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EXECUTIVE SUMMARY 

 

Indigenous Sanga cattle (Bos taurus africanus) breeds such as the South African (SA) Drakensberger 

are economically important to the commercial sector of the local beef-producing industry. The 

adaptive qualities of this breed make it a competitive performer across the variety of beef-producing 

environments of SA and hence there has been interest in applying genomic technologies to its breed 

improvement strategies. There has been a recent surge in genotyping of local breeds, including the SA 

Drakensberger, which was facilitated by the establishment of a national Beef Genomics Program 

(BGP). This has generated sufficient genomic data to explore the utility of various genomic 

methodologies in local breeds, including genomic selection (GS). The implementation of GS will 

require routine genotyping and hence frequent updating of genomic breeding value (GEBV) 

prediction equations, in terms of including more animals, to ensure sustainability. Maintaining a 

genome-enhanced breeding program can become financially unfeasible, especially if the uptake by 

farmers is low. As a strategy to reduce the cost of high-density genotyping, efficient imputation from 

a more cost-effective low-density single nucleotide polymorphism (SNP) panel to higher density can 

be integrated into routine GS pipelines. The aim of this study was to validate the utility of imputation 

as a genomic strategy for a local breed such as the SA Drakensberger. A commercial genotyping 

panel consisting of 139 480 SNPs was used to perform analyses that could be organized into three 

phases: pre-imputation, imputation and post-imputation. These three phases are presented in three 

experimental chapters (Chapter 3, 4 and 5) in this thesis of which Chapter 3 is published. The animals 

sampled were pre-selected according to the main research aim of the BGP, which was the eventual 

ability to impliment GS, and included high-impact animals that had sufficiently accurate estimates of 

conventional breeding values (EBVs). A subset of these animals were used to carry out the diversity 

study (Chapter 3), whereafter offspring and/or ancestors of these animals were sampled independently 

of BGP funding to ensure improved relatedness for imputation (Chapter 4) and GEBV estimation 

(Chapter 5). An introductory chapter (Chapter 1) as well as a published review chapter (Chapter 2) 

precedes the experimental chapters. The thesis is concluded with a critical review chapter (Chapter 6), 

which includes a general discussion, recommendations and a conclusion. The referencing style is 

consistent throughout except for published sections, in which case the style followed was as required 

by the relevant journals. 
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ABSTRACT 

 

Indigenous breeds such as the South African (SA) Drakensberger are economically important genetic 

resources in local beef production because of their adaptive traits and ability to perform competitively 

at a commercial level. Genomic selection (GS) is a promising technology to accelerate genetic 

progress in traits relevant to commercial beef production. A major obstacle in applying this 

methodology has been the cost of genotyping at high densities of single nucleotide polymorphisms 

(SNPs). Cost reduction can be achieved by exploiting genotype imputation in GS workflows by 

means of genotyping at lower densities and imputing upwards. The overarching aim of this study was 

to conduct an investigation into the practicality of applying imputation in such a workflow utilizing 

genotypic data for 1 135 SA Drakensberger animals genotyped for 139 480 SNPs. As a pre-

imputation step, the objective was firstly to elucidate inter- and intra-chromosomal patterns in 

genomic characteristics that may contribute to variability in achievable imputation accuracy across the 

genome. Inter-chromosomal differences in the proportion of low minor allele frequency (MAF) SNPs 

estimated varied from 6.6% for Bos Taurus autosome (BTA) 23 to 16.0% for BTA14. Pairwise 

linkage disequilibrium (LD), between adjacent SNPs, ranged from r2=0.11 (BTA28) to 0.17 (BTA14). 

The largest run of homozygosity (ROH), located on BTA13, was 225.82 kilobases (kb) in length and 

was identified in 23% of the animals sampled. The ROH-based inbreeding coefficients (FROH) 

estimated (e.g. FROH>1Mb=0.07, where FROH>1Mb denotes FROH calculated for all ROH longer than 1 

megabase pair), indicated sufficient within-breed relatedness to achieve accurate imputation. During 

the imputation step, imputation accuracy from several custom-derived lower density panels varying in 

SNP density and the SNP selection strategy were compared. Imputation accuracy increased as SNP 

density increased; a genotyping panel consisting of 10 000 SNPs, selected based on a combination of 

their MAF and LD with neighbouring SNPs, could be used to achieve <3% imputation error on 

average. At this density of SNPs, a mean correlation coefficient (±standard deviation) between true- 

and imputed SNPs of 0.972±0.024 was achieved in a set of validation animals (n=235). Low MAF 

SNPs were imputed with lesser accuracy; a difference of 0.071 units was observed between the mean 

accuracy of imputed SNP categorized into low- (0.01<MAF≤0.1) versus high MAF (0.4<MAF<0.5) 

classes. Post-imputation, the utility of imputed genotypes in genomic breeding value (GEBV) 

estimation was evaluated by comparing prediction accuracies achieved from the use of true versus 

imputed SNPs in generating the H-inverse matrix applied in single-step GS. Breeding values were 

estimated for two growth traits, considering direct and maternal components. Prediction accuracies 

were improved by using genomic information in addition to traditional pedigree information; the 

largest improvement (0.026 units increase in accuracy) was observed for maternal birth weight. 

Marginal differences were observed between GEBV accuracies produced from true (GEBVTRUE) 

versus imputed genotypes (GEBVIMPUTED); for example the mean±standard deviation in 

GEBVTRUE=0.774±0.056 versus GEBVIMPUTED=0.773±0.055 accuracy was observed for direct birth 

weight, suggesting that imputation errors had an almost negligible influence. Results presented in this 
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thesis demonstrated the usefuleness of imputation as a viable genomic strategy towards low-cost 

implementation of genomically enhanced prediction of EBVs for a breed such as the SA 

Drakensberger. 
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CHAPTER ONE 

 

INTRODUCTION 

 

1.1 Motivation 

During the period from 2008 to 2018, the South African (SA) human population grew from 49.6 

million to 57.4 million people, with forecasts indicating an exponential growth to 72.8 million people 

by 2050 (United Nations, 2017). Securing adequate food resources to supply this increase in 

nutritional demand in an efficient and sustainable manner will be a main focus in animal agriculture. 

The SA population consumes approximately 38.7kg, 11.9kg, 4.1kg and 3.6kg of chicken, beef and 

veal, pork, and mutton and lamb per capita, respectively (OECD, 2019). Beef is the second largest 

animal protein commodity in SA and the industry has a gross value of R33 billion (USDA, 2018). 

Although it is comparatively small in the global perspective, constituting a mere 1.4% (1.010 million 

tonnes) of global beef production, beef products in SA contribute nearly a quarter of the African 

continent’s beef production (USDA, 2018). The SA beef industry is dualistic in nature, consisting of 

both developed and developing sectors with relation to production capacity. More than 75% of beef 

produced originates from the developed sector and the percentage consumer purchases from this 

sector is almost double that from the developing sector (33% versus 17%; USDA, 2018). With a key 

focus on the improvement of indigenous cattle for large-scale beef production, the emphasis in this 

thesis will be on these cattle within the context of the commercial or developed sector. 

Approximately 82.3% of SA land can be classified as farming land, which comprises an estimated 

13.7% of land that is potentially arable and 68.6% of land that is suitable for grazing (DAFF, 2018). 

Ample land is therefore available for utilization in extensive production systems characteristic of 

farming practices used in rearing meat-producing ruminants such as beef cattle (van Marle-Köster & 

Visser, 2018). Ruminants raised under these systems are more vulnerable to the impact of external 

stressors unique to their production environments, including adverse weather conditions, suboptimal 

grazing quality and disease-causing parasites (Scholtz et al., 2014; Nyamushamba et al., 2017). In the 

2015/2016 calendar year, for example, SA was confronted with extreme drought that forced farmers 

to slaughter cattle because of grazing shortage and spikes in feed cost (USDA, 2018). This was 

followed by the commencement of a herd-rebuilding phase in 2017 whereby fewer cattle were being 

slaughtered and the price of beef became less affordable in comparison with other animal protein 

commodities (USDA, 2018). Even though the beef industry is recovering, this period of drought and 

the consequences thereof, provided evidence of the volatile nature of SA farming environments. 

The productivity and efficiency of commercial beef-producing operations will therefore increasingly 

rely on cattle breeds that are adapted to current farming environments and that will be able to 

withstand uncertain future environments. The Sanga subspecies of cattle (Bos taurus africanus), and 

the composite breeds carrying its bloodlines, are native to SA. The recognized Sanga breeds that 

inhabit SA are the Afrikaner, Bonsmara, Drakensberger, Nguni and Tuli breeds. These breeds display 
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a unique potential to reproduce and produce well under harsh local conditions. Evidence of this 

potential was through competitive growth performance in both low-input conditions (e.g. Collins-

Lusweti, 2000) and commercial feedlot conditions (e.g. Strydom, 2008) in SA, and has largely been 

attributed to their unique adaptive qualities. These breeds have an innate resistance to tick-borne 

diseases present in local production environments and the presence of ticks have a minor impact on 

their growth performance and even carcass characteristics (Schoeman, 1989; Rechav & Kostrzewski, 

1991; Muchenje et al., 2008). Their adaptive abilities also include their tolerance to heat, drought, 

endemic diseases and various other environmental stressors (Gororo et al., 2018). These attributes 

make them fit for inclusion in pure and crossbred breeding programmes, which will assist in dealing 

with the projected changes in livestock production dynamics (Gororo et al., 2018), and important 

genetic resources as climate change becomes a major challenge to livestock productivity. 

The SA Drakensberger is a medium-framed breed with a sleek, black coat. This breed was the first to 

receive estimated breeding values (EBVs) using best linear unbiased prediction (BLUP; Henderson, 

1984) methodology in the mid-1980s (Niemand, 2013) due, in part, to an extensive history of 

compulsory performance recording (SA Drakensberger Breeders’ Society, 2017). At present, 100% of 

breeders participate in SA Stud Book’s Logix Beef performance-recording scheme (SA Stud Book, 

2016). For this breed, and most other SA breeds, routine measurements have, however, been more 

diligent for growth-related traits; fertility, health, meat quality and  other expensive-to-measure traits 

have largely being neglected until recently (van Marle-Köster & Visser, 2018). The availability of 

selection tools such as EBVs has resulted in positive genetic gain being made for such traits related to 

growth performance. In relation to exotic breeds, the SA Drakensberger has shown competitive 

growth performance, intermediate between Bos indicus and Bos Taurus breeds (e.g. average daily 

gain: Brahman=1345g, Drakensberger=1550g, SA Angus=1805g; Bosman, 2002). Given the 

sufficiency in the phenotypic records available for growth traits, it would therefore be more 

appropriate to initially focus genomic selection strategies on these traits. To justify the substitution of 

traditional EBVs with genome-enhanced breeding values (GEBVs), improvements in accuracy will 

have to be demonstrated. Facilitating improved accuracies will, however, rely on the availability of 

sufficient single nucleotide polymorphism (SNP) genotype data to compliment existing phenotypic 

records. 

Establishing a training population that is at least a 1000 genotyped animals, which has been accepted 

as a general rule-of-thumb to achieve acceptable GEBV accuracies (Meuwissen et al., 2001), is still 

an expensive endeavour in most developing countries due to the high cost of SNP genotyping (Mrode 

et al., 2018). It should further be noted that the ballpark figure of a 1000 animals has been suggested 

for simulated or true dairy populations that are characterized by small effective poulations sizes and 

strong linkage disequilibrium (LD); this figure might therefore be higher for local breeds that are 

genomically more diverse. Genotyping costs therefore present an obstacle in implementing routine 

genomic evaluations for many breeds and presently GS is only undertaken in a few breeds in 

developing countries, for example the Nellore (Bos indicus) of Brazil (Carvalheiro, 2014). A national 
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Beef Genomics Program (BGP) was recently established in SA with both research and commercial 

aims (www.livestockgenomics.co.za) relevant to indigenous breeds and production systems of the 

local industry. Since the initiation of the BGP, SNP genotypes have been generated for approximately 

7 000 animals across 16 participating breeds (van Marle-Köster & Visser, 2018). Over the three-year 

funding period, a cohort of approximately 800 SA Drakensberger animals were genotyped using a 

genotyping panel consisting of 139 480 SNPs. With additional funding from organizations such as 

Red Meat Research and Development SA (RMRD-SA; www.rmrdsa.co.za), approximately 1 200 SA 

Drakensberger animals have been collectively genotyped to date. For the first time in SA, the number 

of high-density genotyped animals has allowed the exploitation of GS methodology for indigenous 

cattle breeds such as the SA Drakensberger. 

Genetic progress resulting from the implementation of GS internationally has been contingent on 

routine predictions made annually i.e. prediction equations have been regularly updated (Mrode et al., 

2018). Post-BGP, sustaining genomic progress from GS will depend on the participation and uptake 

by breeders, which will be an unrealistic expectation if the benefit of this methodology, in relation to 

its cost, has not been properly demonstrated (Berry et al., 2016). The procurement of genotypes at a 

reduced cost can be achieved through genotyping on lower density SNP panels and imputing to higher 

density (Berry et al., 2013). These lower density SNP panels can then be employed to generate 

GEBVs from a combination of actual and inferred genotypes (e.g. Raoul et al., 2017). Imputation is a 

statistical methodology that relies on the genomic segments shared within a breed, or a group of 

genetically similar breeds, to predict genotypic information for SNPs that were not physically 

genotyped (Marchini et al., 2007). Higher density genotypes can therefore be inferred for selection 

candidates that were only genotyped for lower densities by using a haplotype library constructed from 

breed-representative animals with dense marker genotypes available (Marchini et al., 2007). 

The utility of imputed genotypes in genomic applications is compromised if the imputation 

methodology is not carried out correctly. Incorrectly imputed genotypes may lead to false positive 

associations in genome-wide association studies (GWAS) and the risk is especially concerning for 

rare SNPs (Marchini & Howie, 2010). Large numbers of incorrectly imputed genotypes may impact 

the accuracy of predicted GEBVs but previous research has documented this influence to be mostly 

negligible even for breeds with admixed genomes (e.g. Aliloo et al., 2018). Imputation accuracy is 

directly proportional to the breed-specific genomic characteristics of a SNP itself or its relationship 

with neighbouring SNPs. This may present a challenge for admixed breeds because the entire set of 

genotyped SNPs might not be informative in these breeds. Kim et al. (2017) previously indicated 

greater genomic diversity for indigenous breeds in comparison with internationally commercial 

breeds; this tendency has also been observed for SA breeds (e.g. Makina et al., 2016; Zwane et al., 

2016; Pierce et al., 2018). To fully reap the benefits of imputation, a specific set of SNPs will need to 

be identified in terms of density and characteristics, which will be useful in applying GS without 

compromising either genotype imputation accuracy or GEBV prediction accuracy. Validation of a GS 



 4 

pipeline that includes imputation in its workflow will enable accelerated breed improvement of the 

SA Drakensberger, which will benefit the beef cattle gene pool of the SA beef industry in the future. 

 

1.2 Aim of the study 

The aim of this thesis was to validate genotype imputation as a method of inferring high density, in 

silico, genotypic data to enable genome-based breed improvement of an economically important 

indigenous breed, the SA Drakensberger. 

 

The aim of this study was accomplished by executing the following objectives: 

 

▪ To quantify inter-chromosomal genomic diversity and autozygosity that may influence the 

accuracy of genotype imputation as a genomic strategy for the SA Drakensberger breed. 

 

▪ To quantify imputation accuracy from several custom-derived low-density panels, varying in 1) 

SNP density and 2) design, i.e. inclusion criteria for SNPs; to higher density (GGP® 150K) for 

the SA Drakensberger breed. 

 

▪ To determine the value of using imputed genotypes in the prediction of genome-enabled breeding 

values (GEBVs) for birth- and weaning weight traits, i.e. both direct and maternal components, of 

the SA Drakensberger breed using a single-step genomic evaluation. 
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Abstract 

The South African beef cattle population is heterogeneous and consists of a variety of breeds, 

production systems and breeding goals. Indigenous cattle breeds are uniquely adapted to their native 

surroundings, necessitating conservation of these breeds as usable genetic resources to sustain 

efficient production of beef. Current projections indicate positive growth in human population size, 

with parallel growth in nutritional demand, in the midst of intensifying environmental conditions. 

Sanga cattle, therefore, are invaluable assets to the South African beef industry. Modern genomic 

methodologies allow for an extensive insight into the genome architecture of local breeds. The 

evolution of these methodologies has also provided opportunities to incorporate deoxyribonucleic 

acid (DNA) information into breed improvement programmes in the form of genomic selection (GS). 

Certain challenges, such as the high cost of generating adequate numbers of dense genotypic profiles 

and the introduction of ascertainment bias when non-commercial breeds are genotyped with 

commercial single nucleotide polymorphism (SNP) panels, have caused a lag in progress on the 

genomics front in South Africa. Genotype imputation is a statistical method that infers unavailable or 

missing genotypic data based on shared haplotypes within a population using a population or breed 

representative reference sample. Genotypes are generated in silico, providing an animal with 

genotypic information for SNP markers that were not genotyped, based on predictive model-based 

algorithms. The validation of this method for indigenous breeds will enable the development of cost-

effective low-density bead chips, allowing more animals to be genotyped, and imputation to high-

density information. The improvement in SNP densities, at lower cost, will allow enhanced power in 

genome-wide association studies (GWAS) and genomic estimated breeding value (GEBV)-based 

selection for these breeds. To fully reap the benefits of this methodology, however, will require the 

setting up of accurate and reliable frameworks that are optimized for its application in Sanga breeds. 

This review paper aims, first, to identify the challenges that have been impeding genomic applications 
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for Sanga cattle and second, to outline the advantages that a method such as genotype imputation 

might provide. 

__________________________________________________________________________________ 

Keywords: developing countries, indigenous breeds, genomics, breed improvement 
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Introduction 

South Africa accommodates a human population of approximately 57.7 million people (Statistics 

South Africa, 2018). According to UN projections, this number will increase to 72.8 million people 

by 2050 (United Nations, 2017). Nutritional demand, specifically the demand for animal protein, is 

expected to grow in parallel with population size and the responsibility of meeting this demand will 

weigh heavily on livestock production systems. Global warming will make bearing this responsibility 

a challenging task, with extreme environmental changes expected for developing countries south of 

the equator (Scholtz et al., 2013). Widespread regions of South Africa are experiencing a state of 

drought, which is the result of the strong El Niño event that occurred in the 2015/2016 year (South 

African Weather Service, 2016). The shortage of water in the country has raised concerns, among 

other things, about the amount of water it takes to finish cattle off in feedlots (Meissner et al., 2013). 

Approximately 68.6% of South African land is available for grazing, which is an ideal situation for 

extensive livestock production systems that rely on natural veld as feed source (Directorate: 

Knowledge and Information Management, 2017). Global warming, however, will be responsible for 

fluctuations in the nutritional value of the natural veld (Scholtz et al., 2014). Moreover, South Africa 

is geographically diverse and hosts a wide range of climatic zones, vegetation and soil types as well as 

a series of tick-borne and other endemic cattle diseases, each unique to its nine terrestrial biomes. 

The South African beef population includes the Sanga cattle subspecies (Bos taurus africanus), which 

is indigenous. The breeds that belong to this subspecies include the Afrikaner, Drakensberger, Nguni 

and Tuli and the experimentally developed composite Bonsmara (Scholtz, 2010). These cattle, which 

are phenotypically distinguishable by their cervico-thoracic humps, resulted from historic 

crossbreeding between taurine and indicine cattle subspecies in eastern Africa (Payne & Hodges, 

1997; Felius et al., 2014). From there, they were brought to southern Africa by migrating tribes 

(Schoeman, 1989), reaching South Africa by 250–500 AD (Payne & Hodges, 1997; Felius et al., 

2014). Prolonged exposure to and endurance of the natural elements specific to South Africa have 

shaped the genomes of Sanga breeds to become habituated to the country’s various extensive farming 

environments. Many trial-based studies have confirmed the ability of these breeds to adapt to, survive 

and reproduce in the varying beef-producing regions of South Africa. In the past decades several 

South African animal scientists have reported on and reviewed so-called proxy-indicator traits of 

adaptability for Sanga breeds. These studies have highlighted the potential of Sanga breeds to be 

highly fertile (e.g. Maule, 1973), calve easily and frequently (e.g. Scholtz, 1988; Schoeman, 1989; 

Collins-Lusweti, 2000), resist ticks and tick-borne diseases (e.g. Bonsma, 1980; Schoeman, 1989; 
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Rechav & Kostrzewski, 1991), and be well suited to extensive finishing systems of South Africa (e.g. 

Du Plessis et al., 2006). The genetic architecture of SA Sanga breeds and the molecular mechanisms 

underlying their adaptation abilities, however, have been only partially investigated.  

The number of genomics studies on beef cattle has grown steadily in South Africa over the past five 

years. The initial validation of the utility of the Illumina® bovine SNP50 bead chip for indigenous 

South African cattle by Qwabe et al. (2013) provided the first insight into genomics of Sanga cattle. 

Validation was important because no Sanga breeds were included in the SNP discovery process of 

this bead chip (Matukumalli et al., 2009). As was expected, lower minor allele frequency (MAF) was 

observed and consequently a lower number of informative SNPs for indigenous, non-discovery breeds 

and crossbreeds. Zwane et al. (2016) and Lashmar et al. (2018) confirmed the tendency towards low 

MAF in Sanga breeds using GeneSeek®’s GGP 80K and GGP 150K bead chips, respectively. In a 

series of successive studies, the authors who did the original validation investigated the genetic 

diversity (Makina et al., 2014; Makina et al., 2016), linkage disequilibrium (LD) and effective 

population size (Ne) (Makina et al., 2015a) as well as selection signatures (Makina et al., 2015b) of 

indigenous breeds. The SNP50 bead chip was also utilized to identify copy number variations (CNVs) 

in Nguni cattle (Wang et al., 2015). Genes associated with biological processes such as immune and 

abiotic stress were among the genes identified within these CNV regions (Wang et al., 2015). These 

results were in partial agreement with the study by Makina et al. (2015b), in which it was revealed 

that a heat shock protein gene (HSPB9) and immune response genes were under selection in 

indigenous breeds. Mapholi et al. (2016) used SNP50 bead chip data to perform a GWAS to 

investigate tick resistance in a sample of close to 600 Nguni cattle. These authors identified several 

regions, in concordance with previous research, which harbour quantitative trait loci (QTL) that are 

linked to various tick-count traits. Only three of these regions, however, reached the threshold for 

genome-wide association significance, which necessitates further validation. 

These studies provided a baseline for further investigation of SNP technology in South African beef 

cattle, especially for Sanga breeds. The local importance of these breeds, in terms of the role that they 

will play in enriching the South African beef industry, has attracted attention to the incorporation of 

genomic information into breed improvement programmes in the form of GS. Genomic selection, 

however, relies on a good phenotypic and genotypic backbone. Owing to the relative size of the breed 

(about 120 000 animals) (Van der Westhuizen et al., 2014) and the completeness of phenotypic 

records, the SA Bonsmara was the first South African beef cattle breed for which GEBVs were 

estimated. This was preceded by a study that elucidated the population genetic structure within a 

possible reference population for the SA Bonsmara breed (Bosman et al., 2017). The Beefmaster, a 

synthetic breed composed of Brahman, Hereford and Shorthorn genetics (Porter, 1991), followed suit 

and was the second beef cattle breed for which GEBVs were released (Beefmaster Cattle Breeders 

Society of South Africa and SA Stud Book, 2017). The lack of accurate pedigree recording still 

prohibits the application of GS for a large portion of South African beef cattle breeds. Pedigree 

recording, however, has improved and for the Afrikaner, Drakensberger, Nguni and Tuli breeds the 
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percentage of average pedigree completeness for first-generation animals is about 90% (Abin et al., 

2016). Although performance testing has been available for commercial beef populations since 1959, 

and all indigenous breeds are participating actively, participation by some breeders’ societies is as low 

as 32% (Scholtz, 2010; Van Marle-Köster et al., 2013).  

Accumulation of sufficient genotypic information to initiate GS for breeds such as the SA Bonsmara 

was partly made possible through the Beef Genomics Project (BGP), which is a collaborative 

research-focused project that includes researchers from universities and research councils, breeders’ 

societies and other role-players. The BGP is a large-scale project that is funded by the Technology 

Innovation Agency (TIA; Department of Science and Technology) with the overall aim of instating 

genomic improvement in the South African beef population (Becker, 2016). This funding initiative 

allowed the generation of approximately 7 000 genotypes across 16 breeds over a three-year period of 

routine genotyping (Van Marle-Köster & Visser, 2018). Before the BGP, the scale of genomic studies 

on beef cattle in South Africa was limited compared with international studies. South African studies 

have typically included small sample sizes and have focused on genome characterization and 

population genetic analyses. It is only since the inception of the BGP that improvements in the 

number of genotyped animals have made applications such as GS a possibility. The main reason for 

the lag in introducing these genomic technologies earlier for South African beef cattle was related to 

financial constraints. Even with major reductions in genotyping costs over the past decade, the per-

animal price of genotyping is still expensive, especially for researchers in the developing world where 

adapted indigenous cattle resources, that often have unique and uncharacterized genomes, are located. 

Many local researchers therefore collaborate with international research groups to fund studies on 

indigenous breeds. Programmes, such as BGP, therefore assists in mitigating the financial burden on 

individual research groups in local universities and research organizations to procure dense SNP 

genotypes towards realizing GS. Routinely generated genotypes could furthermore serve as a data 

resource for research groups with different research objectives that require large numbers of 

genotyped animals from certain breeds. These programmes also assist in establishing intra-national 

collaborations and building local capacity.  

