
Intelligent Systems in Account Finance & Management

Co-evolved Genetic Programs for Stock Market
Trading

Jason F. Nicholls
Department of Computer Science, University of Pretoria, Pretoria, South Africa

Andries P. Engelbrecht
Department of Industrial Engineering and Computer Science Division, Stellenbosch

University, Stellenbosch, South Africa

Abstract
The profitability of trading rules evolved by three different optimised
genetic programs, namely a single population genetic program (GP), a
co-operative co-evolved GP, and a competitive co-evolved GP is com-
pared. Profitability is determined by trading thirteen listed shares on
the Johannesburg Stock Exchange (JSE) over a period of April 2003
to June 2008. An empirical study presented here shows that GPs can
generate profitable trading rules across a variety of industries and mar-
ket conditions. The results show that the co-operative co-evolved GP
generates trading rules perform significantly worse than a single pop-
ulation GP and a competitively co-evolved GP. The results also show
that a competitive co-evolved GP and the single population GP pro-
duce similar trading rules. The profits returned by the evolved trading
rules are compared to the profit returned by the buy-and-hold trading
strategy. The evolved trading rules significantly outperform the buy-
and-hold strategy when the market trends downwards. No significant
difference is identified among the buy-and-hold strategy, the competi-
tive co-evolved GP, and single population GP when the market trends
upwards.

Keywords: technical analysis, stock market trading, Johannesburg
Stock Exchange, genetic programming, co-evolution, competitive co-
evolution, co-operative co-evolution

jason.nicholls@tuks.co.za

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 2

1 Introduction

A genetic program (GP) is a domain-independent meta-heuristic algorithm that
genetically breeds a population of computer programs to solve a problem (Koza &
Poli, 2005). Meta-heuristic algorithms search the solution space by avoiding parts of
the search space that produce poor solutions. The result is an approximate solution
to the optimisation problem under consideration (Bäck, 1996; Bäck & Schwefel, 1996;
Engelbrecht, 2007; Fogel, 2006a).

Originally developed by Koza (Koza, 1992a) in the late 1980s to evolve com-
puter programs, a GP can evolve trading rules using basic mathematical operations.
Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) used a GP to evolve trading
rules for the S&P 500 index using daily prices from 1928 to 1995. Their approach
used a single population of individuals to evolve a trading rule over a fixed number of
generations. The single population GP of Allen and Karjalainen was reimplemented
by Neely et al. (Neely, Weller, & Dittmar, 1997), Telbany (El-Telbany, 2004), Mah-
foud and Mani (Mahfoud & Mani, 1996; Mani, Quah, Mahfoud, & Barr, 1995), Li
and Tsang (E. Tsang, 2009; E. P. K. Tsang, Li, & Butler, 1998), and Potvina et al.
(Potvina, Sorianoa, & Vall, 2004) with varying degrees of success.

In nature, populations rarely evolve in isolation. Instead, populations evolve in
co-operation with other populations or in competition with other populations (Rosin
& Belew, 1997). This paper proposes a co-operative and competitive co-evolutionary
approach to GP for evolving trading rules. The performance of trading rules evolved
through co-operative and competitive co-evolution is compared to trading rules de-
rived by the single population GP of by Allen and Karjalainen (Allen & Karjalainen,
1995, 1999). It is shown that co-operative co-evolved GP generated trading rules per-
form significantly worse than trading rules generated by a single population GP and
a competitively co-evolved GP. The results also show that a competitive co-evolved
GP and the single population GP produce similar trading rules. The profits returned
by the evolved trading rules are compared to the profit returned by the buy-and-hold
trading strategy. The results show that the evolved trading rules significantly outper-
form the buy-and-hold strategy when the market, including fees trends downwards.
No significant difference is found among the buy-and-hold strategy, the competitive
co-evolved GP, and single population GP when the market (including fees) trends
upwards.

Section 2 provides a short background on the use of technical analysis in stock
market trading and the application of evolutionary algorithms (EAs) in stock market
trading. Section 3 discusses Allen and Karjalainen’s implementation of a GP for stock
market forecasting and how it was adapted for this study. Section 4 describes both
co-evolved strategies in detail. Section 5 presents the empirical process and stock
market data used for the purpose of this study. Section 6 presents the results of the
study. This paper is concluded by Section 7 which presents a summary of the findings
and proposals for future work.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 3

2 Background

Stock market analysis is generally ex-ante, focusing on the impacts of long-term
cash flows, earnings and revenue. This type of ex-ante analysis is known as fundamen-
tal analysis (Peterson, 2007). Fundamental analysis focuses on analysing company
fundamentals such as revenue, assets, production rates, demand, and interest rates.
Fundamental analysis often relates back to the share price to determine the future
price. Analysis of the share price is known as technical analysis (Peterson, 2007). A
belief that the share price reflects all known fundamental information is referred to
as the efficient market hypothesis (EMH) (Fama, 1965).

Charles Dow (Cowles, 1933; Edwards, Magee, & Bassetti, 2007; King, 1934)
argued that the market is not completely efficient, but that fundamental information
rather takes time to propagate through the market. The propagation of fundamental
information is therefore reflected in the movement of the share price. Dow believed
that if the share price is on the rise, the probability of a continued rise is greater
than a fall and vice versa, resulting in a perceived direction overtime known as a
trend (Cowles, 1933; James, 1968; King, 1934). Dow proposed the first scientific
stock movement theory known as Dow theory (Bishop, 1961; Edwards et al., 2007).
Dow theory states that a market is either in an upward trend, downward trend, or
continuing in the same direction (Bishop, 1961; Edwards et al., 2007; Rhea, 1993).

Technical analysis techniques use the historic share price to find which of the
three Dow trends the market is in and if the trend may change. Knowledge of the
trend, and if the trend is changing, gives guidance as to when a trader should buy or
sell a share. A simple moving average (SMA) is a technical analysis function used to
determine the current market trend. Summing the share price for n consecutive days
before a specific day t and dividing the result by n returns the average price of the
share over time for the day t.

A comparison of different moving averages can reinforce the trend certainty. For
example, if the 10-day SMA follows the same direction as the 50-day SMA, then it
can be assumed that the trend is set. If the two moving averages do not follow the
same direction, it could signify a trend reversal. Brock et al. (Brock, Lakonishok, &
LeBaron, 1992) examined the returns generated by various SMAs against the Dow
Jones Index from 1897 to 1986. Brock et al. showed that when costs are excluded,
SMAs can generate profitable buy and sell rules. Many variations of the SMA function
exist. Two variations are:

• the weighted moving average (WMA), defined as:

WMA(n) = ωPt + (ω − 1)Pt−1 + · · ·+ Pt−n+1

ω + (ω − 1) + · · ·+ 1 (1)

where Pt is the opening, closing, high, or low share price on day t, ω is a weight.
In this example, ω is equal to n.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 4

• the exponential moving average (EMA), defined as:

EMA(n) = αnPt + αn−1Pt−1 + · · ·+ αPt−n+1

αn + αn−1 + · · ·+ α
(2)

where α = 1− 2
n+1 and α is the weight.

A common technique used to determine the trend using two different moving
averages is to subtract the longer (i.e. slower) moving average from the shorter (i.e.
faster) one. A positive result indicates an upward trend, a negative result indicates a
downward trend, and a zero result indicates a moment of uncertainty. In the 1960s,
Appel (Achelis, 2013; Bäck, Fogel, & Michalewicz, 1997; Tilkin, 2001) subtracted a
26-day EMA from a 12-day EMA, and called this the moving average convergence
divergence (MACD) (Achelis, 2013; Tilkin, 2001).

The SMA, EMA, WMA, and MACD are just four of the many technical analysis
functions that exist (Edwards et al., 2007). Each function requires a set of parameters
that may be unique to a specific stock or market. Technical analysis functions are
combined to form a trading rule. An example of a trading rule is to buy shares when
the 20-day SMA is greater than its 50-day WMA; otherwise sell the shares held.

Selecting which technical analysis functions to use, and determining the correct
parameters to form a trading rule is an optimisation problem. Bauer (Bauer, 1994)
was one of the earliest researchers to use a class of meta-heuristics known as genetic
algorithms (GAs) (John H. Holland, 1992) to optimise the combination of technical
analysis functions and parameters to maximise return on a set of stock trades.

A GA is based on simulated evolution (Bäck et al., 1997; Fogel, 2006b). Simu-
lated evolution breeds a population of candidate solutions called individuals to solve
a specific problem (Koza & Poli, 2005). Specifically, GAs iteratively transform a pop-
ulation of individuals into new generations of individuals by applying the analogue
of naturally occurring genetic operations. Each individual has a set of phenotypes
encoded as genes within a chromosome.

Friedman and Fraser (Bäck et al., 1997; Fogel, 2006b; Friedman, 1956) are
recognised as the first to experiment with GAs. However, it was Holland (Bäck et al.,
1997; John H. Holland, 1992, 2000; John Henry Holland, 1995) that formalised the
first version of a GA. Holland’s emulation of evolution used a fixed length binary
string representation of a chromosome.

