. 2018)

218

Figure 106. An ontology-based meta-modelling for a context-adaptive questionnaire

219

5.3.2 Ontology Architecture for an Agile and Ontology-Aided Meta-

Modelling Approach

This sub-section elaborates on an ontology architecture that supports the proposed agile and

ontology-aided meta-modelling approach. In particular, the architecture provides the basis to

achieve a seamless consistency between the human and machine-interpretable knowledge of

modelling languages. The seamless alignment is achieved not only by ensuring that changes

are propagated from the machine- to the human-interpretable knowledge, but also vice-versa.

In fact, the main changes come from the human-interpretable representation of the modelling

language, through the on-the-fly domain-specific adaptations.

For the sake of clarity, from now on the ontology terminology is used to distinguish

between attributes and relations, i.e. datatype property and object property, respectively. A

datatype property refers to a relation between a subject resource and an object resource, where

the object resource is a datatype, e.g. string, integer, boolean etc. whereas an object property

refers to a relation between a subject resource and an object resource, where the object resource

is a class or an individual (Allemang & Hendler, 2011).

The abstract syntax and semantics are specified by the RDF(S) ontology language and have

a separate 𝑚𝑒𝑡𝑎2-model for the graphical notation (see upper part of Figure 107). For the

specification of the semantics we refer to Sub-section 5.1.4. The following notions are

considered:

1. Graphical Notation,

2. Abstract syntax,

3. Semantic domain,

4. A mapping between concepts from the abstract syntax to those of the semantic domain.

Notions (1) and (2) can be found in (Frank 2013a). Notions (3) and (4) are introduced in

(Harel & Rumpe, 2000) and Karagiannis and Kühn (2002), respectively. Additionally, the

distinction between the abstract syntax and the semantic domain reverts to the distinction

between language definition and the domain definition suggested in (Atkinson & Kuhne,

2003). As a result of these theoretical underpinnings, the following three main ontologies are

conceptualised:

- Modelling Language Ontology (MLO),

- Domain Ontology (DO),

- Palette Ontology (PO).

The three ontologies are depicted in the ontology-based meta-model layer in Figure 107.

The Modelling Language Ontology reflects the abstract syntax, while the Domain Ontology

reflects the semantic domain. Concepts from the Modelling Language Ontology are mapped

with concepts of the Domain Ontology (i.e. semantic mapping). Concepts in the Palette

Ontology represent the graphical notations of the language for the palette, as well as for the

graphical models; and are linked to the concepts of the Modelling Language Ontology. There

are two different specifications for the graphical notation: one for the graphical models and one

for the palette (see violet and yellow arrows pointing to two different notation types “for

palette” and “for canvas” in Figure 107). This distinction allows showing different graphical

notations between the palette and a graphical model. More details can be displayed in the

graphical notation of a model element than the corresponding notation in the palette, where

typically the space is limited.

220

A graphical model in the model layer is an instantiation of the ontology-based meta-model.

Hence, the model elements and relations are ontology instances and thus remain machine-

interpretable. In particular, a model element or relation (e.g., a concrete data object) is an

instance of the following ontology concepts:

- a class in the Modelling Language Ontology (e.g. the class Data Object);

- an instance in the Palette Ontology (e.g. a Data Object instance containing the graphical

notations);

- an instance or a class of the Domain Ontology (e.g. documentations or regulations

within a specific domain of discourse).

Figure 107 depicts the three relations “instanceOf” starting from a model element and

pointing to the concepts or instances of the three main ontologies; Modelling Language

Ontology, Domain Ontology and Palette Ontology. The rationale is that the ontology instance

reflecting the model element must inherit properties from classes, as well as from instances of

the three main ontologies. This create the conditions for the modeller to:

- insert values for the properties that were created in the modelling construct,

- insert values for (or manipulate values from) the properties that exist in the domain

ontology concept (or instance);

- manipulate property values of the Palette Ontology instances, i.e. changing the

graphical notation that is visualised in the model, e.g. changing colours and size.

For this, an ontology language has to be able to support the instance of an instance

abstraction representation, where the target instance can also be defined as a class. The choice

of the ontology language is discussed after the next sub-section.

The ontology instances reflecting the graphical model are also instances of a class

containing all the model instances. The class takes the name of the created model and belongs

to the Ontology Model. This keeps modularity between the above seen three main ontologies

and the ontology instances reflecting the models, thus ontology-based models can be

exchanged as it is decoupled from the three main ontologies.

The model layer also contains the palette (see in the bottom-right corner of Figure 107.).

The latter acts as a gate to the ontology-based meta-model enabling agility while modelling.

For this, operators are applied on the palette allowing on-the-fly domain-specific adaptations

of the meta-model layer.

The following sub-section provides a detailed description of the ontology-based meta-

model specification.

221

Figure 107. Architecture of the Ontology-Aided Approach

222

5.3.2.1 Specification of the Ontology-based Meta-Model

The description of the ontology-based meta-model is underpinned by Figure 108.

Figure 108. Ontology-based Meta-Model

223

The Palette Ontology (see blue bubbles in Figure 108) contains classes, object properties

and instances that specify:

- the graphical notations (for palette and for the graphical model) of the modelling

language (i.e. po:PaletteConstruct)

- knowledge for positioning the graphical notations over the palette (i.e.

po:PaletteCategory).

- In detail, the class po:PaletteConstruct class has two sub-classes: po:PaletteConnector

and po:PaletteElement.

po:PaletteConnector contains instances reflecting connectors of one or more modelling

languages (e.g. message flow and sequence flow for BPMN), while the class po:PaletteElement

contains instances reflecting modelling elements of one or more modelling languages (e.g. task

or data object for BPMN). Instances from both classes inherit three datatype properties:

- po:paletteConstructIsHiddenFromPalette, which is associated with a Boolean datatype

property. A “true” value means that the graphical notation for the palette will not be

displayed in the palette, and a “false” value means that it will be displayed. The default

value for each instantiation is “false”.

- po:paletteConstructHasPaletteThumbnail, which is associated with a string datatype

property that will contain the Uniform Resource Identifier (URI) of a graphical notation

to be shown in the palette;

- po:paletteConstructHasModelImage, which is associated with a string datatype

property that will contain the Uniform Resource Identifier (URI) of a graphical notation

to be shown in a graphical model;

The class po:PaletteElement has two datatype properties:

- po:paletteConstrucHasWidth, which is associated with an integer datatype property

that will contain the default value of the width of the graphical notation for the model;

- po:paeltteConstructHasHeight, which is associated with an integer datatype property

that will contain the default value of the height of the graphical notation for the model;

Note that the two datatype properties do not apply for modelling relations, thus they are

inserted in the palette Element class. The two properties do not regard the size of the thumbnail

to be displayed in the palette. The rationale is that all the thumbnails in the palette should have

the same fixed width and height in order to have a homogenous appearance. Hence, they should

be fixed values, which will be hardcoded in the user interface and will be used for any new

thumbnail. Conversely, the image size to be shown in the model may vary from element to

element. Although the two datatype properties are meant to store default values, they may be

subject to change depending on the taste of the modeller or imposed modelling conventions,

thus they should not be hard-coded.

Also, the class po:PaletteConstruct has five object properties:

- a self-relationship po:paletteConstructHasParentPaletteConstruct. This relation

determines the hierarchy among modelling constructs with the purpose to show it in the

palette.

- po:paletteConstructIsRelatedToModellingConstruct pointing to the class

lo:ModellingLanguageConstruct. This object property connects instances of the classes

po:PaletteConnector or po:PaletteElement (i.e. graphical notations) with classes of the

224

Modelling Language Ontology (i.e. abstract syntax). This relation reflects the link that

connects notation with abstract syntax as described in (Karagiannis & Kühn, 2002).

- po:paletteConstructIsGroupedInPaletteCategory pointing to the class

po:PaletteCategory. This object property specifies which Palette Constructs are

grouped into which category.

- The class po:PaletteCategory has the purpose of grouping graphical notations of similar

types into categories. When a modelling language or DSML presents many concepts

that are to be shown in the palette, grouping them into categories is a good solution to

avoid the cognitive overload. Among widely used modelling tools the grouping of the

graphical notations varies. For instance, the on-line version of Camunda53 and ADOxx

keep separate connectors from modelling elements. The on-line version of Signavio54

and Trisotech55 show all the graphical notations in a single category. The modeller

Bizagi56 foresees several categories to group graphical notations in the palette, i.e. as

Figure 109 shows, for BPMN the palette shows five categories: (1) flow elements, (2)

connecting objects, (3) data (4) swimlanes, and (5) artifacts.

The po:PaletteCategory has the following two datatype properties and one object property:

- po:paletteCategoryHasOrderNumber, which is associated to an integer datatype

property that will contain a number. The number will be used for ordering the categories

from top to bottom, where the value 1 corresponds to the top element in the palette;

- po:categoryIsShownInModellingView, which points to the class lo:ModellingView.

This object property binds a category to a modelling view, so that for each selected

modelling view the correspondent categories are shown in the palette. In turn, since

each Palette Construct has its category, the latter is populated with the graphical

notations of the constructs. The same category can be shared by two different modelling

views. This is the case of the modelling language BPaaS (introduced in Section 4.2),

which since extends BPMN, it also shares the same process modelling view.

53 https://demo.bpmn.io/new
54 https://editor.signavio.com
55 https://www.trisotech.com
56 https://www.bizagi.com/en/products/bpm-suite/modeler

Figure 109. BPMN graphical notations grouped by categories in the Bizagi Modeller

225

The Modelling Language Ontology (see green bubbles in Figure 108) contains classes,

taxonomy of classes, and properties (i.e. relations and attributes) describing the abstract syntax

of a modelling language.

As shown in Figure 108, the Modelling Language Ontology is based on five classes:

- lo:ModellingLanguage – this class specifies the modelling language.

- lo:ModellingView – this class specifies the views of a modelling language. One or more

modelling views comprise a modelling language. This knowledge is captured by the

object property isPartOf between the two classes lo:ModellingView and

lo:ModellingLanguage;

- lo:ModellingLanguageConstruct – this class generalises the concepts modelling

elements and modelling relations.

- lo:ModellingElement – this class is a sub-class of lo:ModellingLanguageConstruct and

specifies the modelling elements of a language. This class has two object properties:

isMappedWith and hasBridgingConcept. The object property isMappedWith reflects

the formal explication of the semantic mapping. This connects elements from the

Modelling Language Ontology to those in the Domain Ontology. The self-relation of

the Modelling Element class hasBridgingConcept indicates that a modelling element

has a bridging concept targeting a modelling element from either the same modelling

language (but different modelling view) or from a different modelling language. This

relation allows the user to navigate between two elements when they are instantiated in

the model.

- lo:ModellingRelation – this class is a sub-class of lo:ModellingLanguageConstruct and

specifies the modelling relations of a modelling language. In a model, each instantiated

relation has a source and a target modelling element. For example, a sequence activity

in a BPMN model may have a start event as a source element and a user task as a target

element. This knowledge representation is captured with the two object properties

hasSource and hasTarget, which point to the class lo:ModellingElement;

The Modelling Language Ontology imports one or more modelling languages. Each

Modelling Language Ontology concept has the prefix of the language it belongs to, e.g. Task

in BPMN is shown as a class bpmn:Task.

The taxonomy of classes supports inheritance of properties from a class to its sub-classes.

In ontology languages, like RDF(S), the inheritance mechanism is supported when specifying

the rdfs property subClassOf between classes, where the sub-class inherits the properties

specified in the class. This is convenient when extending a modelling construct as properties

do not need to be re-created. Also, the inheritance mechanism applies in cascade from the first

defined class down to the last sub-class. Therefore, when creating an instance of a class (i.e. a

model element) all the properties that were defined in the class and the above super-classes are

inherited, creating the conditions for a modeller to specify the properties.

The Domain Ontology (see orange bubble in Figure 108) contains classes and properties

that describe the semantic domain. As mentioned above, the semantic domain is independent

from the abstract syntax of a language and describes a domain of discourse. The Domain

Ontology consist of existing ontologies that are imported to further specify a language

construct. An example is the International Classification of Functioning, Disability and Health

(ICF) ontology (National Center for Biomedical Ontology, 2012). The Domain Ontology can

also be contextualised within the Linked Data (Auer, Berners-Lee, Bizer, & Heath, 2015)

paradigm, which increasingly contain world-wide standards and vocabularies across the

Internet. In this sense, a resource from the Domain Ontology can be linked with external

226

machine-interpretable resources. Such linkage enriches the context of a modelling construct,

leading to a further specification of semantics. The owl:sameAs property can be established for

resources having the same meaning.

Domain Ontologies are typically aligned with Upper Ontologies or also known as Top

Level Ontologies, which contain a general semantic level, i.e. general terms like events, time,

location. Examples of such ontologies can be found across the literature base (Pease et al. 2002;

Hinkelmann et al. 2013; Chavula & Maria Keet 2015). Similar to the work in Emmenegger et

al. (2013), where enterprise domain concepts are extended with general concepts, the Domain

Ontology in this work extends to general and language-independent concepts like top level

elements. Thus, both concepts from a Domain Ontology and concepts extended from the

Domain Ontology can be mapped with concepts from the Modelling Language Ontology. The

extension of the Domain Ontology with general concepts like top level elements is left to the

ontology engineer as it does not concern the language engineering.

In order to support the interlinkage between the three ontologies in the ontology

architecture, the Palette Ontology has to include the Modelling Language Ontology, which in

turns has to include the Domain Ontology. Figure 110 shows such interlinkage, where each

ontology contains the implemented ontologies. In the following sub-section the adoption of

this ontology language is explained.

Figure 110. Implemented ontologies and their interlinkage

227

5.3.2.2 RDF(S) as Ontology Language

An introduction to ontology, its definition and most widely-adapted ontology languages are

reported in Section 2.12 of the Literature Review chapter. Thus, the following description is

limited to illustrate the choice of the language for the previously introduced ontology

conceptualisation.

The choice of a ontology language typically depends on the purpose the ontology, i.e. types

of facts that are important to deduce, represent and/or retrieve (Brachman, Levesque, &

Pagnucco, 2004). In this work, the Resource Description Framework Schema (RDF(S)) 1.1

(W3C, 2014c) is adopted. This lightweight ontology language fits the proposed operators for

the on-the-fly domain specific adaptations, e.g. create sub-classes, attributes, relations.

Moreover, it allows the use of classes as instances of other classes, on the contrary to the

more expressive OWL (McGuinness & van Harmelen, 2014). OWL is limited to the knowledge

representation of two levels: the TBox (i.e. classes) and the ABox (i.e. instances). This

representation makes OWL unable to support a multi-layer representation that characterises

meta-modelling representations (Fanesi, Cacciagrano, & Hinkelmann, 2015).

Instead, by adopting RDF(S) in the proposed agile meta-modelling approach, instances

from the Palette Ontology can be further instantiated in the creation of models. Also, multilayer

representation is supported. This would allow to model execution data as a further instance

layer of models representing, for example, process activities. Semantic rules (e.g. SPIN (W3C,

2011)) and the SPARQL (W3C, 2008a) query language can be performed against ontologies

expressed in RDF(S). SPIN or SPARQL CONSTRUCT are used to infer new knowledge while

the SPARQL provides a powerful query construction. Several research works (Kritikos et al.

2018; Emmenegger et al. 2017; Emmenegger et al. 2013) show the validity of this approach.

Moreover, in contrast to more expressive ontology languages like OWL, RDF(S) embraces

the Closed World Assumption (CWA) and satisfies the Unique Names Assumption (UNA). In

CWA, it is assumed the complete knowledge of the world, therefore if something is not derived

it is deduced that it does not exist. CWA is opposite than the Open World Assumption (OWA),

where the knowledge of the world is assumed to be incomplete, hence if something is not

derived it cannot be inferred that does not exist. The OWA becomes problematic for the

validation of models (Rospocher, Ghidini & Serafini; 2014). For example, if a model has a

gateway with an incoming sequence flow but no outgoing sequence flow, the model would not

result logically inconsistent, which violates the semantics of BPMN.

The UNA, on the other hand, makes two entities with different identifiers distinct objects,

which is a beneficial when creating models as each model construct is uniquely identified.

More expressive ontology languages like OWL do not satisfy UNA, thus each time an element

is entered in a model, new disjoint statements would have to be injected if the same entity type

already exists in the model. Such work around adds complexity to the creation of models.

Although the model creation and validation are left to future work, it is appropriate to make

such considerations at this stage as models inherit the ontology specification of the modelling

languages. Therefore, the benefits of CWA and UNA on models is an additional argument to

adopt RDF(S) as an ontology language

The terminology that will be adopted from now on belongs to the RDF(S) 1.1. In particular:

- the term resource refers to anything represented in an ontology or graph. Rdfs:Resource

is the class of everything and all things described by RDF are resources;

- the term class refers to rdfs:Class, which declares a resource as a class for other

resources;

228

- the term property refers to an instance of the class rdf:Property and describes a relation

between a subject resource and an object resource, where property can also be named

as predicate, i.e. the triple subject-predicate-object;

- the term domain refers to the rdfs:domain of an rdf:Property and declares the class of

the subject resource in a triple. E.g. in the declaration “pX rdfs:domain sY”, the sY is

the subject resource of the triple “sY-pX-oZ”;

- the term range refers to the rdfs:Range of an rdf:Property and declares the class or

datatype of the object resource in a triple. E.g. in the declaration “pX rdfs:range oZ”,

the oZ is the object resource of the triple “sY-pX-oZ”.

229

5.3.3 Designing Semantic Rules for the Propagation of Domain-Specific

Adaptations

Sub-section 5.3.1 described the ontology-based meta-modelling, which allows the propagation

of machine- to human-interpretable knowledge. The previous sub-section introduced the new

ontology architecture to provide the basis for a seamless alignment between the human and

machine-interpretable representation of modelling languages. This sub-section builds upon

such an ontology architecture and proposes semantic rules for the propagation of human- to

machine-interpretable knowledge. Semantic rules, therefore, aim to ensure that domain-

specific adaptations of a modelling language are correctly propagated to the ontology. Such

correct propagation enables the seamless or ongoing alignment between the human- and

machine-interpretable representation of modelling languages.

In order to ensure the correct propagations of the adaptations, 11 SPARQL rules are

proposed, each of which implements one or more operators. A SPARQL rule consists of one

or more triples in the form of subject-predicate-object and insert, delete or update knowledge

in the ontology-based meta-model. Hence, each rule supports one or more of the 10 operators

that were derived in Sub-section 5.3.1. As soon as a domain-specific adaptation is performed,

the SPARQL rule of the related operator is instantiated. The instantiation contains the actual

changes that need to be carried over to the ontology.

For example, let us consider the example depicted in Figure 111. The top of the figure

shows the domain-specific adaptation that should be fulfilled, in this example the integration

of two modelling elements from different modelling languages. The adaptation makes use of

Operator 1: Create sub-class. The expected result is to create a sub-class relation between two

modelling elements. To achieve that, the operator is supported by the two following SPARQL

rules:

- Insert the relation “hasParent” between the two palette Element instances (in the Palette

Ontology) that relate to the two modelling constructs to be integrated;

- Insert the relation “subClassOf” between the two modelling constructs (in the

Modelling Language Ontology) to be integrated.

These SPARQL rules are, therefore, instantiated containing the actual instances of the

palette element class and the two actual classes representing two modelling constructs. Thus,

once rule instances are fired, the ontology-based meta-model is adapted with the new

integration of the two modelling constructs.

230

5.3.3.1 Design and Evaluation of Semantic Rules

The design and evaluation of the semantic rules is supported by following the methodology

proposed by Grüninger and Fox (1995). In the following, the general steps of the methodology

are described. Then the manner in which the methodology was adopted for the development of

semantic rules is discussed.

The methodology of Grüninger and Fox (1995) starts by explaining use case, from which

informal competency questions (CQ) are derived and written in natural language. Then,

concepts and relations are extracted from the questions to conceptualise an ontology. Next, the

ontology and competency questions are formalised through an ontology language and a rule

language, respectively. Lastly, the evaluation of the semantic queries or rules is performed by

executing them with respect to the ontology. In result, it should be shown that the expected

results are met. Hence, the ontology is tested by proving completeness theorems with respect

to the competency questions. The methodology was successfully followed for the design and

evaluation of several ontologies, e.g. the BPaaS Ontology (Woitsch et al., 2016), the ontology

recommender for workplace learning (Emmenegger et al., 2017) and an ontology-supported

procedure to assess procurement risks (Emmenegger et al., 2013).

The purpose of the Grüninger and Fox (1995) methodology in our case is not of designing

an ontology, but support the rigorous development of semantic rules. The latter aims updating

the ontology of the meta-model that already exists. Thus, some part of the methodology is

slightly adapted to fit our purpose (see Figure 112). Namely:

- In the first step, domain-specific adaptations are described as a motivating scenario to

design semantic rules.

- Next, informal rules (instead of competency question) are described in natural

language.

- Finally, informal rules are transformed into SPARQL rules (instead of SPARQL

queries).

Figure 111. Semantic rules for the propagation of changes from the human to the machine-interpretable

representation

231

The validation of the designed SPARQL rules is done with respect to its syntactic and

semantic correctness.

- The syntactic correctness is validated by executing the SPARQL rules with the

SPARQLer Update Validator57.

- In order to ensure that the SPARQL rule produces the expected outcome, it is

instantiated (see the SPARQL rule instances in Figure 112). This activity is

underpinned by use cases from the patient transferal management case (Section 4.2).

The chosen use cases represent typical domain-specific adaptations and cover all

operators. The SPARQL rule instances are fired against the ontology-based meta-

model58. If results match with the expected ones it is the proof that a SPARQL rule is

semantically valid.

SPARQL rules that are syntactically and semantically validated were considered for their

implementation in the prototype described in Chapter 6. Namely, the validated SPARQL rules

were embedded in Java methods for the dynamic generation of SPARQL rule instances.

57 http://www.sparql.org/update-validator.html
58 The tests are done in the ontology editor TopBraid: https://www.topquadrant.com/tools/ide-topbraid-

composer-maestro-edition/

Figure 112. Methodology to design and evaluate semantic rules for the propagation domain-specific adaptations.

Adapted from (Grüninger & Fox, 1995)

232

5.3.3.2 Representation Language of the Semantic Rules

The SPARQL rules are represented in the W3C language specification SPARQL Update

(W3C, 2008b). The SPARQL Update provides graph update operations such as “INSERT

DATA” and “DELETE DATA” with which our 10 operators can be supported.

According to W3C (2008b) an operation is defined as “an action to be performed that

results in the modification of data [..]” in a triplestore expressible as a single command, e.g.

INSERT DATA or DELETE DATA. A triplestore is a mutable container of ontologies, which

in our case reflect the afore-mentioned ontology-based meta-model. Operations on RDF(S)

resources span classes, properties and instances. Namely, the “INSERT DATA” supports those

operators that imply the creation of a resource, i.e. Operator 1 – Create sub-class, Operator 4

– Create relation, Operator 7 – Create attribute and Operator 8 – Assign concept, attribute

type or value. The “DELETE DATA” statement supports Operator 3: Delete sub-class,

Operator 6: Delete relation, Operator 9: Delete Attribute. The sequential use of both

operations, first “DELETE DATA” and then “INSERT DATA”, supports those operators

where an update is completed, i.e. Operator 2: Update class, Operator 5: Update relation and

Operator 10: Update attribute.

5.3.4 Syntactic and Semantic Validation of Semantic Rules

All eleven semantic rules went through the steps of the methodology described in the previous

sub-section. Hence, they are all syntactically and semantically validated. Both syntactic and

semantic validation activities led to produce more than twenty screenshots, which were taken

from the SPARQLer Update Validator and TopBraid, respectively. To avoid an unnecessary

stretch of this thesis, the syntactic and semantic validation screenshots of only the first semantic

rule (“Integrating of Modelling Elements from different modelling languages”) are reported in

the text below. Therefore, the first rule is described with all the 6 steps of the above-mentioned

methodology. The rest of the semantic rules (from 2 to 11) are then presented following the

first four steps of the above-introduced methodology. Namely:

(1) Description of one or more domain-specific adaptations.

(2) Informal semantic rules that fulfil the domain specific adaptation(s) introduced in

(1). For each rule, the supporting operator(s) is mentioned.

(3) SPARQL specification for the semantic rule(s) introduced in (2).

(4) Instances of the SPARQL rules that are specified in (3). Real-world scenarios from

the patient transferal management case (Section 4.2) are considered for the

instantiations of SPARQL rules.

All the screenshots for the syntactic and semantic validation of rules from 2 to 11 can be

found in Appendix D: Validation SPARQL Rules, folders D1 and D2.

233

5.3.4.1 Rule 1: Modelling Elements Integration from different Modelling

Languages

The first semantic rule aims to support the integration of two modelling elements from different

modelling languages. Given two modelling constructs that belong to two different modelling

languages, one modelling construct is conceptualised as an extension of the other. As an

example, the integration of the Discretionary Task of CMMN is integrated into BPMN. It is

conceptualised as an extension of the BPMN’s Task element.

5.3.4.1.1 Informal Semantic Rule to Integrate Modelling Elements

The integration between modelling elements from different modelling languages requires a rule

that creates the following two properties:

- Create one object property hasParentPaletteConstruct in the Palette Ontology between

the instance of the class PaletteElement (instanceSon) and the instance of the class

PaletteElement (instanceParent). InstanceSon and instanceParent relate to the

modelling construct that is to be extended and the modelling construct that extends,

respectively. Both modelling constructs are classes in the Modelling Language

Ontology. The object property hasParentPaletteConstruct ensures a taxonomy among

the instances that contain the graphical notations. The taxonomy is then graphically

displayed in the palette.

- Next, create one property subClassOf in the Modelling Language Ontology between

the modelling construct chosen for extending a class (sourceClass) and the one that is

being extended (targetClass). This action creates the desired integration between the

two modelling constructs in the Modelling Language Ontology. It also ensures that the

class taxonomy in the Modelling Language Ontology is consistent with the above-

mentioned graphically displayed taxonomy of the notation.

This rule supports Operator 1 – Create sub-class.

5.3.4.1.2 SPARQL Rule 1 to Integrate Modelling Elements

The informal rule for modelling elements integration is implemented by the SPARQL

operation “INSERT DATA”. The latter fits the purpose of inserting one property

po:hasParentPaletteConstruct between two instances and one property rdfs:subClassOf,

between two classes.

SPARQL Rule 1 is shown in Table 30 and contains:

- the prefixes rdfs, po and lo that are used in the two statements. The prefix rdfs refers to

the syntax of the RDF(S) ontology language. The prefix po refers to the Palette

Ontology and lo to the Modelling Language Ontology.

- the operation “INSERT DATA”, the two statements that allow the creation of the two

properties. The two properties are shown in bold.

- two comments above each statement (each comment is written in italics and starts with

//).

All the variables written in italics po:InstanceParent, po:InstanceSon, lo:sourceClass and

lo:targetClass will be replaced with concrete resources when the SPARQL Rule 1 is

instantiated.

234

The rest of the SPARQL rules are shown with the same look as in Table 30.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX po:<http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX lo:< http://fhnw.ch/modellingEnvironment/LanguageOntology#>

INSERT DATA {

//enter parent relation between two palette Element instances (triple 1)

po:InstanceSon po:paletteConstructHasParentPaletteConstruct po:InstanceParent .

//enter subClassOf relation between two Modelling Element classes (triple 2)

lo:sourceClass rdfs:subClassOf lo:targetClass .

}

Table 30. SPARQL Rule 1 – Integrate modelling elements from different modelling languages

235

5.3.4.1.3 Syntactic Validation of SPARQL Rule 1

As described at the beginning of the sub-section, the syntactic validation of the SPARQL rules

were performed through the SPARQLer Update Validator. Figure 113 shows the screenshot

that proves the syntactic validation of SPARQL Rule 1. Namely, the upper part of the figure

contains the SAPRQL rule described in Table 30, while the bottom of the figure shows the

output. The output does not contain any errors, which means that SPARQL Rule 1 is

syntactically correct.

As already mentioned, the screenshots for the syntactic validation of the rest SPARQL rules

can be found in Appendix D: Validation SPARQL Rules, folder D1.

5.3.4.1.4 Instantiation of SPARQL Rule 1

In order to instantiate SPARQL Rule 1, the use case concerning the integration between the

BPMN Manual Task and the CMMN Discretionary Task is considered. That is, the

Discretionary Task is added as a sub-class of the Manual Task. Figure 114 shows the

conceptualisation of this use case. The two arrows in Figure 114 indicate the two properties

that shall be added by the two statements (or triple) of the SPARQL rule instance. These

properties are the subClassOf relation between the Discretionary Task and the Manual Task

and the hasParent object property between the two instances of po:PaletteElement.

Figure 113. Syntactic Validation of SPARQL Rule 1

236

The instance of SPARQL Rule 1 is described in Table 31. The prefixes bpmn and cmmn on

top of the rule instance replace the generic lo prefix seen in SPARQL Rule 1 (Table 30). Both

prefixes refer to two ontologies, reflecting the linguistic view of the BPMN and CMMN

modelling languages, respectively.

Figure 114 Conceptualisation of the use case for the integration of CMMN Discretionary Task with BPMN

Manual Task

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX po:<http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX bpmn:< http://ikm-group.ch/archimeo/BPMN#>

PREFIX cmmn:< http://ikm-group.ch/archimeo/CMMN#>

INSERT DATA {

//enter parent relation between the two palette Element instances (triple 1)

po:DiscretionaryTask po:hasParentPaletteConstruct po:ManualTask .

//enter subClassOf relation between the two Modelling Element classes (triple 2)

cmmn:DiscretionaryTask rdfs:subClassOf bpmn:ManualTask .

}

Table 31 An instance of SPARQL Rule 1

237

5.3.4.1.5 Semantic Validation of SPARQL Rule 1

In order to validate the semantic correctness of SPARQL Rule 1, its instance in Table 31 was

fired against the ontology. For this, the ontology editor TopBraid was used. Figure 115 shows

the result of the rule instance execution. As shown by the two arrows, the two triples contain

the two new properties that have been added to the ontology. Hence, the Discretionary Task

and the Manual Task are integrated as expected (see use case in Figure 114), which proves that

SPARQL Rule 1 is correct not only syntactically, but also semantically.

As previously stated, the screenshots for the semantic validation of the rest SPARQL rules

can be found in Appendix D: Validation SPARQL Rules, folder D2.

Figure 115. Semantic validation of SPARQL Rule 1 - modelling elements integration

238

5.3.4.2 Rules 2 to 5: Modelling Language Extension with a new Modelling

Elements

The semantic rules from 2 to 5 aim to support the extension of a modelling construct with a

new one. The extension includes not only a new modelling construct, but may also include:

- the creation of object properties for both the semantic mapping and the bridging

connector of the new modelling construct;

- the creation of new datatype properties (including the assignment to a value type) for

the new modelling construct;

- the creation of a new domain ontology concept.

Respectively, such domain specific adaptations are supported by four semantic rules:

1. one rule creates new modelling constructs,

2. one rule creates new object properties,

3. one rule creates new datatype properties,

4. one rule creates new domain concepts.

5.3.4.2.1 Informal Semantic Rule 2 to Create Modelling Constructs

The informal semantic rule for the new modelling constructs creates:

- a new class (NewClass) and a new relation subClassOf in the Modelling Language

Ontology. NewClass is sub-class of the modelling construct that is extended

(ExtendedClass). The creation of the NewClass includes the association of a label

(nameOfTheClass) and may also contain any potential descriptive or informative

comments (descriptionOfNewConcept).

- a new instance (instanceOfNewClass) in the Palette Ontology, containing

nameOfTheClass, which is the same label of NewClass.

This rule supports Operator 1 – Create sub-class and Operator 8 – Assign attribute type or

value.

Next, the informal semantic rule assigns the following predicate-object pairs to

instanceOfNewClass:

- PaletteConstructIsRelatedToModellingConstruct, which points to the NewClass;

- PaletteConstructHasParentPaletteConstruct, which points to the parent instance of

instanceOfNewClass. The parent instance already has a relationship with ExtendedClass;

- PaletteConstructHasPaletteThumbnail, which points to a string datatype. The datatype

value will then be the file name of the chosen graphical notation that will be displayed in

the palette;

- PaletteConstructHasModelImage, which points to a string datatype. The datatype value

will then be the file name of the chosen graphical notation that will be displayed in the

model;

- PaletteConstructHiddenFromPalette, which points a Boolean datatype with a default value

set to “false”.

These additional five properties support Operator 8 – Assign concept, attribute type or

value.

239

The first two properties are object properties, whereas the rest are datatype properties. All

of the five properties are inherited from the class palette Element and are part of the schema of

the Palette Ontology (see Sub-section 5.3.2).

5.3.4.2.2 Informal Semantic Rule 3 to Create Object Properties

This informal semantic rule creates a new object property for the new modelling construct. The

object property can either reflect a semantic mapping (isMappedWith) or a bridging connector

(hasBridgingConcept). Thus, these object properties have the new modelling construct as

source and the selected class as target. The selected class can be a domain ontology concept of

a modelling element, respectively. If a new object property is a semantic mapping it should be

added as a sub-property of it. The same applies for new properties of the bridging connectors.

This rule is omitted if there are no semantic concepts nor bridging concepts selected by the

language engineer.

This rule supports Operator 4 – Create relation.

5.3.4.2.3 Informal Semantic Rule 4 to Create Datatype Properties

This informal semantic rule creates new datatype properties for the new modelling construct.

The possible built-in datatypes to be chosen for the given datatype property are the RDF-

compatible XSD types and conform to the XML Schema built-in datatypes, i.e. Boolean, Date,

DateTime, Decimal, Integer, String etc. (see in (W3C, 2014c)). In case datatype properties are

not entered, this semantic statement is not generated.

This rule is omitted if there are no new datatype properties entered by the language

engineer.

This rule supports Operator 7 – Create attribute and Operator 8 – Assign concept, attribute

type or value.

5.3.4.2.4 Informal Semantic Rule 5 to Create Domain Concepts

This informal semantic rule creates new sub-classes in the Domain Ontology. Namely, the rule

creates a new relation subClassOf, which points to the domain concept being extended.

Next, a label for the new domain concept is also created.

This rule is omitted if no new domain concept is entered by the language engineer.

This rule supports Operator 1 – Create sub-class.

240

5.3.4.2.5 SPARQL Rule 2 to Create Modelling Constructs

The informal rule 2 is transformed into a SPARQL rule, which turns into the SPARQL Rule 2

presented in Table 32. Like in the SPARQL Rule 1, comments are reported above each triple

and all resource names are written in italics (e.g. lo:NewClass, lo:ExtendedClass, etc.) and are

replaced with concrete resources when the SPARQL rule is instantiated.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT DATA {

//creation of the new class, subclass property and label in the Modelling Language Ontology

lo:NewClass rdf:type rdfs:Class .

lo:NewClass rdfs:subClassOf lo:ExtendedClass .

lo:NewClass rdfs:label “name of the new class”.

lo:NewClass rdfs:comment “comment for the new class”.

//creation of the new instance in the palette Ontology

po:InstanceOfNewClass rdf:type po:PaletteElement .

//association of property-object pairs to the new instance

po:InstanceOfNewClass rdfs:label “same name entered for the new class”.

po:InstanceOfNewClass po:paletteConstructIsRelatedToModellingLanguageConstruct

lo:NewClass .

po:InstanceOfNewClass po:paletteConstructhasParentPaletteConstruct

po:InstanceOfExtendedClass .

po:InstanceOfNewClass po: paletteConstructHasPaletteThumbnail “name of

image”^^xsd:string .

po:InstanceOfNewClass po: paletteConstructHasModelImage “name of image”^^xsd:string .

po:InstanceOfNewClass po: paletteConstructHasWidth “number of pixel”^^xsd:integer .

po:InstanceOfNewClass po: paletteConstructHasHeight “number of pixel”^^xsd:integer .

po:InstanceOfNewClass po: paletteConstructIsGroupedInPaletteCategory lo:PaletteCategory .

//make the palette thumbnail visible in the palette

po:InstanceOfNewClass po: paletteConstructIsHiddenFromPalette “false”^^xsd:boolean .

}

Table 32. SPARQL Rule 2 – Create modelling construct

241

5.3.4.2.6 SPARQL Rule 3 to Create Object Properties

The informal rule 3 is transformed into the SPARQL Rule 3 and shown in Table 33. As already

described in the information rule 2, there are two kind of object properties that are created: one

for the semantic mapping (see rule A in Table 33) and one for bridging connector (see rule B

in Table 33). The SPARQL Rule 3a shows the creation of a new semantic mapping between a

modelling element (lo:NewClass) and a domain concept (do:ClassDO1). The new semantic

mapping is sub-property of lo:elementIsMappingWithDOConcept, which is the name of the

main property connecting the class lo:ModellingElement with do:DomainConcept (see Sub-

section 5.3.2.1). The SPARQL Rule 3b creates a new bridging connector between a modelling

element (lo:NewClass) and another modelling element lo:ClassMLO1. The new bridging

connector is a sub-property of lo:elementHasBridgingConcept. Labels are also created for each

object property. The prefixes shown on the upper part of Table 33 also apply for the rule that

creates bridging connector.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX lo:<http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX do: <http://fhnw.ch/modellingEnvironment/DomainOntology#>

(3a)

INSERT DATA {

//Creation of a new object property: a semantic mapping relation between a Modelling Language

Ontology class and a Domain Ontology class.

lo:isMappedWithClassDO1 rdf:type rdf:Property .

lo:isMappedWithClassDO1 rdfs:label “New class connected with class DO1” .

lo:isMappedWithClassDO1 rdfs:domain lo:NewClass .

lo:isMappedWithClassDO1 rdfs:range do:ClassDO1 .

lo:isMappedWithClassDO1 rdfs:subPropertyOf lo:elementIsMappedWithDOConcept .

}

(3b)

INSERT DATA {

//Creation of a new object property: a bridging connector relation between concepts in the Modelling

Language Ontology

lo:hasBridgingConceptMLO1 rdf:type rdf:Property .

lo:hasBridgingConceptMLO1 rdfs:label “New class connected with class MLO1” .

lo:hasBridgingConceptMLO1 rdfs:domain lo:NewClass .

lo:hasBridgingConceptMLO1 rdfs:range lo:ClassMLO1 .

lo:hasBridgingConceptMLO1 rdfs:subPropertyOf lo:elementHasBridgingConcept.

}

Table 33. SPARQL Rule 3 – Create object property

242

5.3.4.2.7 SPARQL Rule 4 to Create Datatype Properties

The informal rule 4 is transformed into SPARQL Rule 4, which is shown in Table 34. SPARQL

Rule 4 creates new datatype properties (e.g. hasAttrF and hasAttrE) for the new modelling

construct (lo:NewClass). Labels are also created for each datatype property. To show an

example of possible in-built datatypes, the properties hasAttrF and hasAttrE are assigned to

xsd:String and xsd:Boolean, respectively.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT DATA {

// creation of new data type properties

lo:hasAttrF rdf:type rdf:Property .

lo:hasAttrE rdf:type rdf:Property .

lo:hasAttrE rdfs:label “New class has attribute E”.

lo:hasAttrF rdf:label “New class has attribute F”.

lo:hasAttrF rdfs:domain lo:NewClass .

lo:hasAttrE rdfs:domain lo:NewClass .

lo:hasAttrF rdfs:range xsd:string .

lo:hasAttrE rdfs:range xsd:boolean .

}

Table 34. SPARQL Rule 4 – Create datatype property

243

5.3.4.2.8 SPARQL Rule 5 to Create Domain Concepts

The informal semantic rule 5 is transformed into SPARQL Rule 5, which is reported in Table

35. The SPARQL rule creates new domain concepts (do:NewDOconcept) and labels. The

property rdfs:subClassOf is also added between the new domain concept and the one being

extended.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX do: <http://fhnw.ch/modellingEnvironment/DomainOntology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT DATA {

// creation of new domain ontology concept

do:NewDOconcept rdf:type rdfs:Class .

do:NewDOconcept rdf:label “New class in DO” .

do:NewDOconcept rdfs:subClassOf do:ClassInDO .

}

Table 35. SPARQL Rule 5 – Create domain concept

244

5.3.4.2.9 Instantiation of SPARQL Rules 2 to 5

In order to instantiate SPARQL rules from 2 to 5 a real-world use case from the Patient

Transferal Management case is considered:

A concept from the Document and Knowledge Meta-Model is extended to conceptualise a

document reflecting the International Classification of Functioning, Disability and Health

(ICF) standard (World Health Organisation, 2016) (see also Sub-section 4.1.4). Figure 116

depicts the “as-is” situation, where the Modelling Language Ontology contains the ontologies

reflecting the Document and Knowledge Meta-Model and BPMN. The concepts of interest in

this scenario are the class dkmm:Data_Document and the bpmn:DataObject (see upper part of

Figure 116). It is assumed that bpmn:DataObject was already extended with the new concept

called dsml4ptm:KoGuDataObject, which contains all relevant information for the cost

reimbursement. The Palette Ontology contains the graphical notations related to the introduced

concepts (see bottom of Figure 116). To keep the use case simple, each instance in the Palette

Ontology refers to one graphical notation for both the palette and the models.

In this scenario the language engineer starts by specifying the class dkmm:Data_Document

with a new class dsml4ptm:ICFStandard. For this, SPARQL Rule 2 is instantiated, which is

shown in Table 36. In detail, the SPARQL rule 2 instance creates a new class in the Modelling

Language Ontology and the related instance in the Palette Ontology. Additionally, property-

value pairs are associated to the instance such as label, comment, graphical notations and the

property to display it in the palette.

Figure 116. “As-is” use case for the extension of the Data_Document concept in the Document and Knowledge

Meta-Model

245

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX dkmm: <http://fhnw.ch/modellingEnvironment/dkmm#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

INSERT DATA {

//creation of the new sub-class in the Modelling Language Ontology

dsml4ptm:ICFStandard rdf:type rdfs:Class .

dsml4ptm:ICFStandard rdfs:subClassOf dkmm:Data_Document .

//association of the new class with label, comment (annotation properties)

dsml4ptm:ICFStandard rdfs:label “ICF Standard”.

dsml4ptm:ICFStandard rdfs:comment “This concept describes…”.

//creation of the new instance in the palette Ontology

po:ICFStandard rdf:type po:PaletteElement .

//association of label to the new instance

po:ICFStandard rdfs:label "ICF Standard" .

//association of the instance with the related modelling construct

po:ICFStandard po:paletteConstructIsRelatedToModellingConstruct dsml4ptm:ICFStandard .

//association of the new instance with the instance that related with the parent-class of the new class

po:ICFStandard po:paletteConstructHasParentPaletteConstruct po:DataDocument .

//association of the new instance with the graphical notation palette thumbnail to be shown in the

palette

po:ICFStandard po:paletteConstructHasPaletteThumbnail

"gnICFStandardForPalette.png"^^xsd:string .