Large numbers of genotyped animals are required to set up breed reference populations that are 

suitable for genomic evaluation. Post BGP, the financial responsibility of genotyping key animals in 

herds or populations will be that of interested breeders or farmers, and the current high costs of 

genotyping will probably impede further uptake of genomics if the benefits of this technology, in 

relation to the cost, cannot be realized. In contrast with the dairy industry (globally and in South 

Africa), where relatively few large breeds dominate the national herd, the beef industry is diverse and 

consists of approximately 30 breeds of taurine, indicine and Sanga descent, including taurindicine 

crosses and composite breeds (Strydom, 2008). These subspecies are diverse, with breeds belonging 

to each subspecies displaying distinct genetic and phenotypic characteristics. Breeds also differ in 

their population size and the traits recorded for, as breeding objectives are breeder society specific 

(Van Marle-Köster et al., 2013). Including DNA information in breed improvement is a key objective 
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to achieve genetic gain for local cattle and to exploit the adaptive mechanisms they possess. The 

effective introduction of GS, however, has phenotypic and genotypic requirements. To fulfil the 

genotypic requirements would necessitate i) the generation of high-density genotypes to be more 

affordable; ii) the availability of more genomic profiles per breed (approximately 1000, but depending 

on the breed structure); iii) the ability to standardize between genotyping platforms; and iv) GS 

algorithms to be optimized for the genomic structure of local breeds. Genotype imputation is a 

methodology that uses predictive algorithms to enable the procurement of un-genotyped genomic 

information, and thereby allows for saving on genotyping costs. It is an ideal candidate methodology 

to assist in fulfilling the genotypic requirements for GS and, if properly validated and optimized for 

routine application, can accelerate genomics research in South Africa cost effectively. 

This review aims to elucidate genotype imputation as a genomic strategy, focusing on its relevance to 

indigenous Sanga cattle breeds. The review discusses the methodology behind imputation, the factors 

that influence imputation accuracy, and its value in future applications such as GWAS and GS. 

 

Genotype imputation 

Genotype imputation is a statistical methodology that involves the prediction and simulation of 

missing SNP genotypes from observed or non-missing genotypes through model-based approaches 

(Marchini et al., 2007). The models are based on population genetic principles, and are used to deduce 

or extrapolate allelic correlations for sample sets with missing genotypic data using a sample set with 

dense and ‘complete’ data as a reference (Howie et al., 2009). Imputation of missing genotypes 

generally relies on the fact that extended haplotypes are shared over short distances between animals 

with a common ancestor (Pei et al., 2008). In effect, imputation therefore relies on family linkage, 

that is, the rules of Mendelian inheritance, or the LD structure within a population. If a reference 

population is genotyped on a high-density SNP panel and a test population is genotyped for a smaller 

subset of these SNPs, the assumption is that if they are related in some way, these populations should 

have similar underlying patterns of LD (Pei et al., 2008). The genotypic information of a reference 

population or sample is used to model patterns in genomic variation (Browning, 2008) and this 

genomic variation, which is typically shared within population, can therefore be used to infer missing 

genotypes in a non-reference animal or test sample.  

Imputation therefore is population specific, and the accuracy with which genotypes can be imputed 

depends on the persistence of LD between animals in the reference and test populations. Imputation is 

hence viable only across breeds or populations if they are genetically similar or related in some way 

(Berry et al., 2014). Synthetic or composite breeds may therefore benefit from imputation if their 

component breeds are pooled in the reference population (Browning, 2008; Ventura et al., 2014). 

Imputing missing genotypes from a reference population that belongs to an ancestrally different breed 

from the test population will result in low-quality imputation and will negatively affect the reliability, 

and hence utility, of imputed genotypes (Browning, 2008).  
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If high-density genotypes can be imputed reliably from low-density SNP arrays with sufficient 

accuracy, this would allow for the opportunity to genotype more animals in a more affordable way 

(García-Ruiz et al., 2015). Imputation is therefore an important statistical tool for enriching 

applications such as GWAS and GS that require higher or more evenly distributed marker densities 

(Marchini et al., 2007). This tool will also enable comparison between SNP bead chip data that i) 

have been developed by different companies (e.g. AffymetrixTM, Illumina® and Neo-Geneseek®), 

and ii) that incorporate different SNP densities (e.g. 50K, 150K and 777K) in meta-analytic 

approaches (Ellinghaus et al., 2007). This can be done by identifying a set of SNPs that are common 

to two platforms and then imputing to a standard density. For example, if low- (e.g. 7K), medium- 

(e.g. 50K) and high-density (e.g. 150K) genotypic information is available for a breed, the low- and 

medium-density information can be imputed to the high density and this high-density information can 

be merged and collectively used for downstream analyses. This standardization might be useful when 

one considers the fast rate at which new and improved genotyping platforms are becoming available 

(Nicolazzi et al., 2015).  

Imputation algorithms can generally be categorized as population-based and pedigree-based methods. 

Population-based algorithms assume large numbers of animals with unknown pedigree data and 

therefore rely on population-wide LD between markers (Weigel et al., 2010). These algorithms use a 

probabilistic approach to perform imputation and rely on shorter haplotypes that are typically less 

than 1 centiMorgan (cM) in length (Antolín et al., 2017). Probabilistic methodologies are ideal for 

natural populations and are more viable for high-density bead chips (Weigel et al., 2010; Mulder et 

al., 2012) because using methods that rely solely on LD information would be affected negatively 

when SNP densities are sparse and LD is low (Wang et al., 2016).  

Pedigree-based algorithms use heuristic methods that assume the existence of family structure and 

rely on long haplotypes, typically larger than 10 cM in length, which are shared between closely 

related animals (Antolín et al., 2017). Imputation therefore cannot be reliably performed with these 

methods if accurate pedigree information is lacking. These methods are more suited to case-control 

studies or studies in which family trios – both parents and offspring – have been sampled. A number 

of imputation software programs exist, which differ in their approach to employing the methods 

discussed. The most popular imputation software programs in animal breeding and genetics research 

are listed in Table 2.1, which was adapted from Calus et al. (2014) and Antolín et al. (2017). 
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Table 2.1 List of commonly used imputation software programs in animal genetics research. 

Software Method Reference 

AlphaImpute Heuristic Hickey et al. (2011) 

Beagle Probabilistic Browning & Browning (2007) 

CHROMIBD Heuristic Druet & Farnir (2011) 

DAGPHASE Heuristic Druet & Georges (2010) 

fastPHASE  Probabilistic Scheet & Stephens (2006) 

FImpute Heuristic Sargolzaei et al. (2014) 

Findhap.f90 Heuristic Van Raden & Sun (2014) 

IMPUTE1 Probabilistic Marchini et al. (2007) 

IMPUTE2 Probabilistic Howie et al. (2009) 

MaCH Probabilistic Li et al. (2010) 

minimac Probabilistic Howie et al. (2012) 

minimac2 Probabilistic Fuchsberger et al. (2014) 

PedImpute Heuristic Nicolazzi et al. (2013) 

PLINK Probabilistic, sporadic Purcell et al. (2007) 

 

To summarize, probabilistic methods that rely on LD information generally use hidden Markov 

models (HMM) to perform imputation. HMMs are probabilistic models that allow assumptions and 

inferences to be made about hidden variables, each with a finite set of possible ‘states’, based on 

observable outputs (Rabiner, 1989). These models estimate the probability that a certain state could be 

responsible for producing a certain observable output at a given time (Rabiner, 1989). These models 

therefore use the underlying relationship, or correlation, between observed and unobserved SNPs to 

infer the most probable genotype for the unobserved SNPs. HMM methodology can be 

computationally demanding because it requires that genotypes are phased and estimate recombination 

rates. However, it can be supplemented with heuristic methodology that exploits more accurate 

phasing information owing to the incorporation of family linkage (Antolín et al., 2017). The addition 

of pedigree information, albeit not a necessity, will therefore boost imputation accuracy. In the same 

way, HMM methodology can add value to heuristic methods if pedigree information for only one 

parent is available. 

The algorithms and exact methodology incorporated in each of the software programs (Table 2.1) are 

discussed in detail in each of the scientific papers and have been reviewed by for example Antolín et 

al. (2017) and Wang et al. (2016). Various statistical models have been proposed including HMM, 

haplotype clustering algorithms, linear regression models and expectation-maximization algorithms 

(Pei et al., 2008; Howie et al., 2009; Wang et al., 2016). Statistical methods differ in their approach to 

capturing haplotypes that are shared in a population (Pei et al., 2008). The choice of software 
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therefore influences imputation accuracy. Several factors that are within and beyond the researcher’s 

control might affect the quality of imputed genotypes. 

 

Factors that affect imputation accuracy 

The accuracy with which SNP genotypes can be imputed will determine the utility and reliability of a 

given imputation method for a given population. Parameters to quantify imputation accuracy can 

generally be subdivided into two groups, namely those that determine i) the proportion of alleles or 

genotypes that were correctly (e.g., Weigel et al., 2010) or incorrectly imputed (e.g. Druet et al., 

2010; Zhang & Druet, 2010), and ii) the correlation or squared-correlation, usually the Pearson 

method of correlation, between true and imputed genotypes (e.g. Huang et al., 2009; Mulder et al., 

2012; Ma et al., 2012). An alternative parameter, the imputation quality score (IQS), which 

determines imputation accuracy on the basis of statistics of agreements and adjusts for chance 

concordance has also been proposed (Lin et al., 2010). Methods that determine the concordance rate 

of imputed alleles (that is, proportion correctly imputed) will be more informative for imputing 

genotypes for GS, since GS algorithms assume additive allele effects (Berry et al., 2014). These 

methods, however, tend to inflate imputation accuracies because of sensitivity to low-frequency 

alleles (MAF<5%) (Ramnarine et al., 2015). Imputation of rare variants might therefore be better 

assessed using for example correlation-based accuracy measures that are less sensitive to MAF. All of 

these parameters are dependent on the availability of true and imputed genotypes, that is, scenarios in 

which a proportion of the true genotypes are available, but masked. A third category of accuracy 

quantification involves statistics that are built into programs such as BEAGLE (Browning & 

Browning, 2007), which do not require the availability of ‘true’ genotypic data, but rather estimate 

accuracies based on the likelihood or expectation of genotypes and allele dosage (Ramnarine et al., 

2015). 

Imputation accuracy depends on many factors including the imputation method, the MAF of the SNP 

to be imputed, LD between SNPs, the chromosomal position of the SNP (that is, whether it is located 

in the centre of the chromosome or on the chromosomal extremes), the quality of the SNP map, the 

discrepancy in SNP densities between high- and low-density SNP panels, and the size and 

composition of the reference population (Schrooten et al., 2014). Setting up a framework for 

incorporating imputation, as a routine genomic procedure, would require the optimization of 

imputation methodology for specific breeds or breed groups such as Sanga cattle. This might 

necessitate adjustments for example for national breed size (that is, numerically small versus 

numerically large) and variations that might occur across the genome, which might be the case for 

admixed populations. In addition, the algorithms that are built into certain imputation software might 

not be suited to the genomic architecture of certain breeds or populations. The main factors that need 

consideration are detailed below and are focused on the Sanga context.  
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Reference population size and degree of relatedness to the test population 

The main consideration in the experimental design of an imputation study is determining an 

appropriate set of reference haplotypes or animals to achieve accurate predictions (Li et al., 2009). 

The most common method for assessing the influence of reference population size on the accuracy of 

genotype imputation is by masking varying subsets of reference animals and comparing the 

accuracies recovered for increasing reference population sizes (Li et al., 2009). Accuracy measures 

generally improve with larger reference population sizes, and this trend has been well documented 

(e.g. Hayes et al., 2012; Pausch et al., 2013; Piccoli et al., 2014; Ogawa et al., 2016). The 

improvement in accuracy, however, is not so pronounced for high-density bead chips compared with 

lower density ones (Ogawa et al., 2016). That is, the effect of reference population size is reduced if 

fewer genotypes are to be imputed. The improvement in imputation accuracies with increasing 

reference sample could be because more animals are used to construct haplotype libraries from which 

to impute. The inclusion of more reference animals increases the probability of including more breed 

or population representative haplotypes. The rule of thumb has generally been that a reference sample 

size of about 1000 animals will be sufficient for imputation. However, the ideal population size for a 

breed will depend on breed dynamics. 

The breed dynamic of the South African beef population has seen significant changes in the past. In 

the 1970s, when the national herd was approximately 6 million head smaller than the approximately 

13.6 million animals recorded today (Meissner et al., 2013), the indigenous Afrikaner dominated 

national herd numbers. Purebred Afrikaner and Afrikaner crosses represented approximately 70% of 

all the cattle slaughtered (Van Marle, 1974). Today, the experimentally developed SA Bonsmara 

composite is the most abundant breed in South Africa (about 120 000 registered animals) (SA Stud 

Book, 2016). The Nguni is the most abundant Sanga breed (about 38 000 registered animals) (SA 

Stud Book, 2016). Registered animals that belong to Sanga breeds such as the Afrikaner (about 7300 

registered animals) (SA Stud Book, 2016), Drakensberger (about 12 800 registered animals) (SA Stud 

Book, 2016) and Tuli (about 9500 registered animals) (SA Stud Book, 2016) are far outnumbered by 

composite breeds such as the SA Bonsmara and SA Beefmaster (about 48 000 registered animals) 

(SA Stud Book, 2016).  

The SA Bonsmara was the first South African beef cattle breed to receive genomic evaluations. This 

is attributable to the relative size and market share of the breed and superior record keeping by the 

breeders’ society, and hence availability of phenotypes. In the BGP, the generation of genotypes per 

breed was conditional on the size and breeding objectives, the availability of phenotypic data, and the 

long-term prospects of implementing GS successfully (SA Stud Book, 2016). Approximately 42% of 

the animals participating in Logix Beef (SA Stud Book’s animal recording database) belong to the SA 

Bonsmara, while only 2.4%, 4.5%, 5.6%, and 3.3% of the animals that participate are Afrikaner, 

Drakensberger, Nguni and Tuli, respectively (SA Stud Book, 2016). The eventual aim is to implement 

GS for all these indigenous breeds. Establishing breed-appropriate reference populations, however, 

requires the accumulation of sufficient genotypic information as well. To date approximately 300, 1 
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850, 960, 400 and 200 genotypes have been generated for the Afrikaner, SA Bonsmara, 

Drakensberger, Nguni and Tuli breeds, respectively, during the timeframe of the BGP (personal 

communication). Genotypic profiles were mostly generated using the GeneSeek Genomic Profiler 

150K bovine chip. 

The ideal reference population is not influenced solely by the size of the reference population, but by 

its composition as well. Imputation accuracy improves if there is a level of relatedness between the 

reference and test samples. Berry & Kearney (2011) for example showed a positive correlation 

between the average relatedness between reference and test samples and imputation accuracy. This 

correlation strengthened when the maximum relatedness of test animals were considered instead of 

the average relatedness (Berry & Kearney, 2011). These authors observed an approximate 6% 

increase in genotype concordance rate for animals with both – as opposed to no – parents in the 

reference sample. Even though there are many imputation algorithms that can perform imputation 

fairly accurately for unrelated samples, the inclusion of parental or familial genotypes in the reference 

population will assist in boosting accuracy estimates. The reason for higher accuracy is due to closer 

linkage and therefore sharing of larger genomic segments within families. It would therefore be 

advisable or beneficial to include parent-offspring pairs or family trios in sampling efforts. This 

would be easier for dairy cattle, as opposed to beef, when one considers the higher prevalence of 

reproductive biotechnologies in the dairy industry. 

In the SA Bonsmara for example strong genetic linkage between the animals that were genotyped was 

ensured by encouraging all breeders to submit hair samples of influential herd sires (SA Stud Book, 

2017). Sampling was also done to ensure the inclusion of animals with accurate BLUP breeding 

values (SA Stud Book, 2017). This included female animals with superior breeding value accuracies 

for traits such as age at first calving, calving interval as well as maternal birth and weaning weights 

(SA Stud Book, 2017). Animals were selected across a spectrum of good and bad performers for these 

traits. The same process is utilized to select appropriate animals to genotype for other Sanga breeds. 

Although the focus of selection was not to specifically sample family trios, selecting genetically 

influential animals would indirectly assure the genotyping of animals that are directly related. If 

parent-offspring pairs (sire-offspring or dam-offspring) have been genotyped with BGP, additional 

funding could possibly be used to complete family trio genotypes by genotyping or imputing the 

missing parent. Berry et al. (2014) tested the imputation of parental genotypes based on their half-sib 

progeny and concluded that ungenotyped parental genotypes could be inferred accurately if genotypes 

were available for a sufficient number of offspring. 

 

Genome resources and SNP arrays 

There were originally two competing genome assemblies for cattle. The first reference genome, 

Btau_1.0, was assembled by the Human Genome Sequencing Centre at the Baylor College of 

Medicine (Elsik et al., 2009), whereas the Centre for Bioinformatics and Computational Biology at 

the University of Maryland initiated the assembly of an alternative genome, namely UMD2 (Zimin et 
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al., 2009). Efforts to assemble these reference genomes occurred concurrently. The assembled 

genomes went through several stages of improvement over the years, resulting in the versions 

(Btau_5.0.1 and UMD3.1.1) that are currently available to researchers through the National Centre for 

Biotechnology Information (NCBI). At the 11th World Congress for Genetics Applied to Livestock 

Production the release of a new de novo assembly, ARS-UCD, of the Dominette Hereford genome 

was announced (Rosen et al., 2018). Long-read sequencing was utilized to reach 80X genome 

coverage with approximately 100- and 200-fold fewer gaps than the Btau_5.0.1 and UMD3.1 

assemblies, respectively (Rosen et al., 2018).  

From the two initial genome assemblies, SNP identification followed. Today various commercial SNP 

bead chips are available for cattle through three leading companies (AffymetrixTM, Illumina®, 

Neogen’s GeneSeek®) (Nicolazzi et al., 2015). The new assembly will aid in i) improving genome 

continuity, ii) re-mapping reads, and iii) improving marker ordering, which might influence SNP 

selection for the development of SNP genotyping platforms in the future (Rosen et al., 2018). The 

commercial bead chips that are currently available for cattle are summarized in Table 2.2, adapted 

from Nicolazzi et al., (2015). There are also a growing number of custom-made bead chips that are 

protected by intellectual property, and are therefore not available for commercial utilization 

(Nicolazzi et al., 2015). 

 

Table 2.2 Summary of available single nucleotide polymorphism bead chips for cattle. 

Company Bead chip Number of SNPs 

Affymetrix® Axiom® Genome-wide BOS1 648 875 

Geneseek® GeneSeek Dairy Ultra LD v2 GGP-LD 7 049 

 - version 1 (GGP9K) 8 610 

 - version 2 (GGP20K) 19 721 

 - version 3 26 151 

 GGP-indicus 35 090 

 GGP-HD 76 879 

 GGP-150K 139 480 

Illumina® Golden Gate Bovine 3K 2 900 

 Bovine LD   

 - version 1 6 909 

 - version 1.1 6 912 

 - version 2 7 931 

 Bovine SNP50  

 - version 1 54 001 

 - version 2 54 609 

 Bovine HD 777 962 
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Many of the bead chips that are listed in Table 2.2 have large numbers of SNPs in common. Some are 

updated versions of previously released bead chips, including additional SNPs that are optimized for 

specific purposes. Illumina’s Bovine LD (6 909 SNPs), which was made available in 2011, for 

example has mostly replaced the Golden Gate 3K (2 900 SNPs), which was released in 2010 

(Wiggans et al., 2013). A subtotal of 2 159 SNPs were retained from the Golden Gate (Wiggans et al., 

2013). Geneseek recently released the bovine Genomic Profiler 150K (GGP 150K) SNP bead chip, 

which features 139 480 SNPs with an average inter-SNP distance of about 19 kilobase pairs (kb). The 

GGP 150K bead chip incorporates approximately 74 000, 42 000, 25 000 and 23 000 SNPs that are 

included on the original GGP HD (80K), Bovine SNP50 (Illumina), GGP LD and Bovine HD (777K, 

Illumina) bead chips, respectively. One of the most recently released platforms, the GeneSeek GGP 

Indicus bead chip, features about 35 000 indicine-specific SNPs that were selected from a cohort of 

breeds, including the Brahman, Nellore, Gyr and Santa Gertrudis and tropical composite breeds 

(Ferraz et al., 2018). The GGP indicus chip was also optimized for high imputation accuracy in 

indicine breeds, with imputation to the Illumina HD bead chip being up to 97% accurate in these 

breeds (Ferraz et al., 2018). Previous research has shown improved MAF and LD estimates for 

indigenous Ethiopian cattle (Edea et al., 2015) and improved imputation accuracy for indicine Gyr 

cattle (Boison et al., 2015) when indicus-derived SNP panels were used. Since Sanga cattle are 

taurine-indicine hybrids, it would be recommended to test the utility of this panel for Sanga breeds, in 

contrast to taurine-derived SNP panels. Lower-density bead chips in general are increasingly being 

developed with the aim of retaining specific subsets of SNPs, in common with higher density bead 

chips, to be optimized for low-cost genomic applications (Boichard et al., 2012). 

The bovine reference genome will undergo many updates in the future as sequencing technologies 

improve. This is an important consideration because re-mapping of SNPs can cause rearrangements in 

the haplotypes captured by bead chips, especially if SNPs are re-mapped to different chromosomes 

(Milanesi et al., 2015). Incorrect SNP positioning of more than 5 000 SNPs on the bovine HD bead 

chip has been suggested (Pausch et al., 2013). Pre-imputation, ensuring consistency between SNP 

positions of low- and high-density panel genotypic data is an important quality check. Software such 

as the web-based tool SNPchiMp (Nicolazzi et al., 2015) provides a platform for standardizing SNP 

genomic positions by mapping markers to the same reference genome (that is, either to the UMD3.1, 

Btau_5.0.1 or ARS-UCD genome assemblies). Accurate mapping of SNPs is also important owing to 

the decrease in imputation accuracy, which has been observed for SNP genotypes on chromosomal 

extremes, as opposed to SNPs that are located in the centre of the chromosome, in previous studies 

(e.g. Ventura et al., 2016). 

Studies that focus on Sanga beef cattle have utilized Illumina SNP50 (e.g. Qwabe et al., 2013), 

GeneSeek GGP 80K (e.g. Zwane et al., 2016) and GeneSeek GGP 150K (e.g. Lashmar et al., 2018) 

genotypic data for various genomic applications. Since the initiation of the BGP, data has been 

routinely generated using the GeneSeek GGP 150K panel, whilst specific research projects have 

generated low-density (e.g. Illumina 7K) and high-density (e.g. Illumina HD) genotypic data and 
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whole-genome sequencing information, depending on the research interest. The diversity in genomic 

data that is available for Sanga cattle might therefore require standardization between platforms in 

future efforts to combine data in meta-analyses and collaborative projects. 

The discrepancy in the number of SNPs between panels also influences imputation accuracy, 

specifically between low- and high-density panels (that is, the number of SNPs to be imputed). 

Accuracy estimates tend to improve with increasing SNP density of the low-density panel. That is, the 

fewer the number of SNPs that need to be imputed, the higher the mean imputation accuracy will be. 

This increase in accuracy can be attributed to the fact that haplotypes can be more accurately resolved 

with more SNPs present (Tsai et al., 2017). Imputing Dutch Holstein genotypes to a custom 60K bead 

chip, Zhang & Druet (2010) observed decreasing imputation error rate when the SNP density of the 

low-density panel was improved from 384 SNPs to 6 000 SNPs. These authors then suggested a 

minimum of 3 000 SNPs to achieve 3% or lower imputation error rate (Zhang & Druet, 2010). Ogawa 

et al. (2016) indicated a similar trend in imputing to 50K genotypes for Japanese Black beef cattle. 

Imputation accuracy was 2.7% higher when the low-density panel included 10 000 SNPs versus 500. 

This relationship agrees with imputation experiments on sheep (Hayes et al., 2012), salmon (Tsai et 

al., 2017), and maize (Hickey et al., 2012) and suggests that a minimum set of SNPs is required to 

allow optimal imputation.  

The minimum number of SNPs that are necessary for accurate imputation must be determined to 

develop an imputation-driven low-density panel for Sanga cattle. For individual breeds, this will 

depend on the extent of LD within the population. Breeds that are characterized by lower LD will 

require higher SNP densities. Developing a low-density panel that is applicable across Sanga breeds 

will also depend on the persistence of LD across Sanga breeds. If the persistence of LD across breeds 

is low, a higher number of SNPs would be necessary as a minimum for the low-density panel in 

imputation. 

 

Pre-imputation processing of genotypes 

Pre-imputation procedures such as quality control (QC), DNA strand checking and phasing aid in 

processing and preparing genotypic data to optimize imputation accuracy. QC is an important first 

step in any genomics study, and serves to remove uninformative samples and markers in preparation 

of downstream analyses. Sample-based QC will exclude individual animals with discordant sex 

information (when pedigree- versus SNP-based gender assignment disagree), that have high 

percentages of missing genotypes (have a low call rate), display outlying heterozygosity rates and 

show evidence of non-Mendelian inheritance (Li et al., 2009; Anderson et al., 2010). Marker-based 

QC involves excluding SNPs with low genotype call rate, those that deviate significantly from Hardy-

Weinberg equilibrium, those with low MAF, and those that have duplicated or unknown genomic 

positions (Anderson et al., 2010; Purfield et al., 2016). The stringency of the quality filters applied 

prior to imputation may influence the accuracy of imputed SNPs. Roshyara et al. (2014) proposed that 

for small to moderate datasets, less stringent or no QC procedures prior to imputation would be best 
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practice owing to the detrimental effect that stringent QC procedures might have on the quality of 

imputation for such datasets. More stringent QC procedures might also discard SNPs that could have 

been successfully imputed (Roshyara et al., 2014) or rare SNPs that are informative for the expression 

of traits of interest, such as those pertaining to the adaptive mechanisms of Sanga cattle. Purfield et al. 

(2016) for example investigated the effect of sample call rate as a QC parameter on imputation 

accuracy, and observed improved genotype and allele concordance rates with increasing animal call 

rate. Genotype concordance rates improved from 0.41 to 0.95 when animal call rates were <40% 

versus when call rates were between 95% and 99% (Purfield et al., 2016). These authors consequently 

proposed a cut-off of 85% as the lower limit for exclusion of animals based on call rate. QC 

procedures should therefore be optimized to retain high-quality data, but should not compromise the 

representation of SNPs in haplotype libraries used for imputation.  

The quality of genotype imputation depends on whether the allele calls that are being generated for 

the test population are from the same physical DNA strand in relation to the reference genome 

(Verma et al., 2014). Determining the DNA strand orientation is therefore an essential pre-processing 

step. SNP annotations also differ for datasets, and on the genotype platform and the genotype-calling 

algorithm (Verma et al., 2014). Illumina for example uses a TOP/BOT method, which designates top 

(TOP) and bottom (BOT) DNA strands based on the SNP and its flanking sequence, and calls alleles 

based on a generalized ‘Allele A’ and ‘Allele B’ nomenclature (Illumina, 2006). Genotypic 

information can also be provided in a forward/reverse orientation. Inconsistencies between genotypic 

data between the reference and test populations with regard to strand orientation and allele coding – 

that is, whether genotypes are coded as A/B or A/C/G/T format – can impede accurate imputation. 

