
Shrinkage estimation in ARMA-GARCH regression models with an

application in Bitcoin returns

by

Zola Mary-Jean Sibanda

Submitted in partial ful�llment of the requirements for the degree

Magister Scientiae in Mathematical Statistics

In the Department of Statistics

In the Faculty of Natural & Agricultural Sciences

University of Pretoria

Pretoria

December 2019

1

I, Zola Mary-Jean Sibanda, declare that this mini-dissertation (100 credits), which I hereby submit for the degree

Magister Scientiae in Mathematical Statistics at the University of Pretoria, is my own work and has not previously

been submitted by me for a degree at this or any other tertiary institution.

Signature - Zola Mary-Jean Sibanda

Date

Contents

1 Introduction 10

1.1 Financial Time Series Analysis . 11

2 The ARMA-GARCH model 15

2.1 Preliminary results . 15

2.2 ARMA model . 18

2.3 GARCH model . 20

2.4 ARMA-GARCH models . 30

3 ARMA-GARCH Application of Bitcoin Data 33

3.1 Cryptocurrencies . 33

3.2 Bitcoin . 33

3.3 Literature review . 34

3.4 Data . 35

3.5 Empirical Analysis . 35

3.6 ARMA-GARCH modelling . 39

4 Linear Regression with ARMA-GARCH errors 45

4.1 Linear Regression with GARCH Errors . 45

4.2 Linear Regression with ARMA-GARCH Errors . 47

2

CONTENTS 3

5 Shrinkage Estimation 55

5.1 Shrinkage Estimation for Multiple Regression Models . 55

5.2 Shrinkage estimation of linear regression with ARMA-GARCH errors 58

5.3 ARMA-GARCH regression modelling application . 61

5.3.1 Simulation study . 61

5.3.2 Bitcoin price data analysis . 68

5.3.2.1 An example to choose π . 78

6 Conclusion 81

7 Appendix 83

Appendix A. 83

Appendix B. 98

Appendix C. 133

Appendix D. 157

Bibliography 184

List of Figures

1 Time plot of USD/BTC daily rate. 13

2 Time plot of USD/BTC daily log returns. 14

3 Q-Q plot of log returns distribution. 37

4 Histogram of log returns of BTC/USD exchange with a �tted GHYP curve. 38

5 10-day unconditional volatility forecasting of the competing models. 42

6 10-day rolling forecasted time series of the competing models: (i) Model 1 and (ii) Model 2. 43

7 10-day rolling forecasted volatility (sigma) series of the competing models: (i) Model 1 and (ii) Model

2. 44

8 Weekly time plots of simulated Yt and corresponding log returns of Yt. 62

9 Histogram of the optimal linear shrinkage estimates, β̂S (π) with �tted distribution curves: (i)

β̂S, 1 (0.1) and (ii) β̂S, 2 (0.1) . 64

10 Histogram of the optimal linear shrinkage estimates, β̂S (π) with �tted distribution curves: β̂S, 1 (0.01)

and β̂S, 2 (0.01) under the restricted estimators chosen as β̂R (Scenario 2) = (0.001, 2)
′
. 66

11 Histogram of the optimal linear shrinkage estimates, β̂S (π) with �tted distribution curves: β̂S, 1 (0.95)

and β̂S, 2 (0.01) under the restricted estimators chosen as β̂R (Scenario 3) = (0.91, 0.02)
′
. 67

12 Time plots the USD/BTC weekly rate, weekly Google searches in and around the term �bitcoin� and

S&P 500 index weekly rate. 69

13 OLS residuals time plot. 71

14 Histogram of the OLS residuals with a �tted normal distribution curve. 73

15 Q-Q plot of the OLS residuals distribution. 73

4

LIST OF FIGURES 5

16 New OLS residuals time plot. 74

17 Histogram of the unrestricted β̃1 estimates with a �tted normal distribution curve. 76

18 Histogram of the unrestricted β̃2 estimates with a �tted normal distribution curve. 76

List of Tables

1 Basic statistics and ADF test results of Bitcoin price and log returns respectively. 36

2 Underlying distribution normality tests. 36

3 Model �tting results (AIC) of di�erent univariate parametric distributions �tted to the log returns

of BTC/USD exchange. 38

4 Model �tting results (AIC) under di�erent conditional distributions, ηt. 40

5 Model �tting results (BIC) under di�erent conditional distributions, ηt. 40

6 Model �tting results (SIC) under di�erent conditional distributions, ηt. 40

7 Model �tting results (HQIC) under di�erent conditional distributions, ηt. 40

8 Linear shrinkage estimator, β̂S (π) optimisation results for di�erent values of π and corresponding

MSE for T = 200 provided that the restricted estimator chosen was β̂R = (1, 0)
′
. 63

9 Basic statistics of the optimal linear shrinkage estimates, β̂S (0.1). 65

10 Linear shrinkage estimator, β̂S (π) optimisation results for di�erent values of π and correspond-

ing MSE for T = 200 for the restricted estimators chosen as β̂R (Scenario 2) = (0.001, 2)
′
and

β̂R (Scenario 3) = (0.91, 0.02)
′
. 66

11 Basic statistics of the optimal linear shrinkage estimates,β̂S, (Scenario 2) (0.01) and β̂S, (Scenario 3) (0.01). 67

12 The 100 (1− α) % con�dence intervals of the unrestricted estimates, β̃UR for α ∈ {0.1, 0.25, 0.50}

levels of signi�cance. 68

13 Basic statistics and ADF test results of OLS residuals. 72

14 OLS residuals distribution normality tests. 72

15 Basic statistics of the new OLS residuals. 74

6

LIST OF TABLES 7

16 Model �tting results (AIC, BIC, SIC, HQIC) of di�erent ARMA (p, q)−GARCH (m, n) models. 75

17 Basic statistics of unrestricted regression coe�cient estimates, β̃1 and β̃2. 77

18 The 100 (1− α) % con�dence intervals of the unrestricted estimates, β̃UR (α) for α ∈ {0.01, 0.05, (0.05), 0.50}

levels of signi�cance. 78

19 Linear shrinkage estimator, β̂S (π) optimisation results for di�erent values of π and corresponding

MSE for T = 200 provided that the restricted estimator chosen was β̂R =
(
β̃1, 0

)′
. 79

Summary

We focus on the extensions of autoregressive conditional heteroscedastic (ARCH) models and the generalised autore-

gressive conditional heteroscedastic (GARCH) models applied to �nancial data. Volatility is observed in �nancial

time series as a response to information or news, which in most cases is unknown beforehand. Although, in certain

situations, the timing of information provided may not be a surprise (e.g. announcements of mergers or initial

public o�erings (IPOs), etc.), giving rise to some aspects of volatility being predictable. Even though volatility is

a latent measure in that it is not directly observable but given ample information, it can be estimated. With the

uncertainty of risk on �nancial assets, it would be an inadequate assumption that a constant variance exists over

a given time period which is assumed when using ordinary least squares estimation. In the past, linear regression

models were used to predict relationships between macro-economic variables but when heteroscedasticity is present,

one might still obtain unbiased regression parameter estimates with too low standard errors, which will in�uence

the true sense of precision. The ARMA-GARCH regression model is one of many extensions of the GARCH process

with respect to the conditional mean. This dynamic model allows for both the conditional mean and conditional

variance to be modelled by the ARMA process and the GARCH process respectively. More speci�cally, in this mini-

dissertation, we develop shrinkage estimation techniques for the parameter vector of the linear regression model with

ARMA-GARCH errors. For the purpose of shrinkage estimation, we will be assuming that some linear restriction

hold on the regression parameter space. From a practical point of view, specifying a set of logical restrictions plays

an important role in economic and �nancial modelling. We conducted an extensive Monte Carlo simulation study

to assess the relative performance of the proposed estimation techniques compared to the existing likelihood-based

estimators. The application of our research is considered in the estimation and modelling of Bitcoin returns and

testing the signi�cance of the interest in the topic of cryptocurrencies as well as the impact of which traditional

�nancial markets may have on Bitcoin and the cryptocurrency market.

Keywords: ARMA-GARCH regression, Bitcoin return, maximum likelihood estimation, Preliminary test estima-

tor, Shrinkage estimator.

8

Acknowledgements

I would like to thank the following, without whom I would not have been able to complete this mini-dissertation,

and without whom I would not have made it through my masters degree. Thank you to my supervisors, Dr. Kleyn

and Prof. Arashi, for providing guidance and feedback throughout this project. I would like to say a special thank

you to Dr. Kleyn for the two years we have worked together on completing this research. You encouraged me, gave

me ample support and allowed me to make this research my own. I would also like to thank Prof. Arashi, especially,

whose insight and knowledge into the subject matter steered me through this research. A special thank you to Dr.

Norouzirad, for all the assistance you provided concerning the coding. I was able to complete the analysis with

your suggestions and I appreciated the timely feedback you gave me. And my biggest thanks to my parents and

my son, Owethu, for all the support you have shown me throughout my studies. I can never thank you enough for

all you have done for me.

The �nancial assistance of the Center of Arti�cial Intelligence Research (CAIR) towards this research is hereby

acknowledged.

This work is based on the research supported in part by the National Research Foundation of South Africa (Grant

Number 71199)

9

1 Introduction

With the rapid development of technology in the last few decades since the Dot-com bubble burst, online transactions

are the new norm; from consumers making more purchases online (i.e. the birth of e-commerce era) and a greater

number of individuals banking online for its e�ciency and simplicity. The investment sector has felt the spill over

of e-commerce as well. It has also been reported that with the fourth industrial revolution beckoning, that we have

also generated about 90% of the world's entire data between the years of 2015 and 2016 which only continues to

grow at an increasing rate. With all this information available, it is crucial to make sense of the data in order to

make well-informed decisions. Technological advancements have therefore allowed us to better collect, store, analyse

and share large data sets with greater ease across di�erent pools, within businesses and across countries with little

to no cost. As a result, this allows information to be virtually accessible to anyone looking for it. This has also

brought about great concerns over the aspect of data privacy and more individuals preferring online contact that

provides some anonymity given that some sort of digital trail is left behind from all online activities.

The global �nancial crisis between 2007 and 2009 led to a restructuring of the traditional �nancial institutions and

a transformation of �nancial markets known today. As a result, more unorthodox measures and solutions have

been increasingly applied out of necessity as a safeguard, to prevent another global �nancial crisis from taking place

again and to combat the issues around privacy and security. This eventually led to the introduction and evolution

of digitised currencies. The year 2009 marked the inception of �rst digital currency or cryptocurrency known as the

Bitcoin (BTC) designed to take advantage of this internet age. The popularity and interest of cryptocurrencies have

increased exponentially in the last decade with well over a thousand cryptocurrencies available in the market. They

are also known as AltCoins because they closely resemble Bitcoin technology by adopting its main features and

di�ering in only some. Bitcoin is the �rst cryptocurrency that holds the largest cryptocurrency market capitalisation

of 109 billion USD as of July 2018. Bitcoin is also increasingly being integrated as a medium of exchange for daily

operations. Its price is highly speculative; greatly determined by people's interest in the asset which makes it

highly volatile and therefore a risky investment. The various news reports around Bitcoin such as defaults, attacks,

and government regulation have caused both extremely positive and negative e�ects on the Bitcoin price. These

factors also in�uence the Bitcoin's volatility. Bitcoin's volatile nature has ensued a lot of curiosity and now there

is considerable participation in the study and analysis of Bitcoin returns from traditional �nancial institutions as

well as in academia.

10

1 INTRODUCTION 11

The focus in this mini-dissertation is to show that despite Bitcoin's high volatility, it can still be modelled and

predicted using statistical knowledge of �nancial time series. The goal is to provide greater insights into the

behaviour of Bitcoin, particularly focusing on its volatility. We aim to provide a deeper understanding of digitised

assets and extend on the current literature available in Bitcoin volatility and forecasting while applying GARCH

modelling techniques.

