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Abstract: A temperature and humidity controller is designed for a direct expansion air
conditioning (DX A/C) system making use of a state feedback decoupling approach of nonlinear
control systems. It is shown that the nonlinear dynamics of a DX A/C system can be input-
output decoupled by dynamic state feedback. The resulting decoupled system is of minimum
phase. Thereafter, the decoupled model is used to design a pole placement controller with
guaranteed stability. Unlike controllers based on approximate local linearization of the DX A/C
model, the controller proposed is global in the sense that it can track temperature and humidity
setpoints in the complete operating range of the DX A/C system. Effectiveness of the controller
designed is demonstrated by simulation results.
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1. INTRODUCTION

Traditionally building HVAC systems control mainly deals
with the problem of temperature and humidity control of
conditioned space to provide comfort indoor environment
and at the same time reduce energy consumption (Mei
and Xia, 2017). Carbon dioxide (CO2) concentration was
also included in the control objectives in recent studies
to further improve air quality (Lin et al., 2015; Kellett
et al., 2019). Energy efficiency improvement of buildings
can also be obtained by other schemes (Xia and Zhang,
2010; Sichilalu and Xia, 2015; Sichilalu et al., 2016; Fan
and Xia, 2017).

Because the HVAC system model is highly nonlinear,
local linearization around an operating point is often
practiced to facilitate controller design. For instance, a
linear-quadratic-Gaussian regulator (Qi and Deng, 2009)
and a model predictive control (MPC) strategy (Razmara
et al., 2015) were reported in the literature based on such
a local linearization. Additionally, feedback linearization
method was also adopted by (Ma et al., 2015) to control
the temperature. In our previous work, a hierarchical
strategy consisting of a top layer open loop controller
to improve energy efficiency and a lower layer setpoint
tracking MPC based on local linearization of the HVAC
model was also proposed (Mei and Xia, 2017; Mei et al.,
2018). However, the local linearization method inevitably
results in a less accurate local control (Jimenez et al., 2017)
and does not consider transients from one setpoint to the
other.

A state feedback decoupling method is adopted in this
study to tackle the setpoint tracking problem of a direc-
t expansion (DX) A/C system in view of the coupling

between temperature and humidity in an HVAC system.
Moreover, the state feedback decoupling has the added
benefit that the resulting system dynamics is input-output
linear, which facilitates the design of a controller global
in the sense of the singularity of meromorphic functions
(Conte et al., 2007). The state feedback decoupling method
for nonlinear multivariable systems was first studied by
(Porter, 1970), which presented a decoupling approach
for a class of nonlinear systems that can be decoupled
with static state feedback (Semsar-Kazerooni et al., 2008).
Later, a modified algorithm was proposed (Singh, 1981)
that adds some integrators at appropriate states to achieve
input-output decoupling of a nonlinear system that cannot
be decoupled by the static state feedback method. Neces-
sary and sufficient conditions under which this type of so-
called dynamic state feedback decoupling can be used was
studied and proved in the works of (Descusse and Moog,
1987; Isidori, 1995; Xia and Gao, 1993).

In particular, it was found that the DX A/C system model
cannot be directly decoupled through static state feedback.
Therefore, the dynamic state feedback decoupling method
is employed. We show that the DX A/C system becomes
input-output decouplable when two integrators are added
to an input terminal, or the system is dynamic static
feedback decouplable. The resulting decoupled model has
seven state variables and a relative degree of six, which
indicates that there is one internal dynamics that is ren-
dered unobservable when the system outputs are forced to
zero, or there is a one dimensional zero dynamics (Isidori
and Moog, 1988). However, it was found out that the zero
dynamics associated with this internal dynamics is asymp-
totically stable, indicating the decoupled DX A/C model is
of minimum phase system (Isidori and Moog, 1988), which
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can be stabilised by a properly designed controller using
the input-output model (Byrnes and Isidori, 1991; Wagner,
1991; Xia, 1993) under some mild regularity conditions. A
pole placement controller is designed for this purpose.

The main contributions of this paper are: 1) The DX
A/C problem studied presents a meaningful application
for the dynamic state feedback decoupling method and
the minimum phase systems theory in building energy sys-
tems. 2) The controller designed based on state feedback
decoupling is a global controller that can control temper-
ature and humidity in all operating modes of the DX A/C
system because no local approximation is involved; 3) A
pole placement controller is designed for the temperature
and humidity set point tracking with guaranteed stability.

The organization of the rest paper is as follows. In Sec-
tion 2, the feedback decoupling method is described and
the proposed controller is designed. The simulation results
are given in Section 3. Finally, Section 4 conclude this
paper.