Certain imputation software programs, such as BEAGLE (Browning & Browning, 2007), IMPUTE2 

(Howie et al., 2009), and PLINK (Purcell et al., 2007), have DNA strand checking utilities to 

determine strand orientation and to subsequently convert to a flipped strand orientation when 

necessary. During this procedure, alleles are converted to their complements based on observed 

alleles and the MAF and LD pattern that is observed for SNPs, and then removed when 

inconsistencies in these parameters cannot be resolved (Verma et al., 2014). The developers of 

SNPchiMp (Nicolazzi et al., 2015) have made bioinformatics tools available in the form of an 

application called SNPConvert, which can also assist researchers in standardizing allele coding and 

strand orientations for SNP genotypic data.  

Haplotype phasing involves determining from which of the parental chromosomes or haplotypes SNP 

alleles are derived or on which they are located (Browning & Browning, 2011). SNP genotypic data is 

generally unphased and for the purpose of imputation it is essential to know the origin and location, 

i.e. on which DNA strand, of each allele of a bi-allelic SNP (Browning & Browning, 2011). 

Accounting for unknown phase is, however, computationally intensive and can be time-consuming 

(Howie et al., 2012). Some imputation software such as BEAGLE (Browning & Browning, 2007), 

however, performs phasing as part of the imputation process. In other cases, third-party software such 

as SHAPEIT (O’Connell et al., 2014) is available for ‘pre-phasing’ genotypic data in a two-step 
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imputation approach. In the two-step approach, observed genotypes are firstly phased and then the 

phased genotypic information is used for imputation. Pre-phasing will be useful in speeding up 

computation time of the overall imputation process but the value thereof will depend on the accuracy 

with which haplotypes can be estimated (Howie et al., 2012). Nevertheless, haplotype phasing will 

become increasingly important in future efforts to impute to sequencing data and the methods 

currently available are comprehensively reviewed in Browning and Browning (2011). 

 

Population-specific parameters: minor allele frequency 

Minor allele frequency (MAF) can have significant effects on the reliability of imputation, and a 

number of authors have investigated the influence of varying levels of MAF on imputation accuracy 

(e.g. Hozé et al., 2013; Schrooten et al., 2014; Van Binsbergen et al., 2014). The effect of low MAF 

versus high MAF on imputation accuracy will be determined primarily by how ‘accuracy’ is defined, 

that is, whether it is quantified as a proportion of correctly imputed genotypes or as a correlation 

between observed and imputed genotypes. It has consistently been found that accuracy quantified as a 

proportion or percentage of correctly imputed genotypes is correlated negatively with increasing 

MAF, whereas the correlation-based measure shows a positive relationship. Investigating different 

maize lines, Hickey et al. (2012) observed decreasing percentage-based accuracy, as opposed to 

increasing correlation-based accuracy, for increasing levels of MAF. For proportion-based or 

percentage-based measures, it is debated that when the frequency of the minor allele is low, there is a 

greater likelihood that imputation algorithms will predict genotypes as homozygous for the major or 

common allele (Hickey et al., 2012). Conversely, high MAF creates more uncertainty, thereby 

deeming predictions less reliable and hence less accurate. The correlation-based measure is less 

dependent on allele frequency and assumes that low-MAF SNPs are not sufficiently segregating 

within the population, and therefore cannot be easily imputed based on shared haplotypes (Hickey et 

al., 2012). Similar relationships were observed in European cattle, where Ma et al. (2012) indicated a 

higher ‘correct rate’ for lower MAF versus lower correlations for lower MAF across six widely used 

imputation software programs. These authors also observed that software that incorporated pedigree 

information was more sensitive to variation in MAF (Ma et al., 2012). In pigs, Badke et al. (2013) 

indicated the same trends with regard to the relationship between accuracy measures and MAF, but 

found that proportion-based measures also improved with increasing MAF when inter-SNP 

differences in MAF are adjusted for.  

Factors pertaining to the experimental design of imputation studies may influence the effect size of 

MAF on imputation accuracy. These include the size of the reference population and the method of 

imputation implemented within software programs. Imputation accuracy can be improved, and error 

rate lowered (Huang et al., 2009), for rare SNP if a larger, more extensive reference population is 

used (Howie et al., 2009). Allele frequencies of rare SNP are typically overestimated when a small 

reference population is used (Howie et al., 2009). Possible adverse effects that low MAF might have 
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on imputation accuracy will therefore be gradually alleviated with increasing animal numbers and 

improved representation.  

MAF is essentially an indication of whether a SNP is segregating within a given population and 

therefore the composition of the reference population plays an important role as well. Boichard et al. 

(2012) indicated higher MAF, and therefore higher imputation accuracy, for cattle breeds that were 

used to design the bead chip under study. In humans, Howie et al. (2011) observed that although 

population-specific reference panels tend to outperform HapMap panels for imputation accuracy, 

reference panels that are ‘ancestrally inclusive’ and non-specific, may capture poorly represented low-

frequency alleles. This would be important when genotypes need to be imputed for composite or 

crossbreeds of uncertain or unknown genetic composition such as the Drakensberger Sanga breed. 

Alleles that occur in low frequencies are not necessarily presented in reference haplotypes and 

therefore certain imputation software may have difficulty deriving the correct allele, which would 

affect the reliability of accuracy estimates directly (Schrooten et al., 2014). Software programs differ 

in their ability to detect copies of the minor allele. Howie et al. (2009) showed that some methods are 

more prone to erroneous minor allele calls. Certain software programs are better equipped to deal with 

low-frequency SNPs. The use of the appropriate method to optimize imputation for non-commercial 

breeds, which might be disadvantaged by ascertainment bias, would be an important consideration.  

Lower average MAF has been observed for Sanga versus exotic breeds, verifying the existence of 

ascertainment bias (Qwabe et al., 2013). Furthermore, higher MAF was observed for a Sanga 

crossbreed (Angus x Nguni) than for a ‘pure’ Sanga breed (Nguni) (Qwabe et al., 2013). The use of a 

commercial bead chip such as the Illumina bovine SNP50 might therefore be more useful for 

crossbreeds that carry taurine haplotypes and therefore display higher MAF for the SNPs that were 

discovered for the chip. In imputation for instance this will be useful only when these haplotypes are 

represented by an appropriate reference sample that is, either of the component breeds or high-impact 

animals from the crossbred population. Investigating the impact of MAF on imputation accuracy is 

important not only because of its direct impact, but also because of the influence it may have on other 

factors such as LD that determine imputation accuracy. Incorporating imputation as a genomic 

strategy will therefore require a complete understanding of the complex interplay between various 

population-specific parameters. Low-MAF SNPs have been observed to underestimate r-squared (r2) 

based LD estimates (e.g. Khatkar et al., 2008; Qanbari et al., 2010), and LD has been shown to 

increase with increasing MAF for Sanga breeds (e.g. Makina et al., 2015a; Lashmar et al., 2018). In 

addition to parameters that characterize individual SNPs, it is important to look at the genomic 

relationship between SNPs. 

 

Population-specific parameters: linkage disequilibrium and effective population size 

Among the factors that have an influence of imputation accuracy, LD is probably the most important 

and has the potential to be limiting to achievable accuracy. The importance of LD, as a determining 

factor of imputation accuracy, has previously been shown where the influence of MAF was 
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diminished in regions of high LD (Pei et al., 2008). The ability to impute a given genotype is affected 

directly by the strength of local LD in the genomic region in which that SNP is located (Hickey et al., 

2012). Consensus has been that stronger LD improves imputation accuracy. Imputation algorithms are 

able to more accurately identify the haplotypes that are present on each gamete for individuals that are 

genotyped with a low-density panel, when LD is high (Hickey et al., 2012). Low inter-SNP LD is 

generally characteristic of populations with large effective population sizes (Bovine HapMap 

Consortium, 2009). This has been shown to impede accurate imputation (Pausch et al., 2013). If LD is 

weak and does not persist over long genomic segments, finding key ancestors that are representative 

of the breed becomes difficult. Weak persistence of phase and LD across breeds also limits the 

application of multi-breed imputation. For populations that display weak LD, however, algorithms 

have been proposed to simulate LD specifically for association studies (Yuan et al., 2011). This 

presents an opportunity to test imputation accuracy on different levels of LD. 

Makina et al. (2015a) revealed LD of r2≥0.2 to extend to an inter-SNP distance of 100 kb in the 

Afrikaner breed, while the same level of LD extended only to a distance range of 10-20 kb for other 

Sanga breeds such as the Drakensberger and Nguni. This corresponds to the relative sizes of these 

breeds in the national beef herd of South Africa – the Afrikaner is numerically the smallest of the 

Sanga breeds. Given a standard r2 value of 0.2, which has been proposed as the ideal r2 for GS and 

association studies, the Drakensberger and Nguni breeds would require approximately 150 000 SNPs, 

as opposed to 30 000 SNPs for the Afrikaner, for within-breed analysis (Makina et al., 2015a). The 

utility of the 150K GGP bovine bead chip therefore needs consideration for the Drakensberger and 

Nguni breeds.  

The Ne of a population gives an indication of the evolution of a breed and can assist in understanding 

the genetic architecture that underlies traits (Falconer & Mackay, 1996). This parameter essentially 

gives an indication of the number of animals within a breed that contribute to the genetic makeup of 

the national herd. The Ne is dependent on the interplay between LD and the recombination distance 

between SNPs, in which the LD across a greater distance will be indicative of more recent Ne and LD 

across a shorter distance will indicate Ne in the more distant past or ancestral Ne (Barbato et al., 

2015). SNPs would be more accurately imputed for breeds with smaller Ne, which display higher 

within-population LD and therefore share larger haplotypes.  

Makina et al. (2015a) observed Ne estimates of 41, 87 and 95 for Afrikaner, Drakensberger and 

Nguni breeds, respectively. These estimates were higher than those observed for exotic breeds such as 

Angus and Holstein. The discrepancy can be expected, because exotic beef breeds were generally 

subjected to intense artificial selection much earlier, and more consistently, than local commercial 

breeds. In comparison with dairy breeds, beef breeds are extensively managed, and breeding practices 

rely considerably less on reproductive technologies such as AI and MOET, and generally rely on 

natural mating. According to SA Stud Book’s 2016 annual report, 31% of the SA Angus births 

resulted from AI, while only 0.5%, 8% and 1.6% of Afrikaner, Drakensberger and Nguni calves were 

born from this technology (SA Stud Book, 2016). The variation in Ne estimates between Sanga 
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breeds can be explained by the higher level of admixture observed within Drakensberger and Nguni 

breeds in comparison with the Afrikaner breed (Makina et al., 2014). In admixed genomes, a higher 

number of small haplotypes will be shared, as opposed to a smaller number of long genomic 

segments. The Afrikaner breed has experienced a significant decline in its population size over the 

past decades. This is postulated to be a result of increased utilization of the breed to develop 

composites, causing a small number of ‘pure’ Afrikaner animals to remain (Pienaar et al., 2014). It is 

important to consider Ne within the context of the actual or census population size within the national 

herd. The Afrikaner breed went from being the most abundant indigenous breed in the 1970s (Pienaar 

et al., 2014) to the numerically smallest Sanga breed, consisting of only 42 herds and approximately 7 

300 animals nationwide (SA Stud Book, 2016). The SA Bonsmara for example is currently the most 

numerous indigenous breed in South Africa with numbers of upwards of 120 000 animals. However, 

it has an estimated Ne of 77 (Makina et al., 2015a). On the contrary, the national Drakensberger herd 

is approximately a tenth of the size, with an estimated Ne of 87. In the national herd of South Africa, 

it might therefore in theory be easier to sample animals that contribute to the population-wide 

genomic profile of the Drakensberger breed, and thereby achieve higher imputation accuracies, if 

high-impact animals can be identified and records are complete and accurate. 

 

The utility of imputed SNPs in improving genomic applications 

 

Genome-wide association studies 

Genome-wide association studies (GWAS) aim to locate QTL or genes responsible for traits of 

economic interest. These studies use association signals between phenotypic and genotypic (genome-

wide SNPs) information to guide researchers towards the location(s) on the genome responsible for 

expressing traits of interest (Hayes & Goddard, 2010). These candidate regions can then be used as a 

reference to search for causative SNPs that explain a proportion of the variation that is seen in that 

trait (Hayes & Goddard, 2010). This methodology may have significant implications for cattle, 

because it can be used to better understand the genetic mechanisms underlying economically 

important traits, such as those involved in the adaptability of Sanga cattle. It can also be a diagnostic 

tool to identify SNPs that are associated with cattle disorders, which can then be used to select against 

animals that carry deleterious alleles. The utility of SNPs that are identified by GWAS, however, 

needs to be verified in an independent set of animals to determine their validity and reproducibility. 

After verification, these SNPs may then be included in commercial or population-specific and 

production-specific SNP panels. These SNPs, however, may still not be informative for the entire 

spectrum of cattle breeds if they are monomorphic and both alleles are not segregating within a 

population. 

It has been proposed that most traits follow a trend of ‘common disease-common SNP’. However, 

common SNPs have been shown to limit influence on complex diseases in humans (Pritchard & Cox, 

2002). The association signals that are observed for common SNPs may be synthetic, meaning that 
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these signals might not be influenced by common SNPs, but rather by rare SNPs that are in strong LD 

with common SNPs (Pritchard & Cox, 2002). Rare SNPs could be causative variants, but might not 

be – and in most cases are not – included on the bead chips that are commonly used to perform 

GWAS. The association of rare SNPs with common diseases or phenotypes is difficult to capture 

owing to poor statistical power, and generally requires genotyping of large numbers of animals. The 

alternative is to capture these SNPs directly by using higher density SNP panels or through whole-

genome sequencing efforts. Re-sequencing of whole genomes, which is aimed at discovering novel 

SNPs, is not always feasible because of the requirement for large datasets of sequenced animals and 

the relative cost of sequencing per animal (Van Binsbergen et al., 2014). Methods such as genotyping 

by sequencing (GBS), which uses restriction enzymes to target specific segments of the genome, have 

been proposed to reduce sequencing costs and complexity. Genotyping by sequencing, however, has 

the limitation of producing high volumes of missing data, owing to the presence of variation in 

restriction sites, resulting from factors such as genetic divergence and low sequence coverage 

(Brouard et al., 2017). This presents the opportunity for the utilization of methods such as imputation 

to fill the missing data gaps.  

The main purpose of imputation for GWAS is to boost the number of SNPs that can be tested for 

association and hence improve the power of the study (Marchini & Howie, 2010). Because animals 

can be genotyped on lower density panels, which can then be imputed to SNP densities that equated to 

a high-density panel or GBS and sequencing data, more animals can be affordably genotyped and 

included for analyses. Imputation has proved to increase power by up to 10% for GWAS, with rare 

SNPs being proposed to gain the most from this method (Marchini et al., 2007; Spencer et al., 2009; 

Marchini & Howie, 2010). Furthermore, after signals of association have identified certain genomic 

regions of interest, imputation can assist in fine mapping these regions, which will improve the 

chances of identifying the causal SNP or SNPs directly (Marchini & Howie, 2010). In the past, in 

many cases GWAS results were not replicable because the cost of SNP genotyping limited sample 

size, which limits comparability, and also owing to the availability of SNP data from different panels. 

Imputation, however, can be utilized to standardize the number of SNPs from different studies by 

imputing to a common set of SNPs to allow meta-analysis at each given SNP locus (Marchini & 

Howie, 2010). The combination of multiple datasets aims to reduce the number of false positive 

associations (Begum et al., 2012). Meta-analysis has been applied successfully, and has resulted in the 

identification of new loci of interest that had not been identified previously in individual studies 

(Marchini & Howie, 2010). These studies have been limited for cattle with only few meta-analyses 

performed for beef (e.g. Minozzi et al., 2012; Bolormaa et al., 2014). All of these studies, however, 

have identified novel genomic regions of interest when using merged data sets. The only way to truly 

capture novel regions of interest or novel SNPs, however, is through genome re-sequencing. 

A number of studies have been published that investigated the utility of imputed sequence variants for 

cattle (e.g. Van Binsbergen et al., 2014; Frischknecht et al., 2017; Pausch et al., 2017; Bernardes et 

al., 2018). Imputation to sequencing data has been simplified by the initiation of the 1 000 Bull 
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Genomes Project in 2012, which provides a database of whole-genome sequence information that is 

made available to research groups that are interested in imputation towards GWAS and GS 

(Daetwyler et al., 2014). Sequencing variants have largely been imputed from Illumina’s Bovine HD 

SNP panel. Imputation accuracies are compromised when imputing from lower density SNP panels 

such as the SNP50 panel, and hence a two-step procedure has been proposed, imputing first from 

SNP50 to HD, and subsequently from imputed HD to sequencing data (Bernardes et al., 2018). 

Imputation to GBS data, which achieved up to 94% accuracy estimates, has also been tested in for 

example Canadian dairy cattle (Brouard et al., 2017). Re-sequencing data that was generated for 

Sanga breeds from studies such as Zwane (2017), which aimed to identify novel SNPs, provides a 

valuable resource for future South African studies that aim to utilize imputed sequence variants in 

GWAS and GS experiments. 

 

Cost-effective genomic selection  

Genomic selection, a concept that was first proposed by Meuwissen et al. (2001), is a method that 

incorporates dense SNP genotypes to estimate GEBVs (Hayes et al., 2009). A reference population 

with known SNP information and adequate performance and pedigree data is used to compile a 

prediction equation for the estimation of GEBVs in selection candidates (Meuwissen et al., 2001). GS 

essentially captures all locus effects, regardless of size, that contribute to the genetic variation for a 

trait of interest by summing all estimated effects across the entire genome into a GEBV (Hayes et al., 

2009). These GEBVs are then used to aid selection decisions. The various models whereby GEBVs 

are estimated have been discussed in detail in previous literature (e.g. Goddard & Hayes, 2007; 

Goddard et al., 2010; Van Marle-Köster et al., 2013). 

The four main driving factors that influence GEBV accuracy for a population are i) the population-

wide LD; ii) the availability and completeness of genotypic and phenotypic data for the reference 

population; iii) the heritability of the trait in question; and iv) the distribution of QTL effects (Hayes 

et al., 2009). The latter two factors are subject to the trait being studied. The decay of LD with 

increasing inter-marker distance has been reported widely, and specifically for non-exotic and 

admixed populations (e.g. Lashmar et al., 2018; Edea et al., 2015; Mokry et al., 2014). Owing to the 

costs of acquiring high-density SNP genotypes and whole-genome sequencing data, especially for 

researchers in developing countries, improving SNP densities through genotyping and sequencing 

more SNPs is not economically feasible. Genotype imputation, however, will aid in cost-effectively 

improving SNP densities by genotyping animals with low-density panels and imputing to higher-

density information. This would enable more efficient use of funds and genotyping more animals. 

Cost efficient genotyping will aid in the procurement of the rule of thumb 1 000 animals required for 

accurate GS (Meuwissen et al., 2001) and thereby availing this technology for possibly all Sanga 

breeds. The availability of sufficient performance and pedigree records, however, might then become 

the limiting factor. For this reason, the implementation of GS was first focused on Sanga breeds with 

good histories of animal recording such as the SA Bonsmara.  
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Developing a working pipeline of cost-effective GS for other Sanga breeds will require a low-density 

panel, consisting of Sanga-informative SNPs, which is optimized for accurate imputation. SNPs to be 

included on such a low-density panel will need to be selected from a pool of SNPs that are already 

included on high-density panels or have been sequenced for Sanga breeds, based on certain marker 

characteristics. These characteristics include the genome distribution (that is, whether SNPs are 

evenly spaced across the genome), the MAF (that is, whether SNPs are segregating within the 

population) and the LD pattern between SNPs. Methods that combine these attributes, such as the 

Wellman SNP selection method (Wellman et al., 2013), and methods that incorporate machine-

learning algorithms, such as feature similarity (Phuong et al., 2006), have been used to select 

informative SNPs for Irish cattle (Judge et al., 2016). Wu et al. (2016) also developed a multi-

objective local optimization (MOLO) method for SNP selection, which uses a function that adjusts for 

gaps in the genomic data and incorporates Shannon entropy and other attributes, such as MAF and 

distribution, to select optimal SNPs. These methods need to be tested and validated for Sanga cattle to 

identify the optimal way of selecting Sanga-informative SNPs. Once the optimal SNP selection 

method and the optimal density (i.e. the minimum number of SNPs necessary from which to impute) 

have been identified, a low-density panel can be developed. This panel would serve as a backbone for 

using imputed SNPs in GS, which would allow the estimation of GEBVs at a reduced cost. 

The utility of imputed genotypes for GEBV estimation has been studied for beef cattle (e.g. Berry & 

Kearney, 2011; Cleveland et al., 2011; Mulder et al., 2012). Mulder et al. (2012) confirmed the 

feasibility of direct genomic value (DGV) estimation using low density bead chips, provided that 

these bead chips included at least 3 000 SNPs. Cleveland et al. (2011) observed some loss in the 

accuracy of GEBVs using imputed SNPs, but still retrieved accuracy estimates that were higher than 

those acquired by traditional BLUP. Berry & Kearney (2011) observed a correlation of 97% between 

DGVs estimated from true genotypes versus imputed ones across a set of 15 functional traits. The 

correlations, however, depend on the availability of records for a specific trait and hence the reference 

population size that is used to estimate the SNP effects for that trait (Berry & Kearney, 2011). If more 

records are available, which is usually the case for easy-to-measure traits (e.g. weaning weight), then 

more animals can be included in the reference sample and the higher the DGV correlation from true 

genotypes versus imputed ones. For certain traits (e.g. direct and maternal calving difficulty), low 

DGV correlations are observed, regardless of relatively large reference population size. This 

phenomenon may be attributed to large QTLs being responsible for the expression of these traits 

(Berry & Kearney, 2011). Rutkoski et al. (2013) observed that the most accurate method of 

imputation was not necessarily always responsible for the most accurate GEBV estimation. This was 

ascribed to non-random imputations errors. These errors can be indicative of possible genetic 

relationships in the GS model if they are shared between related animals (Weigel et al., 2010; 

Rutkoski et al., 2013). Small numbers of wrongly imputed SNPs, however, are expected to have a 

negligible effect on GEBV accuracy since GS estimates all SNP effects simultaneously, as opposed to 

the SNP-by-SNPs approach that is followed in GWAS (Badke et al., 2013). Nevertheless, imputation 
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as a methodology needs to be optimized to minimize, as far as possible, the effect of imputation 

variability on GS endeavours, especially for breeds with heterogeneous genomes such as those that 

belong to the Sanga subspecies. 

 

Conclusion  

The promotion of locally adapted Sanga breeds relies on the utilization of genomics in breed 

characterization and improvement. Imputation provides a cost-saving strategy for applying genomic 

methodologies such as GWAS and GS that will aid in breed improvement. Implementation of 

imputation as a routine genomic strategy, however, relies on its accuracy and hence reliability, which 

is influenced by many variables. The incorporation of imputation would therefore require 

optimization in Sanga breeds. Once a working pipeline has been set up for utilization, this 

methodology would hold many advantages for downstream genomic applications that aim to advance 

indigenous South African beef breeds. 
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Abstract 

The SA Drakensberger, as a Sanga beef breed, is a composite of Bos taurus and Bos indicus 

subspecies. Variation within admixed genomes will influence downstream applications such as 

imputation and genomic selection (GS). Being an indigenous breed with unique characteristics, such 

as the black coat, within-breed selection of the SA Drakensberger has focused on maintaining breed 

purity, which furthermore predisposes the breed to inbreeding. This study aimed to primarily identify 

possible patterns of variation in population-specific parameters such as minor allele frequency (MAF) 

and linkage disequilibrium (LD) that might influence the accuracy of future genomic applications. 

Second, the study investigated possible patterns of genomic uniformity using runs of homozygosity 

(ROH) as a measure of inbreeding. Average genome-wide MAF was 0.26 with chromosome-specific 

MAF ranging from 0.24 (Bos Taurus Autosome; BTA14) to 0.28 (BTA21). The proportion of low-

MAF (<5%) SNPs supported average estimates, ranging from 6.6% for BTA23 to 16.0% for BTA14. 

The r2 measure of LD was 0.14, 0.17 and 0.22, respectively, when SNPs separated by ≤1Mb, ≤0.1Mb 

and ≤0.05Mb were considered. LD was generally low, ranging from r2=0.11 (BTA28) to r2=0.17 

(BTA14) for SNPs separated by ≤1Mb and r2=0.20 extended only up to <30kb. LD was weaker 

between SNP pairs including low-MAF SNPs. The ROH identified were predominantly shorter in 

length, with more than 50% (54.5%) of ROH falling within the <4Mb length interval. Consensus 

ROH segments were identified and the most prevalent of these occurred on BTA14 and was identified 

in ~23% of the sampled population. All coefficients of inbreeding indicated low levels of inbreeding, 

which corresponded to 3% (FPED), 1% (FSNP) and 7% (FROH>1Mb). Correlations of FPED with FSNP and 

FROH>1Mb were moderate equating to values of ~0.63 and ~0.64 (P<0.001), respectively. Such 

moderate correlations could be attributed to the incompleteness of pedigree records. The direct impact 

of MAF, LD and relatedness on the accuracy of within-breed genetic improvement strategies and its 

accompanying methodologies, such as imputation, may influence how different chromosomes are 

treated or accounted for in future genomic endeavors. 

__________________________________________________________________________________________ 

Keyword(s): Cattle, genome variation, runs of homozygosity (ROH), single-nucleotide 

polymorphism (SNP), within-breed diversity 

 

1. Introduction  

The genomics era has brought into existence many tools to aid in the genetic characterization and 

improvement of livestock species. High-throughput technologies such as next-generation sequencing 

(NGS) and SNP genotyping provide platforms for the identification and utilization of informative 

SNP markers in various methodologies such as genome-wide association studies (GWAS) and 

genomic selection (GS). For beef cattle, efforts to localize genomic regions of interest have been 

focused on economically important traits pertaining to growth, feed efficiency as well as carcass and 

meat quality (Sharmaa et al., 2015). Genomic evaluations in the form of genomic breeding values 

(GEBVs), are furthermore already being implemented, or at least researched, for beef cattle in the 
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Americas, Europe and Australasia (Berry et al., 2016). Genetic studies implementing these genomic 

techniques are, however, scarce in Africa. This is due in part to the complexity of beef industries in 

most African countries, such as South Africa (van Marle-Köster et al., 2013), as well as the myriad of 

indigenous, non-descript beef breeds of uncertain genomic architecture existing across the continent.  