Rather than optimising which technical analysis functions to use with which
parameters for a given stock, a technical analysis function can be evolved. To evolve
the technical analysis functions from basic mathematical operators requires a variable
length chromosome structure that defines a relationship between genes within the
chromosome. The chromosome structure must cater for binary, logical and numerical
functions. Koza (Koza, 1992b) experimented with an alternative version of a GA
called a genetic program (GP). A GP replaces the fixed length vector structure used
in a GA with a random length, non-linear, hierarchical abstract data structure, known

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 5

as a tree. It is possible to encode logical formulae, arithmetic formulae, or computer
programs using a tree structure.

Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) were one of the ear-
liest implementers of GPs for stock market trading. Using data from the S&P 500
index and the New York Stock Exchange (NYSE), Allen and Karjalainen (Allen &
Karjalainen, 1995, 1999) showed that evolved trading rules do not earn excess returns
over a simple buy-and-hold strategy after transaction costs. The trading rules enter
the market when returns are positive and daily volatility is low and stay out of the
market when the returns are negative and volatility is high. The trading rules are
sensitive to trading costs, but showed robustness to the impact of the 1987 stock mar-
ket crash (Allen & Karjalainen, 1995, 1999). Lowering the trading costs increases the
returns of the GP (Allen & Karjalainen, 1995, 1999). Allen and Karjalainen noted
that, while their approach produced trading rules that generated profitable returns,
their GP is relatively simple and the parameters of the GP were not optimised (Allen
& Karjalainen, 1995, 1999).

Variations of Allen and Karjalainen’s implementation of a GP were implemented
by Neely et al. (Neely et al., 1997), Telbany (El-Telbany, 2004), Mahfoud and Mani
(Mahfoud & Mani, 1996; Mani et al., 1995), Li and Tsang (E. Tsang, 2009; E. P. K.
Tsang et al., 1998), and Potvina et al. (Potvina et al., 2004) with varying degrees of
success.

3 Genetic Programming for Trading

This section discusses the single population GP. Section 3.1 describes a trading
rule and how it is encoded within a chromosome. Section 3.2 presents the fitness
function implemented in this study. Section 3.3 presents the singple population GP
algorithm.

3.1 Trading Rule

Each individual within a GP represents a trading rule. Trading rules are encoded
within the individual’s chromosome as a tree. Each tree consists of terminal nodes
(i.e. nodes with no successors) and non-terminal nodes. Terminal nodes correspond
to input parameters. Each node provides arguments (or parameters) to the function
defined in the node’s predecessor. The entire tree is interpreted as a function, which
is evaluated recursively starting from the root node of the tree. Each node within the
tree is referred to as a gene.

This study uses the functions and input parameters defined by Allen and Kar-
jalainen (Allen & Karjalainen, 1995, 1999). Non-terminal nodes are defined as either
a real number function or a boolean function, respectively returning a real number
or a boolean value.

Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) used different real
number functions to include “average”, “minimum”, “maximum”, “arithmetic op-

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 6

erators”, “lag” and “norm”. “Minimum” returns the minimum of two real-valued
parameters. “Maximum” returns the maximum value of two real-valued parameters.
The “arithmetic operators” perform their functions (+,−,÷,×) on two real-valued
parameters. “Lag” returns the price of the share n days prior, where n is a natu-
ral number. “Average” returns the SMA for the n days prior. “Norm” returns the
absolute value between the difference of two real-valued parameters.

The boolean functions includes “if-then-else”,“and”,“or”,“not”, “<” and “>”.
“If-then-else” requires three boolean parameters, “and” requires two boolean param-
eters, “or” requires two boolean parameters, and the logical comparison operators
(“<” and “>”) require two real-valued parameters. Parameters are defined as the
children of the non-terminal nodes.

Terminal nodes are defined as either the boolean constants true or false, “close
price”, “high price”, “low price”, “volume”, a real number constant, or a natural num-
ber constant. Real number and natural number constants are drawn from a uniform
distribution between a minimum and maximum configured value during initialisation
of the GP. “Close price” is defined as the price on that day’s trade. “High price” is
defined as the highest price on that day’s trade. “Low price” is defined as the lowest
price on that day’s trade. “Volume” is defined as the volume traded on that day.

The evaluated root node returns a boolean value of true or false, which re-
spectively refers to buy or sell. The trader holds position if it has shares on hand
and the root node is evaluated to buy. The trader holds position if is has no shares
on hand and the root node is evaluated to sell. The evaluated action is described in
Table 1.

For an evolved rule to be grammatically correct, the root node has to return
a boolean value. Each function within the function set has a set arity or number
of parameters. A function with an arity n has n branches associated with it. Each
parameter within the function has a required type. Each associated branch returns
a value of the required parameter type. If a child node returns a value different from
the parameter expected by the parent node, the tree is considered grammatically
incorrect.

Three parameter types are defined to ensure that a function is passed the correct
parameter type. These types include: natural numbers, numeric, and boolean. A
numeric parameter can either be a natural number or a real number. The boolean
constants are either true or false, while the real number constants are drawn from a
uniform distribution between configured minimum and maximum values, and natural
numbers are drawn from an uniform distribution between configured minimum and
maximum natural numbers. Allen and Karjalainen (Allen & Karjalainen, 1995, 1999)
did not specify the configured minimum and maximum natural numbers, except that
they are parameters to the lag, and average functions. For this study, natural numbers
are drawn from a uniform distribution between 1 and 500. The reason for choosing 1
and 500 is that the dataset samples used do not exceed 500 days.

Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) specified the limits of

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 7

the real numbers to be between 0.0 and 2.0, without offering any explanation why. A
positive real number limit between 0.0 and 2.0 in conjunction with positive natural
number limits does not allow the evolution of negative numbers. Some technical
analysis functions such as the oscillating indexes return values within limits such as
−100.0 and 100.0 or −1.0 and 1.0. Changing the real number limits from 0.0 and 2.0
to −1.0 and 1.0 allows the GP to evolve sub-trees that return negative numbers such
as -100.0 (−1.0× 100).

The mathematical operator “÷” can invalidate a trading rule, as division by
zero is undefined. The second parameter of the “÷” operator is therefore restricted
to a non-zero numeric constant.

Figure 1 presents two different trading rules encoded as trees. The left tree
corresponds to a 50-day moving average, returning a buy action if the closing price
is greater than the 50-day SMA, otherwise a sell action is returned. The tree on the
right depicts a break out rule. If the day’s trading price is greater than the maximum
price over the last 30 days, then a buy action is returned, otherwise a sell action is
returned.

3.2 Fitness measure

A fitness function quantifies an individual’s performance Engelbrecht, 2007.
Performance is generally determined by how well the candidate solution completes the
problem. Because the fitness measure is viewed independently of any other solution
within the population, it is referred to as the absolute fitness Angeline and Pollack,
1993. The aim of a trading rule is to make the most profit at the end of trading.
Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) used a fitness measure based
on the compounded excess returns over the buy-and-hold strategy during a trading
period. The excess return is given by:

∆r = r − rbh (3)

where the continuous compounded return, r, of the trading rule is computed as

r =
T∑

t=1
riIb(t) +

T∑
t=1

rfIs(t) + n log
(1− c

1 + c′

)
(4)

(5)

with

ri = logPt − logPt−1

The return for the buy-and-hold strategy, rbh, is calculated as

rbh =
T∑

t=1
rt + n log

(1− c
1 + c′

)
(6)

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 8

In the above, c denotes the one-way transaction cost; rf is the risk free cost when
the trader is not trading; Ib(t) is equal to one if a rule signals a buy, otherwise Ib(t)
is equal to zero; Is(t) is equal to one if a rule signals sell, respectively, otherwise Is(t)
is equal to zero; n denotes the number of trades and rbh represents the returns of a
buy-and-hold, while r represents the returns of the trader.

The continuous compounded return function rewards an individual when the
share value is dropping and the individual is out of the market. The continuous
compounded return function penalises the individual when the market is rising and
the individual is out of the market.

Each individual within the population is evaluated on a given dataset by the
fitness function. The better the evaluation, the higher the probability that the indi-
vidual will remain for successive generations. At the end of evolution the individual
that performed the best on a given dataset is selected as the solution. The individual
represents a forecasting model for the observed dataset. If the model corresponds
too closely or exactly to the dataset, the model may fail to reliably predict future
observations (i.e. generalisation will be poor); the model is said to over-fit. Allen
and Karjalainen (Allen & Karjalainen, 1995, 1999) reserved a selection period im-
mediately following the training period for validation of the evolved trading rules.
After each generation, they apply the fittest rule within the generation, based on the
excess return in the training period, to the selection period. If the excess return in
the selection period improves upon the best previously saved rule, the new rule is
saved. At the end of evolution the saved rule is returned as the solution.

3.3 Algorithm for single Population Genetic Program

The pseudo code listing presented in Algorithm 1 outlines the single population
evolutionary process as defined by Allen and Karjalainen (Allen & Karjalainen, 1995,
1999). An initial population of µ individuals is created stochastically. The fitness
of each individual is calculated by applying the trading rule to the training dataset
(Samplein) and calculating the fitness measure using the fitness function. The best
individual (Bg) within the initial population is selected and saved as the global best
individual (B). The initial population is referred to as generation 0.

The algorithm uses a steady state population model to allow stronger individ-
uals to survive many generations. A probability factor determines if mutation is
performed.