2. PROBLEM FORMULATION

In this section, the nonlinear model for the air temper-
ature and moisture content is established for a DX A/C
system based on energy and mass balance. The simplified
schematic diagram of the DX A/C system is shown in
Fig. 1. The system is considered to be operating in cooling
mode. The basic operating principles and assumptions of
the system in the cooling mode are given below (Mei and
Xia, 2017).



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Fig. 1. Simplified schematic diagram of a DX A/C system

(1) A percentage (denoted by δ, 0 < δ < 1) of fresh air
is allowed into the system and gets mixed with 1− δ
percent of the recirculated air at the evaporator.

(2) Sufficient air mixing occurs inside the heat exchangers
where it gets conditioned.

(3) Thermal losses in air ducts are negligible.
(4) The supply air enters the air-conditioned room to

offset the cooling loads.
(5) The air in the conditioned room is drawn through a

fan, 1− δ of this air gets recirculated and the rest is
exhausted from the system by a fan.

Energy and mass conservation gives the following equation
of the nonlinear DX A/C system (Mei and Xia, 2017):




CaρV Ṫz = Caρvf (Ts − Tz) +Ql,

ρV Ẇz = ρvf (Ws −Wz) +Ml,

CaρVh1Ṫd = Caρvf (Tm − Td) + α1A1(Tw−
Tm + Td

2
),

ρVh2(CaṪs + hfgẆs) = ρvf (Ca(Td − Ts) + hfg(Wm

−Ws)) + α2A2(Tw − Td + Ts

2
),

CwρwVwṪw = α1A1(
Tm + Td

2
− Tw) + α2A2(

Td + Ts

2
− Tw)− (hr2 − hr1)mr,

Ẇs −
2× 0.0198Ts + 0.085

1000
Ṫs = 0.

(1)
In the nonlinear system (1), Ts and Ws are the tempera-
ture and moisture content of the air leaving the DX cooling
coil, respectively. Tz and Wz are the air temperature and
moisture content in the conditioned space, respectively.
vf and mf are the volumetric flow rate of supply air
and refrigerant mass flow rate, respectively. Td and Tw

are the air temperature leaving the dry-cooling region on
air side in the DX evaporator and the temperature of
the DX evaporator wall, respectively. Ql and Ml are the
sensible heat and moisture loads in the conditioned space,
respectively. T0 and W0 are the outdoor air temperature
and moisture content, respectively. δ is the mixing ratio
between the outside and recirculated air. Tm = δT0 +
(1 − δ)Tz and Wm = δW0 + (1 − δ)Wz denote the mixed
air temperature and moisture content before each DX
evaporator cooling coil, respectively. Ca is the specific heat
of air; V denotes the volume of the conditioned space;
ρ represents the density of moist air; and hfg is latent
heat of vaporisation of water. Vh1 and Vh2 are the air
side volumes in the dry-cooling and wet-cooling regions
of the DX evaporator, respectively. α1 and α2 are the heat
transfer coefficients between air side and the evaporator
wall in the dry-cooling and wet-cooling regions of the DX
evaporator, respectively. A1 and A2 are the heat transfer
areas in the dry-cooling and wet-cooling regions of the
DX evaporator, respectively. Cw, ρw and Vw denote the
specific heat of air in the evaporator wall, the density of
the evaporator wall and the volume of the evaporator wall,
respectively. hr1 and hr2 are the enthalpies of refrigerants
at evaporator inlet and outlet, respectively.

Since the moisture content and temperature at the evap-
orator outlet has the following relationship (Qi and Deng

(2008)): Ws =
0.0198T 2

s +0.085Ts+4.4984
1000 , (1) can be reduced

to



Ṫz = (Caρvf (Ts − Tz) +Ql)/(CaρV ),

Ẇz =
ρvf
ρV

(rt −Wz) +
Ml

ρV
,

Ṫd =
Caρvf (Tm − Td)

CaρVh1
+

α1A1

CaρVh1
(Tw − Tm + Td

2
),

Ṫs =
Caρvf (Td − Ts)

qt
+ (ρvfhfg(Wm

− rt) + α2A2(Tw − Td + Ts

2
))/qt,

Ṫw =
α1A1(

Tm+Td

2 − Tw) + α2A2(
Td+Ts

2 − Tw)

CwρwVw

− (hr2 − hr1)mr

CwρwVw
,

(2)
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can be stabilised by a properly designed controller using
the input-output model (Byrnes and Isidori, 1991; Wagner,
1991; Xia, 1993) under some mild regularity conditions. A
pole placement controller is designed for this purpose.

The main contributions of this paper are: 1) The DX
A/C problem studied presents a meaningful application
for the dynamic state feedback decoupling method and
the minimum phase systems theory in building energy sys-
tems. 2) The controller designed based on state feedback
decoupling is a global controller that can control temper-
ature and humidity in all operating modes of the DX A/C
system because no local approximation is involved; 3) A
pole placement controller is designed for the temperature
and humidity set point tracking with guaranteed stability.