A main limitation is, however, the inability to compete financially. 

The economic status of a country is a main driver of its inclination to adopt genomic technologies 

(Dekkers & Hospital, 2002). The relative scale of genomics-based studies, with regards to the number 

of samples and markers required to draw meaningful conclusions, is a major attributor to the absence 

of studies of this caliber in the developing world. This highlights the need to identify efficient 

strategies to alleviate the financial burden involved in genotyping many animals for high densities of 

SNP markers. These strategies can include the establishment of large-scale collaborations, in the form 

of consortia, or the implementation of statistical methodologies such as genotype imputation. 

Imputation is primarily a statistical strategy to fulfill incomplete data or generate higher volumes of 

data by means of predictions that are based on probabilistic methodology (Marchini et al., 2007). This 

methodology presents an ideal opportunity for application in adapted and economically important 

local breeds. The accuracy of predictions that can be achieved by this method, however, is influenced 

by genomic characteristics that are not fully understood for African breeds or breed-groups such as 

the Sanga sub-species.  

Sanga cattle (Bos taurus africanus) are indigenous to southern Africa (Schoeman, 1989) and are 

presumably taurine-indicine hybrids (Grigson, 1991). This was confirmed by initial genome-wide 

SNP data suggesting that the genome of Sanga cattle has selection signatures of both subspecies 

(Makina et al., 2016). Population genetic analyses indicate that whereas a breed such as the Afrikaner 

shows strong divergence from its ancestors, Bonsmara and SA Drakensberger genomes are more 

complex. The latter breeds have an admixture of European- and African taurine as well as indicine 

footprints (Makina et al., 2016). It is common knowledge that the Bonsmara is a composite breed that 

resulted from experimental crosses (Bonsma, 1980); however, admixture in the SA Drakensberger 

genome was probably introduced unintentionally (Makina et al., 2016).  

The modern SA Drakensberger is a medium-framed beef cattle breed with a sleek, black coat (Rege & 

Tawah, 1999). One of the most important qualities of this breed is its ability to adapt and perfom 

consistantly under even low quality grazing conditions (Bisschoff & Lotriet, 2013). The genomic 

makeup of this breed is largely unknown with regards to proportions of the genome descended from 

taurine- or indicine ancestors and proportions that are entirely unique. Bolormaa et al. (2011) showed 

that the origin of chromosomal segments, whether from taurine or indicine descent, has varying 

effects on traits of economic importance. Genomic heterogeneity will therefore impact on 

downstream applications for composite breeds when commercial SNP chips are used, as genomic 

segments with divergent ancestral origins will have to be treated differently to ensure reliability of 

these applications.    
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Identifying inter-chromosomal differences in SNPs, whether markers are segregating within a 

population or whether there are significant correlations between markers, might aid in how individual 

chromosomes are dealt with in downstream processes. These aspects would be reflected by 

differences in population-specific parameters such as MAF and inter-SNP LD. SNPs with low MAF, 

for example, have been shown to negatively influence imputation accuracy, as alleles occurring in low 

frequencies are not necessarily presented in the haplotypes identified (Schrooten et al., 2014). 

Ascertainment bias disadvantages indigenous, non-discovery populations and currently available 

genotyping platforms, such as the Bovine SNP50 bead chip, are expected to include SNPs displaying 

low MAF in these populations. Cattle populations in Africa furthermore seem to follow a trend of 

high haplotype diversity and low LD (Mwai et al., 2015). This needs to be taken into consideration 

given a general consensus that stronger LD improves imputation accuracy (e.g. Pei et al., 2008; 

Hickey et al., 2012).  

Genomic uniformity becomes detectable in the form of long stretches of consecutively homozygous 

marker genotypes referred to as runs of homozygosity (ROH) (Falconer & Mackay, 1996; Purfield et 

al., 2012). These regions can be the result of consanguineous mating in the distant or recent past and, 

alternatively, long-term artificial selection. The number of breeding animals within the SA 

Drakensberger breed is gradually declining (Abin et al., 2016), with increasing utilization of sires 

across herds. Based on available pedigree information, the level of inbreeding has steadily increased 

since the year 2000 albeit lower than the previously suggested 0.5-1% cut-off per generation (Abin et 

al., 2016). It is therefore expected that their genomes harbour some signatures of inbreeding, which if 

prevalent will also impact on imputation and other applications. Imputation accuracy will increase 

with closer within-breed genetic relationships thereby improving the chances of encountering shared 

haplotypes from common ancestors (Pei et al., 2008). Coupled to this and given the prioritization of 

conserving local animal genetic resources (AnGR), knowledge of inbreeding can further aid in 

effectively managing breeding practices to prevent inbreeding depression. 

This study aimed to investigate diversity within the SA Drakensberger genome. The main objective 

was to quantify inter-chromosomal variation using genetic parameters such as MAF and inter-SNP 

LD. Knowledge of these metrics may help underpin appropriate imputation strategies in the future. 

The study furthermore investigated chromosomes harbouring uniformly homozygous regions and 

used ROH to determine the level of genomic inbreeding within the SA Drakensberger breed. 

Inferences were made on the implications of these breed parameters on genetic diversity and possible 

downstream genomic strategies. 

 

2. Materials and methods 

 

2.1 Animals sampled 

A total of 620 SA Drakensberger cattle were sampled, consisting of 184 bulls and 436 cows. Samples 

formed part of a cohort that was specifically selected to include half-sib families and family trios for 
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imputation. The sample constituted animals ranging in birth date from 1982 to 2016 and originated 

from approximately 40 breeders. All breeders, and therefore animals, included are registered with 

South African Stud Book (SA Stud Book). Ethical clearance was obtained from the University of 

Pretoria’s Faculty of Natural and Agricultural Science (EC151106-024) and written consent was 

given by the Drakensberger Breeders’ Society to perform this study. Pedigree data up to five 

generations deep is currently ~65% and ~30% complete, respectively, for animals born within- and 

longer than 25 years ago (Abin, 2014).  

 

2.2 Genotyping and quality control 

A cohort of 414 SA Drakensberger samples was genotyped at the Agricultural Research Council’s 

Biotechnology Platform (ARC-BTP) as part of the Beef Genomics Project (BGP) currently underway 

in SA. Hair and semen samples were received from individual breeders. DNA was isolated and SNP 

genotypes generated with the GeneSeek® Genomic Profiler (GGP) 150K-bead chip according to the 

standard infinium protocol. Hair samples for the remaining animals (206 animals) were sent to 

GeneSeek® (Lincoln, USA) where DNA isolation and genotyping were performed according to 

standard protocols. Samples and markers were subjected to standard quality control (QC) procedures 

using PLINK (Purcell et al., 2007). Individuals with high proportions of uncalled genotypes (call 

rate<90%) were filtered from analysis. Only autosomal, mapped (UMD 3.1 bovine reference genome) 

markers were considered. Of these markers, SNPs that displayed low call rates (≤95%) and low MAF 

(<1%) were removed from further analysis. SNPs with duplicated genomic positions were also 

excluded. After these QC procedures, 606 animals and 120 218 SNPs remained and were used for 

downstream analyses. To minimize the effect of shared genetic structure on certain analyses, such as 

principal component analysis (PCA) and ROH estimation, SNPs were additionally filtered based on 

high LD, removing SNP in LD exceeding r2=0.5 with another SNP. The LD-pruned (LDP) data set 

consisted of 76 581 SNPs. 

 

2.3 Genetic relatedness between animals 

Relatedness between sampled animals was assessed with PCA as implemented in GCTA software 

(Genome-wide Complex Trait Analysis; Yang et al., 2011). A genomic relationship matrix (GRM) 

was constructed based on LDP data and used to estimate eigenvectors and -values. 

 

2.4 Inter-chromosomal variation in SNP parameters 

The MAF per SNP was estimated using PLINK software and incorporated all autosomal SNPs with 

call rates above 95%. No other QC procedures, except for filtering on call rates, were performed 

before MAF estimation. Summary statistics per chromosome were calculated using R (R 

Development Core Team, 2013).  

The r2 measure, as proposed by Hill and Robertson (1968), was used to quantify LD and was 

calculated using the following formula implemented in PLINK software; 
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𝑟2(𝑝𝑎 , 𝑝𝑏 , 𝑝𝑎𝑏) =
(𝑝𝑎𝑏 −  𝑝𝑎𝑝𝑏)2

𝑝𝑎(1 − 𝑝𝑎)𝑝𝑏(1 − 𝑝𝑏)
 , 

[1] 

 

where pab represented the frequency of the haplotype consisting of 2 SNPs; pa and pb represented the 

frequency of allele a at the first locus and allele b at the second locus, respectively. In PLINK 

software, no restrictions were set for the minimum r2 (--ld-window-r2 0) and inter-SNP distance (--ld-

window-kb 99999) allowed for LD estimation and this enabled all possible pairwise comparisons. 

Mean r2 values were then calculated for SNP pairs separated by ≤0.05Mb, ≤0.1Mb and ≤1Mb. 

Averages were also calculated for bins (10kb bins, 0-100kb; 100kb bins, 100kb-1Mb; 1Mb bins, 1-

4Mb) to observe LD decay. The effect of MAF on LD was furthermore investigated by estimating the 

difference in the extent of LD decay when MAF-filtering thresholds (<1%, <5%, <10% and <20%) 

were adjusted. Post-PLINK calculations were performed using custom scripts.  

 

2.5 Runs of homozygosity 

Contiguous homozygous segments were called using PLINK’s sliding window approach. This 

analysis was performed on the full data set of 606 animals after sample filtering procedures, 

considering independent, LD-filtered SNPs. Segments were called as ROH if: 1) it was a minimum of 

1Mb in length; 2) it included no more than one heterozygous SNP, but included up to two missing 

SNPs; 3) had a minimum SNP density of one SNP every 75kb; and 4) the maximum gap between 

consecutive SNPs was no longer than 1Mb. The thresholds for these parameters were based on 

PLINK defaults and consensus with previous ROH studies on cattle in order to allow comparison. The 

minimum number of consecutive homozygous SNPs that constituted a ROH segment was calculated 

using the following formula as implemented by Purfield et al. (2012), 

 

𝑙 =  
𝑙𝑜𝑔𝑒

𝛼
𝑛𝑠. 𝑛𝑖

𝑙𝑜𝑔𝑒(1 − ℎ𝑒𝑡̅̅̅̅̅)
 

[2] 

 

where ns and ni were the number of SNPs and individuals, respectively, α represented the proportion 

of false-positive identifications (set to 0.05) and ℎ𝑒𝑡̅̅̅̅̅ was the average SNP heterozygosity. Using the 

formula the minimum number of SNPs constituting a ROH was set to 50. 

 

2.5 Inbreeding coefficients 

Three methods were utilized to estimate inbreeding: 1) FPED represented a pedigree-derived estimate, 

2) FSNP represented a SNP-by-SNP excess in homozygosity and 3) FROH represented genome-wide 

ROH coverage. FPED per animal was estimated by SA Stud Book, which the SA Drakensberger is 
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registered with, and forms part of standard breed evaluations (SA Stud Book). All available pedigree 

information was utilized. FSNP, and heterozygosity, was calculated on LDP data in PLINK. The ROH-

based inbreeding coefficient (FROH) was estimated per individual as follows, 

 

𝐹𝑅𝑂𝐻 =
𝑆𝑅𝑂𝐻

𝐿𝐺𝐸𝑁
 

[3] 

 

where SROH  was the summed length of ROH segments for an individual and LGEN represented the total 

length of the autosomal genome covered by the SNPs on the specific bead chip. Box plots were 

generated for each inbreeding coefficient using R. Pearson correlations between coefficients were also 

calculated using R.  

 

3. Results 

 

3.1 Genomic relationships between individuals within the breed 

Within breed genomic relationships were estimated from a set of LDP SNPs and the resulting 

eigenvectors (EVs) did not indicate separation into different clusters, but rather one cluster with 

dispersion. Correlations between the a) first- and second as well as b) first- and third PCs are 

illustrated in Figure 3.1.  

 

 

Figure 3.1 Principal component analysis (PCA) of genetic relatedness between SA Drakensberger 

animals sampled. 

 

PC1 (EV range: -0.055-0.103), PC2 (EV range: -0.160-0.108) and PC3 (EV range: -0.117-0.128) 

accounted for 46.3%, 28.0% and 25.7% of the variation estimated for the first three principal 

components. No outliers were identified for EVs estimated for the first PC, however, 59 and 49 

outliers were identified based on EVs estimated for PC2 and PC3, respectively.  
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3.2 Population-specific SNP parameters 

The mean MAF across all autosomes was 0.26±0.14 (median: 0.27) with BTA14 and BTA21 having 

the lowest (0.24) and highest (0.28) mean MAF, respectively. The highest percentage of SNP 

displaying low MAF (less than 5%) was observed for BTA14 (16.0%), while BTA23 had the smallest 

percentage of low-MAF SNPs (6.6%). This was consistent with the percentage monomorphic SNPs 

observed (BTA14=1.3%; BTA23=0.3%). Across all autosomal markers with sufficient call rates (123 

505 SNPs) there were only 0.6%, 2.6% and 9.3% SNPs with MAF of 0%, <1% and <5%, 

respectively. MAF-related trends are illustrated in Figure 3.2.  

 

 
Figure 3.2 Variation in SNP minor allele frequency (MAF) between autosomal chromosomes. 

 

After QC, the mean genome-wide SNP density was 1 SNP/20.9kb and ranged, per chromosome, from 

1 SNP/17.9kb (BTA14) to 1 SNP/22.1kb (BTA8). Five autosomes harboured outlying high SNP 

densities namely BTA6, 7, 14, 20 and 24. Considering SNP pairs separated by ≤1Mb, r2 ranged from 

0.11 (BTA28) to 0.17 (BTA14) with BTA14 identified as displaying outlying high LD. Mean r2 for 

shorter inter-SNP distances of up to 100kb and 50kb, respectively, ranged from 0.14 (BTA28) to 0.22 

(BTA14) and 0.17 (BTA28) to 0.28 (BTA14). Inter-chromosomal SNP density and LD statistics are 

depicted in Figure 3.3. 
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Figure 3.3 Variation in SNP density- and LD between autosomal chromosomes. 

 

On average, the proportion of SNP pairs showing LD of r2≥0.2 increased with 7.1% when only high-

MAF SNP (>20%) were included as opposed to lower-MAF SNPs (>1%). Including SNPs with 

MAF>1%, high LD persisted between SNP pairs <30kb apart. Estimated r2 of 0.32, 0.24 and 0.21 

were observed for SNPs separated by 0-10kb, 10-20kb and 20-30kb, respectively. When only high-

MAF (>20%) SNPs were included, LD extended up to approximately double the distance (<60kb). 

LD decay is illustrated in Figure 3.4. 

 

 

Figure 3.4 The decay of LD with increasing inter-SNP distances. 
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3.3 ROH analysis 

The mean number of ROH (nROH) per animal was ~33 segments (min=0; max=152). The majority of 

these segments were between 2-4Mb in length; approximately 18.8%, 35.7%, 25.6%, 14.6% and 5.2% 

of the segments belonged to the 0-2Mb, 2-4Mb, 4-8Mb, 8-16Mb and >16Mb length categories. Long 

ROH (>16Mb) were only identified in ~62% of the population and these animals on average had only 

~3 of these long segments.  On average, the segments identified were composed of 171 SNPs 

(min=50 SNPs; max=2735 SNPs); the mean distance between homozygous SNPs was 32.78kb 

(min=11.22kb; max=73kb). Specific clusters of consecutively homozygous SNPs were conserved 

within varying proportions of the sampled population, and this is illustrated in Figure 3.5.  

 

 

Figure 3.5 Consensus runs of homozygosity (cROH) within the Drakensberger population. 

 

Consensus ROH were on average 86.86kb in length and were composed of ~4 SNPs. BTA6 and 

BTA28 harbored the highest (331) and lowest (115) number of consensus ROH segments. The largest 

consensus ROH segment was located on BTA15 and was 1723.83kb in length, consisting of 32 

consecutively homozygous SNPs. The most prevalent consensus ROH segment was found in 141 

(23.3%) of the sampled animals; this segment was located on BTA14 and constituted 5 SNPs 

stretching over 225.82kb. Consensus segments occurring in >100 of the sampled animals were also 

observed on BTA13 and BTA26. 

 

3.4 Inbreeding coefficients  

All measures of inbreeding indicated positive inbreeding at a low level. Box plots for each measure 

are illustrated in Figure 3.6. Only animals with non-zero pedigree-based inbreeding (586 animals) 

were considered. The mean FPED, FSNP and FROH>1Mb were calculated as 0.03, 0.01 and 0.07, 
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respectively. Due to the nature of the FSNP measure, the SNP-by-SNP coefficient showed the most 

variation. FSNP did not change significantly when estimated before- or after LDP and was in 

agreement with genome-wide heterozygosity estimates that showed a slight loss in genetic diversity 

(Before LDP: HO=0.351<HE=0.354; after LDP: HO=0.344<HE=0.347). Mean FROH decreased with 

increasing ROH-length intervals, estimated as 0.07, 0.06 and 0.05 when only ROH>4Mb, >8Mb and 

>16Mb were included in calculations.  

 

 

Figure 3.6 Box plots of pedigree-, SNP- and ROH-based inbreeding coefficients. 

 

Pearson correlations between FPED and both FSNP and FROH, respectively, were moderate. Correlations 

with FROH were estimated for different length classes and are indicated in Table 3.1. The highest 

correlation with FPED was observed when all ROH>8Mb were included in the calculation. Given the 

fact that ROH were estimated based on SNP data, high correlation between FSNP and FROH were 

expected.  
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Table 3.1 Correlations between pedigree- and molecular-based inbreeding coefficients. 

Inbreeding coefficient Correlation 

r(FPED)  

FSNP 0.633*** 

FROH>1Mb 0.642*** 

FROH>4Mb 0.639*** 

FROH>8Mb 0.655*** 

FROH>16Mb 0.523*** 

r(FSNP)  

FROH>1Mb 0.954*** 

 

The FSNP per birth year across the population sampled is indicated in Addendum 1. 

 

4. Discussion 

The utility of a specific SNP genotyping platform is influenced by its development and the application 

of such platforms can adversely impact on population-specific SNP parameters estimated for breeds 

that were not represented in its design. Breeds with unclear- but presumably diverse ancestry may 

therefore display variation in these parameters due to the origin of the SNP investigated. The 

development of the Illumina SNP50 bovine bead chip was based exclusively on the selection of SNPs 

occurring in taurine beef- and dairy cattle genomes (Matukumalli et al., 2009). Conversely, the GGP 

80K bovine bead chip was developed to incorporate more SNP of indicine descent (Edea et al., 2015). 

Even though no details regarding the exact composition of the 150K chip have been published, it is 

believed that SNP selection was also biased towards taurine cattle albeit that indicine cattle were also 

included (personal communication).  

SNP-based genetic studies have observed lower MAF estimates for African breeds when only taurine- 

as opposed to indicine-derived SNPs were studied. Edea et al. (2015), for example, observed 

significantly lower MAF in Ethiopian cattle using SNP50-genotypes (0.15) as opposed to SNP80-

genotypes (0.32). Estimates were similarly low for South African Sanga breeds based on SNP50 

genotypes (Nguni: 0.17; Qwabe et al., 2013). Given that indigenous Sanga breeds are believed to be 

hybrids (Grigson, 1991) that harbour signatures of both sub-species, albeit in unknown proportions 

(Makina et al., 2015b), average MAF was expected to be higher when indicine-derived SNP were also 

included. The average MAF obtained in this study (0.26±0.143) is comparable with estimates 

obtained by Zwane et al. (2016) for the SA Drakensberger breed (0.26 ± 0.145 for MAF≥0%). The 

latter authors used a set of SNPs that were common between the Illumina SNP50 and GGP 80K chips. 

Given, firstly, the improvement in SNP density and, secondly, the inclusion of indicine SNPs, 

ascertainment bias seemed to influence the utility of the SNP150 chip to a lesser extent than the 

SNP50 chip for a non-discovery, composite breed such as the SA Drakensberger. 
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Identifying inter-chromosomal variation in MAF is important firstly for its direct impact on 

downstream analyses and secondly for its influence on local LD. Low-MAF SNPs display lower 

imputation accuracy as alleles occurring in low frequencies are not represented in reference 

haplotypes (Schrooten et al., 2014). These SNPs furthermore negatively impact on the accuracy of 

GEBVs (Weng et al., 2012). In this study, autosomes with up to ~16% (BTA14) low-MAF SNPs 

were identified. This will need to be accounted for when imputation, or eventually genomic selection, 

is implemented especially considering the fact that most imputation methods apply algorithms on a 

chromosome-by-chromosome basis. For non-discovery breeds it might necessitate the identification 

of specific markers segregating within these populations by identifying evenly distributed, high-MAF 

SNPs, and developing breed-specific low-density SNP panels. The relationship between MAF and LD 

was further investigated and, in agreement with previous research on Sanga- (Makina et al., 2015a) 

and international breeds (eg. Khatkar et al., 2008; Qanbari et al., 2010), showed low MAF to locally 

diminish LD. This relationship will be useful for populations, such as the SA Drakensberger, where 

LD does not persist over long genomic distances (<30kb).  

LD is an important population-specific parameter in genomic studies. It serves as a predictor of the 

density of SNPs required to produce accurate GEBVs and powerful associations in GWAS (Qanbari 

et al., 2010). The strength of local LD furthermore influences the achievable imputation accuracy of 

specific genomic regions (Hickey et al., 2012). Many studies have investigated inter-chromosomal 

differences in LD in cattle populations (Sargolzaei et al., 2008; Bohmanova et al., 2010; Qanbari et 

al., 2010; Cañas-Álvarez et al., 2014; Edea et al., 2015) and the general consensus has been that there 

is a chromosome-effect influencing LD. In concordance with previous research, the density of SNPs 

per autosome seemed to be a primary contributor to high local LD. BTA14, which showed outlying 

high LD, was the most densely covered autosome. High LD on this autosome might therefore be an 

artifact of close inter-SNP distance and not necessarily a true reflection of strong relationships 

between SNPs overall. Developing a breed-specific low-density panel that is optimized for imputation 

would therefore necessitate the selection of high-LD SNP pairs per autosome, while assuring even 

distribution of SNPs across autosomes. Investigating inter-chromosomal differences in LD is 

important as high-LD autosomes are expected to produce higher imputation and GEBV accuracies. 

LD for the sampled population was relatively high when considering only SNP pairs separated by 

≤50kb (mean r2=0.22). At short inter-SNP distances (10-20kb), estimates were comparable with 

composite Brazilian beef breeds (0.24 versus 0.25; Mokry et al., 2014). Furthermore, short distance 

(~10kb) estimates were on par with what was found for indicine breeds like Brahman (0.25) and 

Nellore (0.27), but lower than values obtained for taurine breeds (eg. Angus, 0.46; Porto-Neto et al., 

2014). 

LD of r2=0.2 was found to persist only for short inter-marker distances (<30kb), albeit higher than 

previously suggested by Makina et al. (2015a) for the SA Drakensberger breed (10-20kb). This was 

expected considering the improvement in SNP density of the SNP150- compared to the SNP50 bead 

chip used by Makina et al. (2015a). In the afore-mentioned study, LD was also estimated in a 
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significantly smaller sample size of SA Drakensberger animals (±40 versus 606). Results were in 

agreement with Edea et al. (2014) who showed LD decay after 20-40kb in indigenous Ethiopian 

cattle. Rapid LD decay in the SA Drakensberger was furthermore not surprising, as previous studies 

have suggested shorter persistence of high LD in admixed populations (Toosi et al., 2010; Mokry et 

al., 2014). This phenomenon is attributed to more distant common ancestry and therefore the sharing 

of short haplotype structures within these populations (Mokry et al., 2014). Makina et al. (2015a) 

observed the smallest average haplo-block length for the SA Drakensberger breed compared to other 

Sanga breeds.  

High LD reflects genomic regions lacking recombination. This absence of recombination is a key 

factor in the existence of ROH. The length of a ROH segment is arguably its most important 

characteristic as this can be used to infer population history (McQuillan et al., 2008). Short ROH were 

significantly more frequent (ROH2-4Mb=35.7%) than longer ROH (ROH>16Mb=5.2%) in the SA 

Drakensberger population sampled. ROH of 16Mb in length has been proposed to represent recent 

inbreeding of up to ~6 generations ago, whereas ROH of 1Mb corresponds to more ancient inbreeding 

of up to ~50 generations ago (Ferenčaković, 2015). Given a generation interval (L) of ~6 years for the 

SA Drakensberger breed (Abin, 2014), this represents inbreeding of up to 36 and 300 years ago, 

respectively. The ROH identified in the SA Drakensberger breed therefore implies that inbreeding is 

predominantly the result of more ancient consanguinity. Hybridization between taurine and indicine 

cattle is expected to increase diversity within the genomes and may have lead to the interruption of 

homozygous stretches in African cattle (Purfield et al., 2012). The sharing of homozygous segments 

between up to 23% of the sampled population may also point towards selection-driven fixation of 

some segments. It would therefore be beneficial to explore ROH as a trait-association tool, using 

appropriate phenotypic information, in the future.  

Inbreeding has traditionally been quantified by tracing back consanguineous mating through the use 

of pedigree information. The reliability of this method is, however, dependent on the degree of 

pedigree recording and hence the completeness of records (McParland et al., 2007).  Considering that 

the birth dates of the animals included in this study ranged from 1982 to 2016 and the fact that not all 

animals had equal depths of pedigree data available, FPED was not the most robust method of 

inbreeding estimation. This was confirmed by moderate Pearson correlations (~64%) between FPED 

and FROH. The relevance of FPED is further brought into question due to the fact that it does not 

account for recombination within the genome (McQuillan et al., 2008; Mastrangelo et al., 2016). The 

insufficiency of in-depth pedigree records therefore deemed FROH based on larger ROH segments 

(~66% correlated), which are indicators of more recent inbreeding, a more relevant substitute for FPED 

than FROH based on short segments (~64% correlated). Molecular-based measures, such as FROH, have 

therefore gained popularity. SNP-based measures such as PLINK’s FSNP, however, merely estimates 

excessive marker homozygosity while the ROH-based measure is representative of the age of 

inbreeding. Genomic measures of inbreeding were strongly correlated (~95%) and this was in 
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agreement with Mastrangelo et al. (2016) who showed correlations ranging from ~83% to ~95% 

between these measures.  