1.1 Financial Time Series Analysis

Financial time series provide information about the valuation of assets or other commodities and their developments

over time. The price data, as well as all transactions, are collected and recorded on a �nancial market at high

frequencies (e.g. daily, hourly etc.) and monitored on a continuous basis. The analysis of these �nancial time series

have been studied for decades; the theory was developed in the stochastic processes space and one of the earliest

applications was of the autoregressive (AR) model by Yule [64] in 1927 and later by Walker [58] in 1931. AR models

base their future predictions on past information such that the variable is linearly dependent on at least one of its

lags (i.e. previous terms), producing a type of di�erence equation. Prior to the development of AR models, the

moving averages (MA) model was used. The family of MA processes are a type of smoothing technique for time

series data points; the error terms are modelled such that they form a linear combination of the past innovations

that occur concurrently and at various past times. It was only until the 1970s that all types of time series modelling

procedure developed at that time were published by Box and Jenkins [11]. It was also these two authors who

popularised the Box-Jenkins model also referred to as the autoregressive moving average (ARMA) model, initially

described in Whittle's [60] 1951 thesis. The parsimonious ARMA model is a combination of both the AR model

and the MA model. Box and Jenkins [11] later generalised the ARMA model to include a di�erencing operator

raised to an integer power called the autoregressive integrated moving average (ARIMA) model. Many of these

models described are based on the mean of a variable and its time-varying attributes for the purpose of forecasting,

but no methods were developed for the variance at the time.

Financial time series of price data are typically nonstationary which makes them unpredictable and spurious resulting

in some di�culty in building models for forecasting as parameters of interest may no longer be constant. Therefore,

analyses are usually performed on returns data which are generally more stable since they have statistical properties

that can be estimated. A �nancial time series also exhibits some other characteristics which include time-varying

variability referred to as heteroscedasticity; volatility clustering which was �rst realised by Mandelbrot [36] who

con�rmed that future variation was conditional on past variation which meant that large (small) changes in volatility

which would, in turn, tend to lead to large (small) changes in future volatility of either sign. Mandelbrot's [36]

concept of volatility clustering was built on Bachelier's [3] work on the �nancial applications of random-walk models

dating back to the early 1900s.

From these characteristics, volatility is of importance in the analysis of �nancial time series because of the signi�cant

trade-o� between risk and return. Volatility can be described as a measure of risk due to the size of a return's

1 INTRODUCTION 12

modelling error or as de�ned by Tsay [54] as the underlying asset return's conditional standard deviation. Volatility

has uses in possibly determining one's �nancial risk position, or asset allocation and or other forms of time series

analysis. Volatility is a response to information or news which in most cases is unknown beforehand. Although,

in certain situations, the timing of information provided may not be a surprise (e.g. announcements of mergers or

initial public o�erings (IPOs) etc.) giving rise to some aspects of volatility being predictable. Even though volatility

is a latent measure in that it is directly unobservable but given ample information, it can be estimated. With the

uncertainty of risk on �nancial assets, it would be inadequate to assume that there exists a constant variance over

a given time period as with ordinary least squares (OLS) estimation. This obviously contradicts reality and thus

the autoregressive conditional heteroscedasticity (ARCH) model was �rst introduced by Engle [17] in 1982 which

revolutionised the way in which we model volatility. This dynamic model of volatility takes weighted averages of

the past squared forecast errors. Historical data can be used to estimate the weights such that more weight is given

to the most recent information and less on the distant information. As profound as the ARCH models may be, it

assumes that the environment is stable and thus has the inability to capture incidences of irregularity (e.g. crashes

in the market, mergers and acquisitions or other news e�ects etc).

Prior to the inception of ARCH models, there was no formal way of modelling volatility especially in the context

of �nancial data that took into account some of the important characteristics mentioned above. For example, the

concept of implied volatility is derived under certain assumptions and then used in determining option prices under

the Black-Scholes model but tends to overestimate volatility; Mandelbrot [36] also used a recursive formula in order

to estimate the variance at a given time; alternatively, Klein [32] would take a 5-period moving average of the

variance as estimates of a 10-period moving average sample mean. ARCH models, therefore, allow us to make

more sound �nancial forecasts and predictions. Since then, there has been vast amounts of literature that extend

upon Engle [17] ideology such as Bollerslev [8] who proposed a generalisation of the ARCH model de�ned as the

generalised autoregressive conditional heteroscedastic (GARCH) model. The GARCH model is widely used because

it generalises the autoregressive ARCH into an autoregressive moving average (ARMA) model with the assumption

that positive and negative error terms have a symmetric e�ect on volatility referred to as the leverage-e�ect. The

GARCH volatility measure is such that the future volatility is based on the past information of its squared returns

and conditional on its past volatility. Both the ARCH and GARCH models are widespread variance models built to

treat heteroscedasticity and therefore particularly used in dealing with �nancial time series. The ARCH-class family

has many extensions due to its success in �nancial applications to satisfy more real-world scenarios. In 1987, Engle

et al. [16] proposed an extension of the ARCH model called the ARCH-M model which is based on the concept that

the conditional mean of a �nancial asset would be in�uenced by its conditional variance which in turn a�ects the

return on the asset. This was then applied to both short- and long-term interest rates which revealed that short rates

had a stronger time-varying risk premium than the long term rates. In 1991, the exponential GARCH (EGARCH)

model was proposed by Nelson [38] because he recognised that there were signi�cant di�erences in the way negative

returns a�ected the volatility predictors compared to positive returns (i.e. volatility reacted asymmetrically to

positive or negative news). Nelson's [38] contribution has made a massive impact on the development of volatility

measures today. Then between 1991 and 1993, Zakoian [65] published a new modi�cation of the ARCH model

1 INTRODUCTION 13

called the Threshold Heteroscedastic (TARCH) models which was then generalised by Rabemananjara and Zakoian

[42] named the Threshold GARCH (TGARCH) model. The TARCH was designed such that the distribution of

innovations are divided into disjoint intervals which are then approximated by a piecewise linear function for the

conditional standard deviation and conditional variance; by Zakoian [65] and Glosten et al. [23] respectively. The

TGARCH model separates the impact of past shocks by using zeros as thresholds. Thereafter, Bera and Higgins'

[7] paper discussed the properties of many of the ARCH-class family models that had been developed by 1993

and also looked at the testing and estimation of these models. The family of ARCH-class models have also been

extended to consider multivariate occurrences. In 2015, Messaoud and Aloui [37] made use of copula functions to

examine the dependence of asymmetries in order to calculate some risk measure. The Glosten-Jagannathan-Runkle

generalised autoregressive conditional heteroscedastic (GJR-GARCH) model was the main focus of the study with

its parameters estimated using the generalised Pareto distribution.

As has been previously mentioned, �nancial time series analysis has received considerable attention and explosively

developed with the increase of data available and the vast amounts of literature produced. The main objective of

�nancial time series analysis is to help us gain a better understanding of how �nancial data behave. We particularly

look at the variance of a time series as it is of key importance since the future price of an asset is unknown and

uncertain. This can be described by a probability distribution; therefore, statistical methods are used to investigate

and model �nancial assets. Financial models describe in detail the movements of an asset or commodity over time

by replicating the time series, as a result, can be used to simulate and determine their future behaviour in order to

make the most optimal decisions; this is known as risk management.

The following �gures give over 700 observations of the Bitcoin price and log returns respectively, taken at daily

intervals between the period of March 31st, 2016 to March 31st, 2018.

Figure 1: Time plot of USD/BTC daily rate.

1 INTRODUCTION 14

Figure 2: Time plot of USD/BTC daily log returns.

The primary aim of this mini-dissertation will entail deriving the properties of the hybrid ARMA-GARCH and

estimating its parameters. The ARMA-GARCH model can essentially be described as an ARMA model with

GARCH innovations. In Chapter 2 the necessary and preliminary results that will be used throughout the study

will be given and we will present and give a detailed discussion on the ARMA-GARCH model. We will then apply

the ARMA-GARCH modelling techniques discussed in Chapter 2 on a sample of Bitcoin returns with a focus on

�tting the most appropriate model in order to predict future outcomes. We will then discuss linear regression

models with either GARCH errors or ARMA-GARCH errors and derive the asymptotic theory required to estimate

in particular, a linear regression with ARMA-GARCH errors. We will make use of preliminary test estimators

and linear shrinkage test estimators to determine the best parameter estimates of the model derived in Chapter

4. These estimation procedures will then be discussed and derived in Chapter 5 and then applied to a numerical

example. Lastly, in Chapter 6 the conclusion will be given and further comments will be made on any possible

research extensions.

2 The ARMA-GARCH model

In this chapter, an introduction of the workings of some �nancial time series model will be provided. The preliminary

results necessary will be de�ned �rst. Then in the sections that follow; the ARMA process, GARCH model and

ARMA-GARCH model will be discussed and their properties de�ned.

2.1 Preliminary results

The following statistical results given will form the basis of our study, of the time series models discussed.

The primary goal of time series analysis is to bring about an understanding of the given data by building reliable

models that explain the underlying stochastic process. With this in mind, the analysis of these models ultimately

allows us to maximise our gains through the best possible predictions.

Throughout this study, we will consider the time series analysis of �nancial data. Let us de�ne Pt, for t =

. . . ,−1, 0, 1, . . . as the price of a �nancial asset (e.g. shares, stock indices, interest rates and other commodities

etc.) at a point in time, t. As previously mentioned, returns series are preferred over their price series counterpart

and therefore analysed due to their stable nature and estimable statistical characteristics. The log returns are also

scale-free and thus allow us to compare di�erent assets or commodities.

De�nition 2.1.1. Let Yt be a random variable de�ned as the log return on Pt given by

Yt = logPt − logPt−1

= log

(
Pt
Pt−1

)
= log

(
1 +

Pt − Pt−1

Pt−1

)
.

We previously de�ned the discrete random variable Y as the logarithmic changes of P (i.e. the price of an �nancial

asset or commodity). Wold [61] theorised that the continuous state, discrete stochastic time series process {Yt}

taken at any discrete time point, t is, in general, an amalgam of two elements; a deterministic and a nondeterministic

distribution de�ned below.

15

2 THE ARMA-GARCH MODEL 16

De�nition 2.1.2. The general decomposition of discrete random variable is Yt is de�ned as follows

Yt = mt + εt. (1)

εt = σtηt. (2)

where {mt} and {εt} represent the deterministic and nondeterministic processes respectively, de�ned relative to a

past information set Ω, inclusive of all relevant information up to time period t. The nondeterminitsic element εt,

is driven by ηt (white noise) i.i.d. random variables such that ηt ∼ N (0, 1). It then follows that the mean and

variance of Yt conditional on Ωt−1 respectively, are de�ned as

mt = E [Yt|Ωt−1] . (3)

σ2
t = V ar [Yt|Ωt−1]

= E
[
ε2
t |Ωt−1

]
. (4)

where Ωt−1 denotes the information set as of time t− 1 and E [εt|Ωt−1] = 0.

The following de�nitions given below are as given in Hamilton [26].

The basic foundation of all the time series models that will be described are built upon the white noise process

de�ned below.

De�nition 2.1.3. Let {εt}∞t=−∞ be a sequence of independent and identically distributed (i.i.d.) random variables

such that

E (εt) = 0. (5)

and

E
(
ε2
t

)
= σ2

ε . (6)

This is called a white noise or innovation process denoted by εt ∼ i.i.d.N
(
0, σ2

ε

)
where εt, ∀ t ∈ Z are uncorrelated.

De�nition 2.1.4. The pth order autoregressive (AR) model of the log return Yt, denoted by AR (p) is a linearly

dependent polynomial of p of its previous terms (i.e. lags) and given as follows

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt, ∀ t ∈ Z. (7)

2 THE ARMA-GARCH MODEL 17

or equivalently, (
1 +

p∑
i=1

φiL
i

)
Yt = c+ εt, ∀ t ∈ Z. (8)

where c could be any constant, φ1, φ2, . . . , φp are the regression coe�cients and εt is the innovation process de�ned

in De�nition 2.1.3. and L is the lag or back shift operator such that Ljyt = yt−j .