If mutation does not occur, rank selection biased towards the best individu-
als is used to sample two individuals from the population to undergo reproduction.
Rank selection uses a relative fitness value derived from the absolute fitness (Bäck
et al., 1997). The absolute fitnesses of the individuals are calculated using the fitness
function. Individuals of the population are sorted by their fitness value from best to
worst. The worst individual is assigned a rank value of 1, the second worst a rank
value of 2, and so on until the best individual has rank n, where n is the total number

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 9

of individuals. A probability of selection is assigned to each individual in the current
generation using:

p(xi) = r(xi)∑n
j=1 r(xj)

(7)

where xi is the ith individual within the population, p is the probability of selection
for individual xi, and r is the rank of individual xi.

The selected parents undergo reproduction using a crossover operator to form
offspring. Offspring contain genetic material from both parents. To perform crossover
between two trees, a node is selected at random from the first tree. A sub-set of nodes
are selected from the second tree, such that the nodes selected are valid grammatical
replacements for the node selected in the first tree. A random node is then selected
from this sub-set. The sub-trees of the selected nodes are then swapped. An example
of crossover using two trees is illustrated in Figure 2. Node (4) from the left parent
is selected at random. Node (−) from the right parent is selected at random. The
nodes and their sub-trees are then swapped to form two offspring trees.

The new offspring are added to the population. Rank selection samples two
individuals from the population with a bias towards the worst individuals. The two
selected individuals are then removed from the population.

Allen and Karjalainen introduced mutations by randomly generating a new
tree in place of the second parent used in crossover (Allen & Karjalainen, 1995,
1999). This technique is known as headless-chicken mutation (Jones et al., 1995).
Headless-chicken mutation, while very simple in concept, is computationally more
expensive than altering a single node. For example, suppose that a terminal node
is mutated, headless-chicken requires that an entire individual is initialised and then
crossed over with the selected parent at the selected terminal node. In this case
only one node is altered. It is computationally more efficient to alter the terminal
node through application of local mutation operators. For this reason two mutation
operators are implemented, namely grow mutation and prune mutation as illustrated
in Figure 3. Prune mutation replaces a randomly selected node with a syntactically
correct terminal node. Grow mutation replaces a randomly selected node with a new
stochastically generated syntactically correct sub-tree.

Mutation samples an individual from the population using rank selection bi-
ased towards the worst individual within the population. The sampled individual is
mutated to form an offspring. The offspring is evaluated and added to the popula-
tion. An individual is then removed from the population using rank selection biased
towards the worst individual. The offspring count λ is incremented by 1.

The processes of crossover and mutation are repeated until the total number
of generated offspring λ is equal to or greater than the configured population size
µ. Because individuals are removed during crossover and mutation, the size of the
population remains constant.

After each generation, the best rule in the population is applied to a validation

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 10

dataset (Samplesel). If the rule leads to a higher excess return than the best rule
so far, the new rule is saved. The evolution terminates when a maximum number
of generations is reached. The best trading rule is then applied to the out-of-sample
dataset (Sampleout) immediately following the validation dataset.

4 Co-evolved Genetic Programming for trading

Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) implemented a single
population GP. In nature, populations rarely evolve in isolation. Instead, popula-
tions co-evolve in co-operation with other populations or in competition with other
populations.

Co-evolved populations evolve in isolation ensuring that each population can
explore the solution space independently (Fogel, 2006a), reducing the probability of
premature convergence. Co-operative co-evolution (Fogel, 2006a; Hillis, 1990) results
in populations evolving parts of the solution independently. The performance of indi-
viduals are based on the performance of all the populations. Competitive co-evolution
(Hillis, 1990) results in populations competing against each other. The performance
of individuals in one population are indirectly proportional to the performance of
individuals in other populations.

The single population GP discussed in Section 3.3 is extended in this section to
incorporate co-evolution. The co-operative co-evolved GP is presented in Section 4.1,
while Section 4.2 presents the competitive co-evolved GP.

4.1 Co-operative Co-evolved Genetic Program

Co-operative co-evolution requires two or more populations that evolve together.
Each population benefits from the other populations through information sharing
and reward sharing. Each population undergoes evolution independently. The single
population evolutionary process defined in Section 3.3 is divided into two parts to
support co-operative co-evolution. The first part, presented in Algorithm 2, initialises
multiple populations, iterates through the generations, and returns the global best
individuals from each population. The second part, illustrated in Algorithm 3, evolves
each population independently.

The key differences between the co-operative co-evolution algorithm presented
here and the single population GP are that more than one population is evolved,
a reward sharing mechanism is used to determine the best individuals, and multiple
individuals are returned. A dual population approach is implemented: one population
evolves a buy rule and the other a sell rule. Two individuals are required to form a
trading rule: one individual from the buy population, and one individual from the
sell population.

Evaluation of co-operatively co-evolved individuals is more complex than the
single population GP. Each co-operatively co-evolved individual is part of a solution
and must share its fitness value with an individual from another population. Holland

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 11

(Casas, 2015; John, 1985; Seshadri, 2003) devised the “bucket brigade” credit scoring
system. The “bucket brigade” is modelled after the water passing chains of fire fight-
ers. Each type of bucket passes through a set of fire fighter chains. The best bucket,
is the one that loses the least amount of water as it passes along the various chains.
The best fire fighter chain is the one that loses the least amount of water across all
the buckets the fire fighters pass along. A “bucket brigade” credit system can be used
to evaluate co-operatively evolved individuals. The fitness value of each individual
is the sum of all the evaluations the individual takes part in. Each individual from
the buy population is evaluated with each individual from the sell population, an
approach followed by De Jong and Potter (Casas, 2015; Seshadri, 2003) and Axelrod
(Axelrod, 2006; Seshadri, 2003). The buy and sell rule combination is evaluated us-
ing the compounded excess return fitness function defined in Section 3.2. The total
reward of both the individuals used in the evaluation are incremented by the fitness
value.

The process of buying and selling shares is illustrated in Algorithm 5.
EvaluateCombination receives three parameters. The first parameter is an indi-
vidual that represents a buying rule, the second is an individual that represents a
selling rule. A buy and sell individual is defined by the same grammar and syntax
as the single population GP. The third parameter represents the dataset used for
evaluation.

A trader has no shares on the first day of trading. The trader executes the
trading rule represented by an individual from the buy population. If the buy rule
returns true, the trader must buy shares, otherwise no shares are bought. If the
trader has no shares on day two, the trader executes the buy trading rule again. If
the trader has shares, the trader executes the sell trading rule. If the sell trading rule
returns true, the trader must sell the shares. If the sell trading rule returns false,
the trader does nothing. This process continues for each trading day. On the last
day of trade any shares in the possession of the trader are sold. Each trading action
is used by the fitness function to calculate a fitness value.

The co-operative co-evolution GP implemented maintains two global best indi-
viduals, one from each population. Because the reward value of an individual is the
sum of the fitness values returned by all the evaluations an individual takes part in,
the global best individual is included in the reward sharing process.

The complete reward sharing process is illustrated in Algorithm 4. The function
RewardSharing receives five parameters. The first two parameters represent the
individuals from the buy population as the array cBuy and the global best individual
from the buy population. The second two parameters represent the sell population,
and the final parameter contains the dataset. The reward process evaluates every
combination of individuals from the buy population and the sell population using the
function presented in Algorithm 5. The fitness result is added to the individual’s
accumulated reward. The reward process is repeated by evaluating the combination
of each individual in the buy population and the global best individual from the sell

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 12

population, and again combining each individual within the sell population and the
global best individual from the buy population. The accumulated reward of each
individual is returned.

4.2 Competitive Co-evolved Genetic Program

Competitive co-evolution requires two or more populations that evolve in com-
petition, each population reciprocally driving one another to increasing levels of per-
formance and complexity (Casas, 2015; Rosin & Belew, 1997). The performance of
one population is inversely proportional to the performance of another population,
implying that the fitness of one individual is dependent on the fitness of another in-
dividual. Angeline and Pollack (Angeline & Pollack, 1993) defined a relative fitness
function as any fitness calculation that is dependent on the quality of other individuals
(Angeline & Pollack, 1993).

The single population GP is modified to support a relative fitness function,
and more than one population. The modified evolutionary process is presented in
Algorithm 6. Instead of a single population, the competitively co-evolved algorithm
begins by initialising P populations of equal size. Individuals within a population
are initialised using the same approach as the single population GP. The size of each
population is determined by the configured total number of individuals µ divided by
the number of populations P .

The evaluation of a competitively co-evolved individual is determined by a rel-
ative fitness value as opposed to the absolute fitness value used in a single pop-
ulation GP. The relative fitness calculation is presented in Algorithm 8 as two
functions: CalcAllRelativeFitness and CalcRelativeFitness. The function
CalcAllRelativeFitness requires two parameters. The first parameter Cg con-
tains all the individuals from every population. The second parameter denotes the
current population p. CalcAllRelativeFitness iterates through each individual in
population p calling function CalcRelativeFitness.

CalcRelativeFitness compares an individual from population p to all individ-
uals in all other populations. In order to do these comparisons the absolute fitness of
each individual is calculated to determine which individual has the largest absolute
fitness value. The individual from population p receives a point each time its absolute
fitness value is greater than the absolute fitness value of the individual it is compared
too (Casas, 2015; Hillis, 1990; Rosin & Belew, 1997). CalcRelativeFitness returns
the total awarded points as the relative fitness value of the individual.