All coefficients indicated low-level inbreeding (1-7%) within the SA Drakensberger breed. This was 

expected considering a decline in breeding animals observed within the breed (van der Westhuizen & 

Groeneveld, 2004; Abin, 2014) and the fact that sires are increasingly being used across breeders. 

PCA results, however, showed that there is still some dispersion, indicating weaker relations, between 

individuals and herds within the population. Currently within-breed selection focuses on a “standard 

of excellence”, placing emphasis on the maintenance of breed purity with regards to coat colour, 

physique and growth (Drakensberger Cattle Breeders’ Society of SA, 2011). The preservation of 

specific breed characteristics such as the black coat is presumed to have decreased genetic diversity, 

as was supported by observed- (0.344) versus expected (0.347) heterozygosity, through directional 

changes in the genotypic frequencies of the loci selected for. Certain historic events in the breed 

timeline are also believed to have diminished genomic diversity. One such genetic bottleneck was the 

“Great Trek” in 1834 during which the breed accompanied the migration of Dutch settlers 

(Drakensberger Cattle Breeders’ Society of SA, 2011). 

 

5. Conclusion  

The origin and genetic composition of the SA Drakensberger is uncertain. Previous molecular 

research has identified Bos taurus and -indicus signatures within the genome of this breed, albeit in 

unknown proportions. Considering the fact that modern SNP genotyping platforms incorporate SNPs 

discovered in predominantly Bos taurus breeds, it is uncertain how genomic variation within the 

admixed genome of this breed will influence downstream applications. Inter-chromosomal differences 

in MAF and LD conformed to expectations, but suggest that these differences need consideration in 

future genomic endeavors. The relationship between MAF and LD can be exploited in the selection of 

informative SNP for the possible development of optimized low-density panels. Inbreeding 

coefficients indicated low levels of inbreeding, which was expected due to artificial selection 

practices to maintain breed purity (with regards to characteristics such as the all-black coat colour and 

adaptability). ROH length characteristics furthermore pointed towards more ancient inbreeding, 

reflecting known historic bottleneck events. The economic importance of the SA Drakensberger as an 

adaptable indigenous breed in the SA beef industry has sparked interest in genomics-based breed 

improvement. Results of this study suggest that genomic applications such as imputation and GS can 

be further explored if genomic diversity is accounted for. Inferences made on the effect of a 

heterogeneous genome, such as the SA Drakensberger genome, on downstream applications may 

apply to other local genetic resources, for example non-descript or composite African breeds, with 

similarly complex genome architecture.  
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4. 1 Introduction 

Large-scale cattle genotyping is presently undertaken using the commonly termed single nucleotide 

polymorphism (SNP)-chips with a vast array of different panels available that vary in both genotype 

density and breed representation (Nicolazzi et al., 2015). Most of the genotype panels are constructed 

by selecting SNPs that are informative in the most populous breeds of either taurine- (e.g. Illumina® 

Bovine SNP50; Matukumalli et al., 2009) or indicine descent (e.g. GeneSeek® GGPTM Indicus; 

Ferraz et al., 2018). The utility of panels favouring either of these subspecies may therefore not be 

optimal for less common breeds that often have admixed genomes harbouring varying proportions of 

taurine- and indicine-derived genomic segments. An example of such a breed, within the context of 

the South African (SA) beef industry, is the Drakensberger. 

The SA Drakensberger is an indigenous beef breed with a sleek, black coat that belongs to the Sanga 

subspecies (Bos taurus africanus) of cattle (SA Drakensberger Breeders’ Society, 2011). Genome-

wide SNP analyses have indicated common ancestry of the breed with both European and African Bos 

taurus as well as Bos indicus breeds (Makina et al., 2016). In contrast to the composite SA Bonsmara 

breed that was developed experimentally (Bonsma, 1980), it is believed that the breed development of 

the modern SA Drakensberger cattle occurred over centuries. An important landmark in the initiation 

of its developmental process was crossbreeding in the 1700s between taurine cattle imported by 

European settlers and black-coated, indigenous cattle that were owned by southern African tribes 

(Niemand, 2013). Following northward migration, and enduring several events such as the Rinderpest 

disease outbreak in 1896 and the Anglo-Boer War from 1899 to 1902, which led to a severe erosion in 

cattle numbers, the breed as it is characterized today, was only officially recognized in 1947 when the 

SA Drakensberger Breeders’ Society was formed (SA Drakensberger Breeders’ Society, 2011). 

In spite of a recent effort to re-sequence the genomes of Sanga breeds (Zwane, 2017), including 

several Drakensberger animals, a SNP panel applicable within a specific Sanga breed or across Sanga 

breeds does not exist at present. In the meantime, the success of genome-facilitated breed 

improvement strategies, such as genomic selection (GS), for breeds such as the SA Drakensberger is 

contingent on the utility of SNPs included in commercial high-density panels. Despite the ever-

reducing cost of genotyping in cattle, the cost of genotyping itself is still the main barrier to adoption. 

One potential strategy to reduce the cost of genotyping is to reduce the number of SNPs to be 

genotyped and subsequently impute these SNPs to higher density. The SNPs selected for a reduced 

density panel must, however, be 1) abundant enough to facilitate acceptable imputation accuracy and 

2) informative for the breed(s) in which they will be applied. 

When current genotyping panels were applied in the SA Drakensberger, a high proportion of low 

minor allele frequency (MAF) SNPs as well as weak linkage disequilibrium (LD) between SNPs was 

observed (Qwabe et al., 2013; Zwane et al., 2016; Lashmar et al., 2018). It is therefore expected that 

the lower limit of SNPs required on a reduced density panel will be higher than proposed for taurine 

breeds in which longer haploblocks of these SNPs exist. Careful consideration of the genomic 

characteristics of SNPs will therefore be necessary so that a reduced panel of SNPs with optimal 
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utility for the SA Drakensberger breed can be selected. Various methods have been proposed to 

identify, from a larger pool of existing SNPs, the most appropriate low-density SNP sets using certain 

genomic characteristics as inclusion criteria. These methods have generally considered genomic 

parameters such as mean MAF (e.g. Corbin et al., 2014; Judge et al., 2016), and inter-marker 

relationship estimates, i.e. LD (e.g. Ogawa et al., 2016), while maintaining more or less an even 

dispersion of selected SNPs across the genome. The most efficient selection strategy will enable 

minimization of the reduced-panel SNP density without compromising imputation accuracy and 

hence facilitate the use of such a panel in imputation-driven applications for local breeds. 

The overarching aim of this chapter was therefore to determine the validity of using imputation from 

low-density panels, in terms of achievable imputation accuracy, for the indigenous SA Drakensberger 

breed. The main objectives were achieved by varying 1) the SNP density and 2) the choice of SNPs 

for various custom-derived low-density panels and imputing to higher density. An additional 

objective was to determine the impact of relatedness between the validation- and reference 

populations on the achievable imputation accuracy in the validation animals.   

   

4.2 Materials & methods 

Ethical approval to perform this study was granted by the ethics committee of the University of 

Pretoria’s Faculty of Natural and Agricultural Science (ethics number: EC151106-024). Written 

consent was additionally provided by the SA Drakensberger Breeders’ Society and the SA Stud Book 

Association (SA Stud Book) to utilize SNP genotypic data generated with funding from the Beef 

Genomics Program (BGP; www.livestockgenomics.co.za). 

 

4.2.1. Genotypic data and quality control 

Genotypes generated using the GeneSeek® Genomic ProfilerTM uHD SNP panel, consisting of 139 

480 SNPs, were available for 214 male and 921 female SA Drakensberger cattle, all of which had a 

sample call rate exceeding 90%. Single nucleotide polymorphisms were mapped to the UMD3.1 

bovine reference genome using SNPchiMp versions 3 and SNPConvert software (Nicolazzi et al., 

2016). Only SNPs mapped to autosomes (Bos Taurus autosome; BTA1 - BTA29) were considered. 

Only markers with call rates exceeding 95%, MAF exceeding 1% and that did not violate Hardy 

Weinberg Equilibrium (P<0.01 x 10-6) were retained. A total of 120 608 SNPs (mean call 

rate=99.4%) remained after edits. 

 

4.2.2. Animal population subsets 

The genotyped samples comprised of animals born between the years 1982 and 2017 and originated 

from 48 breeders nationwide. It should be noted that the discrepancy in birth year range between 

Chapter 3 and this chapter (1982-2016 versus 1982-2017) existed because the data set used in the 

former chapter was a subset of the data set used here; more animals, including younger calves, were 

sampled and genotyped over the entire study period. Available pedigree information for the breed was 
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obtained from SA Stud Book (SA Stud Book) and consisted of 6 074 animals, which comprised the 

genotyped animals and their ancestors. Parent mismatches within the genotyping data set were 

identified as pedigree-defined parent-progeny pairs displaying >2% Mendelian inconsistencies. If 

parentage errors were identified, parents were set to missing in the pedigree file if no alternative 

matches within the genotype data set were identified, or updated if an alternative match was 

identified. The data set was then separated into a reference population (n=900) and a validation 

population (n=235). The validation population consisted of the youngest animals with no more than 3 

paternal sibs. The reference population was used to estimate SNP MAF and the extent of LD, both of 

which were used as criteria for the selection of low-density SNP panels (discussed hereafter), and to 

model haplotypes used in imputation. The relatedness among individual samples was estimated using 

a genomic relationship matrix constructed in GCTA software (Genome-wide Complex Trait Analysis; 

Yang et al., 2011). The mean relationship coefficient between each validation animal and its ten 

closest relatives in the reference data set was estimated. 

 

4.2.3. Single nucleotide polymorphism selection methods 

Different strategies were used to develop several custom-derived low-density SNP panels consisting 

of 2 500, 5 000, 10 000, 20 000 and 50 000 SNPs. These panels may be hereon in referred to as the 

2.5K, 5K, 10K, 20K and 50K panels. The number of SNPs selected per autosome was pre-defined and 

was proportional to the length of each autosome; therefore more SNPs were selected for longer 

autosomes. The number of SNPs selected per autosome to fulfil each of the different panel densities is 

outlined in Addendum 2. Five alternative algorithms were used to derive the custom SNP panels and 

these were implemented as follows: 

 

4.2.3.1. Random selection (RAN) 

The pre-defined number of SNPs required per autosome was chosen at random until each of the 

respective panel densities was reached. 

 

4.2.3.2 Mid-point, equidistant selection (MID) 

The length of each autosome, defined as the difference in base pairs between the first and last SNPs 

per autosome, was divided into equally sized segments and the SNP closest to the physical midpoint 

of each segment was chosen. The segment size per autosome was calculated as the autosomal length 

divided by 𝑛 − 1 , where 𝑛  was the pre-defined number of SNPs to be chosen for that specific 

autosome. Due to uneven distribution of SNPs in specific autosomal regions after quality control 

procedures, certain segments did not harbour any SNPs and, in these situations, the SNP on the 

boundary, i.e. closest to the starting position, of the adjacent segment was chosen.  
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4.2.3.3. Equidistant selection that maximized MAF (DISTMAF) 

Markers within segments of equal size were chosen based on an index that maximized MAF whilst 

attempting to adhere to the ideal inter-SNP spacing per autosome for each panel density. The SNP 

with the highest MAF was chosen within the first segment per autosome after which SNPs within 

subsequent segments were chosen based on the highest index score calculated as proposed by 

Matukumalli et al. (2009) and Zhang et al. (2010): 

 

𝑠𝑐𝑜𝑟𝑒𝑖 =  𝑀𝐴𝐹𝑆𝑁𝑃𝑖
+ [𝑠𝑠𝑖𝑧𝑒 − (𝑠𝑠𝑖𝑧𝑒 − 𝑑𝑆𝑁𝑃𝑖,𝑆𝑁𝑃𝑖−1

)] 

[2] 

 

where 𝑀𝐴𝐹𝑆𝑁𝑃𝑖
 represented the MAF of a candidate SNP 𝑖, 𝑠𝑠𝑖𝑧𝑒 represented the genomic length of 

each segment within a given autosome and 𝑑𝑆𝑁𝑃𝑖,𝑆𝑁𝑃𝑖−1
 represented the genomic distance between the 

base pair position of a candidate 𝑆𝑁𝑃𝑖  and 𝑆𝑁𝑃𝑖−1 , where 𝑆𝑁𝑃𝑖−1  was the SNP selected in the 

previous segment. If a segment contained no SNP, a second SNP was chosen in the next segment i.e. 

the SNP with the second highest index score was also chosen. 

 

4.2.3.4. Segment-based selection combining MAF and LD (MAFLD) 

An index score combining MAF and LD information was calculated per SNP and within segments. 

The MAF and LD per SNP were first standardized, so that the weights on each attribute were equal 

before summation. The scores were derived as follows: 

 

𝑠𝑐𝑜𝑟𝑒𝑖𝑗 =  
𝑀𝐴𝐹𝑆𝑁𝑃𝑖

𝑆𝐷𝑀𝐴𝐹𝑠𝑒𝑔𝑗

+ 
𝐿𝐷𝑆𝑁𝑃𝑖𝑗
̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑆𝐷𝐿𝐷𝑠𝑒𝑔𝑗

 

[3] 

 

where 𝑀𝐴𝐹𝑆𝑁𝑃𝑖
 represented the MAF of a candidate SNP 𝑖 in segment 𝑗,  𝑆𝐷𝑀𝐴𝐹𝑠𝑒𝑔𝑗

 represented the 

standard deviation for MAF in segment 𝑗, 𝐿𝐷𝑆𝑁𝑃𝑖𝑗
 represented the mean LD between a candidate 

𝑆𝑁𝑃𝑖 and all other SNPs within segment 𝑗, and 𝑆𝐷𝐿𝐷𝑠𝑒𝑔𝑗
 represented the standard deviation for all LD 

interactions within segment 𝑗. Within each segment, the SNP with the highest index score was chosen. 

A second SNP was selected in the segments at both ends of each autosome and the number of 

segments was therefore equal to the number of SNPs to be chosen minus two. The second SNP was 

selected based on a score combining MAF and the partial correlation of that SNP with all remaining 

candidate SNPs in their segment. Adjustments were made to the partial correlation to account for the 

relationship between each candidate SNP and the SNP already selected in the initial round of 

selection. This calculation was performed according to Judge et al. (2016) as follows: 
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𝑟(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑗|𝑆𝑁𝑃𝑠𝑒𝑙) =  
[𝑟(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑗) − 𝑟(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑠𝑒𝑙). 𝑟(𝑆𝑁𝑃𝑗 , 𝑆𝑁𝑃𝑠𝑒𝑙)]

[1 − 𝑟2(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑠𝑒𝑙)0.5]. [1 −  𝑟2(𝑆𝑁𝑃𝑗, 𝑆𝑁𝑃𝑠𝑒𝑙)
0.5

]
 

[4] 

 

where 𝑟(𝑆𝑁𝑃𝑖, 𝑆𝑁𝑃𝑗|𝑆𝑁𝑃𝑠𝑒𝑙)  represented the partial correlation between candidate 𝑆𝑁𝑃𝑖  and 

candidate 𝑆𝑁𝑃𝑗 corrected for the correlation with the already selected SNP, 𝑆𝑁𝑃𝑠𝑒𝑙.  

 

4.2.3.5. Partitioning-around-medoids (PAM), equidistant selection 

SNPs on each autosome were partitioned into a number of clusters based on their proximity in 

genomic position using the partitioning-around-medoids (PAM) algorithm implemented in R’s 

“clara” package (Kaufman & Rousseeuw, 2009). The number of clusters was equal to the number of 

pre-defined SNPs to be selected per autosome. The medial SNP within each SNP cluster was chosen. 

The PAM algorithm was the most computationally demanding, especially for SNP densities 

exceeding 20 000 SNPs, and because the difference in imputation accuracy was expected to be 

smallest at the 50K SNP density, this algorithm was only tested up to 20K SNPs for the purpose of 

this thesis.  

 

4.2.4. Imputation and imputation accuracy 

Imputation from each of the low-density panels to the higher density was performed using FImpute 

version 2.2 software (Sargolzaei et al., 2014) based on both pedigree information and population-wide 

LD. This software was chosen because its methodology, using a sliding window approach, was 

deemed most suitable to the breed. Because the sliding window is systematically reduced to account 

for smaller genomic segments shared, corresponding to more distant relatedness, this software is ideal 

for utilization in breeds such as the SA Drakensberger with weak LD and high genomic heterogeneity. 

Imputation with this software is carried out simultaneously on a per chromosome basis. The 

software’s default settings were used with regards to specifications of the sliding window used to 

capture haplotype similarities (i.e. shrink factor=0.150 and overlap=0.650).  

Imputation accuracy was quantified using three parameters namely: 1) genotype concordance rate 

(GCR), 2) allele concordance rate (ACR) and 3) the Pearson correlation between true- and imputed 

genotypes (COR). These parameters were averaged per animal (ACRANIM, GCRANIM and CORANIM, 

respectively) and per SNP (ACRSNP, GCRSNP and CORSNP, respectively). The genotype and allele 

concordance rates were calculated as the proportion of correctly imputed genotypes and alleles, 

respectively. For genotype concordance, a score of zero was given to a SNP if it had either one allele 

(homozygous true versus heterozygous imputed) or both alleles (opposing homozygous for true 

versus imputed) incorrectly imputed. For allele concordance, a score of 0.5 was given if one allele 

was correctly imputed i.e. a homozygous true genotype versus a heterozygous imputed genotype. For 
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both these measures, concordance was calculated 1) for only masked genotypes, i.e. that were 

imputed, and 2) for both masked and unmasked genotypes, i.e. both imputed and actual genotypes. 

The latter calculation was included to mimic what would be expected to happen in real life (Judge et 

al., 2016).  

 

4.3. Results 

 

4.3.1 Imputation accuracy per animal 

 

4.3.1.1. Number of SNPs on the lower density panel 

The mean imputation accuracy in the validation animals increased with improvements in the number 

of SNPs included on the low-density panel, irrespective of the strategy used to select the SNPs 

(Figure 4.1).  

 

 

* PAM was not used to derive a 50 000 SNP genotyping panel because of high computational demand.  

Figure 4.1 Mean correlation-based imputation accuracies (CORANIM) for different genotyping panel 

densities derived using five different SNP selection methodologies (RAN: random selection, MID: 

midpoint selection, DISTMAF: equidistant selection maximizing MAF, MAFLD: combinative 

selection for MAF and LD, PAM: partitioning-around-medoids selection). Error bars represent 

minimum and maximum CORANIM.  

 

The mean imputation accuracy per animal increased with increasing panel density but did so at a 

diminishing rate. Animal-wise imputation accuracy, CORANIM, ranged (minimum to maximum) from 

0.625-0.990, 0.728-0.994, 0.830-0.996, 0.885-0.998 and 0.918-0.999 when 2 500, 5 000, 10 000, 20 

000 and 50 000 SNPs were randomly chosen. This was further supported by smaller estimates of 
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standard deviation for CORANIM with increasing panel density; the standard deviation reduced from 

0.075 for accuracy per animal to 0.014 as panel density improved from 2 500 (mean CORANIM=0.872) 

to 50 000 SNPs (mean CORANIM=0.985). The CORANIM increased by 0.055, 0.043 and 0.043 units for 

the MID, DISTMAF and MAFLD methods when the number of SNPs doubled from 2 500 SNPs to 5 

000 SNPs. The CORANIM increased by only 0.008, 0.007 and 0.007 for MID, DISTMAF and MAFLD 

when the density increased from 20 000 to 50 000 SNPs. For all panel densities investigated, allele 

concordance rates were higher than the respective genotype concordance rates with the difference 

between these measures reducing with increasing SNP density. The difference between ACRANIM and 

GCRANIM was, for example, 0.051 units for the 2 500 SNP panel versus 0.007 units for the 50 000 

SNP panel when the DISTMAF strategy was used. 

 

4.3.1.2. SNP selection method 

Across all panel densities evaluated, the poorest imputation accuracy was always achieved when 

SNPs were randomly selected. Strategies that based the selection of SNPs on scores combining MAF 

with other attributes (DISTMAF and MAFLD) outperformed the other selection strategies; the 

MAFLD method resulted in the best estimates of imputation accuracy (Table 4.1) irrespective of 

panel density.  
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Table 4.1 Genotype- and allele concordance rates for different low-density SNP panels. 

LD panel Method 
Imputation accuracy 

GCRMASKED (SD) a GCRALL (SD) b ACRMASKED (SD) a ACRALL (SD) b 

2.5K RAN 0.857 (0.075) 0.860 (0.074) 0.925 (0.041) 0.926 (0.040) 

MID 0.865 (0.075) 0.868 (0.073) 0.929 (0.041) 0.931 (0.040) 

DISTMAF 0.893 (0.066) 0.896 (0.065) 0.944 (0.036) 0.945 (0.035) 

LDMAF 0.895 (0.066) 0.897 (0.065) 0.945 (0.035) 0.946 (0.035) 

PAM 0.867 (0.074) 0.869 (0.072) 0.930 (0.040) 0.931 (0.040) 

      

5K RAN 0.918 (0.052) 0.922 (0.050) 0.958 (0.028) 0.959 (0.027) 

MID 0.922 (0.066) 0.925 (0.064) 0.959 (0.042) 0.960 (0.041) 

DISTMAF 0.940 (0.044) 0.943 (0.042) 0.969 (0.023) 0.970 (0.022) 

LDMAF 0.942 (0.042) 0.944 (0.022) 0.970 (0.022) 0.971 (0.021) 

PAM 0.925 (0.050) 0.928 (0.048) 0.961 (0.027) 0.963 (0.026) 

      

10K RAN 0.954 (0.035) 0.957 (0.032) 0.976 (0.018) 0.978 (0.017) 

MID 0.954 (0.055) 0.957 (0.054) 0.975 (0.037) 0.977 (0.037) 

DISTMAF 0.964 (0.029) 0.967 (0.026) 0.982 (0.015) 0.983 (0.014) 

LDMAF 0.966 (0.028) 0.968 (0.025) 0.982 (0.014) 0.984 (0.013) 

PAM 0.957 (0.034) 0.960 (0.031) 0.978 (0.017) 0.980 (0.016) 

      

20K RAN 0.970 (0.025) 0.975 (0.021) 0.985 (0.013) 0.987 (0.011) 

MID 0.972 (0.023) 0.977 (0.019) 0.986 (0.012) 0.988 (0.010) 

DISTMAF 0.976 (0.020) 0.980 (0.017) 0.988 (0.010) 0.990 (0.009) 

LDMAF 0.977 (0.020) 0.980 (0.017) 0.988 (0.010) 0.990 (0.009) 

PAM 0.973 (0.023) 0.977 (0.019) 0.986 (0.012) 0.988 (0.010) 

     

50Kc RAN 0.981 (0.016) 0.989 (0.010) 0.991 (0.008) 0.994 (0.005) 

MID 0.982 (0.016) 0.990 (0.009) 0.991 (0.008) 0.995 (0.005) 

DISTMAF 0.985 (0.014) 0.991 (0.008) 0.992 (0.007) 0.995 (0.004) 

LDMAF 0.985 (0.014) 0.991 (0.008) 0.992 (0.007) 0.995 (0.004) 

a GCRALL and ACRALL = mean imputation accuracy across the full set of 120 608 SNPs, including both true and imputed SNPs;   

b GCRMASKED and ACRMASKED = mean imputation accuracy across masked SNPs only i.e. only the SNPs imputed per density; c The PAM 

method was not tested for the 50 000 SNP panel because of computational demand; SD=standard deviation 

 

Negligible differences were observed between strategies that only considered the genomic location of 

SNPs (i.e. MID and PAM). The DISTMAF and MAFLD methods were the only selection approaches 

with mean imputation accuracies exceeding 0.970 at a density of 5 000 SNPs; ACRANIM ranged from 
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0.856-0.997 and 0.859-0.997 for DISTMAF and MAFLD at this density of SNPs, respectively. Using 

the DISTMAF and MAFLD methods, 10 000 SNPs and 20 000 SNPs was required to yield mean 

allele concordance rates >0.980 and >0.990, respectively. The improvements in imputation accuracy 

were marginal when unmasked SNPs were included in the calculation of GCRANIM and ACRANIM, 

increasing with a mean value of 0.004 (standard deviation=0.002) and 0.002 (standard 

deviation=0.001), respectively, across all densities and selection strategies.  

 

4.3.1.3. Degree of relatedness between validation and reference populations 

The genomic relationship of a given animal in the validation population to animals in the reference 

population directly impacted the imputation accuracy. A scatter plot of each validation animal’s 

imputation accuracy and the mean of its top ten coefficients of relatedness to the reference population 

is illustrated in Figure 4.2.  

 

 

Figure 4.2 The relationship between degree of relatedness to the reference population and imputation 

accuracy for different SNP density panels derived using the MAFLD selection. Linear (2 500), linear 

(5 000), linear (10 000), linear (20 000) and linear (50 000) represent the linear regression lines for 

imputation accuracy on relatedness for each panel density. 

 

The influence of genomic relatedness between reference and validation animals on correlation-based 

accuracy was more pronounced when fewer SNPs were included on the lower density panel. A 

minimum (maximum) CORANIM of 0.825 (0.995), 0.911 (0.997), 0.957 (0.998), 0.974 (0.998) and 

0.986 (0.999) was observed for animals that were least and most related to the reference population 

when 2 500, 5 000, 10 000, 20 000 and 50 000 SNPs were utilized. The regression coefficients, 𝑏, in 

the regression equation, 𝑌 = 𝑎 + 𝑏𝑋, for the 2 500, 5 000, 10 000, 20 000 and 50 000 SNP panels 
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were 1.047, 0.563, 0.304, 0.171, 0.081, respectively. The corresponding R2 values for the 2 500, 5 

000, 10 000, 20 000 and 50 000 SNP panels were 0.684, 0.557, 0.406, 0.265 and 0.135 (P<0.001); 

more of the variability in CORANIM was explained by per animal relatedness to the reference 

population when the reduced panel density was lower.  