//association of the new instance with the graphical notation model image to be shown in the model

po:ICFStandard po:paletteConstructHasModelImage "gnICFStandardForCanvas.png"^^xsd:string .

//association of the new instance with the witdth of the graphical notation to be shown in the model

po:ICFStandard po:paletteConstructHasWidth “70”^^xsd:integer .

//association of the new instance with the height of the graphical notation to be shown in the model

po:ICFStandard po:paletteConstructHasHeight “100”^^xsd:integer .

//association of the new instance with the palette category

po:InstanceOfNewClass po:paletteConstructIsGroupedInPaletteCategory lo:PaletteCategory .

//make the palette thumbnail visible in the palette

po:InstanceOfNewClass po:paletteConstructIsHiddenFromPalette “false”^^xsd:boolean .

}

Table 36. Instance of SPARQL Rule 2

246

An additional requirement has to be accommodated: the ICF standard document must

include the date and time of when it is created. Hence, the language engineer enters a new

datatype property to the class dsml4ptm:ICFStandard with the in-built datatype xsd:DateTime.

For this the SPARQL Rule 4 is instantiated (see Table 37). The rule instance creates a new

datatype property dsml4ptm:ICFStandardHasTimeStamp with the class

dsml4ptm:ICFStandard as domain and the xsd:DateTime as range.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

INSERT DATA {

//creation of the new datatype property “hasTimeStamp”

dsml4ptm:ICFStandardHasTimeStamp rdf:type rdf:Property .

dsml4ptm:ICFStandardHasTimeStamp rdfs:label “ICF Standard is assigned at” .

dsml4ptm:ICFStandardHasTimeStamp rdfs:domain dsml4ptm:ICFStandard .

dsml4ptm:ICFStandardHasTimeStamp rdfs:range xsd:dateTime .

}

Table 37. Instance of SPARQL Rule 4

247

The cost reimbursement for each patient’s case must include the patient’s disability

specifications, which must be conform to the ICF Standard. In response, the language engineer

is required to:

- Conceptualises the new class dsml4ptm:ICFStandard as part of the class

dsml4ptm:KoGuDataObject. This conceptualisation allows modelling where a patient’s

case cost reimbursement is linked to a document containing the patient’s case ICF

specifications. For this, SPARQL Rule 3b is instantiated (see Table 39). The rule instance

creates the bridging connector isPartOf (object property), which points to the class

dsml4ptm:KoGuDataObject. Once instantiated in a model, the bridging connector will then

allow navigating between instances dsml4ptm:ICFStandard and

dsml4ptm:KoGuDataObject.

- Specify the modelling element dsml4ptm:ICFStandard with concepts of the already

existing ICF Ontology. The latter reflects the class hierarchy of the whole ICF Standard

and is issued and maintained by the National Centre for Biomedical Ontology (2012).

Therefore, the ICF Ontology extends our Domain Ontology, which allows the class

dsml4ptm:ICFStandard to be mapped with the concepts of the ICF Ontology. The language

engineer creates four semantic mappings (object properties), which point to the four ICF

main categories: icf:BodyFunction, icf:ActivitiesAndParticipation,

icf:EnvironmentalFactors, and icf:BodyStructures. For this, SPARQL Rule 3a is

instantiated (see Table 39).

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

INSERT DATA {

//creation of the new object property “isPartOf” (bridging connector)

dsml4ptm:isPartOfKoGuDO rdf:type rdf:Property .

dsml4ptm:isPartOfKoGuDO rdfs:domain dsml4ptm:ICFStandard .

dsml4ptm:isPartOfKoGuDO rdfs:range dsml4ptm:KoGuDataObject .

dsml4ptm:isPartOfKoGuDO rdfs:subPropertyOf lo:hasBridgingConcept .

}

Table 38. Instance of SPARQL Rule 3b

248

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX icf: <http://who.int/icf#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT DATA {

//creation of the new object properties for the mapping with domain ontology concepts (semantic

mappings)

dsml4ptm:isMappedWithBodyFunction rdf:type rdf:Property .

dsml4ptm:isMappedWithBodyFunction rdfs:domain dsml4ptm:ICFStandard .

dsml4ptm:isMappedWithBodyFunction rdfs:range icf:BodyFunction .

dsml4ptm:isMappedWithBodyFunction rdfs:subPropertyOf lo:isMappedWithDOConcept .

dsml4ptm:isMappedWithActivityAndParticipation rdf:type rdf:Property.

dsml4ptm:isMappedWithActivityAndParticipation rdfs:domain dsml4ptm:ICFStandard .

dsml4ptm:isMappedWithActivityAndParticipation rdfs:range icf:ActivitiesAndParticipation .

dsml4ptm:isMappedWithActivityAndParticipation rdfs:subPropertyOf

lo:isMappedWithDOConcept .

dsml4ptm:isMappedWithEnvironmentalFactors rdf:type rdf:Property .

dsml4ptm:isMappedWithEnvironmentalFactors rdfs:domain dsml4ptm:ICFStandard .

dsml4ptm:isMappedWithEnvironmentalFactors rdfs:range icf:EnvironmentalFactors .

dsml4ptm:isMappedWithEnvironmentalFactors rdfs:subPropertyOf lo:

lo:isMappedWithDOConcept.

dsml4ptm:isMappedWithBodyStructures rdf:type rdf:Property .

dsml4ptm:isMappedWithBodyStructures rdfs:domain dsml4ptm:ICFStandard .

dsml4ptm:isMappedWithBodyStructures rdfs:range icf:BodyStructures.

dsml4ptm:isMappedWithBodyStructure rdfs:subPropertyOf lo:isMappedWithDOConcept .

}

Table 39. Instance of SPARQL Rule 3a

249

Finally, the language engineer is requested to accommodate the additional requirement of

assigning a performance level to each of the above-mentioned ICF categories. Therefore, the

class icf:Qualifier of the ICF Ontology is specified by creating a new class icf:Performance.

For this, the SPARQL Rule 4 is instantiated (see Table 40). This rule instance creates the new

concept in the Domain Ontology as a sub-class of the existing class icf:Qualifier. In a later

stage the icf:Performance can be further specified with levels such as no difficulty, mild

difficulty, moderate difficulty, severe difficulty, complete difficulty, not specified and not

applicable.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX icf: <http://who.int/icf#>

INSERT DATA {

// creation of new domain ontology concept icf:Performance

icf:Performance rdf:type rdfs:Class .

icf:Performance rdf:label “ICF Qualifier Performance” .

icf:Performance rdfs:subClassOf icf:ICFQualifier .

}

Table 40. Instance of SPARQL Rule 5

250

In result, the five presented SPARQL rule instances lead to a new adapted version of the

DSML. The new conceptualisation is shown in Figure 117.

Figure 117. Results of instantiation of SPARQL rules 2 to 5

251

5.3.4.3 Rules 6 and 7: Delete Modelling Constructs and Properties

The semantic rules 6 and 7 aim to support the deletion of modelling constructs, attributes and

relations from an abstract syntax. An informal semantic rule is presented for deleting the

modelling constructs, which also includes property deletion and one specifically for deleting

properties. Then, the informal rules are transformed into SPARQL rules 6 and 7 respectively

and finally they are instantiated.

5.3.4.3.1 Informal Semantic Rule 6 to Delete Modelling Constructs

The informal semantic rule for deleting a modelling construct deletes classes and their

annotations, object and datatype properties from the Modelling Language Ontology. Also, the

instances associated to the modelling constructs and the properties of the instance (i.e. label,

graphical notations, object and datatype properties) are deleted from the Palette Ontology. By

doing so, we ensure consistency of knowledge between the Modelling Language Ontology and

the Palette Ontology, i.e. between the abstract syntax and the notation.

This rule supports Operator 3: Delete sub-class.

5.3.4.3.2 Informal Semantic Rules 7 to Delete Properties

In order to delete only the properties of a modelling construct, the informal semantic rule 7 is

proposed. This rule allows deleting semantic mappings, bridging connectors and datatype

properties of classes reflecting modelling constructs, which reside in the Modelling Language

Ontology. In contrast to rule 6, rule 7 only affects the Modelling Language Ontology because

the properties deleted by rule 7 only reflect aspects of the abstract syntax.

This rule supports Operator 6: Delete relation and Operator 9: Delete Attribute.

5.3.4.3.3 SPARQL Rules 6 to Delete Modelling Constructs

The informal semantic rule 6 is transformed into SPARQL Rule 6 and shown in Table 41. The

DELETE WHERE statement is used to delete all the triples that have both the class

lo:ModellingConstructToDelete and the related palette instance

po:PaletteElementInstanceToDelete as subjects. This statement allows deleting not only the

the class and instance, but also their properties. Both ModellingConstructToDelete and

PaletteElementInstanceToDelete will be replaced with concrete resources when SPARQL Rule

6 is instantiated.

PREFIX lo: < http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

DELETE WHERE {

lo:ModellingCosntructToDelete ?predicate ?object .

po:PaletteElementInstanceToDelete ?predicate ?object .

}

Table 41. SPARQL Rule 6 – Delete modelling construct

252

5.3.4.3.4 SPARQL Rules 7 to Delete Properties

The informal semantic rule 7 is transformed into SPARQL Rule 7 and shown in Table 42. The

DELETE WHERE statement is used to delete all the triples that have PropertyToDelete as their

subject. PropertyToDelete are all object properties or datatype properties that are selected to

be removed. The statement deletes the property and any values. The property

lo:PropertyToDelete will be replaced with a concrete resource when instantiating SPARQL

Rule 7.

An alternative to the above SPARQL Rule 7 is presented in Table 43. However, the one in

Table 42 is preferred as it requires less lines of specification for the same result.

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

DELETE WHERE {

lo:PropertyToDelete ?predicate ?object .

}

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

DELETE DATA

{

lo:PropertyToDelete rdf:type rdf:Property .

lo:PropertyToDelete rdfs:domain lo:SourceModellingConstruct .

lo:PropertyToDelete rdfs:range lo:TargetModellingCosntruct .

}

Table 42. SPARQL Rule 7 – Delete property

Table 43. Alternative to SPARQL Rule 7

253

5.3.4.3.5 Instantiation of SPARQL Rules 6 and 7

In order to instantiate SPARQL rules 6 and 7 to delete a resource, the same use case introduced

in Sub-section 5.3.4.2.9 is considered. In particular, we build upon the results of the modelling

language extension shown in Figure 117.

We assume that the language engineer deletes the class dsml4ptm:ICFStandard. For this,

SPARQL Rule 6 is instantiated and shown in Table 44. In result, the class, all its properties,

and the related instance po:ICFStandard (including the properties associated to the instance)

are removed from the DSML.

Alternatively, if the language engineer had to delete the property

dsml4ptm:ICFStandardIsPartOfKoGuDataObject, the SPARQL rule instance in Table 45

would be instantiated. That means, only the bridging connector between

“dsml4ptm:ICFStandard” and “dsml4ptm:KoguDataObject” would be deleted.

The results from the execution of the two rule instances can be found in Appendix D:

Validation SPARQL Rules, folder D2.

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

DELETE WHERE {

dsml4ptm:ICFStandard ?predicate ?object .

po:ICFStandard ?predicate ?object .

}

PREFIX dsml4ptm: < http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

DELETE WHERE {

dsml4ptm:ICFStandardIsPartOfKoGuDataObject ?predicate ?object .

}

Table 44. An instance of SPARQL Rule 6

Table 45. An instance of SPARQL Rule 7

254

5.3.4.4 Rules 8 to 11: Update Modelling Constructs and Properties

The semantic rules from 8 to 11 aim to update modelling constructs and properties. Updating

a modelling construct may consist of changing annotation properties such as label, comment,

and graphical notations. Updates may also apply to object and datatype properties, where not

only labels are changed but also the range of both datatype and object properties. The name of

a class or property refers to a label, which is specified with the property rdfs:label.

An update of the range of datatype properties includes changing value types to concrete

values. Moreover, the language engineer may want to hide certain modelling constructs, which

can be done by changing the value of the datatype property

“po:paletteConstructIsHiddenFromPalette”.

An update of the range of object properties includes changing the semantic concepts for the

given semantic mappings or changing the bridging concept for the given bridging connectors.

An update of a modelling construct and properties is performed by first deleting the

resource and then by inserting a new one.

In the following, three informal semantic rules are first described: for updating a modelling

construct, datatype properties and object properties, respectively. Then the informal rules are

transformed into SPARQL and finally instantiated.

5.3.4.4.1 Informal Semantic Rule 8 to Update Modelling Constructs

The informal rule to update a modelling constructs consists of first deleting resources and then

inserting new ones. The affected resources are the following:

- The annotation properties of the class (ModellingConstructToUpdate) such as label and

comment from in the Modelling Language Ontology.

- The instance (PaletteElementInstanceToUpdate) in the Palette Ontology that is related

to ModellingConstructToUpdate.

- Labels and values of the of the graphical notations for the palette and the model

(nameOfPaletteThumbnail and nameOfModelImage), which also reside in the Palette

Ontology.

This rule supports Operator 2: Update class.

5.3.4.4.2 Informal Semantic Rule 9 to Update Object Properties

This informal rule deletes and insert labels and ranges assigned to the object properties of a

modelling construct. The rule only affects the Modelling Language Ontology.

This rule supports Operator 5: Update relation.

5.3.4.4.3 Informal Rule 10 and 11 to Update Datatype Properties

The informal rule 10 deletes and inserts labels, value types and concrete values assigned to the

datatype properties of a modelling construct. This rule affects the Modelling Language

Ontology alone.

The informal rule 11 deletes and inserts the Boolean value of the datatype property

po:paletteConstructIsHiddenFromPalette. Updating the property value to true means hiding

the graphical notation from the palette.

This rule supports Operator 10: Update attribute.

255

5.3.4.4.4 SPARQL Rule 8 to Update Modelling Constructs

The informal semantic rule 8 is transformed into SPARQL Rule 8, which is shown in Table

46. The upper part of Table 46 shows the DELETE DATA statement while the bottom of Table

46 shows the INSERT DATA statement. Both statements are executed in sequence and they

both share the same prefixes. The modelling construct with its property values will be replaced

with concrete resources when SPARQL Rule 8 is instantiated.

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

DELETE DATA{

lo:ModellingConstructToUpdate rdfs:label “name of class to delete” .

lo:ModellingConstructToUpdate rdfs:comment “description to delete” .

po:PaletteElementInstanceToUpdate rdfs:label “name of instance to delete” .

po:PaletteElementInstanceToUpdate po:paletteConstructHasPaletteThumbnail “name graphical

notation to delete” .

po:PaletteElementInstanceToUpdate po:paletteConstructHasModelImage “name graphical notation

to delete” .

}

INSERT DATA{

lo:ModellingConstructToUpdate rdfs:label “new name of class” .

lo:ModellingConstructToUpdate rdfs:comment “new description” .

po:PaletteElementInstanceToUpdate rdfs:label “new name of instance” .

po:PaletteElementInstanceToUpdate po:paletteConstructHasPaletteThumbnail “new name of the

selected graphical notation” .

po:PaletteElementInstanceToUpdate po:paletteConstructHasModelImage “new name of the

selected graphical notation” .

}

Table 46. SPARQL Rule 8 – Update modelling construct

256

5.3.4.4.5 SPARQL Rule 9 to Update Object Properties

The informal semantic rule 9 is transformed into SPARQL Rule 9 and shown in Table 57. Like

for SPARQL 8, the DELETE DATA statement is followed by the INSERT DATA statement.

The object resource of the properties is either in the Modelling Language Ontology or in the

Domain Ontology (see lo:ConceptToReplace and do:ConceptToReplace in Table 57). All

object resources are first deleted and then new values are inserted. All the object resources are

replaced with concrete resources when the SPARQL Rule 9 is instantiated.

5.3.4.4.6 SPARQL Rule 10 to Update Datatype Properties

The informal semantic rule 10 is transformed into SPARQL Rule 10 to update and datatype

the property. The rule is described in Table 48. The DELETE DATA statement is followed by

the INSERT DATA statement. The object resources to be replaced are label and value type.

Thus, the object resources of the datatype properties are first deleted, and then new ones are

inserted in the Modelling Language Ontology. All the object resources will be replaced with

concrete resources when instantiating SPARQL Rule 10.

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX do: <http://fhnw.ch/modellingEnvironment/DomainOntology#>

DELETE DATA{

lo:ObjectPropertyToUpdate rdfs:label “name to replace” .

lo:ObjectPropertyToUpdate rdfs:SubPropertyOf property for the SemanticMapping or

BridgingConnector .

// lo:ConceptToReplace or do:ConceptToReplace

lo:ObjectPropertyToUpdate rdfs:range lo:ConceptToReplace .

}

INSERT DATA{

lo:ObjectPropertyToUpdate rdfs:label “new name” .

lo:ObjectPropertyToUpdate rdfs:SubPropertyOf property for the SemanticMapping or

BridgingConnector .

// lo:ConceptToReplace or do:ConceptToReplace

lo:ObjectPropertyToUpdate rdfs:range lo:NewConcept .

}

Table 47. SPARQL Rule 9 – Update object property

257

Table 49 contains the SPARQL Rule 11, which updates the Boolean value of

po:paletteConstructIsHiddenFromPalette from false to true. This rule only affect the Palette

Ontology.

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE DATA{

lo:DataTypePropertyToUpdate rdfs:label “name to replace” .

// “value to replace”^^datatype to replace or datatype to replace

lo:DataTypePropertyToUpdate rdfs:range xsd:“value type to replace” .

}

INSERT DATA{

lo:DataTypePropertyToUpdate rdfs:label “new name” .

// “value to replace”^^datatype to replace or datatype to replace

lo:DataTypePropertyToUpdate rdfs:range xsd:“new value type” .

}

Table 48. SPARQL Rule 10 – Update datatype property

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE DATA{

po:PaletteElementInstanceToUpdate po:paletteConstructIsHiddenFromPalette "false"^^xsd:boolean .

}

INSERT DATA{

po:PaletteElementInstanceToUpdate po:paletteConstructIsHiddenFromPalette "true"^^xsd:boolean .

}

Table 49. SPARQL Rule 11 – Update the datatype property to hide a modelling construct

258

5.3.4.4.7 Instances of SPARQL Rules 8 to 11

The instantiation of SPARQL rules from 8 to 11 also refer to the use case introduced in Sub-

section 5.3.4.2.9. Also in this case we build upon the results of the modelling language

extension shown in Figure 117.

In the following, one instance of each of the above-introduced SPARQL rules is presented.

To instantiate SPARQL Rule 8, we assume that the language engineer changes the property

values of the modelling construct dsml4ptm:ICFStandard. The rule instance supporting such

changes are reported in Table 50. The first statement deletes the old property values whereas

the second one inserts the new property values that are entered by the language engineer.

PREFIX po: < http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

DELETE DATA {

dsml4ptm:ICFStandard rdfs:label “ICF Standard Modelling Construct” .

dsml4ptm:ICFStandard rdfs:comment “The ICF Standard describes…” .

po:ICFStandard rdfs:label “ICF Standard” .

po:ICFStandard po:paletteConstructHasPaletteThumbnail “ICFStandardForPalette.png” .

po:ICFStandard po:paletteConstructHasModelImage “ICFStandardForModel” .

}

INSERT DATA {

dsml4ptm:ICFStandard rdfs:label “ICF International Standard” .

dsml4ptm:ICFStandard rdfs:comment “The ICF Standard describes…” .

po:ICFStandard rdfs:label “ICF International Standard” .

po:ICFStandard po:paletteConstructHasPaletteThumbnail “NewICFStandardForPalette.png” .

po:ICFStandard po:paletteConstructHasModelImage “NewICFStandardForModel” .

}

Table 50. An instance of SPARQL Rule 8 - update modelling construct

259

To instantiate SPARQL Rule 9, we assume that the language engineer changes the label

and range of the object property dsml4ptm:isPartOf. This object property has the domain

dsml4ptm:ICFStandard and range dsml4ptm:KoGuDataObject. The rule instance that supports

this change is shown in Table 50.

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

DELETE DATA {

dsml4ptm:ICFStandardIsPartOfKoGuDataObject rdfs:label “ICF Standard is part of KoGu Data

Object” .

dsml4ptm:ICFStandardIsPartOfKoGuDataObject rdfs:range dsml4ptm:KoGuDataObject .

dsml4ptm:ICFStandardIsPartOfKoGuDataObject rdfs:SubPropertyOf

lo:elementHasBridgingConcept .

}

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX bpmn:<http://ikm-group.ch/archiMEO/BPMN#>

INSERT DATA {

dsml4ptm:ICFStandardIsPartOfKoGuDataObject rdfs:label “ICF Standard is part of Data Object” .

dsml4ptm:ICFStandardIsPartOfKoGuDataObject rdfs:range bpmn:DataObject .

dsml4ptm:ICFStandardIsPartOfKoGuDataObject rdfs:SubPropertyOf

lo:elementHasBridgingConcept .

}

Table 51. An instance of SPARQL Rule 9 - update object properties

260

To instantiate SPARQL Rule 10, we assume that the language engineer changes the label

and range of the datatype property dsml4ptm:hasTimeStamp. This datatype property has the

domain dsml4ptm:ICFStandard. The rule instantiation supporting the update is reported in

Table 52.

Finally, to instantiate SPARQL Rule 11, we assume that the language engineer hides the

graphical notation ICF Standard from the palette. The rule instance that supports this update is

reported in Table 53.

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX bpmn:<http://ikm-group.ch/archiMEO/BPMN#>

DELETE DATA {

dsml4ptm:hasTimeStamp rdfs:label “ICF Standard has Timestamp” .

dsml4ptm:hasTimeStamp rdfs:range xsd:dateTime .

}

INSERT DATA {

dsml4ptm:hasTimeStamp rdfs:label “ICF Standard Document has Day of Creation” .

dsml4ptm:hasTimeStamp rdfs:range xsd:date .

}

Table 52. An instance of SPARQL Rule 10 – update datatype properties

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

DELETE DATA{

po:ICFStandard po:paletteConstructIsHiddenFromPalette “false”^^xsd:Boolean .

}

INSERT DATA{

po:ICFStandard po:paletteConstructIsHiddenFromPalette “true”^^xsd:Boolean .

}

Table 53. An instance of SPARQL 11 - hide a modelling construct

261

5.4 Concluding Summary

In this chapter a suggestion for an agile and ontology aided-meta-modelling approach is

proposed. An agile meta-modelling was first proposed, which integrates the language

engineering and modelling components into one. The integrated component allows the quick

interleave of language engineering, modelling and evaluation activities. Therefore, the

approach promotes the tight cooperation between the language engineer and the domain expert

whilst simultaneously adaptations to a DSML can be accommodated on-the-fly. For the

language adaptations, ten operators were derived which are applied in the integrated

component. The approach has been further elaborated on by grounding modelling constructs

with ontologies. Ontologies make the modelling language machine-interpretable. Thus, models

built with such modelling languages have the benefit of being automated and with clear

semantics. A new ontology-aided approach was conceived to support the agile meta-modelling.

In particular, the ontology-aided approach includes an ontology-based meta-model architecture

as well as eleven semantic rules. The semantic rules aim to preserve the alignment between the

human-interpretable representation of a modelling language and its machine-interpretable

representation. Rules were implemented in SPARQL and syntactically and semantically

validated.

The agile and ontology-aided meta-modelling approach was published in (Laurenzi,

Hinkelmann, Izzo, et al., 2018; Laurenzi, Hinkelmann, & van der Merwe, 2018) and answers

the third research question.

262

6. THE AGILE AND ONTOLOGY-AIDED META-

MODELLING ENVIRONMENT (AOAME)

This chapter describes the Agile and Ontology-Aided Meta-modelling Environment

(AOAME). AOAME is the prototypical implementation of the agile and ontology-aided meta-

modelling approach described in Chapter 5. The chapter addresses the fourth research question:

- (RQ4) How can the agile approach for domain-specific adaptations that preserves

seamless consistency between the graphical and the machine-interpretable

representation be automated?

The chapter is structured as follows: Section 6.1 provides an overview of the main

components of the AOAME architecture and their interactions. The section continues by

motivating and presenting the technology adopted for the front-end and back-end solutions.

The section ends with the description of the Model-View-Controller design pattern, which was

followed to conceive the architecture of the AOAME. Next, Section 6.2 introduces the Palette,

263

which displays the graphical notation of a modelling language. The palette provides access to

various features that allow performing the domain-specific adaptations of modelling languages

on-the-fly. Such features are described in Section 6.3 and ensure the continuous propagation

of changes from the graphical representation of a modelling language to the ontology.

6.1 The AOAME Architecture

The AOAME architecture consists of three main components (see Figure 118):

- The triplestore contains the Modelling Language Ontology, the Palette Ontology and

the Domain Ontology (Sub-section 5.3.2). The Domain Ontology can be extended with

external ontologies or graphs. palette elements or connectors from the Palette Ontology

have relationships with classes in the Modelling Language Ontology, which in turn

have relationships with the classes in the Domain Ontology (see arrows among the three

ontologies in Figure 118). The three ontology files can be found in Appendix E:

Prototype Documentation, folder E4.

- The Graphical User Interface (GUI) is composed of the following two areas:

o The palette (left-hand side of the GUI) in which the graphical notations of an

ontology-based meta-model are displayed, and it enables the domain-specific

adaptations;

o The model editor (right-hand side of the GUI) in which models can be designed

by selecting the graphical notations from the Palette. This research work focuses

on the design or adaptation of modelling languages and DSMLs, therefore, the

palette is further elaborated while the Model Editor is left to future work.

The source code for the GUI can be found in Appendix E: Prototype

Documentation, folder E2.

- The Web service implements the logic to achieve the following two objectives:

o The propagation of the ontologies (including the graphical notations) from the

triplestore to the GUI (see blue arrows in Figure 118). The propagation allows

visualizing the ontology-based meta-model and notation in a human-

interpretable representation in the GUI;

o The propagation of the domain-specific adaptations (or changes) from the GUI

to the triplestore (see red arrows in Figure 118). The propagation is supported

by the semantic rules introduced in Sub-section 5.3.3. The instances of the

semantic rules are dynamically generated to transfer the language adaptations

from the human- to the machine-interpretable representation.

- The Web service processes all the incoming and outgoing requests and manipulates

data between the GUI and the triplestore. The code for the Web service can be found in

Appendix E: Prototype Documentation, folder E3.

The following two sub-sections describe the technology solutions for the triplestore and the

GUI.

264

Figure 118. Components of the AOAME architecture

265

6.1.1 Technological Solution for the Triplestore

A triplestore (or triple store) is a purpose-built databases for the storage and retrieval of data

as statements in the form of triples: subject-predicate-object (Allemang & Hendler, 2011). The

supported ontology languages are commonly the Resource Description Framework (RDF), the

RDF Schema RDF(S) and the Web Ontology Language (OWL). Triplestores also support the

manipulation of ontologies, which is done through an inference engine. The latter is typically

incorporated in a triplestore and offers reasoning services.

There exist various kinds of triplestores offered by different software vendors. Databases

that store triples with a low expressive ontology language such as RDF have recently gained

momentum, which led to create new sort of lightweight triplestores called graph databases or

RDF databases. Nevertheless, triplestores are still commonly used and still more appropriate

for dealing higher expressive ontologies such as RDF(S) and OWL. As already stated in Sub-

section 5.3.2.2, the ontology language chosen for this work is RDF(S), therefore a triplestore

is more suitable than an RDF database. The criteria for selecting a triplestore were the

following:

- It should support the language ontology of RDF(S) to allow the instance of instance

abstraction representation (a class being an instance simultaneously);

- It should support the execution of SPARQL rules introduced in Section 5.3.3. As a

result, the chosen triplestore has to provide the SPARQL 1.1 protocols for update and

for query.

- It should provide a user interface for server monitoring, dataset management (i.e.

adding and removing ontologies) and query testing. The user interface with such

services simplifies the test of the executed SPARQL rules from the user interface.

- It should be accessed and managed via Application Programming Interfaces (APIs).

- It should include an inference engine for RDFS entailments (W3C, 2004a). Although

the inference support is out of scope in this research work, it is relevant for future

research work. In particular, reasoning services are planned to be applied on ontology

instances that reflect models built in the Model Editor area of AOAME.

- It should facilitate both the transformation between different data formats and the

manipulation of data for the smooth propagation of knowledge between the GUI and

the triplestore. The transformations are from JavaScript Object Notation (JSON) objects

to the Turtle, the terse RDF Triple Language (“.ttl”) files and vice-versa.

- It should be open source given the scientific purpose and to avoid possible software

vendor restrictions.

The chosen triplestore Apache Jena Fuseki59 fulfils all the listed requirements.

59 https://jena.apache.org/documentation/fuseki2/index.html

266

6.1.2 Technological Solution for the Graphical User Interface

The GUI is developed in Angular60, which is an open-source framework embracing the Model-

View-Controller (MVC) design pattern for web applications development (Leff & Rayfield,

2001). The MVC design pattern fosters the re-usability of developed components by adopting

the separation of concerns principle by distinguishing among the following three

interconnected parts:

- The model, which contains the objects that represent real-world entities;

- The view, which is what the user sees and interacts with. Requests are sent from the

view and then the view shows the requested objects presented in the model;

- The controller, which implements the logic of the web application. First, it receives

requests from the view. Then, the controller instructs the model to modify the

containing objects or to prepare any information required by the view. In turns, the

controller sends the requested information to the view to be shown to the user.

Angular has additional advantages in the context of the AOAME architecture:

- It ensures a rich and responsive experience to the user by providing data binding

capability to HTML;

- It is maintained by Google and is an Opensource platform, which leads to an increasing

supporting community of experts and users;

- It supports asynchronous calls, which allows multiple client requests simultaneously.

Although it is not relevant for the current implementation of the artefact, it is relevant

for the future evolution of AOAME.

- It uses Node.js in the backend, which simplifies the JQuery calls between the GUI and

the Web service in AOAME.

- It is integrated with effective frameworks such as NativeScript61, which allows the

creation of native apps in iOS and Android. That means, the code is written once and

works in two different operating systems.

- Since it is a framework, it includes specific components by default, which facilitate the

development. Therefore, the use of third-party libraries can be avoided, which

otherwise could arise incompatibility issues. For example, Angular contains the

“Modal” component (included in the “Material design components”), which supports

the creation of the GUI in AOAME.

60 https://angular.io/
61 https://www.nativescript.org/

267

6.1.3 The Model-View-Controller Design Pattern for the AOAME

Architecture

The AOAME architecture follows the Model-View-Controller (MVC) design pattern (see the

three big bubbles in light yellow, blue and green in Figure 119). Also the GUI follows the MVC

design pattern (see the three black bubbles in the bottom left corner of Figure 119).

The view part of the GUI was implemented in Angular (see the view black bubble Figure

119) and is responsible to interact with the user by displaying (1) the graphical notations of a

modelling language, (2) pop-up windows displaying knowledge of modelling constructs and

(3) fields to enable the on-the-fly domain specific adaptations. Once the language engineer

works in the GUI (e.g. extend a modelling element, creating a new relation, or edit an existing

modelling relation), the view part sends the event to the controller part (see the controller black

bubble in Figure 119), which takes it up and performs three actions:

- Manipulates the model part in Angular, which contains JSON objects that reflect the

ontologies stored in the triplestore.

- Sends the request to the Web service (which is the controller of AOAME) through the

use of dedicated services. The request is RESTFul and performed via the HTTP

protocol.

- Displays a new view in the GUI.

The two-way data binding between the controller part and model part enforces that each

action received by the view is consistently reported in the model. The same applies between

the view and the model of Angular, where each view displayed in the GUI is consistent with

the model and its objects.

When the controller part of AOAME (see the light blue bubble in Figure 119) receives the

requests containing the JSON objects, they are transformed into Java objects by the methods

implemented in the Web Service. Next, the Java objects are manipulated in the Web service

for the automatic generation of SPARQL rules (see Sub-section 5.3.3). The rules are then sent

to the triplestore via HTTP methods, through which ontologies (i.e. the model part of AOAME,

see the green bubble in Figure 119) get modified. The interaction between the Web service and

the triplestore is supported by the Jena Application Programming Interfaces (APIs), which

provide the needed interfaces for the communication. Further, the transformation of Java

objects into an ontology format is implemented in the Web Service.

The logic in the Web service is also implemented to fetch the ontologies from the

triplestore, which occurs as soon as the prototype starts. Therefore, the logic allows the initial

propagation of the ontologies to the palette in the GUI. The model consisting of Java objects

at the Web service is transformed into a model of JSON objects and is sent to the view part of

AOAME (the big light yellow on the bottom left corner of Figure 119) over the http protocol.

Then, dedicated services in the view part of AOAME, notify the controller part of Angular (see

controller black bubble in Figure 119) such that it can generate a new view for the user as well

as update the JSON objects in the model part of Angular.

The presented implemented architecture ensures the seamless alignment between the

human- and the machine-interpretable representation of a modelling language, while domain-

specific adaptations are performed on-the-fly on a modelling language.

268

Figure 119. Model-View-Controller (MVC) design pattern in AOAME

269

6.2 The Palette

The palette has the purpose of displaying graphical notations of a modelling language that can

be used for modelling. The logic for displaying the graphical notations is implemented in the

Web Service. The visualisation of the graphical notations depends on the interaction between

the Web service and both the Fuseki Triplestore and the GUI. Such interaction is made possible

by Java methods implemented in the Web Service. In this section, demo excerpts are introduced

to provide an understanding of the method components. Moreover, the correspondent names

of endpoints are provided along with the text, which allows the quick identification of the

correspondent Java method in the Web Service. The complete set of methods can be found in

the Java class ModellingEnvironment.java in the package ch.fhnw.modeller.webservice (see

Appendix E: Prototype Documentation, folder E3).

The following two sub-sections describe the mechanisms of the palette and its main

implemented features. The latter allows the ontology-based meta-model to be adapted on-the-

fly.

6.2.1 The Three-Step Approach to Populate the Palette

For the palette to be populated this research conceived the following sequential three-step

approach:

(1) Upload a set of ontologies;

(2) Select a modelling language and a related modelling view;

(3) Display graphical notations of the chosen modelling view.

The selection of both modelling language and modelling view is a useful feature that

contributes to the agile approach. The feature allows the language engineer to quickly select

the modelling languages to adapt and to switch among the different modelling views.

Figure 120 shows the three-step approach in the form of screenshots to underpin the

following description:

1. Firstly, a set of ontologies should be uploaded on the Fuseki Triplestore.

2. Secondly, a modelling language can be selected from a dropdown list on the top of

the palette. Once one modelling language is selected, the related modelling view(s)

appear in the second dropdown list for selection.

3. The selection of the modelling view triggers the population of the palette with the

graphical notations that belong to the chosen modelling view.

As an example, the rightmost screenshot of Figure 120 shows the graphical notations that

belong to the process modelling view of the BPaaS extension of BPMN in Section 4.2. Each

graphical notation is displayed in the category to which it belongs. The example shows seven

categories grouping the graphical notations of the chosen modelling view: Activities,

Connectors, Data, Events, Gateways, Groups and Swimlanes.

The required set of ontologies is further elaborated in Sub-section 6.2.1.1, while the logic

for retrieving and displaying the graphical notations are described in Sub-section 6.2.1.2.

270

6.2.1.1 Required Set of Ontologies

The set of ontologies to be uploaded on the Fuseki Triplestore are the following:

- The Palette Ontology, the Modelling Language Ontology and the Domain Ontology are the

three main ontologies.

- At least one ontology corresponding to the modelling language that it sought to be

extended, e.g. BPMN ontology, CMMN ontology or ArchiMEO (Hinkelmann et al., 2013).

If more than one modelling language is uploaded, the language engineer can integrate

elements from the different languages or create bridging connectors between elements of

the two languages.

- One or more domain ontologies to be used for the semantic mapping. The Domain

Ontology enables the language engineer to create semantic mappings from the modelling

elements to the domain ontology concepts. Additional domain ontologies that can extend

the Domain Ontology and can be used for semantic mapping. This allows the reuse of

already existing ontologies, e.g. biomedical ontology (National Center for Biomedical

Ontology, 2012).

The set of ontologies is conceived to be prepared before it is uploaded. Additionally, all the

graphical notations to be displayed in the Model Editor and the palette are stored in the Angular

web application. The graphical notations can then be selected on-the-fly to be associated to

new or existing modelling constructs, and subsequently they can be used in the Model Editor

for the creation of models.

Future technological improvements will focus on the simplification of the uploading of new

graphical notations. The idea is to allow a user to upload an image or picture directly on a cloud

service to make it available as a new graphical notation to be chosen. The CSS implemented in

the GUI already foresees the automatic re-size of the images. Therefore, additional work on re-

sizing an image to be displayed in the palette is avoided.

Figure 120. Three steps to populate the Palette

271

6.2.1.2 Logic for Retrieving and Displaying Graphical Notations in the Palette

The logic of retrieving and displaying the graphical notations in the palette is distributed

between the Web service and the Angular Web Application, which implements the GUI.

According to the selected modelling language and view, a set of categories is identified, which

is then matched with the graphical notations to display. While the knowledge retrieval is

performed by queries that are dynamically generated in the Web Service, the mapping is

implemented in the Angular Web Application62. In the following, the implemented logic is

described in detail.

The Web service contains four endpoints: (1) getModellingLanguage, (2)

getModellingView, (3) getPaletteCategories and (4) getPaletteElement. Each endpoint

implements a method that allows the automatic generation of SPARQL SELECT63 queries.

The correspondence between the generated semantic queries and the affected classes in the

ontology is graphically represented in Figure 121.

1. From the first endpoint getModellingLanguage a semantic query is generated to retrieve

all instances of the class lo:ModellingLanguages, which contains the modelling

languages that are available in the ontology.

2. Subsequently, from the endpoint getModellingView the generated semantic query

retrieves those instances of the class lo:ModellingView that are part of the selected

modelling language. Figure 122 shows two snippets of the Java methods implemented

in the two endpoints. Note that in the second snippet (getModellingView), the query

includes the parameter langId, which intends to contain the id of the selected modelling

language.

62 The source code for the matchmaking can be found under the path folder src\app\palette-area\palette-

area.component.html of the Angular Web Application from row 15 to row 29.
63 The source code for the endpoints can be found in the Java class “ModellingEnvironment.java” of the

package “ch.fhnw.modeller.webservice” of the Web service from row 49 to row 443.

Figure 121. Correspondence between the four endpoints and the ontology structure

272

3. Next, the third endpoint getPaletteCategories generates a query that retrieves those

instances of the class po:PaletteCategory that are bounded with the chosen modelling

view. The upper part of Figure 123 shows a snippet of the method that generates the

query. The parameter “viewId” represents the id of the chosen modelling view. The

retrieved categories are then used in the Angular Web Application for the mapping with

the graphical notations to display. The latter are retrieved in the fourth endpoint

getPaletteElement.

4. Finally, the getPaletteElement endpoint implements the method that generates the

semantic query to retrieve all instances of the two classes po:PaletteConnector and

po:PaletteElement (in the Palette Ontology). The instances contain all the required

knowledge for displaying the graphical notations. An excerpt of the method is shown

in the lower part of Figure 123. Note that the method does not contain any id as the

query is not bounded with the retrieved category. In fact, the number of categories and

categories themselves may change each time a different modelling view is selected.

Incorporating this logic in the query is not ideal as the query gets unnecessarily

complicated. Instead, the logic of the mapping is applied in the front-end web

application, where only the palette elements and connectors that match with the

previously retrieved categories are displayed.

Figure 122. Snippets of the Java methods that generate SPARQL SELECTS for retrieving (1) modelling

languages and (2) modelling view(s)

273

In order to provide a better understanding of what a dynamically generated query looks like

and what results can produce, the following sub-section describes a query generated by the

fourth endpoint getPaletteElement. The complete list of queries samples covering each of the

introduced endpoints can be found in Appendix E: Prototype Documentation, folder E1.

6.2.1.2.1 An Example of a Dynamically Generated SPARQL SELECT

The upper part of Figure 124 shows an excerpt of the query, which is generated from the fourth

endpoint getPaletteElement. The query was slightly adapted to show the result given a specific

category. Therefore, the mapping between the identified categories and the palette elements is

incorporated in the query in this example. In particular, the change affects the triple shown in

row 13 (see red arrow) of Figure 124, where the generic object variable ?category is replaced

by a concrete instance of the class po:PaletteCategory:

po:Category_Activities4BPMNProcessModellingView.

The generic object variable category serves to group the concepts about activities, which

belong to the process modelling view. In the Palette Ontology, the category is shared by two

modelling views: lo:BPMNProcessModellingView and lo:BPaaSProcessModellingView,

which are the modelling views of BPMN and BPaaS, respectively. Note that the two views are

kept separate as they diverge in some concepts. The elements and properties resulting from the

execution of the query (see bottom of Figure 124) are used to display the graphical notations

in the palette. Consequently, the retrieved information is transformed into JSON objects and

streamed to the Angular web application. The fourth row of Figure 124 shows the properties

of the User Task, which are the following:

- The task label (User Task);

- The belonging class (po:PaletteElement);

- The related modelling construct in the abstract syntax (bpmn:User Task);

Figure 123. Snippets of the Java methods that generate SPARQL SELECTS for retrieving (3) categories and (4)

graphical notations

274

- The value of the datatype property isHiddenFromPalette (“false”^^xsd:Boolean, which

makes the graphical notation visible);

- The belonging category (po:Category_Activity, to group the elements under the

category Activity in the palette);

- The parent of the graphical notation hierarchy (po:Task). It is optional as root concepts

do not have any parents;

- The image to be displayed in the Model Editor (User_Task.png);

- The thumbnail to be displayed in the palette (Thumbnail_User_Task.png);

- The default height of the image for the Model Editor (“70”^^xsd:integer, with pixels

as a unit of measure);

- The default width of the image for the Model Editor (“100”^^xsd:integer, with pixels

as a unit of measure).

Figure 124. Execution of a concrete query generated from the fourth endpoint “getPaletteElement”

275

6.3 AOAME’s Main Features for On-the-Fly Domain-Specific

Adaptations

There are four main features implemented in the palette of AOAME that enable the on-the-fly

domain-specific adaptations of ontology-based meta-models:

- Extending a Modelling Construct: this feature allows for the extension of both the

modelling constructs and properties;

- Editing a Modelling Construct: this feature allows for the editing of both modelling

constructs and properties and for the removal of properties;

- Hiding a Modelling Construct: this feature allows hiding modelling constructs from the

palette;

- Deleting a Modelling Construct: this feature allows for the removal of modelling

constructs.

The functionalities are listed in Figure 125. The four main functionalities are displayed

once the user right-clicks on one of the graphical notations. The palette is implemented to show

the hierarchy of modelling constructs. If an element contains one or more sub-elements, they

are shown in a new tier. The new tier is displayed as soon as the cursor is moved on one

graphical notation. If a modelling construct is extended with a new one, the latter will appear

in the 𝑛 + 1 tier, where 𝑛 is the number of tiers in which the construct being extended is

contained.