The competitive co-evolved GP maintains a global best individual for each pop-
ulation. At the end of each generation the relative fitness value of the global best
individuals are re-calculated by comparing the global best individual to all the indi-
viduals in all the other populations. The best individual from the current population
is the individual that has the largest relative fitness value across all the individuals
within the current population. The best individual from the current population is
then compared to the global best individual from the current population. The itera-

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 13

tion best individual from the population becomes the new global best individual, if
its Samplein and Samplesel relative fitness values are greater than the relative fitness
values of the global best individual of that population. At the end of evolution, the
competitive co-evolved GP returns the overall global best individual as the solution.

5 Empirical Procedure

Individuals within a single population GP are quantified using an absolute fit-
ness function, while individuals within a co-evolved GP are quantified using a relative
fitness function. To ensure that trading rules evolved through single population evo-
lution or co-evolution are compared fairly, the profit returned at the end of trading
is used to quantify the performance of a trading rule. Profit was calculated as

Profit =
[

T∑
t=1

(Pt − sc)× Is(t)
]
−
[

T∑
t=1

(Pt + bc)× Ib(t)
]

where Ib(t) is equal to one if a rule signals a buy, otherwise Ib(t) is equal to zero; Is(t)
is equal to one if a rule signals sell, otherwise Is(t) is equal to zero; sc represents the
selling cost and bc the buying cost; T is the number of trade days; P is the closing
price on day t.

The profit returned by an evolved trading rule is referred to as an observation.
A sample is a set of observations returned by a simulation run. A simulation run is a
fixed configuration of a GP. Each simulation run was repeated 30 times, from different
initial conditions, recording the results as individual observations. A simulation run
was repeated for all share datasets independently.

Each configuration of a simulation run was intended to test the effect of the
configuration on the observation. However, each observation within a simulation
run requires an initial set of randomly generated individuals. Naturally, if two GPs
are initialised with two different populations of individuals, the observations could
be different. Furthermore, each decision such as whether to implement mutation or
crossover depends on a random probability that affects the observation. To minimise
the effect of randomness, a fixed set of 30 random seeds were used; one seed for each
of the 30 GP executions within a simulation run. The same 30 random seeds were
used across all simulation runs.

The random seed ensures that the GP returns the same observation no matter
how may times it is run. The random seed ensures that the GP is initialised with
the same initial population. This means that if two GPs are run with the same
random seed but a different configuration, then the change in observsation is due to
the configuration change and not the initial population.

To compare the samples of two or more different simulation runs the null-
hypothesis was assumed (Bluman, 1995). The null-hypothesis assumes that the sam-
ples of various simulation runs are the same, and that no further investigation is

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 14

required unless the samples are significantly different. A statistical test is performed
on the results to determine if two or more samples rejected the null-hypothesis.

The most common statistical tests used to evaluate the validity of the null-
hypothesis are the t-tests and the Wilcoxon signed rank tests (Bluman, 1995; Demšar,
2006; García, Fernández, Luengo, & Herrera, 2008). These tests are not adequate
when comparing more than two samples due to the multiplicity effect (Graczyk,
Lasota, Telec, & Trawiński, 2010; Salzberg, 1997). EA empirical analysis have shown
that the results do not fulfil the requirements for parametric tests such as t-tests
(Graczyk et al., 2010; Sheskin, 2003). Therefore, a common non-parametric statistical
test known as a Krushkal-Wallis test is used to test the validity of the null-hypothesis
across more than two samples.

The Krushkal-Wallis test is a non-parametric test based on a one-way Analysis
of Variance (ANOVA) between the sample ranks. The Krushkal-Wallis test indicates
if at least one sample is stochastically different from the other samples. The Krushkal-
Wallis test does not show which samples are different (Graczyk et al., 2010). If
the Krushkal-Wallis test rejects the null-hypothesis, a post-hoc test is required to
determine which sample rejects the null-hypothesis (Demšar, 2006; Graczyk et al.,
2010).

Post-hoc analysis performs a pairwise comparison of sample results to determine
which sample results are different from one another. Traditionally, Wilcoxon signed
rank tests are used for post-hoc analysis (Bluman, 1995; Demšar, 2006; García et al.,
2008; Graczyk et al., 2010).

The statistical tests return a p-value. The p-value is a number between 0 and
1 denoting the probability that the null-hypothesis is valid. A p-value of less than
0.05 indicates a strong possibility that the null-hypothesis is incorrect and that the
samples are not the same.

Demšar (Demšar, 2006) noted that ANOVA is based on assumptions which are
most probably violated when testing the results of EAs. ANOVA assumes that the
samples are drawn from normal distributions. Demšar pointed out that there is no
guarantee for normal distribution across a set of algorithms or various configurations
of algorithms. The second more important assumption of ANOVA is that the ran-
dom variables such as control parameters and the initialised population have equal
variance, which, as Demšar noted, can not be taken for granted (Demšar, 2006).

Demšar (Demšar, 2006) proposed that the Friedman test be used for the pairwise
comparisons, and that the Iman and Davenport extension (Iman & Davenport, 1980)
to the Friedman statistical test be used for multiple results comparison in place of a
one-way ANOVA.

If the null-hypothesis is rejected, Demšar proposed the Nemenyi test as a post-
hoc pairwise test (Demšar, 2006). The Nemenyi test produces a critical difference
value which is easily displayed graphically as a critical difference plot. An example of
a critical difference plot is presented in Figure 4. The top line in the figure represents
the average ranks. The lowest or best ranks are on the right. The critical difference is

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 15

displayed above the graph. Algorithms similar to the sample with the highest mean
are within the critical difference marking. Similar algorithms are plotted to the left
and the right of the sample with the highest mean. Groups that are not significantly
different are connected by a line.

Allen and Karjalainen (Allen & Karjalainen, 1995, 1999) used a GP to evolve
trading rules for the S&P 500 index using daily prices from 1928 to 1995. This paper
examines the profitability of evolved trading rules on the JSE. The datasets used
in this study were sourced from Sharenet. Sharenet is a market statistics company
based in Cape Town, South Africa. The data contained eleven shares from a variety of
market sectors; including mining, resources, consumer goods and services, industrials,
banking, and insurance. The stocks are listed in Table 2 and cover the period April
2003 to June 2008. The start date is referred to as day 0. The stock market dataset
spans 1 350 days. Trading days exclude weekends and public holidays. Simulation
runs reference the share code, which is the code used by the JSE.

Each simulation run was repeated for each share within the share datasets. In
addition to company shares, the data includes the ALSI40 market index. The ALSI40
index constitutes the 40 largest companies by market capitalisation across all sectors
listed on the JSE. In addition to the datasets listed in Table 2, fictitious datasets
known as inverted shares were created by reversing the share price of Nedbank, Rem-
gro and Standard Bank. To reverse the dataset, a new list of inverted prices were
generated where the inverted price on day 0 corresponds to the original price data on
day 1 350. The inverted price on day 1 corresponds to the original price on day 1 249.
The inverted price on day 2 corresponds to the original price on day 1 248, and so on.

Each share dataset was divided into three continuous samples. Samplein spans
two years of trading days from day 0 to day 500. Samplesel spans one year of trading
days from day 500 to 750. Sampleout spans two years of trading days from day 750
to 1250.

Trading costs were calculated using the 2008, Standard Bank online trading
platform fees which include:

• a headline brokerage fee of 0.5%, with a minimum of R80,

• security transfer tax of 0.25%,

• strate tax of 0.005787%, with a minimum strate of R11.58 and a maximum of
R57.87,

• VAT of 14% (the study was done before the recent VAT increase to 15%), and

• a financial service board fee of 0.0002%.

Buy and sell transactions incur the same fees, except for the security transfer
tax which is payable on purchases and not sales.

GPs require values to be assigned to control parameters. Four control param-
eters were identified namely mutation probability, number of individuals within a

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 16

population, maximum number of generations, and the maximum number of nodes
within the chromosome.

To select the most appropriate values for each control parameter, a response
surface methodology (De Lima, Pappa, de Almeida, Gonçalves, & Meira, 2010) known
as 2kr factorial design (Shahsavar, Najafi, & Niaki, 2011) was used. Each control
parameter k was assigned an upper and lower limit. A simulation run was performed
for each combination of control parameters. The observations were recorded and
compared using the statistical tests defined.

The 2430 factorial design results showed that a mutation probability of 35%,
a population size of 1 600 individuals, a maximum number of 125 generations, a
maximum of 100 nodes, and a maximum tree depth of 10 were preferred control
parameter values for this study (for a detailed discussion of the results see (Nicholls,
2018)).

6 Empirical Analysis

The co-evolved adaptations of the standard GP defined by Allen and Kar-
jalainen (Allen & Karjalainen, 1995) were evolved without fees using the datasets
provided. The mean profit returned is presented in Table 3. The mean profit is
calculated as the mean observation profit across all observations within the sample.

The results of the evolved traders were compared using the empirical process
defined in Section 5. An Iman and Davenport test comparing the results returned by
the three GP’s trained on different share datasets returned p-values greater than 0.05
for ALSI, GFI, IMP and LON. The p-values for these share results were 0.160536,
0.707859, 0.991976, and 0.707859 respectively. The remainder of the datasets resulted
in a p-value less than 0.00001. This shows that a significant statistical difference exists
between the results returned by the three different GPs.