 

4.3.2. Imputation accuracy per SNP 

 

4.3.2.1 Variation between autosomes 

Imputation accuracy, described as either mean genotype- (GCRSNP) or allele concordance rates 

(ACRSNP) differed by autosome (Figure 4.3). 
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Figure 4.3 Mean concordance-based imputation accuracy measures for 10 000 SNP panels derived 

using the five different SNP selection methodologies (a: RAN, b: MID, c: DISTMAF, d: MAFLD 

and, e: PAM). 

 

Using the 10 000 SNP panel as an example, the worst mean±standard deviation allele concordance 

rate across masked SNPs was for BTA26 (0.971±0.021) when random selection was undertaken. 

When other SNP selection strategies were employed, imputation accuracy of BTA19 

(MID=0.971±0.018; DISTMAF=0.976±0.015) and BTA23 (MAFLD=0.978±0.015; 

PAM=0.971±0.020) were the worst. The greatest chromosome-wide allele concordance was observed 

for BTA5 for all selection strategies except the MAFLD strategy; for the MAFLD strategy, BTA24 

(0.985±0.12) was the best.  
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4.3.2.2. Variation within autosomes 

Within autosomes, variability in SNP-level imputation accuracy existed by location relative to the 

centre or the peripheries of the autosome. The distribution of CORSNP across individual autosomes is 

illustrated in Figure 4.4, comparing 2 500 versus 50 000 SNPs that were randomly selected.  

 

 

Figure 4.4 SNP-wise imputation accuracy (correlation) per autosome for 2.5K (top) versus 50K 

(bottom) SNP panels derived by RAN selection methodology.  

 

The pattern of CORSNP distribution on many autosomes indicated a tendency towards worst 

imputation accuracies on the autosomal extremities and higher accuracies in the centre of the 

autosome. For the 2 500 and 50 000 SNP panels, mean±standard deviation CORSNP for SNPs located 

in the central 1Mb (0.5Mb to each side of the physical midpoint of each autosome) of autosomes were 

0.781±0.067 and 0.968±0.015 across all autosomes when RAN was used. The corresponding means 

for the two 1Mb autosomal extremities were 0.682±0.149 and 0.664±0.07, and 0.938±0.130 and 

0.968±0.018, for the 2 500 and 50 000 SNP panels. Differences in SNP-level imputation accuracy 

relative to genome locality were also observed between SNP selection strategies using the same panel 

density and these differences are illustrated in the Figure 4.5.  

 



 75 

 

Figure 4.5 SNP-wise imputation accuracy (correlation) per autosome for 10K SNP panels derived by 

MAFLD (top) and RAN (bottom) selection methodologies.  

 

The mean CORSNP estimated for SNPs on autosomal extremities were lower for RAN than for 

MAFLD. Using a 10 000 SNP panel, the mean±standard deviation CORSNP for SNPs located within 

1Mb of the start, the centre and the end of autosomes were 0.923±0.036, 0.943±0.031 and 

0.912±0.030 across all autosomes for MAFLD. For RAN the mean±standard deviation CORSNP for 

the 1Mb extremities (autosomal start and end) was 0.882±0.122 and 0.892±0.050 across 

chromosomes, whereas the mean±standard deviation CORSNP for SNPs in the 1Mb autosomal centres 

was 0.920±0.038. Mean CORSNP for the central and peripheral regions (1Mb) per autosome are 

depicted in Addendum 3, comparing RAN and MAFLD methods.  

 

4.3.2.3. Variability in imputation accuracy based on SNP MAF 

Imputation accuracy differed by SNP MAF. The nature of the relationship between a given SNP’s 

MAF and its imputation accuracy, however, differed depending on the parameter used to quantify 

accuracy (Figure 4.6). When MAF was binned into ranges of increasing MAF, mean values of 

concordance measures declined whilst the correlation measure increased with increments of higher 

MAF ranges.  
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Figure 4.6 Mean genotype and allele concordance rate (primary Y-axis) as well as correlation-based 

(secondary Y-axis) imputation accuracy for intervals of increasing MAF. Points on the graph <0.1 

MAF represent mean imputation accuracy for MAF intervals increasing in increments of 0.01. (RAN: 

random selection, MAFLD: combinative selection for MAF and LD). 

 

The mean CORSNP for SNPs classified in the highest MAF bin (0.4<MAF≤0.5) was 0.120 and 0.135 

units higher, respectively, than for SNPs classified in the lowest MAF bins (0.01<MAF≤0.02) when 

the RAN and MAFLD selection strategies were used. For concordance measures, the mean 

imputation error rate for GCRSNP, defined as one minus mean GCRSNP, was approximately double the 

error rate for mean ACRSNP, defined as one minus mean ACRSNP, for all MAF bins. The difference 

between the allele- (AER) and genotype error rates (GER), ∆𝐴𝐸𝑅𝑆𝑁𝑃,𝐺𝐸𝑅𝑆𝑁𝑃
, per SNP was calculated 

as follows according to Ma et al. (2012): 

 

 

∆𝐴𝐸𝑅,𝐺𝐸𝑅=  2(1 −  ACR) − (1 −  𝐺𝐶𝑅) 

[5] 

 

The difference increased from zero for the lowest MAF bin (0.01<MAF≤0.02) to 0.002 (RAN) and 

0.001 units (MAFLD) for the highest MAF bin (0.4<MAF≤0.5). The discrepancy between both 

concordance-based measures and the correlation based accuracy measure was more prominent when 

MAF was low but diminished as MAF increased. Monomorphic SNPs and SNPs with MAF<0.01 

were removed during quality control and were therefore not considered.  
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4.4. Discussion 

Since the inception of the BGP in 2015, a large number of high-density SNP profiles have become 

available for many SA beef cattle (Van Marle-Köster & Visser, 2018). The available genotypic data 

has facilitated the implementation of genomic selection for certain indigenous breeds such as the SA 

Drakensberger. Post-BGP, the sustainability of routine genotyping, where the breeder incurs the full 

cost, will necessitate a transition to a low-density SNP panel that contains fewer SNPs and this should 

be less costly. The lower associated cost may improve the uptake of such technologies by more beef 

farmers. The principle motivation of this study was therefore to determine the achievable imputation 

accuracy for SA Drakensberger cattle from various lower density SNP panels that were constructed 

using different SNP selection strategies focusing on the key genomic characteristics of the breed. 

Genomic evaluations are, however, carried out internationally utilizing approximately 50 000 SNPs; 

for example in Ireland using the Irish Cattle Breeding Federation’s (ICBF) 54K custom panel (Mullen 

et al., 2013) and in North America, New Zealand and Australia using the Illumina® 50K panel 

(Matukumalli et al., 2009; Wiggans et al., 2017). If genomic evaluation is to be based on medium, or 

higher, density SNP panels for SA beef cattle; the genotypes on the lower density panel must be 

imputed to higher density with minimal loss in accuracy. Results from this study may therefore 

provide guidelines for designing an applicable low-density SNP panel for Drakensberger and may 

possibly be transferable to other Sanga breeds. 

 

4.4.1. Imputation accuracies per animal 

 

4.4.1.1. SNP density of the reduced panel 

The trend of increasing imputation accuracy in the more densely populated SNP panels can be 

attributed to the fact that haplotypes are more easily and accurately resolved when a greater number of 

unmasked, neighbouring SNPs are available or, in other words, there are fewer SNPs to impute (Tsai 

et al., 2017). With every incremental increase in panel density, the improvement in accuracy 

diminished especially when the number of SNPs on the lower of the two panels being compared was 

already high. This suggests that at higher SNP densities (>10K SNP panel), the density was already 

adequate to resolve shared haplotypes and to achieve high imputation accuracy. Across all selection 

methods, the average improvements in CORANIM were 0.05, 0.03 and 0.01 units when panel densities 

were doubled from 2 500 to 5 000, 5 000 to 10 000 and 10 000 to 20 000 SNPs, respectively. This 

was in agreement with results reported by Judge et al. (2016) that documented improvements in 

animal-wise correlations of 0.07, 0.02 and 0.01 units when the number of markers were doubled from 

1 000 to 2 000, 3 000 to 6 000 and 6 000 to 12 000 SNPs, respectively, in Irish cattle. Carvalheiro et 

al. (2014) documented similarly small gains in correlation-based accuracy (0.01 units) when the 

density of lower density, custom SNP panels was increased from 11K to 48K and imputed to high-

density (777K). Yoshida et al. (2018), for example, also documented correlation-based improvements 

of 0.032 versus 0.003 units when SNP density increased from 500 to 3 000 SNPs versus 3 000 to 6 
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000 SNPs when imputation to 50 000 SNPs was carried out in Atlantic salmon. The diminishing rates 

of improvement in the present study, and the reduced associated inter-animal variability in imputation 

accuracy, for higher density panels suggest that using a panel consisting of more than 20 000 SNPs 

would have a negligible influence on imputation accuracy and would become less cost efficient. The 

extent with which the ideal number of low-density SNPs could be further reduced without 

compromising accuracy estimates, however, was a function of how the SNPs were selected. 

 

4.4.1.2. Degree of relatedness between the validation- and reference populations 

Results presented here, and from previous studies (e.g. Ventura et al., 2014; García-Ruiz et al., 2015), 

suggest that closer genetic relatedness between reference- and validation populations would enhance 

imputation accuracy. The diminishing regression coefficients (d) for regressions of imputation 

accuracy on genomic relatedness with increasing panel density suggests that relatedness became a less 

important factor when SNPs were sufficiently dense; for every unit increase in mean relatedness, 

there was a smaller unit increase in imputation accuracy for higher SNP densities (e.g. minimum 

correlation coefficient=0.081 at 50 000 SNPs). Imputation accuracy increasingly became a function of 

shared population-wide LD between SNPs rather than pedigree relationships; with sufficient SNP 

density, LD can be better captured and FImpute software (Sargolzaei et al., 2014) is better able to use 

this information instead of relying more on pedigree relationships provided. This software executes 

imputation under the assumption that all animals are somehow related, with shorter shared 

haploblocks capturing more distant relationships (Sargolzaei et al., 2014). With shorter distances 

between SNPs, and higher LD (Chapter 3), FImpute is therefore able to capture more distant genomic 

relatedness, which would be equivalent or superior to an animal’s depth of pedigree.  

Although results from this study show improved accuracy with closer genetic relatedness between 

validation and reference animals, it is recommended that future genotyping efforts be focused towards 

genotyping all major seedstock animals of the SA Drakensberger breed at higher density. To achieve 

accurate imputation, it is key that the pedigree of the animal imputed is genotyped on higher density 

(Berry & Kearney, 2011). Because the use of reproductive technologies, such as artificial 

insemination (AI), is considerably lower in beef cattle than in dairy cattle (Berry et al., 2016), it will 

be more challenging to identify bulls with high genetic impact that are used across herds. Reduction 

in the cost of genotyping will, however, enable more animals to be genotyped at higher densities, 

which may facilitate the establishment of larger reference populations and hence more accurate 

imputation (Berry & Kearney, 2011).   

 

4.4.1.3. Criteria for SNP selection in terms of genomic characteristics 

The imputation accuracy achieved per panel was conditional on the characteristics of the selected 

SNPs. Using the strategy that based SNP selection on MAF and LD, a mean±standard deviation 

ACRANIM estimate of 0.970±0.022 could be achieved using only 5 000 SNPs whilst equivalent 
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imputation accuracies were only achieved at a 20 000 SNP panel density when other strategies, e.g. 

random and mid-point selection, were used.  

SNP selection strategies that considered their MAF and an additional attribute, either inter-SNP 

distance or LD, generally produced better imputation accuracies than strategies that chose SNPs 

randomly or based solely on genome-wide dispersion. The worst method for SNP selection (RAN) 

showed significantly more variability in genomic dispersion than the best method (MAFLD) so 

poorer imputation accuracy was expected for this method. For the 10 000 SNP panels constructed, the 

mean±standard deviation distance between adjacent SNPs, in kilobase pairs (kb), was 250.30±266.03, 

251.12±35.85, 251.00±100.05, 251.10±49.95 and 251.16±101.69 units when the RAN, MID, PAM, 

DISTMAF and MAFLD methods were employed.  

The variability in distance between adjacent SNPs observed for RAN suggested that certain genomic 

regions were neglected using this method; lower imputation accuracy could be expected considering 

the weak LD estimated for SA Drakensbergers between adjacent SNPs (Chapter 3). This was 

corroborated by the fact that the difference in mean imputation accuracy between MAFLD and RAN 

selection strategies was more pronounced at lower panel densities; mean CORANIM and ACRANIM 

estimates were 0.035 and 0.016 units higher at a 2 500 SNP density compared to only 0.003 and 0.001 

units higher at a 50 000 SNP density. Similarly, Judge et al. (2016) documented 0.031 versus 0.004 

units higher accuracy for block selection, which was carried out the same as MAFLD in the present 

study, as opposed to random selection; these selections methods were also the best and worst methods 

in their study. A major contributing factor was the enrichment of chromosomal extremities when 

MAFLD was used; while a second SNP was selected in the first and last chromosomal segments, no 

SNPs were selected in these regions when RAN was used. Using the MAFLD method, SNPs were 

furthermore more evenly distributed than RAN because selection was done within genomic segments 

of even size. 

The differences in imputation accuracy between the strategies that maximized MAF (DISTMAF and 

MAFLD) were negligible despite the fact that the variability in inter-SNP distance was considerably 

higher for MAFLD; CORANIM and ACRANIM were both, for example, only ~0.001 units higher for 

MAFLD than DISTMAF at a 2 500 SNP density. Genomic dispersion of SNPs was therefore not the 

most important factor impacting imputation accuracy. The mean±standard deviation MAF across the 

10 000 SNPs was 0.272±0.140, 0.272±0.138, 0.270±0.140, 0.426±0.065 and 0.420±0.074 for the 

RAN, MID, PAM, DISTMAF and MAFLD selected panels. The SNP MAF was therefore a key 

factor in determining imputation accuracy; the two methods with the highest mean and smallest 

standard deviation MAF (DISTMAF and MAFLD) generated the best and second best imputation 

accuracies, with minor differences between them (0.001 difference in CORANIM using 10 000 SNPs). 

In addition to selecting on a score of MAF and LD, the MAFLD strategy indirectly selected for even 

dispersion across autosomes by means of selecting within genomic segments of equal size and hence 

the similarity and slight superiority in resulting accuracy of this strategy to DISTMAF was expected. 

Moreover, the variability in imputation accuracy between all strategies that grouped candidate SNPs 
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in some way, either within segments or clusters, was expected to diminish with increasing density of 

the reduced panel. For higher increments of panel density, each autosome was divided into a higher 

number of segments of shorter length. The probability of selecting the same SNP across different 

selection strategies therefore became higher because there were fewer options, candidate SNPs, to 

choose from within smaller segments. 

SNP selection methods combining both attributes, i.e. MAF and LD, have previously been reported to 

generate the most accurate imputation in cattle compared to other methods such as random selection, 

selection using distance scores or selection using machine-learning algorithms (Carvalheiro et al., 

2014; Judge et al., 2016). Other studies have found that placing emphasis on either one of these 

attributes, i.e. MAF (Corbin et al., 2014; He et al., 2018) or LD (Badke et al., 2013; Ogawa et al., 

2016), while maintaining even genomic dispersion is more accurate than assuring even genomic 

dispersion alone. Improvements of 0.05 units proportion correctly imputed (1 000 SNP low-density 

panel; Corbin et al., 2014) and 0.6 percentage correctly imputed (6 000 SNP low-density panel; He et 

al., 2018) have been reported when MAF was optimized; while 0.02, 0.01 and 0.005 unit accuracy 

improvements (concordance rate) were achieved when selection for LD was performed within 

genomic segments, similar to the present study, to construct 1 000, 4 000 and 10 000 SNP panels, 

respectively (Ogawa et al., 2016). Results presented here were therefore consistent with previous 

research and suggests that if a reduced panel is to be designed for the SA Drakensberger, MAF and 

LD need to both be considered. This makes sense considering the weak estimates of genome-wide LD 

and high proportions of lower MAF documented in Chapter 3 of this thesis. 

 

4.4.2. Imputation accuracies per SNP 

 

4.4.2.1. Differences in imputation accuracy between and within autosomes 

Several imputation studies in cattle have reported differences in imputation errors per chromosome 

(e.g. Berry & Kearney, 2011; Sun et al., 2012; Chud et al., 2015; Judge et al., 2016; Bernardes et al., 

2018). Larger autosomes are expected to harbour more SNPs, which facilitates the capturing of 

stronger LD and subsequently enables more accurate inference of haplotypes (Sun et al., 2012). In 

agreement with previous research, imputation accuracy was superior for larger autosomes, as 

previously shown for dairy cattle (Judge et al., 2016), and was higher for autosomes that displayed 

stronger average LD between SNPs (Chapter 3; Lashmar et al., 2018), as previously shown for 

crossbred- (Chud et al., 2014) and Bos indicus beef cattle (Boison et al., 2015). In Chapter 3 of this 

thesis, however, it was shown that stronger LD estimates for certain autosomes might be an artefact of 

closer distances between SNPs and are not necessarily a reflection of stronger relationships between 

evenly dispersed SNPs. There may therefore be a higher probability that the greater imputation 

accuracy estimated for longer autosomes is because the low SNP-level accuracies in poorly imputed 

regions, such as the chromosomal extremities, are averaged out more over greater lengths (Judge et 

al., 2016). Conversely, shorter chromosomes are disadvantaged because these poorly imputed SNPs 
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proportionally comprise a greater proportion of the total number of SNPs mapped to these 

chromosomes. 

A further contributor to variability in accuracy between autosomes could be the gaps in mapped SNPs 

identified on specific autosomes. These gaps are indicated in Addendum 4. The largest identified 

genomic region that did not harbour any SNPs was a 2.3-megabase pairs (Mb) region on BTA12. 

These gaps between SNPs on the high-density panel (i.e. 120 608 SNP panel) resulted in certain 

segments in those regions not harbouring any candidate SNPs to select from. Adjacent segments were 

enriched with a second SNP and the dispersion of SNPs was therefore uneven flanking these gap 

regions.  

Differences in correlation-based imputation accuracy were observed for SNPs located on the two 

autosomal extremes versus in the middle of autosomes. This was in agreement with studies such as 

Badke et al. (2013) that showed 0.023 units improvement in imputation accuracy for the middle 10% 

of SNPs versus SNPs within 5% of the chromosomal peripheries. Because the MAFLD selection 

methodology enriched the two extremes on each autosome with an extra SNP, higher mean 

imputation accuracies (+0.040 and +0.020 units higher than RAN for the first and last 1Mb regions 

across chromosomes) were achieved for SNPs located in these regions when this method was used. 

Furthermore, despite selecting additional SNPs on the chromosomal extremities, Judge et al. (2016) 

still documented poor imputation accuracy for shorter chromosomes due to the peripheral regions 

making up a larger proportion of the chromosome. Variation in SNP imputation accuracy within 

chromosomes was reduced in the present study as the SNP density of the panel increased, suggesting 

that the effect of a chosen SNP’s location within chromosome is more detrimental to imputation 

accuracy when SNP density is already sparse. 

 

4.4.2.2. Imputation of low MAF markers 

The Sanga subspecies has been shown to suffer a bias when commercial genotyping panels have been 

employed and this has been evidenced by a higher proportion of low-MAF, less informative SNPs, 

relative to taurine breeds (e.g. Qwabe et al., 2013). This has resulted in what is referred to as an 

ascertainment bias, introduced because of the exclusion of these breeds from SNP discovery processes 

involved in the panel design. Although commercially available and custom SNP panels available may 

have some utility for SA Sanga breeds, albeit sub-optimal, no Sanga-specific SNP panel exists at 

present (Zwane et al., 2019). Larger proportions of low MAF SNPs have therefore been observed for 

these breeds when these commercial SNP panels have been employed in genomic studies (e.g. Zwane 

et al., 2016; Lashmar et al., 2018). The impact of low MAF on imputation accuracy has been 

extensively studied and reported results have varied depending on the parameter(s) used to define 

accuracy (e.g. Mulder et al., 2012; Brøndum et al., 2014; Calus et al., 2014). Results from the present 

study corroborate the sensitivity of accuracy relative to MAF being a factor of the used measure of 

imputation accuracy. Concordance-based measure of accuracy (GCRSNP and ACRSNP) decreased with 

increasing MAF, whilst the correlation-based accuracy measure (CORSNP) increased with increasing 
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MAF. Correlation-based measures have been suggested to minimize the dependency of imputation 

accuracy on SNP allele frequencies (Sargolzaei et al., 2014; Ventura et al., 2014). The difference in 

imputation accuracy was more pronounced for the RAN method than the MAFLD method as SNPs 

were not specifically chosen to maximize MAF; the difference in mean ACRSNP between the lowest 

(0.01<MAF≤0.02) and highest (0.4<MAF≤0.5) MAF classes was for example 0.050 units for RAN as 

opposed to 0.017 for MAFLD. The mean CORSNP increased from 0.821 to 0.955 for the same 

intervals with RAN. Similarly Ma et al. (2012) showed allele correct rates for imputation carried out 

with FImpute to decrease from >99% to ~93% and the correlation coefficient to increase from ~80% 

to ~85% when MAF increased from 0.1 to ~0.5 in European Red cattle.  

The lower mean correlation-based imputation accuracy for SNPs within MAF intervals below 10% 

suggests that imputation of rare variants was more challenging (Calus et al., 2014), which is 

concerning considering that these variants may be associated with unique or complex traits such as 

those pertaining to adaptability (Zwane et al., 2019). Difficulty in imputing these markers may 

furthermore negatively influence the applicability of imputation towards GWAS as these studies use a 

SNP-by-SNP approach to test for association as opposed to using all SNPs collectively as in GS 

(Marchini & Howie, 2010). The independence of the COR accuracy measure to the influence of 

MAF, has therefore deemed this measure more robust when low-MAF SNPs are more abundant 

(Hickey et al., 2012; Ogawa et al., 2016).  

 

4.5 Conclusion 

Genomic selection is currently undertaken in many countries globally using medium to high SNP 

density panels. Genotyping at higher densities is costly and financially unfeasible within the SA beef 

industry; this has been evidenced by the smaller number of genotyped animals compared to more 

developed countries globally. Genotyping selection candidates for lower densities and imputing to 

higher density will, however, significantly reduce the costs involved in routinely applying genomic 

selection strategies for locally important breeds in the commercial sector. The development of such 

panels generally relies on the identification of the most informative SNPs for a breed from a higher 

density genotypic platform, whether it is high-density genotyping arrays or sequencing data. Because 

SNP panels with specific utility in indigenous SA cattle are non-existent, the employment of a low-

density panel in genomic technologies is contingent on identifying the most informative SNPs for 

these breeds. Results from this study indicate that a custom low-density panel consisting of at least 10 

000 SNPs can be generated by using a combination of MAF and LD as selection criteria. Imputation 

accuracies from this panel were comparable with accuracies achieved internationally; a mean 

imputation error rate of <3% per animal could be achieved for the SA Drakensberger. Enrichment of 

the peripheral regions on chromosomes, by selecting more SNPs in these regions, will aid in 

improving mean chromosome-wide imputation accuracy. 
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Evaluating the accuracy of single-step genomic prediction using imputed 

genotypes of the SA Drakensberger beef cattle breed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extracts of this chapter will be prepared as a manuscript to be submitted for 

publication. 
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5.1. Introduction 

Until recently, genome-enhanced breed improvement programs were not a realistic option for South 

African beef cattle. The inauguration of the Beef Genomics Program (BGP) in 2015 assisted in 

accelerating efforts towards implementing genomic selection for a handful of the approximately 30 

local beef breeds (van Marle-Köster & Visser, 2018a). Considerable focus was placed on indigenous 

cattle resources and state funding facilitated training populations to be assembled for the most 

numerous breeds, including the SA Bonsmara composite (SA Stud Book, 2017a) and the SA 

Beefmaster (Beefmaster Breeders’ Society of SA & SA Stud Book, 2017). With training populations 

comprising more or less 2 200 genotyped animals for the SA Bonsmara and 800 genotyped animals 

for the SA Beefmaster, single-step genomic prediction methodology was implemented to estimate and 

release genomic-estimated breeding values (GEBVs) for these breeds (van Marle-Köster & Visser, 

2018b). Due to the abundance of performance records, sufficient phenotypic data for a number of 

economically important traits was deemed adequate to consider genomic evaluation. Despite the fact 

that the number of genotyped animals per breed in SA is regarded as small (Mrode et al., 2018), 

especially in relation to the numbers acquired internationally (e.g. 1.6 million Holstein cattle in North 

America and >1 million total cattle in Ireland by 2017; ICBF, 2017; Weller et al., 2017); accuracies 

could potentially be improved by between 15 to 30% for lowly heritable traits using training 

populations of these sizes (van der Westhuizen et al., 2017). The SA Drakensberger is a prominent 

breed within the SA beef industry, displaying growth performance that is superior to most Sanga 

breeds and is comparible with exotic breeds within the commercial beef-producing sector of SA. With 

a history of diligently kept trait records, it is a prime candidate breed for the implementation of 

genomic selection. 

Genomic evaluations were conventionally carried out using multi-step methods, whereby estimated 

breeding values (EBVs) were de-regressed to firstly estimate SNP effects and subsequently direct 

genomic values (DGVs) (Lourenco et al., 2015). These DGVs can be estimated for selection 

candidates based on their genotypes alone i.e. using the sum of their SNP effects (Lourenco et al., 

2015). Relatively recently a quicker and simpler alternative to this methodology, the single-step 

genomic BLUP strategy, was proposed and has gained popularity (ssGBLUP; Misztal et al., 2009; 

Aguiler et al., 2010). What mainly differentiates this strategy of genomic evaluation from others is the 

extension of the relationship matrix into an H-matrix, which combines the genomic relationship 

matrix (G) of genotyped animals with a conventional numerator relationship matrix (A) that includes 

all non-genotyped animals in the pedigree (Christensen et al., 2012). Genotypic profiles are thereby 

essentially “imputed” for non-genotyped animals, using the genotypes available (Fernando et al., 

2014). Because this strategy does not rely on prior de-regression of EBVs, a major advantage is 

computational time efficiency as GEBVs can be estimated for young, newly genotyped animals 

quicker (Legarra et al., 2014). The bias introduced in selective genotyping, by genotyping only 

animals based on the availability of information, is also overcome using ssGBLUP (Abdalla et al., 

2019). A main challenge with this strategy, however, is ensuring that the A and G matrices are 
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compactable in the H-matrix, and this generally requires adjustments in the form of scaling. National 

beef genomic evaluations are currently undertaken using single-step methodology in for example 

Europe and North America (Berry et al., 2016).  