De�nition 2.1.5. The qth order moving average (MA) model of the log return Yt, denoted by MA (q) is a linear

combination of q of the most recent innovations characterised by

Yt = c+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, ∀ t ∈ Z. (9)

or equivalently,

Yt = c+

(
1 +

q∑
i=1

θiL
i

)
εt, ∀ t ∈ Z. (10)

where c could be any constant, θ1, θ2, . . . , θq are the coe�cients of the corresponding innovations de�ned in De�nition

2.1.2. and L is the lag or back shift operator such that Ljyt = yt−j .

We now go on to de�ne the ARCH and GARCH models below for which the moments of the innovation process

are conditional on past innovations. The ARCH model is based on a AR representation of the conditional variance

and describes the process evolution of the conditional mean and variance.

De�nition 2.1.6. A process εt = σtηt is said to be a ARCH (p) process if it assumes the following conditions

(i)

E (εt| εu, u < t) = 0, ∀ t ∈ Z. (11)

(ii) Nonnegative constants exist such that α0 > 0 and αi ≥ 0, i = 1, 2, . . . , p such that

V ar (εt| εu, u < t) = σ2
t

= α0 +

p∑
i=1

αiε
2
t−i, ∀ t ∈ Z. (12)

where ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1).

2 THE ARMA-GARCH MODEL 18

2.2 ARMA model

The autoregressive moving average (ARMA) model is deemed the most widely used time series model because of its

parsimony. It is an amalgam of the AR model and MA model. The ARMA model can better capture the behaviour

of �nancial data compared its AR model or MA model counterparts. The AR model makes the e�ort to explain

the momentum and mean reversion e�ects often observed in �nancial trading markets data whilst the MA model

tries to capture the shock e�ects, such as unexpected events that a�ect the process being observed. ARMA models

combine the features of both the AR and MA model. As great as this may sound, ARMA models do not have the

ability to capture the volatility clustering of �nancial data which will be resolved by the GARCH process discussed

in the next section.

De�nition 2.2.1. The autoregressive moving average (ARMA) model of the log return Yt , is a second-order

stationary process with parameters p and q is a mixture of the AR (p) and MA (q) polynomials de�ned in (7) and

(9) respectively. It is given as follows that

Yt = c+ φ1Yt−1 + φ2Yt−2 + . . .+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q, ∀ t ∈ Z. (13)

or equivalently, (
1−

p∑
i=1

φiL
i

)
Yt = c+

(
1 +

q∑
i=1

θiL
i

)
εt, ∀ t ∈ Z. (14)

where c could be any constant, φ1, φ2, . . . , φp are the regression coe�cients, θ1, θ2, . . . , θq are the coe�cients of the

corresponding innovations, {εt}∞t=−∞ is white noise as de�ned in De�nition 2.1.3. and L is the referred to as the

lag operator. The ARMA model is denoted ARMA (p, q) where p, q ∈ Z .

It should be noted that the roots of

θ (z) = 1 + θ1z + θ2z
2 + . . .+ θqz

q = 0. (15)

lie outside the unit circle. Only the coe�cients θ1, θ2, . . . , θq (i.e. the parameters of the corresponding innovations)

determine the invertibility of the process in (13) and (14) given that the assumption (15) holds.

It should also be noted that the roots of

φ (z) = 1− φ1z − φ2z
2 − . . .− φpzp = 0. (16)

also lie outside the unit circle. Given that the assumption in (16) holds, then the process in (13) and (14) is deemed

covariance-stationary.

2 THE ARMA-GARCH MODEL 19

De�nition 2.2.2. A process is said to be covariance-stationary if

E (Yt) = µ, ∀ t, j. (17)

the mean of the process is constant and thus independent of time and

E [(Yt − µ) (Yt−j − µ)] = γj , ∀ t, j. (18)

the autocovariances are independent of time.

This corresponds to the �rst and second order moments being independent of time.

De�nition 2.2.3. The ARMA model de�ned in (14) can be re-expressed as the following

Yt = µ+ Ψ (L) εt, ∀ t (19)

by dividing both sides of (14) by φ (L) = 1 − φ1L − φ2L
2 − . . . − φpLp. We have that {εt}∞t=−∞ is white noise as

de�ned in De�nition 2.1.3,

Ψ (L) =
1 + θ1L+ θ2L

2 + . . .+ θqL
q

1− φ1L− φ2L2 − . . .− φpLp
(20)

=
θ (L)

φ (L) .

µ =
c

1− φ1L− φ2L2 − . . .− φpLp
. (21)

and

∞∑
j=0

|Ψj | < ∞. (22)

The process is described as ergodic for the mean provided that (22) holds. This simply means that the sample

mean ȳ converges in probability to the process mean given by (17) as the sample size T →∞.

The ARMA model is successful in capturing the movements of the conditional mean but assumes that the variance

is constant and not conditioned on past information. This is a major drawback of the ARMA model as it fails

to consider the possibility of the time-variant volatility which remains a main feature of �nancial time series. As

can be seen in Figures 1 and 2 of the price and log returns of Bitcoin; there are several instances of extreme

�uctuations and even calm periods which indicates that the data set has a non-constant variance also referred to

as heteroscedasticity. It can also be seen in Figure 1 that the price of Bitcoin has an upward trend and then a

downward trend which indicates non-stationarity.

The autoregressive integrated moving average (ARIMA) model de�ned below is a generalisation of the ARMA

2 THE ARMA-GARCH MODEL 20

model. The di�erencing step of one or more variables, corresponds to the �integrated� part of the model can be

applied to a nonstationary time series; particularly those with a stochastic trend (i.e. it contains one or more unit

roots). The idea of di�erencing is seen as a transformation that eliminates a process's non-stationarity (i.e. makes

it stationary).

De�nition 2.2.4. The log return series of Yt that is integrated to the power d can be described by the autore-

gressive integrated moving average (ARIMA) model. The process is said to be an ARIMA (p, d, q) and de�ned as

follows (
1 +

p∑
i=1

φiL
i

)
4dYt = c+

(
1 +

q∑
i=1

θiL
i

)
εt, ∀ t ∈ Z. (23)

where c could be any constant, φ1, φ2, . . . , φp are the regression coe�cients, θ1, θ2, . . . , θq are the coe�cients of the

corresponding innovations, {εt}∞t=−∞ is white noise as in De�nition 2.1.3, L is the referred to as the lag operator

and where 4 = (1− L) is the di�erencing step raised to a power d such that the parameters p, q and d are all

nonnegative integers.

The metamorphosis of long-memory and fractional integration of ARIMA models were initially introduced through

the works of Granger and Joyeux [25] in 1980 and later by Hosking [28] in 1981 respectively. Long memory is the

idea that there is a slow decay in the dependence between observations a long span apart. In this case, the order

of di�erencing, d of the ARIMA model may not be an integer but real (i.e. |d| < 1). In particular, for values of

d > − 1
2 the process is invertible, when d < 1

2 the process is stationary and when d < 1 we have a mean-reverting

while for 1
2 < d < 1 the process is non-stationary. Fractional di�erencing allows the di�erencing operator of the

ARIMA to be is raised to a fractional power with the use of an in�nite binomial series expansion. When this occurs,

the model is then referred to as the fractional di�erencing ARIMA model or formally known as the fractionally

integrated autoregressive moving average (ARFIMA) model. AR models and non-stationary series have relatively

long-memory and/or in�nite memory meaning its current value has all its past innovations embedded in the series

whereas any pure stationary ARIMA model as well as MA models are considered to have �short� or �nite memory

meaning that the innovations have a temporary e�ect.

2.3 GARCH model

Bollerslev [8] generalised the ARCH model (De�nition 2.1.6.) introduced by Engle [17], referred to as the GARCH

model. GARCH processes model �nancial time series while taking into account the important characteristics of a

series. Their simplicity allows for an extended study of a model's statistical properties and probability. GARCH

models express the conditional variance in the next time period as a linear combination of the past squared innova-

tions which is the sum of the long-run average variance; the weighted average variance based on the current period;

and lastly the weighted average of the new information set from the current period compared to the most recent

squared residuals.

2 THE ARMA-GARCH MODEL 21

De�nition 2.3.1. A process {Yt} is said to be a GARCH (p, q) process if it satis�es the following conditions

(i)

Yt = c+ εt, ∀ t ∈ Z. (24)

(ii)

εt = σtηt. (25)

(iii) There exists nonnegative constants, ω > 0; αi ≥ 0, i = 1, 2, . . . , p and βj ≥ 0, j = 1, 2, . . . , q such that

V ar (εt| εu, u < t) = σ2
t

= ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j , ∀ t ∈ Z. (26)

where ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1) .

It should be noted that when q = 0, the process de�ned above reduces to the ARCH (p) process as de�ned in (11)

and (12). The GARCH model has been well developed in the �nancial time series space because of its ability to

capture some of skewness, excess kurtosis, volatility clustering and volatility mean reversion in which �nancial data

exhibit, which are some of the properties inherited from the corresponding underlying process of Yt.

We will consider the process Yt with GARCH (1, 1) innovations because of its simplicity. The GARCH (1, 1) can

easily be generalised to any GARCH (p, q) with higher order of p > 1 and/or q > 1 which allow for more complex

autocorrelation structures. However, the GARCH (1, 1) is typically used as it su�ciently explains �nancial time

series well and higher order lags tend to be insigni�cant.

A simple description of the GARCH (1, 1) model as done by Reider [44] is given as follows.

De�nition 2.3.2. A process {Yt} is said to be a univariate GARCH (1, 1) process is de�ned as follows

Yt = c+ εt

εt = σtηt

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1, ∀ t ∈ Z. (27)

where ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1), the long-run average variance (i.e.

unconditional variance of εt) of the GARCH (1, 1) process is given by
ω

1−α1−β1
and the weights of the process are

(1− α1 − β1;α1;β1) provided that α1 + β1 < 1 and ω > 0, α1 ≥ 0 and β1 ≥ 0. We then rewrite the conditional

2 THE ARMA-GARCH MODEL 22

variance in (27) using recursive substitution as follows

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1

= ω + α1ε
2
t−1 + β1

(
ω + α1ε

2
t−2 + β1σ

2
t−2

)
= ω (1 + β1) + α1ε

2
t−1 + α1β1ε

2
t−2 + β2

1σ
2
t−2

= ω (1 + β1) + α1ε
2
t−1 + α1β1ε

2
t−2 + β2

1

(
ω + α1ε

2
t−3 + β1σ

2
t−3

)
...

= ω
(
1 + β1 + β2

1 + . . .
)

+ α1ε
2
t−1 + α1β1ε

2
t−2 + α1β

2
1ε

2
t−3 + . . .

= ω

∞∑
i=0

βi1 + α1

∞∑
j=1

βi−1
1 ε2

t−j .

This reveals that the conditional variance, σ2
t has in�nite long memory in terms of all the past squared residuals,

ε2
t , ∀ t, which decay in coe�cients. This property is the reason why GARCH models are considered better than

their ARCH model counterparts.

As previously mentioned, there are complex alternatives to the standard GARCH model described above that would

capture the di�erent characteristics of �nancial time series. However, an in-depth analysis into the characteristics

of the data provided has to be done, as well as into the di�erent GARCH model types. For the sake of simplicity,

it would be su�cient to consider the standard GARCH model with a di�erent conditional distribution, ηt. In the

application of GARCH modelling, the conditional distribution of the innovations is typically assumed to be normally

distributed (i.e. ηt ∼ N (0, 1)) by default. Although in many cases of observed �nancial time series, Gaussian law

is not exhibited. For instance, the observed returns series may, in fact, be skew and the kurtosis found is usually

much greater than that implied by the normal GARCH model. Both measures are used in the empirical analysis to

check possible deviations from normality such that, for any normally distributed variable, Yt, with an unconditional

mean E [Yt] = µy and unconditional variance V ar [Yt] = σ2
y, the skewness and kurtosis are de�ned as follows

Skew [Yt] = E

[(
Yt − µy
σy

)3
]

=
E (Yt − µy)3

(V ar [Yt])
3
2

=
E (Yt − µy)3

σ3
y

= 0.

and

Kurtosis [Yt] = E

[(
Yt − µy
σy

)4
]

=
E (Yt − µy)4

σ4
y

= 3.