Post-hoc analysis was performed on the significantly different trading rule results
to determine which GP resulted in significantly different profit results. The mean
profit results in conjunction with the statistical test results show that the co-operative
co-evolved GP performed significantly worse than the other two approaches for 10 of
the 11 Sampleout share datasets. The box plots presented in Figure 5 depict how
poorly the co-operative co-evolved trading rules performed. Except for NED, the
results returned by the evolved trading rules using the standard single population GP
and the competitively co-evolved GP have smaller boxes denoting a smaller deviation
in the results, and a higher mean than the co-operative co-evolved GP across all the
significantly different profit results.

The box plots in Figure 5 in conjunction with the mean results in Table 3
show that the competitively co-evolved trading rules performed better than the trad-
ing rules evolved using the single population GP when trading ALSI40, BIL, NED,
REM, SBK, SAB, and SOL. The trading rules evolved using the single population
GP performed better than the competitively co-evolved trading rules when trading
INVNED, INVREM, INVSBK, and RCH. However, except for the INVREM results,

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 17

the Friedman test failed to find a significant difference between the results returned
by the trading rules evolved using competitive co-evolution and the results returned
by the trading rules evolved using single population evolution.

The results show that the trading rules evolved using competitive co-evolution
and single population evolution performed equally well across all shares, except for
NED and INVREM. When trading NED, a cooperative co-evolved GP was preferred.
When trading INVREM, a single population GP was preferred.

The simulations were repeated using transaction fees. The mean profit returned
by the evolved trading rules are presented in Table 4. The results show that the
competitive co-evolved trading rules returned the highest mean profit in 11 of the 15
shares and the co-operative co-evolved trading rules produced the lowest mean profit
across 14 of the 15 shares.

The mean standard deviation of profit (σ) results presented in Table 4 show
that the competitively co-evolved trading rules were the most consistent resulting in
the lowest deviation across 11 of the 15 shares. The mean standard deviation of profit
(σ) is defined as

σ =

√√√√ 1
N − 1

N∑
i=1

(xi − x)2 (8)

where x1, x2, . . . , xN are the observed values of the sample items (i.e. profit with
or without cost), x is the mean value of these observations, and N is the number
of observations in the sample. The mean standard deviation of profit is used to
determine how close each individual was to the profit mean. The lower the mean
standard deviation, the similar the trading rules.

The Iman and Davenport (Iman & Davenport, 1980) statistical test returned a
p-value < 0.002 for all trading result comparisons. Further post-hoc analysis showed
that the profit results returned by the co-operatively co-evolved trading rules were
significantly different from the results of the other two algorithms. The critical dif-
ference plots presented in Figure 6, in conjunction with the mean profit results of
the best individuals, confirm that the trading rules evolved using the co-operative
co-evolved GP performed significantly worse than the other trading rules.

The p-values obtained from the post-hoc analysis of the INVNED and SOL
profit results show that the results obtained from the trading rules evolved using a
competitive co-evolved GP are significantly different from that of the single popula-
tion GP results. The results show that the trading rules evolved using the competitive
co-evolved GP performed significantly better than the trading rules evolved using the
standard GP when trading SOL. However, trading rules evolved using the standard
GP performed significantly better than the trading rules evolved using the competitive
co-evolved GP when trading INVNED. The trading rules evolved using a competi-
tive co-evolved GP performed better than the evolved trading rules using the single
population GP for 10 of the 15 shares.

The profit returned by the trading rules evolved using the single population GP

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 18

and competitive co-evolved GP were compared to a buy-and-hold trading strategy
to test the trading rules’ performance against the market’s performance. The results
are presented in Figure 7

The GFI, INVNED, INVREM, and INVSBK profit results returned by the buy-
and-hold strategy were significantly less than the results returned by the co-evolved
and evolved trading rules. The NED profit results returned by the buy-and-hold
strategy were significantly more than the results returned by the co-evolved and
evolved trading rules. The evolved trading rules returned a positive trading balance
at the end of trading INVNED, INVREM, and INVSBK, compared to the buy-and-
hold strategy that returned a positive trading balance at the end of INVREM.

The results show that the trading rules evolved using either a competitive co-
evolved GP or a standard GP can return a profit significantly greater than the buy-
and-hold strategy if the shares are trending down, or are highly volatile. However,
when the share price is trending upwards; the trading rules evolved using either a
competitive co-evolved GP or a standard GP performed as well as the buy-and-hold
strategy.

7 Conclusions and future work

This paper proposed two co-evolution variations of the single population GP
for stock market trading. The first variation was that of a co-operative co-evolved
GP. The second variation was a competitive co-evolved GP. The three different GPs
were run against 15 different share datasets. Each dataset was sub-divided into three
different samples. An in-sample dataset used for evolving a generation. A selection or
verification sample dataset used to validate the best individual, and an out-of-sample
dataset to test the performance of the evolved rules on unseen data.

The co-operative co-evolved trading rules performed significantly worse than
the single population GP and the competitive co-evolved GP across all the shares,
with and without fees than the other trading rules. Trading rules evolved by the
competitively co-evolved GPs performed better, but not significantly better than the
trading rules evolved by the standard single population GP, for 10 of the 15 shares.
The results also showed that the competitively co-evolved GP evolved trading rules
that performed significantly better than the trading rules evolved by the standard GP
when trading SOL. However, trading rules evolved using the standard GP performed
significantly better than trading rules evolved by the competitively co-evolved GP
when trading INVNED.

No significant difference was found between the results returned by the trading
rules and the results returned by the buy-and-hold strategy for 10 of the 15 shares.
The shares that showed significant difference were shares trending downwards. In
these cases the evolved traders performed significantly better than the buy-and-hold
strategy. The trading rules significantly out-performed the buy-and-hold for four of
the 15 different shares.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 19

This study presented evidence showing that trading rules evolved using either a
competitive co-evolved GP or a standard GP can return a profit significantly greater
than the buy-and-hold strategy if the shares are trending down, or are highly volatile.
However, when the share price is trending upwards, trading rules evolved using either
a competitive co-evolved GP or a standard GP performed as well as the buy-and-hold
strategy.

The study found that the competitive co-evolved GP produced more reliable
trading rules and performed generally better than trading rules evolved using a single
population GP.

Several areas are identified for future research to improve the competitive co-
evolved GP in stock market trading rule generation. The competitive co-evolved
GP used two populations and a simple bipartite relative fitness as defined by Hillis
(Casas, 2015; Hillis, 1990; Rosin & Belew, 1997). Future work could include the
work of Rosin and Belew (Casas, 2015; Rosin & Belew, 1997) by studying the effect
that competitive fitness sharing, shared sampling, and the hall-of-fame has on the
performance of the evolved trading rules.

This study shows that the market conditions used during evolution affect the
performance of a trading rule when exposed to the out-of-sample data. To evolve the
trading rules, this study divided datasets into three distinct continuous samples of
fixed sizes. A suggestion is to automatically classify continuous samples within the
dataset, determining the trend of the sample. Then to combine continuous samples
of varying trends into an in-sample dataset and selection dataset. The intent is to
expose the evolutionary process to share trends that evolve the best out-of-sample
trading rules.

The mutation operator used in this study implemented both a grow mutation
operator and a prune mutation operator with equal probability. Future work could
study the effect the probability has on the performance of evolved trading rules. Fur-
thermore, the probability could change overtime. For example, while the population
has a small average tree size, the mutation operator may favour growing the chromo-
some. When the population has a large average tree size the mutation operator may
favour pruning the chromosomes.

Future work could explore the impact that a dynamic mutation probability has
on the profitability of evolved trading rules. The dynamic mutation probability could
start high allowing the GP to explore the search space, and overtime the mutation
probability could decrease, resulting in less exploration and more optimisation.

Table 1
Trading actions based on the result of a trading rule and shares on hand as defined
by Allen and Karjalainen (Allen & Karjalainen, 1995, 1999).

Result Has shares No shares
true Hold Buy

false Sell Hold

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 20

Table 2
The share data used in the simulations.

Code Name JSE Sector
AGL Anglo American Plc Metals & Minerals
ALSI JSE All Share Index Traded Fund
BIL BHP Billiton Plc Metals & Minerals
GFI Gold Fields Ltd Gold Mining
IMP Impala Platinum

Holdings Ltd
Platinum

LON Lonmin Plc Platinum
NED Nedbank Group Ltd Banks
RCH Richemont Securities

AG
Clothing & Footware

REM Remgro Ltd Diversified Industrials
SAB Sabmiller Plc Beverages & Brewers
SBK Standard Bank

Group Ltd
Banks

SOL Sasol Ltd Oil & Integrated

Table 3
Mean Sampleout profit per share without fees.
Share
Code

Co-Operative Competitive Standard

AGL 17518.23 25381.37 25139.13
ALSI 4783.57 9316.80 9065.63
BIL 5870.03 14118.47 13075.57
GFI -419.67 131.97 -1280.03
IMP 13243.33 16291.73 15982.73
INV-
NED

929.77 12892.07 13091.80

INV-
REM

-1251.40 6323.30 7977.53

INV-
SBK

130.83 5037.13 6693.43

LON 13807.13 17522.17 15756.33
NED -219.60 -2279.83 -2848.47
RCH 641.73 2184.63 2187.70
REM 5108.03 9835.50 9762.33
SAB 1868.63 5453.03 4969.83
SBK 249.20 1692.23 1555.63
SOL 5010.50 16213.47 13053.43
Note: bold represents the highest value, and italic the lowest value.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 21

<

priceaverage

50

>

maximum

30

price

Figure 1 . Two examples of trading rules encoded as trees.