The single-step method is ideal for application in situations such as those pertaining to the SA 

Drakensberger where the prediction of GEBVs will rely jointly on the genotypes and phenotypes 

available. The number of genotyped animals for this breed is currently relatively small (approximately 

1 200 animals). The pedigree completeness of the breed up to a pedigree depth of six generations is, 

however, approximately at 70% (Abin et al., 2016) and performance recording has been made 

compulsory since the 1980’s (SA Drakensberger Breeders’ Society, 2017). Emphasis of trait 

measurement has been on growth performance and the initial focus of GS will therefore be limited to 

these traits.  

To routinely implement single-step genomic evaluation will require relatively frequent updating of the 

H-matrix used and this will include the addition of more genotyped animals. Despite the suitability of 

ssGBLUP for the breed, sustaining this technology can become financially unfeasible when 

considering current genotyping costs because high-density genotypes will still have to be acquired for 

major seedstock animals, that have a high genetic impact within the national herd, to accurately 

predict GEBVs of selection candidates. Uptake of genomic technologies by farmers, in terms of 

genotyping key animals within their herds, will furthermore need to be improved; to improve breed 

representation of the genotyped animals in the H-matrix, not only high-impact seedstock animals but 

animals across the spectrum of performance, i.e. both good and bad performing animals from both 

sexes, will have to be genotyped at higher density. Imputation will therefore have to be integrated into 

such a pipeline so that genotyping can be undertaken for selection candidates at a more affordable, 

lower density of SNPs, as this will be the responsibility of participating breeders. The achievable 

imputation accuracy for the SA Drakensberger from low-density genotyping panels has been 

addressed in Chapter 4 of this thesis. 

The utility of imputed genotyped for GEBV estimation has been studied for beef cattle (e.g. Berry 

& Kearney, 2011; Cleveland et al., 2011; Mulder et al., 2012) and Wu et al. (2016) suggested that 

the bias from wrongly imputed genotypes, even when imputation error rates are high, will not 

significantly influence the accuracies of genomic predictions made from these genotypes. In the 

previous chapter of this study, imputation accuracy from several custom-derived low-denity panels 

were evaluated. It was concluded that a genotyping panel consisting of approximately 10 000 SNPs 

that were selected based on a combination of their minor allele frequncy (MAF) and linkage 

disequilibrium (LD), would be sufficient to achieve a mean±standard deviation animal-wise 

imputation accuracy of 0.972±0.024 for the SA Drakensberger.  

The aim of this chapter was therefore to investigate the impact of using imputed genotypes on 

subsequent GEBV accuracy, using the ssGBLUP approach. The objective was to quantify the 

improvements in breeding value accuracy possible by using either true or imputed genotypes in 

addition to traditional pedigree information.  
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5.2. Material and methods 

The Ethics committee of the University of Pretoria’s Faculty of Natural and Agricultural Science 

granted ethics clearance (ethics number: EC151106-024). 

 

5.2.1. Pedigree and phenotypic data for the study population 

Genotypic and pedigree data for 1 135 SA Drakensberger cattle (214 male and 921 female animals) 

were used in the present study. The complete pedigree of the entire SA Drakensberger breed consisted 

of 232 169 animals. A cohort of 6 074 animals had direct pedigree relationships to the 1 135 animals 

with genotypes available. The average pedigree depth of the genotyped animals was 11.5 generations. 

Phenotypic records for two growth traits namely birth weight (BW) and weaning weight (WW) were 

studied; both the direct- and maternal breeding values were evaluated for these traits. Details 

pertaining to the phenotypic information that was available are depicted in Table 5.1. SA Stud Book 

provided pedigree and performance data with the signed consent of the SA Drakensberger Breeders’ 

Society.  

 

Table 5.1 Descriptive statistics of performance records for SA Drakensberger growth traits. 

Trait Observations Mean (kg) 
Standard deviation 

(kg) 

Birth weight 152 931 35.04 4.55 

Weaning weight 133 236 211.28 37.52 

 

5.2.2. Single nucleotide polymorphism data for the study population 

The SNP data used in the present study was generated using the GeneSeek® Genomic ProfilerTM uHD 

panel, which features 139 480 SNPs with a mean SNP density of 1 SNP per 19 kilobase pairs (kb). 

Standard quality control procedures in PLINK (Purcell et al., 2007) were followed to derive the final 

set of SNPs used in analysis; this included filtering out SNPs based on call rate (<95%), MAF (<1%) 

and Hardy-Weinberg Equilibrium P-values (<0.01 x 10-6). Any SNPs with unknown genomic 

positions or that were located on non-autosomal chromosomes were discarded. Sporadically missing 

genotypes per animal were imputed using FImpute (Sargolzaei et al., 2014). A total of 120 608 SNPs 

were available for the 1 135 genotyped individuals after edits. 

 

5.2.3. Breeding value estimation 

EBVs for each studied trait were estimated using three distinct sets of information. Firstly, breeding 

values were estimated traditionally, using a pedigree-based relationship matrix only. Secondly, 

genomic breeding values were estimated using single-step methodology using the true set of complete 

genotypes (120 608 SNPs). Lastly, genomic breeding values were estimated as in the previous step 

but using imputed genotypes; imputation was undertaken using a custom 10 000-SNP low-density 

panel i.e. 110 608 SNPs were imputed genotypes. The custom panel was derived by choosing from 
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the pool of 120 608 SNPs, the 10 000 SNPs with the highest combinative score of their standardized 

MAF and LD within segments of equal length. This selection strategy is detailed in Chapter 4 

(4.2.3.4. Segment-based selection combining MAF and LD; MAFLD). Imputation of the masked 

genotypes, i.e. the genotypes not in common between the custom low-density panel and the  120 608-

SNP high-density panel, was undertaken for 235 validation animals, which were the youngest of the 

entire 1 135-animal data set, with FImpute software (Sargolzaei et al., 2014). 

 

Each of these strategies for breeding value estimation were carried out as follows: 

 

5.2.3.1. Best linear unbiased prediction (BLUP) 

A conventional animal model, using a pedigree-based numerator relationship matrix (A) was used to 

estimate breeding values for each trait. The model implemented to estimate these breeding values was 

defined as follows: 

 

𝒚 = 𝑿𝒃 + 𝒁𝟏𝒂 + 𝒁𝟐𝒎 + 𝒁𝟑𝒑𝒆 + 𝒆 

[1] 

 

where y was the vector of phenotypic values, b was a vector of fixed effects, a was a vector of random 

genetic effects and e was the  vector of random residuals. The matrices X, 𝒁𝟏, 𝒁𝟐 and 𝒁𝟑 were the 

incidence matrices associating the fixed (b) and random (𝒂=sire x herd interaction, 𝒎=maternal 

additive genetics and 𝒑𝒆 =permanent environment) effects with the phenotypic values (y), 

respectively. For both traits, the fixed effects included were the sex, dam status i.e. whether the dam 

was a heifer or a cow, and contemporary group. For BW, the number of days into the calving season 

that the animal was born was also considered as a fixed effect; for WW, the age at weaning was 

considered. Random genetic effects included the sire x herd interaction as well as the additive genetic 

merit of the dam and the animal itself. For WW, an addition random effect considered was the 

permanent environment of the dam. Zero genetic correlation between direct and maternal effects was 

assumed. 

Variance components for BW and WW traits were estimated by using VCE software (Variance 

Component Estimation; Groeneveld et al., 2008) and were provided by SA Studbook. The estimated 

variance components were used to calculate heritabilities (h2) for each trait using the equations VA/VT 

for direct- and VM/VT for maternal heritability, respectively. In the afore-mentioned equations VT 

represented the total variance for the specific trait and, VA and VM represented the variance 

components for direct additive and maternal additive genetics, respectively. Heritability estimates for 

these traits are depicted in Table 5.2.  
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Table 5.2 Estimates of heritability for birth- and weaning weights of SA Drakensberger cattle. 

Trait Heritability (h2) 

 Direct Maternal 

Birth weight 0.34 0.12 

Weaning weight 0.25 0.17 

 

5.2.3.2 Single-step genomic BLUP (ssGBLUP) 

The ssGBLUP animal models were executed using Mix99 software (Lidauer et al., 2015) to estimate 

GEBVs using phenotypic information of both genotyped and non-genotyped animals and 

incorporating both SNP and pedigree information in the process. The animal model employed had the 

same elements as the model employed for traditional BLUP, however, replaced the relationship 

matrix with a matrix, H, which was the product of incorporating the genomic relationship matrix (G) 

into the pedigree-based numerator relationship matrix. As described by Legarra et al. (2009), 

Christensen & Lund (2010) and Aguilar et al. (2011); the inverse of the H-matrix, which was used in 

the model, was constructed as follows: 

 

𝐻−1 =  𝐴−1 +  [
0                     0
0  𝐺−1 −  𝐴22

−1]  

[2] 

 

where 𝐺 represented the genomic relationship matrix, 𝐴22 represented the pedigree-based relationship 

matrix between genotyped animals only and 𝐴 represented the pedigree-based relationship matrix 

between all animals, genotyped and non-genotyped. The numerator relationship matrix was 

constructed using Relax2 software (Strandén & Vuori, 2006), using the complete SA Drakensberger 

pedigree as input. The G and H-1 matrices were then prepared using the hginv program of Mix99 

software (Lidauer et al., 2015). The method using Euclidean distances between animals was used in 

the preparation of the G and hence H-1 matrices (Garcia-Baccino et al., 2017). Two separate H-1 

matrices were prepared - one using the G constructed from actual data and one using the G 

constructed from the data set including imputed genotypes. The former data set consisted of the true 

genotypes of the 120 608 SNPs genotyped per animal whereas the latter data set consisted of 10 000 

true genotypes, selected using MAFLD SNP selection (Chapter 4), and 110 608 imputed genotypes.  

 

5.2.3.3. Prediction accuracy 

Reliabilities of GEBVs were approximated using the ApaX99 software (Lidauer et al., 2015) and by 

means of the calculation method suggested by Misztal & Wiggans (1988). The accuracy of GEBVs 

per animal was calculated as √𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦. The pedigree-based EBVs were used as a benchmark for 

comparison and the Pearson correlation, r(EBV, GEBV), between EBVs and GEBVs were estimated. 

The GEBV accuracies using actual genotypes (GEBVTRUE) were calculated for the entire set of 1 135 
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animals, whilst the GEBV accuracies using a proportion of imputed genotypes (GEBVIMPUTED) were 

calculated for the 235 youngest animals that were used as the validation population in imputation 

carried out in Chapter 4.  

 

5.3. Results 

 

5.3.1. Accuracy of genomic predictions without imputation 

The relationship between EBV and GEBVTRUE accuracies was first estimated to determine whether 

the addition of genomic information to traditional pedigree-information increased the accuracy of 

EBVs for the growth traits studied. The mean (±standard deviation) accuracy of EBVs is summarized 

in Table 5.3. 

 

Table 5.3 Mean EBV and GEBV accuracies for the 1 135 genotyped SA Drakensberger cattle. 

Trait EBV accuracy±SD GEBV accuracy±SD* 

BWdirect 0.783±0.081 0.799±0.065 

BWmaternal 0.696±0.107 0.723±0.091 

WWdirect 0.749±0.081 0.769±0.066 

WWmaternal 0.725±0.115 0.747±0.100 

 *GEBVs were estimated from the complete set of 120 608 SNPs (without imputation) 

 

The mean improvement in breeding value accuracy that was made using genomic information was 

0.016, 0.026, 0.019 and 0.021 units for BWdirect, BWmaternal, WWdirect and WWmaternal, respectively. 

Across the 1 135 genotyped animals, the maximum per-animal improvement in accuracy was 0.294, 

0.336, 0.247 and 0.311 units for BWdirect, BWmaternal, WWdirect and WWmaternal. The relationship between 

the animal-wise EBV and GEBVTRUE accuracies for birth- and weaning-weight traits are illustrated in 

Figure 5.1 and 5.2. 
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Figure 5.1 Scatter plot indicating the relationship between accuracies of EBV and GEBVTRUE for 

direct- (top) and maternal (bottom) birth weight traits of the SA Drakensberger cattle sampled. 

 

 

Figure 5.2 Scatter plot indicating the relationship between accuracies of EBV and GEBVTRUE for 

direct- (top) and maternal (bottom) weaning weight traits of the SA Drakensberger cattle sampled. 

 

 

 



 95 

5.3.1. Accuracy of genomic predictions with imputed genotypes 

The accuracy of predicted GEBVs were estimated from genotypic data sets consisting of either actual 

or imputed SNP genotypes. The mean GEBV accuracies achieved are summarized in Table 5.4.  

 

Table 5.4 Mean GEBV accuracies for four growth traits estimated using true- versus imputed SNP 

genotypes. 

Trait GEBV prediction accuracy* 

Correlation** 

 True±SD (range) Imputed±SD (range 

Birth weight (direct) 0.774±0.056  

(0.564-0.951) 

0.773±0.055  

(0.570-0.951) 
1.000 (P<0.001) 

Birth weight (maternal) 0.657±0.068  

(0.456-0.776) 

0.656±0.068  

(0.460-0.778) 
1.000 (P<0.001) 

Weaning weight (direct) 0.739±0.054  

(0.551-0.926) 

0.739±0.054  

(0.558-0.926) 
1.000 (P<0.001) 

Weaning weight (maternal) 0.670±0.075  

(0.461-0.814) 

0.669±0.074  

(0.461-0.814) 
1.000 (P<0.001) 

* Mean ± standard deviation; ** Pearson correlation 

 

As depicted in Table 5.4, minimal differences were observed between GEBV accuracies produced 

from the genomic evaluations using either actual or imputed genotypes; the accuracies produced were 

mostly the same, with a 0.001 units difference observed in mean GEBV accuracy for BWdirect, 

BWmaternal and WWmaternal.  

To investigate the influence of true versus imputed genotypes on the actual breeding value produced, 

and not the accuracy, the unit difference (in kilograms) per trait was quantified between the different 

analyses. Comparisons were made between breeding values produced using pedigree data versus true 

genotypes (𝛥𝐺𝐸𝐵𝑉𝑇𝑅𝑈𝐸−𝐸𝐵𝑉), pedigree data versus imputed genotypes (𝛥𝐺𝐸𝐵𝑉𝐼𝑀𝑃−𝐸𝐵𝑉) and true versus 

imputed genotypes (𝛥𝐺𝐸𝐵𝑉𝑇𝑅𝑈𝐸−𝐺𝐸𝐵𝑉𝐼𝑀𝑃
). Because animals with lower EBV accuracies are expected 

to gain more in accuracy from genomic evaluation, as opposed to animals with high EBV accuracies, 

validation animals were seperated into two groups of below average versus above average EBV 

accuracies to compare the kilogram difference in breeding values estimated. The unit difference in 

breeding values produced for the four growth traits are illustrated in Figure 5.3. 
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Figure 5.3 Bar plots illustrating the unit difference between mean breeding values produced with and 

without genomic information and the use of imputation for the four growth traits studies (top left: 

BWdirect, top right: BWmaternal, bottom left: WWdirect, bottom right: WWmaternal). 

 

Larger differences between traditional- and genomic breeding values were always observed for 

animals that traditionally had lower EBV accuracy i.e. the addition of genomics produced a breeding 

value that was more different than its traditional breeding value for these animals. The kilogram 

breeding value difference was always larger between EBV and GEBVIMPUTED than between EBV and 

GEBVTRUE. For BWdirect, BWmaternal, WWdirect and WWmaternal the root mean square error values 

(RMSE) were 0.154, 0.206, 3.960 and 1.782kg for 𝛥𝐺𝐸𝐵𝑉𝑇𝑅𝑈𝐸−𝐸𝐵𝑉 versus 0.158, 0.209, 3.994 and 

1.810kg for 𝛥𝐺𝐸𝐵𝑉𝐼𝑀𝑃−𝐸𝐵𝑉 . The RMSE values for 𝛥𝐺𝐸𝐵𝑉𝑇𝑅𝑈𝐸−𝐺𝐸𝐵𝑉𝐼𝑀𝑃
 were always the smallest; 

RMSE values were 0.023, 0.013, 0.104 and 0.104kg for BWdirect, BWmaternal, WWdirect and WWmaternal. 

The Spearman’s rank correlation (P<0.001) between the EBV and GEBVTRUE (EBV and 

GEBVIMPUTED) was 𝑟𝑠 =0.965 (𝑟𝑠 =0.965), 𝑟𝑠 =0.980 (𝑟𝑠 =0.980), 𝑟𝑠 =0.961 (𝑟𝑠 =0.961) and 𝑟𝑠 =0.982 

(𝑟𝑠=0.982) for BWdirect, BWmaternal, WWdirect and WWmaternal. These correlations were always 1 (0.9998, 

P<0.001) between GEBVTRUE and GEBVIMPUTED for all four traits studied. 
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5.4. Discussion 

 

5.4.1. Genomic predictions without imputation 

In this chapter, a single-step genomic evaluation was applied to the SA Drakensberger breed for two 

growth traits, having both direct and maternal components. To evaluate firstly the value of using the 

single-step approach to genomic evaluation, the accuracy of ssGBLUP GEBVs were compared to the 

accuracy of EBVs estimated by means of traditional pedigree-based BLUP. The single-step approach 

to genomic evaluations takes advantage of information from both non-genotyped and genotyped 

animals by combining the numerator relationship matrix and genomic relationship matrix into one H-

matrix (Forni et al., 2011). The ssGBLUP approach to genomic prediction has previously been shown 

to produce highly accurate GEBVs (e.g. Gao et al., 2015; Mäntysaari et al., 2017; Nayee et al., 2018). 

Considering that the sample of genotyped animals used in this study was numerically relatively small, 

but consisted of animals with extensive pedigree records available (mean=11.5 generations depth), it 

was expected that single-step methodology would be the most appropriate strategy for applying GS.  

The results generated in this study were consistent with expectations and previous reports; higher 

breeding value accuracies were observed when ssGBLUP was undertaken as opposed to pedigree-

based BLUP (e.g Aliloo et al., 2018; Johnston et al., 2018). The improvements in accuracy observed 

were, however, marginal with a mean increase of approximately 0.02 units across the four traits 

studied. Authors Song et al. (2018) found similarly small improvements (~0.01 units) when GEBV 

estimates across seven body measurement traits were based on simulated data of a small number of 

genotyped animals. Song et al. (2018) observed that even when the number of genotyped animals 

reached 3 000 animals, the improvements with ssGBLUP was small when this number was 

proportionately small in comparison to the number of animals in the pedigree (e.g. 26 000), which 

was used in BLUP. For the SA Drakensberger breed, 0.005% of the animals in the complete pedigree 

are genotyped; considerable increases in the number of genotyped animals will therefore need to be 

achieved to significantly increase GEBV accuracies from ssGBLUP. 

In the current study, the improvements that were observed for the maternal traits were superior to 

those observed for traits considering only the animal’s additive genetics. For birth weight, for 

example, the improvement in accuracy from ssGBLUP was 0.01 units higher for the maternal 

component than the improvement for the direct genetic component. Even though few studies have 

been performed in beef cattle using the single-step approach, Lourenco et al. (2013) showed that with 

simulation data, ssGBLUP prediction accuracies were always superior to BLUP prediction accuracies, 

and this was especially true for maternal traits (Legarra et al., 2014). Because the focus of breeding 

value estimation in the present study was on growth traits, which have been more diligently measured 

over a longer period of time, traditional EBVs were expected to have relatively high accuracies 

already and subject to potentially only small improvement from the addition of genomic information. 

The larger difference in EBV and GEBV-based accuracies between the direct and maternal 

components of birth weight compared to weaning weight can also be related to a larger discrepancy in 
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heritabilities of these components. Many previous studies have reported lower predictive ability of 

GEBVs for lower heritable traits, however, these traits are expected to gain the most from GS 

methodology; GEBV accuracy for lowly heritable traits have been shown to improve with a larger 

number of phenotypic records included in the prediction model (Behmaram et al., 2013). Using a 

training population of approximately 2 200 animals, van der Westhuizen et al. (2017) observed up to 

15% improvements in prediction accuracy for lowly heritable and hard-to-measure traits. It is 

therefore expected that further improvements can be made for these traits, once more animals are 

genotyped and these genotypes are included in the constructed H-matrix. Emphasis should be placed 

on phenotyping lowly heritable and hard-to-measure traits for the SA Drakensberger as many of these 

traits are proxy-indicators for the overall ability of indigenous breeds to adapt (Scholtz et al., 2014).  

 

5.4.2. Genomic predictions with imputation 

The utility of imputed genotypes in genomic prediction equations have been studied previously in 

other beef cattle breeds (e.g. Weigel et al., 2010; Berry & Kearny, 2011; Cleveland et al., 2011; 

Mulder et al., 2012; Cleveland & Hickey, 2013; Aliloo et al., 2018) and results generally suggest a 

benefit. Studies on intensively raised livestock such as dairy cattle and pig populations have 

obtained correlations of ~0.95 between GEBVTRUE and GEBVIMPUTED (e.g. Weigel et al., 2010; 

Cleveland & Hickey, 2013) and this is expected because these livestock populations tend to have 

strong LD and thus share large genomic segments within-population. Imputation studies on these 

livestock species often include a substantial number of genotyped animals with high imputation 

accuracies being achieved. The effect of a small percentage of incorrectly imputed genotypes is 

therefore expected to be negligible, especially considering the fact that the GS algorithms generally 

estimate genome-wide SNP effects (Wu et al., 2016). 

Results presented in the present study indicated marginal differences (approximately 0.001 units) 

between GEBV accuracies produced from true- versus imputed SNP genotypes. Furthermore minor 

differences existed in kilogram breeding values produced; RMSE ranged from 0.013kg (BWdirect) to 

0.104kg (both WWdirect and WWmaternal). This suggests that the substitution of imputed genotypes for 

actual genotypes had minimal influence on the breeding values generated. For comparison, results by 

Aliloo et al. (2018) were of specific interest, as a similar correlation coefficient (r=0.95) was 

observed for East African crossbred dairy cattle that also have admixed genomes. Comparably, a 

smaller number of genotyped animals were included in the ssGBLUP H-matrix and considerably 

fewer SNPs were to be imputed (imputation from 10K to ±120K in this study versus imputation 

from 4K to 777K by Aliloo et al., 2018). Considering that, despite these limitations, results 

presented here compared favourably; one can deduce that, with improvements in the number of 

genotyped animals available and more diligent phenotyping efforts, ssGBLUP will be a valid 

strategy for admixed cattle such as the SA Drakensberger. Lastly, the fact that the correlation 

observed by Aliloo et al. (2018) was obtained despite poor animal-wise imputation accuracies 

(correlation as low as 0.65) and that results presented here could be achieved by using imputed 
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genotypes with a mean±standard deviation (minimum) correlation-based imputation accuracy of 

0.972±0.024 (0.862) indicates that imputation mediated GS is moreover a viable solution for these 

breeds. It is, however, recommended that GEBVs for these traits be generated and evaluated 

routinely as more genotyped animals become available as the results presented here are based on 

limited sample size. 

 

5.5. Conclusion 

This study provided a first insight into the application of genomic selection methodology for the 

South African Drakensberger breed using imputed genotypes. The results presented here should be 

interpreted with the consideration that a relatively small population of genotyped animals was 

available in comparison with global studies and should therefore be regarded as preliminary. The 

achieved prediction accuracies were, however, promising and suggest that the inclusion of imputed 

genomic information in breed improvement strategies for the breed will be beneficial. The accuracy 

of GEBVs were not sensitive to imputation errors less than 3%, indicating that the development of a 

low-density panel for the South African Drakensberger would be an invaluable addition towards 

realizing low-cost, genomic selection for the breed. 
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CHAPTER SIX 

 

CRITICAL REVIEW AND CONCLUSION 

 

 

6.1 General discussion and recommendations 

Efficient breed improvement ultimately relies on the ability to predict the genetic merit of individual 

animals so that the desired combination of alleles can be utilized to facilitate genetic progress in 

economically important traits (Jonas & de Koning, 2015). Traditionally, estimated breeding values 

(EBV) have been used as indicators of an animal’s genetic merit for recorded traits within a breed. 

These EBVs are calculated using best linear unbiased prediction (BLUP; Henderson, 1984) 

methodology, which relies purely on performance data and pedigree-based relationship estimates. 

Meuwissen et al. (2001) first proposed the enrichment of EBVs with genomic information and the 

acceptance of this proposition was driven by the promise of more precise selection and accelerated 

genetic gain. The implementation of genomic selection was made possible largely because of 

advances made in genomic technologies. These advances enabled the sequencing of draft genomes, 

which were subsequently used as references to develop SNP panels consisting of the most informative 

markers. Currently, these SNP panels form the basis of genomic selection pipelines and for various 

other research purposes (Gurgul et al., 2014).  

The genotyping panels that have been released commercially have been designed in such a way that 

their SNP content has optimal utility in specific breeds and, needless to say, this included the most 

popular and abundant breeds worldwide. The SNPs that were used to construct the first SNP panel for 

cattle, the Illumina® Bovine SNP50 (Matukumalli et al., 2009), were selected to be highly 

informative in Bos Taurus breeds. Subsequent commercial panels improved on this panel, in terms of 

SNP density and content, and later genotyping panels focusing specifically on the most prominent Bos 

Indicus breeds were also developed (e.g. GeneSeek® Genomic ProfilerTM Indicus; Ferraz et al., 2018). 