Figure 125, for example, shows sub-elements of User Task, which in turn is the sub-element

of Task. The knowledge about the hierarchy is captured in the Palette Ontology by the

isParentOf object property placed between instances of the class Palette Construct. For

example, in Figure 125, User Task is displayed in the second tier of the hierarchy because in

the Palette Construct the instance po:Task is the parent of po:UserTask.

During the implementation of phase, it has been identified the convenience of

distinguishing between the object properties and datatype properties also in the ontology

terminology. Such distinction allowed the creation of methods for the dynamic generation of

Figure 125. Main functionalities in the palette of AOAME

276

SPARQL rules dealing with either object properties or datatype properties. Therefore, although

the RDF(S) is adopted as an ontology language, properties are specified with the OWL

terminology: owl:ObjectProperty and owl:DatatypeProperty. Such specifications do not affect

the knowledge assumption of the adopted ontology language RDF(S), thus the created models

would still benefit from the Closed World Assumption (CWA) and the Unique Names

Assumption (UNA) on models (see Sub-section 5.3.2.2). Also, since both object properties and

datatype properties are sub-properties of rdf:Property, the RDF(S) entailment patterns

regarding properties remain valid, i.e. rdfs5, rdfs6 and rdfs7 (W3C, 2014b).

277

6.3.1 Feature 1: Extending Modelling Constructs

Figure 126 depicts the feature for extending a modelling construct. The view consists of a pop-

up window, which appears after the selection of the extension feature (see red arrow) from the

context menu, e.g. Extend User Task. The pop-up shows fields for and from the ontology-based

meta-model. There are three types of fields:

(a) Non-interactive fields for an informative purpose (see grey boxes in Figure 126),

(b) Interactive fields that allow entering knowledge (see blue boxes in Figure 126),

(c) Interactive fields that lead to a different view (see green box in Figure 126).

In the following, the field types in Figure 126 are detailed.

(a) The non-interactive and informative fields are the following:

- The field to display the name of the construct to be extended,

- The field to display the current tab for extension,

- The field to display the name of the parent class. This field contains the same value

as the field name of the construct to be extended.

(b) The interactive fields that allow entering knowledge are the following:

- The prefix field is a mandatory field and consists of a dropdown list containing the

namespaces of all language ontologies that are imported in the Modelling Language

Ontology. This field generates a SPARQL SELECT of all the existing prefixes in

the Modelling Language Ontology. For instance, in the ontology concept

bpmn:UserTask, the prefix is bpmn and identifies the Business Process

Figure 126. Main view for extending a modelling construct: Creation of the new class and its annotation

properties

278

Management and Notation Ontology, which is imported in the Modelling Language

Ontology.

- The child element (or sub-element) field consists of a text box and allows entering

the name of the new modelling construct. The content of this field is stored as the

rdfs:label of the ontology concept. Filling this field is mandatory.

- The comment field consists of a text box and allows entering the description for the

new modelling construct. The content of this field is stored as the rdfs:commnet of

the ontology concept. Filling this field is mandatory.

- The field for the palette root element consists of a check box to determine whether

the modelling construct should appear in the class hierarchy (i.e. unticked check

box) or in the palette (i.e. ticked check box). The check box is unticked by default.

- The category field consists of a dropdown list and allows selecting the palette

category for the new modelling construct. This field has a dependency on the palette

root element, where the palette category is only considered if the check box is ticked

as the new construct would need to be shown in the palette. This field generates a

SPARQL SELECT of all the existing categories conceptualised for the modelling

view of the current modelling construct. The implemented Java method can be

found in the endpoint /getPaletteCategories of the Web Service.

- The graphical notation field for the palette consists of a dropdown list and allows

selecting the graphical notation for the new construct to be shown by the palette.

The selection of the graphical notation is mandatory.

- The graphical notation field for the Model Editor consists of a dropdown list and

allows selecting the graphical notation for the new construct to be shown in the

Model Editor. The selection of the graphical notation is mandatory.

(c) Among the interactive fields that lead to a different view, the following can be found:

- The integration tab, where the selected modelling construct can be extended with

an existing Modelling Language Ontology concept. That is, the two modelling

constructs are integrated with the subClassOf relation. The field consists of a tab,

which, if clicked, leads to the view depicted in Figure 133.

- The cancel button allows aborting the extension a modelling construct. By clicking

to this button, the user is redirected to the main view of the GUI containing both the

palette and the Model Editor.

- The create a new modelling construct button allows creating a new construct as an

extension of the selected one. The new construct is stored in the triplestore with the

above-entered properties as well as some implicit ones, e.g. the modelling language

and modelling view of belonging. The latter is not explicitly selected by the user

but derived by the chosen modelling language (or modelling view), which occur

right after launching the prototype. All the considered properties are listed in the

SPARQL Rule 2 (INSERT DATA), which is described in Sub-section 5.3.3. The

button leads to generate an instance of SPARQL Rule 2. When the palette is

populated, the Web service implements Java method for the automatic generation

of this SPARQL rule. The method is implemented in the endpoint depicted in Figure

127, where the complete code can be retrieved under the endpoint

/createPaletteElement in the Java class ModellingEnvironment.java of the Web

Service. The two parts of the snippet in Figure 127 correspond to the parts that allow

279

entering knowledge in (1) the Modelling Language Ontology and (2) the Palette

Ontology, respectively.

The button “Create New Modelling Construct” simultaneously leads to a follow-up view.

The new view contains both datatype and object properties to be entered (see Figure 128) and

is elaborated below.

6.3.1.1 View to Deal with Datatype and Object Properties

After clicking the button “Create New Modelling Construct”, a view appears that deals with

the datatype property and the two types of object properties: bridging connector and semantic

mapping. For each of these property types there is a tab with the correspondent name. The first

tab that is shown in the view (see left-hand side of Figure 129) deals the datatype property. The

second- and third-tabs deal with the bridging connectors and the semantic mapping,

respectively. Each tab contains two buttons:

- One button for inserting a new property and leads to a new view:

o insert a new datatype property leads to the view in Figure 129,

o insert a new bridging connector leads to the view in Figure 130,

o insert a new semantic mapping leads to the view in Figure 131.

- One button for aborting the action, which leads to the main view of AOAME (see Figure

125). That is, the newly created modelling construct will not contain its own datatype

and object properties, but will contain:

o annotation properties entered in the view depicted in Figure 126;

o datatype and object properties inherited from the parent class.

Figure 127. Excerpt of the method implemented in the Web service to generate the SPARQL INSERT DATA

280

Figure 128. Adding datatype properties and object properties (i.e. bridging connectors and semantic mappings)

281

6.3.1.2 Creating New Datatype Properties

The right-hand side of Figure 129 shows the view for adding datatype properties. It appears

after clicking to the button “Insert new Datatype Property”. The view foresees the following

four fields:

- The label field allows entering the name for the datatype property.

- The value type field allows selecting a value type. The value type refers to the RDF-

compatible XSD types such as Boolean, Date, DateTime, Decimal, Integer, String.

- The creating datatype property button leads to generate an instance of SPARQL Rule 4.

The java method can be retrieved under the endpoint /createDatatypeProperty in the Java

class ModellingEnvironment.java of the Web Service.

Figure 129. Creating a datatype property

282

6.3.1.3 Creating New Bridging Connectors (Object Properties)

Bridging connectors are in the form of object properties. The right-bottom side of Figure 130

shows the view, which appears after clicking to the button “Insert new Bridging Connector”.

The view foresees the following four fields:

- The label field allows entering the name of the bridging connector.

- The create range field allows selecting a Modelling Language Ontology concept. A search

function is implemented in this field for the quick retrieval of the wanted language ontology

concept. The search function generates a SPARQL SELECT for each entered character.

The query is executed against all the ontology concepts that are sub-classes of

lo:ModellingElement. The java method can be found under the endpoint

/getModellingLanguageOntologyElements.

- The create object property button allows creating the bridging connector between the newly

created modelling construct and an existing language concept. The button leads to generate

an instance of SPARQL Rule 3b. The java method can be retrieved under the endpoint

/createBridgingConnector in the Java class ModellingEnvironment.java of the Web

Service.

Figure 130. Creating a bridging connector (object property)

283

6.3.1.4 Creating New Semantic Mappings (Object Properties)

Similar to bridging connectors, semantic mappings are in the form of object properties. The

right-bottom side of Figure 131 shows the view, which appears after clicking to the button

“Insert new Semantic Mapping”. The view foresees the following four fields:

- The label field allows entering the name of the semantic mapping.

- The range field allows selecting a concept from the Domain Ontology. A search function

is implemented in this field for the quick retrieval of the wanted domain ontology concept.

The search function generates a SPARQL SELECT for each entered character. The query

is fired against all the sub-classes of the do:DomainOntologyConcept. The java method can

be found under the endpoint /getDomainOntologyClasses.

- The create object property button allows creating the semantic mapping between the newly

created modelling construct and an existing domain concept. The button leads to generate

an instance of SPARQL Rule 3a. The java method can be retrieved under the endpoint

/createSemanticMapping in the Java class ModellingEnvironment.java of the Web Service.

- The create new domain element button leads to the below view shown in Figure 131 and

allows creating a new domain element.

Figure 131. Creating a semantic mapping (object property)

284

6.3.1.5 Creating New Domain Ontology Concepts

The “Create New Domain Element” button (see Figure 131) leads to the view depicted in

Figure 132. This view contains the functionality that allows creating a new concept in the

Domain Ontology. The view foresees the following five fields:

- The checkbox root element allows making a domain ontology concept as a root element.

That is, if the checkbox is ticked, the new concept will be inserted as a direct sub-class of

do:DomainOntologyConcept. On the other hand, unticked checkbox enables the selection

of a parent class.

- The select parent class field allows selecting a concept from the Domain Ontology. Same

as in the creation of the semantic mapping, this field makes use of the Java method for the

quick retrieval of the wanted domain ontology concept.

- The label field allows entering the name of the concept.

- The create new domain concept button generates an instance of SPARQL Rule 5. The java

method can be retrieved under the endpoint //createDomainElement in the Java class

ModellingEnvironment.java of the Web Service. After clicking the button, the view returns

to the previous one (see Figure 131).

- The cancel button allows aborting the creation of the domain element and returns to the

view depicted in Figure 131.

Figure 132. Creating a Domain Ontology concept for the semantic mapping

285

6.3.1.6 Extending Modelling Constructs via Integration

The view shown in Figure 133 contains the functionality to extend a modelling construct via

integration and comprises the following fields:

- The label field shows the name of the selected modelling construct.

- The search field allows selecting a language ontology concept. A search function is

implemented to quickly identify the concept to be added as a sub-class. Same as for the

bridging connectors, this search function generates a SPARQL SELECT for each

entered character and the called java method is also the same

/getModellingLanguageOntologyElements.

- The cancel button allows aborting the integration between modelling constructs and

returns to the main view.

- The integration button allows integrating two language ontology concepts. Similar to

the previous view, a SPARQL rule (INSERT DATA) is generated by clicking the

button, which makes the integration possible (the statement is only generated if a

concept is selected from the search field). The generated SPARQL is an instance of

SPARQL Rule 1. The code of the implemented method can be found under the

endpoint /createModellingLanguageSubclasses in the Java class

ModellingEnvironment.java of the Web Service.

Figure 133. Extending a modelling construct via integration

286

6.3.2 Feature 2: Editing Modelling Constructs

This sub-section introduces the different functionalities in the GUI that enable editing a

modelling construct.

Figure 134 depicts the first screen for editing a modelling construct. The view consists of

a pop-up window, which appears after right-clicking on a modelling construct from the palette

(see left-hand side of Figure 134). The pop-up shows the fields from the ontology-based meta-

model. Similar as for the extension feature, the following field types can be distinguished:

(a) non-interactive fields, which cannot be edited and have the purpose to be informative

(see grey boxes Figure 134). These are the name of the current tab and the ontology

prefix, which is bounded to the ontology file, in which the construct resides.

(b) interactive fields that allow changing knowledge (see blue boxes in Figure 134). These

are the label and comment and the changes of graphical notations for palette and

Model Editor.

(c) interactive buttons that lead to a different view (see green box Figure 134). There are

the tabs that lead to edit properties: datatype properties, bridging connectors and

semantic mappings (see on top of Figure 134).

The edit button updates the modelling construct. The button generates an instance of

SPARQL Rule 8, i.e. a sequential execution of one SPARQL DELETE DATA and one

SPARQL INSERT DATA. The java method can be retrieved under the endpoint

/modifyElement in the Java class ModellingEnvironment.java of the Web Service. After

clicking the button, the view returns to the main view shown in Figure 125.

Note that the annotation properties that are displayed in the interactive fields (see blue

boxes in Figure 134) are retrieved employing a SPARQL SELECT that is dynamically

generated by the method AllPaletteElements() in the endpoint getPaletteElements (see Sub-

section 6.2.1.2). Data retrieved from the query are therefore not only used to populate the

palette, but also is re-used for displaying the annotation properties of a modelling construct.

Figure 134. Editing a modelling construct

287

6.3.2.1 Editing or Removing Datatype Properties, Bridging Connectors and

Semantic Mappings

Editing a modelling construct may include not only the change of (if existing) its datatype

property, bridging connector(s) and semantic mapping(s) but also their removal. Therefore,

each of the three remaining tabs that are shown on top of Figure 134 leads to edit and delete

properties.

6.3.2.1.1 The Datatype Tab

The view for the Datatype tab is depicted on the left-hand side of Figure 136. The fields in the

view are the following:

- While the selected tab is “Datatype” in the current view, the four tabs on top of the

view remain inactive, as shown in Figure 134.

- The insert new datatype property leads to the view shown in Figure 129.

- Both informative and interactive field for the datatype property allows visualizing

all the current datatype properties as well as selecting one. After the selection of

one property, the two buttons “Modify” and “Delete” will appear (see grey box

named “Selected datatype property for editing” in Figure 136).

Like for the annotation properties, the datatype properties are displayed through a

dynamically generated SPARQL SELECT. The query itself is, however, different and

generated by the method queryAllDatatypeProperties(String domainName) in the endpoint

getDatatypeProperties (see Figure 135). Each time the Datatype tab is selected, the method is

executed, and the input parameter takes the value of the selected modelling construct, which is

the domain of the datatype property.

The modify button for the selected datatype property leads to the view on the right-hand

side of Figure 136.

The delete button of the selected datatype property generates an instance of SPARQL Rule

7. The automatic generation of the statement is allowed by the Java method implemented in

the endpoint /deleteDatatypeProperty in the Web Service.

Figure 135. Excerpt of the method that generates the SPARQL SELECT to retrieve datatype properties

288

In the functionality in the view on the right-hand side of Figure 136 allows editing datatype

properties. The view contains the following fields:

- The change name field allows changing the name of the property.

- The change value type field allows changing the value type of the datatype property.

- The cancel button allows interrupting the editing activity for the selected property

and returns to the view shown on the left-hand side of Figure 136.

- The apply change button generates an instance of SPARQL Rule 10, i.e. a

sequential execution of one SPARQL DELETE DATA and one SPARQL INSERT

DATA is performed. The dynamic generation of the rule instance is done by the

java method implemented in the endpoint /editDatatypeProperty in the Java class

ModellingEnvironment.java of the Web Service. After clicking the button, the view

returns to the view shown on the left-hand side of Figure 136.

6.3.2.1.2 The Bridging Connector and Semantic Mapping Tabs

Like in the Datatype tab, the two tabs for bridging connectors and semantic mappings are

implemented to insert, delete, and change. The look and feel are the same for the three tabs that

deal with properties. Due to their similarity, the screenshots for both views bridging connector

and the semantic mapping are omitted. Instead, the differences between the datatype tab view

(see left-hand side of the Figure 136) and the two tabs views of the two object property types

are described as follows:

- The insert button to create new bridging connectors or semantic mappings leads to

the view depicted in Figure 130 and Figure 131, respectively.

- The existing bridging connector(s) are shown in the tab Bridging Connector,

whereas existing semantic mapping(s) are shown in the tab Semantic Mapping. In

both cases, the properties are selectable like in the datatype property shown in

Figure 136. Figure 137 depicts two excerpts of the two methods that dynamically

Figure 136. Editing Datatype Property of a modelling construct

289

generate the SPARQL SELECT. The query retrieves (1) the semantic mapping(s)

and (2) the bridging connector(s) of a modelling construct. The methods reside in

the endpoints getSemanticMappings and getBridgeConnectors, respectively.

Same as for the datatype properties, when an object property is selected the two buttons

“Modify” and “Delete” appear.

- The delete button generates an instance of SPARQL Rule 7. The dynamic

generation of the rule is allowed by the Java method implemented in the endpoint

/deleteObjectProperty in the Web Service.

Also, when comparing the “Edit” view of the datatype property (see right-hand side of

Figure 136) with the “Edit” views of both bridging connectors and semantic mappings, the only

differences are the following:

- The change value type fields are replaced by a search field. For the bridging

connectors, the implemented search field is shown in Figure 130 whereas for the

semantic mappings it is shown in Figure 131.

- In both bridging connectors and semantic mappings, the apply change button

generates an instance of SPARQL Rule 9. That is, the SPARQL DELETE DATA

and then SPARQL INSERT DATA are executed in sequence. The method for the

dynamic generation of the rule instance is in the endpoint /editObjectProperty.

The mechanisms for the rest of the fields such as for the cancel button and change label

button are the same as for the datatype property.

Figure 137. Excerpt of the methods that generate SPARQL SELECT to retrieve (1) semantic mappings and (2)

bridging connectors

290

6.3.3 Feature 3: Hiding Modelling Constructs

The “Hide Modelling Construct” feature enables to hide the graphical notation of a modelling

element or relation from the palette. The hiding can be carried by clicking on the “Hide” button

from the context menu. The transition is shown in Figure 138, where on the left-hand side of

the figure a graphical notation of User Task is going to be hidden. In result, the right-hand side

of Figure 138 shows the list of the graphical notations without User Task.

The “Hide” button leads to generate an instance of SPARQL Rule 11. The instance rule

changes the value of the datatype property po:paletteConstructIsHiddenFromPalette from

False to True. Hence, the graphical notation disappears from the palette. The rule instance is

dynamically generated by the Java method in the endpoint /hidePaletteElement in the Web

Service. Figure 139shows an excerpt of the Java method, in which one can distinguish the part

that generates the SPARQL DELETE DATA (upper part of the figure) from the part the

generates the SPARQL INSERT DATA (bottom of the figure).

Figure 139. Excerpt of the method that generate SPARQL DELETE DATA and INSERT DATA to hide a

modelling construct from the palette

291

6.3.4 Feature 4: Deleting Modelling Constructs

The “Delete Modelling Construct” feature allows deleting a modelling element or relation.

1. The instance in the Palette Ontology that refers to the selected graphical notation is

deleted (e.g. see context menu on the left-hand side of Figure 140).

2. The class in the Modelling Language Ontology that is related to the deleted instance

will also be deleted.

The result in the GUI is the same as for the “Hide” feature (shown in Figure 138), where

the graphical notation disappears from the palette. Differently from the “Hide” feature, a

deleted modelling construct is deleted from the triplestore. The “Delete” feature leads to

generate an instance of SPARQL Rule 6. The dynamic generation of the rule instance is done

through the Java method implemented in the endpoint /deletePaletteElement in the Web

Service.

As described in the critical reflection of the use of operators (see Sub-section 5.1.6) deleting

a modelling construct can create inconsistency issues in the knowledge base. For example, a

root concept in the abstract syntax might be deleted, which implicates all its sub-concept would

be deleted too. In order to avoid that, a method was implemented in the Web Application,

which allows deleting only those modelling constructs being leaves in the language ontology

taxonomy. Figure 140 depicts the exception that is thrown by the implemented method when

the user tries to delete a modelling construct that has at least one sub-concept. The exception

is thrown in the form of a pop-up window and alerts the user about the element containing child

elements.

Figure 140. Thrown exception when trying to delete a modelling construct with child elements

292

6.4 Concluding Summary

In this chapter it was shown how the agile and ontology-aided approach (suggested in Chapter

5) is implemented in a modelling environment called AOAME. The Model-Control-Viewer

design pattern was applied to conceive the architecture of AOAME. On the one hand, the

architecture supports the propagation from the machine- to the human-interpretable

representation of a modelling language. On the other hand, the architecture supports the

propagation of domain-specific adaptations from the human- to the machine-interpretable

representation of a modelling language. For this, AOAME implements functionalities for the

dynamic instantiation of the eleven SPARQL rules, which have been elaborated in Chapter 5.

The automation of the two-way propagation of knowledge allows preserving a seamless

consistency between the graphical and machine-interpretable representation of modelling

languages. Therefore, the fourth research question is answered.

293

7. EVALUATION OF THE AGILE AND

ONTOLOGY-AIDED META-MODELLING

APPROACH

294

According to March and Storey (2008) “the representation of design problems and the

generation and evaluation of design solutions are the major tasks in design science research”.

While the problem design is discussed in Chapter 1, Chapter 2, and Chapter 4, the

generation of the design solution is described in Chapter 5.

This chapter deals with the evaluation of the agile and ontology-aided meta-modelling

approach; beginning with Section 7.1, and a description of the relevant aspects considered for

an evaluation in design science research. Based on these aspects, Section 7.2 describes the

strategy followed to evaluate the new approach produced in this research work. Subsequently,

Section 7.3 presents an evaluation of the correct design of the approach, and Section 7.4

proceeds to discuss its utility and scope. Results of the evaluation are finally collated in the

conclusive section of this chapter (Section 7.5).

7.1 Evaluation in Design Science Research

Evaluation in Design Science Research (DSR) aims to determine the progress achieved by

designing, constructing, or using an artefact in relation to the identified problem and the design

objectives (March and Smith 1995; Aier and Fischer, 2011; Sonnenberg and vom Brocke,

2012). To achieve this aim, an evaluation strategy shall be built.

The strategic framework proposed by Pries-Heje et al. (2008) helped design science

researchers to build strategies for evaluation of their research outcomes and to achieve

improved rigour in DSR. The framework is constructed via the analysis of prior DSR

evaluation strategies and distinguishes them along three dimensions: (1) what to evaluate, (2)

when to evaluate, (3) how to evaluate.

The three dimensions are henceforth explained and contextualised to fit the evaluation

strategy for this research work. Further literature is considered in the elaboration of the “when”

and “how” dimensions, which provides deeper guidance to build the evaluation strategy.

(1) What to evaluate dimension:

This dimension refers to what is actually evaluated. According to Pries-Heje et al., (2008),

either the design process or the design product can be evaluated.

(2) When to evaluate dimension:

This dimension refers to when the evaluation takes place. Pries-Heje et al., (2008) pointed

out that “evaluation is not limited to a single activity conducted at the conclusion of a design-

construct-evaluate cycle”. Evaluation in information systems can be conducted (1) ex ante,

which means that artefacts are evaluated prior to their implementation or construction, and (2)

ex post, where artefacts are evaluated after their design or construction.

The work of Sonnenberg and vom Brocke (2012) further refines the ex ante and ex post

dimensions by proposing evaluation activities after each DSR activity, i.e. problem

identification, design, construction and use (see Figure 141). Each evaluation activity (see

boxes Evaln) contains a feedback loop to the preceding design activity. Feedback loops run in

the opposite direction as the DSR cycle. Hevner et al. (2004) consider feedback loops essential

to fostering the quality of the design process and the design product under development.

Sonnenberg and vom Brocke (2012) derived evaluation patterns from prior DSR evaluation

strategies and refer to each evaluation activity of Figure 141, i.e. Eval1, Eval2, Eval3 and

Eval4. Hence, the identification of the evaluation activity within the time dimension determines

the evaluation pattern(s) to adopt.

The evaluation occurring after an artefact implementation corresponds to Eval3 (see red

rectangle on the box Eval3 in Figure 141)

295

Eval3 serves to initially demonstrate if and how well the artefact performs to provide a

solution to the problem. This ultimately proves the utility of the artefact (Aier & Fischer, 2011).

According to Sonnenberg and vom Brocke (2012), the identified evaluation activity is

frequently supported by prototypes. Prototyping aims to demonstrate the utility or suitability

of an artefact (Peffers et al., 2012). Cleven, Gubler and Hüner, (2009) add that this type of

method facilitates the assessment of a solution’s suitability for a certain problem by

implementing the solution generically. The evaluation with a prototype represents an adequate

evaluation method for design-science research artefacts (March and Storey, 2008).

Since the prototype AOAME instantiates the agile and ontology-aided meta-modelling

approach, it is suitable to demonstrate that the approach works in practice and solves the

identified problems. A discussion of how to evaluate the artefact through the prototype is

presented in the following dimension.

(3) How to evaluate dimension:

The “how to evaluate” dimension refers specifically to how an artefact is evaluated and,

(according to Pries-Heje et al. (2008)), should answer the following questions: how is the

artefact being evaluated, naturalistically or artificially? What evaluation method is used? and

what criteria is it evaluated against? Subsequently, the answer is elaborated upon, by first

introducing the differences between artificial and naturalistic evaluation. An evaluation

measurement approach is incorporated in this dimension.

Figure 141. Evaluation activities within a Design Science Research process (Sonnenberg & vom Brocke, 2012)

296

(a) Artificial vs. Naturalistic evaluation form

According to Pries-Heje et al. (2008) there are two primary forms of evaluation: artificial

and naturalistic. The artificial form evaluates an artefact in a contrived and non-realistic way.

Sonnenberg and vom Brocke (2012) state that the artificial evaluations refer to evaluation of

the artefact against a research gap. The latter is defined originally by Cleven, et al. (2009):

“The artefact is evaluated in respect of correct design either against established or against

previously defined requirements. An employment under real world conditions is not realised.

The correctness of the derived research gap remains unreflected”.

The naturalistic evaluation, conversely, explores the performance of an artefact by

considering aspects of the real-world environment. Such aspects aim to accomplish real tasks

in real settings, including evaluation realities such as real users, real systems and real problems

(Pries-Heje et al. 2008). Such evaluations, thereby, could incorporate the organisational context

both partially or entirely (Sonnenberg and vom Brocke 2012). According to Hevner et al.

(2004) the naturalistic evaluations are critical to prove the artefact’s utility for practice. Thus,

in contrast to the artificial evaluation, the naturalistic evaluation refers to evaluation of the

artefact against the world (Sonnenberg and vom Brocke 2012). The latter is again defined by

Cleven, et al. (2009):

“In this case the suitability of the construed artefact is assessed through employment in the

real world. Thereby, it becomes obvious if the artefact actually endows utility as a solution for

the original problem. The adequacy of the research gap is at the same time implicitly reflected”.

A prototype evaluation method type supports both artificial and naturalistic forms of

evaluation (Sonnenberg and vom Brocke 2012).

As an additional input for evaluation through the prototype, the “Illustrative Scenario”

method can be considered. This method type is defined by Peffers et al. (2012) as the

“application of an artefact to a synthetic or real-world situation aimed at illustrating suitability

or utility of the artefact”. Both prototype and illustrative scenario have the same purpose (i.e.

evaluating utility of the artefact) and can support both artificial and naturalistic forms of

evaluation.

The utility of the artefact and correct design are both Ex Post as shown in Table 54.

 Ex Ante Ex Post

Naturalistic Utility of the artefact (support of the Prototype and the Illustrative Scenario method

types)

Artificial Correct design of the artefact (support of the Prototype method type)

Table 54. Ex post artificial and naturalistic evaluation strategy for the artefact. Adapted from (Pries-Heje et al.

2008)

297

(b) Evaluation Criteria and Artefact Type

To systematically show the progress that an artefact aims at, the evaluations should be

guided by evaluation criteria (Aier & Fischer, 2011).

March and Smith (1995) suggest that the appropriate derivation of the evaluation criteria

depends on the artefact type that has been produced, i.e. construct, model, method or

instantiation. For instance, among others, there are completeness, simplicity and elegance for

the construct artefact type whereas fidelity with real world phenomena, level of detail,

robustness, and internal consistency for model artefact type. Table 55 shows the suggested

evaluation criteria for any given artefact type.

A method artefact type represents a set of steps (algorithms, proceedings or guidelines)

used for the solution of specific problems or classes of problems, e.g. approaches for business

process modelling or software development (Cleven et al., 2009). March and Smith (1995)

further specify the concept of methods with system development method:

“System development methods facilitate the construction of a representation of user needs.

[..] They further facilitate the transformation of user needs into system requirements [..] and

then into system specifications, [..] and finally into an implementation”.

The artefact built in this research fits the definition attributed to a system development

method. Given the possibility of the approach to adapt modelling languages on-the-fly, this

artefact facilitates the construction of a representation of a user needs. The user needs are

accommodated in modelling languages and the ontology-aided approach ensures that they are

specified in a machine-interpretable form.

The definitions of other artefact types are not provided as they do not suite the artefact

produced in this research.

Table 55. Evaluation criteria for Design Science Research artefact types (March and Smith, 1995)

298

Possible evaluation criteria for methods are operationality, efficiency, generality, and ease

of use (see red squares in Table 55).

With respect to the above-introduced evaluation patterns of Sonnenberg and vom Brocke

(2012), the evaluation criteria operationality and generality fit Eval3 (see red rectangle in

Figure 141), which occur after the implementation of the artefact. Namely, operationality is an

aspect of utility (see Aier and Fischer, 2011) and concerns the ability to perform the intended

task with the method (March and Smith 1995). Generality refers to the purpose and scope of

an artefact (Aier & Fischer, 2011), and can be defined as the ability of the method to be applied

in different application scenarios or other contexts.

Conversely, the evaluation criteria efficiency and ease of use, are considered in a later stage

when analysts apply a method (Sonnenberg and vom Brocke 2012), traditionally with general

use of the implemented artefact (see Eval4 in Figure 141).

The measurement of an artefact with respect to operationality and generality can be

achieved through a qualitative approach. According to Chen and Hirschheim (2004), the

qualitative evaluation approach “emphasises the description and understanding of the situation

behind the factors”, thus characteristics of the evaluation criteria are not appraised on a

numerical basis but on a value basis (Cleven et al., 2009). A quantitative approach, on the other

hand, would instead fit the measurement with respects to efficiency and ease of use.

7.2 Evaluation Strategy for the Artefact

This section proposes an evaluation strategy suitable for this work. For this, findings

considered in the previous section are considered. Table 56 summarizes the evaluation strategy.

Each dimension “what”, “when” and “how” is presented with the respective chosen

characteristic value and are subsequently described.

In this work the design product is evaluated, i.e. the agile and ontology-aided meta-

modelling approach (what to evaluate dimension). The evaluation of the approach occurs after

its implementation, Eval3 (where to evaluate dimension). As shown in Table 56, the how to

evaluate dimension contains six sub-dimensions. The prototype method type is used for both

an artificial and a naturalistic evaluation. The artificial evaluation form aims to evaluate the

correct design of the approach against the previously defined requirements. The naturalistic

form is used to evaluate the utility of the approach. Additionally, the illustrative scenario

method type is considered for the evaluation of the utility of the artefact. Namely, real-world

use cases are proposed to be implemented in the prototype. The considered evaluation criteria

are operationality and generality, which are both for the purpose of utility and are consistent to

what is shown in Table 54 of Section 7. Hence, the two evaluation criteria fit both the artefact

type “method” and the evaluation activity chosen in the “where dimension”: Eval3. The two

evaluation criteria are thus specified and contextualised to fit this research work:

- Operationability of the approach: The ability of the approach to preserve consistency

between the graphical and the machine-interpretable representation while performing

on-the-fly domain-specific adaptions of modelling languages.

- Generality of the approach: The ability of the approach to be applied in different

application domains.

To evaluate the correct design of the approach against the requirements the criteria is

contextualised as follows:

- The extent to which the requirements are satisfied by the implemented approach

AOAME.

299

Finally, a qualitative approach is adopted to measure the artefact with respect to the

proposed evaluation criteria. Hence, understanding about the extent to which operationability,

generality and design requirements are satisfied and descriptively emphasised.

Dimension Characteristic values

What to evaluate The agile and ontology-aided meta-modelling approach

When to evaluate Ex post (Eval3)

How to

evaluate

Evaluation Form Naturalistic Artificial

Evaluation Method Prototype and

Illustrative Scenario
Prototype

Evaluation purpose
Utility of the artefact

Purpose and

scope

Correct design of the

artefact

Artefact type Method

Evaluation criteria
Operationability of

the approach

Generality of

the approach

Extent to which the

requirements are satisfied

by AOAME

Measurement

Evaluation

Approach

Qualitative

The following two sub-sections elaborate on the actual evaluation of the artefact with

respect to (1) the correct design and (2) the utility purposes.

Table 56. Evaluation Strategy for the Agile and Ontology-Aided Meta-modelling Approach

300

7.3 Evaluating the Correct Design of the Artefact

This section describes the evaluation of the correct design of the agile and ontology-aided meta-

modelling approach. As introduced in the evaluation strategy, this evaluation is done against

previously defined requirements. Requirements can be found in Section 4.4.5 and Section 5.1.4

and are derived from both literature and interviews with industry experts. The AOAME

prototype is used to support this evaluation. As described in the previous Section, the

evaluation criteria to consider are the following:

- The extent to which requirements are satisfied by the implemented approach AOAME.

Below, the evaluation is presented by elaborating on the basis of each of the eight requirements.

The description is underpinned by Figure 142, which provides a traceable map between the

requirements (see top of the figure) and the implemented functionalities in AOAME (see

bottom of the figure). The different layers from top to bottom reflect the gradual steps adopted

in this research work. After the elicitation of eight requirements, ten operators (see Section

5.1.6) were conceived, accordingly (see mapping between requirements and operators.

Subsequently, each operator was implemented by at least one SPARQL rule (see Section 5.3.3).

The latter allows propagating domain-specific adaptations from the graphical to the machine-

interpretable representation of the modelling language.

301

302

Requirement #1: An agile meta-modelling approach should enable the

language engineer to simplify a modelling language.

Requirement one is satisfied by functionalities of Feature 2 “Editing Modelling Constructs”

(Sub-section 6.3.2), Feature 3 “Hiding Modelling Construct” (Sub-section 6.3.3) and Feature

4 “Deleting Modelling Construct” (Sub-section 0). The functionalities of each feature are

detailed below.

- From Feature 2: “Editing/Removing Datatype Properties, Bridging Connectors,

Semantic Mappings” (Sub-section 6.3.2.1) incorporates SPARQL Rule 7, which

allows the removal of both object and datatype properties. SPARQL Rule 7 supports

Operator 9 - delete attribute and Operator 6 – delete relation. Both rules update the

Modelling Language Ontology.

- From Feature 3: “Hiding Modelling Construct” (Sub-section 6.3.3) incorporates

SPARQL Rule 11, which allows hiding a modelling construct by changing the

dedicated datatype property. SPARQL Rule 11 supports Operator 10 - update attribute.

The rule updates the Palette Ontology.

- From Feature 4: “Deleting Modelling Construct” (Sub-section 0) incorporates

SPARQL Rule 6, which allows the removal of modelling constructs. SPARQL Rule 6

supports Operator 3 - delete sub-class. The rule updates both the Modelling Language

Ontology and the Palette Ontology.

Requirement #2: An agile meta-modelling approach should enable the

language engineer to change abstract syntax and notation.

Requirement two is satisfied by functionalities of Feature 2 “Editing Modelling Construct”

(Sub-section 6.3.2). The functionalities are the following:

- “Editing Modelling Construct” (Sub-section 6.3.2) incorporates SPARQL rules 8,

which allows the label, comment and graphical notation of a modelling construct to be

updated. SPARQL rules 8 supports Operator 2 - update Class. Both the Modelling

Language Ontology and the Palette Ontology are updated.

- “Editing/Removing Datatype Properties, Bridging Connectors, Semantic Mappings”

(Sub-section 6.3.2.1) incorporates:

- SPARQL Rule 10, which allows the update of datatype properties and supports

Operator 10 - update attribute.

- SPARQL Rule 9, which allows the update of object properties and supports Operator

5 - update relation.

Both rules update the Modelling Language Ontology.

303

Requirement #3: An agile meta-modelling approach should enable the

language engineer to extend abstract syntax and add new notation.

Requirement three is satisfied by functionalities of Feature 1 “Extending Modelling

Construct” (Sub-section 6.3.1). The functionalities are the following:

- “Extending Modelling Construct” (Sub-section 6.3.1) incorporates SPARQL Rule 2,

which allows the creation of new modelling constructs as a specialization of existing

ones. The new modelling construct includes a new name (i.e. Uniform Resource

Identifier), label, comment and graphical notation. SPARQL Rule 2 supports Operator

1 – create sub-class and Operator 8 – Assign concept, attribute type or value. Both the

Modelling Language Ontology and the Palette Ontology are updated.

- “Creating New Datatype Properties” (Sub-section 6.3.1.2) incorporates SPARQL Rule

4, which allows the creation of new datatype properties for a modelling construct.

SPARQL Rule 4 supports Operator 7 – create attribute. The Modelling Language

Ontology is updated.

Requirement #4: An agile meta-modelling approach should enable the

language engineer to integrate concepts that belong to different modelling

languages or different modelling views.

Requirement four is satisfied by functionalities of Feature 1 “Extending Modelling

Construct” (Sub-section 6.3.1). Namely:

- “Extending a Modelling Construct via Integration” incorporates SPARQL Rule 1,

which allows adding the sub-class of a relationship between two existing modelling

constructs. SPARQL Rule 1 supports Operator 1 – create sub-class (see Section

6.3.1.6). Both the Modelling Language Ontology and the Palette Ontology are updated.

- “Creating New Bridging Connectors” (Sub-section 6.3.1.3) incorporates SPARQL

Rule 3b, which allows the creation of bridging connectors between modelling

constructs. The latter can belong to different modelling views. SPARQL Rule 3b

supports Operator 4 – create relation. The Modelling Language Ontology is updated.

Requirement #5: An agile meta-modelling approach should enable the

language engineer to create new semantic domain concepts.

Requirement five is satisfied a functionality of Feature 1 “Extending Modelling Construct”

(Sub-section 6.3.1). The functionality is the following:

- “Creating New Domain Ontology Concepts” (Sub-section 6.3.1.5) incorporates

SPARQL Rule 5, which allows to create new concepts in the Domain Ontology.

SPARQL Rule 5 supports Operator 1 – create sub-class. The Domain Ontology is

updated only.

304

Requirement #6: An agile meta-modelling approach should enable the

language engineer to create new semantic mappings between concepts

from an abstract syntax (linguistic view) to a semantic domain (domain

view).

Requirement six is satisfied by a functionality of Feature 1 “Extending Modelling

Construct” (Sub-section 6.3.1). Namely:

- “Creating New Semantic Mappings” SPARQL Rule 3a, which allows the creation of

new object properties for the semantic mappings between concepts from the Modelling

Language Ontology to the Domain Ontology. Operator 4 – create relation (see views

in Section 6.3.1.4). The Modelling Language Ontology is updated.

Requirement #7: An agile meta-modelling approach should enable the

language engineer to modify the semantic mapping between concepts from

an abstract syntax (linguistic view) to a semantic domain (domain view).

Requirement seven is satisfied by a functionality of Feature 2 “Editing Modelling

Construct” (Sub-section 6.3.2). Namely:

- “Editing/Removing Datatype Properties, Bridging Connectors, Semantic Mappings”

(Sub-section 6.3.2.1) incorporates SPARQL Rule 9, which allows the semantic

mappings to be changed. SPARQL Rule 9 supports Operator 5 - update relation. The

Modelling Language Ontology is updated.

Requirement #8: An agile meta-modelling approach should enable the

language engineer to delete the semantic mappings between concepts from

an abstract syntax (linguistic view) to a semantic domain (domain view).

Requirement eight is satisfied by a functionality of Feature 2 “Editing Modelling

Construct” (Sub-section 6.3.2), namely:

- “Editing/Removing Datatype Properties, Bridging Connectors, Semantic Mappings”

(Sub-section 6.3.2.1) incorporates SPARQL Rule 7, which allows the removal of

semantic mappings. SPARQL Rule 7 supports Operator 6 - delete relation. The

Modelling Language Ontology is updated.

305

7.4 Evaluating the Operationability and Generality of the

Artefact

This section describes the evaluation of the agile and ontology-aided meta-modelling approach

with respect to the following criteria:

- Operationability of the approach: The ability of the approach to preserve consistency

between the graphical and the machine interpretable representation while performing

on-the-fly domain-specific adaptions of modelling languages.

- Generality of the approach: The ability of the approach to be applied in different

application domains.

For the evaluation activity, six use cases were implemented through the prototype

AOAME. The use cases are chosen based on two criteria: (1) Validation of all the AOAME’s

functionalities; and (2) Significance in real-world applications. The two criteria are detailed

below.

1. Validation of all the AOAME’s functionalities: The validation of all functionalities

proves the operationability of the agile and ontology-aided meta-modelling approach.

All AOAME’s functionalities are introduced in Section 6.3. The centre of Figure 143

depicts the six use cases and the used functionalities are on their right- and left-hand

side. The arrows indicate which functionality is used in which use case. More

specifically:

- “Use Case 1: Adding Discretionary Task” is implemented through the functionality

“Extending Modelling Constructs via Integration” (see Sub-section 7.4.1).

- “Use Case 2: Extending BPMN Group” (including properties) is implemented through

the functionalities “Creating New Modelling Construct, Domain Ontology Concepts

and Semantic mappings” (see Sub-section 7.4.2).

- “Use Case 3: Adding ICF Standard document” is implemented through the

functionalities “Creating New Bridging Connectors and Datatype Properties” (see Sub-

section 7.4.3).

- “Use Case 4: Deleting ICF Standard document and/or properties” (i.e. annotation

properties, datatype properties, bridging connector, semantic mappings) are

implemented through the functionalities “Deleting Modelling Constructs and

Properties” (see Sub-section 7.4.4).

- “Use case 5: Editing properties of ICF Standard document” (i.e. annotation properties,

datatype properties, bridging connector, semantic mappings) is implemented through

the functionality “Editing Modelling Constructs and Properties” (see Sub-section

7.4.5).

- “Hiding ICF Standard document” is implemented through the functionality “Hiding

Modelling constructs” (see Sub-section 6.3.3).

306

2. Significance in real-world applications: Use cases 1 and 3 fall within the issue of

process documentation, which is relevant to companies to guide the work of the people

involved. According to the Camunda founders Freund and Rücker (2016), process

documentation is one of the most requested consulting cases by companies. Use Case

2 does not only deal with process documentation but also allows for ontology-based

automation, which can support the decision making of workers. Ontology-based

automation (also called Semantic or Explainable Artificial Intelligence) is increasing

demand from companies that adopt Artificial Intelligence-based recommendation

systems to explain how certain results are derived (see Deloitte, 2019). The rest of the

use cases build on Use Case 3 to validate the rest of the functionalities. All use cases

were extracted from one of the two application domains Patient Transferal Management

(Section 4) and Business Process as a Service (Section 4.2). As introduced in the

evaluation strategy (Section 7.1), the pertinence of use cases to the real-world settings

ensures the naturalistic evaluation form of the approach and proves the artefact’s utility

for practice.