We, therefore, extend upon the classical econometric approach by testing and using non-Gaussian distributions to

2 THE ARMA-GARCH MODEL 23

try and better explain the time series. We will explore the di�erent types of conditional distributions that the

univariate standard GARCH can assume and will consider these in our analysis in the following chapter.

De�nition 2.3.3. As stated in the rugarch [22] manual, the density function of a GARCH model

f (Yt|αt) = f
(
Yt|ω, mt, σ

2
t

)
. (28)

can be expressed in terms of its location and scale parameters which are normalised to give a mean of zero and a

unit variance (i.e. ηt ∼ N (0, 1)) where the conditional mean and conditional variance are as de�ned in (3) and (4)

respectively with the intercept ω, which denotes the remaining parameters of the distribution possibly including a

shape and skewness parameter. The innovations of the process are scaled with the use of the conditional mean and

variance such that the scaled version of the conditional distribution ηt = εt
σt
, is given by

zt =
Yt −mt

σt
. (29)

which has a conditional density given by

g (z|ω) =
d

dz
P (zt < z|ω) . (30)

It then follows that from (28) and (30) that

f (Yt|αt) =
1

σt
g (zt|ω) . (31)

We will now discuss the di�erent types of conditional density functions used to in GARCH modelling and give a

comprehensive summary of how they are standardised in order to be used to better suit a given data set. It is vital

that the conditional distribution be self-decomposable whilst still keep its linearity.

The following distribution de�ned below is as given by de Moivre [15]. and Gauss [20].

The Normal Distribution. A random variable Y that is normally distributed such that N
(
µ, σ2

)
where the

variance is constant and has the following density function

f (Y) =
1

σ
√

2π
e−

1
2 (Y−µσ)

2

.

It follows that the residuals ε = y − µ, can be standardised by the standard deviation of the process σ, which have

a standard normal distribution with density function

f

(
Y − µ
σ

)
=

1

σ
√

2π
e−

1
2 z

2

(32)

=
1

σ
f (z) .

2 THE ARMA-GARCH MODEL 24

This is the default conditional distribution of the GARCH innovations (i.e. zt = ηt ∼ N (0, 1)).

The following distribution de�ned was developed by Gosset [24].

The Student-t Distribution. The Student-t distribution can be used as an alternative to the normal distribution

as a conditional distribution of the GARCH innovations. This was �rst realised by Bollerslev [9] as it takes into

account the underlying excess kurtosis in the data.

The random variable Y is Student-t distributed with µ the location parameter, β the scale parameter and ν > 2 is

the shape parameter. Then it follows that the density function of Y is given by

f (Y) =
Γ
(
ν+1

2

)
√
βνπΓ

(
ν
2

) (1 +
(y − µ)

2

βν

)−(ν+1
2)

where Γ is the gamma function. It should be noted that the location parameter µ is both the mean and the mode

of the distribution.

The standardised Student-t density function is given by

f

(
Y − µ
σ

)
=

Γ
(
ν+1

2

)
σ
√
π (ν − 2)Γ

(
ν
2

) (1 +
z2

(ν − 2)

)−(ν+1
2)

=
1

σ
√

(ν − 2)B
(

1
2 ,

ν
2

) (1 +
z2

(ν − 2)

)−(ν+1
2)

(33)

=
1

σ
f (z) .

where B (a, b) = Γ(a)Γ(b)
Γ(a+b) represents the Beta function. The result above is obtained by substitution of the expression

of the scale parameter β, in terms of the shape parameter ν. Since the variance of Y is standardised such that

V ar (Y) =
βν

(ν − 2)
= 1.

∴ β =
ν − 2

ν
.

Furthermore, since the Student-t distribution is symmetric as with the normal distribution but allows for excess

kurtosis (more speci�cally leptokurtic i.e. heavier tails), the skewness and kurtosis are given by

Skew (Y) = 0.

Kurtosis (Y) =
6

ν − 4
+ 3, ν > 4.

The Generalised Error Distribution. We will now consider another distribution belonging to the exponential

family. The generalised error distribution (GED) often referred to as the exponential power distribution was �rst

introduced by Subbotin [52] and then later suggested by Nelson [38] as a conditional distribution in terms of GARCH

2 THE ARMA-GARCH MODEL 25

processes.

Let Y be a random variable being GED such that µ is the location parameter, β the scale parameter and ν > 0 is

the shape parameter, then the conditional density of Y is de�ned as follows

f (X) =
ν

21+ 1
ν βΓ

(
1
ν

)e− 1
2 |Y−µβ |ν .

This distribution shares the characteristic of symmetry like the normal and Student-t distributions. It is particularly

special in that the mean, median and mode are all equal (i.e. µ). Varying the shape parameter ν reveals that when

ν →∞, the density tends to uniformity and we get a �atter distribution as ν → 0. It should also be noted that the

Normal and Laplace distributions can be determined from the GED when ν = 2 and ν = 1, respectively.

All the odd order central moments are zero as with the skewness (i.e third central moment) and the even order

central moments can be computed such that the second and fourth moments of the distribution are given by

V ar (Y) =
(
β2

1
ν

)2 Γ
(

3
ν

)
Γ
(

1
ν

) .
Kurtosis (Y) =

Γ
(

5
ν

)
Γ
(

1
ν

)
Γ
(

3
ν

)
Γ
(

3
ν

) .
When Y has a unit variance we can determine the scale parameter which is given by

β =

(
2−(2

ν)Γ
(

1
ν

)
Γ
(

3
ν

)) 1
2

.

Therefore the standardised scaled density function can be expressed as

f

(
Y − µ
σ

)
=

ν

σ21+ 1
ν

(
2
−(2

ν)Γ(1
ν)

Γ(3
ν)

) 1
2

Γ
(

1
ν

)e
− 1

2

∣∣∣∣∣∣∣∣
 2
−(2

ν)
Γ(1
ν)

Γ(3
ν)


1
2

z

∣∣∣∣∣∣∣∣
ν

. (34)

Skewed Distributions. Many of the conditional distributions described above are continuous unimodal and

symmetric. Skewness can be introduced into the distribution by way of an inverse scaled factor on each side of the

mode. This general approach was introduced by Fernandez and Steel [18] who stated that the density function of

the random variable z, conditional on the skewness parameter ξ can be written as

f (z|ξ) =
2

ξ + 1
ξ

[
f (ξz)H (−z) + f

(
z

ξ

)
H (z)

]
. (35)

where ξ ∈ (0,∞) which is the shape parameter describing the degree of asymmetry such that in the instance that

ξ = 1, the density function reduces to f (z), the standardised function and H (z) = (1+sign(z))
2 is known as the

Heaviside unit step function.

2 THE ARMA-GARCH MODEL 26

In order to obtain central order moments, the r-th absolute function, Mr de�ned below is used

Mr = E (|Xr|)

= 2

∞̂

0

xrf (y) dy

where f (x) is on the positive real line. Then mean and variance are then given by

E (Y) = µξ

= M1

(
ξ − 1

ξ

)
.

V ar (Y) = σ2
ξ

=
(
M2 −M2

1

)(
ξ2 − 1

ξ2

)
+ 2M2

1 −M2.

The scaled or standard version of the skewed distributions form is a simply a re-parametisation of (35) so that

the mean is zero and we have unit variance. The standardised skewed distribution probability function is obtained

using (35) , the moment conditions given above and the transformation of the variable X → z∗ = x−µ
σ which gives

f (z∗|ξθ) =
2σ

ξ + 1
ξ

f∗ (znew|θ) .

where f∗ (z|θ) represents any of the standardised continuous symmetric unimodal distribution functions described

in (32), (33), (34) and (35). We also have that znew = ξsign(σξz+µξ) (σξz + µξ), ξ ∈ (0,∞) and that θ represents

the optional set of shape parameters particularly for the the GED and Student-t distribution in the case of higher

order moments.

The Generalised Hyperbolic Distribution family. The family of generalised hyperbolic (GHYP) distribu-

tions was �rst introduced by Barndor�-Nielsen [5] in 1977. The GHYP distribution is a normal variance-mean

mixture which means it has semi-heavy tails. There have been various extensions of the distribution family over

the years with a particular focus on �nancial applications. It was Barndor�-Nielsen and Blaesild [6] in 1981 who

discussed the �rst four moments, skewness and kurtosis of the distribution. It is rather complicated to de�ne an

explicit form of the distribution's moments as they are functions of all the �ve parameters. Although a recursive

method was used by Scott et al. [50] to obtain the moments of any order in a simpli�ed manner.

The random variable X is said to have a generalised hyperbolic distribution with a probability function de�ned as

f (Y |λ, α, β, δ, µ) =

(
α2 − β2

)λ
2

√
2παλ−

1
2Kλ

(
δ
√
α2 − β2

) [δ2 + (x− µ)2
] (λ− 1

2)
2 Kλ− 1

2

(
α

√
δ2 + (y − µ)2

)
e[β(y−µ)]

= a (λ, α, β, δ, µ)
[
δ2 + (y − µ)2

] (λ− 1
2)

2 Kλ− 1
2

(
α

√
δ2 + (y − µ)2

)
e[β(y−µ)]. (36)

where Kλ is the modi�ed Bessel function of the the third kind of order λ. The location and scale are determine

by µ and δ whilst the shape of the density is determined by α and β. We have that α, µ ∈ R and the remaining

2 THE ARMA-GARCH MODEL 27

parameters are given as

δ, |β| =


δ ≥ 0, |β| < α if λ > 0

δ > 0, |β| < α if λ = 0

δ > 0, |β| ≤ α if λ < 0

then we say that Y ∼ GHY P (λ, α, β, δ, µ) (�rst parameterisation (α, β)).

The distribution has three alternative scale-invariant and location-invariant parameterisation forms that were dis-

cussed in a thesis presented by Prause [41]. We will focus on the second parameterisation (ζ, ρ) as this used in the

rugarch [22] package in R [14] which then transforms those parameters into the �rst parameterisation. The second

parameterisation parameters are de�ned in the following way

ζ = δ
√
α2 − β2.

ρ =
β

α
.

Suppose that Y ∼ GHY P (λ, α, β, δ, µ) then the r-th central moment of the GHYP distribution can be proved to

be

Mr = E (Y − µ)
r

=

r∑
s=[(r+1)

2]

r!

(r − s)! (2s− r)!2r−s
β2s−rE (W s)

=

r∑
s=[(r+1)

2]

ar,sβ
2s−rE (W s)

using the the moments results of the standard normal distribution

E
(
Zi
)

=


0 when i odd.

i!

2
i
2 (i2)!

when i even.

and where

E (W s) =

(
δ2

δ
√
α2 − β2

)λ+s Kλ+s

(
δ
√
α2 − β2

)
Kλ

(
δ
√
α2 − β2

)
=

(
δ2

ζ

)λ+s
Kλ+s (ζ)

Kλ (ζ)
.

2 THE ARMA-GARCH MODEL 28

and

ar,s =

 0 s <
[

(r+1)
2

]
.

r!
(r−s)!(2s−r)!2r−s

[
(r+1)

2

]
< s < r.

where s = 1, 2, . . . k and r = 1, 2, . . .

Then it follows that the mean and variance of the GHYP distribution is given by

E (Y) = µ+

(
δ2

ζ

)
β
Kλ+1 (ζ)

Kλ (ζ)
.

V ar (Y) =

(
δ2

ζ

)
Kλ+1 (ζ)

Kλ (ζ)
+

(
δ2

ζ

)2

β2

[
Kλ+2 (ζ)

Kλ (ζ)
+

(
Kλ+1 (ζ)

Kλ (ζ)

)2
]
.

and then the skewness and kurtosis are expressed as follows

Skew (Y) = [V ar (Y)]−
3
2

[(
δ2β

ζ

)3
(
Kλ+3 (ζ)

Kλ (ζ)
−

3Kλ+2 (ζ)Kλ+1 (ζ)

(Kλ (ζ))2
+ 2

(
Kλ+1 (ζ)

Kλ (ζ)

)3
)]

+ [V ar (Y)]−
3
2

[
3

(
δ2

ζ

)2

β

(
Kλ+2 (ζ)

Kλ (ζ)
−
(
Kλ+1 (ζ)

Kλ (ζ)

)2
)]

.