Table 4
Mean Sampleout profit, and standard deviation per share with fees.

Standard Competitive Co-Operative
Share Mean σ Mean σ Mean σ
Code Profit Profit Profit
AGL 233796.07 ±8624.00 238416.06 ±0.00 116075.26 ±116075.26
ALSI 91128.61 ±2851.79 92640.05 ±258.73 33711.21 ±43035.70
BIL 123908.93 ±7832.92 128804.51 ±0.00 44087.70 ±56477.87
GFI -12889.49 ±13785.28 -13837.08 ±14357.16 -27415.77 ±11547.11
IMP 169605.59 ±5426.77 172412.54 ±0.00 122435.69 ±58605.91
INV-NED 54435.84 ±6730.08 46679.36 ±9018.08 250.53 ±515.66
INV-REM 6769.87 ±10045.23 10404.96 ±4781.11 -2952.77 ±5511.83
INV-SBK 20998.47 ±2718.97 14849.33 ±8208.28 -5591.64 ±9319.41
LON 196280.74 ±13085.38 197359.67 ±10999.45 98341.61 ±90639.88
NED -48931.84 ±28239.59 -54749.04 ±32513.65 -1393.64 ±4543.67
RCH 15436.26 ±0.00 15436.26 ±0.00 4286.16 ±6690.06
REM 67225.70 ±960.79 67722.66 ±0.00 33692.59 ±31862.22
SAB 49231.25 6338.79 53030.66 ±0.00 17676.89 ±23569.18
SBK 6152.10 ±131.01 6219.87 ±0.00 1800.57 3240.82
SOL 98461.25 ±55094.09 142051.53 ±0.00 46388.96 ±61851.94

(o) Sampleout SOL
Figure 6 . Critical difference plots for results with fees (Cont.).

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 22

+

42

2 + 4

Parents ×

−

79

5

5× (9− 7)

+

−

79

2

2 + (9− 7)

Offspring ×

45

5× 4

Figure 2 . An example of GP crossover using two trees. Crossover is dependent on
the grammar of the tree.

+

−

z9

2

2 + (9− z)

(a) Original

+

−

z9

÷

z9

(9÷ z) + (9− z)

(b) Grow mutation

+

a2

2 + a

(c) Prune mutation
Figure 3 . Examples of GP grow and prune mutation strategies.

Figure 4 . Critical difference plot illustration.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 23

(a) Sampleout AGL (b) Sampleout ALSI (c) Sampleout BIL

(d) Sampleout INV-NED (e) Sampleout INV-REM (f) Sampleout INV-SBK

(g) Sampleout NED (h) Sampleout RCH (i) Sampleout REM

(j) Sampleout SAB (k) Sampleout SBK (l) Sampleout SOL
Figure 5 . Box-plots of Sampleout profit results without fees.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 24

(a) Sampleout AGL (b) Sampleout ALSI

(c) Sampleout BIL (d) Sampleout GFI

(e) Sampleout IMP (f) Sampleout INV-NED

(g) Sampleout INV-REM (h) Sampleout INV-SBK

(i) Sampleout LON (j) Sampleout NED

(k) Sampleout RCH (l) Sampleout REM

(m) Sampleout SAB (n) Sampleout SBK
Figure 6 . Critical difference plots for results with fees.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 25

Algorithm 1 Implemented GP algorithm as presented by Allen and Karjalainen
(Allen & Karjalainen, 1995).

g = 0; . Generation counter
Set the maximum number of generations G;
Set the total number of individuals µ;
Initialise the initial population Cg;
Draw three continuous samples from the dataset
Initialise the in sample dataset Samplein
Initialise the validation sample dataset Samplesel
Evaluate fitness fCg,n,Samplein

of each individual Cg,n in population Cg using Samplein;
Set B = Cg,n where Cg,n has the largest Samplein fitness;
Evaluate fitness fB,Samplesel

of B using Samplesel;
while g < G do

g = g + 1;
Set number of offspring λ = 0;
while λ < µ do

Set random number r ∼ U(0, 1);
if r < Pm then

. Sampling is performed using a selection strategy
Sample parent P1 from Cg−1 with bias to worst fitness;
Mutate P1 to form O1;
Evaluate the f of O1 using Samplein ;
Add O1 to Cg;
Sample D1 from Cg with bias to worst fCg,Samplein ;
Remove D1 from Cg;
λ = λ+ 1;

else
. Sampling is performed using a selection strategy

Sample parents P1 and P2 from Cg−1 with bias to best fCg,Samplein ;
Offspring O1 = Re-combination of P1 and P2;
Offspring O2 = Re-combination of P2 and P1;
Evaluate the f of O1 and O2 using Samplein;
Add O1 and O2 to Cg;
Sample D1 and D2 from Cg with bias to worst fCg,Samplein ;
Remove D1 and D2 from Cg;
λ = λ+ 2;

end if
end while
Set Bg = Cg,n where Cg,n has the largest fCg,Samplein

if fBg,Samplein > fB,Samplein then
Evaluate the f of Bg using Samplesel;
if fBg,Samplesel

> fB,Samplesel
then

B = Bg;
end if

end if
end while
return B as the solution;

Mutation

Crossover

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 26

Algorithm 2 Co-operative co-evolved GP algorithm.
g = 0; . Generation counter
Set the maximum number of generations G;
Set the total number of individuals µ;
Initialise the in sample dataset Samplein

Initialise the validation sample dataset Samplesel

Initialise buy population cBuyg; . Randomly generate a population of trading rules
Initialise sell population cSellg; . Randomly generate a population of trading rules
Calculate the shared reward of each individual:

rBuyg, rSellg = RewardSharing(cBuyg, null, cSellg, null, Samplein)
Set the best buy individual bBuy = cBuyg,n, n ∈ {rBuyg,0, . . . , rBuyg,µ2

}, where
rBuyg,n is the maximum shared reward;

Set the best sell individual bSell = cSellg,n, n ∈ {rSellg,0, . . . , rSellg,µ2
}, where

rSellg,n is the maximum shared reward;
while g < G do

g = g + 1;
Evolve(cBuyg, bBuy, cSellg, bSell, Samplein, ‘buy’);
Evolve(cBuyg, bBuy, cSellg, bSell, Samplein, ‘sell’);
Calculate the shared reward of each individual using Samplein:

rbBuy, rbSell, rBuyg, rSellg = RewardSharing(cBuyg, bBuy, cSellg, bSell,
Samplein)

Re-calculate the temporary shared reward of each individual using Samplesel:
rbBuyT , rbSellT , rBuyTg, rSellTg = RewardSharing(cBuyg, bBuy, cSellg,

bSell, Samplesel)
Set the best buy individual index x = rBuyg,n, n ∈ {rBuyg,0, . . . , rBuy µ

g,2
}, where

rBuyg,n is the maximum shared reward;
if rbBuy > rBuyg,x and rbBuyT > rBuyTx then

bBuy = cBuyg,x; . New global best buy rule
end if
Set the best sell individual index y = rSellg,n, n ∈ {rSellg,0, . . . , rSellg,µ2

}, where
rSellg,n is the maximum shared reward;

if rbSell > rSellg,y and rbSellT > rSellTg,y then
bSell = cSellg,y; . New global best sell rule

end if
end while
return bBuy, bSell as the solution; . Returns both parts of the trading rule

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 27

Algorithm 3 Co-operative co-evolved GP evolutionary process.
procedure Evolve(cBuyg, bBuy, cSellg, bSell, Samplein, rule)

Set number of offspring λ = 0;
while λ < (µ÷ 2) do . µ÷ 2 because there are 2 populations

Calculate the shared reward of each individual using Samplein:
rbBuy, rbSell, rBuyg, rSellg = RewardSharing(cBuyg, bBuy, cSellg, bSell,

Samplein)
Set evolution population Cg and reward share Rg:
if rule = ‘buy’ then

Cg = cBuyg;
Rg = rBuyg;

else
Cg = rSellg;
Rg = rSellg;

end if
Set random number r ∼ U(0, 1);
if r < Pm then . Pm is the mutation probability

. Sampling is performed using rank selection
Sample parent P1 from Cg−1 with bias to the worst Rg−1;
Mutate P2 to form O1;
Sample D1 from Cg with bias to the worst shared reward Rg;
Remove D1 from Cg;
Add O1 to Cg;
λ = λ+ 1;

else
. Sampling is performed using rank selection

Sample parents P1 and P2 from Cg−1 with bias to the worst Rg−1;
Offspring O1 = Re-combination of P1 and P2;
Offspring O2 = Re-combination of P2 and P1;
Add O1 and O2 to Cg;
Sample D1 and D2 from Cg with bias to the worst Rg;
Remove D1 and D2 from Cg;
λ = λ+ 2;

end if
end while

end procedure

Mutation

Crossover

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 28

Figure 7 . Comparison of profit returned by a buy and hold strategy to the profit
returned by evolved traders.