To prove generality of the approach, firstly, it is demonstrated that AOAME supports the

implementation of use cases from two different application domains: Patient Transferal

Figure 143. Use cases implemented through AOAME's functionalities

307

Management, and Business Process as a Service. Both application domains are introduced in

Section 4 and Section 4.2 , respectively. Secondly, it is demonstrated that AOAME supports

an additional application domain, which was not previously introduced, concerning with

innovation processes (see Sub-section 7.4.7).

The use cases were implemented by me. The implementation included the creation of:

- A set of ontologies: this set consists of the main three ontologies; Modelling Language

Ontology, Palette Ontology and Domain Ontology as well as the ontologies created for

the use cases: APQC, BPaaS, BPMN, CMMN, DKMM, DSML4PTM, FDPDO, ICF,

OrganisationalModel, SAPScenesOntologies. These ontologies will be explained along

with the description of the specific use case. At present, all of these ontologies count

more than 34’648 triples. The ontologies were engineered in the ontology editor tool

TopBraid and can be found in Appendix E: Prototype , folder E4.

- A set of graphical notations: more than 700 graphical notations, including thumbnails

for the palette and images for the Modelling Editor were created and can be found in

Appendix E: Prototype , folder E5.

- A set of SPARQL queries: nine SPARQL rules were created to prove that the adapted

modelling language is consistent with the ontology. The execution of the SPARQL

queries was performed in the Fuseki Triplestore, which contains the set of ontologies.

To demonstrate that the changes are automatically propagated, the query was executed

both before and after the domain-specific adaptations.

The sequence of activities performed for implementing each use case was as follows:

1. Loading the set of ontologies that is required by the use case into the Fuseki Triplestore;

2. Loading (or re-loading) the graphical user interface (GUI);

3. Selecting modelling language in the GUI;

4. Selecting the modelling view of the previously selected modelling language in the GUI;

5. Using AOAME’s functionalities for the on-the-fly domain-specific adaptations of

modelling languages in the GUI.

6. Executing the SPARQL queries in Fuseki Triplestore.

Finally, each use case is below described (Sub-sections from 7.4.1 to 0) with the following

structure:

- Description of the use case and conceptual solution expected from the applied domain-

specific adaptations.

- The set of ontologies, which are used to implement the considered use case;

- A set of user actions for the domain-specific adaptations of modelling languages;

- The SPARQL query results, in order to prove that the adapted graphical language is

consistent with the ontology.

308

7.4.1 Validation of the Functionality that Integrates Modelling Languages

This sub-section describes the validation of the AOAME’s functionality “Extending Modelling

Constructs via Integration”. For this purpose, the use case “Adding Discretionary Task” is

extracted from the case Patient Transferal Management. In the use case, it is shown the manner

a modelling element like Discretionary Task from CMMN is used to extend another modelling

element from a different modelling language, i.e. Manual Task from BPMN. The use case is

also mentioned in Sub-section 0 and published in Laurenzi et al. (2017).

7.4.1.1 Description of Use Case 1: Adding Discretionary Task

In this use case the transferal manager (i.e. domain expert) uses BPMN to model that an acute

physician initiates the task “Perform Rehab Conference”. As this task is discretionary, he/she

re-uses the modelling element “Discretionary Task”, which is defined in CMMN (OMG,

2016a). As discretionary tasks are always executed by a person, it should be represented as a

sub-concept of “Manual Task”, which already exists in BPMN. The integration of modelling

elements of one modelling language (in this case the discretionary task), will result in the

possibility for the transferal manager to model a discretionary task in a BPMN lane. Figure 144

depicts one excerpt of a DSML4PTM process model containing the discretionary “Perform

Rehab Conference” in the BPMN lane “Acute Physician”. The lane represents the role of a

performer that initiates the discretionary task “Perform Rehab Conference”.

The integration of Discretionary Task from CMMN with Manual Task from BPMN is

achieved by instantiating SPARQL Rule 1 (see Sub-section 5.3.4.1.2). As a result, the

following two following two relations created (see also Figure 145):

- a hasParent relation is created between two instances po:DiscretionaryTask and

po:ManualTask of the class po:PaletteElement;

- an rdfs:subClassOf relation is created between two modelling elements bpmn:ManualTask

and cmmn:DiscretionaryTask.

Figure 144. DSML4PTM process model containing a Discretionary Task in a BPMN Lane

309

7.4.1.2 Set of Ontologies for Use Case 1

The set of ontologies required to implement Use Case 1 are as follows:

- The BPMN ontology: an ontology that reflects the linguistic view of BPMN, and thus

containing a class hierarchy, attributes and relations;

- The CMMN ontology: an ontology that reflects the linguistic view of CMMN, and thus

containing a class hierarchy, attributes and relations;

- The Modelling Language Ontology (see Sub-section 5.3.2.1). Both ontologies BPMN and

CMMN are imported in the Modelling Language Ontology. Specifically, modelling

elements from both BPMN and CMMN are entered as sub-classes of lo:ModellingElement

while modelling relations are entered as sub-classes of lo:ModellingRelation. The top-right

green corner of Figure 146 shows an excerpt of the class hierarchy of BPMN integrated in

the Modelling Language Ontology.

- The Palette Ontology, which is described in Section 5.3.2.1. In this case, the two classes

po:PaletteConnector and po:PaletteElement contain the instances for displaying the

graphical notations of BPMN and CMMN. Figure 146 shows an excerpt of the Palette

Ontology. Note the relation between the po instances and classes in the Modelling

Language Ontology should already exist. For example, see connection between po:Task

and bpmn:Task in Figure 146.

These set of ontologies should be loaded to the triplestore (see left-hand side of Figure

147), in order for the palette to be populated (see right-hand side of Figure 147). The palette

shows the graphical elements of BPMN 2.0, which was the selected modelling language from

the GUI (see top of the palette in Figure 147). The approach that populates the palette has been

described in Section 6.2.1.

Figure 145. Conceptual solution (a) before and (b) after adding Discretionary Task to Manual Task

310

7.4.1.3 User Actions Performed in the Graphical User Interface

Figure 148 underpins the description of the user actions for extending Manual Task with

Discretionary Task. The user actions are presented in the following steps:

- Step 1: the user right-clicks on the modelling construct to extend “Manual Task”.

Figure 146. Excerpt of the Palette Ontology and Modelling Language Ontology related to BPMN 2.0

Figure 147. Populating the palette with graphical notations from the “Process Modelling View” of BPMN 2.0

311

- Step 2: the pop-up window for the extension appears (see second view of Figure 148). After

selecting the tab “Integrate with Existing Elements”, the user looks for the concept

cmmn:DiscretionaryTask by typing the name in the search box. The latter implements the

search functionality for querying the ontology. The search functionality returns the desired

concept, which is selected accordingly.

- Step 3: the user clicks on the “Integrate” button, which instantiates SPARQL Rule 1. Thus,

the language integration is performed and stored in the triplestore. Figure 149 shows the

query printed in the prompt command at the point in time the “integrate” button is clicked.

View 4 in Figure 148 shows the result of the extension, where the concept “Discretionary

Task” is displayed as a sub-concept of “Manual Task”.

7.4.1.4 Query Result After Implementing Use Case 1

In order to prove that the new concept has been entered successfully in to the ontology-based

meta-model, Figure 150 shows the comparison of the query results both before and after the

language integration. In particular, the upper part of both screenshots of Figure 150 contain a

query asking for (1) the sub-class of Manual Task (i.e. cmmn:DiscretionaryTask), (2) and the

Figure 148. Steps to extend “Manual Task” from BPMN with “Discretionary Task” from CMMN

Figure 149. Instance of SPARQL Rule 1 dynamically generated after adding Discretionary Task

312

parent of the palette element po:DiscretionaryTask (see the query in Table 57). Retrieving this

information proves that the SPARQL Rule 1 worked as expected. The lower parts of both

screenshots in Figure 150 show the query results. In contrast to the result on the left-hand side

of Figure 150, the one on the right-hand side contains the expected results: the class

“cmmn:DiscretionaryTask” as a sub-class of “bpmn:ManualTask”, as well as the related palette

element “po:ManualTask” being parent of the palette element “po:DiscretionaryTask”. The

class extension is, therefore, correctly propagated to the ontology.

The graphical representation of the modelling language (see Figure 148) is consistent with

the knowledge contained in the triplestore. Hence, for the considered functionality, the human-

and machine interpretable representations of the modelling language have proven to be

consistent one another. In turn, the functionality “Extending Modelling Constructs via

Integration” is validated.

Figure 150. Query results (a) before and (b) after domain-specific adaptations in Use Case 1: Adding

Discretionary Task

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX bpmn: <http://ikm-group.ch/archiMEO/BPMN#>

SELECT DISTINCT ?class ?paletteElement ?parentPaletteElement

WHERE {

 ?class rdfs:subClassOf bpmn:ManualTask .

 ?paletteElement po:paletteConstructIsRelatedToModellingLanguageConstruct ?class .

 ?paletteElement po:paletteConstructHasParentPaletteConstruct ?parentPaletteElement .

}

Table 57. SPARQL query to prove consistency in Use Case 1: Adding Discretionary Task

313

7.4.2 Validation of Functionalities for Creating New Modelling Constructs,

Domain Ontology Concepts and Semantic Mappings

This sub-section describes the validation of the AOAME’s functionalities that allow the user

to extend a modelling language. Specifically, the functionalities of interest are: “Extending

Modelling Construct”, “Creating New Domain Ontology concepts” and “Creating New

Semantic Mappings”. This use case is extracted from the Business Process as a Service (BPaaS)

case (see Section 4.2), and shows how a new modelling element is created as an extension of

an existing one. This use case is also published (Laurenzi, Hinkelmann, & van der Merwe,

2018).

7.4.2.1 Description of Use Case 2: Extending BPMN Group

In this use case, the cloud broker uses BPMN to model a “Send Invoice” business process as

well as annotating the process with business functional requirements (BPRs). In this use case,

BPRs are pre-defined directly in the meta-model of BPMN. The reason for this is to both

facilitate and speed-up the annotations of the business process. Figure 151 depicts an example

of the pre-defined BPRs annotations over the Send Invoice business process. Just as in the

BPaaS case, such annotation is performed to retrieve the most suitable cloud services for the

given requirements.

As shown in Figure 151, the solution foresees the possibility for the cloud broker to use

pre-defined specifications of business process requirements to annotate activities such as:

1. Customer relationship management,

2. Creation and update invoices (see red arrow in Figure 151),

3. Check for completeness and send invoices.

To support that, the BPMN modelling construct “Group” is extended to be further specified

with domain-specific aspects such as pre-defined values of APQC categories, a verb (i.e.

action) and a noun (i.e. object). Figure 152 shows the aspects of the extended modelling

elements:

Figure 151. Process annotation with pre-defined requirements

314

- “Managing Customer Relationship”: this modelling element is suitable to annotate BPMN

tasks concerning the customer relationship management. It should be mapped to (1) the

APQC category “3.5.2.4 Manage Customer Relationship”, (2) Action: “Manage”, and (3)

Object: “Customer”.

- “Generating Customer Billing Data”: this modelling element is suitable to annotate BPMN

tasks concerning the creation and/or update of invoices. It should be mapped to (1) the

APQC category “9.2.2.2 Generate Customer Billing Data”, (2) Action: “Generate”, and (3)

Object: “Invoice”.

- “Transmitting Billing Data”: this modelling element is suitable to annotate BPMN tasks

concerning the transmission of invoices. It should be mapped to (1) the APQC category

“9.2.2.3 Transmitting Billing Data”, (2) Action: “Send”, and (3) Object: “Invoice” or

“Document”.

The conceptual solution of such an extension is depicted in Figure 153: the upper part of

the figure “(a)” shows the conceptual representation before the extension occurs; the bottom

part of the figure “(b)” shows the new conceptual representation after the extension. Note that

for a better readability Figure 153 shows only the modelling element “Generating Customer

Billing Data” as an extension of “Group”. In particular, the modelling language extension is

expected to generate the following knowledge:

- A new class bpaas:GenerateCustomerBillingData as a sub-class of bpmn:Group in the

Modelling Language Ontology. A label and a comment for the new class should also be

inserted.

Figure 152. Extension of BPMN modelling element "Group" with three (domain-specific) sub-concepts

315

- A new instance po:GeneratingCustomerBillingData with properties in the Palette

Ontology. The properties are (1) a datatype property for the new graphical notation, (2) an

object property hasParent pointing to the instance po:Group, and (3) an additional object

property isRelatedTo connecting the new instance with the modelling element

bpaas:GenerateCustomerBillingData.

- A new sub-concept for fbpdo:Object named fbpdo:Invoice. The latter resides in the Domain

Ontology and is created to be mapped with the new class

bpaas:GenerateCustomerBillingData.

- New object properties for the semantic mappings between the new class

bpaas:GenerateCustomerBillingData and the above suggested APQC category, object and

action. The APQC categories, objects and actions contribute to specify the domain of

interest, therefore are considered as concepts in the Domain Ontology.

316

Figure 153. Conceptual solution (a) before and (b) after domain-specifc adaptations for Extending BPMN

Group use case

317

7.4.2.2 Set of Ontologies for Use Case 2

The set of ontologies required to implement Use Case 2 are as follows:

- The BPMN Ontology (see Use Case 1).

- The BPaaS Ontology, which contains the class hierarchy, attributes and relations of BPaaS

(see Section 4.2). Since BPaaS extends BPMN, the file BPMN is imported in the BPaaS

Ontology;

- The Modelling Language Ontology (see Sub-section 5.3.2.1). Both the BPMN Ontology

and the BPaaS Ontology are imported and integrated in the Modelling Language Ontology.

Modelling elements from both ontology files are entered as sub-classes of

lo:ModellingElement, whilst modelling relations are entered as sub-classes of

lo:ModellingRelation. The modelling language BPaaS has several modelling views. The

excerpt shown on the top-right green corner of Figure 146 applies in this case too as it

includes the BPMN Ontology.

- The APQC Ontology, which contains the ontology reflecting the class hierarchy of the

APQC Process Classification Framework (APQC 2014);

- The FBPDO Ontology (Functional Business Process Description Ontology), which

contains the class hierarchy of objects and actions. The combination of objects and actions

is used to describe functional requirements and specifications of process activities or groups

of activities (see Sub-section 4.2.6.4.4);

- The Domain Ontology, which is described in Sub-section 5.3.2.1. Both APQC Ontology

and FBPDO Ontology are imported in the Domain Ontology.

- The Palette Ontology, which is described in Sub-section 5.3.2.1. In this case, the two

classes po:PaletteConnector and po:PaletteElement contain the instances for displaying

the graphical notations of BPMN. Just as in Use Case 1, the instances also contain the

relations to the respective classes in the Modelling Language Ontology.

Identical to the previous use case, the above set of ontologies is uploaded to the triplestore

in order to populate the palette (see left-hand side of Figure 154). The subsequent selections of

the BPaaS DSML and the Process Modelling View enable the population of the palette (see

the right-hand side of Figure 154). Note that the displayed graphical notations in the palette are

the same as for BPMN 2.0. This is correct since BPaaS extends BPMN.

318

7.4.2.3 User actions performed in the Graphical User Interface

The description of the user actions is underpinned by Figure 155. The figure shows nine steps

through which the modelling extension is performed. As afore-mentioned, the desired

conceptual result is shown on the bottom of Figure 155. The nine steps are detailed below.

- Step 1: the user right-clicks on the graphical notation “Group” in the palette and then click

on “Extend Group”. This opens the pop-up window for the element extension.

- Step 2: the following specifications are entered in the pop-up window: (1) the prefix for the

new element “bpaas”; (2) the name of the new element “Generating Customer Billing

Data”; (3) a comment for the new element “This concept specifies …”; (4) the graphical

notation to display in the palette; and (5) the graphical notation to display in the Model

Editor. Thus, the “Create New Modelling Element” button is clicked to create the new

modelling element with the mentioned specifications. The view in Step 3 opens

subsequently.

- Step 3: from this view, the “Semantic Mapping” tab is selected. This opens the view that

allows adding the semantic mappings. Once the “Insert new Semantic Mapping” button is

clicked, the view in step 4 opens.

- Step 4: in this step the new concept “Invoice” should be created as it does not exist yet in

the Domain Ontology. Hence, the user clicks on the “Create New Domain Element” button,

which leads to the view in step 5.

- Step 5: the new concept fbpdo:Invoice has to be entered as a sub-class of “Object”. Thus,

the class “Object” is typed in the search box. Once the concept is returned, it is selected.

Figure 154. Populating the palette with graphical notations from the “Process Modelling View” of BPaaS

319

- Step 6: the name “Invoice” is entered for the new sub-class. Subsequently, the user clicks

on the “Ok” button to save the new concept and proceeds to Step 7 (note that step 7 and

step 4 show the same view but in different point in time).

- Step 7: the new domain element “Invoice” is searched and selected. The user can, therefore,

enter the name of the new object property “isMappedWithInvoice”. In the ontology, this

object property will have bpaas:GeneratingCustomerBillingData as a domain and

fbpdo:Invoice as a range. The “Create Relation” button is then clicked so to store the new

object property in the triplestore. This action leads to the view shown in Step 8. The

dynamically generated SPARQL categorises this object property as a sub-property of

lo:elementIsMappedWithDOConcept.

- Step 8: the view in this step is the same as the one in Step 3. The difference is that the saved

object property (“isMappedWithInvoice”) is now displayed.

- Step 9: the graphical notation of the new element is displayed as a sub-concept of “Group”

in the palette. The new element appears as soon as the cursor is moved on the graphical

notation.

Figure 155. Steps to extend the BPMN “Group” with BPR annotation “Generating Customer Billing Data”

320

7.4.2.4 Query Result After Implementing Use Case 2

The three SPARQL rules that are mentioned at the beginning of the use case ensure the

knowledge propagation to the triplestore. In order to prove that the ontology matches with the

expected conceptual solution, the SPARQL query shown in Table 58 is fired against the

ontologies. The query result is shown at the bottom of Figure 156. Due to the many

specifications, only the result of the query performed after the language adaptation is reported.

The complete screenshot can be found in Appendix F: Evaluation, folder F1.

From left to right, the query result in

321

 shows the following specifications:

- The label of the newly created palette element: “Generating Customer Billing Data”. Rows

8 and 9 in Table 58 allow retrieval of this specification.

- The file name of the graphical notation for the new palette element. The ontology contains

also the file name of the graphical notation for the Model Editor. It is, however, left out for

a better readability of the query result. Row 10 in Table 58 allows retrieval of this

specification.

- The comment of the new palette element. Row 11 in Table 58 allows retrieval of this

specification.

- The label of the parent instance of the newly created palette element, i.e. “Group”. Rows

12 and 13 of Table 58 allow retrieval of this specification.

- The category to which the new palette element belongs. Row 14 in Table 58 allows retrieval

of this specification.

- The default values “false” for the datatype property

po:paletteConstructIsHiddenFromPalette, which is assigned to the created palette element.

Row 15 in Table 58 allows retrieval of this specification.

- The created class bpaas:GeneratingCusotmerBillingData to which the new palette element

is related. Rows 16 in Table 58 allows retrieval of specification.

- The newly added domain element fbpdo:Invoice. Row 17 and 18 in Table 58 allow

retrieval of this specification.

- The parent class bpmn:Group of the newly added class

bpaas:GeneratingCusotmerBillingData (note the different prefix in the two classes (bpaas

and bpmn), which distinguishes the two ontologies). Row 19 in Table 58 allows retrieval

of this specification.

The retrieved knowledge demonstrates the correct propagation of the language extension

into the triplestore. Such extension included both (1) the creation and association of annotation

properties and object property (i.e. semantic mapping), and (2) the creation and association of

domain concepts. The graphical representation of the modelling language, which results from

the user actions (see Figure 155), is consistent with the generated machine-interpretable

knowledge. Therefore, for the considered functionalities, consistency between the human- and

machine interpretable representation of the modelling language is proved. In turn, the

functionalities “Creating New Modelling Constructs”, “Creating New Domain Ontology

Concepts” and “Creating New Semantic Mappings” are validated.

322

Figure 156. Query results after domain-specific adaptations in Use Case 2: Extending BPMN Group

323

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX bpaas: <http://ikm-group.ch/archimeo/bpaas#>

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

SELECT DISTINCT ?paletteElementLabel ?graphicalNotation4Palette ?comment

?parentPaletteElementLabel ?paletteCategory ?isHidden ?relatedClass ?newDomainConcept

?superClassOfNewModellingElement

WHERE {

?paletteElement rdf:type po:PaletteElement .

?paletteElement rdfs:label ?paletteElementLabel .

?paletteElement po:paletteConstructHasPaletteThumbnail ?graphicalNotation4Palette .

bpaas:GeneratingCustomerBillingData rdfs:comment ?comment .

?paletteElement po:paletteConstructHasParentPaletteConstruct ?parentPaletteElement .

?parentPaletteElement rdfs:label ?parentPaletteElementLabel .

?paletteElement po:paletteConstructIsGroupedInPaletteCategory ?paletteCategory .

?paletteElement po:paletteConstructIsHiddenFromPalette ?isHidden .

?paletteElement po:paletteConstructIsRelatedToModellingLanguageConstruct ?relatedClass .

lo:isMappedWithInvoice rdfs:range ?newDomainConcept .

lo:isMappedWithInvoice rdfs:domain ?relatedClass .

bpaas:GeneratingCustomerBillingData rdfs:subClassOf ?superClassOfNewModellingElement .

?relatedClass rdfs:label ?modellingElementLabel .

FILTER (?modellingElementLabel = "Generating Customer Billing Data") .

}

Table 58 SPARQL query to prove consistency in Use Case 2: Extending BPMN Group

324

7.4.3 Validation of Functionalities for Creating New Bridging Connectors

and Datatype Properties

The AOAME’s functionalities “Extend modelling construct”, “Create semantic mapping”,

“Create bridging connector” and “Created datatype property” are used to implement the third

use case. Use Case 3 is similar to the one introduced in Sub-section 5.3.4.2.9 and is extracted

from the Patient Transferal Management case (Section 4).

7.4.3.1 Description of Use Case 3: Adding ICF Standard Document

In this use case, the transferal manger needs to document medical information of patients

according to the International Classification Of Functioning Disability Health (World Health

Organisation, 2016), i.e. ICF Standard. Such medical information is required to be in the cost

reimbursement request, which must be sent to the health insurance provider. A request that

includes medical information of patients that does not comply with the standard is rejected.

Therefore, the transferal manager needs a quick access to such medical information while

preparing the request for the patient’s case.

The ICF Standard is a specific document. Therefore, it is added as a specialisation of the

concept Data Document. The latter belongs to the Document and Knowledge Modelling View

of DSML4PTM (see bottom of Figure 157). On the other hand, the preparation of the cost

reimbursement request is a BPMN User Task called Prepare KoGu. The request itself is

modelled with a data object called KoGu Data Object, which is an input for the task Prepare

KoGu. Both the user task and the data object belong to the Process Modelling View of

DSML4PTM (see upper part of Figure 157). Next, given the need for the transferal manager to

quickly access to medical information, a bridging connectore “is part of” is added between the

ICF Standard document and the KoGu Data Object (see Figure 157).

In this use case, we assume that both the ICF Standard and the connection to the KoGu

Data Object are not yet available from the DSML4PTM. Thus, domain-specific adaptations

are to be performed.

325

Figure 158 depicts the conceptual solution of this use cases both (a) before and (b) after

before and after the domain-specific adaptations, which are on top and bottom of the figure,

respectively. The available elements and relations before the language adaptation are:

dkmm:Data_Document from the Document and Knowledge Meta-Model (DKMM);

dsml4ptm:KoGuDataObject from DSML4PTM, and the parent class bpmn:DataObject from

BPMN. The concept dsml4ptm:KoGuDataObject extends the “bpmn:DataObject”. Medical

information regarding the ICF Standard is also available. They already exist in the ICF

Ontology (National Center for Biomedical Ontology, 2012). Since this contains domain

knowledge and is not a language per se, it is imported and integrated in the Domain Ontology.

Figure 157. Bridging connector between the ICF Standard document and KoGu Data Object

326

Further properties could also be considered in the ICF Standard, e.g. the patient progress status

as well as general concepts like the physical location, which is defined in the Top Level

Ontology (Emmenegger et al., 2013). However, they are left out to avoid stretching too much

the use case.

Bottom of Figure 158 shows the expected result after performing the domain-specific

adaptations. The result contains the following new resources:

- a new class dsml4ptm:ICFStandard as a sub-class of dkmm:Data_Document.

- four semantic mappings having dsml4ptm:ICFstandard as a domain and Body Function,

Activities and Participation, Environmental Factors, Body Structures as ranges.

- two properties for the new class dsml4ptm:ICFStandard, label and comment.

Figure 158. Conceptual solution (a) before and (b) after adding and referring ICF Standard document

327

- one datatype property for specifying date and time in dsml4ptm:ICFStandard.

- an object property dsml4ptm:icfStandardIsPartOfKoGuDataObject (i.e. bridging

connector), which has dsml4ptm:ICFstandard as a domain and

dsml4ptm:KoGuDataObject as a range.

- one instance po:ICFstandard of the class po:PaletteElement.

- one object property to denote that the instance po:ICFstandard has the instance

po:Data_Document as a parent.

- properties for the instance po:ICFstandard already filled with concrete values, which are

relevant for displaying the graphical notation on the palette. Specifically, the name ICF

Standard Document, file names for the two chosen graphical notations, the category

inherited from the parent po:Data_Document (i.e.

po:Category_Document4DSML4PTMDocumentView), the related class in the modelling

language ontology dsml4ptm:ICFStandard, and the “false” value, which denotes that the

element will be displayed on the palette.

7.4.3.2 Set of ontologies for Use Case 3

The set of ontologies required to implement Use Case 3 are as follows:

- The BPMN Ontology (see Use Case 1 and 2).

- The DKMM Otology, which contains the class hierarchy, attributes and relations of the

Document and Knowledge Meta-Model (DKMM).

- The DSML4PTM Ontology, which contains the class hierarchy, attributes and relations of

the DSML4PTM. DSML4PTM extends, among others, BPMN and DKMM.

- The Modelling Language Ontology (see Sub-section 5.3.2.1). The three language

ontologies BPMN and DKMM and DSML4PTM are imported and integrated in the

Modelling Language Ontology. Modelling elements from the three ontologies are entered

as sub-classes of lo:ModellingElement while modelling relations are entered as sub-classes

of lo:ModellingRelation. The modelling language DSML4PTM has several modelling

views, i.e. process modelling view, document and knowledge modelling view, organisation

modelling view, Decision Modelling View and the control element modelling view. The

green quadrant in Figure 159 shows an excerpt of the Modelling Language Ontology

containing concepts of both DKMM and BPMN.

- An excerpt of the ICF Ontology, which contains a few concepts of the National Centre for

Biomedical Ontology (2012).

- The Domain Ontology (Sub-section 5.3.2.1). The ICF ontology is imported in the Domain

Ontology. The orange quadrant in Figure 159 shows an excerpt of the Domain Ontology

containing concepts of the ICF Standard.

- The Palette Ontology (Sub-section 5.3.2.1). The two classes po:PaletteConnector and

po:PaletteElement contains the instances for displaying the graphical notations of BPMN.

Such instances are already linked to the respective classes in the Modelling Language

Ontology. The blue quadrant in Figure 159 shows an excerpt of the Palette Ontology, which

contains two palette elements po:DataDocument and po:DataObjects. As the figure shows,

the two instances are linked with the homonym classes, which belong to the modelling

languages DKMM and BPMN, respectively.

328

Just as in the previous use cases, this set of ontologies is uploaded to the triplestore in order

to populate the palette. Differently from the previous two use cases, the selected modelling

language for the palette is DSML4PTM (i.e. Domain Specific Modelling Language for Patient

Transferal Management) and the selected modelling view is “Document and Knowledge

Modelling View”.

Figure 159. Excerpt of the Palette Ontology, Modelling Language Ontology and Domain Ontology related to the

modelling languages DKMM, BPMN and ICF

329

7.4.3.3 User Actions Performed in the Graphical User Interface

Figure 160 depicts the user actions that are performed to implement Use Case 3. These are

expressed in more detail below:

- Step 1: the user right-clicks on the graphical notation “Data Document” in the

palette and then clicks on “Extend Group”. This action opens the pop-up window

for the element extension.

- Step 2: the user enters the following specifications in the respective fields: (1)

“dsml4ptm” as prefix, (2) “ICF International Standard” as a label for the new

element, (3) “International Classification of Functioning, Disability and Health

https://bioportal.bioontology.org/ontologies/ICF?p=classes” as a comment, (4)

the graphical notation for the palette and (5) the graphical notation for the Model

Editor. Then, once the “Create New Modelling Element” button is clicked, the new

modelling element is created along with the entered specifications. In parallel, the

Datatype Property view opens.

- Step 3: the user clicks on the “Insert new Datatype Property” button, which opens

the view that allows new data type properties to be added.

- Step 4: the user enters the name for the new datatype property

ICFstandardHasTimeStamp and the type of value for DateTime. Once the “Create

Attribute” button is clicked, the property is created and stored in the triplestore.

- Step 5: the view shows the previously created Datatype property.

- Step 6: the user selects first the “Bridging Connector” tab and then clicks on the

“Insert New Bridging Connector” button. This action opens the new view that

allows the birding connectors to be added.

- Step 7: The user types in the search box to look for the existing modelling element

to add. The modelling element is retrieved from the ontology and subsequently

selected. Next, the user enters “ICFStandardIsPartOfDataObject” as a name for the

new object property. As soon as the button “Create Relation” is clicked on, the

object property is created and stored in the triplestore. Moreover, the object property

is entered as a sub-property of lo:elementHasBridgingConnector.

- Step 8: the view in this step shows the just entered bridging connector with its name

and range.

- Step 9: similar to Use Case 2, the user selects the “Semantic Mapping” tab, and

clicks on the “Insert new Semantic Mapping” button. The latter opens the view that

allows new semantic mappings to be entered.

- Step 10: in this view the user types the desired domain concepts in the search box.

Hence, one at a time, the selected domain elements are: Body Function, Body

Structure, Environment Factors, and Activities and Participations. For each created

property the user assigns a name, which is used to create the URI for the new

property. The new object properties are entered as sub-properties of

lo:elementIsMappedWithDOConcept.

- Step 11: all the four entered semantic mappings are presented in this view.

- Step 12: this view shows that the new modelling element has been added as sub-

concept of Data Document and is displayed as soon as the cursor is moved on the

graphical notation.

330

Figure 160. Steps to extend the modelling element “Data Document” with “ICF Standard”

331

7.4.3.4 Query Result After Implementing Use Case 3

The semantic rules (2, 3 and 4) that are incorporated in the functionalities ensure the

propagation of the language adaptations to the ontology in the triplestore. The SPARQL query

in Table 59 was executed to retrieve the newly produced knowledge from the triplestore. The

query result is shown in the bottom part of Figure 161. Like for Use Case 2, due to the many

specifications only the query result performed after the language adaptation is reported (the

complete screenshot can be found in Appendix F, folder F1).

From left to right, the query result in Figure 161 shows the following specifications:

- The label of the newly created palette element: “ICF Standard”. Rows 9 and 10 of Table

59 allows retrieval of this specification.

- The file name of the graphical notation for the Palette. The ontology also contains the file

name of the graphical notation for the Model Editor but it is not retrieved so as not to

overcrowd the query result. Row 11 of Table 59 allows retrieval of this specification.

- The default values “false” for the datatype property

po:paletteConstructIsHiddenFromPalette, which is assigned to the created palette element.

Row 12 of Table 59 allows retrieval this specification.

- The category to which the new palette element belongs. Row 13 of Table 59 allows retrieval

of this specification.

- The parent instance of the newly created palette element, i.e. “Data Document”. Row 14 of

Table 59 allows retrieval of this specification.

- The created class dsml4ptm:ICFStandard to which the new palette element is related. Row

16 of Table 59 allows retrieval of this specification.

- The comment of the created class. Row 17 of Table 59 allows retrieval of this specification.

- The parent class dkmm:Data_Document of the newly added class dsml4ptm:ICFStandard.

Note the different prefix of the two classes (dkmm and dsml4ptm), which distinguish the

ontology files. Row 18 of Table 59 allows retrieval of this specification.

- The added datatype property dsml4ptm:ICFStandardHasTimeStamp. Rows 20 and 21 of

Table 59 allow retrieving this specification.

- The chosen value type for the datatype property, i.e. “DateTime”. Rows 20 and 22 of Table

59 allow retrieval of this specification.

- The new object property added as a bridging connector:

dsml4ptm:ICFStandardIsPartOfKoGuDO. Rows 24 and 25 of Table 59 allow retrieval of

this specification.

- The modelling element dsml4ptm:KoGuDataObject, which is the range of the bridging

connector. Rows 24 and 26 of Table 59 allow retrieval of this specification.

- One of the four object properties added as semantic mappings:

dsml4ptm:ICFStandardIsMappedWithBodyFunction. Rows 28 and 29 of Table 59 allow

retrieval of this specification. Note that the query result has four rows because of the four

different semantic mappings, which are used to specify the modelling element ICF

International Standard.

- The domain element icf:b_BodyFunction, which is the range of the above-mentioned

semantic mapping. Rows 28 and 30 of Table 59 allow retrieval of this specification.

332

All the new above-listed ontology resources were created according to the domain-specific

adaptations previously described. The new resources match with the desired outcome that was

initially set (see Sub-section 7.4.3.1), thus the changes are propagated correctly. Moreover, the

query result proves that the machine-interpretable representation of the modelling language is

consistent with the graphical representation. The latter has been shown in the previous Sub-

section (see Figure 160). Therefore, the remaining functionalities of Feature 1 (see Sub-section

6.3.1) “Creating New Bridging Connectors” and “Creating New Datatype Properties” are also

validated.

Figure 161. Query results after domain-specific adaptations in Use Case 3: Adding and Referring ICF Standard

document

333

PREFIX lo: <http://fhnw.ch/modellingEnvironment/LanguageOntology#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

SELECT DISTINCT ?paletteElementLabel ?graphicalNotation4Palette ?isHidden ?paletteCategory

?parentPaletteElement ?relatedClass ?comment ?parentClassOfNewModellingElement ?attribute

?valueType ?bridgingConnector ?modellingElement ?semanticMapping ?DOconcept

WHERE {

 ?paletteElement rdf:type po:PaletteElement .

 ?paletteElement rdfs:label ?paletteElementLabel .

 ?paletteElement po:paletteConstructHasPaletteThumbnail ?graphicalNotation4Palette .

 ?paletteElement po:paletteConstructIsHiddenFromPalette ?isHidden .

 ?paletteElement po:paletteConstructIsGroupedInPaletteCategory ?paletteCategory .

 ?paletteElement po:paletteConstructHasParentPaletteConstruct ?parentPaletteElement .

 ?paletteElement po:paletteConstructIsRelatedToModellingLanguageConstruct ?relatedClass .

 ?relatedClass rdfs:comment ?comment .

 ?relatedClass rdfs:subClassOf ?parentClassOfNewModellingElement .

 ?attribute rdf:type owl:DatatypeProperty .

 ?attribute rdfs:domain ?relatedClass.

 ?attribute rdfs:range ?valueType.

 ?bridgingConnector rdfs:subPropertyOf lo:elementHasBridgingConcept .

 ?bridgingConnector rdfs:domain ?relatedClass.

 ?bridgingConnector rdfs:range ?modellingElement.

 ?semanticMapping rdfs:subPropertyOf lo:elementIsMappedWithDOConcept .

 ?semanticMapping rdfs:domain ?relatedClass.

 ?semanticMapping rdfs:range ?DOconcept .

?relatedClass rdfs:label ?relatedClassLabel .

 FILTER (?modellingElementLabel = "ICF International Standard") .

} ORDER BY ?DOconcept

Table 59 SPARQL query to prove consistency in Use Case 3: Adding and Referring ICF Standard

Document”

334

7.4.4 Validation of Functionalities for Deleting Modelling Constructs and

Properties

This sub-section describes the validation of the two AOAME’s delete functionalities “Deleting

Modelling Construct” and “Removing Datatype Properties, Bridging Connectors, Semantic

Mappings”. For this purpose, a use case is extracted from the Patient Transferal Management

application domain. This use case is a follow-up of the previously described Use Case 3 (see

Sub-section 7.4.3). The set of ontologies for Use Case 3 (see Sub-section 7.4.3.2) are identical

for this use case. Their description is, therefore, omitted in this sub-section.

7.4.4.1 Description of Use Case 4: Deleting ICF Standard document and/or

properties

This use case is split into two sub-use cases, where in the first, the transferal manager does not

need the ICF Standard document any longer, and thus wants it to be deleted. In the second sub-

use case the transferal manager keeps the ICF Standard document but wants to remove the

bridging connector with the KoGu Data Object.

Figure 162 shows the conceptual representation of the use case, where:

1. the arrow named “(1) To delete” indicates all the resources that should be deleted as

soon the modelling element “ICF Standard” is deleted. As Figure 162 shows, such

adaptation updates both the Modelling Language Ontology and the Palette Ontology.

2. the arrow named “(2) To delete” indicates the resource to be deleted once the bridging

connector “isPartOf” is deleted. In this case, only the Modelling Language Ontology is

affected.

The deletion of the modelling element is described below, while the deletion of the bridging

connector is described in Sub-section 7.4.4.1.3.

335

Figure 162. Conceptual solution for Use Case 4: Deleting ICF Standard document and properties

336

7.4.4.1.1 Deleting ICF Standard document

In the following, the three steps illustrate the user actions taken to delete the modelling element

ICF Standard. Figure 163 graphically depicts the three steps.

- Step 1: the user right-clicks on the modelling element ICF Standard and subsequently clicks

on “Delete”. Then, the window pop-up asking for confirmation of the removal appears.

- Step 2: the user clicks on the “OK” button in order to confirm the removal of the selected

modelling element.

- Step 3: the modelling element is deleted from the triplestore. In result, the graphical

notation is no longer displayed in the palette.

Note that the modelling element can be removed because it does not have any sub-concepts.

As already stated in Sub-section 0, all modelling elements that have sub-concepts are not

allowed to be deleted to avoid unintentionally deleting classes that may be wanted.

Figure 163. Steps to delete the modelling element ICF Standard

337

7.4.4.1.2 Query Result After Implementing Use Case 4 - Deleting a Modelling

Construct

The dynamic instantiation of SPARQL Rule 6, ensures that the user actions are correctly

propagated in the ontology. To prove consistency between the graphical modelling language

and the ontology, the query in Table 60 was fired both before and after deleting the modelling

element. In particular, the SPARQL query asks for (see also Table 60):

- all properties of the modelling element dsml4ptm:ICFStandard (see ?predicateOfME) and

all objects to which these properties are associated (see ?objectOfME);

- all properties of the palette element po:ICFStandard (see ?predicateOfPE) and all objects

to which these properties are associated (see ?objectOfPE).

Both query results are depicted in Figure 164. The query result on the left-hand side of

Figure 164 shows an excerpt of the 40 retrieved entries. For instance, the first entry contains

the following:

- In the first two columns there are the property rdfs:subClassOf and the class

dkmm:Data_Document, which states that the class dsml4ptm:ICFStandard is sub-class of

dkmm:Data_Document.

- In the third and fourth columns there are the property

po:paletteConstructIsRelatedToModellingLanguageConstruct and the class

dsml4ptm:ICFStandard, which state that the palette element po:ICFStandard (from the

Palette Ontology) is related to the class dsml4ptm:ICFStandard (from the Modelling

Language Ontology).

The complete list of the retrieved entries can be found in Appendix F: Evaluation, folder 3.

In contrast, the query result on the right-hand side of Figure 164 is empty. Note that among

the deleted resources there is the property rdf:type for both dsml4ptm:ICFStandard and

po:ICFStandard:

- rdf:type for dsml4ptm:ICFStandard states that the latter is a class;

- rdf:type for po:ICFStandard states that the latter is an instance of the class

po:PaletteElement.

These complete list of the 40 retrieved entries can be found in Appendix F: Evaluation,

folder F2.

By deleting rdf:type in this case, both the class dsml4ptm:ICFStandard and the instance

po:ICFStandard are deleted simultaneously. In order to prove that, an additional query was

executed (see Table 61). The query retrieves the sub-class of Data Document as well as the

instance of the class palette Element, which has the instance Data Document as a parent.

As shown in Figure 164, the query was performed before and after deleting the modelling

element ICF Standard. The results of the new query are shown in Figure 165 and confirm that

both the modelling element and the palette element are deleted. Also, the query result is

consistent with the graphical representation of the language, which is depicted in Figure 163

of Sub-section 7.4.4.1. Hence, consistency between the human- and machine-interpretable

knowledge is proved also for the functionality “Deleting Modelling Constructs”. The

functionality is, therefore, validated.

338

Figure 164. Query results about the properties (a) before and (b) after the deleting the ICF Standard document

Figure 165. Query results about the modelling element (a) before and (b) after deleting ICF Standard document

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX dsml4ptm: <http://fhnw.ch/modellingEnvironment/DSML4PTM#>

SELECT DISTINCT ?predicateOfME ?objectOfME ?predicateOfPE ?objectOfPE

WHERE {

dsml4ptm:ICFStandard ?predicateOfME ?objectOfME .

po:ICFStandard ?predicateOfPE ?objectOfPE .

} ORDER BY ?objectOfME

Table 60 SPARQL query to prove that properties of ICF Standard document are deleted

339

7.4.4.1.3 Deleting Bridging Connector “isPartOf”

The functionality “Removing Datatype Properties, Bridging Connectors and Semantic

Mappings” allows the removal of datatype properties, bridging connectors and semantic

mappings. The reference SPARQL Rule 7 is the same for all the three property types,

independently from which property types is to be deleted. Therefore, showing the validation of

one property type is enough as it would extend to the remaining two property types. The

validation of the functionality, in this case, focuses on the bridging connector. Specifically, the

functionality is used to delete the bridging connector “isPartOf”.

The steps are depicted in Figure 166 and are described as follows:

- Step 1: right-click on the modelling element of which property is to be deleted (i.e. ICF

Standard) and click on “Edit ICF International Standard”. This leads to the pop-up window

that allows editing or deleting properties of the selected modelling element.

- Step 2: select the “Bridging Connector” tab to show all the bridging connectors of the

selected modelling element. As described in Sub-section 6.3.2.1, the bridging connectors

are retrieved by a dynamically generated SPARQL SELECT.

- Step 3: click on the “Delete” button of the bridging connector that is to be deleted:

lo:ICFStandardIsPartOfKoGuDataObject.

- Step 4: as expected, the bridging connector is no longer available as it has been removed.

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?modellingElement ?paletteElement

WHERE {

?modellingElement rdfs:subClassOf <http://fhnw.ch/modellingEnvironment/dkmm#Data_Document> .