Kurtosis (Y) = −3 + [V ar (Y)]−2

[(
δ2β

ζ

)4
(
Kλ+4 (ζ)

Kλ (ζ)
−

4Kλ+3 (ζ)Kλ+1 (ζ)

(Kλ (ζ))2
+

6Kλ+2 (ζ) (Kλ+1 (ζ))
2

(Kλ (ζ))3
+ 3

(
Kλ+1 (ζ)

Kλ (ζ)

)4
)]

+ [V ar (Y)]−2

[(
δ2

ζ

)3

β2

(
6Kλ+3 (ζ)

Kλ (ζ)
−

12Kλ+2 (ζ)Kλ+1 (ζ)

(Kλ (ζ))2
+ 6

(
Kλ+1 (ζ)

Kλ (ζ)

)3

+ 3

(
Kλ+1 (ζ)

Kλ (ζ)

)4
)]

+ [V ar (Y)]−2

[
3

(
δ2

ζ

)2
Kλ+2 (ζ)

Kλ (ζ)

]
.

It then follows that the standardised GHYP distribution density can be expressed as

f

(
Y − µ
σ
|ζ, ρ

)
=

1

σ
f (z|ζ, ρ)

=
1

σ
f
(
z|λ̃, α̃, β̃, δ̃, µ̃

)
.

where z is scaled version of the random variable Y ∼ GHY P (ζ, ρ) to have zero mean and unit variance by way of

transforming it from the second parameterization to the �rst.

It should be noted that for symmetric distributions β = β̃ = ρ = 0 and other special distributions can be obtained

from the GHYP such the Normal and Normal Inverse Gaussian (NIG) distribution in the case where the shape

parameter λ = 1 or λ = −0.5 respectively.

The Generalised Hyperbolic Skew Student-t Distribution. In the previous section we discussed the GHYP

distribution and its properties. In particular we looked at symmetric GHYP distributions. There has been further

research into non-symmetric of the skewed generalised hyperbolic distributions. It was previously noted that GHYP

distributions are symmetric when β = β̃ = ρ = 0 and conversely will be skewed when β 6= 0. We focus on the

generalised hyperbolic skew Student's t-distribution which was not well-known until Aas and Ha� [1] popularised

it. It is a heavier tailed distribution than that of the normal distribution and it also has quite a special property

in how it behaves; it is the only one of its kind in the subclass of GHYP family in that one tail bears exponential

2 THE ARMA-GARCH MODEL 29

traits while the other tail exhibits polynomial behaviour compared to the symmetric Student's t-distribution that

has polynomial decaying tails. As previously de�ned in (36), the density of the GHYP is given by

f (Y |λ, α, β, δ, µ) =

(
α2 − β2

)λ
2

√
2παλ−

1
2Kλ

(
δ
√
α2 − β2

) [δ2 + (y − µ)
2
] (λ− 1

2)
2

Kλ− 1
2

(
α

√
δ2 + (y − µ)

2

)
e[β(y−µ)].

The GHYP skew Student's t-distribution is de�ned such that λ = −ν2 where ν > 0 determines the shape of the

distribution and the parameter α → |β| and β ∈ R. It should be noted that since ν is the distribution's shape

parameter, for the variance to be �nite and the skewness and kurtosis to exist ν > 4, ν > 6 and ν > 8 respectively

opposed to it symmetric counterpart. This is a limiting case of the GHYP distribution

Let Y be a random variable that has a generalised hyperbolic skew Student's t-distribution then the probability

density function is given by

f (Y |ν, β, δ, µ) =
2

1−ν
2 |β|

ν+1
2

Γ
(
ν
2

)√
π
(
δ
√
α2 − β2

) ν+1
2

K ν+1
2

(√
β2
(
δ2 + (x− µ)

2
))

e[β(y−µ)]. (37)

The mean and variance of the distribution can then be standardized to give a Z ∼ N (0, 1) such that

E (Y) = µ+
βδ2

ν − 2
= 0.

V ar (Y) =
2β2δ4

(ν − 2)
2

(ν − 4)
+

δ2

ν − 2
= 1.

The normal mixture of the distribution makes the derivation of the skewness and kurtosis explicit forms complex

to obtain as they are also limited to exist when ν > 6 and ν > 8 respectively. The expressions can be seen below.

Skew (Y) =
2 (ν − 4)

1
2 βδ

[2β2δ2 + (ν − 2) (ν − 4)]
3
2

[
3 (ν − 2) +

8β2δ2

(ν − 6)

]
.

Kurtosis (Y) =
6

[2β2δ2 + (ν − 2) (ν − 4)]
2

[
(ν − 2)

2
(ν − 4) +

16β4δ2 (ν − 2) (ν − 4)

(ν − 6)
+

8β4δ4 (5ν − 22)

(ν − 6) (ν − 8)

]
.

As we recall there are four scale-invariant and location-invariant parameterisation forms presented by Prause [41].

In our analysis the fourth parameterisation
(
β̄ = βδ, ᾱ = αδ

)
is used and reparameterised to

(
β̄, ν

)
as used in the

rugarch [22] package in R [14] which then transforms those parameters into the �rst parameterisation (α, β) .

The standardised density of the GHYP skew Student's t-distribution as stated by Barndor�-Nielsen and Blaesild

[6] is a normal variance mixture with the generalised inverse Gaussian (GIG) distribution as the mixing component

is given by

f

(
Y − µ
σ

)
=

1

σ
f (z|λ, α, β, δ)

=

(√
α2 − β2

δ

)λ
zλ−1

2σKλ

(
δ
√
α2 − β2

)e{− 1
2 [δ2z−1+(α2−β2)z]}

2 THE ARMA-GARCH MODEL 30

where λ = −ν2 and α→ |β|.

Johnson's SU distribution. The last conditional distribution we will consider that the error distribution may

assume is Johnson's Su (JSU) distribution. It was �rst introduced by Johnson [30] in 1949. This is a four-

parameter distribution de�ned such that ξ and λ > 0 are the location and scale parameters, and it consists of two

shape parameters γ and δ > 0. The probability density function is then given by

f (Y |ξ, λ, γ, δ) =
δ

λ
√

2π

√(
y−ξ
λ

)2

+ 1

e

{
− 1

2

[
γ+δln

(
(y−ξλ)+

√
(y−ξλ)

2
+1

)]2}
.

for −∞ < y < +∞ where z =
(
y−ξ
λ

)
.

The JSU was then reparameterised by Rigby and Stasinopoulos [45] denoted by JSU (µ, σ, ν, τ) where µ is the

location shift parameter, σ is the scale parameter, ν and τ determine the skewness and kurtosis respectively, and

z =
(
y−ξ
λ

)
= ν + τ sinh−1

(
y−µ
σ

)
∼ N (0, 1). The reparameterised probability density function is then given by

f (Y |µ, σ, ν, τ) =
τ

σ
√

2π

√(
y−µ
σ

)2
+ 1

e{−
1
2 z

2}.

for y ∈ (−∞,+∞) where µ, ν ∈ (−∞,+∞) and σ, τ > 0.

It should also be noted that this is a leptokurtic distribution and in a special case where τ → ∞, the normal

distribution can be obtained.

2.4 ARMA-GARCH models

In this section, we will de�ne and discuss the ARMA-GARCH model.

The standard GARCH process may indeed model �nancial time series well by capturing some of the excess skewness

and kurtosis but it does have its downside. Since the introduction of this model, in the last three decades, extensions

of this model have been developed to get better descriptions of �nancial data.

The ARMA-GARCH model is one of many extensions of the GARCH process with respect to the conditional mean.

This dynamic model allows for both the conditional mean and conditional variance to be modelled by the ARMA

process and GARCH process respectively.

De�nition 2.4.1. Suppose that a set of observations Y1, Y2, . . . , YT of a log returns times series are generated by

the ARMA model with its given errors generated by the GARCH process. It then follows that the ARMA (p, q)−

GARCH (m,n) model is de�ned as

2 THE ARMA-GARCH MODEL 31

(i)

Yt = mt + εt

= c+

p∑
i=1

φiYt−i +

q∑
i=1

θiεt−i + εt, ∀t ∈ Z. (38)

where mt = c+
∑p
i=1 φiYt−i+

∑q
i=1 θiεt−i is the conditional mean of the ARMA (p, q)−GARCH (m,n)

and εt satis�es the following

(ii)

εt = σtηt. (39)

(iii) There exists nonnegative constants ω, αi, i = 1, 2, . . . , n and βj , j = 1, 2, . . . ,m such that the conditional

volatility

V ar (εt| εu, u < t) = σ2
t

= ω +

n∑
i=1

αiε
2
t−i +

m∑
j=1

βjσ
2
t−j , ∀t ∈ Z. (40)

where ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1) and have a common density f .

The traditional ARMA model de�ned in (19) and (20) is usually preferred over the MA or AR models due to its

parsimony. Although it is also assumed that noise process, εt, is assumed to be i.i.d. N
(
0, σ2

ε

)
with a zero mean

and constant variance. This assumption has proven to be inadequate especially in the case of �nancial time series

because we know that the squared price returns are autocorrelated; future variation is conditional on past variation;

volatility clustering exists and �nancial data tends to be leptokurtic. Therefore by combining the GARCH process

to model the innovations of an ARMA model, a better model can be obtained.

As previously discussed, the conditional distribution of the noise process may not necessarily be normal and therefore

depending on the nature of the data, we may assume any one of the distributions mentioned in the previous section

(i.e. GED, GHYP etc.)

The estimation of the ARCH-class family models have primarily been carried out using quasi-maximum likelihood

estimators (QMLE). The asymptotic theory of QMLE of ARCH models was �rst studied and demonstrated by

Weiss [59] in 1986. He proved that the MLE of ARCH models were both asymptotically normal and consistent and

that non-normal data had �nite fourth moments. However, his methods were not applicable to GARCH processes

as certain conditions would be violated. It was only until the early 1990s that Lumsdaine [35] and later, Lee and

Hansen [33] who made signi�cant further developments in the asymptotic theory of QMLE for GARCH models.

This was performed on mainly the GARCH (1, 1) and IGARCH (1, 1) processes. Since then, more literature has

circulated in and around other GARCH model types. For instance, Francq and Zakoian [19] prove the consistency

and asymptotic normality of pure GARCH and pure ARMA-GARCH processes using QMLE in the estimation of

2 THE ARMA-GARCH MODEL 32

the parameters whereas Aknouche and Bibi [2] do the same for the periodic GARCH and periodic ARMA-GARCH

and many others.

3 ARMA-GARCH Application of Bitcoin

Data

In this chapter, a brief introduction to cryptocurrencies will be given. We will then apply our statistical and �nancial

time series analysis techniques discussed in the previous chapter on a sample of Bitcoin data. We will document

our results and verify that our predicted model is correct.

3.1 Cryptocurrencies

The concept of digitised assets and innovation of �nancial instruments has changed the way in which we view money

and �nance. In the last decade, the world has adopted a new �nancial system paradigm; the cryptocurrency. A

cryptocurrency is de�ned as a decentralised digital currency, absent of government control and interference and has

no �xed or physical underlying commodity to back it up; similar to that of a �at currency, although not declared

by legal tender by the government. Instead, cryptocurrencies are designed to be an exchange medium on a public

network which is built, stored and secured by the generation of blockchains that are encrypted and controlled

by the use of cryptography. A cryptographic platform or blockchains' use of encryption techniques, controls the

supply of additional monetary units (e.g. Bitcoin) whilst these transactions are veri�ed and stored electronically.

Essentially, cryptocurrencies are based on the solution of cryptographic puzzles using blockchain technology to store

and validate transactions on a public ledger. Cryptocurrencies are now not only a globalised but localised medium

of exchange.

3.2 Bitcoin

Bitcoin was the �rst existing cryptocurrency introduced and operational in 2009 as a peer-to-peer electronic cash

system which can be freely traded. A paper released in late 2008 authored by a person or group under the

pseudonym Satoshi Nakamoto titled �Bitcoin: A peer-to-peer electronic cash system� was the initial introduction

of this cryptocurrency technology. In recent years, Bitcoin has grown quite rapidly reaching a peak of nearly

33

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 34

US$18000 per Bitcoin unit in December 2017 but has since lost signi�cant value. With over a thousand tradable

cryptocurrencies to date, having a market value of about $260 billion, Bitcoin being the �rst cryptocurrency which

also holds the majority of the cryptocurrency market capitalization; 109 billion USD as of July 2018. It has now

been accepted by various businesses as a form of exchange and in some countries also a legalised form of payment

(i.e. �at currency).