Higher density genotyping panels facilitated research ventures into high-resolution genomic 

characterization of taurine- and indicince breeds including the profiling of genome-wide patterns of 

linkage disequilibrium (LD; e.g. Khatkar et al., 2008), runs of homozygosity (ROH; e.g Purfield et 

al., 2012) and signatures of selection (SoS; e.g. Zhao et al., 2015). Although genotyping at such high 

SNP densities (e.g. Illumina® 777K) can provide significantly more information in certain situations, 

for instance in genome characterization and GWAS, the cost of genotyping, despite its reduction over 

the years, can render it unfeasible in routinely applied methods such as GS. Research ventures into GS 

methodology led to the realization that not all of the SNPs included on higher density panels are 

necessary to achieve accurate genomic breeding values (GEBVs). This in turn led to the exploration 

of genotype imputation from more affordable lower density genotyping panels with the view of 

implementing low-cost GS. 
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Applying low-cost GS will be an invaluable addition to traditional breed improvement programs 

involving indigenous cattle, especially in the developing world where most of these breeds are located 

(Mrode et al., 2018). A major concern, and the main driving force behind the motivation of this thesis, 

was that no genotyping panel with specific utility in globally uncommon and unique, indigenous 

breeds existed for such purposes. Many of these breeds are genetically distinct and harbour genomic 

diversity originating from both taurine and indicine ancestors; this genomic diversity facilitates 

efficient adaptation to different environments (Kim et al., 2019). Breeds of the Sanga subspecies are 

prime examples. Many inferences have been made about the history of these breeds on the African 

continent, including possible migration routes (e.g. Hanotte et al., 2002) but, despite this, the precise 

genetic composition of many of these breeds remains unresolved (Mwai et al., 2015). Previous efforts 

to characterize these cattle on the genome level have typically included too few animals genotyped on 

too sparse genotype densities to make detailed deductions on the genomic architecture of Sanga 

breeds. Inferences made from these efforts have, however, been sufficient to confirm expected 

genomic heterogeneity by studying shared germplasm with exotic breeds (e.g. Makina et al., 2016).  

One of the explicit objectives of the present research was to determine whether imputed SNP 

genotypes of the SA Drakensberger can be reliably used in genome-based breeding programs. The 

first objective was therefore to elucidate the usefulness of SNPs included on a commercial 150 000-

SNP panel for the breed. Makina et al. (2015) suggested this number of SNPs to be more appropriate 

for the breed than the SNPs on the initial 50K Illumina® panel in order to adequately capture linkage 

disequilibrium (LD) patterns to enable genomic selection (r2=0.2; Meuwissen et al., 2001). Breeds 

participating in the BGP were therefore routinely genotyped on this density. Albeit this density was 

sufficient to capture LD persisting for SNP pairs separated by larger genomic distances than 

previously suggested using 50 000 SNPs (~30kb versus <20kb), the persistence of LD was still weak. 

This was not surprising as shorter haplotypes are shared within breeds that are characterized by 

genomic diversity (Toosi et al., 2010). Admixture in the SA Drakensberger genome was introduced 

centuries ago; for older breeds, more opportunities have occurred for recombination events to disrupt 

LD that was present in the breed’s ancestors (Toosi et al., 2010). This was supported by the 

abundance of short ROH (ROH2-4Mb = 35.7%) observed in the SA Drakensberger genome (Chapter 3), 

which could have originated from the disruption of longer segments by recombination events 

(Purfield et al., 2012). The higher frequency of short homozygous haplotypes and weak genome-wide 

LD raised concerns about the achievable imputation accuracy (as well as the accuracy of genomic 

evaluations). 

It can be a difficult endeavour to pinpoint the precise SNP density and characteristics that a lower 

density genotyping panel should comprise of to facilitate accurate imputation to higher densities, as 

there are many determining factors involved. In terms of SNP density, however, rough estimates or 

ideals can be determined based on the extent of LD. Because larger genomic segments are shared 

between animals, populations characterized by strong LD may be genotyped on considerably fewer 

SNPs. As few as 300 to 400 SNPs have, for example, been deemed adequate to achieve minimal loss 
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in imputation accuracy for swine (Grossi et al., 2018) and poultry (Wang et al., 2013) breeds, 

however, this could also be as a result of their population structure; larger segment are shared within 

sub-populations because of line breeding for instance. Taking into account the weak persistence of 

LD observed in Chapter 3, despite improvements in SNP density and sample sizes compared to 

previous research (Makina et al., 2015), a higher minimum requirement of SNPs was expected. Using 

the calculated imputation accuracies as a guideline, it could be concluded that a genotyping panel 

consisting of at least 10 000 SNPs would be appropriate to achieve a mean of <3% imputation errors 

for the SA Drakensberger. A panel of this density should not, however, be derived by selecting SNPs 

at random or using solely their locality as a selection criterion if the aim is to achieve high imputation 

accuracy. Using random selection to derive a 10 000 SNP genotyping panel resulted in the worst 

mean animal-wise imputation accuracy, compromising 3.9% in imputation accuracy, and this was 

partly because it had the most variable SNP distribution, with consecutive SNPs separated by up to 

4477kb, and partly because of lower mean MAF.  The acceptable mean imputation accuracy will vary 

between studies, and will depend on the target genomic application in which imputed genotypes will 

be employed. The mean imputation accuracy should, however, at least be sufficiently high to 

minimize the influence on downstream estimates, such as GEBVs. In this study, a threshold of 3% 

imputation inaccuracies was deemed acceptable. Using a panel whereby a mean imputation accuracy 

of 97% could be achieved, had minimal influence on GEBV estimation. 

The development process of a 10K low-density panel for the SA Drakensberger needs to prioritize the 

selection of highly polymorphic SNPs to insure that the selected SNPs are indeed segregating within 

the breed. Minor allele frequency is an important selection criterion; when considering only SNPs of 

moderate to high MAF (>20%) a higher proportion (+7%) of SNP pairs displayed LD ≥ r2=0.2 

(Chapter 3) i.e. low MAF has a diminishing effect on localized LD (Qanbari et al., 2010). Attributable 

to the ascertainment bias in the development of commercial SNP panels, a high proportion of low-

MAF SNPs were observed in this study across the genome (up to 16.6% on BTA14) and this 

supported previous results for Sanga cattle that included small numbers of SA Drakensberger samples 

(Qwabe et al., 2013; Zwane et al., 2016). Identifying informative SNPs can become a challenge if the 

pool of candidate SNPs to select from is limited to those only included on commercially available 

higher density panels. The selection of SNPs should ideally be distributed evenly across chromosomes 

and the genome in general. To achieve this, whilst maximizing MAF, the selection of SNPs were 

limited to markers occurring within genomic segments of a fixed length, with the size of segments 

becoming smaller for denser genotyping panels.  

In the present study, the challenge faced with methods selecting SNPs within segments of pre-defined 

length was firstly that certain chromosomes harboured relatively large gaps i.e. regions where no 

SNPs were mapped. Prior to any quality control procedures employed, a genomic region spanning 

approximately 2.3 megabase pairs (Mb) and harbouring no SNPs was observed on BTA12. This 

meant that no SNPs could be selected in this region. The second concern with this selection strategy 

was that certain segments only harboured a single SNP and this SNP was therefore chosen by default, 
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with no regard to MAF or LD with neighbouring SNPs. Across the segment-based strategies of 

selecting SNPs for the low-density panel, the same SNP was chosen for higher density panels and this 

would explain some of the reduced variation in imputation accuracy observed at higher densities. The 

number of segments containing either a single SNP or no SNPs at all increased significantly for the 

selection of SNP densities higher than 10 000 SNPs (e.g. 20 000 SNP: 167 no-SNP segments; 50 000 

SNP: 2 682 no-SNP segments). This suggests that even though the higher density genotyping panel 

employed in this study had utility, it was not optimal as a resource of SNPs to select from; it would be 

more useful to use breed-specific SNPs identified in genome re-sequencing efforts for future panel 

design process. The SA Drakensberger was included in a recent study that aimed to re-sequence the 

genomes of three indigenous cattle breeds and data generated may serve as a valuable resource in 

SNP selection endeavours. The partitioning-around-medoids (PAM; Kaufman & Rousseeuw, 2009) 

method of selection undertaken in this study has not been previously evaluated as a possible SNP 

selection strategy. The employment of this method can be used to bypass the limitation of selection to 

fixed segments of equal size and serve as an alternative method of selecting evenly spaced SNPs. 

Attributes of MAF and LD can furthermore be calculated within clusters produced. Implementation of 

the PAM algorithm was, however, computationally demanding and it is recommended that this 

method be employed on a per chromosome basis for the selection of more that 20 000 SNPs. 

The final part of this thesis aimed to validate the utility of the proposed lower density panel in 

imputation-driven estimation of genomic breeding values. Two separate genotypic data sets were 

used, one consisting of the 120 608 SNPs that were actually genotyped i.e. true genotypes and another 

data set that consisted of the SNPs included on the 10K low-density panel and the remaining 110 608 

SNPs imputed, to derive GEBVs. In addition to the genomic enhanced breeding values, traditional 

breeding values were also estimated using pedigree information alone. Results indicated that the 

single-step genomic prediction strategy was a valid strategy for the SA Drakensberger, and that 

improvements in the accuracy of breeding value estimation could be achieved when genomic 

information was included. Improvements were more significant for lowly heritable traits, i.e. the 

maternal components of the growth traits studied (e.g. 3.4% for BWmaternal and 3.1% for WWmaternal), 

and further improvements are expected when larger sample sizes of genotyped animals become 

available. Previous research have documented greater effects of genomic predictions for traits that are 

measured post-weaning or through indicator traits as these traits are less frequently recorded 

(MacNeil, 2016) and therefore the improvements for the traits studied here were expected to be small. 

Van der Westhuizen et al. (2017) observed slightly higher improvements for low-heritability and 

hard-to-measure traits (between 5% and 15%) when a sample of approximately 2 500 locally 

developed SA Bonsmara animals were genotyped. It should, however, be noted that the phenotypic 

records for the SA Bonsmara breed is more extensive for lowly heritable traits and, being the most 

numerous breed in SA, that the population size of the SA Bonsmara breed is ten times that of the SA 

Drakensberger (SA Studbook, 2016). 
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Lastly, because prediction equations estimate the effect of all SNPs simultaneously, a loss in 

predictive accuracy because of few wrongly imputed SNPs was expected to be negligible based on 

previous research done on admixed dairy cattle. This impacts the downstream practicality of 

incorporating imputation into GS pipelines routinely. If minor imputation inaccuacies are truely 

negligible, and a mean imputation accuracy of 97% can be maintained, selection candidates can 

routinely be genotyped on a low-density panel and imputation performed with each routine BLUP 

evaluation. This was corroborated in this study by perfect correlations (P<0.001) estimated between 

GEBVs derived from true versus imputed SNPs. Imputation is expected to have a more pronounced 

effect on applications such as GWAS that rely on SNP-by-SNP association testing (Badke et al., 

2013). The presence of large numbers of rare SNPs, which are expected to be the basis of adaptive 

mechanisms, in the SA Drakensberger genome and its influence on imputation will also need 

further consideration. 

 

6.2. Recommendations 

Results from this study may be used as guidelines to aid in the process of designing a low-density 

panel for the SA Drakensberger in the future. Inferences made from this study may be transferable to 

other Sanga breeds and may serve in guiding future genomic endeavours for these breeds and other 

breeds that have admixed genomes. If the development of a custom low-density genotyping panel can 

be set into motion, it will enable routine genomic evaluations for this breed without incurring a high 

cost. Alternatively, the utility of existing commercial low-density panels (e.g. avaiable through 

Illumina® and GeneSeek®, listed in Chapter 2) should be examined by quantifying the accuracy of 

imputation from these panels to the 120 608 SNP panel; this might exclude the cost of developing a 

new panel if an existing panel is efficient. Re-genotyping subsets of animals with these lower density 

panels will, however, present a financial constraint as initially, financial resources would rather be 

focused towards improving the sample of animals genotyped at high densities to assemble an 

appropriate training population. A further recommendation in such an endeavour would be to compare 

the achievable imputation accuracy of alternative imputation software (also listed in Chapter 2), as 

previous studies have reported noticeable differences in the performance of software especially for 

breeds with complex genetic structure. Lastly, given the lower imputation accuracy in certain regions 

of the genome, including the autosomal extremities, it might be beneficial to explore alternative SNP 

selection strategies such as the multiple-objective, local optimization (MOLO) algorithm (Wu et al., 

2016) as well, or to design a new selection strategy. 

Although this study provided a baseline demonstration of the practicality of using imputation, it is 

recommended that the short- and long-term economic benefits be relayed to farmers in monetary 

values. Certain breeders are still resistant to the uptake of genomic technologies. Providing a proven 

genotyping strategy that is more cost-effective may therefore serve as an incentive to increase the 

utilization of these technologies to benefit not only individual breeders, but also the entire breed. If 

more animals are genotyped in the future: 1) imputed genotypes will become more accurate and 2) the 
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H-matrix applied in single-step genomic evaluation can be extended to improve GEBV accuracies. 

Both of these advantages will accelerate genetic progress within the breed. Initially, genotyping 

efforts should be focused towards high-density genotyping of animals that are representative of the 

breed, i.e. high-impact animals, and reduced-density genotyping of selection candidates; a higher 

degree of relatedness between animals genotyped on high- versus reduced-density panels will further 

improve imputation accuracy for selection candidates. 

Although reduced densities of SNPs could be chosen from the high-density panel in this study, and 

resulted in accurate imputation, whole-genome sequncing data would provide a more valuable 

resource to identify breed-specific SNPs that might assist in locating adaptive genes. Sequencing data 

generated by the BGP could serve as a resource for a more detailed investigation into the unique 

genetic composition of breeds such as the SA Drakensberger. Future research efforts should aim to 

elucidate and quantify the proportion of genomic segments within the SA Drakensberger genome that 

are derive from taurine and indicine ancestor. In the meantime, it is advised that the utility of imputed 

SNPs be explored for genome-wide association studies; this methodology can be used to boost SNP 

numbers, which will add power to these studies performed on the SA Drakensberger breed. These 

studies might assist in uncovering the genetic architecture of traits of interest to the SA beef industry 

and these include traits involved in adaptation, which will be important amidst climate change and 

consequent changes to beef production environments. Considering that no Sanga-specific genotyping 

panel currently exists, it would be recommended that lower-density SNPs be chosen from re-

sequencing efforts in the future, i.e. from a pool of SNPs that are identified as specific to the breed, 

and not necessarily from a pool of SNPs that are available on taurine- and/or indicine-derived 

genotyping platforms. This will insure the sampling of SNPs that are segregating within the breed(s) 

of interest and might alleviate the influence of low-MAF on estimates of LD and imputation accuracy. 

The obstacle of gaps in the genome, identified between mapped SNPs during the execution of 

selection strategies, can also hereby be bypassed, as there will be a higher coverage of markers to 

choose from. 

The validity of imputed genotypes in genomic prediction should be properly validated when more 

genotypes become available; proper validation could not be carried out in this study because of 

limited sample size. To properly validate the accuracy of genomic prediction, a cross-validation 

approach is usually followed. In a typical five-fold cross-validation, for example, five different sets of 

reference and validation animals are generated, with no overlap between animals in the separate 

validation sets, using the animals with imputed genotypes (Tsai et al., 2017). Phenotypic records are 

then masked for the validation animals and subsequently predicted from each animal’s GEBVs (Tsai 

et al., 2017). Due to the small number of genotyped animal available for the SA Drakensberger, 

compared to the numbers available internationally for more popular breeds, this type of cross-

validation was not possible considering that no overlapping between validation sets are allowed; 

validation sets would have been too small for this method of validation to be scientifically sound.  For 
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the purpose of this thesis, and given the amount of data available, the procedures followed here were 

adequate to investigate the utility of imputed genotyped in GEBV estimation. 

 

6.3. Conclusion 

The variation observed in genomic characteristics such as MAF and LD conformed to expectations 

and supported previous research suggesting that the SA Drakensberger is a composite breed with an 

admixed genome and heterogeneous genomic architecture. This variation across the genome enabled 

the variability in imputation accuracy across chromosomes and genomic regions within chromosomes 

to be pre-empted. Because negligible gain was observed for MAF and LD estimates using a higher 

density panel, in comparison to the 50K panel used in previous studies, it was concluded that a lower 

density panel, combined with imputation to higher density, would suffice towards implimenting GS. 

Genotype imputation is a valid genomic strategy for the SA Drakensberger breed and this study 

concluded that a genotyping panel consisting of approximately 10 000 SNPs would suffice in 

achieving less than 3% imputation errors. Results also suggests that if such a panel were to be 

designed, that the SNPs considered for inclusion should be selected based on selection criteria, such 

as MAF and LD, specific to the SA Drakensberger breed in order to maximize achievable imputation 

accuracy. This study showed that it would be a valid strategy to integrate genotype imputation 

routinely into single-step genomic evaluation pipelines for the SA Drakensberger breed as imputation 

errors proved to have a negligible effect on resulting GEBV accuracies for growth traits. 
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Addendum 1 Genome-wide single nucleotide polymorphism based inbreeding coefficients by birth 

year across the SA Drakensberger population sampled 
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Addendum 2 The number of single nucleotide polymorphisms that were selected per chromosome 

for the 2 500 (2.5K), 5 000 (5K), 10 000 (10K), 20 000 (20K) and 50 000 (50K)-marker low-density 

genotyping panels. 

1HD=120 608 SNPs that remained after quality control procedures 

 

Chromosome Chromosome length (Mb) 
Number of single nucleotide polymorphisms 

HD1 2.5K 5K 10K 20K 50K 

1 158.21 7371 152 305 610 1222 3166 

2 136.62 6455 133 267 535 1070 2734 

3 121.38 5796 120 240 481 961 2428 

4 120.55 5582 115 231 463 925 2414 

5 121.14 6041 125 250 501 1001 2417 

6 119.40 6626 137 274 549 1098 2385 

7 112.60 5705 118 236 473 946 2230 

8 113.35 5157 106 213 428 855 2254 

9 105.59 4948 102 205 410 820 2096 

10 104.23 4891 101 202 406 811 2075 

11 107.24 5028 104 208 417 833 2137 

12 91.10 4211 87 174 349 698 1797 

13 84.20 3924 81 162 325 650 1678 

14 84.03 4701 97 194 390 779 1679 

15 85.20 3984 82 165 330 660 1700 

16 81.65 3741 78 156 310 621 1623 

17 75.11 3446 72 143 286 572 1491 

18 65.87 3073 64 128 255 510 1313 

19 63.89 2935 61 122 243 487 1269 

20 71.88 3799 78 158 315 630 1440 

21 71.53 3338 70 139 277 554 1416 

22 61.24 2901 61 121 241 482 1226 

23 52.45 2469 52 103 205 410 1045 

24 62.59 3377 70 140 280 560 1254 

25 42.76 2003 42 84 166 333 861 

26 51.58 2469 52 103 205 410 1029 

27 45.35 2127 45 89 176 353 899 

28 46.24 2131 45 89 177 354 922 

29 51.17 2379 50 99 197 395 1022 
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Addendum 3 Mean CORSNP per autosome for SNPs located on the autosomal extremities and within 

the centre of the autosomes when the worst (RAN) and best (MAFLD) SNP selection methods were 

used to derive 10 000 SNPs. Autosomal extremities were defined as first and last 1Mb of each 

autosome whereas autosomal centre was defines as 0.5Mb to either side of the physical midpoint of 

each autosome.  

Chromosome 
RAN1  MAFLD2 

 First Centre Last  First Centre Last 

1 0.829 0.904 0.901  0.875 0.942 0.918 

2 0.937 0.934 0.882  0.945 0.950 0.910 

3 0.861 0.966 0.928  0.916 0.978 0.914 

4 0.826 0.956 0.879  0.866 0.943 0.912 

5 0.916 0.940 0.863  0.953 0.945 0.923 

6 0.973 0.963 0.899  0.963 0.954 0.919 

7 0.872 0.950 0.898  0.845 0.955 0.930 

8 0.898 0.943 0.743  0.938 0.970 0.888 

9 0.947 0.910 0.903  0.986 0.937 0.927 

10 0.884 0.942 0.946  0.910 0.941 0.945 

11 0.880 0.949 0.769  0.930 0.961 0.802 

12 0.909 0.871 0.916  0.926 0.938 0.911 

13 0.928 0.936 0.881  0.939 0.944 0.929 

14 0.283 0.919 0.918  -3 0.945 0.904 

15 0.883 0.919 0.917  0.881 0.926 0.951 

16 0.861 0.960 0.844  0.914 0.976 0.894 

17 0.946 0.915 0.913  0.947 0.959 0.933 

18 0.876 0.937 0.907  0.879 0.916 0.858 

19 0.961 0.907 0.928  0.952 0.941 0.915 

20 0.879 0.891 0.912  0.935 0.968 0.934 

21 0.844 0.932 0.896  0.874 0.966 0.898 

22 0.897 0.911 0.905  0.925 0.939 0.936 

23 0.988 0.908 0.874  0.983 0.970 0.911 

24 0.911 0.927 0.960  0.885 0.955 0.935 

25 0.893 0.885 0.904  0.955 0.924 0.911 

26 0.907 0.775 0.924  0.908 0.809 0.919 

27 0.921 0.894 0.915  0.921 0.912 0.932 

28 0.940 0.883 0.942  0.934 0.931 0.929 

29 0.944 0.937 0.789  0.956 0.958 0.858 

1RAN=random selection; 2MAFLD=combinative selection for MAF and LD; 3No SNPs were mapped to the first 1Mb of BTA14 

after quality edits. 
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Addendum 4 Figure illustrating the SNP density per chromosome and indicating gaps in the genome 

prior to quality edits. 
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Addendum 5 Popular science article: Using imputation to save on genotyping costs for indigenous 

cattle. Published in: Drakensberger Breeders’ Society Newsletter, December 2017 (available online: 

https://www.drakensbergers.co.za/files/150383_DrakensbergerNuusbrief%20-%20Finaal.pdf.) 

 

The South African beef cattle industry is a complex one, consisting of highly diverse breeds, 

production systems and, subsequently, breeding goals. In conjunction with the rest of the world, the 

country is faced with two major future challenges - global warming and growing human population 

sizes. Indigenous cattle breeds, such as the Drakensberger, have endured the diverse and sometimes 

harsh environmental conditions of South Africa and therefore display superior adaptability.  Their 

ability to thrive in these conditions make them an asset in assuring future sustainability of the beef 

industry and it will become increasingly important to conserve and use these animal resources during 

tough times. Despite their importance locally, there have been few efforts to delve into the genetic 

architecture of these cattle for the purpose of improving individual breeds until recently. 

The evolution of  “genomics” has provided an opportunity to increasingly incorporate DNA 

information into breed improvement programs. In genetics, the area of genomics involves looking at 

the DNA content of an animal in its entirety. Going back to the basics: DNA is a molecule carrying 

the genetic make-up of an animal. These molecules are passed on from parents to offspring and 

explain why one individual appears or performs different from another. Looking at an animal on the 

DNA-level therefore provides us with a high-resolution view of why that animal grows, reproduces, 

behaves or generally performs in a certain way. If we have this most basic information, we can 

significantly improve how accurately we choose which animals are the best for specific situations.  

With the advent of genomics, came improvements in technology that have allowed scientists to 

holistically determine the genetic code of an animal by means of whole-genome sequencing. This in 

turn has allowed the identification of specific genetic markers in the genome, in the form of single 

nucleotide polymorphisms (SNPs), which can be incorporated into marker panels to test animals for 

specific purposes. SNPs explain genetic variation between animals and can be used for several 

applications such as to assign parents or to identify DNA regions responsible for variation within 

certain animal traits (such as growth, milk yield or the presence/absence of horns). These marker 

panels, referred to as “SNP chips”, have progressively been modified and updated for specific 

purposes either by including more markers or by retaining smaller numbers of markers for specific 

purposes. Each unique panel has been released as either commercially- or privately-available products 

for research or personal use.  

In recent years, two SNP-based genomic applications have received a lot of focus in the field of 

animal breeding and genetics, and these are genome-wide association studies (GWAS) and genomic 

selection (GS). GWAS is a method that uses associations between SNP- and performance data to find 

regions of the genome harboring genes that are of importance to specific traits. This can, for example, 

assist researchers in identifying which parts of the animal’s DNA causes that animal to grow faster, 

give more milk or be more adapted to a certain environment. GS, on the other hand, is a method 
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whereby animals can be selected based on an estimate genomic breeding value (GEBV). A GEBV is 

the genetic merit of an animal for a specific trait based on all of the SNPs included on a dense maker 

panel.  

The above-mentioned applications, amongst others, can help us to significantly improve the 

Drakensberger breed on the genetic level; these strategies, however, require high densities of SNP 

data for large numbers of animals in order to make reliable scientific deductions. Generating the 

amount of data required on this scale can be costly, especially in developing countries, and this would 

call for multiparty collaborations for funding or cost saving alternatives. Genotype imputation 

presents one such strategy.   

Imputation is a statistical method that predicts missing information. This method uses specific 

patterns observed in a data set containing complete information to fill in the gaps within another data 

set containing incomplete information. For example: we have a young animal tested for 10 000 

markers (which would be referred to as a “low-density SNP panel”) and the parents of this animal are 

tested for 100 000 markers (which would be referred to as a “high-density SNP panel”). Given the 

genetic relationship between the parents and the offspring, we can “impute” or infer the “missing” 90 

000 markers for the young animals by making certain statistical assumptions. On a larger scale: If a 

“reference” population (consisting of high-impact animals with many offspring in the national herd) is 

genotyped for a high density of genetic markers (let’s say 150K) and a “test” population (commercial 

animals in the national herd) is genotyped for a smaller subset of these SNPs (let’s say 50K), the 

assumption is that these populations should, if they are related in some way, share an underlying 

genetic pattern. This shared genetic structure, which would be unique to the Drakensberger breed, can 

be used to predict missing genetic information in the test population from the genetic structure of the 

reference population. It will therefore only be necessary to genotype the test population (commercial 

animals) with a small subset of the SNPs. Given the fact that the low-density panel will be a lot 

cheaper, imputation is therefore a cost-saving approach and provides the means of getting more 

information at lower costs. 

This method will enable researchers to obtain high densities of genetic marker information that would 

allow applications such as GWAS and GS in indigenous cattle breeds. Before this strategy can be 

applied, however, we need to assure that these predictions can be done accurately and reliably. The 

project currently underway that is testing the validity of the strategy for Drakensberger cattle will 

therefore aim to optimize this method for indigenous breeds. This will entail testing the effects that 

the number of animals, genetic relatedness between animals and certain inherent genetic 

characteristics of the breed will have on how accurately marker genotypes can be imputed. 