?paletteElement rdf:type po:PaletteElement .

?paletteElement po:paletteConstructHasParentPaletteConstruct po:DataDocument_4DSML4PTM .

}

Table 61. SPARQL query to prove that ICF Standard document is deleted

340

7.4.4.1.4 Query Result After Implementing Use Case 4 - Deleting a Property

The dynamic instantiation of SPARQL Rule 7, ensures that the language adaptations are

correctly propagated to the ontology. In this case also, in order to prove consistency the query

shown in Table 62 was executed both before and after deleting the property. The SPARQL

query asks for all properties associated with the bridging connector

lo:ICFStandardIsPartOfKoGuDO (see ?predicate in Table 62) and all objects (i.e. targeting

resources) to which these properties are associated (see ?object in Table 62).

Both query results are depicted in Figure 167. The query result on the left-hand side of

Figure 167 shows the five retrieved entries. In particular:

1. The first entry contains the predicate rdf:type and the object owl:ObjectProperty, which

specifies that the bridging connector is an object property.

2. The second entry contains the predicate rdfs:label and the object “ICF Standard is part

of Data Object”, which specifies the label of the bridging connector.

3. The third entry contains the predicate rdfs:range and the object

dsml4ptm:KoGuDataObject, which specifies the range (i.e. target) of the bridging

connector.

4. The fourth entry contains the predicate rdfs:domain and the object

dsml4ptm:ICFStandard, which specifies the domain (i.e. source) of the bridging

connector.

Figure 166. Steps required to delete a bridging connector (i.e. object property) in the GUI

341

5. The fifth entry contains the predicate rdfs:subPropertyOf and the object

lo:elementHasBridgingConcept, which specifies that the bridging connector is a sub-

property of the mentioned object property.

The right-hand side of Figure 167 shows the result of the query being executed after the

deletion. The query returns an empty result, which proves that the bridging connector is

removed. The result is consistent to the graphical representation that has been shown in Figure

166. Therefore, the consistency between the graphical representation of the modelling language

and its machine-interpretable representation is proven for the removal of bridging connectors.

The same above-seen steps are applied to also remove both datatype properties and

semantic mappings. The difference is only in the content of the steps from 2 to 4. For instance,

removing a datatype property implies the selection of the “Datatype” tab in step 2. The same

is for removing a semantic mapping, which requires the selection of the “Semantic Mapping”

tab.

As already mentioned, the functionality instantiates the same rule for each property type,

thus the proof of consistency is true also for the removal of datatype properties and semantic

mappings. In turn, the functionality “Removing Datatype Properties, Bridging Connectors and

Semantic Mappings” is validated for all the three property types.

Figure 167. Query results (a) before and (b) after deleting the property

SELECT DISTINCT ?predicate ?object

WHERE {

<http://fhnw.ch/modellingEnvironment/DSML4PTM#ICFStandardIsPartOfKoGuDO> ?predicate ?object .

}

Table 62. SPARQL query to prove consistency after deleting properties

342

7.4.5 Validation of Functionalities for Editing Modelling Constructs and

Properties

AOAME’s functionalities “Editing Modelling Construct”, “Editing Datatype Properties,

Bridging Connectors and Semantic Mappings” are validated by implementing Use Case 5:

Editing ICF Standard document and properties. In this case also, the use case is a follow-up of

Use Case 3 (Sub-section 7.4.3). The same set of ontologies are, therefore, uploaded to the

triplestore. The considered concepts and relations were already shown in Figure 162 of Sub-

section 7.4.4.

7.4.5.1 Description of Use Case 5: Editing Modelling Element ICF Standard and

Properties

In this use case the transferal manager is not satisfied with the properties of the ICF Standard

document and suggests some changes. Specifically, the following properties should be edited:

1. the label, comment, graphical notation for the palette (i.e. annotation properties);

2. the bridging connector (i.e. object property);

3. a datatype property;

The annotation properties of the modelling element are edited by the functionality “Edit

Modelling Construct”, which updates resources in both the Modelling Language Ontology and

the Palette Ontology. The remaining two properties are edited by the functionality “Editing

Datatype Properties, Bridging Connectors and Semantic Mappings”, which updates resources

in the Modelling Language Ontology only.

The three following sub-sections contain the description of the user actions applied to the

use case to change (1) annotation properties (Sub-section 7.4.5.1.1), (2) object properties (Sub-

section 7.4.5.1.2) and (3) datatype property (Sub-section 7.4.5.1.3) of the modelling element

“ICF Standard”.

7.4.5.1.1 Editing Annotation Properties for ICF Standard

The following steps describe the user actions performed to change the annotation properties of

the modelling element ICF Standard. The last two steps (6 and 7) are added to show that

changes were applied. The steps are also depicted in Figure 169.

- Step 1: right-click on the “ICF International Standard” and click on “Edit ICF

International Standard” modelling element. This action opens the Edit window, which

shows all the annotation properties of the selected modelling element. The annotation

properties are retrieved by the SPARQL SELECT, which is dynamically created. The

upper part of Figure 168 shows the fragment of the query that retrieves the annotation

properties. The bottom part of Figure 168 shows the query result with the annotation

properties.

343

- Step 2: change the label and the comment. Additionally, the graphical notation for the

palette is changed whereas the one for the model editor remains unchanged.

- Step 3: changes are completed.

- Step 4: click on the “Save” button to apply the new changes. This action instantiates

SPARQL rule 8 (see Sub-section 5.3.4.4.4), which foresees a DELETE statement

followed by an INSERT statement. Hence, the new changes is stored in the ontology.

- Step 5: (a) both the new graphical notation and the new label for the modelling element

dsml4ptm:ICFStandard are displayed in the palette. Same as before the changes, the

graphical notation appears only after the cursor is moved on the parent class “Data

Document”. (b) By clicking on the new graphical notation, a new model element is

instantiated in the Model Editor. Note that since the graphical notation for the Model

Editor was not changed, the model element shows a different graphical notation than

the palette element.

- Step 6: In order to demonstrate that the changes were applied, right-click on the

modelling element “ICF International Standard” and select “Edit ICF Standard

Document”.

- Step 7: All the changed properties are shown with the new values.

Differently from the previous validation approaches, in this use case the query result can

be omitted as it would return the same annotation properties shown in step 7 of Figure 169.

In conclusion, changing annotation properties of a modelling construct leads to consistency

between the graphical representation and the knowledge in the triplestore. Thus, the

functionality “Edit Modelling Construct” is validated.

Figure 168. SPARQL query to show current annotation properties of ICF Standard

344

7.4.5.1.2 Edit Object Properties for ICF Standard

Editing object properties of a modelling construct through the functionality “Editing Datatype

Properties, Bridging Connectors and Semantic Mappings” consists of changing the label or the

range of both bridging connectors and semantic mappings. The functionality is supported by

dynamically instantiating SPARQL Rule 9 (see Sub-section 5.3.4.4.5). The SPARQL rule

foresees a DELETE statement followed by an INSERT statement.

In this activity, the language engineer changes the label of the bridging connector

“dsml4ptm:ICFStandardIsPartOfKoGuDataObject” and its range. The bridging connector is

between the classes dsml4ptm:ICFStandard and dsml4ptm:KoGuDataObject (see also Figure

162 in Sub-section 7.4.4).

The required user actions to make such changes are described below. The steps are also

depicted in Figure 171.

- Step 1: right-click on the modelling element “ICF International Standard” and click

on “Edit ICF International Standard”, which opens the Edit window. The window

shows all the properties of the selected modelling element.

- Step 2: select the “Bridging Connector” tab, which opens the window to edit the

bridging connector.

Figure 169. Steps to change annotation properties of a modelling construct on the GUI

345

- Step 3: the bridging connector isPartOf is retrieved by the SPARQL SELECT,

which is dynamically generated from the endpoint getBridgeConnectors (see Sub-

section 6.3.2.1). The upper part of Figure 170 shows the generated query. Note that

since we are editing the modelling element dsml4ptm:ICFStandard, it is

dynamically assigned to the query instance. Bottom Figure 168 shows the result of

the query, whit the bridging connector

dsml4ptm:ICFStandardIsPartOfKoGuDataObject. Therefore, the bridging

connector is displayed in the view. Click on the drop-down list of the bridging

connector, select the connector isPartOf , and click on “Modify”. The action opens

a new window “Edit Relation”.

- Step 4: from the “Edit Relation” window, change the label into “ICF Standard is

part of Data Object” and the range to “bpmn:DataObject”. The new range can be

retrieved trhough the search box, which (in this case) queries queries all the sub-

classes of lo:ModellingElement.

- Step 5: this view shows the new label and range for the bridging connector.

- Step 6: the new label and range for the bridging connector are saved and stored into

the triplestore. Same as in step 2, the bridging connector is retrieved by querying

the ontology.

Step 6 validates the functionality for the update of bridging connectors. Hence, the query

result from the triplestore is omitted as it would return the same bridging connector shown in

Step 6 of Figure 160. The graphical- and machine-interpretable representation is, therefore

proved.

Figure 170. Result of the dynamically generated SPARQL SELECT that retrieves bridging connectors

346

Changes performed on the semantic mappings require the same steps as the described

changes of bridging connectors. The only difference concerns the SPARQL query for the

retrieval of the object properties. Specifically, the query from the Semantic Mapping tab,

retrieves the sub-properties of lo:elementIsMappedWithDOconcept, instead of

lo:elementHasBridgingConcept (see row 9 on top of Figure 170). Figure 172 shows the steps

required to change the semantic mapping ICFStandardIsMappedWithBodyFunction. As when

editing a bridging connector, step 6 of Figure 172 shows the changed semantic mapping (see

range icf:ICFQualifier in step 6 of Figure 172), which is retrieved from the triplestore.

Therefore, Step 6 validates the changes for the semantic mappings. Likewise, the consistency

between the graphical and machine-interpretable representation of the modelling language is

preserved.

Figure 171. Steps to change bridging connectors of a modelling construct on the GUI

347

7.4.5.1.3 Validation of Functionality for Editing Datatype Properties

Editing datatype properties of a modelling construct consists of changing the label and value

type, e.g. xsd:integer, xsd:string, xsd:dateTime etc. The functionality the functionality “Editing

Datatype Properties, Bridging Connectors and Semantic Mappings” is also supported by

SPARQL rule 10 (see Sub-section 5.3.4.4.6). The SPARQL rule foresees a DELETE statement

followed by an INSERT statement.

In the considered edit activity, the language engineer changes the datatype property

dsml4ptm:ICFStandardhasTimeStamp, which connects the modelling elements

dsml4ptm:ICFStandard with the value type xsd:dateTime. In particular, the label of the

datatype property and the range are to be changed into “ICF Standard Document has Day of

Creation” and “xsd:date”, respectively.

The user actions to make such changes are described below. The steps are also depicted in

Figure 174.

Figure 172. Steps to change semantic mappings of a modelling construct on the GUI

348

- Step 1: right-click on the modelling element “ICF International Standard” and click on

“Edit ICF International Standard”. This action opens the Edit window, which shows all

the properties of the selected modelling element.

- Step 2: Select the “Datatype” tab, which opens the “Edit Datatype Property” window.

- Step 3: as soon as the “Edit Datatype Property” window opens, the datatype property

hasTimeStamp is retrieved by the SPARQL SELECT, which is dynamically generated

from the endpoint getDatatypeProperties (see Sub-section 6.3.2.1). The top of Figure

173 shows the generated query. Note that since we are editing the modelling element

dsml4ptm:ICFStandard, this is dynamically assigned to the query. Bottom of Figure

173 shows the result of the query, which contains the datatype property labelled as “ICF

Standard has Timestamp”. This datatype property is shown in the view of Step 3 (see

Figure 174).Click on the drop-down list of the datatype property, select the property

“ICF Standard has Timestamp” and click on the “Modify” button. Subsequently, the

“Edit Attribute” window opens.

- Step 4: from the “Edit Attribute” window, change the label and the value type of the

datatype property, i.e. “ICF Standard Document has Day of Creation” and xsd:date,

respectively.

- Step 5: click on the “OK” button to store the new values in the ontology.

- Step 6: the new label and datatype are displayed in the “Edit Datatype Property”

window”. Same as in step 2, the datatype property is displayed as it is retrieved from

the triplestore.

Step 6 validates the changes for the datatype properties. Hence, the query result from the

triplestore is omitted as it would return the same datatype property shown in step 6 of Figure

174. Consistency between the graphical and machine-interpretable knowledge is proved.

Therefore, the functionality “Editing Datatype Properties, Bridging Connectors and Semantic

Mappings” is validated also for the change of datatype properties.

Figure 173. Result of the dynamically generated SPARQL SELECT that retrieves datatype properties

349

Figure 174. Steps to change datatype properties of a modelling construct on the GUI

350

7.4.6 Validation of Functionality for Hiding Modelling Constructs

This sub-section describes the validation of the functionality for “Hiding Modelling

Constructs” by implementing Use Case 6. Like in the previous sub-section, the use case refers

to the Patient Transferal Management application domain and presents the same concepts and

relations depicted in Figure 162 of Sub-section 7.4.4.

In this use case the language engineer hides the modelling element ICF Standard to simplify

the look of the palette. This functionality “Hide Modelling Construct” is supported by the

dynamic instantiation of SPARQL Rule 11 (see Sub-section 5.3.4.4.7). This SPARQL rule

foresees a DELETE statement followed by an INSERT statement.

The user actions are depicted in Figure 174 and described in the following two steps:

- Step 1: right-click on the modelling element to hide “ICF International Standard”. Next,

click on “Hide”.

- Step 2: the hidden modelling element no longer appears in the palette.

Figure 175. Steps to hide a modelling construct from the palette

351

7.4.6.1 Query Result After Implementing Use Case 6 - Hiding ICF Standard

The generated instance of SPARQL Rule 11 ensures that the change is consistently propagated

to the ontology. In order to prove that, the query in Table 63 was fired against the ontology in

the triplestore both before and after hiding the modelling element. Specifically, the SPARQL

query retrieves the Boolean value, which is associated to the datatype property

po:paletteConstructIsHiddenFromPalette of the hidden modelling element ICF Standard.

Both query results are depicted on bottom of Figure 176. Results on the left-hand side of

the figure show the “false” Boolean value, whereas on the right-hand side the “true” Boolean

value is shown.

In conclusion, the functionality proves to preserve consistency between the graphical and

the machine-interpretable knowledge Therefore, the functionality “Hide modelling construct”

is validated.

Figure 176. Query results (a) before and (b) after hiding a modelling element from the Palette

PREFIX po: <http://fhnw.ch/modellingEnvironment/PaletteOntology#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT ?paletteElement ?value

WHERE {

?paletteElement rdf:type po:PaletteElement .

?paletteElement po:paletteConstructIsHiddenFromPalette ?value .

FILTER (?paletteElement = po:ICFStandard) .

}

Table 63. SPARQL query to retrieve the value of a datatype property

352

7.4.7 AOAME for Innovation Processes

In order to further prove the generality of the approach, the agile and ontology-aided meta-

modelling approach was implemented to support one of the most widespread innovation

processes: Design Thinking. Design Thinking is a five-phase innovation process (empathies,

define, ideate, prototype and test), where sketches are used from an early phase to increase

problem understanding, as well as later on to ideate the new solution designs (Institute of

Design Stanford, 2010). The sketching activity is being recently supported with pre-defined

digital modelling elements called SAP Scenes (Miron, Muck, & Karagiannis, 2019). However,

the set of modelling elements is limited, and the elements are not sufficiently expressive to

address all possible application domains.

To overcome this problem, the set of modelling elements SAP Scenes were integrated in

the agile and ontology-aided meta-modelling approach (Laurenzi et al., 2020). Thus, new

graphical elements and related domain-specific aspects are accommodated on-the-fly as they

are needed. The approach allows modelling both unforeseen scenarios and domain-specific

scenes for which the available elements are not expressive enough.

The integration of the SAP Scenes required their transformation into an ontology format,

i.e. SAP Scenes Ontology, which is then implemented in the ontology architecture of the

AOAME prototype.

To demonstrate the applicability of the approach in Design Thinking, Figure 177 shows a

sequence applied in a kitchen scenario. Step 3 shows the sketch of a desired kitchen. The dashed

red arrow points to the modelling element “double door fridge”, which was missing at the time

of modelling. Thus, the new fridge type was added on-the-fly through the AOAME’s

functionality “Extending Modelling Construct” (see Step 1 and Step 2 of Figure 177).

353

Figure 177. The agile and ontology-aided met-modelling approach to support Design Thinking

354

7.5 Evaluation Conclusion and Considerations

The evaluation followed the aspects determined in the evaluation strategy, which are

summarised in Table 56 (Section 7.1). The building process of the evaluation strategy was

supported by the framework of Pries-Heje et al., (2008). Here, I have discussed the three main

dimensions, which refer to the questions: what to evaluate (i.e. the agile and ontology-aided

meta-modelling approach), when to evaluate and how to evaluate. Additional literature is

considered in the “when” and “how” dimensions. In the former, it contributed to suggest the

adoption of the prototyping pattern as an evaluation method, which was based on the identified

evaluation activity Eval3. The latter is performed after the implementation of the artefact and

aims to identify how well the artefact performs in providing a solution to the addressed

problem. The prototype evaluation method is appropriate for both artificial and naturalistic

evaluation forms. The evaluation forms are discussed in the “how to evaluate” dimension. The

forms narrowed the evaluation purpose to the utility and scope (naturalistic), and correct design

of the artefact (artificial). The illustrative scenario method was then added as an additional

evaluation method to prototype for untidily and scope of the artefact. The evaluation purposes

were considered together with the artefact type (i.e. method) to determine the evaluation

criteria, namely: (1) the extent to which requirements are satisfied by the implemented

approach, its (2) operationability and (3) generality of the approach. Thus, a qualitative and

positivistic evaluation of the approach was performed with respect to these criteria.

Regarding the first criteria (the extent to which requirements are satisfied by the

implemented approach), the elaboration on Section 7.3, demonstrates how all eight

requirements are fulfilled by AOAME’s functionalities. For this, each of AOAME’s

functionalities reports which of the 11 SPARQL rules are incorporated as well as which of the

10 operators are addressed. Since all requirements are completely fulfilled by AOAME, it can

be asserted that the evaluation on the correct design of the approach is successfully carried out.

For evaluating the utility of the approach, the following criteria were considered:

- Operationability of the approach: The ability of the approach to preserve consistency

between the graphical and the machine interpretable representation while performing

on-the-fly domain-specific adaptions of modelling languages.

- Generality of the approach: The ability of the approach to be applied in different

application domains.

The operationability of the approach was evaluated by implementing real-world use cases

in AOAME, through its numerous functionalities. All the functionalities demonstrated a

preserved consistency between the graphical and the machine-interpretable representation of

modelling languages while performing domain-specific adaptations. Hence, the operationality

of the approach is proved.

The generality of the approach was also proved as AOAME was successfully applied in

different application domains, namely: the patient transferal management, business process as

a service and in the innovation process Design Thinking.

The evaluation activities for the correct design and operationability provided feedback to

refine the agile and ontology-aided meta-modelling approach. Specifically, the evaluation

activities supported the refinement of the operators, semantic rules and their relationship.

Additionally, issues concerning technical aspects were improved as well. These were (a) the

correct generation of SPARQL rules from the implemented methods (b) the correct query

results of the search functionalities and (c) the look and feel of the GUI. Each point is detailed

below.

a. There have been cases where methods were not producing the wanted SPARQL

rule and, thus, amendments were applied.

355

b. A similar issue was reported for the queries of search functionalities, in which

expected results might not have been shown. For instance, the query that

implements the creation of the semantic mappings required changes.

c. The look and feel of the GUI, on the other hand, was improved for a more

intuitive distribution of meta-modelling activities (e.g. changing or adding

elements, graphical notations, labels, attributes or relations). In particular, the

sequential windows for the meta-modelling were created to address presented

information in a step-wise approach. For instance, in the extension functionality

the first window has annotation properties and graphical notations whereas

properties only appear in the subsequent window. Input for the style

improvements also came when exposing AOAME in conferences and, research

visits, as well as to colleagues and masters students. Further improvements can

be identified by performing usability evaluation of AOAME, which is out of

scope of this research, thus is left to future work.

These improvements demonstrate the effectiveness of the feedback loop of the Design

Science Research from the evaluation to the design cycle of the artefact.

Finally, the successful evaluation has demonstrated that the proposed agile and ontology-

aided meta-modelling approach is capable of tackling the two main challenges presented in

Section 4.3, i.e.:

Challenge #1: An agile meta-modelling approach should promote the

tight cooperation between domain experts and language engineers by

avoiding the separation between the language engineering and modelling

components.

The first challenge is tackled by integrating language engineering and modelling into one

single component. The integrated component allows the interleave between language

engineering, modelling and evaluation activities. Therefore, the tight cooperation between

language engineers and domain experts is promoted from an early stage of DSML engineering.

Challenge #2: An agile meta-modelling approach should avoid

sequential DSML engineering phases while adapting modelling languages.

The second challenge is tackled by the possibility to perform domain-specific adaptations

of modelling languages on-the-fly. As changes are suggested, they can be accommodated

immediately, through the AOAME’s functionalities. Therefore, the new requirements do not

have to go through the sequential language engineering phases before a new version of the

DSML is released for usage.

A getting started guide to use AOAME can be found in Appendix E: Prototype , folder E6.

356

8. CONCLUSION AND FUTURE WORK

The research conducted in this work is within the Information Systems (IS) discipline and

conceives a new scientific agile and ontology-aided meta-modelling approach. It combines

meta-modelling of Domain-Specific Modelling Language (DSML) for Enterprise Modelling

(EM) with the use of Knowledge Representation and Reasoning (KRR), which is a subset of

Artificial Intelligence. For Knowledge Representation and Reasoning (KRR), ontologies and

semantic rules are used.

Meta-Modelling is an approach to develop Domain-Specific Modelling Languages

(DSML) in Enterprise Modelling (EM). This research focused on the meta-modelling practice

of re-using existing modelling languages to develop DSMLs, i.e. domain-specific adaptations

of modelling languages. The literature review focused on raising awareness of approaches for

domain-specific adaptations of modelling languages. Moreover, two cases from the practice of

domain-specific adaptations were analysed. Expert interviews were conducted as an additional

input to ensure relevance to the practice of domain-specific adaptation in industry. As a result,

357

a list of requirements was elicited to create an agile meta-modelling approach, which is

theoretically grounded as well as relevant in application domains.

It was shown, however, that existing approaches would lead to inconsistency issues when

performing domain-specific adaptations of modelling languages. Inconsistency would arise

between the graphical and the machine-interpretable representations of modelling languages.

To tackle this problem, the agile approach was incorporated into an ontology-aided approach.

The latter preserves machine-interpretable representation of modelling languages also when

changes occur. As a result, an agile and ontology-aided meta-modelling approach was

proposed. Next, the approach was implemented in a prototypical modelling environment called

AOAME.

The main contributions of this research work are summarized in the following three points:

1. An agile meta-modelling approach allows intertwining language engineering,

modelling and evaluation activities quickly. For this, language engineering and

modelling were integrated in a single component. The latter enables the on-the-fly

domain-specific adaptations of modelling languages. Ten operators were derived to

support such adaptations. The approach has two prominent benefits:

a. it promotes the tight cooperation between the language engineer and the domain

expert from an early stage of the DSML engineering;

b. it avoids the sequential engineering phases while engineering a DSML.

The two benefits foster the quick and high-quality development of DSMLs. This

contribution tackles the first research problem about the lack of agility in domain-

specific adaptions of modelling languages.

2. An ontology-aided approach preserves consistency between the graphical and the

machine-interpretable representation of modelling languages when performing the

domain-specific adaptations on-the-fly. Therefore, it tackles the second research

problem. In particular, the specification of a modelling language is defined in an

ontology, which allowed creating a machine-interpretable representation for the

corresponding graphical modelling languages. In order to preserve consistency while

domain-specific adaptations occur, eleven semantic rules were proposed in support of

the ten operators.

3. The agile and ontology-aided meta-modelling approach was implemented in the

modelling environment AOAME. Functionalities are implemented allowing the user to

perform the on-the-fly domain specific adaptations of modelling languages. SPARQL

rules are dynamically generated to propagate changes to the ontology. Therefore, the

preservation of consistency between the graphical and machine-interpretable

representations of modelling languages was automated.

The reminder of this chapter is structured as follows: in the next section, results are

summarized with respect to the research questions and references to the relevant chapters and

sections in the body of the thesis will be provided. Next, the contributions of this research work

are discussed in terms of (1) artefacts (2) practice, and (3) body of knowledge (Section 8.2).

The methodological suitability of the artefact is reported in Section 8.3. Then research

limitations and future work are listed in Section 8.4. Finally, Section 8.5 contains the

concluding summary.

358

8.1 Summary Results

This section presents a summary of the thesis results by providing the answers to the research

questions.

As already mentioned in Section 1.2, this research work followed the constructive approach

suggested by Cronje (2011) so that the answers to research questions contribute to answer the

main research question. Hence, the answers described in the following sub-sections contribute

to answering the main research question:

How can agility for domain-specific adaptations of modelling

languages be fostered while preserving seamless consistency between their

graphical and machine-interpretable representations?

8.1.1 Problems Hindering Agility in Domain-Specific Adaptations

(Research Question 1)

Research question 1 (RQ1) guided the research towards identifying problems that hinder agility

of domain-specific adaptations.

RQ1: What are the problems that hinder agility in domain-specific

adaptations of modelling languages?

To answer this research question, understanding was increased on how to perform domain-

specific adaptations of modelling languages. The case study research strategy was employed,

from which two cases were created. In each case one domain-specific modelling language

(DSML) was developed through domain-specific adaptations (Sections 4 and 4.2).

From existing work and literature, it was identified that DSMLs are created either for

software development (see Sub-section 2.6.1) or for knowledge retention (see Sub-section

2.6.2). This research work focused on the latter. DSMLs for knowledge retention has the

ultimate goal to support decision making. To achieve this goal, one way is to create a DSML

with the solely declarative purpose, i.e. domain-specific aspects of an application domain are

modelled for human interpretability. An alternative is to extend the declarative purpose to an

automation purpose, where model aspects are machine-interpretable. The first modelling

purpose falls within the field of Knowledge Management while the second one extends to the

field of Knowledge Engineering.

The first case on Patient Transferal Management (Section 4) relates to Knowledge

Management, which foresees only the declarative representation of relevant domain-specific

aspects. The other case Business Process as a Service (Section 4.2) deals with Knowledge

Engineering, which foresees not only a declarative representation of domain-specific aspects,

but also automation of knowledge using ontologies.

In the case studies two domain-specific modelling languages (i.e. DSML4PTM and BPaaS

DSML) were created following the AMME Lifecycle methodology (Karagiannis, 2018). The

methodology instantiates the Agile Modelling Method Engineering framework (Karagiannis,

2015) and provides a rigorous methodology for the development of DSMLs. From existing

work and literature (see Sub-section 2.10.4) it was identified that this methodology is the most

suitable for domain-specific adaptations of existing enterprise modelling languages.

Both approaches were implemented in the ADOxx toolkit. For BPaaS, the approach

included the semantic lifting of models, which was implemented through an ADOxx

functionality. The functionality allowed to annotate models with ontology concepts.

Subsequently, the BPaaS DSML was implemented using an ontology-based meta-modelling

and the results were shown in and validated through a web-based interface.

359

The two cases were analysed (see Section 4.3) to answer RQ1. From this, a list of problems

hindering agility of DSML engineering was elaborated together with the two main challenges

to tackle. The two main challenges revert to the following two agile principles:

- the tight cooperation between the language engineers and the domain experts while

engineering DSMLs;

- the avoidance of sequential engineering phases while engineering DSMLs.

8.1.2 Needs for Domain-Specific Adaptations (Research Question 2)

Research question 2 (RQ2) guided the research to increase understanding of the needs for

domain-specific adaptations of modelling languages.

RQ2: What are the needs for domain-specific adaptations of modelling

languages?

In order to provide an answer, interviews were performed with modelling experts from

various companies (see Section 4.4). The analysis of the interview results led to the derivation

of three main adaptation complexity levels: (1) modelling language simplification, (2) change

of abstract syntax and notation and (3) extend abstract syntax and add notation. From level 1

to level 3 the complexity for domain-specific adaptations increases. Finally, interview findings

were combined with the literature and lessons learned from the two DSMLs development to

derive a list of requirements for the domain-specific adaptations. The requirements for domain-

specific adaptations allow the following:

- The simplification of modelling languages, which includes the removal of modelling

constructs and properties as well as hiding modelling constructs.

- The change of modelling constructs, which includes the update of properties of the

modelling constructs.

- The extension of modelling constructs, which includes the creation of new modelling

constructs and properties.

- The integration of existing modelling constructs, which is done by creating the sub-

class property among modelling constructs from different modelling languages.

8.1.3 Fostering Agility in Domain-Specific Adaptations (Research

Question 3)

Research question 3 (RQ3) guided the research in the suggestion of an approach that fosters

agility in performing the domain-specific adaptations of enterprise modelling languages.

RQ3: How can agility be fostered when performing domain-specific

adaptations of modelling languages?

This research question is answered by suggesting an approach for the agile and ontology-

aided meta-modelling, which is described in Chapter 5. The approach addresses the two main

challenges derived in the answer of RQ1 as well as fulfils the requirements elicited in the

answer of RQ2. Namely, the new agile meta-modelling approach

- promotes the tight cooperation of the language engineering and the domain experts from

an early stage of DSML engineering by allowing the intertwine of language

360

engineering, modelling and evaluation activities. For this purpose, language

engineering and modelling were integrated into one component (Section 5.1);

- avoids the sequential DSML engineering phases by allowing the on-the-fly domain-

specific adaptations in the integrated component.

The on-the-fly domain-specific adaptations are applied to affect the three main

specifications of a modelling language: graphical notation, abstract syntax and semantics. A

further literature investigation (Sub-section 5.1.4) has shown that language semantics not only

resides in the abstract syntax (i.e. meta-model and constraints) but also in domain concepts that

are language-independent. Hence, the seminal works in (Harel & Rumpe, 2000; Karagiannis

& Kühn 2002; Atkinson & Kuhne, 2003) were considered to further specify the semantics with

both semantic domain and semantic mapping and to distinguish between the linguistic and

domain views of a language specification. An additional set of four requirements was thereby

derived to focus on the domain-specific adaptations of semantic domain and semantic

mappings.

All the requirements (eight in total) were used to derive a set of ten operators, which enable

the domain-specific adaptations on-the-fly (Sub-section 5.1.6). The operators were conceived

through several steps until a refined version was provided. A critical reflection on the side

effects produced using the operators is also provided.

Since the side effects can be addressed by grounding a modelling language with machine-

interpretable semantics, the approach is then elaborated in Section 5.2. The elaboration is

supported by additional literature as well as by knowledge gained from creation of the

semantically-enhanced BPaaS DSML (Section 4.2). From this elaboration it was understood

that current approaches for grounding modelling languages with machine-interpretable

semantics (such as semantic lifting) are not suitable for the proposed agile meta-modelling

approach. That is, on-the-fly domain-specific adaptations of modelling language (i.e. human-

interpretable representation) create inconsistencies with the reflecting ontology (i.e. machine-

interpretable representation). Inconsistency problems are described in Sub-section 5.2.2.

To overcome these problems, an ontology-aided approach for agile meta-modelling was

proposed and is described in Section 5.3. The approach builds upon an ontology-based meta-

modelling approach. Conversely to semantic lifting, the ontology meta-modelling approach

foresees the definition of the afore-mentioned modelling language specifications directly in the

ontology. Therefore, there is no longer the need of annotating meta-models with ontology

concepts. A new ontology architecture was conceived to support the definition of modelling

language specifications in an ontology-based meta-model. The chosen ontology language is

also described and motivated (see Sub-section 5.3.2.2). A set of eleven semantic rules were

conceived to aid the propagation of changes from the graphical to the machine-interpretable

representation of a modelling language. The rigorous and sound creation of the rules is ensured

by following the methodology of Grüninger and Fox (1995), which is slightly adapted to create

and validate SPARQL rules, syntactically and semantically. Each rule employs at least one

operator, which allows the preservation of consistency between the graphical and machine-

interpretable representations of a DSML while performing domain specific adaptations on-the-

fly. As a result, the agile and ontology-aided meta-modelling approach answers research

question 3.

361

8.1.4 Automating the Agile and Ontology-Aided Meta-Modelling

Approach (Research Question 4)

Research question 4 (RQ4) guided the research in automating the proposed agile and ontology-

aided meta-modelling approach.

RQ4: How can the agile approach for domain-specific adaptations that

preserves seamless consistency between the graphical and the machine

interpretable representation be automated?

The agile and ontology-aided meta-modelling approach is implemented in the prototypal

modelling environment AOAME, i.e. Agile and Ontology-Aided Meta-modelling

Environment. In particular, the approach is implemented in a Model-View-Controller (MVC)-

based architecture, which consists of three components: a triplestore, a graphical user interface

(GUI) and a web service. The three components and their technical specifications are described

in Chapter 6.

The GUI has two sub-components: the palette and the model editor. The elaboration of the

model editor is left to future work. At present, the model editor displays the graphical notations

that are instantiated from the palette. Thus, graphical models can be created in the model editor.

The palette is further elaborated in Section 6.2. It allows the on-the-fly domain-specific

adaptations of modelling languages. First, the three-step approach implemented to display the

graphical notations of modelling languages is introduced. This includes the explanation of the

set of ontologies to upload on the triplestore. The set of ontologies reflects the specification

suggested in the agile and ontology-aided meta-modelling approach. To realize the logic for

displaying graphical notations in the palette, methods for the dynamic generation of SPARQL

queries were implemented in the web service.

Section 6.3 describes the main functionalities that are implemented in AOAME and enable

the on-the-fly domain-specific adaptations. Each functionality incorporates calls for the

methods that dynamically instantiate the previously-mentioned eleven SPARQL rules. In this

sense, the functionalities automate the propagation of changes from the graphical to the

machine-interpretable representation of a modelling language. Therefore, while performing on-

the-fly domain-specific adaptations, consistency between the two knowledge representations

is ensured seamlessly.

362

8.2 Contribution

Artefacts (i.e. constructs, models, methods, and instantiations) are purposeful and built to

address unsolved problems (Hevner et al., 2004).

The main artefact produced in this research work is an approach that fosters agility in

domain-specific adaptations of modelling languages (or more in general terms meta-modelling)

while preserving consistency between the graphical and machine-interpretable representation

of the modelling languages. The approach is implemented in a prototypical modelling

environment (AOAME).

The creation of the artefact was guided by the research questions. Several sub-artefacts

were created by answering each of the research questions. The contributions of both artefact

and sub-artefacts as well as their relationship is further elaborated in Sub-section 8.2.1.

The research work was set within a real-world context from the beginning. Use cases from

two different application domains were implemented: (1) Patient Transferal Management from

the eHealth domain and (2) BPaaS from the Cloud domain. In turn, the results of the research

work are relevant to business practice. Moreover, results were recently transferred into

innovation processes (Laurenzi et al., 2020).

8.2.1 Artefact and Sub-Artefact Contributions

According to Hevner and Chatterjee (2010) “the fundamental principle of design science

research is that knowledge and understanding of a design problem and its solution are acquired

in the building and application of an artefact”. In this research work, knowledge and

understanding in each sub-artefact were gained incrementally and contributed to build the main

artefact.

As depicted in Figure 178, the main artefact is specified in three main contributions: (1) an

agile meta-modelling approach, (2) an ontology-aided meta-modelling approach, and (3) the

AOAME prototype. The lower part of Figure 178 shows the five sub-artefacts. The dotted

arrows show the knowledge flow among the (sub)artefacts contributions. It starts from the

(sub)artefact where knowledge is gained and ends in a (sub)artefact where the gained

knowledge is used as input.

Figure 178. Main artefact, sub-artefacts and knowledge flow among them

363

Table 64 and Table 65 contain a comprehensible description of the three artefact

contributions and the five sub-artefacts contributions, respectively. In both tables, each

(sub)artefact contribution is specified with (a) a description, (b) the unsolved problem, (c) what

knowledge was gained, whether it was gained from the conceptual and/or from the practical

understanding, the knowledge flow, and (e) the reference(s) in the thesis.

Artefact

Contribution

Description Unsolved Problem Gained Knowledge Reference

in the

thesis

Agile meta-

modelling

approach.

An approach for the on-the-fly

domain-specific adaptations of

modelling languages. It includes (1)

the integration between the

language engineering and

modelling components in a single

modelling environment; (2) The

operators that enable the on-the-fly

domain specific adaptations.

Waterfall-like approach

in domain-specific

adaptations of modelling

languages (or more in

general terms meta-

modelling).

Conceptual

understanding of:

Integration between

modelling and meta-

modelling.

Operators for the on-

the-fly domain-specific

adaptations of

modelling languages.

Gained knowledge

used as input for the

prototype

implementation.

Section 5

Ontology-

aided

approach.

An approach for the seamless

alignment between the graphical

and machine representation of

modelling languages. It includes (1)

the specification of the ontology

architecture (2) semantic rules for

the propagation of changes between

the two knowledge representations.

Inconsistency between

the graphical and

machine interpretable

representation of

modelling languages

caused by changes in the

graphical modelling

languages.

Conceptual

understanding of:

Ontology architecture

for the specification of

modelling languages:

Palette Ontology,

Modelling Language

Ontology, and Domain

Ontology

Rules in support of

operators for the

propagation of changes

from the graphical

modelling language to

the ontology.

Gained knowledge

used as input for the

prototype

implementation.

Section 5.3

The AOAME

Prototype.

The prototype implements the agile

and ontology- aided meta-

modelling approach in a

prototypical modelling

environment. It automates the

seamless alignment between the

graphical and machine interpretable

representation of modelling

languages. Thus, consistency

between the two representations is

kept while the on-the-fly domain

specific adaptations are performed.

Lack of automation for

an approach that preserve

consistency between the

graphical and machine

interpretable

representation of

modelling languages

while on-the-fly domain-

specific adaptations are

performed.

Conceptual and

practical understanding

of:

Dynamic generation

and execution of rules.

Functionalities that

implement rules and

support operators.

System architecture.

System

implementation.

Gained knowledge

used to refine the main

artefact.

Chapter 6

Table 64. Main artefact contribution

364

Sub-Artefact

Contribution

Description Unsolved Problem Gained Knowledge Reference

in the

thesis

1 Model-based

approach for

extendable

DSMLs.

A two-tier approach that allows

the accommodation of new

modelling requirements in a

DSML. Domain-specific

aspects are described

declaratively in the form of an

ontology.

Inability to keep up

with the

accommodation of

new domain-specific

aspects in application

models.

Conceptual and

practical understanding

of:

Meta-modelling, and its

use for creating DSMLs

Gained knowledge used

as input for (2).

Conceptual

understanding of:

Combination between

models and ontologies.

Gained knowledge used

as input for (2) and (3).

Sub-

section

4.1.4

2 DSML4PTM A domain specific modelling-

language for the patient

transferal management. The

model-based approach in (1) is

further elaborated to create a

DSML based on existing

modelling languages.

Insufficient

expressiveness of

existing modelling

languages to model

domain-specific

aspects of the patient

transferal

management.

Conceptual and

practical understanding

of:

Domain-specific

adaptations of

modelling languages.

Problems afflicting the

domain-specific

adaptations.

Gained knowledge used

as input for the agile

meta-modelling

approach (Table 64).

Section 4

3 Semantically-

enhanced

BPaaS

The domain-specific modelling

language BPaaS (Business

Process as a Service) is an

extension of BPMN and allows

modelling both business

requirements and IT

specifications of Cloud services.

Insufficient

expressiveness of

existing modelling

languages to model

business process

requirements and IT

specifications of cloud

services.

Conceptual and

practical understanding

of:

Domain-specific

adaptations of a

modelling language

within BPaaS

application domain.

Problems afflicting the

domain-specific

adaptations.

Gained knowledge used

as input for the agile

meta-modelling

approach (see Table

64).

Section 4.2

Semantically-

enhanced

BPaaS

The semantically-enhanced

approach of BPaaS consists of

an instantiation of the semantic

lifting approach for the smart

matchmaking between business

requirements and IT

specifications.

Difficulties to identify

Cloud services or

workflows by non-IT

experts.

Conceptual and

practical understanding

of:

Approaches that

combine models with

ontologies.

Ontology

conceptualisation and

structure.

Section 4.2

Table 65. Sub-artefacts contribution

365

Semantic lifting (or

annotation) and

deriving drawbacks.

Gained knowledge used

as input for (4).

4 Ontology-based

meta-modelling

approach.

This approach grounds the

graphical modelling constructs

with the ontology concepts,

which reside in the meta-model.

Inconsistency

between graphical

models and ontology

given by the

separation of the two

knowledge

representations.

Conceptual

understanding of:

Ontology-based meta-

modelling

conceptualisation and

structure.

Gained knowledge used

as input for (5) and for

the ontology-aided

meta-modelling

approach (see Table

64).

Sub-

section

5.3.1

5 Context-

Adaptive

Questionnaire.

This sub-artefact allows

retrieving cloud services with

the least number of questions.

Whereas the questionnaire is

specified in a business language,

cloud services are specific in IT.

Hence the artefact allows a

Business-IT alignment using

ontologies and rules. The

artefact implements the

ontology-based meta-modelling

approach.

Inefficient

specification of

business process

requirements and IT

descriptions of cloud

services.

Conceptual and

practical understanding

of:

Ontologies and

architecture

specification for the

ontology-based meta-

modelling artefact.

Rules and queries in

SPARQL for the

graphical models-

ontology interaction,

i.e. queries for the

matchmaking and rules

to infer knowledge.

Mechanisms for the

propagation of changes

from the ontology to the

graphical models.

Gained knowledge used

as input for an

ontology-aided meta-

modelling approach

(see Table 64).

Sub-

section

4.2.6.5.1

In design science research, artefacts and acquired knowledge should contribute to the

practice and to the body of knowledge (Hevner and Chatterjee 2010). The following two

sections describe the contributions made by this research.

366

8.2.2 Contribution to Practice

The acquired knowledge and understanding in this research work were communicated to

practice by means of research projects and implementation of real-world application scenarios.

(1) Contributions to modelling and domain experts in the patient transferal management:

Modelling and domain experts that deal with patient transferal management benefit

from the model-based approach used to create a Domain-Specific Modelling Language

for Patient Transferal Management (DSML4PTM), which is implemented in ADOxx.