The organization of the rest paper is as follows. In Sec-
tion 2, the feedback decoupling method is described and
the proposed controller is designed. The simulation results
are given in Section 3. Finally, Section 4 conclude this
paper.

2. PROBLEM FORMULATION

In this section, the nonlinear model for the air temper-
ature and moisture content is established for a DX A/C
system based on energy and mass balance. The simplified
schematic diagram of the DX A/C system is shown in
Fig. 1. The system is considered to be operating in cooling
mode. The basic operating principles and assumptions of
the system in the cooling mode are given below (Mei and
Xia, 2017).







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Fig. 1. Simplified schematic diagram of a DX A/C system

(1) A percentage (denoted by δ, 0 < δ < 1) of fresh air
is allowed into the system and gets mixed with 1− δ
percent of the recirculated air at the evaporator.

(2) Sufficient air mixing occurs inside the heat exchangers
where it gets conditioned.

(3) Thermal losses in air ducts are negligible.
(4) The supply air enters the air-conditioned room to

offset the cooling loads.
(5) The air in the conditioned room is drawn through a

fan, 1− δ of this air gets recirculated and the rest is
exhausted from the system by a fan.

Energy and mass conservation gives the following equation
of the nonlinear DX A/C system (Mei and Xia, 2017):




CaρV Ṫz = Caρvf (Ts − Tz) +Ql,

ρV Ẇz = ρvf (Ws −Wz) +Ml,

CaρVh1Ṫd = Caρvf (Tm − Td) + α1A1(Tw−
Tm + Td

2
),

ρVh2(CaṪs + hfgẆs) = ρvf (Ca(Td − Ts) + hfg(Wm

−Ws)) + α2A2(Tw − Td + Ts

2
),

CwρwVwṪw = α1A1(
Tm + Td

2
− Tw) + α2A2(

Td + Ts

2
− Tw)− (hr2 − hr1)mr,

Ẇs −
2× 0.0198Ts + 0.085

1000
Ṫs = 0.

(1)
In the nonlinear system (1), Ts and Ws are the tempera-
ture and moisture content of the air leaving the DX cooling
coil, respectively. Tz and Wz are the air temperature and
moisture content in the conditioned space, respectively.
vf and mf are the volumetric flow rate of supply air
and refrigerant mass flow rate, respectively. Td and Tw

are the air temperature leaving the dry-cooling region on
air side in the DX evaporator and the temperature of
the DX evaporator wall, respectively. Ql and Ml are the
sensible heat and moisture loads in the conditioned space,
respectively. T0 and W0 are the outdoor air temperature
and moisture content, respectively. δ is the mixing ratio
between the outside and recirculated air. Tm = δT0 +
(1 − δ)Tz and Wm = δW0 + (1 − δ)Wz denote the mixed
air temperature and moisture content before each DX
evaporator cooling coil, respectively. Ca is the specific heat
of air; V denotes the volume of the conditioned space;
ρ represents the density of moist air; and hfg is latent
heat of vaporisation of water. Vh1 and Vh2 are the air
side volumes in the dry-cooling and wet-cooling regions
of the DX evaporator, respectively. α1 and α2 are the heat
transfer coefficients between air side and the evaporator
wall in the dry-cooling and wet-cooling regions of the DX
evaporator, respectively. A1 and A2 are the heat transfer
areas in the dry-cooling and wet-cooling regions of the
DX evaporator, respectively. Cw, ρw and Vw denote the
specific heat of air in the evaporator wall, the density of
the evaporator wall and the volume of the evaporator wall,
respectively. hr1 and hr2 are the enthalpies of refrigerants
at evaporator inlet and outlet, respectively.

Since the moisture content and temperature at the evap-
orator outlet has the following relationship (Qi and Deng

(2008)): Ws =
0.0198T 2

s +0.085Ts+4.4984
1000 , (1) can be reduced

to



Ṫz = (Caρvf (Ts − Tz) +Ql)/(CaρV ),

Ẇz =
ρvf
ρV

(rt −Wz) +
Ml

ρV
,

Ṫd =
Caρvf (Tm − Td)

CaρVh1
+

α1A1

CaρVh1
(Tw − Tm + Td

2
),

Ṫs =
Caρvf (Td − Ts)

qt
+ (ρvfhfg(Wm

− rt) + α2A2(Tw − Td + Ts

2
))/qt,

Ṫw =
α1A1(

Tm+Td

2 − Tw) + α2A2(
Td+Ts

2 − Tw)

CwρwVw

− (hr2 − hr1)mr

CwρwVw
,

(2)
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where rt =
0.0198T 2

s +0.085Ts+4.4984
1000 , qt = CaρVh2 +

ρVh2hfg
0.0396Ts+0.085

1000 .