Cryptocurrencies with Bitcoin, in particular, have sparked a lot of interest and attention due to their highly volatile

nature compared to more traditional mediums of exchange caused by their susceptibility to speculation as they

are not backed by an underlying asset. The price of such cryptocurrencies is partially due to the interest they

have attracted. However, the sudden negative changes in the price of Bitcoin have been di�cult to explain. This

new craze has resulted in people investing their money blindly which hikes up the price. Because of its volatile

nature, which has brought about a lot of uncertainty and in turn, its current and future standings could possibly

revolutionise the economic and �nancial sectors forever or become obsolete. People's understanding is still limited

around this technology with many people speculating that this is just another bubble with a soon approaching

expiration date

We intend to �t an appropriate ARMA-GARCH model to the sample data displayed in Figures 1 and 2 and verify

the estimated parameters of the model that can be used in forecasting.

3.3 Literature review

The birth of the cryptocurrency and its relative unpredictability has boosted further interest in research areas

within the �nancial and economic spheres. Although due to its recent introduction, literature in this regard is still

minimal, it is de�nitely a growing �eld of interest. It was only up until 2013 that interest started to emerge as more

people started to grasp the concept of this new technological advancement. In the last two years, several articles

have been written that examine Bitcoin's volatility and future outcomes. Some of the authors would include Polasik

et al. [40]; Katsiampa [31]; and Chu et al. [12]. Katsiampa �tted and compared di�erent GARCH models to Bitcoin

data and found that the AR-CGARCH gives the optimal �t. He also gave mention of the highly speculative nature

of the cryptocurrency which contributes to its extremely volatile nature. Vo and Xu [57] analysed the volatility of

hourly Bitcoin log returns. They found that the best �tted model to the data was an ARMA(1, 2)−GARCH(2, 2)

with a TGARCH sub-model and a GHYP distribution as the underlying distribution. They also ran a credibility

check of their estimated ARMA-GARCH model, comparing it against support vector machines (SVM) and neural

networks (NN) and still concluded that the ARMA-GARCH speci�cation better captured the movements of the

Bitcoin data series. Their correlation analysis proved that Bitcoin is not a�ected by traditional �nancial markets

under similar constraints.

There has been plenty of debate in regards to Bitcoin's currency characterisation. It cannot be characterised as a �at

currency as it is not backed by any governmental institution but rather controlled by it users; a peer-to-peer network.

All the users are involved in the creation, trading and validation (i.e. process and check) of Bitcoin transactions.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 35

Bitcoin's price is highly volatile and �uctuates based on investors willingness to pay for a Bitcoin at any point in

time. This has raised some fear amongst notable �nancial �gures. This decentralised system allows people to trade

freely and globally in order to build a multi-billion dollar �nancial system. It was previously mentioned that Vo and

Xu [57] proved that Bitcoin has no e�ects on the current, traditional �nancial systems. Authors such as Bouoiyour

et al. [10] are in favour of Bitcoin and others such as Yermack [63] who are still speculative of this new concept and

fear that this is just a bubble but it is inevitable that it has and will continue to change our trading practices.

A paper was released by Sovbetov [51] recently looks at both the short-run and long-run dynamic factors that

contribute to the price of a cryptocurrency. These include internal factors such as supply and demand and its

external factors being the overall cryptocurrency market, macro-�nance and politics. The author analyses the top

5 cryptocurrencies in the market and indicates that the volatility of the cryptocurrency market has a signi�cantly

negative e�ect. It was also determined that attractiveness was a factor of signi�cance while the control variable

(i.e. S&P 500 stock index) being part of the traditional �nancial system had little to no e�ect on the price.

3.4 Data

Given this internet age, access to past and current Bitcoin (BTC) price and return data are plenty and can be found

with ease online. However, most of these data sets only date back as far as 2014. These databases are considerably

short term and it may be quite di�cult to obtain meaningful results even with a thorough analysis. Although in

our analysis will be performed on the most recent Bitcoin exchange markets data from the crypto [56] package in

R [14] sourced from CoinMarketCap. We chose USD/BTC daily rates between the period of March, 31st, 2016 to

March, 31st, 2018 which depicts the most volatility and highest price peak as Bitcoin gained increasing interest.

There is a total of 731 observations of daily price trades. These are also displayed in Figure 1 and 2 in Chapter 1.

3.5 Empirical Analysis

We conducted an empirical analysis on the Bitcoin data described in the preceding section. We �rst took a look

at the basic statistics of the daily prices data of Bitcoin. This revealed that the time series has a distribution that

is skewed to the right and leptokurtic (i.e. evidence of a fat tail or heavy-tailed distribution). We then tested for

stationarity using the Augmented Dickey-Fuller (ADF) test on the USD/BTC daily prices and it was found that

at 5% signi�cance level, we cannot reject the null hypothesis of a unit-root, therefore we conclude that the data is

non-stationary. This is con�rmed by the time plot displayed in Figure 1 which depicts an upward and downward

trend of the time series. It is, therefore, necessary for us to di�erence the time series to obtain daily log returns as

displayed in �gure 2. The basic statistics reveal that the log returns time series is slightly skewed to the right and

extremely leptokurtic, having a very high excess kurtosis. The ADF test for the log returns time series indicates

stationarity since we reject the null hypothesis of a unit root with 95% con�dence. The basic statistics and ADF

test results for both the Bitcoin time series are reported in the following table.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 36

Table 1: Basic statistics and ADF test results of Bitcoin price and log returns respectively.

Basic Statistics Price (Pt) Log returns (Yt)

Minimum 416.730000 −0.225119
Maximum 19497.400000 0.207530

1st Quartile (Q1) 662.765000 −0.021965
Median (Q2) 1187.470000 −0.003625

3rd Quartile (Q3) 4568.667500 0.009133
Mean 3540.000874 −0.003829

Standard Deviation 4281.490410 0.043638
Skewness 1.638178 0.136596

(Excess) Kurtosis 1.850749 4.093399

ADF results Price (Pt) Log returns (Yt)

Test statistic −2.1649 −7.8737
p-value 0.5085 0.01

Henceforth, our analysis will be performed on the log returns series, Yt. We run further tests to determine what

the underlying distribution of the log returns is. These include the basic 2-sided t-test as well as tests under the

assumption of normality such as the test for skewness, kurtosis and Jarque-Bera (JB) test. A Q-Q (quantile-

quantile) plot is also drawn. If it is found that the hypothesis of normality is false then we will deduce in which

family class it lies. The results of the tests mentioned were obtained with the use of the normtest [21] package in

R [14] and will be given in the Table 2 below.

Table 2: Underlying distribution normality tests.

Two Sided t-test Skewness Test Kurtosis Test Jarque-Bera Normality Test

Test statistic −2.3721 0.13688 7.1128 517.5

p-value 0.01794 0.1215 < 2.2× 10−16 < 2.2× 10−16

From Table 2, we reject the null hypothesis that the mean of the log returns is zero and yet the mean (x̄ = −0.003828)

is not signi�cantly di�erent from zero given the results of the t-test. The skewness normality test also fails to reject

the null hypothesis and as a result suggests that the log-returns series is symmetric. The kurtosis test was then

also performed; this revealed that our log returns series is indeed leptokurtic as we reject the null hypothesis of

normality with 95% con�dence. The notion that the log returns series is non-normal is rea�rmed by the JB-test

the null hypothesis of normality was rejected even at a 1% level of signi�cance. The Q-Q plot given in Figure 3 also

validates our conclusion that the log returns are not normally distributed and have heavy tails. The skewness and

kurtosis tests are extremely sensitive and the unusual results from the skewness test may be due to possible outliers

and considering we are working with a small concentrated data set. This a�ects the symmetry of the distribution

making it appear skew when it truly isn't. From the basic statistics in Table 1 also suggested a slight skewness

to the left. From these results, we can conclude that the underlying or conditional distribution is not from the

Gaussian family and therefore other family classes must be considered.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 37

Figure 3: Q-Q plot of log returns distribution.

As has been shown, the sample of the log returns Bitcoin data exhibit attributes that lead us to conclude that it can

be modelled by a non-Gaussian distribution. Chu et al. [13] in 2015 performed a thorough statistical analysis on

the Bitcoin exchange rate by �tting �fteen di�erent parametric distributions to the data and found that the GHYP

distribution �ts best. In our analysis, we �tted several symmetric and non-symmetric univariate distributions to

log returns of the sample data. The QRM [39] package in R [14] was used to �t the Normal, Student-t, hyperbolic

and NIG distributions. The GED and GHYP distributions were �tted to the log returns using the R [14] packages

fGarch [62] and ghyp [34] respectively. In terms of estimation of the parameters of the models �tted to the data,

the Maximum Likelihood Estimation (MLE) was the method of choice for its simplicity, reliability of results and

expeditious convergency. We compared each of the models using the Akaike Information Criterion (AIC) de�ned

as

AIC = −2 lnL (Θ) + 2K.

where lnL (Θ) represents the maximum log-likelihood, K being the number of parameters estimated. Information

criterion like the AIC, measure the loss of information and are used to determine a best �tted model when their

information criterion values are compared. Therefore, a model with smaller information criterion is preferred as it

indicates a lower degree of information lost in comparison to other models and hence, the better �t.

The model with the smallest AIC was then selected as the best �tted distribution model to the log returns of our

data. Given in the following table are the model �tting results as follows

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 38

Table 3: Model �tting results (AIC) of di�erent univariate parametric distributions �tted to the log returns of
BTC/USD exchange.

Distributions lnL (Θ) AIC

Normal distribution 1250.545 −2497.09
Student-t distribution 1350.865 −2695.73

GED 1377.069 −2748.139
(symmetric) Hyperbolic distribution 1273.354 −2540.709

(skew) Hyperbolic distribution 1272.241 −2538.481
(symmetric) NIG distribution 1363.009 −2720.018

(skew) NIG distribution 1363.116 −2718.231
(symmetric) GHYP distribution 1380.43 −2752.86

(skew) GHYP distribution 1380.531 −2751.062

In Table 3, it was found that the AIC values were all negative. Negative AIC values are due to large maximum

log-likelihood values and as previously mentioned, the smaller the information criterion, the better the model is in

comparison to other models. The results in Table 3 indicate that the symmetric GHYP distribution has the best

�t as concluded by Chu et al. [13]. The GED distribution comparatively comes in a close second to the GHYP

distributions whether symmetric or skew. The worst �t is obviously the Normal distribution as the Q-Q plot shows

that our data is extremely leptokurtic. The skew variants of the distributions �tted to the data are shown to not

do any better than their symmetric counterparts, as previous results also indicated a slightly skewed to the left

distribution.

Figure 4: Histogram of log returns of BTC/USD exchange with a �tted GHYP curve.

Figure 4 displays a histogram of the BTC/USD exchange log returns and the �tted GHYP distribution curve. The

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 39

GHYP distribution (dark-blue) curve shows that it models the data very well. It would also suggest that when

modelling the ARMA-GARCH to the data, that the GHYP distribution would most likely be the best conditional

distribution.

3.6 ARMA-GARCH modelling

In this section we model the volatility of the daily USD/BTC log returns with several combinations of ARMA (p, q)−

GARCH (m,n) models. The ARMA model alone would also not su�ce as it would not capture the data's full

characteristics, and so in combination with the GARCH model used to model the volatility, a better �tted model

can be obtained. Apart from the fact that GARCH models take into account the varying volatility (i.e. �uctuation of

error variance) and the property of conditional heteroscedasticity (i.e. past experience), they also exhibit properties

that are a good �t to heavier-tailed distributions. As previously mentioned the standard GARCH (sGARCH)

assumes that the underlying distribution is normal. This proves to be inadequate in our case as a heavier tailed

distribution would better suit our data as indicated from the results of our empirical analysis. In order to select

the best �tted model, we make use of the four information criteria; Akaike Information Criterion (AIC), Bayesian

Information Criterion (BIC), Shibata Information Criterion (SIC) and Hannan-Quin Information Criterion (HQIC).