This mainly refers to the way several existing modelling languages were conceptually

extended and integrated with each other to accommodate as far as possible domain-

specific requirements. Both the approach and the technical solution were communicated

within the results of the Swiss research project Patient-Radar. Hence, the solution was

made available to experts, which enabled use of the modelling tool in practice. This

was validated in a workshop held at the Institute for Information and Process

Management (IPM-FHSG) of the University of Applied Sciences St. Gallen with a total

of five modelling experts and one domain expert. In the workshop experts worked on

domain-specific models built with DSML4PTM and reflecting real-case scenarios. The

workshop was

(2) Contributions to modelling experts in Business Process as a Service (BPaaS) modelling

experts that deal with the paradigm BPaaS can benefit from

(a) the BPMN extension that allows modelling Cloud service requirements and

specifications;

(b) a semantic-enriched approach for the model annotation with ontologies as well

as for the matchmaking between the business requirements and IT specifications

of Cloud service;

(c) an ontology-based meta-modelling approach for the quick identification of

Cloud services.

During the European research project CloudSocket each of the above contributions

were integrated into prototypical products of the industry partner BOC64.

(3) Contribution to innovation experts: innovation experts can benefit from the AOAME

approach to foster problem understanding and ideation in innovation processes. The

AOAME approach was first communicated by myself to innovation experts from the

Herman Hollerith Zentrum65 (HHZ), during a visit in June 2017. The HHZ is an institute

of the University of Reutlingen (in Germany) characterized by a high degree of synergy

with local small and medium companies. AOAME was extended to integrate the pre-

defined set of modelling elements of SAP Scenes, which are used in innovation

processes to create storyboards. Hence, the AOAME approach went through an

additional iteration of the Design Science Research (DSR) cycle, resulting in an

extended artefact named AOAME4Scenes (Laurenzi et al., 2020). The latter allows

adapting and extending the SAP Scenes to create storyboards of unforeseen scenarios.

AOAME4Scenes is currently being evaluated in practice in a project with the company

64 https://ch.boc-group.com/
65 https://www.hhz.de/home/

https://ch.boc-group.com/
https://www.hhz.de/home/

367

aYo66. In order to facilitate its use by practitioners AOAME4Scenes was deployed on

the Cloud platform Heroku67.

8.2.3 Contribution to the Body of Knowledge

The contribution of this research work to the body of knowledge spans the research fields of

Domain-Specific Modelling Language, Meta-Modelling, Enterprise Modelling and

Ontologies. The communication occurred primarily through publications in conference

proceedings and in scientific books as well as through conference presentations.

The contribution to the body of knowledge is chronologically presented in the following

list:

1. An early result of a model-based approach creates an extendable domain-specific

modelling language that foresees the declarative description of domain-specific aspects

in the form of an ontology (Laurenzi, 2014; Reimer & Laurenzi, 2014). The approach

maps the language constructs with a machine-interpretable representation, to maintain

the application models executable. The research activity contributed to raise awareness

of approaches that create DSMLs, which declaratively describe domain-specific aspects

as well as increasing awareness of approaches that combine models and ontologies. The

approach was further elaborated in the two approaches described below in (2) and (3).

2. A domain-specific modelling language for the patient transferal management

(DSML4PTM) (Laurenzi et al., 2017), which is then analysed to contribute to the

elicitation of requirements for the new agile approach (Section 4)

3. A domain-specific modelling language for business process as a service (BPaaS

DSML) (Hinkelmann, Laurenzi et al., 2016). The practice of engineering BPaaS was

analysed to contribute to the elicitation of requirements for the new agile approach

(Section 4.2).

4. An approach for the semantic lifting of graphical modelling languages and models

within the context of BPaaS (Hinkelmann, Laurenzi, et al., 2016; Griesinger et al.,

2017). The experience of semantic lifting increased awareness of the problems

associated with it. Lessons learned were beneficial in devising the new ontology-based

meta-modelling approach (see Sub-section 5.2.2). The ontology-based meta-modelling

approach was proposed as an alternative to semantic lifting. The approach is published

in (Hinkelmann, Laurenzi et al., 2018) and is described in Sub-section 5.3.1.

5. The ontology-based meta-modelling approach was applied to a context-adaptive and

ontology-based questionnaire in BPaaS (Kritikos, Laurenzi et al., 2018) (see Sub-

section 4.2.6.5.1).

6. An agile meta-modelling approach avoids sequential engineering phases following the

publication of a critical analysis of the waterfall-type engineering lifecycle for the

creation of DSMLs (Laurenzi, Hinkelmann, Izzo, et al., 2018) (see also Section 4.3). It

fosters (1) agility in domain-specific adaptations of modelling languages (or more in

general terms meta-modelling) and (2) promotes the tight cooperation between

language engineers and domain experts. The approach integrates modelling with meta-

modelling in the same modelling component. Such integration included a set of

66 https://www.ayo4u.com
67 the triplestore can be reached in the following link: https://fusekiherokutest.herokuapp.com/dataset.html

and the GUI in the following link: https://demo-angular-webapp.herokuapp.com/modeller.

https://www.ayo4u.com/
https://fusekiherokutest.herokuapp.com/dataset.html
https://demo-angular-webapp.herokuapp.com/modeller

368

operators for the on-the-fly domain-specific adaptations and are published in (Laurenzi

et al., 2018) as well as reported in Section 5.2.

7. The combination of ontology-aided and agile meta-modelling (Laurenzi, Hinkelmann,

& van der Merwe, 2018). The approach was elaborated with an ontology architecture

containing (1) the specification of an ontology-based meta-model (Sub-section 5.3.2)

and (2) semantic rules in support of the operators (Sub-section 5.3.3). The approach

was implemented in the agile and ontology-aided modelling environment (AOAME),

which is described in Chapter 6.

8. The agile and ontology-aided meta-modelling approach was applied to create

AOAME4Scenes (Laurenzi et al., 2020), a domain-specific modelling language for the

creation of storyboards. The approach fosters problem understanding and ideation in

innovation processes like Design Thinking. It has been shown that it has advantages

compared to a non-agile approach (Miron et al., 2019) – see also Sub-section 7.4.7.

8.3 Methodological Suitability

This section describes the suitability of the methodology Design Science Research, chosen to

conduct the research work. For this, the guidelines for design science in information systems

research proposed by Hevner et al. (2004) were considered. The guidelines support evaluating

the combination of this research work with design science research. In Table 66 research

aspects of this thesis are described to fit the intent of each guideline. Sections also cover each

mentioned research aspect.

Guideline Description Research Aspects

Design as an

Artefact

Design-science research must

produce a viable artefact in the form

of a construct, a model, a method, or

an instantiation.

The artefact of this research is an agile and ontology-aided

meta-modelling as a method (Chapter 5).

The main contributions to this artefact are:

- An agile meta-modelling approach as a method

(Section 5).

- An ontology-aided approach for the agile meta-

modelling as a method (Section 5.3).

- The prototype AOAME as implementation and

instantiation (Chapter 6).

Problem Relevance The objective of design-science

research is to develop technology-

based solutions to important and

relevant business problems.

Challenges and requirements for agility are derived from

two cases that tackle real-world problems as well as from

expert interviews in industry (Chapter 4).

Design Evaluation The utility, quality, and efficacy of a

design artefact must be rigorously

demonstrated via well-executed

evaluation methods.

In order to rigorously evaluate the agile and ontology-aided

meta-modelling approach an evaluation strategy was built

and described in Section 7.2. The strategy was built

according to relevant literature on evaluation of DSR

artefacts. Among others, the strategy indicated the methods

and evaluation criteria against which the artefact was

evaluated. Hence, “Prototype” and “Illustrative Scenario”

were chosen as most appropriate method types. Real-world

use cases (i.e. illustrative scenarios) were implemented

through the prototype to evaluate the operationability (also

called utility in more general terms) and generality of the

approach (Section 7.4). The correct design of the artefact

was evaluated by demonstrating how the prototype satisfies

the design requirements (Section 7.3).

Research

Contributions

Effective design-science research

must provide clear and verifiable

contributions in the areas of the

design artefact, design foundations,

and/or design methodologies.

The proposed agile and ontology-aided meta-modelling

approach was presented in a reproducible way (Chapter 5)

and it contributed to several scientific publications (see

Sub-section 8.2.3).

Table 66. Adherence of the research to DSR guidelines from Hevner et al. (2004)

369

Research Rigor Design-science research relies upon

the application of rigorous methods in

both the construction and evaluation

of the design artefact.

This research work follows design-science research. To

increase understanding of the problem, the case study

strategy is also employed. Namely, two cases were

presented in which DSMLs were created following the

AMME Lifecycle (see Sections 4 and 4.2). A qualitative

analysis was then performed over the two cases and

problems were revealed (Section 4.3). Interviews were

conducted (Section 4.4) and their analysis is described in

(Sub-section 4.4.3). For the creation of semantic rules (Sub-

section 5.3.3) the Grüninger and Fox (1995) methodology

was adopted.

Finally, two method types “Prototype” and “Illustrative

Scenario” were considered for the evaluation. Illustrative

scenarios reflect the real world to demonstrate relevance in

the practice.

Design as a Search

Process

The search for an effective artefact

requires utilizing available means to

reach desired ends while satisfying

laws in the problem environment

The artefact is designed through iterative cycles. The

implemented artefact was iteratively tested against the

evaluation criteria (Sub-sections 7.3 and 7.4). Hevner et al.

(2004) refer to it as the Generate/Test Cycle, which aims to

discover an effective solution to a problem. As stressed in

Section 7.5, such a cycle was helpful to identify deficiencies

of the prototype, which were addressed to refine it.

Communication of

Research

Design-science research must be

presented effectively both to

technology-oriented as well as

management-oriented audiences.

The results of this research were disseminated in peer-

reviewed conference proceedings as well as presented to

project application partners and entities external to projects

like innovation experts (see Sub-section 8.2.1).

370

8.4 Research Limitations, Exclusions and Future Directions

Limitations and exclusions of the research are determined by its scope.

- A related open issue, which this research does not deal with is the possible inconsistencies

that operators can cause to existing models. This can happen if an adaptation of a DSML

deletes modelling elements which are already used in existing models. Further research

should investigate solutions to deal with this issue.

- Future research should also investigate how to specify constraints or rules in the agile and

ontology-aided meta-modelling approach. That is, constraints or rules can be added to

further specify semantics of the linguistic view (Frank, 2013a). As already seen in the

literature (see Section 2.5), constraints can be injected in the meta-model to forbid certain

combinations of elements. Constraints can have two entry points in AOAME (see Figure

179): (1) directly in the ontology, and (2) through the graphical user interface. Rospocher,

Ghidini and Serafini, (2014) and Natschläger (2011) use an ontology language with higher

expressiveness than RDF(S) such as OWL-DL (the Description Logics fragment of OWL).

This, however, has limitations due to OWL’s Open World Assumption and Unique Name

Assumption (Rospocher, Ghidini and Serafini, 2014). The constraint language SHACL

(W3C, 2017) tackles this issue by allowing the addition of expressive statements to less

expressive ontology languages like RDF(S). Initial research has already been carried out in

a master’s thesis I supervised. In contrast to expressive ontologies where constraints are

hardwired in ontology concepts, the SHACL constraints can be changed without affecting

the ontology as well as they can be re-used by other ontology concepts. Given the higher

flexibility, the approach with SHACL promotes agility, thus is suggested as a future

direction.

- A recently started research that builds on the AOAME approach concerns creating good

models using intelligent assistance (Laurenzi et al., 2019). The new approach aims to

continuously learn domain-specific semantic patterns by combining knowledge

representation and reasoning with machine learning techniques. Such research direction is

currently being proposed in two Swiss research project proposals: one with the above-

mentioned company BOC and one with abiliCor68.

68 https://www.abilicor.ch/

Figure 179. Adding constraints from the graphical modelling language (left) or from the ontology (right)

https://www.abilicor.ch/

371

8.5 Concluding Summary

This research work starts by stressing the lack of agility in current engineering processes for

the development of DSMLs. This problem has been identified from both the literature

investigation and the analysis of two case studies. The two case studies describe the

development of two DSMLs, which address two different application domains, the Patient

Transferal Management and the Business Process as a Service. Findings revealed that agility

is hindered by the sequential engineering lifecycle, where modelling and evaluation activities

cannot start before the DSML is deployed for usage. This is problematic as it tends to keep the

two key roles for DSML engineering - the language engineer and the domain expert – separate.

The side effect is that extra engineering iterations are likely to be needed until a satisfactory

version of a DSML is achieved. Each engineering iteration, however, is time-consuming as a

new requirement is first captured and documented, then conceptualised, implemented and

finally a new version of a DSML is deployed so that modelling and evaluation can re-occur.

To address these problems an agile meta-modelling approach has been conceived. The

approach integrates language engineering and modelling into one single component. In contrast

to current meta-modelling approaches, language engineering, modelling and evaluation

activities can be quickly interleaved. The quick interleave is enabled by on-the-fly domain-

specific adaptations, which are supported by a set of ten operators. As a result, the agile meta-

modelling approach fosters the tight cooperation between the language engineers and domain

experts from an early stage and avoids the sequential engineering phases. Thus, the creation of

the quick and high quality of DSMLs is promoted.

It was shown, however, that the use of the operators can lead to some drawbacks. In

particular, the meaning of the newly created modelling constructs can be misunderstood as they

are left to the human interpretation only. To overcome this drawback the agile meta-modelling

was supplemented with an ontology-aided approach. The latter embeds the specifications of

modelling languages into an ontology. The meaning of the modelling constructs is, therefore,

made not only explicit but also machine-interpretable. Models that are built with such a

ontology-based modelling language are also ontology-based, thus leading to increase their

shared understanding as well as they are machine interpretable. In order to preserve the

machine interpretably of modelling languages, eleven semantic rules were created. The rules

support the afore-mentioned ten operators for the propagation of language adaptations from the

graphical to the machine-interpretable representation.

The agile and ontology-aided meta-modelling approach was developed in the modelling

environment AOAME. The latter enables the automated preservation of consistency between

graphical and machine-interpretable knowledge when domain-specific adaptations occur.

AOAME was then used to evaluate the approach with respect to the correct design,

operationability and generality. The approach has been successfully applied in three different

application domains, the Patient Transferal Management, Business Process as a Service and

Innovation Processes. The scientific contribution spans the research fields of Domain-Specific

Modelling Language, Meta-Modelling, Enterprise Modelling and Ontologies. Finally, three

different future research have been pointed, which build upon the presented approach. Namely,

the investigation of approaches that deal with the inconsistencies that operators can cause to

existing models; the injection of constraints in the ontology-based meta-model; and the

exploitation of the ontologies for an intelligent modelling assistance.

372

BIBLIOGRAPHY

Abecker, A., Bernardi, A., Hinkelmann, K., Kühn, O., & Sintek, M. (1998). Toward a Technology for

Organizational Memories. IEEE Intelligent Systems and Their Applications, 13(3), 40–48.

Agar, M. (1980). The Professional Stranger: An Informal Introduction to Ethnography. New York:

Nueva York EUA Academic Press.

Aier, S., & Fischer, C. (2011). Criteria of Progress for Information Systems Design Theories.

Information Systems and E-Business Management, 9(1), 133–172.

https://doi.org/10.1007/s10257-010-0130-8

Allemang, D., & Hendler, J. A. (2011). Semantic Web for the Working Ontologist: Effective Modeling

in RDFS and OWL (2nd ed.). San Francisco: Morgan Kaufmann/Elsevier.

Amziani, M., Melliti, T., & Tata, S. (2012). A Generic Framework for Service-Based Business

Process Elasticity in the Cloud. In Proceedings of the 10th International Conference on Business

Process Management, 194–199. Springer-Verlag. https://doi.org/10.1007/978-3-642-32885-

5_15

APQC. (2014). Process Classification Framework Version 6.1.1. https://www.apqc.org/resource-

library/resource-listing/apqc-process-classification-framework-pcf-cross-industry-pdf-5

Aquino, N., Vanderdonckt, J., Panach, J. I., & Pastor, O. (2011). Conceptual Modelling of Interaction.

Handbook of Conceptual Modeling, 335–358. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-15865-0_10

Aßmann, U., Zschaler, S., & Wagner, G. (2006). Ontologies, Meta-Models, and the Model-Driven

Paradigm. In C. Calero, F. Ruiz, & M. Piattini (Eds.), Ontologies for Software Engineering and

Software Technology, 249–273. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-

34518-3_9

Atkinson, C., & Kuhne, T. (2003). Model-Driven Development: A Metamodeling Foundation. IEEE

Software, 20(5), 36–41. https://doi.org/10.1109/MS.2003.1231149

Atkinson, Colin, Gerbig, R., & Fritzsche, M. (2013). Modeling Language Extension in the Enterprise

Systems Domain. In Proceedings of the 17th IEEE International Enterprise Distributed Object

Computing Conference, 49–58. https://doi.org/10.1109/EDOC.2013.15

Atkinson, Colin, Gerbig, R., & Fritzsche, M. (2015). A Multi-Level Approach to Modeling Language

Extension in the Enterprise Systems Domain. Information Systems, 54, 289–307.

https://doi.org/10.1016/j.is.2015.01.003

Atkinson, Colin, & Kühne, T. (2008). Reducing Accidental Complexity in Domain Models. Software

& Systems Modeling, 7(3), 345–359. Springer Berlin Heidelberg.

https://doi.org/10.1007/s10270-007-0061-0

Atkinson, Colin, & Kühne, T. (2017). On Evaluating Multi-Level Modeling. In Workshop

Proceedings of MODELS 2017 Satellite Event, 274-277. CEUR-WS.org. https://www.wi-

inf.uni-duisburg-essen.de/MULTI2017/wp-content/uploads/2017/09/Atkinson-

Kuehne_2017_On-Evaluating-Multi-Level-Modeling-1.pdf

Auer, S., Berners-Lee, T., Bizer, C., & Heath, T. (2015). LDOW 2013: The 8th Workshop on Linked

Data on the Web. In Proceedings of the 24th International Conference on World Wide Web -

WWW ’15 Companion, 1549–1550. New York, USA: ACM Press.

https://doi.org/10.1145/2740908.2742577

Avazpour, I., Grundy, J., & Grunske, L. (2015). Specifying Model Transformations by Direct

Manipulation using Concrete Visual Notations and Interactive Recommendations. Journal of

Visual Languages & Computing, 28, 195–211. https://doi.org/10.1016/j.jvlc.2015.02.005

Azzini, A., Braghin, C., Damiani, E., & Zavatarelli, F. (2013). Using Semantic Lifting for improving

373

Process Mining: A Data Loss Prevention System Case Study. In SIMPDA 2013: 3rd

International Symposium on Data-driven Process Discovery and Analysis, 62-73.

CEURWS.org.

Baader, F. (2011). What’s New in Description Logics. In Informatik-Spektrum, 34(5), 434-442.

Springer-Verlag. https://doi.org/10.1007/s00287-011-0534-y

Baader, F., & Nutt, W. (2003). The Description Logic Handbook: Theory, Implementation, and

Applications. Cambridge University Press. https://dl.acm.org/citation.cfm?id=885749

Baker, T., & Collier, D. A. (2005). The Economic Payout Model for Service Guarantees. Decision

Sciences, 36(2), 197–220. Wiley Online Library. https://doi.org/10.1111/j.1540-

5414.2005.00071.x

Barišić, A., Amaral, V., & Goulão, M. (2018). Usability Driven DSL Development with USE-ME.

Computer Languages, Systems & Structures, 51, 118–157. North-Holland, Elsevier.

https://doi.org/10.1016/j.cl.2017.06.005

Battistutti, O. C., & Bork, D. (2017). Tacit to Explicit Knowledge Conversion. Cognitive Processing,

18, 461–477. SpringerLink. https://doi.org/10.1007/s10339-017-0825-6

Beck, K., & Kent. (2000). Extreme Programming eXplained: Embrace Change. Addison-Wesley.

https://dl.acm.org/citation.cfm?id=318762

Becker, J. (2014). Interview with Reinhard Schütte on “Managing Large-Scale BPM Projects”.

Business & Information Systems Engineering, 6(4). Springer.

http://aisel.aisnet.org/bise/vol6/iss4/6

Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Highsmith, J., Thomas,

D. (2001). Manifesto for Agile Software Development. http://agilemanifesto.org/

Benyon, D., Bental, D., & Green, T. (1999). Conceptual Modeling for User Interface Development.

Springer-Verlag.

Berardi, D., Calvanese, D., & De Giacomo, G. (2005). Reasoning on UML class diagrams. Artificial

Intelligence, 168(1–2), 70–118. https://doi.org/10.1016/J.ARTINT.2005.05.003

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web: A New Form of Web Content

that is Meaningful to Computers will Unleash a Revolution of New Possibilities. Scientific

American, 284 (5), 34-43.

Bézivin, J. (2005). On the Unification Power of Models. Software & Systems Modeling, 4(2), 171–

188. https://doi.org/10.1007/s10270-005-0079-0

Bohdana, S., Karwowski, W., & Layer, J. K. (2007). A Review of Enterprise Agility: Concepts,

Frameworks, and Attributes. International Journal of Industrial Ergonomics, 37(5), 445–460.

https://doi.org/10.1016/J.ERGON.2007.01.007

Bork, Dominik, & Fill, H.-G. (2014). Formal Aspects of Enterprise Modeling Methods: A

Comparison Framework. In Proceedings of the 47th Hawaii International Conference on System

Sciences, 3400–3409. IEEE. https://doi.org/10.1109/HICSS.2014.422

Bork, Dominik, & Alter, S. (2018). Relaxing Modeling Criteria to Produce Genuinely Flexible,

Controllable, and Usable Enterprise Modeling Approaches. In Proceedings of the 9th

International Workshop on Enterprise Modeling and Information Systems Architectures, 46–50.

Rostock, Germany. http://eprints.cs.univie.ac.at/5575/

Bork, Dominik, Buchman, R. A., Karagiannis, D., Lee, M., & Miron, E.-T. (2019). An Open Platform

for Modeling Method Conceptualization: The OMiLAB Digital Ecosystem. Communications of

the Association for Information Systems, 44. https://doi.org/10.17705/1CAIS.04432

Brachman, R. J., Levesque, H. J., & Pagnucco, M. (2004). Knowledge representation and reasoning.

Morgan Kaufmann Publishers Inc. http://dl.acm.org/citation.cfm?id=2821570

Bräuer, M., & Lochmann, H. (2008). An Ontology for Software Models and Its Practical Implications

for Semantic Web Reasoning. The Semantic Web: Research and Applications, 34–48. Berlin,

374

Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68234-9_6

Braun, R. (2015a). BPMN Extension Profiles -- Adapting the Profile Mechanism for Integrated

BPMN Extensibility. In Proceedings of the 17th Conference on Business Informatics, 133–142.

IEEE. https://doi.org/10.1109/CBI.2015.41

Braun, R. (2015b). Towards the State of the Art of Extending Enterprise Modeling Languages. In

Proceedings of the 3rd International Conference on Model-Driven Engineering and Software

Development. Angers, France: IEEE. https://doi.org/978-989-758-136-6

Braun, R. (2016). Extensibility of Enterprise Modelling Languages. Technischen Universität Dresden.

http://www.qucosa.de/fileadmin/data/qucosa/documents/21987/phd-thesis.pdf

Braun, R., & Esswein, W. (2014). Classification of Domain-Specific BPMN Extensions. The Practice

of Enterprise Modeling, 42–57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-

45501-2_4

Braun, R., Schlieter, H., Burwitz, M., & Esswein, W. (2015). Extending a Business Process Modeling

Language for Domain-Specific Adaptation in Healthcare. In Wirtschaftsinformatik Proceedings,

32. Association for Information Systems. https://aisel.aisnet.org/wi2015/32

Braun, R., Schlieter, H., Burwitz, M., & Esswein, W. (2016). BPMN4CP Revised – Extending BPMN

for Multi-Perspective Modeling of Clinical Pathways. In Proceedings of the 49th Hawaii

International Conference on System Sciences (HICSS), 3249-3258. IEEE.

https://doi.org/10.1109/HICSS.2016.407

Bridgeland, D. M., & Zahavi, R. (2009). Business Modeling: A Practical Guide to Realizing Business

Value. Morgan Kaufmann/Elsevier.

https://books.google.ch/books/about/Business_Modeling.html?id=AzeN1lNEoNAC&printsec=fr

ontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false

Bryman, A. (2006). Integrating Quantitative and Qualitative Research: How is it Done? Qualitative

Research, 6(1), 97–113. SAGE Journals. https://doi.org/10.1177/1468794106058877

Buchmann, R. A. (2016). Modeling Product-Service Systems for the Internet of Things: The

ComVantage Method. In Domain-Specific Conceptual Modeling, 417-437. Cham: Springer

International Publishing. https://doi.org/10.1007/978-3-319-39417-6_19

Burlton, R. T., Ross, R. G., & Zachman, J. A. (2017). The Business Agility Manifesto Building for

Change. https://busagilitymanifesto.org/images/pdfs/Business_Agility_Manifesto.pdf

Burwitz, M., Schlieter, H., & Esswein, W. (2013). Modeling Clinical Pathways - Design and

Application of a Domain-Specific Modeling Language. Wirtschaftsinformatik Proceedings

2013. http://aisel.aisnet.org/wi2013/83

Cadavid, J. J., Quintero, J. B., Lopez, D. E., & Hincapié, J. A. (2009). A Domain Specific Language

to Generate Web Applications. In Antonio B., João A., & Raquel A. (Eds.), Memorias de la XII

Conferencia Iberoamericana de Software Engineering (CIbSE 2009), Medellin, Colombia, Abril

13-17, 2009, 139–144.

Cardoso, Y. C. (2010). Creation and Extension of Ontologies for Describing Communications in the

Context of Organizations. Universidade Nova de Lisboa.

Ceh, I., Crepinsek, M., Kosar, T., & Mernik, M. (2011). Ontology driven development of domain-

specific languages. Computer Science and Information Systems, 8(2), 317–342.

https://doi.org/10.2298/CSIS101231019C

Chavula, C., & Maria Keet, C. (2015). An Orchestration Framework for Linguistic Task Ontologies.

In G. P. Garoufallou E., Hartley R. (Ed.), Metadata and Semantics Research. MTSR 2015.

Communications in Computer and Information Science. 544th ed., 3–14. Springer, Cham.

https://doi.org/10.1007/978-3-319-24129-6_1

Chen, W., & Hirschheim, R. (2004). A Paradigmatic and Methodological Examination of Information

Systems esearch from 1991 to 2001. Information Systems Journal, 14(3), 197–235.

375

https://doi.org/10.1111/j.1365-2575.2004.00173.x

Chiprianov, V., Kermarrec, Y., & Rouvrais, S. (2012). Extending Enterprise Architecture Modeling

Languages. In Proceedings of the 27th Annual ACM Symposium on Applied Computing - SAC

’12 (p. 1661). New York, New York, USA: ACM Press.

https://doi.org/10.1145/2245276.2232044

Chiprianov, V., Kermarrec, Y., Rouvrais, S., & Simonin, J. (2013). Extending Enterprise Architecture

Modeling Languages for Domain Specificity and Collaboration: Application to

Telecommunications Service Design. Software & Systems Modeling. 13, 963-974. Springer.

https://doi.org/10.1007/s10270-012-0298-0>

Cho, H., Gray, J., & Syriani, E. (2012). Creating visual Domain-Specific Modeling Languages from

end-user demonstration. In Proceedings of the 4th International Workshop on Modeling in

Software Engineering (MISE), 22–28. IEEE. https://doi.org/10.1109/MISE.2012.6226010

Clark, T., van den Brand, M., Combemale, B., & Rumpe, B. (2015). Conceptual Model of the

Globalization for Domain-Specific Languages (pp. 7–20). Springer, Cham.

https://doi.org/10.1007/978-3-319-26172-0_2

Cleven, A., Gubler, P., & Hüner, K. M. (2009). Design alternatives for the evaluation of design

science research artifacts. In Proceedings of the 4th International Conference on Design Science

Research in Information Systems and Technology - DESRIST ’09 (p. 1). New York, New York,

USA: ACM Press. https://doi.org/10.1145/1555619.1555645

Cognini, R., Corradini, F., Polini, A., & Re, B. (2016). Business Process Feature Model: An Approach

to Deal with Variability of Business Processes. In Domain-Specific Conceptual Modeling, 171–

194. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-39417-6_8

Creswell, J. (2002). Research Design: Quantitative and Qualitative Approaches (2nd ed.). Thousand

and Oaks: CA: Sage.

Cronje, J. (2011). The ABC (Aim, Belief, Concern) Instant Research Question Generator.

Unpublished Manuscript.

https://pdfs.semanticscholar.org/e132/2ddf75705095fd33dc573f489861c2aaf11f.pdf

Crotty, M. (1998). The Foundations of Social Research: Meaning and Perspective in the Research

Process. Sage Publications.

De Angelis, G., Pierantonio, A., Polini, A., Re, B., Thönssen, B., & Woitsch, R. (2016). Modeling for

Learning in Public Administrations—The Learn PAd Approach. In Domain-Specific Conceptual

Modeling, 575–594. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-

319-39417-6_26

De Bruijn, J. (2003). Using Ontologies - Enabling Knowledge Sharing and Reuse on the Semantic

Web. October. Galway, Ireland.

De Leenheer, P., & Mens, T. (2008). Ontology Evolution. In Martin Hepp, P. De Leenheer, A. De

Moor, & Y. Sure (Eds.), Ontology Management - Semantic Web, Semantic Web Services, and

Business Applications, 131–176. SpringerScience + Business Media Inc.

Decker, G., Kopp, O., Leymann, F., & Weske, M. (2007). BPEL4Chor: Extending BPEL for

Modeling Choreographies. In IEEE International Conference on Web Services (ICWS 2007),

296–303. IEEE. https://doi.org/10.1109/ICWS.2007.59

Delfmann, P., Herwig, S., Lis, Ł., Stein, A., Tent, K., & Becker, J. (2010). Pattern Specification and

Matching in Conceptual Models - A Generic Approach Based on Set Operations. Enterprise

Modelling and Information Systems Architectures (EMISAJ), 5(3), 24–43.

https://doi.org/10.18417/emisa.5.3.2

Deloitte. (2019). Wisdom of Enterprise Knowledge Graphs.

https://www2.deloitte.com/content/dam/Deloitte/de/Documents/operations/knowledge-graphs-

pov.pdf

376

Den Haan, J. (2009). An Enterprise Ontology based approach to Model-Driven Engineering. TU

Delft, Delft University of Technology. http://repository.tudelft.nl/view/ir/uuid:e2093132-9db7-

4cba-bc68-9355f93cb9e3/

Deng, Q., & Ji, S. (2018). A Review of Design Science Research in Information Systems: Concept,

Process, Outcome, and Evaluation. Pacific Asia Journal of the Association for Information

Systems, 10(1), 1–36. https://doi.org/10.17705/1pais.10101

Didonet Del Fabro, M., & Valduriez, P. (2009). Towards the efficient development of model

transformations using model weaving and matching transformations. Software & Systems

Modeling, 8(3), 305–324. https://doi.org/10.1007/s10270-008-0094-z

Dietz, J. L. G. (2006). Enterprise Ontology: Theory and Methodology. Information Systems &

Applications. Springer-Verlag Berlin Heidelberg. https://link.springer.com/book/10.1007%2F3-

540-33149-2

Dove, R. (1999). Knowledge Management, Response Ability, and the Agile Enterprise. Journal of

Knowledge Management, 3(1), 18–35. https://doi.org/10.1108/13673279910259367

Drucker, P. F. (2001). The Next Society. The Economist. https://www.economist.com/node/770819

Dumas, M., La Rosa, M., Mendling, J., & Reijers, H. (2018). Fundamentals of Business Process

Management (2nd ed.). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-

56509-4

Easterby-Smith, M., Thorpe, R., Jackson, P., & Lowe, A. (2008). Management Research (3rd ed.).

London: Sage.

EC Cloud Select Industry Group (C-SIG). (2014). Cloud Service Level Agreement Standardization

Guidelines. https://ec.europa.eu/digital-single-market/en/news/cloud-service-level-agreement-

standardisation-guidelines

Efendioglu, N., Woitsch, R., Utz, W., & Falcioni, D. (2017). ADOxx Modelling Method

Conceptualization Environment. ASTESJ (2), 3, 125-136. https://astesj.com/v02/i03/p17/

Ellis, T. J., & Levy, Y. (2008). Framework of Problem-based Research: A Guide for Novice

Researchers on the Development of a Research-Worthy Problem. Informing Science:

International Journal of an Emerging Transdiscipline, 11, 17–33.

Emmenegger, S., Hinkelmann, K., Laurenzi, E., Thönssen, B., Witschel, H. F., & Zhang, C. (2016).

Workplace learning-Providing Recommendations of Experts and Learning Resources in a

Context-Sensitive and Personalized Manner: An Approach for Ontology Supported Workplace

Learning. In MODELSWARD 2016 - Special Session on Learning Modeling in Complex

Organizations. Proceedings of the 4th International Conference on Model-Driven Engineering

and Software Development. Rome.

Emmenegger, Sandro, Hinkelmann, K., Laurenzi, E., Martin, A., Thönssen, B., Witschel, H. F., &

Zhang, C. (2017). An Ontology-Based and Case-Based Reasoning Supported Workplace

Learning Approach. In Communications in Computer and Information Science, 333–354.

Springer, Cham. https://doi.org/10.1007/978-3-319-66302-9_17

Emmenegger, Sandro, Hinkelmann, K., Laurenzi, E., & Thönssen, B. (2013). Towards a Procedure

for Assessing Supply Chain Risks Using Semantic Technologies. In A. Fred, J., Dietz, K. Liu, &

J. Filipe (Eds.), Knowledge Discovery, Knowledge Engineering and Knowledge Management,

415, 393–409. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-54105-6_26

Eurostat. (2017). Healthcare expenditure statistics. http://ec.europa.eu/eurostat/statistics-

explained/index.php/Healthcare_expenditure_statistics

Fanesi, D., Cacciagrano, D. R., & Hinkelmann, K. (2015). Semantic Business Process Representation

to Enhance the Degree of BPM Mechanization - An Ontology. In 2015 International Conference

on Enterprise Systems (ES), 21–32. IEEE. https://doi.org/10.1109/ES.2015.10

Favre, J. M. (2005). Foundations of Meta-Pyramids: Languages vs. Metamodels - Episode II: Story of

377

Thotus the Baboon. In Jean Bezivin and Reiko Heckel (Ed.), Language Engineering for Model-

Driven Software Development. Dagstuhl, Germany: Internationales Begegnungs- und

Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany.

http://drops.dagstuhl.de/opus/volltexte/2005/21

Felfernig, A., Friedrich, G. E., & Jannach, D. (2000). UML as Domain Specific Language for the

construction of Knowledge-Based Configuration System. International Journal of Software

Engineering and Knowledge Engineering, 10(04), 449–469.

https://doi.org/10.1142/S0218194000000249

Fill, H.-G. (2011). On the Conceptualization of a Modeling Language for Semantic Model

Annotations. In C. Salinesi & O. Pastor (Eds.), Advanced Information Systems Engineering

Workshops, 83, 134–148. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22056-

2_14

Fill, H.-G., Schremser, D., & Karagiannis, D. (2013). A Generic Approach for the Semantic

Annotation of Conceptual Models Using a Service-Oriented Architecture. International Journal

of Knowledge Management, 9(1), 76–88. https://doi.org/10.4018/jkm.2013010105

Fill, H. G., & Karagiannis, D. (2013). On the Conceptualisation of Modelling Methods Using the

ADOxx Meta Modelling Platform. Enterprise Modelling and Information Systems Architectures

- An International Journal, 8(1). http://eprints.cs.univie.ac.at/3657/

Fill, H. G., Redmond, T., & Karagiannis, D. (2012). FDMM: A Formalism for Describing ADOxx

Meta Models and Models. In Leszek A. Maciaszek, Alfredo Cuzzocrea, & José Cordeiro (Eds.),

ICEIS 2012 - Proceedings of the 14th International Conference on Enterprise Information

Systems, Volume 3, Wroclaw, Poland, 28 June - 1 July, 2012, 133–144. SciTePress.

Fowler, M. (2011). Domain-specific languages. Upper Saddle River: Addison-Wesley.

Fox, M. S. (1992). The TOVE project towards a common-sense model of the enterprise. In Industrial

and Engineering Applications of Artificial Intelligence and Expert Systems, 25–34.

Berlin/Heidelberg: Springer-Verlag. https://doi.org/10.1007/BFb0024952

Fox, M. S., & Gruninger, M. (1998). Enterprise Modeling. AI Magazine, 19(3), 109.

https://doi.org/10.1609/AIMAG.V19I3.1399

France, R. B., Ghosh, S., Dinh-Trong, T., & Solberg, A. (2006). Model-Driven Development Using

UML 2.0: Promises and Pitfalls. Computer, 39(2), 59–66. https://doi.org/10.1109/MC.2006.65

Frank, U. (2008). The MEMO Meta Modelling Language (MML) and Language Architecture.

http://ideas.repec.org/p/zbw/udeicb/24.html

Frank, U. (2010). Outline of a Method for Designing Domain-Specific Modelling Languages.

University of Duisburg Essen: ICB. http://hdl.handle.net/10419/58163

Frank, U. (2011). The MEMO Meta Modelling Language (MML) and Language Architecture. 2nd

Edition. ICB-Research Report No. 43. https://www.econstor.eu/handle/10419/58154

Frank, U. (2013a). Domain-Specific Modeling Languages: Requirements Analysis and Design

Guidelines. In Domain Engineering (pp. 133–157). Berlin, Heidelberg: Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-36654-3_6

Frank, U. (2013b). Multilevel Modeling Toward a New Paradigm of Conceptual Modeling and

Information Systems Design. https://doi.org/10.1007/s11576-014-0438-y

Frank, U. (2014a). Enterprise Modelling: The Next Steps. Enterprise Modelling and Information

Systems Architectures, 9(1), 22–37. https://doi.org/10.18417/EMISA.9.1.2

Frank, U. (2014b). Multi-Perspective Enterprise Modeling: Foundational Concepts, Prospects and

Future Research Challenges. Software & Systems Modeling, 13(3), 941–962.

https://doi.org/10.1007/s10270-012-0273-9

Frantz, R. Z., Quintero, A. M. R., & Corchuelo, R. (2011). A Domain-Specific Language to Design

Enterprise Application Integration Solutions. Int. J. Cooperative Inf. Syst., 143–176.

378

Freund, J., & Rü̈̈̈ cker, B. (2016). Real-life BPMN: using BPNM, CMMN and DMN to analyze,

improve, and automate processes in your company (3rd ed.).

Gabriel, P., Goulão, M., & Amaral, V. (2011). Do Software Languages Engineers Evaluate their

Languages? In XIII Congreso Iberoamericano en ‘Software Engineering’ (CIbSE’2010).

http://arxiv.org/abs/1109.6794

Gailly, F., Alkhaldi, N., Casteleyn, S., & Verbeke, W. (2017). Recommendation-Based Conceptual

Modeling and Ontology Evolution Framework (CMOE+). Business & Information Systems

Engineering, 59(4), 235–250. https://doi.org/10.1007/s12599-017-0488-y

Gall, M. D., Gall, J. P., & Borg, W. (2006). Educational Research: An Introduction (8th ed.). New

York: Longman.

Gartner. (2014). Taming the Digital Dragon: The 2014 CIO Agenda.

Gaševic, D., Djuric, D., & Devedžic, V. (2009). Knowledge Representation. In Model Driven

Engineering and Ontology Development (pp. 3–43). Berlin, Heidelberg: Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-00282-3_1

Giachetti, R. E. (2010). Design of Enterprise Systems: Theory, Architecture, and Methods. CRC

Press. https://www.crcpress.com/Design-of-Enterprise-Systems-Theory-Architecture-and-

Methods/Giachetti/p/book/9781439818237

Giovanoli, C. (2019). Cloud Service Quality Model: A Cloud Service Quality Model-based on

Customer and Provider Perceptions for Cloud Service Mediation. In Proceedings of the 9th

International Conference on Cloud Computing and Services Science (CLOSER 2019) (pp. 241–

248). SCITEPRESS. https://doi.org/10.5220/0007587502410248

Glaser, B. G., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative

Research. Aldine Publishing.

Gli Ospedali Svizzeri. (2017). H+. Retrieved 11 March 2017, from http://www.hplus.ch/

Goldkuhl, G. (2011). Pragmatism vs Interpretivism in Qualitative Information Systems Research.

European Journal of Information Systems, 21(2), 135–146. https://doi.org/10.1057/ejis.2011.54

Goles, T., & Hirschheim, R. (2000). The Paradigm is Dead, the Paradigm is Dead...Long Live the

Paradigm: the Legacy of Burrell and Morgan. Omega, 28(3), 249–268.

http://ideas.repec.org/a/eee/jomega/v28y2000i3p249-268.html

Gomez-Perez, A., Fernandez-Lopez, M., & Corcho, O. (2004). Ontological Engineering (4th ed.).

Springer-Verlag London, UK.

Götzinger, D., Miron, E.-T., & Staffel, F. (2016). OMiLAB: An Open Collaborative Environment for

Modeling Method Engineering. In Domain-Specific Conceptual Modeling, 55–76. Cham:

Springer International Publishing. https://doi.org/10.1007/978-3-319-39417-6_3

Gray, J., Fisher, K., Consel, C., Karsai, G., Mernik, M., & Tolvanen, J.-P. (2008). DSLs: The Good,

the Bad, and the Ugly. In Conference on Object Oriented Programming Systems Languages and

Applications archive. Nashville, United States: ACM. http://hal.inria.fr/inria-00402566

Green, T. R. G., & Petre, M. (2008). Usability Analysis of Visual Programming Environments: a

‘cognitive dimensions’ framework. Journal of Visual Languages and Computing, 5(2), 1–17.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.35.815&rep=rep1&type=pdf

Gregg, D. G., Kulkarni, U. R., & Vinzé, A. S. (2001). Understanding the Philosophical Underpinnings

of Software Engineering Research in Information Systems. Information Systems Frontiers, 3(2),

169–183. https://doi.org/10.1023/A:1011491322406

Griesinger, F., Seybold, D., Wesner, S., Domaschka, J., Woitsch, R., Kritikos, K., … Tuguran, C. V.

(2017). BPaaS in Multi-cloud Environments - The CloudSocket Approach. In European Space

Projects: Developments, Implementations and Impacts in a Changing World, 50–74.

SCITEPRESS - Science and Technology Publications.

https://doi.org/10.5220/0007901700500074

379

Gronback, R. C. (2009). Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit (1st

ed.). Addison-Wesley Professional.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2), 199–220. https://doi.org/10.1006/knac.1993.1008

Grüninger, M., & Fox, M. S. (1995). Methodology for the Design and Evaluation of Ontologies. In

Proceedings of the 1995 International Joint Conference on AI, 95, 1–10.

Guarino, N., Guarino, N., & Giaretta, P. (1995). Ontologies and Knowledge Bases: Towards a

Terminological Clarification. Towards Very Large Knowledge Bases: Knowledge Building and

Knowledge Sharing, 25-32. IOS Press.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.8006

Guizzardi, G. (2007). On Ontology, Ontologies, Conceptualizations, Modeling Languages, and

(Meta)Models. In Conference on Databases and Information Systems IV, 18–39. IOS Press

Amsterdam. https://doi.org/978-1-58603-715-4

Guizzardi, G. (2012). Ontological Foundations for Conceptual Modeling with Applications. In Ralyté

J., Franch X., Brinkkemper S., Wrycza S. (eds) Advanced Information Systems Engineering.