Remark 1. In the previous work (Semsar-Kazerooni et al.
(2008)), a static decoupling method was employed for the
HVAC system to study the indoor air temperature and
humidity control problem. In the HVAC system model,
an internal physical dynamic process of AC system was
not considered and the intrinsic relation between the
supply air temperature and relative humidity was also
not considered. In this paper, we build a physical model
that reflects the intrinsical dynamic process of the HVAC
system.

2.1 State feedback decoupling of the DX A/C System

Consider a nonlinear system{
ẋ = f(x) + g(x)u,
y = h(x),

(3)

where input u ∈ Rm is the control input, y ∈ Rm is the
output and x ∈ Rn is the state.

Definition 1: Using the notation for the system described
in (3), the Lie derivative of h(x) with respect to the vector
field f(x) is written as Lfh(x), which is defined by

Lfh(x) =
n∑

i=1

∂h(x)

∂xi
fi(x) =

∂h(x)

∂x
f(x).

When we repeat the calculation of the Lie derivative, the
following notation can be used:

Lk
fh(x) = LfL

k−1
f h(x) =

∂Lk−1
f h(x)

∂x
f(x),

for any integer k ≥ 1 with L0
fh(x) = h(x).

Definition 2: (Isidori (1995)) The nonlinear system (3) is
said to be of vector relative degree ρ = {ρ1, . . . , ρm} if the
following conditions are satisfied for all x ∈ Rn:

(a) for all 1 ≤ j ≤ m, 1 ≤ i ≤ m, k < ρi − 1,

LgjL
k
fhi(x) = 0;

(b) the m×m Falb-Wolovich matrix

A(x) =




Lg1L
ρ1−1
f h1(x) · · · LgmLρ1−1

f h1(x)
...

. . .
...

Lg1L
ρm−1
f hm(x) · · · LgmLρm−1

f hm(x)


 (4)

is nonsingular.

If the relative degree ρ =
∑m

i=1 ρi of the nonlinear system
(3) is less than the number of states n, the system
inevitably exists internal dynamics (Isidori and Moog,
1988). The model (3) can be transformed to a normal form
by a coordinate transformation ϕ(x) : x −→ (ξ, η), where
ξ, η are the external dynamics and internal dynamics,
respectively. The dynamic equations of the normal form
depend on the control variables and can be expressed by

ξ̇ρ = b(ξ, η) +A(ξ, η)u, (5)

where ξρ ∈ Rm, ∀ξρ = [ξ1ρ1
, · · · , ξmρm

]T . When the matrix
A(ξ, η) is nonsingular, substituting (6)

u = A−1(ξ, η)[−b(ξ, η) + v], (6)

into the nonlinear system (3) achieves the decoupling and
yields 



ξ̇ij = ξij+1,

ξiρi
= vi,

η̇ = q(ξ, η) + p(ξ, η)v,
yi = ξi1, j = 1, . . . , ρi − 1, i = 1, . . . ,m,

(7)

where vi is the ith control input.

Definition 3: (Isidori and Moog, 1988) In the normal
system (7), dynamics

η̇ = q(0, η) (8)

is the zero dynamics of the system (3). If the zero dynamics
(8) is (locally) asymptotical stability, the system (3) is then
of (locally) minimum phase system.

If the rank of the matrix A(x) is less than m, the system
has no relative degree, then the nonlinear system (3)
cannot be decoupled by static state feedback.

To see the decouplability of the DX A/C system using
state feedback, the system dynamics (2) is first put in the
form of (3) with x = [Ts, Tz, Td, Tw,Wz]

T being the state
vector, u = [vf ,mr]

T the input, y = [Wz, Tz]
T the output,

and the functions f(x), g(x) and h(x) defined by

f(x) =




α2A2(Tw − Td+Ts

2 )

qt
Ql

CaρV
α1A1

CaρVh1
(Tw − Tm + Td

2
)

α1A1(
Tm+Td

2 − Tw) + α2A2(
Td+Ts

2 − Tw)

CwρwVw
Ml

ρV




,

(9)

g(x) =




Caρ(Td − Ts) + ρhfgFw

qt
0

Caρ(Ts − Tz)

CaρV
0

Caρ(Tm − Td)

CaρVh1
0

0 −hr2 − hr1

CwρwVwρ

ρV
(rt −Wz) 0




, (10)

where Fw = Wm − rt.