They are de�ned as follows

AIC =
−2 lnL (Θ)

n
+

2K

n
. (41)

BIC =
−2 lnL (Θ)

n
+
K ln (n)

n
. (42)

SIC =
−2 lnL (Θ)

n
+

2K ln (ln (n))

n
. (43)

HQIC =
−2 lnL (Θ)

n
+ ln

(
n+ 2K

n

)
. (44)

where lnL (Θ) represents the maximum log-likelihood, K being the number of parameters estimated using maximum

likelihood estimation (MLE) and n is the total number of observations.

We �t the daily USD/BTC log returns with a combination of ARMA (p, q) − sGARCH (m,n) under di�erent

underlying distribution. The parameters of the underlying distribution are estimated using MLE. The model �tting

information criterion selection results are listed in the tables below.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 40

Table 4: Model �tting results (AIC) under di�erent conditional distributions, ηt.

Normal Student's t-distribution GED (skew) GED GHYP NIG JSU

ARMA(0, 0)−GARCH(1, 1) −3.8124 −3.9851 −4.0112 −4.0096 −4.0078 −4.0051 −3.9974
ARMA(1, 0)−GARCH(1, 1) −3.8105 −3.9824 −4.0098 −4.0088 −4.0063 −4.0027 −3.9947
ARMA(0, 1)−GARCH(1, 1) −3.8104 −3.9824 −4.0099 −4.0089 −4.0064 −4.0027 −3.9947
ARMA(1, 1)−GARCH(1, 1) −3.8083 −3.9901 −4.0073 −4.0064 −4.0039 −4.0000 −3.9920
ARMA(2, 1)−GARCH(1, 1) −3.8037 −3.9853 −4.0168 −4.0037 −4.0003 −3.9950 −3.9866
ARMA(1, 2)−GARCH(1, 1) −3.8038 −3.9853 −4.0042 −4.0032 −4.0001 −3.9950 −3.9868
ARMA(2, 2)−GARCH(1, 1) −3.8014 −3.9821 −4.0185 −4.0163 −4.0079 −4.0066 −3.9948

Table 5: Model �tting results (BIC) under di�erent conditional distributions, ηt.

Normal Student's t-distribution GED (skew) GED GHYP NIG JSU

ARMA(0, 0)−GARCH(1, 1) −3.7872 −3.9537 −3.9798 −3.9718 −3.9638 −3.9673 −3.9596
ARMA(1, 0)−GARCH(1, 1) −3.7791 −3.9446 −3.9721 −3.9648 −3.9559 −3.9586 −3.9507
ARMA(0, 1)−GARCH(1, 1) −3.7790 −3.9446 −3.9721 −3.9649 −3.9560 −3.9586 −3.9507
ARMA(1, 1)−GARCH(1, 1) −3.7705 −3.9461 −3.9633 −3.9560 −3.9473 −3.9496 −3.9417
ARMA(2, 1)−GARCH(1, 1) −3.7597 −3.9350 −3.9665 −3.9471 −3.9374 −3.9384 −3.9300
ARMA(1, 2)−GARCH(1, 1) −3.7598 −3.9350 −3.9539 −3.9466 −3.9372 −3.9384 −3.9302
ARMA(2, 2)−GARCH(1, 1) −3.7510 −3.9255 −3.9619 −3.9533 −3.9387 −3.9437 −3.9318

Table 6: Model �tting results (SIC) under di�erent conditional distributions, ηt.

Normal Student's t-distribution GED (skew) GED GHYP NIG JSU

ARMA(0, 0)−GARCH(1, 1) −3.8125 −3.9852 −4.0113 −4.0097 −4.0080 −4.0052 −3.9975
ARMA(1, 0)−GARCH(1, 1) −3.8106 −3.9825 −4.0100 −4.0090 −4.0065 −4.0028 −3.9949
ARMA(0, 1)−GARCH(1, 1) −3.8105 −3.9825 −4.0100 −4.0091 −4.0066 −4.0029 −3.9949
ARMA(1, 1)−GARCH(1, 1) −3.8084 −3.9903 −4.0075 −4.0066 −4.0042 −4.0002 −3.9922
ARMA(2, 1)−GARCH(1, 1) −3.8039 −3.9855 −4.0171 −4.0040 −4.0007 −3.9953 −3.9869
ARMA(1, 2)−GARCH(1, 1) −3.8040 −3.9856 −4.0045 −4.0035 −4.0005 −3.9953 −3.9871
ARMA(2, 2)−GARCH(1, 1) −3.8016 −3.9824 −4.0188 −4.0166 −4.0084 −4.0070 −3.9951

Table 7: Model �tting results (HQIC) under di�erent conditional distributions, ηt.

Normal Student's t-distribution GED (skew) GED GHYP NIG JSU

ARMA(0, 0)−GARCH(1, 1) −3.8027 −3.9730 −3.9991 −3.9950 −3.9908 −3.9905 −3.9828
ARMA(1, 0)−GARCH(1, 1) −3.7984 −3.9678 −3.9953 −3.9918 −3.9868 −3.9857 −3.9777
ARMA(0, 1)−GARCH(1, 1) −3.7983 −3.9678 −3.9953 −3.9920 −3.9869 −3.9857 −3.9777
ARMA(1, 1)−GARCH(1, 1) −3.7939 −3.9731 −3.9903 −3.9869 −3.9821 −3.9806 −3.9726
ARMA(2, 1)−GARCH(1, 1) −3.7867 −3.9659 −3.9974 −3.9819 −3.9760 −3.9732 −3.9648
ARMA(1, 2)−GARCH(1, 1) −3.7868 −3.9659 −3.9848 −3.9813 −3.9758 −3.9731 −3.9649
ARMA(2, 2)−GARCH(1, 1) −3.7819 −3.9603 −3.9967 −3.9920 −3.9812 −3.9824 −3.9705

From the model �tting results in Tables 4 to 6, it was found that the information criterion were all negative.

Negative information criterion are due to a large maximum log-likelihood and as previously mentioned, the smaller

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 41

the information criterion, the better the model is in comparison to its counterparts. We have therefore, found that

the best-�tted model with the smallest information criterion values was found to be an ARMA(2, 2)−GARCH(1, 1)

under a generalised error distribution (GED) whilst Tables 5 and 7 indicate ARMA(0, 0) − GARCH(1, 1) under

GED.

Model 1. Given the model's parameter estimates, the ARMA(2, 2) − GARCH(1, 1) model with GED as the

conditional distribution is de�ned as follows

Ŷt = 0.002965 + 1.318506Yt−1 − 0.331822Yt−2 + εt − 1.376960εt−1 + 0.408240εt−2.

ε̂t = σ̂tηt.

σ̂2
t = 0.000025 + 0.195925ε2

t−1 + 0.803073σ2
t−1.

where the conditional distribution is a ηt ∼ GED (0, 1) (i.e. the mean and variance are standardized to be µ = 0

and σ2 = 1) with a shape parameter of ν̂ = 0.869724 which captures the leptokurtic nature of the data.

We also observe that in the comparison of the information criterion values that the ARMA(0, 0)−GARCH(1, 1),

under the GED, was the better �tted model in other cases.

Model 2. The model is de�ned as follows

Ŷt = 0.002565 + εt.

ε̂t = σ̂tηt.

σ̂2
t = 0.000025 + 0.208038ε2

t−1 + 0.790962σ2
t−1.

where the conditional distribution is a ηt ∼ GED (0, 1, 0.941244) (i.e. the shape parameter is estimated to be

ν̂ = 0.941244)which captures the leptokurtic nature of the data.

We also found that keeping all other variables constant that increasing the GARCH (m,n) parameter (i.e. m = n =

2) did not produce a better model. We had also, however, previously anticipated that given any ARMA (p, q) −

sGARCH (m,n) we �t, that the underlying distribution would be the GHYP distribution. This did not prove

to be completely true in our case, although it came in a close third to being chosen, whilst the skewed variant

of the GED came in second. We did previously mention that in our empirical analysis that both the GED and

GHYP distributions were close in AIC values and thus both models would be good �ts to our data. This, therefore,

indicates the reliability of our conclusions.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 42

3.7 Forecasting

Given the two models estimated as the best �ts to the USD/BTC daily log returns in the previous sections, we can

gain better insights into their predictability by forecasting. The unconditional volatility forecast of 10 days ahead

is based only on the parameter estimates of the models �tted. This is depicted in the �gure below.

Figure 5: 10-day unconditional volatility forecasting of the competing models.

Figure 5 depicts both competing models' volatility forecasts; 10 days into the future. Both models indicate an

increase in volatility over time expected in future. We note that the volatility forecasts of Model 2 increase at a

slightly higher rate than that of Model 1. This may indicate that a greater shape leads to the volatility forecasted

also increasing at a higher rate.

We then went on to analyse the rolling forecasts of the competing models. These rolling forecasts are conditional

on the past information as 10 values were sampled out and then the remaining USD/BTC daily log returns were

remodeled using the estimated models. In the following �gures, we will display the corresponding 10-day rolling

forecasted time series and volatility series for each competing model.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 43

(i)

(ii)

Figure 6: 10-day rolling forecasted time series of the competing models: (i) Model 1 and (ii) Model 2.

In Figure 6, the rolling forecasted time series of length 10 are displayed for each estimated model. Although both

model forecasts show mean reversion, Model 2's forecasts are slightly better than those of Model 1 . This is due

to the fact that the forecasts of Model 1 seem to remain constant at zero, while Model 2's forecasts better follow

the actual data's mean reversion characteristics with some variation like the data. Both models have an underlying

GED (0, 1) with di�erent shape parameters. Model 2 may be seen to perform better than Model 1 due to Model 2's

shape parameter being slightly smaller than that of Model 1 which may indicate that the underlying distribution

is slightly less heavy-tailed. The results above also indicate that a more intricate model apart from the standard

GARCH would produce better forecasts. Analysis of Bitcoin returns was performed by Vo and Xu [57] in 2017

and they found that ARMA(1, 2)− fGARCH(2, 2)/T −GARCH was the best estimated model of the USD/BTC

hourly log returns.

3 ARMA-GARCH APPLICATION OF BITCOIN DATA 44

(i)

(ii)

Figure 7: 10-day rolling forecasted volatility (sigma) series of the competing models: (i) Model 1 and (ii) Model 2.

In Figure 7, the rolling forecasted sigma series or standard deviation series of length 10 are displayed for each

estimated model. There is not much of a di�erence between the sigma forecasts of Model 1 and Model 2. This may

be due to the fact that the underlying distributions are both GED (0, 1) with slightly di�erent shape parameters.

Considering the similarities of both competing models' volatility forecasts, we can de�nitely say that they both

estimate the sigma series with good precision than that of the time series in Figure 6. Although, they still show a

lot of deviation from the observed series.

Note that all the �gures and tables produced have been computed in R [14] and the relevant code can be found in

Appendix B.

4 Linear Regression with ARMA-GARCH

errors

In this chapter, we will introduce the linear regression models with non-normal errors, particularly GARCH and

ARMA−GARCH errors. We will also develop and derive the theory of a linear regression model with ARMA−

GARCH errors.

4.1 Linear Regression with GARCH Errors

One of the most widely used statistical tools when evaluating and enhancing our understanding of the relationship

of how one or more variables (predictors) a�ects another (response), regression analysis is used. It is simplistic,

easy to work with and interpret, provided that none of the model's assumptions have been violated using Ordinary

Least Square Estimation (OLSE). Econometricians and in particularly macroeconomists develop models to explain

the e�ects of how factors such as in�ation, international trade and/or national income a�ect the economy as a

whole in order to aid the evaluation and further development of government economic policies. One particularly

incumbent drawback of linear regression is such that when any of its assumptions are violated, for example in the

case of multicollinearity, even though the results may still be reliable, the calculations of the individual predictors

would be a�ected. Some of the assumptions required for OLSE in regression analysis include that the error terms

should be uncorrelated over time. This is typically violated by time series regression giving rise to autocorrelation.