CAiSE 2012. Lecture Notes in Computer Science, vol 7328. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-31095-9_45

Gulden, J., & Frank, U. (2010). MEMOCenterNG - A Full-Featured Modeling Environment for

Organization Modeling and Model-Driven Software Development. In Proceedings of the 22nd

International Conference on Advanced Information Systems Engineering (CAiSE’10).

Hammamet. http://www.wi-inf.uni-duisburg-essen.de/FGFrank/

Haack, S. (1976). The Pragmatist Theory of Truth. British Journal of Philosophical Science, 27, 231–

249. http://philpapers.org/rec/HAATPT

Harel, D., & Rumpe, B. (2000). Modeling Languages: Syntax, Semantics and All That Stuff, Part I:

The Basic Stuff. Weizmann Science Press of Israel. https://dl.acm.org/citation.cfm?id=903627

Harel, D., & Rumpe, B. (2004). Meaningful Modeling: What’s the Semantics of "Semantics"?

Computer, 37(10), 64–72. IEEE Computer Society Press, Washington DC, United States.

https://doi.org/10.1109/MC.2004.172

Healey, M. J., & Rawlinson, M. B. (1994). Interviewing Techniques in Business and Management

Research. In V. J. Wass & P. E. Wells (Eds.), Principles and Practice in Business and

Management Research. Dartmouth: Aldershot.

Hepp, M., Leymann, F., Domingue, J., Wahler, A., & Fensel, D. (2005). Semantic Business Process

Management: a Vision towards using Semantic Web Services for Business Process

Management. In IEEE International Conference on e-Business Engineering (ICEBE’05), 535–

540. IEEE. https://doi.org/10.1109/ICEBE.2005.110

Heß, M., Kaczmarek, M., Frank, U., Podleska, L., & Täger, G. (2015). A Domain-Specific Modelling

Language for Clinical Pathways in the Realm of Multi-Perspective Hospital Modelling. ECIS

2015 Completed Research Papers. https://doi.org/10.18151/7217355

Hevner, A. (2007). A Three-Cycle View of Design Science Research. Scandinavian Journal of

Information Systems, 19(2), 87–92.

https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1017&context=sjis

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems

Research. MIS Q, 28(1), 75–105. http://dl.acm.org/citation.cfm?id=2017212.2017217

Hevner, Alan, & Chatterjee, S. (2010). Design Research in Information Systems (Vol. 22). Boston,

MA: Springer US. https://doi.org/10.1007/978-1-4419-5653-8

Hinkelmann, K., Pierfranceschi, A., & Laurenzi, E. (2016). The Knowledge Work Designer-

Modelling Process Logic and Business Logic. In Lecture Notes in Informatics (LNI),

Proceedings - Series of the Gesellschaft fur Informatik (GI) (Vol. P255).

380

Hinkelmann, K. (2016). Business Process Flexibility and Decision-Aware Modeling - The Knowledge

Work Designer. In Domain-Specific Conceptual Modeling, 397–414. Cham: Springer

International Publishing. https://doi.org/10.1007/978-3-319-39417-6_18

Hinkelmann, K., Gerber, A., Karagiannis, D., Thoenssen, B., van der Merwe, A., & Woitsch, R.

(2016). A New Paradigm for the Continuous Alignment of Business and IT: Combining

Enterprise Architecture Modelling and Enterprise Ontology. Computers in Industry, 79, 77–86.

https://doi.org/10.1016/j.compind.2015.07.009

Hinkelmann, K., Laurenzi, E., Lammel, B., Kurjakovic, S., & Woitsch, R. (2016). A Semantically-

Enhanced Modelling Environment for Business Process as a Service. In 4th International

Conference on Enterprise Systems (ES), 143–152. IEEE. https://doi.org/10.1109/ES.2016.25

Hinkelmann, K., Laurenzi, E., Martin, A., & Thönssen, B. (2018). Ontology-Based Metamodeling. In

Dornberger R. (Ed.), Business Information Systems and Technology 4.0. Studies in Systems,

Decision and Control, 177–194. Springer, Cham. https://doi.org/10.1007/978-3-319-74322-6_12

Hinkelmann, K., Maise, M., & Thönssen, B. (2013). Connecting Enterprise Architecture and

Information Objects using an Enterprise Ontology. In Proceedings of the First International

Conference on Enterprise Systems: ES 2013. IEEE.

Höfferer, P. (2007). Achieving Business Process Model Interoperability Using Metamodels and

Ontologies. In European Conference on Information Systems, 1620–1631. University of St.

Gallen. http://aisel.aisnet.org/cgi/viewcontent.cgi?article=1022&context=ecis2007

Hölldobler, K., Roth, A., Rumpe, B., & Wortmann, A. (2017). Advances in Modeling Language

Engineering, 3–17. Springer, Cham. https://doi.org/10.1007/978-3-319-66854-3_1

Horkoff, J., Jeusfeld, M. A., Ralyté, J., & Karagiannis, D. (2018). Enterprise Modeling for Business

Agility. Business & Information Systems Engineering, 60(1), 1–2.

https://doi.org/10.1007/s12599-017-0515-z

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to OWL: the

making of a Web Ontology Language. Web Semantics: Science, Services and Agents on the

World Wide Web, 1(1), 7–26. https://doi.org/10.1016/J.WEBSEM.2003.07.001

Hox, J. J., & Boeije, H. R. (2005). Data collection, primary versus secondary. In K. Kempf-Leonard

(Ed.), Encyclopedia of social measurement (Vol. 1, pp. 593–599). Elsevier.

https://dspace.library.uu.nl/handle/1874/23634

Hrgovcic, V., Karagiannis, D., & Woitsch, R. (2013). Conceptual Modeling of the Organisational

Aspects for Distributed Applications: The Semantic Lifting Approach. In 2013 IEEE 37th

Annual Computer Software and Applications Conference Workshops (pp. 145–150). IEEE.

https://doi.org/10.1109/COMPSACW.2013.17

Hudak, P., & Paul. (1996). Building domain-specific embedded languages. ACM Computing Surveys,

28(4), 196. https://doi.org/10.1145/242224.242477

IEEE-SA Standards Board. (2005). IEEE Standard for Property Specification Language (PSL).

Institute of Electrical and Electronics Engineers.

Iivari, J. (2007). A Paradigmatic Analysis of Information Systems as a Design Science. Scandinavian

Journal of Information Systems, 19(2), 39–64.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.218.2636

Institute of Design Stanford. (2010). An Introduction to Design Thinking: Process guide. Stanford

University, Palo Alto, USA. https://dschool-

old.stanford.edu/sandbox/groups/designresources/wiki/36873/attachments/74b3d/ModeGuideB

OOTCAMP2010L.pdf

Izquierdo, J. L. C., Cabot, J., López-Fernández, J. J., Cuadrado, J. S., Guerra, E., & de Lara, J. (2013).

Engaging End-Users in the Collaborative Development of Domain-Specific Modelling

Languages. In Cooperative Design, Visualization, and Engineering (pp. 101–110). Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40840-3_16

381

Jablonski, S., Volz, B., & Dornstauder, S. (2008). A Meta Modeling Framework for Domain Specific

Process Management. In 2008 32nd Annual IEEE International Computer Software and

Applications Conference (pp. 1011–1016). IEEE. https://doi.org/10.1109/COMPSAC.2008.58

Jouault, F., Allilaire, F., Bézivin, J., & Kurtev, I. (2008). ATL: A Model Transformation Tool.

Science of Computer Programming, 72(1–2), 31–39.

https://doi.org/10.1016/J.SCICO.2007.08.002

Jouault F., & Bézivin, J. (2006). KM3: A DSL for Metamodel Specification. In Proceedings of 8th

FMOODS, LNCS 4037, 171–185. Springer.

Jun, G. T., Ward, J., Morris, Z., & Clarkson, J. (2009). Health care process modelling: which method

when? International Journal for Quality in Health Care, 21(3), 214–224.

https://doi.org/10.1093/intqhc/mzp016

Kahn, R., & Cannell, C. (1957). The Dynamics of Interviewing. New York: Wiley.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., & Peterson, A. S. (1990). Feature-Oriented

Domain Analysis (FODA) Feasibility Study. Software Engineering Institute, Carnegie

Mellon University.
http://www.floppybunny.org/robin/web/virtualclassroom/chap12/s4/articles/foda_1990.pdf

Kaplan, B., & Maxwell, J. A. (2005). Qualitative Research Methods for Evaluating Computer

Information Systems. In J. Anderson & C. Aydin (Eds.), Evaluating the Organizational Impact

of Healthcare Information Systems, 30–55. Springer New York. https://doi.org/10.1007/0-387-

30329-4_2

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., … Wimmer, M.

(2006). Lifting Metamodels to Ontologies: A Step to the Semantic Integration of Modeling

Languages. In Model Driven Engineering Languages and Systems, Proceedings of the 9th

International Conference, MoDELS 2006 (pp. 528–542). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/11880240_37

Karagiannis, D., Mayr, H. C., & Mylopoulos, J. (2016). Domain-Specific Conceptual Modeling.

(Dimitris Karagiannis, H. C. Mayr, & J. Mylopoulos, Eds.). Cham: Springer International

Publishing. https://doi.org/10.1007/978-3-319-39417-6

Karagiannis, D, & Kühn, H. (2002). Metamodelling Platforms. In Proceedings of the 3rd

International Conference EC-Web 2002 -- Dexa 2002, Aix-en-Provence, France, 2002, LNCS

2455 (p. 182). Springer-Verlag.

Karagiannis, Dimitris. (2015). Agile Modeling Method Engineering. In Proceedings of the 19th

Panhellenic Conference on Informatics - PCI ’15, 5–10. New York, New York, USA: ACM

Press. https://doi.org/10.1145/2801948.2802040

Karagiannis, Dimitris. (2018). Conceptual Modelling Methods: The AMME Agile Engineering

Approach. In Informatics in Economy, 3–19. Springer, Cham. https://doi.org/10.1007/978-3-

319-73459-0_1

Karagiannis, Dimitris, & Buchmann, R. A. (2018). A Proposal for Deploying Hybrid Knowledge

Bases: the ADOxx-to-GraphDB Interoperability Case.

https://scholarspace.manoa.hawaii.edu/handle/10125/50399

Karagiannis, Dimitris, Buchmann, R. A., Burzynski, P., Reimer, U., & Walch, M. (2016).

Fundamental Conceptual Modeling Languages in OMiLAB. In Domain-Specific Conceptual

Modeling, 3–30. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-

39417-6_1

Karagiannis, Dimitris, & Kühn, H. (2002). Metamodelling Platforms. In K. Bauknecht, A. Min Tjoa,

& G. Quirchmayer (Eds.), Proceedings of the Third International Conference EC-Web at DEXA

2002. Berlin: Springer-Verlag.

Karagiannis, Dimitris, & Woitsch, R. (2015). Knowledge Engineering in Business Process

Management. In Handbook on Business Process Management 2, 623–648. Berlin, Heidelberg:

382

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-45103-4_26

Keith, B., Vitasek, K., Manrodt, K. B., & Kling, J. (2016). Strategic Sourcing in the New Economy:

Harnessing the Potential of Sourcing Business Models for Modern Procurement (1st ed.).

Palgavre Macmillan US. https://doi.org/10.1007/978-1-137-55220-4

Kelly, S., Lyytinen, K., & Rossi, M. (2013). MetaEdit+ A Fully Configurable Multi-User and Multi-

Tool CASE and CAME Environment. In Seminal Contributions to Information Systems

Engineering, 109–129. Berlin, Heidelberg: Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-36926-1_9

Kelly, S., & Tolvanen, J.-P. (2008). Domain-Specific Modeling: Enabling Full Code Generation.

Wiley-Interscience.

Kidd, P. T. (1994). Agile Manufacturing: Forging New Frontiers. Addison-Wesley.

King, N. (2004). Using Interviews in Qualitative Research. In C. Cassell & G. Symon (Eds.),

Essential Guide to Qualitative Methods in Organizational Research (p. 408). London: Sage

Publications.

Klein, H. K., & Myers, M. D. (1999). A Set of Principles for Conducting and Evaluating Interpretive

Field Studies in Information Systems. MIS Q, 23(1), 67–93. https://doi.org/10.2307/249410

Kleppe, A. G. (2009). Software Language Engineering: Creating Domain-Specific Languages using

Metamodels. Addison-Wesley.

Kontio, J., Lehtola, L., & Bragge, J. (2004). Using the Focus Group Method in Software Engineering:

Obtaining Practitioner and User Experiences. In Proceedings. 2004 International Symposium on

Empirical Software Engineering, 2004. ISESE ’04, 271–280. IEEE.

https://doi.org/10.1109/ISESE.2004.1334914

Koppenhagen, N., Gass, O., & Müller, B. (2012). Design Science Research in Action - Anatomy of

Success Critical Activities for Rigor and Relevance. In European Conference on Information

Systems (ECIS). Association for Information Systems.

https://www.semanticscholar.org/paper/Design-Science-Research-in-Action-Anatomy-of-for-

Koppenhagen-Gass/2f8ccdbd88026fb8cac2bd3d24aa5eb5b9f28fe3

Kosar, T., Oliveira, N., Mernik, M., João, M., Pereira, V., Črepinšek, M., … Henriques, P. R. (2010).

Comparing General-Purpose and Domain-Specific Languages: An Empirical Study. Computer

Science and Information Systems, (7(2)), 247–264. https://doi.org/10.2298/CSIS1002247K

Kramler, G., Kappel, G., Reiter, T., Kapsammer, E., Retschitzegger, W., & Schwinger, W. (2006).

Towards a Semantic Infrastructure Supporting Model-based Tool Integration. In GaMMa ’06:

Proceedings of the 2006 international workshop on Global integrated model management, 43–

46. New York, NY, USA: ACM Press.

Kritikos, K., Laurenzi, E., & Hinkelmann, K. (2018). Towards Business-to-IT Alignment in the

Cloud. In Z. Mann & V. Stolz (Eds.), Advances in Service-Oriented and Cloud Computing.

ESOCC 2017. Communications in Computer and Information Science, 35–52. Springer, Cham.

https://doi.org/10.1007/978-3-319-79090-9_3

Krueger, R. A., & Casey, M. A. (2000). Focus Group: A Practical Guide for Applied Research (3rd

ed.). Thousand Oaks, CA: Sage Publications.

Kvale. (1996). InterViews. Thousand Oaks, CA: Sage.

Laurenzi, E., Hinkelmann, K., Reimer, U., Van Der Merwe, A., Sibold, P., & Endl, R. (2017).

DSML4PTM: A Domain-Specific Modelling Language for Patient Transferal Management. In

ICEIS 2017 - Proceedings of the 19th International Conference on Enterprise Information

Systems 3, 520–531. Porto, Portugal: SciTePress. https://doi.org/10.5220/0006388505200531

Laurenzi, E. (2014). A Model-Driven Approach to Create and Maintain an Executable Transferal

Management Platform. In Doctoral Consortium - DCSOFT, (ICSOFT 2014) (pp. 14–20).

Vienna, Austria: SciTePress.

383

https://www.scitepress.org/PublicationsDetail.aspx?ID=31eQXaM2gLs=&t=1

Laurenzi, E., Hinkelmann, K., Goel, M., & Montecchiari, D. (2020). Agile Visualization in Design

Thinking. In New Trends in Business Information Systems and Technology (Accepted for

publication). Springer Berlin / Heidelberg.

Laurenzi, E., Hinkelmann, K., Izzo, S., Reimer, U., & van der Merwe, A. (2018). Towards an Agile

and Ontology-Aided Modeling Environment for DSML Adaptation. In R. Matulevičius & R.

Dijkman (Eds.), Advanced Information Systems Engineering Workshops. CAiSE 2018. Lecture

Notes in Business Information Processing (pp. 222–234). Springer, Cham.

https://doi.org/10.1007/978-3-319-92898-2_19

Laurenzi, E., Hinkelmann, K., Jüngling, S., Montecchiari, D., Pande, C., & Martin, A. (2019).

Towards An Assistive and Pattern Learning-driven Process Modeling Approach. In A. Martin,

K. Hinkelmann, A. Gerber, D. Lenat, F. van Harmelen, & P. Clark (Eds.), Proceedings of the

AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering

(AAAI-MAKE 2019) (p. 6). Stanford University, Palo Alto, USA: CEUR-WS.org. http://ceur-

ws.org/Vol-2350/paper20.pdf

Laurenzi, E., Hinkelmann, K., & van der Merwe, A. (2018). An Agile and Ontology-Aided Modeling

Environment. In R. Buchmann, D. Karagiannis, & M. Kirikova (Eds.), The Practice of

Enterprise Modeling. PoEM 2018. (pp. 221–237). Vienna: Springer, Cham.

https://doi.org/10.1007/978-3-030-02302-7_14

Ledeczi, A., Karsai, G., Maroti, M., Bakay, A., Garrett, J., Thomason, C., … Volgyesi, P. (2001). The

Generic Modeling Environment. In Proceedings of WISP’2001. IEEE.

https://www.researchgate.net/publication/233757687

Leedy, P. D., & Ormrod, J. E. (2005). Practical research: Planning and Design. Prentice Hall.

Leff, A., & Rayfield, J. T. (2001). Web-Application Development using the Model/View/Controller

Design Pattern. In Proceedings Fifth IEEE International Enterprise Distributed Object

Computing Conference, 118–127. Seattle, WA, USA, USA: IEEE Comput. Soc.

https://doi.org/10.1109/EDOC.2001.950428

Lenz, R., Peleg, M., & Reichert, M. (2012). Healthcare Process Support: Achievements, Challenges,

Current Research. http://dbis.eprints.uni-ulm.de/784/

Lenz, R., & Reichert, M. (2007). IT support for healthcare processes – premises, challenges,

perspectives. Data & Knowledge Engineering, 61(1), 39–58.

https://doi.org/10.1016/j.datak.2006.04.007

Leppänen, M. (2007). A Context-Based Enterprise Ontology. In Business Information Systems (pp.

273–286). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-

72035-5_21

Liao, Y., Lezoche, M., Panetto, H., Boudjlida, N., & Loures, E. R. (2015). Semantic Annotation for

Knowledge Explicitation in a Product Lifecycle Management Context: A Survey. Computers in

Industry, 71, 24–34. Elsevier. https://doi.org/10.1016/j.compind.2015.03.005

Lodderstedt, T., Basin, D., & Doser, J. (2002). SecureUML: A UML-Based Modeling Language for

Model-Driven Security, 426–441. Springer.

Loos, P., Mettler, T., Winter, R., Goeken, M., Frank, U., & Winter, A. (2013). Methodological

Pluralism in Business and Information Systems Engineering? The Authors. Business &

Information Systems Engineering, 5(6), 453–460. https://doi.org/10.1007/

Lynn, T., O ’carroll, N., Mooney, J., Helfert, M., Corcoran, D., Hunt, G., … Healy, P. (2014).

Towards a Framework for Defining and Categorizing Business Process-as-a-Service (BPaaS).

Marca, D., & McGowan, C. L. (1988). SADT: Structured Analysis and Design Technique. McGraw-

Hill. https://dl.acm.org/citation.cfm?id=31837

March, S. T., & Smith, G. F. (1995). Design and natural science research on information technology.

384

Decision Support Systems, 15(4), 251–266. Elsevier. https://doi.org/10.1016/0167-

9236(94)00041-2

March, & Storey. (2008). Design Science in the Information Systems Discipline: An Introduction to

the Special Issue on Design Science Research. MIS Quarterly, 32(4), 725.

https://doi.org/10.2307/25148869

Marshall, C., & Rossman, G. B. (1999). Designing Qualitative Research. Thousand Oaks, CA: Sage.

Martin, Andreas. (2016). A Combined Case-based Reasoning and Process Execution Approach for

Knowledge-Intensive Work. University of South Africa. http://hdl.handle.net/10500/22796

Martin, J., & James. (1983). Managing the Data-base Environment. Prentice-Hall.

https://dl.acm.org/citation.cfm?id=538746

Mathe, J. L., Martin, J. B., Miller, P., Lédeczi, Á., Weavind, L. M., Nadas, A., … Sztipanovits, J.

(2009). A Model-Integrated, Guideline-Driven, Clinical Decision-Support System. IEEE

Software, 26(4), 54–61. https://doi.org/10.1109/MS.2009.84

Maxwell, J. A. (2013). Qualitative Research Design: An Interactive Approach (3rd ed.). Sage

Publications. http://www.sagepub.com/textbooks/Book234502

McGuinness, D. L., & van Harmelen, F. (2014). OWL Web Ontology Language Overview.

https://www.w3.org/TR/2004/REC-owl-features-20040210/#s6

Mernik, M., Heering, J., & Sloane, A. M. (2005). When and How to Develop Domain-Specific

Languages. ACM Computing Surveys, 37(4), 316–344.

https://doi.org/10.1145/1118890.1118892

Merriam, S. B. (2009). Qualitative Research: A Guide to Design and Implementation. San Francisco:

Jossey-Bass. http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470283548.html

Merriam, Sharan B. (1998). Qualitative Research and Case Study Applications in Education (2nd

ed.). San Francisco, CA: Jossey-Bass Publishers.

Miles, M. B., & Huberman, A. M. (1994). Qualitative Data Analysis (2nd ed.). Thousand Oaks, CA:

Sage.

Miller Joaquin Mukerji, J. (2003). MDA Guide Version 1.0.1. (J. Miller & J. Mukerji, Eds.).

Needham and Massachusetts. http://www.omg.org/cgi-bin/doc?omg/03-06-01

Miron, E.-T., Muck, C., & Karagiannis, D. (2019). Transforming Haptic Storyboards into

Diagrammatic Models: The Scene2Model Tool. In Proceedings of the 52nd Hawaii

International Conference on System Sciences. Hawaii. https://hdl.handle.net/10125/59494

Moore, B. (2004). Eclipse development using the graphical editing framework and the eclipse

modeling framework. IBM, International Technical Support Organization.

Mouton, J. (2001). How to Succeed in your Master’s and Doctoral Studies: A South African Guide

and Resource Book. Pretoria: Van Schaik.

Myers, M. D. (2009). Qualitative Research in Business and Management. London: Sage.

National Center for Biomedical Ontology. (2012). International Classification of Functioning,

Disability and Health - Summary | NCBO BioPortal. Retrieved 23 January 2019, from

https://bioportal.bioontology.org/ontologies/ICF

Natschläger, C. (2011). Towards a BPMN 2.0 ontology. In Lecture Notes in Business Information

Processing, 1–15. Springer Verlag. https://doi.org/10.1007/978-3-642-25160-3_1

Neumann, J., Rockstroh, M., Franke, S., & Neumuth, T. (2016). BPMNSIX – A BPMN 2.0 Surgical

Intervention Extension: Concept and Design of a BPMN Extension for Intraoperative Workflow

Modeling and Execution in the Integrated Operating Room. In 7th Workshop on Modeling and

Monitoring of Computer Assisted Interventions (M2CAI) - 19th International Conference on

Medical Image Computing and Computer Assisted Interventions (MICCAI 2016), At Athens,

Greece.

385

Newton, S. W. (2012). Introduction to Educational Research: A Critical Thinking Approach (2nd

ed.). Arkansas: Sage Publications.

http://www.sagepub.com/books/Book235696/toc#tabview=toc

Nicola, A. De, Mascio, T. Di, Lezoche, M., & Tagliano, F. (2008). Semantic Lifting of Business

Process Models. In 2008 12th Enterprise Distributed Object Computing Conference Workshops

(pp. 120–126). IEEE. https://doi.org/10.1109/EDOCW.2008.55

Nikles, S., & Brander, S. (2009). Separating Conceptual and Visual Aspects in Meta-Modelling. In

Proceedings of the Joint Workshop on Advanced Technologies and Techniques for Enterprise

Information Systems. 1, 90–94. Scitepress.

http://www.scitepress.org/DigitalLibrary/PublicationsDetail.aspx?ID=26AZReQIP4A=&t=1

Nonaka, I., Toyama, R., & Nagata, A. (2000). A Firm as a Knowledge-creating Entity: A New

Perspective on the Theory of the Firm. In I. Nonaka, R. Toyama, & A. Nagata (Eds.), Industrial

and corporate change, 1–20. Oxford University Press.

https://ai.wu.ac.at/~kaiser/seiw/Nonaka_ICC_2000.pdf

Nunes, D. A., & Schwabe, D. (2006). Rapid Prototyping of Web Applications Combining Domain

Specific Languages and Model Driven Design. In Proceedings of the 6th International

Conference on Web Engineering (pp. 153–160). New York and NY and USA: ACM.

https://doi.org/10.1145/1145581.1145616

OMG. (2006). Organization Structure Metamodel (OSM). https://www.omg.org/cgi-bin/doc?bmi/09-

08-02

OMG. (2011). Business Process Model and Notation (BPMN), Version 2.0. Object Management

Group OMG.

http://www.omg.org/spec/BPMN/20100501http://www.omg.org/spec/BPMN/20100502

OMG. (2014a). Business Motivation Model. BMM 1.2. https://doi.org/formal/2008-08-02

OMG. (2014b). Object Constraint Language. http://www.omg.org/spec/OCL/2.4

OMG. (2015). Semantics of Business Vocabulary and Business Rules (SBVR).

http://www.omg.org/spec/SBVR/1.3/PDF

OMG. (2016a). Case Management Model and Notation (CMMN V 1.1).

http://www.omg.org/spec/CMMN/1.1/PDF/

OMG. (2016b). Decision Model and Notation. http://www.omg.org/spec/DMN/1.1/PDF/

OMG. (2016c). Meta Object Facility (MOF) Core Specification (OMG Available Specification).

Object Management Group. http://www.omg.org/spec/MOF/2.5.1

OMG. (2017). Unified Modeling Language 2.5.1. https://www.omg.org/spec/UML/2.5.1

OMG. (2018). Value Delivery Modeling Language Specification Version 1.1.

https://www.omg.org/spec/VDML

Open Group. (2017). ArchiMate® 3.0.1 Specification.

http://pubs.opengroup.org/architecture/archimate3-doc/chap15.html

Parreiras, F. S. (2012). Semantic Web and Model-Driven Engineering. Hoboken, NJ, USA: John

Wiley & Sons, Inc.

Parry, C., Mahoney, E., Chalmers, S. A., & Coleman, E. A. (2008). Assessing the Quality of

Transitional Care. Medical Care, 46(3), 317–322.

https://doi.org/10.1097/MLR.0b013e3181589bdc

Patton, M. Q. (2015). Qualitative research & Evaluation Methods: Integrating Theory and

Practice (4th ed.). SAGE Publications.

Peffers, K., Rothenberger, M., Tuunanen, T., & Vaezi, R. (2012). Design Science Research

Evaluation. In Proceedings of the 7th international conference on Design Science Research in

Information Systems: advances in theory and practice, 398–410. Springer-Verlag.

386

https://doi.org/10.1007/978-3-642-29863-9_29

Pérez, B., & Porres, I. (2013). Reasoning about UML/OCL Models using Constraint Logic

Programming and MDA. In ICSEA 2013, The Eighth International Conference on Software

Engineering Advances, 228–233.

http://www.thinkmind.org/index.php?view=article&articleid=icsea_2013_8_10_10352

Pérez, F., Valderas, P., & Fons, J. (2011). Towards the Involvement of End-Users within Model-

Driven Development. In End-user Development (pp. 258–263). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-21530-8_23

Petre, M. (2013). UML in Practice. In ICSE ’13 Proceedings of the 2013 International Conference on

Software Engineering (pp. 722–731). San Francisco, CA, USA : IEEE Press Piscataway, NJ,

USA. https://doi.org/978-1-4673-3076-3

Poppendieck, M. (2007). Lean Software Development. In ICSE COMPANION '07: Companion to the

proceedings of the 29th International Conference on Software Engineering, 165-166.

https://doi.org/10.1109/ICSECOMPANION.2007.46

Pries-Heje, J., Baskerville, R., & Venable, J. (2008). Strategies for Design Science Research

Evaluation. In Conference Proceedings, 16th European Conference on Information Systems.

National University of Ireland. https://forskning.ruc.dk/en/publications/strategies-for-design-

science-research-evaluation

Ranabahu, A. H., Sheth, A. P., Manjunatha, A., Thirunarayan, K., Ranabahu, A., & Sheth, A. (2012).

Towards Cloud Mobile Hybrid Application Generation using Semantically Enriched Domain

Specific Languages. Lecture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering, 76, 349–360.

http://corescholar.libraries.wright.edu/knoesis

Reimer, U., & Laurenzi, E. (2014). Creating and maintaining a collaboration platform via domain-

specific reference modelling. In EChallenges e-2014 Conference: 29-30 October 2014, Belfast,

Ireland, 1–9. IEEE.

Robert, S., Gérard, S., Terrier, F., & Lagarde, F. (2009). A Lightweight Approach for Domain-

Specific Modeling Languages Design. https://doi.org/10.1109/SEAA.2009.81

Robol, M., Salnitri, M., & Giorgini, P. (2017). Toward GDPR-compliant socio-technical systems:

Modeling language and reasoning framework. In Lecture Notes in Business Information

Processing, 305, 236–250. Springer Verlag. https://doi.org/10.1007/978-3-319-70241-4_16

Robson, C. (2002). Real World Research (2nd edn). Oxford: Blackwell.

Rodrigues, A., & Silva, D. (2015). Model-Driven Engineering: A Survey Supported by the Unified

Conceptual Model. https://doi.org/10.1016/j.cl.2015.06.001

Rose, L. M., Kolovos, D. S., Paige, R. F., & Polack, F. A. C. (2009). Enhanced Automation for

Managing Model and Metamodel Inconsistency. In 2009 IEEE/ACM International Conference

on Automated Software Engineering (pp. 545–549). IEEE. https://doi.org/10.1109/ASE.2009.57

Rospocher, M., Ghidini, C., & Serafini, L. (2014). An Ontology for the Business Process Modelling

Notation. In 8th International Conference on Formal Ontology in Information Systems.

https://dkm-static.fbk.eu/people/rospocher/files/pubs/2014foisbpmn.pdf

Salehi, P., Hamou-Lhadj, A., Toeroe, M., & Khendek, F. (2016). A UML-based Domain Specific

Modeling Language for Service Availability Management: Design and experience. Computer

Standards & Interfaces, 44, 63–83. https://doi.org/10.1016/j.csi.2015.09.009

Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S., Krogstie, J., Matthes, F., Opdahl, A., … Winter, R.

(2018). From Expert Discipline to Common Practice: A Vision and Research Agenda for

Extending the Reach of Enterprise Modeling. Business & Information Systems Engineering,

60(1), 69–80. https://doi.org/10.1007/s12599-017-0516-y

Saunders, M., Lewis, P., & Thornihill, A. (2009). Research Methods for Business Students. Harlow

387

and England: Pearson Education.

Saunders, M. N. K., Lewis, P., & Thornhill, A. (2019). Research Methods for Business Students (8th

ed.). Harlow, UK: Pearson Education Limited.

Scheer, A.-W., & Nüttgens, M. (2000). ARIS Architecture and Reference Models for Business

Process Management, 376–389. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-

45594-9_24

Schmidt, D. C. (2006). Model-Driven Engineering. IEEE Computer, 39(2), 25–31.

http://www.computer.org/portal/site/computer/menuitem.e533b16739f5

Schwaber, K., & Beedle, M. (2002). Agile Software Development with Scrum. Prentice Hall -

Computers. http://sutlib2.sut.ac.th/sut_contents/H129174.pdf

Selic, B. (2007). A Systematic Approach to Domain-Specific Language Design Using UML. In 10th

IEEE International Symposium on Object and COmponent-Oriented Real-Time Distributes

Computing (ISORC’07)). IEEE.

https://pdfs.semanticscholar.org/2460/618352d17adf34ce99544f2fc0ad59c58019.pdf

Selic, B. (2011). The Theory and Practice of Modeling Language Design for Model-Based Software

Engineering—A Personal Perspective, 290–321. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-18023-1_7

Shenvi, R., Shenvi, R., Mazza, G., Saini, D., Orthner, H., & Gray, J. (2007). Generation of Context-

Specific Electronic Patient Care Reports (ePCR) using Domain-Specific Modeling.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.131.5832

Shneiderman, B., & Plaisant, C. (2004). Designing the User Interface: Strategies for Effective

Human-Computer Interaction (4th Edition). http://dl.acm.org/citation.cfm?id=983803

Silver, B. (2011). BPMN Method and Style, Second Edition (Second Ed.). Aptos, CA: Cody-Cassidy

Press.

Silver, B. (2011). BPMN Method and Style: with BPMN Implementer’s Guide. Cody-Cassidy Press.

Silverman, D. (2007). A Very Short, Fairly Interesting and Reasonably Cheap Book about Qualitative

Research. London: Sage Publications.

Simon, H. A. (1996). The Sciences of the Artificial (3rd ed.). Cambridge and MA and USA: MIT

Press.

Sonnenberg, C., & vom Brocke, J. (2012). Evaluation Patterns for Design Science Research Artefacts.

In M. Helfert & B. Donnellan (Eds.), Practical Aspects of Design Science 71–83. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33681-2_7

Staab, S., & Studer, R. (2009). Handbook on Ontologies. Springer.

Stahl, T., & Völter, M. (2006). Model-Driven Software Development: Technology, Engineering,

Management. Chichester and England and Hoboken and NJ: John Wiley.

Stake, R. E. (1995). The Art of Case Study Research. Thousand Oaks, CA: SAGE Publications.

Stewart, D. W., Shamdasani, P. N., & Rook, D. W. (2007). Focus Groups: Theory and Practice (2nd

ed.). Applied Social Research Methods Series, 20. Newbury Park, CA: Sage Publications.

Strauss, A., & Corbin, J. M. (2015). Basics of Qualitative Research: Techniques and Procedures for

Developing Grounded Theory (4th ed.). Thousand Oaks, CA: Sage.

Strembeck, M., & Zdun, U. (2009). An Approach for the Systematic Development of Domain-

Specific Languages. Software - Practice and Experience, 39, 1253–1292.

https://doi.org/10.1002/spe.936

Stroppi, L. J. R., Chiotti, O., & Villarreal, P. D. (2011). Extending BPMN 2.0: Method and Tool

Support. In Business Process Model and Notation (pp. 59–73). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-25160-3_5

388

Studer, R., Benjamins, V. R., & Fensel, D. (1998). Knowledge Engineering: Principles and Methods.

Data & Knowledge Engineering, 25(1–2), 161–197. https://doi.org/10.1016/S0169-

023X(97)00056-6

Sutii, A. M., Verhoeff, T. & Van Den Brand, M. G. J. (2014). Ontologies in Domain Specific

Languages: A Systematic Literature Review. Computer science reports, 1409. Eindhoven:

Technische Universiteit. https://pure.tue.nl/ws/files/3889700/353021132621361.pdf

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., & Ergin, H. (2013).

AToMPM: A Web-based Modeling Environment. In CEUR Workshop Proceedings, 1115, 21–

25.

Tashakkori, A., & Teddie, C. (2003). Handbook of Mixed Methods in Social and Behavioral

Research. Thousand Oaks, CA: Sage.

The Open Group. (2011). TOGAF® Version 9.1. Van Haren Publishing.

The Open Group. (2012a). ArchiMate. http://pubs.opengroup.org/architecture/archimate2-doc/

The Open Group. (2012b). ArchiMate 2.1 Specification.

The Open Group. (2017). ArchiMate® 3.0.1 Specification.

http://pubs.opengroup.org/architecture/archimate3-doc/

Thomas, O., & Fellmann, M. (2007). Semantic EPC: Enhancing Process Modeling Using Ontology

Languages. SBPM. https://www.semanticscholar.org/paper/Semantic-EPC%3A-Enhancing-

Process-Modeling-Using-Thomas-Fellmann/c065ed04ecf0db1d5e548cb99731fd1154976236

Thönssen, B., & Lutz, J. (2013). Semantically Enriched Obligation Management: An Approach for

Improving the Handling of Obligations Represented in Contracts. In A. Fred, J. L. G. Dietz, K.

Liu, & J. Filipe (Eds.), Knowledge Discovery, Knowledge Engineering and Knowledge

Management. IC3K 2012. Communications in Computer and Information Science, 415, 337–

349. Springer Verlag. https://doi.org/10.1007/978-3-642-54105-6_23

Tullis, T. (Thomas), & Albert, B. (William). (2013). Measuring the User Experience: Collecting,

Analyzing, and Presenting Usability Metrics. Elsevier.

Uschold, M., & Grüninger, M. (1996). Ontologies: Principles, Methods and Applications. Technical

Report - University of Edinburgh Artificial Intelligence Applications Institute AIAI TR.

Uschold, M., King, M., Morale, S., & Zorgios, Y. (1998). The Enterprise Ontology. The Knowledge

Engineering Review, 13(01), 31–89.

Vaishnavi, V., & Kuechler, B. (2004). Design Science Research in Information Systems. Journal MIS

Quarterly, 28(1), 75–105. http://desrist.org/desrist/content/design-science-research-in-

information-systems.pdf

van Deursen, A., Klint, P., & Visser, J. (2000). Domain-Specific Languages: An Annotated

Bibliography. SIGPLAN Not, 35(6), 26–36. https://doi.org/10.1145/352029.352035

Van Harmelen, F., Lifschitz, V., & Porter, B. (2008). Handbook of knowledge representation.

Elsevier. https://www.sciencedirect.com/bookseries/foundations-of-artificial-intelligence/vol/3

Van Harmelen, F., & Ten Teije, A. (2019). A Boxology of Design Patterns for Hybrid Learning and

Reasoning Systems. Journal of Web Engineering, 18(1–3), 97–124.

https://doi.org/10.13052/jwe1540-9589.18133

Vernadat, F. B. (2003). Enterprise Modelling and Integration. In Kosanke K., Jochem R., Nell J.G.,

Bas A.O. (eds) Enterprise Inter- and Intra-Organizational Integration. ICEIMT 2002. IFIP —

The International Federation for Information Processing, 108. Springer, Boston, MA.

https://doi.org/10.1007/978-0-387-35621-1_4

Visual Paradigm. (2018). Chapter 4. Profile and Stereotype - Visual Paradigm Community Circle.

Retrieved 26 October 2019, from https://circle.visual-paradigm.com/docs/profile-and-stereotype/

Völter, M., Stahl, T., Bettin, J., Haase, A., & Helsen, S. (2013). Model-Driven Software Development:

389

Technology, Engineering, Management. West-Sussex, England: John Wiley & Sons.

von Eiff, W., Schüring, S., Greitemann, B., & Karoff, M. (2011). REDIA – Auswirkungen der DRG-

Einführung auf die Rehabilitation. Die Rehabilitation, 50(04), 214–221.

https://doi.org/10.1055/s-0031-1275720

von Halle, B., & Goldberg, L. (2010). The Decision Model: A Business Logic Framework Linking

Business and Technology. CRC Press Auerbach Publications.

W3C (2004a). RDF Semantics. https://www.w3.org/TR/2004/REC-rdf-mt-20040210/

W3C (2004b). Resource Description Framework (RDF): Concepts and Abstract Syntax.

https://www.w3.org/TR/rdf-concepts/

W3C (2008a). SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-query/

W3C (2008b). SPARQL Update - A Language for Updating RDF Graphs.

https://www.w3.org/Submission/SPARQL-Update/

W3C (2011). SPIN - SPARQL Syntax. https://www.w3.org/Submission/spin-sparql/

W3C (2012). W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes.

https://www.w3.org/TR/xmlschema11-2/

W3C (2014a). RDF 1.1 Concepts and Abstract Syntax. https://www.w3.org/TR/rdf11-concepts/

W3C (2014b). RDF 1.1 Semantics. https://www.w3.org/TR/rdf11-mt/

W3C (2014c). RDF Schema 1.1. https://www.w3.org/TR/rdf-schema/

W3C (2017). Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/

W3C OWL Working Group. (2009). OWL Web Ontology Language Overview.

Walker, D., & Betz, P. (2013). The Emergency Flow Concept (1st Ed.). Zurich, Switzerland:

Walkerproject AG.

Walter, T., Parreiras, F. S., & Staab, S. (2014). An Ontology-based Framework for Domain-Specific

Modeling. Software & Systems Modeling, 13(1), 83–108. https://doi.org/10.1007/s10270-012-

0249-9

Wegeler, T., Gutzeit, F., Destailleur, A., & Dock, B. (2013). Evaluating the Benefits of Using

Domain-Specific Modeling Languages. In Proceedings of the 2013 ACM workshop on Domain-

specific modeling - DSM ’13, 7–12. New York, New York, USA: ACM Press.

https://doi.org/10.1145/2541928.2541930

Woitsch, R., Hinkelmann, K., Maria, A., Ferrer, J., & Yuste, J. I. (2016). Business Process as a

Service (BPaaS): The BPaaS Design Environment. http://ceur-ws.org/Vol-1600/session1p1.pdf

Woitsch, R., & Utz, W. (2015). Business Processes as a Service (BPaaS): A Model-Based Approach

to Align Business with Cloud Offerings. eChallenges e-2015 Conference, Vilnius, 2015, 1-8.

IEEE.

Wolcott, H. (2001). Writing Up Qualitative Research. Thousand Oaks, CA: Sage Publications.

World Health Organization. (2016). WHO | International Classification of Functioning, Disability

and Health (ICF). WHO. World Health Organization. http://www.who.int/classifications/icf/en/

Wu, Y., Allen, A. A., Hernandez, F., France, R., & Clarke, P. J. (2012). A Domain-Specific Modeling

Approach to Realizing User-Centric Communication. Software: Practice and Experience, 42(3),

357–390. ACM. https://doi.org/10.1002/spe.1081

Wüest, D., Seyff, N., & Glinz, M. (2017). FlexiSketch: a Lightweight Sketching and Metamodeling

Approach for End-Users. Software & Systems Modeling. Springer Berlin Heidelberg.

https://doi.org/10.1007/s10270-017-0623-8

Yazan, B. (2015). Three Approaches to Case Study Methods in Education: Yin, Merriam, and Stake.

The Qualitative Report, 20(2), 134–152. https://nsuworks.nova.edu/tqr/vol20/iss2/12

390

Yin, R. K. (2003). Case Study Research: Design and Methods. Thousand Oaks, CA: Sage

Publications.