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 29

Algorithm 4 Co-operative co-evolution reward sharing algorithm.
function RewardSharing(cBuy, bBuy, cSell, bSell, Sample)

Initialise the total reward rBuy of each buy individual in the population cBuy to 0;
Initialise the total reward rSell of each sell individual in the population cSell to 0;
for x = 0;x < (µ÷ 2);x = x+ 1; do . 2, Because there are 2 populations

for y = 0; y < (µ÷ 2); y = y + 1; do
Calculate the fitness f = EvaluateCombination(cBuyx, cSelly, Sample);
Update the total reward of the individuals used in the evaluation:

rBuyx = rBuyx + f ;
rSelly = rSelly + f ;

end for
end for
if bBuy 6= null and bSell 6= null then

Initialise total reward rbBuy of the best buy individual bBuy to 0;
Initialise total reward rbSell of the best sell individual bSell to 0;
for y = 0; y < (µ÷ 2); y = y + 1; do

Calculate the fitness f = EvaluateCombination(bBuy, cSelly, Sample);
Update the total reward of the individuals used in the evaluation:

rbBuy = rbBuy + f ;
rSelly = rSelly + f ;

end for
for x = 0;x < (µ÷ 2);x = x+ 1; do

Calculate the fitness f = EvaluateCombination(bSell, cBuyx, Sample);
Update the total reward of the individuals used in the evaluation:

rbSell = rbSell + f ;
rBuyx = rBuyx + f ;

end for
end if
return rbBuy, rbSell, rBuy, rSell; . Return the shared rewards

end function

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 30

Algorithm 5 Co-operative co-evolved trading rule evaluation.

function EvaluateCombination(BuyRule, SellRule, Sample)
Set boolean s = false; . The trader has no shares on the first day
Set fitness f = 0;
for i = 0; i < Length(Sample); i = i+ 1; do

if s == false then
Set buy action a = BuyRule(Samplei); . Determine the action using the

BuyRule
if a == true then

Buy shares;
s = true;

end if
Update fitness value f using fitness function and action;

else
Set sell action a = SellRule(Samplei); . Determine the action using the

SellRule
if a == true then

Sell shares;
s = false;

end if
Update fitness value f using fitness function and action;

end if
end for
if s == true then

Sell shares;
Update fitness value f using fitness function and action;

end if
return f ; . Return the fitness value of the BuyRule, SellRule combination

end function

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 31

Algorithm 6 Competitive co-evolved GP algorithm.
g = 0; . Generation counter
Set the maximum number of generations G;
Set the maximum number of populations P ;
Set the total number of individuals µ;
Initialise the in sample dataset Samplein

Initialise the validation sample dataset Samplesel

for p = 0; p < P ; p = p+ 1; do
Initialise initial generation’s population Cp,g; . Randomly generate a population of

trading rules
end for
for p = 0; p < P ; p = p+ 1; do

Calculate relative fitness rf for each individual in Cp,g

rfp,g = CalcAllRelativeFitness(Cg, p);
Set the population’s global best individual for this population pBp = Cp,g,n, n ∈ Cp,g,

where
pBp produces the maximum relative fitness rfp;

end for
while g < G do

g = g + 1;
for p = 0; p < P ; p = p+ 1; do

Evolve(C, p, g);
Calculate relative fitness rf for each individual in Cp,g

rfp,g = CalcAllRelativeFitness(Cg, p);
Set the best individual index x, for this population and generation:

x = rfp,g,n, n ∈ {rfp,g,0, . . . , rfp,g, µ
P
}, where

rfp,g,n is the maximum relative fitness value;
Re-calculate the population’s global best individual’s relative fitness using

Samplein:
rfB = CalcRelativeFitness(pBp, Samplein, Cg, p);

if rfB > rfp,g,x then
Calculate temporary relative fitness using the validation sample Samplesel:

rfI = CalcRelativeFitness(Cp,g,x, Samplesel, Cg, p);
rfB = CalcRelativeFitness(pBp, Samplesel, Cg, p);

if rfI > rfB then
Set pBp = Cp,g,x; . New global population best

end if
end if

end for
end while
return Bx, x ∈ {pB0, . . . , pBP }, where . Return the best individual across all the
populations

Bx produces the maximum relative fitness for both Samplein and Samplesel;

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 32

Algorithm 7 Competitive co-evolved GP evolutionary process.
. Evolve receives all populations as C

procedure Evolve(C, p, g)
Set number of offspring λ = 0;
while λ < (µ÷ P) do . µ÷ P because there are P populations

Set random number r ∼ U(0, 1);
if r < Pm then . Pm is the mutation probability

. Sampling is performed using rank selection
Sample parent P1 from Cp,g−1 with bias to worst rfp,g−1;
Mutate P2 to form O1;
Sample D1 from Cp,g with bias to worst rfp,g;
Remove D1 from Cp,g;
Add O1 to Cp,g as Cp,g,n+1, where n is the size of Cp,g;
Set relative fitness:

rfp,g,n+1 = CalcRelativeFitness(Cp,g,n+1, Samplein, Cg, p);
λ = λ+ 1;

else
. Sampling is performed using rank selection

Sample parents P1 and P2 from Cp,g−1, with bias to best rfp,g−1;
Offspring O1 = Re-combination of P1 and P2;
Offspring O2 = Re-combination of P2 and P1;
Sample D1 and D2 from Cp,g with bias to worst rfp,g;
Remove D1 and D2 from Cp,g;
Add O1 and O2 to Cp,g as Cp,g,n+1 and Cp,g,n+2, where n is the size of Cp,g;
Set relative fitness:

rfp,g,n+1 = CalcRelativeFitness(Cp,g,n+1, Samplein, Cg, p);
Set relative fitness:

rfp,g,n+2 = CalcRelativeFitness(Cp,g,n+2, Samplein, Cg, p);
λ = λ+ 2;

end if
end while

end procedure

Mutation

Crossover

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 33

Algorithm 8 Competitive co-evolved GP relative fitness algorithms.
. C denotes all the populations, and generations

function CalcAllRelativeFitness(Cg, p)
for n = 0;n < (µ÷ P);n = n+ 1; do . For each individual within the population

Set the relative fitness rf of the individual n in population p, and generation g:
rfp,n = CalcRelativeFitness(Cp,g,n, Samplein, p);

end for
return rfp,g . Return the fitness values for all individuals within the population

and generation
end function
function CalcRelativeFitness(Individual, Sample, Cg, p)

Set relative fitness rf = 0;
Calculate the Individual’s fitness value f using a fitness function and the Sample

dataset;
for i = 0; i < P ; i = i+ 1; do

if i 6= p then . Compare the Individual against individuals from other
populations

for n = 0;n < (µ÷ P);n = n+ 1; do . For each individual within the
population

Calculate the temporary Sample fitness value t of Cp,g,n,
using a fitness function and the Sample dataset;

Individual gets a point each time its fitness f
is greater than an individual in another population

if f > t then
rf = rf + 1;

end if
end for

end if
end for
return fR; . Return the individual’s relative fitness for the sample provided

end function

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 34

References

Achelis, S. B. (2013). Technical analysis from A to Z (Second). McGraw-Hill Edu-
cation. Retrieved from https://www.amazon.com/Technical-Analysis- 2nd-
Steven-Achelis/dp/0071826297

Allen, F., & Karjalainen, R. (1995). Using genetic algorithms to find technical trading
rules. Rodney L. White Center for Financial Research, 20–95. Retrieved from
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=6996

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading
rules1. Journal of financial Economics, 51 (2), 245–271. doi:https://doi.org/10.
1016/S0304-405X(98)00052-X

Angeline, P. J., & Pollack, J. B. (1993). Competitive environments evolve better
solutions for complex tasks, 264–270.

Axelrod, R. M. (2006). The evolution of co-operation (Revised). Basic books, mem-
ber of the Perseus Books Group. Retrieved from https://www.amazon.com/
Evolution-Cooperation-Revised-Robert-Axelrod/dp/0465005640

Bäck, T. (1996). Evolutionary algorithms in theory and practice: Evolution strategies,
evolutionary programming, genetic algorithms. Oxford University Press.

Bäck, T., Fogel, D. B., & Michalewicz, Z. (1997). Handbook of evolutionary computa-
tion (First). IOP Publishing Ltd.

Bäck, T., & Schwefel, H.-.-.-P. (1996). Evolutionary computation: An overview, 20–
29. doi:10.1109/ICEC.1996.542329

Bauer, R. J. (1994). Genetic algorithms and investment strategies. John Wiley &
Sons.

Bishop, G. W. J. (1961). Charles H. Dow and the Dow Theory. The economic history
review, 13 (3), 520–521.

Bluman, A. G. (1995). Elementary statistics. Brown Melbourne.
Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and

the stochastic properties of stock returns. The Journal of finance, 47 (5), 1731–
1764.

Casas, N. (2015). A review of landmark articles in the field of co-evolutionary com-
puting. arXiv, 1–5. Retrieved from https://arxiv.org/abs/1506.05082

Cowles, A. (1933). Can stock market forecasters forecast. Econometrica, 1 (3), 309–
324.