It can be calculated that the DX A/C system has the
following Falb-Wolovich matrix with ρ1 = 1, ρ2 = 1

A(x) =



rt −Wz

V
0

Ts − Tz

V
0


 . (11)

Therefore, the static decoupling method cannot be applied
to the DX A/C system, because the matrix is singular.
For a system with a singular Falb-wolovich matrix, it was
found out that it may still be decoupled by a dynamic
state feedback (Singh, 1981). In fact, a necessary and
sufficient condition, and a systematic design method based
on the so-called dynamic extension algorithm (Xia, 1993)
were discovered for the dynamic decoupling of nonlinear
systems. For example, if we add two integrators at vf

2019 IFAC NOLCOS
Vienna, Austria, Sept. 4-6, 2019

658

vf = ζ1,

ζ̇1 = ζ2,

ζ̇2 = v1,

(12)

where ζ1 and ζ2 are the new states and v1 is the new control
variable. The DX A/C system can now be transformed into{

�̇x = �f(�x) + �g(�x)v,
y = h(�x), (13)

where �x = [x, ζ1, ζ2]
T , the new control variable is v =

[v1, v2] = [v1,mr]
T , �g1(�x) = [0, 0, 0, 0, 0, 0, 1]T , �g2(�x) =

[0, 0, 0,− hr2−hr1

CwρwVw
, 0, 0, 0]T and

�f(�x) =




Caρζ1(Td − Ts) + ρζ1hfgFw

qt
+

α2A2(Tw − Td+Ts

2 )

qt
(Ts − Tz)ζ1

V
+

Ql

CaρV
Caρ(Tm − Td)ζ1 + α1A1(Tw − Tm+Td

2 )

CaρVh1

α1A1(
Tm+Td

2 − Tw) + α2A2(
Td+Ts

2 − Tw)

CwρwVw
ζ1(rt −Wz)

V
+

Ml

ρV
ζ2
0




.

The system (13) is now decouplable by static state feed-
back, since we calculate



Ẇz = α11(�x) = L�fh1(�x),
Ẅz = α12(�x) = L2�fh1(�x),
W (3)

z = α13(�x) + β11(�x)v1 + β12(�x)v2
= L3�fh1(�x) + L�g1L2�fh1(�x) + L�g2L2�fh1(�x)
= w1,

Ṫz = α21(�x) = L�fh2(�x),
T̈z = α22(�x) = L2�fh2(�x),
T (3)
z = α23(�x) + β21(�x) + β22(�x)

= L3�fh2(�x) + L�g1L2�fh2(�x) + L�g2L2�fh2(�x)
= w2.

(14)

In (14), w1 and w2 are the new control variables and other
parameters are listed in Appendix A.

The Falb-wolovich matrix of (13) now becomes

A(x̃) =



rt −Wz

V
β12(�x)

Ts − Tz

V
−α2A2(hr2 − hr1)ζ1

CwρwVwV qt


 , (15)

where
r0t−W 0

z

V < 0, β12(�x0) < 0,
T 0
s −T 0

z

V < 0, −α2A2(hr2−hr1)
CwρwVwV q0t /ζ

0
1

< 0, and

|A(�x0)| =α2A2(hr2 − hr1)ζ
0
1

CwρwVwV 2q0t
(W 0

z − r0t+

0.0396T 0
s + 0.085

1000
(T 0

s − T 0
z )) ̸= 0.

The A(x̃) is nonsingular for the extended system state
vector reference �x0, indicating the extended system is
static state feedback decouplable, or the original system
is decouplable by dynamic state feedback.

From (14), it can be seen that the extended system (13)
has a vector relative degree of {�ρ1, �ρ2} = {3, 3}, which
is less than the extended system’s dimension, indicating
the existence of internal dynamics (Isidori, 1995). To this
regard, Ts cannot be a internal dynamics because it is
contained in the result of differentiating T̈z once more.
Therefore, only Td = η can be chosen as the internal
dynamics.

To study the zero dynamics of (13), one can calculate that

η̇ =
Caρ(Tm − η)ζ1 + α1A1(Tw − Tm+η

2 )

CaρVh1

=
−α1A1η

2CaρVh1
+ (

−ζ1η

Vh1
+

Tmζ1
Vh1

+
α1A1(Tw − Tm

2 )

CaρVh1
)

=− VMt

Vh1(Ts − Tz)
η − α1A1Mt

α2A2Vh1(Ts − Tz)
η+

α1A1Ts

α2A2Vh1(Ts − Tz)
+

V TmMt

Vh1(Ts − Tz)
−

α1A1(Tm − Ts)

2CaρVh1
+

α1A1hfgVMtFw

α2A2CaVh1(Ts − Tz)

− α1A1qt

α2A2(
Nt

Mt
− 0.0396Ts+0.085

1000 )

(
(Ts − Tz)(NtT

(2)
z −MtW

(2)
z )

M2
t

+ Ẇz(
Nt

Mt
− 1)).