Zachman, J. A. (2008). The Concise Definition of The Zachman Framework by: John A. Zachman.

https://www.zachman.com/about-the-zachman-framework

Zečević, I., Bjeljac, P., Perišić, B., Maruna, V., & Venus, D. (2017). Domain-Specific Modeling

Environment for Developing Domain Specific Modeling Languages as Lightweight General-

Purpose Modeling Language Extensions, 872–881. Springer, Cham. https://doi.org/10.1007/978-

3-319-56535-4_85

Zhou, J., Zhao, D., & Liu, J. (2011). A Domain Specific Language for Interactive Enterprise

Application Development. In Z. Gong, X. Luo, J. Chen, J. Lei, & F. Wang (Eds.), Web

Information Systems and Mining, 6988, 351–360. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-23982-3_43

391

ABBREVIATIONS AND ACRONYMS

Abbreviation /

Acronym
Extended name

AI Artificial Intelligence

BPaaS Business Process as a Service

BPM Business Process Management

BPMN Business Process Model and Notation

CMMN Case Management Model and Notation

CP Clinical Pathway

DMN Decision Model and Notation

DSL Domain-Specific Language

DSML Domain-Specific Modelling Language

DSML4PTM
Domain-Specific Modelling Language for Patient Transferal

Management

DSR Design Science Research

EDI Electronic Data Interchange

EPC Event-driven Process Chain

ePCR Electronic Patient Care Record

ESI Emergency Severity Index

Table 67 Abbreviation overview

392

FHNW
Fachhochschule Nordwestschweiz (University of Applied Science

and Arts Northwestern Switzerland)

FHSG
Fachhochschule St. Gallen (University of Applied Sciences St.

Gallen)

GPML Generic Purpose Modelling Language

ICD
International Statistical Classification of Diseases and Related Health

Problems

ICF International Classification of Functioning, Disability and Health

KoGu KostenGutsprache (cost reimbursement)

MDE Model-Driven Engineering

OMG Object Management Group

UML Unified Modelling Language

XML eXtensible Markup Language

393

LIST OF FIGURES

Figure 1. The AMME Lifecycle (extracted from Bork et al., 2019) ... 6

Figure 2. Map of the Consolidated Research Problem .. 9

Figure 3. Thesis chapter layout .. 14

Figure 4. Components of modelling methods. Three modelling language specifications within

the red box (Karagiannis & Kühn, 2002) .. 18

Figure 5. Definition of levels by MOF (OMG 2016c) .. 19

Figure 6. Meta-modelling hierarchy (Strahringer, 1996) ... 20

Figure 7. Representation of standard modelling languages, adapted from (Efendioglu et al.,

2017) ... 21

Figure 8. Abstraction layers of BPMN in meta-modelling (Karagiannis et al., 2016) 22

Figure 9. Language Barrier between Application Domain and Information Technology (Frank,

2010) ... 23

Figure 10. DSMLs vs. GPMLs adapted from (Frank, 2013b) ... 26

Figure 11. The four dimensions of a knowledge space (Karagiannis & Woitsch, 2015) 29

Figure 12. Integrated modelling languages in the Knowledge Work Designer modelling tool.

Adapted from (Hinkelmann, 2016) ... 30

Figure 13. Typical modelling approach: separating models for human and machine

interpretation (Hinkelmann et al., 2018) ... 31

Figure 14. Comparison between "domain-specific adaptation" of BPMN and "from scratch"

approach to develop DSMLs (Braun et al., 2015) .. 34

Figure 15. The abstract syntax of DR DSML (Chiprianov et al., 2013) 35

Figure 16. The concrete syntax of the DR DSML (Chiprianov et al., 2013)........................... 35

Figure 17. Extensibility of abstract and concrete syntax within MOF-based languages and their

provision of methodical support for extension design (Braun, 2015b) 37

Figure 18. DSMLs: Potential Productivity Gain vs. Scale of Reuse (Frank, 2010) 41

Figure 19. DSL engineering lifecycle (Ceh et al., 2011) ... 44

Figure 20. Meta-model Engineering Lifecycle (Izquierdo et al., 2013) 45

Figure 21. Typical DSML engineering life-cycle (Barišić et al., 2018) 46

Figure 22. DSML Development Process (Cho et al., 2012) .. 47

Figure 23 The seven steps in the macro process (Frank, 2013a) ... 48

Figure 24. The AMME (or OMiLab) Lifecycle. Taken from (Bork et al., 2019; Karagiannis,

2018; Efendioglu et al., 2017; Karagiannis 2015) .. 50

Figure 25. Architecture for semantic interoperability using both metamodels and ontologies

 ... 59

Figure 26. The “research onion”. Adapted from (Saunders, Lewis & Thornihill, 2009) 62

Figure 27 The adopted research approach. Adapted from (Saunders et al., 2009) 67

Figure 28. Design science research conceptual framework and cycles. Adapted from (Hevner,

2007) ... 69

394

Figure 29. Reasoning in the general design cycle (GDC) (Vaishnavi and Kuechler, 2004) ... 69

Figure 30. Design Science Research (DSR) methodology applied in this research work.

Adapted from Vaishnavi and Kuechler (2004) and DSR cycles from Hevner (2007)

 ... 74

Figure 31. Methodological choices (adapted from Saunders et al. 2019) 78

Figure 32. Source triangulation and method triangulation employed in this research 81

Figure 33. Instantiation of the AMME Lifecycle (Karagiannis, 2015; Karagiannis, 2018) for

creating DSML4PTM ... 91

Figure 34. Compliance of requirements of the modelling approaches (Burwitz et al., 2013) . 94

Figure 35 CP-Mod meta model excerpt – Evidence-based Decision and categorised Action

(Burwitz et al., 2013) .. 95

Figure 36. CP model using CP-mod (Burwitz et al., 2013) ... 95

Figure 37 Compliance of requirements of the modelling approaches (Heß et al., 2015) 96

Figure 38. Meta-model excerpt of DSML4CP (Heß et al., 2015) ... 97

Figure 39. Excerpt from the Soft Tissue Sarcoma clinical pathway process model (Heß et al.,

2015) ... 98

Figure 40. Procedure for BPMN extensions (Braun et al., 2015) .. 99

Figure 41. An excerpt of the BPMN4CP meta-model ... 100

Figure 42. A wisdom tooth treatment process model built with BPMN4CP (Braun et al., 2015)

 ... 100

Figure 43. Integrated BPMN extension method (Braun et al., 2016) 101

Figure 44. Abstract syntax of BPMN4CP 2.0 (Braun et al., 2016) 101

Figure 45. Stroke scenario modelled with BPMN4CP 2.0 (Braun et al., 2016) 102

Figure 46. An excerpt of the meta-model of BPMNsix (Braun et al., 2015) 103

Figure 47. An excerpt of the concrete syntax for BPMNsix .. 104

Figure 48. Instantiation of the Create phase for DSML4PTM: In depth domain analysis 107

Figure 49. An excerpt of the conceptual model derived from the Information Model Document

 ... 109

Figure 50. Versions of the Reference Process Models: from the firs (v1) to the last version

(v11) .. 110

Figure 51. Changes in the Reference Process Model: version 5 vs. version 11 111

Figure 52. Intertwin between the domain analysis and the requirement elicitation activities

 ... 116

Figure 53. Mock-up for the process activity “Prepare KoGu” .. 116

Figure 54. Reference Process Model Activities ... 117

Figure 55. Instantiation of the Design phase: the DSML4PTM meta-model 122

Figure 56. Steps to design the meta-model of DSML4PTM ... 123

Figure 57. Example of prescribed flow in the reference process ... 124

Figure 58. Extended BPMN ... 125

Figure 59. Relevant events according to requirements. Adapted from (Silver, 2011). 126

Figure 60. Extended CMMN, extended Control Element Meta-Model and their relation 128

395

Figure 61. Example of decisions logic modelled in the reference process 129

Figure 62. Extended DMN and references with other meta-models 130

Figure 63. Example of status and version on extended data objects 132

Figure 64. Extended Document and Knowledge Meta-Model and references to other meta-

models ... 133

Figure 65. Extended Organisational Meta-Model and references to BPMN 134

Figure 66. Development phase instantiation for DSML4PTM .. 138

Figure 67. Result of implementation of task types and names .. 140

Figure 68. Propagation of changes from the Develop phase of the AMME Lifecycle 141

Figure 69. Deploy/Validate phase instantiation for DSML4PTM ... 142

Figure 70. Propagation of changes from the Deploy/Validate phase of the AMME Lifecycle

 ... 143

Figure 71. Part of the reference model implemented in the ADOxx Development Toolkit .. 147

Figure 72. Components of the BPaaS Design Environment .. 152

Figure 73. Two AMME Lifecycle instantiations for the human and machine interpretation of

BPaaSDSML ... 154

Figure 74. Send Invoice Business Process ... 160

Figure 75. A workflow implementing the business process Send Invoice 162

Figure 76. The BPaaS Meta-Models .. 163

Figure 77. BPaaS Business Process Modelling Language Class Diagram 164

Figure 78. Semantic annotation of models .. 165

Figure 79. Functional Description dimension implemented in ADOxx 166

Figure 80. First Iteration: Implementation of DSML BPaaS in ADOxx 167

Figure 81. Business Process Requirement modelling view vs. Workflow Description modelling

view ... 168

Figure 82. Adaptation of the “Group” concept to specify business process requirements 170

Figure 83. Adaptation of the Lane to specify workflow descriptions.................................... 171

Figure 84. Example of Business Process Functional Requirements annotated with APQC,

Object and Action ... 173

Figure 85. Selection box with the APQC categories of the first tier 174

Figure 86. Excerpt of the APQC Ontology .. 175

Figure 87. Excerpt of the FBPDO Ontology ... 176

Figure 88. Performance dimension in business terms ... 178

Figure 89. Performance dimension in IT terms ... 179

Figure 90. Search-insert type function applied on the APQC question 181

Figure 91. Hierarchical cloud service identification employing the questionnaire 182

Figure 92. Excerpt of the Questionnaire Ontology .. 183

Figure 93. Business process non-functional requirement specification through the

questionnaire (Kritikos et al., 2018).. 183

Figure 94. Main problems hindering agility of DSML engineering faced during the

development of DSML4PTM and BPaaS DSML ... 186

file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585071
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585091
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585092
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585092

396

Figure 95. The separation between the language engineering component and the modelling

component ... 186

Figure 96. Adaptation Complexity Levels ... 195

Figure 97. Meta-modelling vs. an agile meta-modelling ... 200

Figure 98. Integrating language engineering and modelling into the same component 202

Figure 99. Sketch of an Agile Meta-Modelling ... 203

Figure 100. Semantic Specification Components from Modelling Method Components

(Karagiannis & Kühn 2002) .. 204

Figure 101. Derivation of Operators .. 206

Figure 102 The 10 operators for on-the-fly Domain-Specific Adaptations 210

Figure 103. Alignment between meta-model and ontology; and transformation of models into

ontology instances ... 213

Figure 104. Inconsistency between the human- and machine-interpretable representations of

modelling languages in the agile meta-modelling approach. Adapted from

(Höfferer, 2007). ... 214

Figure 105. Ontology-based meta-modelling (Hinkelmann, Laurenzi et al. 2018) 217

Figure 106. An ontology-based meta-modelling for a context-adaptive questionnaire 218

Figure 107. Architecture of the Ontology-Aided Approach .. 221

Figure 108. Ontology-based Meta-Model.. 222

Figure 109. BPMN graphical notations grouped by categories in the Bizagi Modeller 224

Figure 110. Implemented ontologies and their interlinkage .. 226

Figure 111. Semantic rules for the propagation of changes from the human to the machine-

interpretable representation ... 230

Figure 112. Methodology to design and evaluate semantic rules for the propagation domain-

specific adaptations. Adapted from (Grüninger & Fox, 1995) 231

Figure 113. Syntactic Validation of SPARQL Rule 1 ... 235

Figure 114 Conceptualisation of the use case for the integration of CMMN Discretionary Task

with BPMN Manual Task ... 236

Figure 115. Semantic validation of SPARQL Rule 1 - modelling elements integration 237

Figure 116. “As-is” use case for the extension of the Data_Document concept in the Document

and Knowledge Meta-Model .. 244

Figure 117. Results of instantiation of SPARQL rules 2 to 5 .. 250

Figure 118. Components of the AOAME architecture .. 264

Figure 119. Model-View-Controller (MVC) design pattern in AOAME 268

Figure 120. Three steps to populate the Palette ... 270

Figure 121. Correspondence between the four endpoints and the ontology structure 271

Figure 122. Snippets of the Java methods that generate SPARQL SELECTS for retrieving (1)

modelling languages and (2) modelling view(s) ... 272

Figure 123. Snippets of the Java methods that generate SPARQL SELECTS for retrieving (3)

categories and (4) graphical notations .. 273

Figure 124. Execution of a concrete query generated from the fourth endpoint

“getPaletteElement” .. 274

file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585114
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585116
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585117
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585119

397

Figure 125. Main functionalities in the palette of AOAME .. 275

Figure 126. Main view for extending a modelling construct: Creation of the new class and its

annotation properties ... 277

Figure 127. Excerpt of the method implemented in the Web service to generate the SPARQL

INSERT DATA... 279

Figure 128. Adding datatype properties and object properties (i.e. bridging connectors and

semantic mappings)... 280

Figure 129. Creating a datatype property .. 281

Figure 130. Creating a bridging connector (object property) .. 282

Figure 131. Creating a semantic mapping (object property) ... 283

Figure 132. Creating a Domain Ontology concept for the semantic mapping 284

Figure 133. Extending a modelling construct via integration .. 285

Figure 134. Editing a modelling construct ... 286

Figure 135. Excerpt of the method that generates the SPARQL SELECT to retrieve datatype

properties ... 287

Figure 136. Editing Datatype Property of a modelling construct .. 288

Figure 137. Excerpt of the methods that generate SPARQL SELECT to retrieve (1) semantic

mappings and (2) bridging connectors .. 289

Figure 138. Functionality Hide Modelling Construct .. 290

Figure 139. Excerpt of the method that generate SPARQL DELETE DATA and INSERT

DATA to hide a modelling construct from the palette .. 290

Figure 140. Thrown exception when trying to delete a modelling construct with child elements

 ... 291

Figure 141. Evaluation activities within a Design Science Research process (Sonnenberg &

vom Brocke, 2012) .. 295

Figure 142. Requirement fulfilment overview through the AOAME’s functionalities 301

Figure 143. Use cases implemented through AOAME's functionalities 306

Figure 144. DSML4PTM process model containing a Discretionary Task in a BPMN Lane

 ... 308

Figure 145. Conceptual solution (a) before and (b) after adding Discretionary Task to Manual

Task ... 309

Figure 146. Excerpt of the Palette Ontology and Modelling Language Ontology related to

BPMN 2.0 ... 310

Figure 147. Populating the palette with graphical notations from the “Process Modelling View”

of BPMN 2.0 ... 310

Figure 148. Steps to extend “Manual Task” from BPMN with “Discretionary Task” from

CMMN .. 311

Figure 149. Instance of SPARQL Rule 1 dynamically generated after adding Discretionary

Task ... 311

Figure 150. Query results (a) before and (b) after domain-specific adaptations in Use Case 1:

Adding Discretionary Task ... 312

Figure 151. Process annotation with pre-defined requirements ... 313

file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585137
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585138
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585138
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585139
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585139
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/Submission/15403760INF83001%20-FinalVersion.docx%23_Toc32585141

398

Figure 152. Extension of BPMN modelling element "Group" with three (domain-specific) sub-

concepts ... 314

Figure 153. Conceptual solution (a) before and (b) after domain-specifc adaptations for

Extending BPMN Group use case .. 316

Figure 154. Populating the palette with graphical notations from the “Process Modelling View”

of BPaaS .. 318

Figure 155. Steps to extend the BPMN “Group” with BPR annotation “Generating Customer

Billing Data” ... 319

Figure 156. Query results after domain-specific adaptations in Use Case 2: Extending BPMN

Group .. 322

Figure 157. Bridging connector between the ICF Standard document and KoGu Data Object

 ... 325

Figure 158. Conceptual solution (a) before and (b) after adding and referring ICF Standard

document ... 326

Figure 159. Excerpt of the Palette Ontology, Modelling Language Ontology and Domain

Ontology related to the modelling languages DKMM, BPMN and ICF 328

Figure 160. Steps to extend the modelling element “Data Document” with “ICF Standard”

 ... 330

Figure 161. Query results after domain-specific adaptations in Use Case 3: Adding and

Referring ICF Standard document .. 332

Figure 162. Conceptual solution for Use Case 4: Deleting ICF Standard document and

properties ... 335

Figure 163. Steps to delete the modelling element ICF Standard .. 336

Figure 164. Query results about the properties (a) before and (b) after the deleting the ICF

Standard document .. 338

Figure 165. Query results about the modelling element (a) before and (b) after deleting ICF

Standard document .. 338

Figure 166. Steps required to delete a bridging connector (i.e. object property) in the GUI 340

Figure 167. Query results (a) before and (b) after deleting the property 341

Figure 168. SPARQL query to show current annotation properties of ICF Standard 343

Figure 169. Steps to change annotation properties of a modelling construct on the GUI 344

Figure 170. Result of the dynamically generated SPARQL SELECT that retrieves bridging

connectors ... 345

Figure 171. Steps to change bridging connectors of a modelling construct on the GUI 346

Figure 172. Steps to change semantic mappings of a modelling construct on the GUI 347

Figure 173. Result of the dynamically generated SPARQL SELECT that retrieves datatype

properties ... 348

Figure 174. Steps to change datatype properties of a modelling construct on the GUI 349

Figure 175. Steps to hide a modelling construct from the palette ... 350

Figure 176. Query results (a) before and (b) after hiding a modelling element from the Palette

 ... 351

Figure 177. The agile and ontology-aided met-modelling approach to support Design Thinking

 ... 353

399

Figure 178. Main artefact, sub-artefacts and knowledge flow among them 362

Figure 179. Adding constraints from the graphical modelling language (left) or from the

ontology (right) ... 370

400

LIST OF TABLES

Table 1. Ontological, epistemological and axiological assumption. Adapted from (Saunders et

al., 2019) ... 64

Table 2. Aspects of the pragmatism. Adapted from (Goldkuhl, 2011).................................... 65

Table 3. Characteristics of an inductive research approach. Adapted from (Saunders et al.,

2019). .. 66

Table 4. An excerpt of the definition of actors in the research project Patient Radar 108

Table 5. Process requirements - application scenario .. 113

Table 6. Document requirements - application scenario ... 114

Table 7. Information systems and data requirements - application scenario 114

Table 8. Decision requirements - application scenario .. 114

Table 9. Process requirements - reference process model ... 118

Table 10. Document requirements - reference process model ... 118

Table 11. Information systems and data requirements - reference process model 119

Table 12. Decision requirements - reference process model ... 119

Table 13. Additional requirements .. 120

Table 14. Overview of the covered requirements .. 127

Table 15. Overview of the needed concepts from CMMN and Control Element Meta-Model

 ... 128

Table 16. Overview of the needed concepts from the DMN meta-model 131

Table 17. Overview of the needed concepts from the Document and Knowledge Meta-Model

 ... 133

Table 18 Overview of the needed concepts from the Organisational Meta-Model 134

Table 19. Additional semantics for BPMN modelling constructs and extensions 135

Table 20. An excerpt of the graphical notation of DSML4PTM ... 139

Table 21. New Design Decisions ... 143

Table 22. Fulfilment of document requirements .. 145

Table 23. Comparison of problems identified in the Create phase for DSML4PTM and BPaaS

 ... 156

Table 24. Comparison of problems identified in the Design phase for DSML4PTM and BPaaS

DSML.. 157

Table 25. Comparison of the problem identified in the Develop phase for DSML4PTM and

BPaaS .. 158

Table 26. Comparison of the problem identified in the Deploy/Validate phase for DSML4PTM

and BPaaS ... 159

Table 27. APQC Top Level Categories ... 174

Table 28. Non-functional IT Specifications... 183

Table 29. Mapping requirements to basic functions CRUD .. 207

401

Table 30. SPARQL Rule 1 – Integrate modelling elements from different modelling languages

 ... 234

Table 31 An instance of SPARQL Rule 1 ... 236

Table 32. SPARQL Rule 2 – Create modelling construct ... 240

Table 33. SPARQL Rule 3 – Create object property ... 241

Table 34. SPARQL Rule 4 – Create datatype property ... 242

Table 35. SPARQL Rule 5 – Create domain concept .. 243

Table 36. Instance of SPARQL Rule 2 .. 245

Table 37. Instance of SPARQL Rule 4 .. 246

Table 38. Instance of SPARQL Rule 3b .. 247

Table 39. Instance of SPARQL Rule 3a .. 248

Table 40. Instance of SPARQL Rule 5 .. 249

Table 41. SPARQL Rule 6 – Delete modelling construct ... 251

Table 42. SPARQL Rule 7 – Delete property.. 252

Table 43. Alternative to SPARQL Rule 7 ... 252

Table 44. An instance of SPARQL Rule 6 .. 253

Table 45. An instance of SPARQL Rule 7 .. 253

Table 46. SPARQL Rule 8 – Update modelling construct .. 255

Table 47. SPARQL Rule 9 – Update object property .. 256

Table 48. SPARQL Rule 10 – Update datatype property .. 257

Table 49. SPARQL Rule 11 – Update the datatype property to hide a modelling construct 257

Table 50. An instance of SPARQL Rule 8 - update modelling construct 258

Table 51. An instance of SPARQL Rule 9 - update object properties 259

Table 52. An instance of SPARQL Rule 10 – update datatype properties 260

Table 53. An instance of SPARQL 11 - hide a modelling construct 260

Table 54. Ex post artificial and naturalistic evaluation strategy for the artefact. Adapted from

(Pries-Heje et al. 2008) ... 296

Table 55. Evaluation criteria for Design Science Research artefact types (March and Smith,

1995) ... 297

Table 56. Evaluation Strategy for the Agile and Ontology-Aided Meta-modelling Approach

 ... 299

Table 57. SPARQL query to prove consistency in Use Case 1: Adding Discretionary Task 312

Table 58 SPARQL query to prove consistency in Use Case 2: Extending BPMN Group 323

Table 59 SPARQL query to prove consistency in Use Case 3: Adding and Referring ICF

Standard Document” ... 333

Table 60 SPARQL query to prove that properties of ICF Standard document are deleted ... 338

Table 61. SPARQL query to prove that ICF Standard document is deleted 339

Table 62. SPARQL query to prove consistency after deleting properties 341

Table 63. SPARQL query to retrieve the value of a datatype property 351

Table 64. Main artefact contribution ... 363

file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26201996
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26201996
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26201997
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26201998
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26201999
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202000
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202001
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202002
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202003
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202004
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202005
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202006
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202007
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202008
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202009
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202010
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202011
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202012
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202013
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202014
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202015
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202016
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202017
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202018
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202019
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202023
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202024
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202025
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202025
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202026
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202027
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202028
file:///C:/Users/emanuele.laurenzi/Documents/PhD/PhD%20Thesis/PhD%20Emanuele%20Laurenzi/15403760INF83001%20-FinalVersion.docx%23_Toc26202029

402

Table 65. Sub-artefacts contribution .. 364

Table 66. Adherence of the research to DSR guidelines from Hevner et al. (2004) 368

Table 67 Abbreviation overview ... 391

403

APPENDIX A: PATIENT TRANSFERAL MANAGEMENT DOCUMENTATION

The below table contains the sources of the documents related to case Patient Transferal Management. Documents can be found in the folder

Appendix A.

Folder Folder description File name

A1. Information Model This folder contains the information model, which describes all the terms and related meaning. It was

created in the domain analysis of the project. The folder contains also supportive material to the creation of

the information model such as the presentation of the project in PDF and the healthcare standards.

- Information Model (source - workshop

SwissPost-Hospital Walenstadt).docx

- 2012-04-12_PatientenRadar_V5.pdf

- …\Healthcare Standards\

A2. Conceptual Model This folder contains the conceptual model, which presents a lightweight ontology describing the domain.

Classes, relations and attributes are used in a UML class diagram manner.
- ConceptualModel.pdf

A3. Reference Model -

Elective Case

This folder contains the last version of the BPMN reference process model of an elective entry case (v11).

The process model can be found in different format (jpeg, bpmn) and in a pdf document. It also contains

the previous process models that evolves over the course of the project. The folder also contains supportive

material to the process such as the information care from one project partner (Reha Klinik Valens) as we as

a Power Point with the decision models.

- Reference Process Model v11 -Final Version

for Requirements Elicitation.jpeg (and in

.bpmn)

- BPMNReference Process Model for Elective

Entry Cases.pdf

- …\Old versions of the reference process

model.zip

- Form the Reha Klinik Valens containing

information care value range.pdf

- DecisionModels and BPMN for Patient

Radar.pdf

A4. Application

Scenario - Emergency

Case

This folder contains the application scenario of an emergency case in a PDF document. The folder also

contains a sub-folder with the material produced in a workshop with a transferal manager. The workshop

was used as basis to start describes the application scenario.

- Application Scenario - A Geriatric Patient with

Stroke.pdf

- …\Material from workshops with Transferal

Manager in Hospital of Grab 14-03-2016.zip

A5. Cost

Reimbursement KoGu

This folder contains a PDF document describing the data needed for the cost reimbursement form (KoGu).

The data can be found between page 31 and page 37 of the document.
- Cost Reimbursement KoGu - between 31 and

37.pdf

A6. Mockups for the

Reference Process

Model

This folder contains the three documents: a PDF document describing the elective reference model and

mock-ups, a PDF document containing the list of mock-ups for the reference model, and finally a .zip file

containing the interactive mock-ups.

- Reference Model and Mock-ups.pdf

- Mock-ups TM.pdf

- Mock-ups Transferral Management.zip

A7. Reference Process

Model Activities

This folder contains the reference process model activities in the form of a mind map. Each activity contains

a number that reflects the execution order in the process. For each activity there is a mock-up that

corresponds to the same number (see A6).

- …Reference process model activities.bmp

A8. Graphical Notation

DSML4PTM

This folder contains the graphical notations for the modelling construct of DSML4PTM. The graphical

notations can be found in a PDF document as well as in the GraphRep format, which are importable to the

ADOxx modelling tool.

- GraphicalNotationDSML4PTM.pdf

- GraphRep-20180426T130751Z-001.zip

https://drive.switch.ch/index.php/s/1JOrPJ9KSg3nbti
https://drive.switch.ch/index.php/s/QvEeA2JgzevqbeB
https://drive.switch.ch/index.php/s/ElRl0Xzs1GGAh9U
https://drive.switch.ch/index.php/s/BcsAbsUx94mTL1D
https://drive.switch.ch/index.php/s/BcsAbsUx94mTL1D
https://drive.switch.ch/index.php/s/rTbjFL1AUTyFMD7
https://drive.switch.ch/index.php/s/rTbjFL1AUTyFMD7
https://drive.switch.ch/index.php/s/rTbjFL1AUTyFMD7
https://drive.switch.ch/index.php/s/1vKrw9eJ9vROqCI
https://drive.switch.ch/index.php/s/1vKrw9eJ9vROqCI
https://drive.switch.ch/index.php/s/8OFrputguCmiUNf
https://drive.switch.ch/index.php/s/8OFrputguCmiUNf
https://drive.switch.ch/index.php/s/8OFrputguCmiUNf
https://drive.switch.ch/index.php/s/JrGY5yFG9iajZiX
https://drive.switch.ch/index.php/s/JrGY5yFG9iajZiX
https://drive.switch.ch/index.php/s/4maT6oj4ZMKRye4
https://drive.switch.ch/index.php/s/4maT6oj4ZMKRye4

404

A9. ADOxx Library for

DSML4PTM

This folder contains the DSML4PTM ADOxx Library and Models. The ADOxx library are in the file

DSML4PTM.abl and the ADOxx models are in the file models.adl. Both files can be imported to ADOxx

for usage.

- DSML4PTM.abl

- Models.adl

A10. Evaluation

Scenarios for

DSML4PTM

This folder contains the material used and produced during the evaluation of the DSML4PTM. The folder

contains a PDF document with the fulfilment of requirements of DSML4PTM. The folder also contains

three sub-folders “KoGu accepted”, KoGu rejected” and “Scenario”. Each of them contains PDFs depicting

models. Models in the folder “KoGu accepted” represent the happy path, mainly derived from the reference

process model. Models in the folder “KoGu rejected” is a deviation of the reference process model. Finally,

models in the third folder “Scenario” reflect the application scenario geriatric patient with stroke.

- …\ DSML4PTM Models\KoGu accepted.zip

- …\ DSML4PTM Models\KoGu rejected.zip

- …\ DSML4PTM Models\Scenario.zip

- Fulfillment of Requirements.pdf

A11. Focus Group for

DSML4PTM

This folder contains the material used and produced during the focus group for DSML4PTM. Namely, the

folder contains the PDF of the questionnaire, the PDF containing two scenarios to be proposed after the

DSML4PTM was introduced, the zip folder “Questionnaire results” containing the results of the 5 experts

involved in the focus group.

- Questionnaire results.zip

- Questionnaire.pdf

- Workshop with two scenarios.pdf

A12. Semantics of

modelling constructs of

DSML4PTM

This folder contains the semantics of the modelling constructs of DSML4PTM - Semantics of modelling constructs from

DSML4PTM.pdf

A13. Fulfilled

Requirements for

DSML4PTM

This folder contains three PDF documents describing the fulfilment of the requirements for DSML4PTM. - Fulfilled Process Requirements for

DSML4PTM.pdf

- Fulfilment of Decision Requirements for

DSML4PTM.pdf

- Fulfilment of the Additional Requirements for

DSML4PTM.pdf

https://drive.switch.ch/index.php/s/z7AL1oYC1B0UriR
https://drive.switch.ch/index.php/s/z7AL1oYC1B0UriR
https://drive.switch.ch/index.php/s/q0spEIs5S4Izx9E
https://drive.switch.ch/index.php/s/q0spEIs5S4Izx9E
https://drive.switch.ch/index.php/s/q0spEIs5S4Izx9E
https://drive.switch.ch/index.php/s/3ITZbzKjL5VtTlB
https://drive.switch.ch/index.php/s/3ITZbzKjL5VtTlB
https://drive.switch.ch/index.php/s/UKDflRATKQGcQsT
https://drive.switch.ch/index.php/s/UKDflRATKQGcQsT
https://drive.switch.ch/index.php/s/UKDflRATKQGcQsT
https://drive.switch.ch/index.php/s/VZGGdbBvVsWCkE4
https://drive.switch.ch/index.php/s/VZGGdbBvVsWCkE4
https://drive.switch.ch/index.php/s/VZGGdbBvVsWCkE4

405

APPENDIX B: BUSINESS PROCESS AS A SERVICE DOCUMENTATION

The below table contains the sources of the documents related to case Business Process as a Service. Documents can be found in the folder

Appendix B.

Folder Folder description File name

B1. Modelling Framework for BPaaS This folder contains the deliverable titled Modelling Framework for

BPaaS D3.1. The document contains the specification of the hybrid

modelling environment of CloudSocket named as BPaaS Design

Environment. The latter supports the business and IT alignment in the

cloud through the semantic lifting of human interpretable models. For

this, the BPaaS Design Environment presents two modelling components:

the BPaaS modelling environment (for the human interpretation) and the

BPaaS Ontology (for the machine interpretation).

The BPaaS Ontology development can be found in Chapter 5 (page 79).

The formal description of the BPaaS meta-model can be found in Sub-

section 4.2.3 (page 72).

- CloudSocket_D3.1_BPaas_Design_Environment_Research.pdf

B2. Modelling_Prototypes_for_BPaaS This folder contains the deliverable titled Explanatory Notes: Modelling

Prototypes for BPaaS D3.2. The document builds on the document in

folder B1. It contains the further development of (a) the modelling

language BPaaS (i.e. requirements and specifications) implemented in the

ADOxx platform, (b) the BPaaS Ontology, (c) semantic rules for the

seamtnic matchmaking between business processes and workflows/cloud

service specifications, (d) the implementation, setup and configuration of

the BPaaS Design Environment prototype.

See the complete list of the new attributes after the first engineering

lifecycle iteration in Section 3.3.

The complete list of non-functional business process requirements can be

found in Section 3.3.1.2.

The complete list of non-functional workflow descriptions can be found

in Section 3.3.2.2

- CloudSocket_D3.2_Modelling_Prototypes_for_BPaaS.pdf

B3. BPaaS ADOxx Library and

Models

This folder contains the BPaaS ADOxx Library and Models. Namley,

there are (1) the latest version of the BPaaS Modelling Library developed

in ADOxx with extension .abl (i.e. BPaaS meta-model and graphical

notations); (2) the old versions of the BPaaS Modelling Library

developed in ADOxx with extension .abl (i.e. BPaaS meta-model and

graphical notations); (3) the ADOxx models for the three scenarios

Christmas card, Social Media Campaign and Send Invoice. Each of them

has a dedicated folder containing the ADOxx files with extension.adl as

- Latest version of the BPaaS modelling library retrievable at:

- BPaaS Modelling Library – Final Version\BPaaS Modelling

Library – Final Version.abl

- Old versions of the BPaaS modelling library:

- …\Old Libraries

- Christmas Card Models:

- …\Christmas Card Models

- Social Media Campaign Models:

- …\Social Media Campaign Models

https://drive.switch.ch/index.php/s/JHVKXxPpCeuAIxB
https://drive.switch.ch/index.php/s/wMOLj2eQg0qmVe2
https://drive.switch.ch/index.php/s/s9k7eJGL3oIupKl
https://drive.switch.ch/index.php/s/BuqZ2T7IiHHB1EK
https://drive.switch.ch/index.php/s/BuqZ2T7IiHHB1EK

406

well as images for the convenience of the reader. Also, each model folder

contains the correspondent library.
- Send Invoice Models:

- …\Send Invoice Models

B4. Knowledge Provision for

CloudSocket Findings and Feedback

This folder contains the deliverable titled Knowledge Provision for

CloudSocket Findings and Feedback D6.2. The document shows the

progress of all research and technical items made during the CloudSocket

research project. The progress is presented in the form of description of

the latest improved items and the motivation for their improvements. The

latter takes the name of “lessons learned” in the document. Only Section

2.1 and 2.2 are regarded as relevant for this research work.

- CloudSocket_D6.2_Knowledge_Provision_for_CloudSocket.pdf

B5. Image of Models This folder contains the images of models. The images represent the

models business processes and workflows models of two use case

scenarios: Send Invoice and Social Media Campaign. Images were

generated with the ADOxx Modelling Toolkit.

- …\Send Invoice\

- -Business Process Send Invoice.bmp

- -Workflow - Ninja+YMENS.bmp

- …\Social Media Campaign

- -BP-Social Media Campaign-Basic.png

- -Wf-Social Media Campaing - Basic.png

B6. BPMN Send Invoice and

Workflow

This folder contains a PDF document containing BPMN Send Invoice and

a workflow implemented in business processes.
- Send Invoice BP and a WF.pdf

B7. Business-like questions to retrieve

Cloud solutions

This folder contains a master’s thesis describing the business-like

questions to retrieve Cloud solutions. The description is based on an

interview with project partner Mathema.

- Towards a Semantic Enrichment of Business-IT Alignment in the

Cloud.pdf

B8. Non-Functional Cloud Service

Specifications for BPaaS

This folder contains a PDF document with all the possible values for non-

functional cloud service specifications for BPaaS. The specifications are

grouped by sub-dimensions and dimensions.

- Non-Functional Cloud Service Specifications for BPaaS.pdf

https://drive.switch.ch/index.php/s/axRPse49RehsjdF
https://drive.switch.ch/index.php/s/axRPse49RehsjdF
https://drive.switch.ch/index.php/s/OFhdKozQSlfh6qw
https://drive.switch.ch/index.php/s/6xEdS4JtfqeCXFl
https://drive.switch.ch/index.php/s/6xEdS4JtfqeCXFl
https://drive.switch.ch/index.php/s/NZu0rnkQFU8HFub
https://drive.switch.ch/index.php/s/NZu0rnkQFU8HFub
https://drive.switch.ch/index.php/s/AgOiGEhEN11ibM9
https://drive.switch.ch/index.php/s/AgOiGEhEN11ibM9

407

APPENDIX C: MODELLING EXPERT INTERVIEWS DOCUMENTATION

The below table contains the sources of the documents related to modelling expert interviews. Documents can be found in the folder Appendix C.

Folder Folder description File name

C1. Expert Interview -

enterprise architect

This folder contains the pdf document with the enterprise architect as well as a model built with an

ArchiMate extension.
- Expert Interview - enterprise architect.pdf

- ModelBuiltwithArchiMateExtension.pdf

C2. Expert Interview -

enterprise modeller

This folder contains the pdf document with the interview results of the business process modeller as

well as a scenario describing a meta-model extension (GDPR scenario).
- Expert Interview - process modeller.pdf

- Implementation of DSGVO (GDPR) - Impact

CH.pdf

- Meta-Model implemented in Adonis – GDPR

extension.pdf

C3. Expert Interview - process

modeller

This folder contains the pdf document with the interview results of the workflow modeller. The

folder also contains the model and scenario where BPMN has to be extended (Dynamic Batch

Scenario).

- Expert Interview - workflow modeller.pdf

- Camunda models – dynamic batch scenario.pdf

C4. Expert Interview -

workflow modeller

This folder contains the pdf document with the interview results of the enterprise modeller. - Expert Interview - enterprise modeller.pdf

C5. Questionnaire Template

for Experts Interview

This folder contains a PDF document with the template of the Interview. - Questionnaire Template.pdf

https://drive.switch.ch/index.php/s/BSOPUO0UarDge2J
https://drive.switch.ch/index.php/s/SCCkD6E6n5YEpR8
https://drive.switch.ch/index.php/s/SCCkD6E6n5YEpR8
https://drive.switch.ch/index.php/s/ABWWUbHlUdHU463
https://drive.switch.ch/index.php/s/ABWWUbHlUdHU463
https://drive.switch.ch/index.php/s/yZnJN0aTbWQ7XE6
https://drive.switch.ch/index.php/s/yZnJN0aTbWQ7XE6
https://drive.switch.ch/index.php/s/o3Q6jp4oER2eVTM
https://drive.switch.ch/index.php/s/o3Q6jp4oER2eVTM
https://drive.switch.ch/index.php/s/3PyUV1XrDgOuEmB
https://drive.switch.ch/index.php/s/3PyUV1XrDgOuEmB

408

APPENDIX D: VALIDATION SPARQL RULES DOCUMENTATION

The below table contains the sources of the two documents describing the syntactic and semantic validation activities of the 11 semantic rules.

Documents can be found in the folder Appendix D.

Folder Folder description File name

D1. Syntactic

Validation of SPARQL

Rules

This folder contains a PDF document describing the syntactic validation of the 11 SPARQL Rules. The validation took place through

the SPARQL Update Validator.
- Syntactic Validation of

SPARQL Rules.pdf

D2. Semantic

Validation of SPARQL

Rules

This folder contains a PDF document describing the semantic validation of the 11 SPARQL Rules. The validation took place by

instantiating the SPARQL rules to fit use cases from the Patient Transferal Management. The SPARQL rule instances are fired

against the DSML4PTM ontology in TopBraid.

- Semantic Validation of

SPARQL Rules.pdf

https://drive.switch.ch/index.php/s/LI6uuHYVvLAqcaz
https://drive.switch.ch/index.php/s/lvfSZbQlS6Z3TKf
https://drive.switch.ch/index.php/s/lvfSZbQlS6Z3TKf
https://drive.switch.ch/index.php/s/lvfSZbQlS6Z3TKf
https://drive.switch.ch/index.php/s/LsD8IUheBAcmrbU
https://drive.switch.ch/index.php/s/LsD8IUheBAcmrbU
https://drive.switch.ch/index.php/s/LsD8IUheBAcmrbU

409

APPENDIX E: PROTOTYPE DOCUMENTATION

The below table contains the sources of the files and documents of the prototype AOAME. The documentation can be found in the folder Appendix

E.

Folder Folder description File name

E1. SPARQL query

samples

This folder contains a PDF document describing four SPARQL query samples. The queries are

dynamically generated for retrieving knowledge to display the graphical notations in the Palette.
- SPARQL query samples dynamically generated

for the Palette.pdf

E2. Angular WebApp This folder contains the zip file with the Angular Web App. - OntologyBasedModellingEnvironment-

WebAppNew.zip

E3. Web Service This folder contains the zip folder with the Java-based Web Service. - OntologyBasedModellingEnvironment-

WebService.zip

E4. Ontologies for the

Modelling Environment

This folder contains the zip file with the ontologies for AOAME. The ontologies that were used,

developed and extended during the prototype implementation and evaluation.
- Ontology4ModellingEnvironment.zip

E5. Graphical notations for

AOAME5

This folder contains the zip file with the graphical notations developed for the implementation of use

cases.
- images.zip

E6. Getting Started with

AOAME - Guidelines

This folder contains a PDF document with the getting started guide of AOAME. Guidelines are

provided for using AOAME both locally and online. The folder also contains Apache Jena Fuseki to

start AOAME locally.

- Getting Started Guide of AOAME.pdf

- apache-jena-fuseki-3.4.0.zip

https://drive.switch.ch/index.php/s/ufxwYrYNrMwWAWF
https://drive.switch.ch/index.php/s/ufxwYrYNrMwWAWF
https://drive.switch.ch/index.php/s/wm7xXkC5wS0Tn6R
https://drive.switch.ch/index.php/s/wm7xXkC5wS0Tn6R
https://drive.switch.ch/index.php/s/rQOjcZkLybIch0P
https://drive.switch.ch/index.php/s/rySKiPX9sBlg1Fz
https://drive.switch.ch/index.php/s/l9n03lRcd4wG71q
https://drive.switch.ch/index.php/s/l9n03lRcd4wG71q
https://drive.switch.ch/index.php/s/SE6Q73YAFM06Raq
https://drive.switch.ch/index.php/s/SE6Q73YAFM06Raq
https://drive.switch.ch/index.php/s/hm4YuSCvrvDAHqQ
https://drive.switch.ch/index.php/s/hm4YuSCvrvDAHqQ

410

APPENDIX F: EVALUATION DOCUMENTATION

The below table contains the sources of the documentation related to the evaluation of the agile and ontology-aided meta-modelling approach. The

documentation can be found in the folder Appendix F.

Folder Folder description File name

F1. Query Results

Use Cases 1 and 2

This folder contains additional screenshots produced during the evaluation of the artefact. The

screenshots show the retrieved knowledge before and after the domain-specific adaptations of

modelling languages.

- UseCase2_After performing the modeling language

extension.png

- UseCase2_Before performing the modeling language

extension.png

- Usecase3_After performing the modeling language

extension.png

- UseCase3_Before performing the modeling language

extension.png

F2. 40 retrieved

entries

This folder contains the list of retrieved entries from the query that was fired before deleting a

modelling construct.
- queryResults_BeforeDeletingModellingConstruct.csv

https://drive.switch.ch/index.php/s/LnAvvccy6Heiaxi
https://drive.switch.ch/index.php/s/bxR3WQWIzyvvNR6
https://drive.switch.ch/index.php/s/bxR3WQWIzyvvNR6
https://drive.switch.ch/index.php/s/et7XI3kWDyUEfX4
https://drive.switch.ch/index.php/s/et7XI3kWDyUEfX4