De Lima, E. B., Pappa, G. L., de Almeida, J. M., Gonçalves, M. A., & Meira, W.
(2010). Congress on evolutionary computation, tuning genetic programming
parameters with factorial designs, 1–8. doi:10.1109/CEC.2010.5586084

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Jour-
nal of machine learning research, 7, 1–30.

Edwards, R. D., Magee, J., & Bassetti, W. H. C. (2007). Technical analysis of stock
trends (Ninth). Taylor & Francis. Retrieved from http://books.google.co.za/
books?id=wklriRw9a1oC

https://www.amazon.com/Technical-Analysis-2nd-Steven-Achelis/dp/0071826297
https://www.amazon.com/Technical-Analysis-2nd-Steven-Achelis/dp/0071826297
https://www.amazon.com/Technical-Analysis-2nd-Steven-Achelis/dp/0071826297
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=6996
https://dx.doi.org/https://doi.org/10.1016/S0304-405X(98)00052-X
https://dx.doi.org/https://doi.org/10.1016/S0304-405X(98)00052-X
https://dx.doi.org/https://doi.org/10.1016/S0304-405X(98)00052-X
https://www.amazon.com/Evolution-Cooperation-Revised-Robert-Axelrod/dp/0465005640
https://www.amazon.com/Evolution-Cooperation-Revised-Robert-Axelrod/dp/0465005640
https://www.amazon.com/Evolution-Cooperation-Revised-Robert-Axelrod/dp/0465005640
https://dx.doi.org/10.1109/ICEC.1996.542329
https://arxiv.org/abs/1506.05082
https://dx.doi.org/10.1109/CEC.2010.5586084
http://books.google.co.za/books?id=wklriRw9a1oC
http://books.google.co.za/books?id=wklriRw9a1oC
http://books.google.co.za/books?id=wklriRw9a1oC

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 35

Engelbrecht, A. P. (2007). Computational intelligence: An introduction. Wiley. Re-
trieved from https://books.google.co.za/books?id=IZosIcgJMjUC

Fama, E. F. (1965). The behaviour of stock market prices. The journal of business,
38 (1), 34–105.

Fogel, D. B. (2006a). Evolutionary computation: Toward a new philosophy of machine
intelligence. IEEE Press Series on Computational Intelligence. Wiley. Retrieved
from https://books.google.co.za/books?id=1SQuadczM9oC

Fogel, D. B. (2006b). Foundations of evolutionary computing. Proceedings of SPIE,
the international society for optical engineering, 1–13. doi:10.1117/12.669679

Friedman, G. J. (1956). Selective feedback computers for engineering synthesis and
nervous system analogy. Master’s thesis, UCLA. Retrieved from https://books.
google.co.za/books?id=Qy-2NwAACAAJ

García, S., Fernández, A., Luengo, J., & Herrera, F. (2008). A study of statistical
techniques and performance measures for genetics-based machine learning: Ac-
curacy and interpretability. Computational Intelligence and Complexity, 13 (10),
959. doi:https://doi.org/10.1007/s00500-008-0392-y

Graczyk, M., Lasota, T., Telec, Z., & Trawiński, B. (2010). Non-parametric statistical
analysis of machine learning algorithms for regression problems. Lecture Notes
in Computer Science, 6276, 111–120. Retrieved from https://link.springer.com/
chapter/10.1007/978-3-642-15387-7_15

Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as an opti-
misation procedure. Physica D: Nonlinear Phenomena, 42 (1-3), 228–234.

Holland, J. H. [John H.]. (1992). Adaptation in natural and artificial systems: An
introductory analysis with applications to biology, control, and artificial intelli-
gence. MIT press.

Holland, J. H. [John H.]. (2000). Emergence: From chaos to order. OUP Oxford.
Holland, J. H. [John Henry]. (1995). Hidden order: How adaptation builds complexity.

Basic Books.
Iman, R. L., & Davenport, J. M. (1980). Approximations of the critical region of

the fbietkan statistic. Communications in statistics: Theory and methods, 9 (6),
571–595.

James, F. E. (1968). Monthly moving averages an effective investment tool. Journal
of financial and quantitative analysis, 3 (3), 315–326.

John, H. (1985). Holland. Properties of the bucket brigade, 1–7.
Jones, T. et al. (1995). Crossover, macromutation, and population-based search, 73–

80.
King, W. I. (1934). Technical methods of forecasting stock prices. Journal of the

American statistical association, 29 (187), 323–325.
Koza, J. R. (1992a). Genetic programming II, automatic discovery of reusable subpro-

grams. MIT Press, Cambridge, MA.
Koza, J. R. (1992b). Genetic programming: On the programming of computers by

means of natural selection. MIT press.

https://books.google.co.za/books?id=IZosIcgJMjUC
https://books.google.co.za/books?id=1SQuadczM9oC
https://dx.doi.org/10.1117/12.669679
https://books.google.co.za/books?id=Qy-2NwAACAAJ
https://books.google.co.za/books?id=Qy-2NwAACAAJ
https://books.google.co.za/books?id=Qy-2NwAACAAJ
https://dx.doi.org/https://doi.org/10.1007/s00500-008-0392-y
https://link.springer.com/chapter/10.1007/978-3-642-15387-7_15
https://link.springer.com/chapter/10.1007/978-3-642-15387-7_15
https://link.springer.com/chapter/10.1007/978-3-642-15387-7_15

CO-EVOLVED GENETIC PROGRAMS FOR STOCK MARKET TRADING 36

Koza, J. R., & Poli, R. (2005). Genetic programming. In Search methodologies
(pp. 127–164). Springer.

Mahfoud, S., & Mani, G. (1996). Financial forecasting using genetic algorithms. Ap-
plied artificial intelligence, 10 (6), 543–566.

Mani, G., Quah, K.-.-.-K., Mahfoud, S., & Barr, D. (1995). An analysis of neural-
network forecasts from a large-scale, real-world stock selection system, 72–78.
doi:10.1109/CIFER.1995.495254

Neely, C., Weller, P., & Dittmar, R. (1997). Is technical analysis in the foreign ex-
change market profitable? A genetic programming approach. Journal of finan-
cial and Quantitative Analysis, 32 (4), 405–426.

Nicholls, J. F. (2018). Co-evolved genetic program for stock market trading (Master’s
thesis, University of Pretoria).

Peterson, N. (2007). Wall street lingo: Thousands of investment terms explained sim-
ply. Atlantic Publishing Group. Retrieved from https://books.google.co.za/
books?id=3Y9YAAAAYAAJ

Potvina, J., Sorianoa, P., & Vall, M. (2004). Generating trading rules on the stock
markets with genetic programming. Computers & Operations Research, 31 (7),
1033–1047. doi:10.1016/S0305-0548(03)00063-7

Rhea, R. (1993). The Dow Theory: An explanation of its development and an attempt
to define its usefulness as an aid in speculation. Fraser Publishing Company.

Rosin, C. D., & Belew, R. K. (1997). New methods for competitive co-evolution.
Evolutionary computation, 5 (1), 1–29.

Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data mining and knowledge discovery, 1 (3), 317–328.

Seshadri, M. (2003). Comprehensibility, overfitting and co-evolution in genetic pro-
gramming for technical trading rules (Doctoral dissertation, Worcester Poly-
technic Institute).

Shahsavar, M., Najafi, A. A., & Niaki, S. T. A. (2011). Statistical design of genetic
algorithms for combinatorial optimization problems. Mathematical Problems in
Engineering, 2011 (872415), 17. doi:10.1155/2011/872415

Sheskin, D. J. (2003). Handbook of parametric and non-parametric statistical proce-
dures. crc Press.

El-Telbany, M. E. (2004). The Egyptian stock market return prediction: A genetic
programming approach, 161–164. doi:10.1109/ICEEC.2004.1374410

Tilkin, G. (2001). MACD divergences. Active trader, 2–4. Retrieved from http://
www.activetradermag.com/

Tsang, E. (2009). Forecasting where computational intelligence meets the stock mar-
ket. Frontiers of computer science in China, 3 (1), 53–63. doi:10.1007/s11704-
009-0012-8

Tsang, E. P. K., Li, J., & Butler, J. M. (1998). EDDIE beats the bookies. Softw.,
Pract. Exper. 28 (10), 1033–1043.

https://dx.doi.org/10.1109/CIFER.1995.495254
https://books.google.co.za/books?id=3Y9YAAAAYAAJ
https://books.google.co.za/books?id=3Y9YAAAAYAAJ
https://books.google.co.za/books?id=3Y9YAAAAYAAJ
https://dx.doi.org/10.1016/S0305-0548(03)00063-7
https://dx.doi.org/10.1155/2011/872415
https://dx.doi.org/10.1109/ICEEC.2004.1374410
http://www.activetradermag.com/
http://www.activetradermag.com/
http://www.activetradermag.com/
https://dx.doi.org/10.1007/s11704-009-0012-8
https://dx.doi.org/10.1007/s11704-009-0012-8
https://dx.doi.org/10.1007/s11704-009-0012-8

	Introduction
	Background
	Genetic Programming for Trading
	Trading Rule
	Fitness measure
	Algorithm for single Population Genetic Program

	Co-evolved Genetic Programming for trading
	Co-operative Co-evolved Genetic Program
	Competitive Co-evolved Genetic Program

	Empirical Procedure
	Empirical Analysis
	Conclusions and future work