(16)

Denote ξ = [Wz, Ẇz, Ẅz, Tz, Ṫz, T̈z]
T and let the zero

dynamics (ξ, η) = (ξ0, η), where ξ0 is the new state vector
reference, then (16) becomes

η̇ =(
Ql

CaρVh1(T 0
s − T 0

z )
+

α1A1Ql

α2A2Vh1CaρV (T 0
s − T 0

z )
)η+

α1A1T
0
s

α2A2Vh1(T 0
s − T 0

z )
− QlT

0
m

CaρVh1(T 0
s − T 0

z )
−

α1A1(T
0
m − T 0

s )

2CaρVh1
− α1A1hfgQlF

0
w

α2A2C2
aρ

2Vh1(T 0
s − T 0

z )
.

(17)
Since F 0

w, T
0
s , T

0
m = δT0 + (1 − δ)T 0

z are constant and
Ql is positive due to the indoor sensible load. (17) is
then asymptotically stable when T 0

z > T 0
s . In this study,

we assume that the DX A/C system is operating in the
cooling mode which ensures T 0

z > T 0
s . Therefore, (13) is of

minimum phase system according to Definition 3.

Introducing the coordinate transformation T (�x) = [Wz, Ẇz

, Ẅz, Tz, Ṫz, T̈z, Td]
T , (13) can be transformed into a nor-

mal form in the z-coordination as follows:

ξ̇ = Aξ +Bw,

η̇ = γ(ξ, η) + δ(ξ, η)w,

y = Cξ,

(18)

where z = [ξ, η]T = [z1, z2, z3, z4, z5, z6, z7]
T is the state

vector and w = [w1, w2]
T is the new control vector. The

system matrices are

A =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



, B =




0 0
0 0
1 0
0 0
0 0
0 1



,
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vf = ζ1,

ζ̇1 = ζ2,

ζ̇2 = v1,

(12)

where ζ1 and ζ2 are the new states and v1 is the new control
variable. The DX A/C system can now be transformed into{

�̇x = �f(�x) + �g(�x)v,
y = h(�x), (13)

where �x = [x, ζ1, ζ2]
T , the new control variable is v =

[v1, v2] = [v1,mr]
T , �g1(�x) = [0, 0, 0, 0, 0, 0, 1]T , �g2(�x) =

[0, 0, 0,− hr2−hr1

CwρwVw
, 0, 0, 0]T and

�f(�x) =




Caρζ1(Td − Ts) + ρζ1hfgFw

qt
+

α2A2(Tw − Td+Ts

2 )

qt
(Ts − Tz)ζ1

V
+

Ql

CaρV
Caρ(Tm − Td)ζ1 + α1A1(Tw − Tm+Td

2 )

CaρVh1

α1A1(
Tm+Td

2 − Tw) + α2A2(
Td+Ts

2 − Tw)

CwρwVw
ζ1(rt −Wz)

V
+

Ml

ρV
ζ2
0




.

The system (13) is now decouplable by static state feed-
back, since we calculate



Ẇz = α11(�x) = L�fh1(�x),
Ẅz = α12(�x) = L2�fh1(�x),
W (3)

z = α13(�x) + β11(�x)v1 + β12(�x)v2
= L3�fh1(�x) + L�g1L2�fh1(�x) + L�g2L2�fh1(�x)
= w1,

Ṫz = α21(�x) = L�fh2(�x),
T̈z = α22(�x) = L2�fh2(�x),
T (3)
z = α23(�x) + β21(�x) + β22(�x)

= L3�fh2(�x) + L�g1L2�fh2(�x) + L�g2L2�fh2(�x)
= w2.

(14)

In (14), w1 and w2 are the new control variables and other
parameters are listed in Appendix A.

The Falb-wolovich matrix of (13) now becomes

A(x̃) =



rt −Wz

V
β12(�x)

Ts − Tz

V
−α2A2(hr2 − hr1)ζ1

CwρwVwV qt


 , (15)

where
r0t−W 0

z

V < 0, β12(�x0) < 0,
T 0
s −T 0

z

V < 0, −α2A2(hr2−hr1)
CwρwVwV q0t /ζ

0
1

< 0, and

|A(�x0)| =α2A2(hr2 − hr1)ζ
0
1

CwρwVwV 2q0t
(W 0

z − r0t+

0.0396T 0
s + 0.085

1000
(T 0

s − T 0
z )) ̸= 0.

The A(x̃) is nonsingular for the extended system state
vector reference �x0, indicating the extended system is
static state feedback decouplable, or the original system
is decouplable by dynamic state feedback.

From (14), it can be seen that the extended system (13)
has a vector relative degree of {�ρ1, �ρ2} = {3, 3}, which
is less than the extended system’s dimension, indicating
the existence of internal dynamics (Isidori, 1995). To this
regard, Ts cannot be a internal dynamics because it is
contained in the result of differentiating T̈z once more.
Therefore, only Td = η can be chosen as the internal
dynamics.

To study the zero dynamics of (13), one can calculate that

η̇ =
Caρ(Tm − η)ζ1 + α1A1(Tw − Tm+η

2 )

CaρVh1

=
−α1A1η

2CaρVh1
+ (

−ζ1η

Vh1
+

Tmζ1
Vh1

+
α1A1(Tw − Tm

2 )

CaρVh1
)

=− VMt

Vh1(Ts − Tz)
η − α1A1Mt

α2A2Vh1(Ts − Tz)
η+

α1A1Ts

α2A2Vh1(Ts − Tz)
+

V TmMt

Vh1(Ts − Tz)
−

α1A1(Tm − Ts)

2CaρVh1
+

α1A1hfgVMtFw

α2A2CaVh1(Ts − Tz)

− α1A1qt

α2A2(
Nt

Mt
− 0.0396Ts+0.085

1000 )

(
(Ts − Tz)(NtT

(2)
z −MtW

(2)
z )

M2
t

+ Ẇz(
Nt

Mt
− 1)).

(16)

Denote ξ = [Wz, Ẇz, Ẅz, Tz, Ṫz, T̈z]
T and let the zero

dynamics (ξ, η) = (ξ0, η), where ξ0 is the new state vector
reference, then (16) becomes

η̇ =(
Ql

CaρVh1(T 0
s − T 0

z )
+

α1A1Ql

α2A2Vh1CaρV (T 0
s − T 0

z )
)η+

α1A1T
0
s

α2A2Vh1(T 0
s − T 0

z )
− QlT

0
m

CaρVh1(T 0
s − T 0

z )
−

α1A1(T
0
m − T 0

s )

2CaρVh1
− α1A1hfgQlF

0
w

α2A2C2
aρ

2Vh1(T 0
s − T 0

z )
.

(17)
Since F 0

w, T
0
s , T

0
m = δT0 + (1 − δ)T 0

z are constant and
Ql is positive due to the indoor sensible load. (17) is
then asymptotically stable when T 0

z > T 0
s . In this study,

we assume that the DX A/C system is operating in the
cooling mode which ensures T 0

z > T 0
s . Therefore, (13) is of

minimum phase system according to Definition 3.

Introducing the coordinate transformation T (�x) = [Wz, Ẇz

, Ẅz, Tz, Ṫz, T̈z, Td]
T , (13) can be transformed into a nor-

mal form in the z-coordination as follows:

ξ̇ = Aξ +Bw,

η̇ = γ(ξ, η) + δ(ξ, η)w,

y = Cξ,

(18)

where z = [ξ, η]T = [z1, z2, z3, z4, z5, z6, z7]
T is the state

vector and w = [w1, w2]
T is the new control vector. The

system matrices are

A =




0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0



, B =




0 0
0 0
1 0
0 0
0 0
0 1



,
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C =

[
1 0 0 0 0 0
0 0 0 1 0 0

]
.

Now, one can design the control input w for the decoupled
system, after which the control input for the original
system can be obtained by

u = a−1(z)(w − b(z)). (19)

2.2 Pole placement controller design

In this paper, a pole placement controller is designed to
stabilize (18).

For the decoupled two-input-two-output system represent-
ed by (18), a separate controller is designed for each input-
output pair. For the first pair, denote ξw = [z1, z2, z3]

T as
the state vector, and w1 is the control input. With the
desired output and state vector denoted by y01 and ξ0w =
[z01 , z

0
2 , z

0
3 ]

T respectively, the error vector ew = [e1, e2, e3]
T

can be defined as

ew = ξw − ξ0w = [z1 − z01 , z2 − z02 , z3 − z03 ]
T . (20)

By using the first equation of (18), which represents the
linearized system, a classical pole placement control is
applied and can be expressed as follows:

w1 = (W 0
z )

(3) − c1e1 − c2e2 − c3e3, (21)

where the control parameters c1, c2 and c3 are nonnegative
real constants to be chosen.

For the second input-output part, denote ξt = [z4, z5, z6]
T

as the state vector, and w2 is the control input. The
desired output command is y02 and the desired state vector
is defined as ξ0t = [z04 , z

0
5 , z

0
6 ]

T , then the error vector
et = [e4, e5, e6]

T can be written as

et = ξt − ξ0t = [z4 − z04 , z5 − z05 , z6 − z06 ]. (22)

Here, the pole placement control approach is also employed
to solve the above control problem of the minimum phase
subsystem (18). The pole placement controller for the
minimum phase system (18) can be designed by

w2 = (T 0
z )

(3) − c4e4 − c5e5 − c6e6, (23)

where the control parameters c4, c5, c6 are nonnegative real
constants.

A simulation test is carried out to demonstrate that the
designed controllers (21) and (23) can track the indoor air
temperature and humidity setpoints in the next section.

3. SIMULATION RESULTS

In this section, numerical simulation results are provided
to demonstrate the effectiveness and applicability of the
proposed pole placement controller through state feedback
decoupling. The volume of DX conditioned space is 77 m3.
The parameters of the DX A/C system are listed in table 1.

Choosing the system output commands: z01 =12.3/1000
kg/kg, z04 = 24 ◦C. The control parameters in (21) and
(23) are taken as: c1 = 0.2, c2 = 0.5, c3 = 0.5, c4 =
0.2, c5 = 0.5, c6 = 0.5.

The tracking results are shown in Figs. 2 and 3, which
illustrate that the air temperature and relative humidity
can track the given references over a 24-hour period,
respectively.
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Fig. 2. Response of the air temperature
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Fig. 3. Response of the moisture content

4. CONCLUSION

This paper reports the findings that the nonlinear dynam-
ics of a DX A/C system can be decoupled by dynamic
state feedback. Moreover, the resulting decoupled system
was shown to be minimal phase with a stable zero. A pole
placement controller is designed to control the indoor air
temperature and humidity based on the decoupled input-
output linear model. Effectiveness of the controller de-
signed is demonstrated by simulation results. Further, this
study provides a practical application of the state feedback
decoupling method for nonlinear systems and minimum
phase theory developed from the early 1970s to 1990s,
during which these theories found very few applications
in building energy systems.
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Appendix A

The system parameters of (14) are listed below:
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(CaρV (Td − Ts) + ρhfgFwζ1 −

α2A2

2
(Td + Ts))

′

qt +
α2A2qt
CwρwVw

· (α1A1(
Tm + Td

2
− Tw) + α2A2

(
Ts + Td

2
− Tw))−

1

2
(q2t )

′]/q2t ;

α11(x̃) =
ζ1(rt −Wz)

V
+

Ml

ρV
;

α12(x̃) =
ζ2(rt −Wz)

V
+

ζ1(ṙt − Ẇz)

V
;

α13(x̃) =
2ζ2(ṙt − Ẇz)− ζ1Ẅz

V
+

0.0396Ṫs

1000
Ṫs+

(0.0396Ts + 0.085)ζ1
1000V

· α(x̃);

β11(x̃) =
rt −Wz

V
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β12(x̃) = −α2A2(hr2 − hr1)ζ1
CwρwVwV qt

· 0.0396Ts + 0.085

1000
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Ql

CaρV
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(Ṫs − Ṫz)ζ1

V
+

(Ts − Tz)ζ2
V
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V
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CwρwVwV qt
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V
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V

· α(x̃);

Mt = z5 −
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CaρV
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Ml

ρV
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Ts ={−(0.085Mt − 1000Nt)− [(0.085Mt − 1000Nt)
2−

0.0792Mt((4.4984− 1000z1)Mt + 1000z4Nt)]
1
2

}/(0.0396Mt);

Tw =
z7 + Ts

2
− Mt(CaρV (z7 − Ts) + ρhfgV Fw)

α2A2(Ts − z4)
+

qt/α2A2

(Nt

Mt
− 0.0396Ts+0.085

1000 )
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(Ts − z4)(Ntz6 −Mtz3)

M2
t

+ z2(
Nt

Mt
− 1)].
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Appendix A

The system parameters of (14) are listed below:

α(x̃) =
[
(CaρV (Td − Ts) + ρhfgFwζ1 −

α2A2

2
(Td + Ts))

′

qt +
α2A2qt
CwρwVw

· (α1A1(
Tm + Td

2
− Tw) + α2A2

(
Ts + Td

2
− Tw))−

1

2
(q2t )

′]/q2t ;

α11(x̃) =
ζ1(rt −Wz)

V
+

Ml

ρV
;

α12(x̃) =
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V
+

ζ1(ṙt − Ẇz)

V
;

α13(x̃) =
2ζ2(ṙt − Ẇz)− ζ1Ẅz
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+

0.0396Ṫs
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Ql
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(Ṫs − Ṫz)ζ1

V
+
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V
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V
, β22(x̃) = −α2A2(hr2 − hr1)ζ1

CwρwVwV qt
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α23(x̃) =
2ζ2(Ṫs − Ṫz)− ζ1T̈z

V
+

ζ1
V

· α(x̃);

Mt = z5 −
Ql

CaρV
, Nt = z2 −

Ml

ρV
;

Ts ={−(0.085Mt − 1000Nt)− [(0.085Mt − 1000Nt)
2−

0.0792Mt((4.4984− 1000z1)Mt + 1000z4Nt)]
1
2

}/(0.0396Mt);

Tw =
z7 + Ts

2
− Mt(CaρV (z7 − Ts) + ρhfgV Fw)

α2A2(Ts − z4)
+

qt/α2A2

(Nt

Mt
− 0.0396Ts+0.085

1000 )
[
(Ts − z4)(Ntz6 −Mtz3)

M2
t

+ z2(
Nt
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