Even though the estimated regression coe�cients possibly remain unbiased, consequently they become ine�cient

and the corresponding standard errors are also probably erroneous. This results in all other statistics calculated

inapplicable (e.g. t-statistic, con�dence intervals and F-statistic). Another assumption of OLSE is that the error

terms must be independent and identically, normally distributed with a mean of zero and a constant variance (i.e.

homoscedasticity). If this assumption is violated, meaning heteroscedasticity is present, the regression coe�cient

estimated remains unbiased and consistent but lose e�ciency. The standard errors again will be invalid which will

lead to inaccurate precision of results.

Regression analysis is a powerful tool that allows us to study the e�ect of changes in the various factors on the

predictors. If the observations of the dependent and independent variables are measured over time then a time

45

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 46

series regression model can be built. We can then easily predict the future target values given the results of the

statistical relationship of the variables.

Time series data can be described as a sequence of successive, equidistant measurements collected on the same

observational unit over multiple time periods. For example, the price of Bitcoin observed at di�erent time intervals

(e.g. hourly, daily, weekly, monthly etc.) over a designated period of time. Time series analysis is the use of

statistical methods to analyse and extract meaningful statistics and characteristics of the time series data. This

typically involves modelling a variable which is dependent on its past values, and/or modelling the present and past

values on other variables. In particular time series regression is commonly use to estimate the linear relationship

of one or more time series to a a response time series variable. As mentioned previously, the regression coe�cients

are estimated through OLSE under certain assumptions. One necessary condition being that the variance of the

errors (residuals) must be independent and constant; homoscedastic. This is typically not the case when it comes

to �nancial data. Thus regression models have been studied and developed to accommodate the characteristics that

observed data embody, such as heteroscedasticity.

Van den Bossche et al. [55] developed a regression model with ARIMA errors to investigate the impact of weather,

laws and regulations, and economic conditions on the frequency and severity of accidents in Belgium. Their

study revealed that the regression model with ARIMA errors gives an acceptable �t. It also showed that weather

conditions and some policy regulations had signi�cant in�uence on tra�c safety. Although economic policy proved

to be insigni�cant, the author did warn that the regression models with ARIMA errors could become quite complex

and advises that the most parsimonious model should be used. Another advancement in this area of time series

regression is that of linear regression models with GARCH errors. Hossain and Ghahramani [29] introduced and

derived the asymptotic theory of shrinkage estimation of a linear regression model with GARCH errors. The

regression model is de�ned as follows

De�nition 4.1.1. Let Yt be the t-th observation of the response variable is modelled as follows

Yt = X
′

tβ + εt, t = 1, 2, . . . , T.

where X
′

t = (Xt1, Xt2, . . . , Xtk) and β = (β1, β2, . . . , βk)
8
are both k × 1 vectors; of the predictors and unknown

regression coe�cients respectively. εt is the error term which follows a GARCH (p, q) process such that

εt = σtηt.

There exists nonnegative constants ,ω > 0; αi ≥ 0, i = 1, 2, . . . , p and γj ≥ 0, j = 1, 2, . . . , q such that

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

γjσ
2
t−j , ∀ t ∈ Z.

where ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1) .

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 47

Our goal in this mini-dissertation is extend on the theory developed by looking into linear regression models with

ARMA-GARCH errors.

4.2 Linear Regression with ARMA-GARCH Errors

First let us consider a regression model with a constant conditional variance such that

V ar (Yt|Xt1, Xt2, . . . , Xtk) = σ2.

Then it follows that the general form of the regression model of Yt on the explanatory variablesX
′

t = (Xt1, Xt2, . . . , Xtk)

is given by

Yt = f (Yt|Xt1, Xt2, . . . , Xtk) + εt ∀t.

where the error term, εt ∼ N
(
0, σ2

ε

)
and X

′

t = (Xt1, Xt2, . . . , Xtk) are independent, f is the conditional function of

Yt given the explanatory variables Xt1, Xt2, . . . , Xtk. As previously mentioned, in this case the conditional variance

is constant and equivalent to the variance of the error term, σ2
ε .

Next let us consider that our conditional variance of Yt is no longer constant such that

V ar (Yt|Xt1, Xt2, . . . , Xtk) = σ2 (Yt|Xt1, Xt2, . . . , Xtk) .

Then the general regression model can be rewritten as

Yt = f (Yt|Xt1, Xt2, . . . , Xtk) + σ (Yt|Xt1, Xt2, . . . , Xtk) εt ∀t.

where the error term, εt ∼ N (0, 1) since it is conditional onXt1, Xt2, . . . , Xtk. The standard deviation σ (Yt|Xt1, Xt2, . . . , Xtk)

must be nonnegative and if the function σ (·) is linear, then its coe�cients must be constrained in order to ensure

nonnegativity. Nonlinear nonnegative functions are preferred as the constraints of linear functions are cumbersome

to perform and execute. Models such as the GARCH model were developed to take into account the conditional

variance and is broadly referred to as a variance function model.

De�nition 4.2.1. Let Yt be the t-th observation of the response variable is modelled as follows

Yt = X
′

tβ + εt, t = 1, 2, . . . , T. (45)

where X
′

t = (Xt1, Xt2, . . . , Xtk) and β = (β1, β2, . . . , βk)
8
are both k × 1 vectors of the predictors and unknown

regression coe�cients respectively. εt is the error term which follows a ARMA (p, q)−GARCH (m,n) process such

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 48

that

εt = c+ φ1εt−1 + φ2εt−2 + . . .+ φpεt−p + θ1ηt−1 + θ2ηt−2 + . . .+ θqηt−q + σtηt.

= c+

p∑
i=1

φiεt−i +

q∑
i=1

θiηt−i + σtηt, ∀ t ∈ Z. (46)

where c could be any constant, φ1, φ2, . . . , φp are the AR(p) coe�cients, θ1, θ2, . . . , θq are the coe�cients of the

corresponding innovations (i.e. MA(q) process); ηt ∀ t ∈ Z is a sequence of i.i.d. random variables such that

ηt ∼ N (0, 1) (i.e. as de�ned in De�nition 2.1.3.).

There also exists nonnegative constants ,ω > 0 αi ≥ 0, i = 1, 2, . . . , n and γj ≥ 0, j = 1, 2, . . . ,m associated with

the GARCH(m,n) process such that

σ2
t = ω +

n∑
i=1

αiε
2
t−i +

m∑
j=1

γjσ
2
t−j , ∀t ∈ Z. (47)

It should also be noted that εt can alternatively be expressed in the following manner(
1−

p∑
i=1

φiL
i

)
εt = c+

(
σt +

q∑
i=1

θiL
i

)
ηt, ∀ t ∈ Z.

φ (L) εt = c+ θ? (L) ηt. (48)

by dividing both sides of (48) by φ (L) = 1−φ1L−φ2L
2− . . .−φpLp =

∑p
i=1 φiL

i. We then have that εt rewritten

in the following form

εt =
c

φ (L)
+
θ? (L)

φ (L)
ηt.

= µ+ Ψ? (L) εt, ∀ t. (49)

where µ is as de�ned in (21) and Ψ? (L) = θ?(L)
φ(L) .

It is common practice that we impose constraints on the parameters in the proposed model:

C1: As stated in (15), all the roots of 1 + θ1z + θ2z
2 + . . .+ θqz

q = 0 lie outside the unit circle.

C2: As stated in (16), all the roots of 1− φ1z − φ2z
2 − . . .− φpzp = 0 lie outside the unit circle.

C3: αi ≥ 0, i = 1, 2, . . . , p and γj ≥ 0, j = 1, 2, . . . , q .

C4: We also have A (L) =
∑n
i=1 αiL

i and J (L) =
∑m
j=1 γjL

j such that A (L) + J (L) < 1.

The �rst two constraints are in relation to the stationarity criterion and invertibility of the ARMA(p, q) process.

The third constraint is applied in order to guarantee that the σ2
t , the conditional variance is positive always. The

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 49

fourth constraint is usually applied for the �niteness of the unconditional variance of the GARCH innovations as

done in previous GARCH modelling studies.

The dynamic and recursive nature of the conditional variance of the model , there are assumptions required for

initializing the conditional variance and the squared residuals when t ≥ 1. Hence the initialized values required are

ε̃2
0, ε̃

2
1, . . . , ε̃

2
1−n, σ̃

2
0 , σ̃

2
1 , . . . , σ̃

2
1−m. For instance the initial values can be chosen as

ε̃2
0 = . . . = ε̃2

1−n = σ̃2
0 = . . . = σ̃2

1−m = ω. (50)

such that the vector of initialized values is given by zt = (ω, ω, . . . , ω)
′
of the dimensions (1 + n+m) × 1 or the

initial values can be as

ε̃2
0 = . . . = ε̃2

1−n = σ̃2
0 = . . . = σ̃2

1−m. (51)

such that the vector of initialised values is given by zt =
(
1, ε̃2

0, ε̃
2
0 . . . , ε̃

2
0

)′
of the dimensions (1 + n+m)× 1. This

will be pertinent in the derivations of the information matrix.

It can proved that for a regression model with GARCH errors, the conditional distribution of the errors is εt|Ωt−1 ∼

N
(
0, σ2

t

)
where Ω represents the information set, inclusive of all relevant information up to time period t. This is

not necessarily the case for a regression model with ARMA − GARCH errors. Provided that εt is de�ned as in

(46) it follows that

E [εt|Ωt−1] = E

[
c+

p∑
i=1

φiεt−i +

q∑
i=1

θiηt−i + σtηt

]

= E [c] + E

[
p∑
i=1

φiεt−i

]
+ E

[
q∑
i=1

θiηt−i

]
+ E [σtηt]

= c+

p∑
i=1

(φiE [εt−i]) +

q∑
i=1

(θiE [ηt−i]) + E [σt]E [ηt]

It is important to note that since ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1) ∀ t ; E [ηt] = 0

and V ar [ηt] = 1. It is notable that ηt and σt are independent from one another. Also since the error term can

also be written as εt = Yt −X
′

tβ, we can assume that the unconditional expected value of εt for all t are the same.

Therefore

E [εt] = E [εt−1] = E [εt−2] = . . . = E [εt−p]

= µ̂

=
1

T

T∑
t=1

Yt.

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 50

It then follows that

E [εt|Ωt−1] = c+

p∑
i=1

(φiµ) +

q∑
i=1

(θi · 0) + E [σt] · 0.

µ = c+ µ

p∑
i=1

φi.

c = µ

(
1−

p∑
i=1

φi

)
.

Then by dividing both sides by 1−
∑p
i=1 φi, we get that

µ̂ =
c

1− φ1 − φ2 − . . .− φp
. (52)

provided that
∞∑
j=0

|Ψj | <∞.

and recall that stationarity depends on the roots of

φ (z) = 1− φ1z − φ2z
2 − . . .− φpzp = 0.

also lie outside the unit circle as stated in (16).

It is also now imperative that we determine the conditional variance of the ARMA−GARCH errors. The variance

will be of the following form

V ar [εt|Ωt−1] = E
[
ε2
t |Ωt−1

]
− (E [εt|Ωt−1])

2
.

where

E [εt|Ωt−1] =
c

1− φ1 − φ2 − . . .− φp
= µ̂.

as proved in (52). We then have to derive the other component of the variance, E
[
ε2
t |Ωt−1

]
.

Let

ε2
t =

{
c+

p∑
i=1

φiεt−i +

q∑
i=1

θiηt−i + σtηt

}2

= c2 + 2c

p∑
i=1

φiεt−i + 2c

q∑
i=1

θiηt−i + 2cσtηt +

{
p∑
i=1

φiεt−i

}2

+ 2

{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}

+2σtηt

p∑
i=1

φiεt−i +

{
q∑
i=1

θiηt−i

}2

+ 2σtηt

q∑
i=1

θiηt−i + σ2
t η

2
t .

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 51

It then follows that

E
[
ε2
t |Ωt−1

]
= E

{c+

p∑
i=1

φiεt−i +

q∑
i=1

θiηt−i + σtηt

}2


= E

 c2 + 2c
∑p
i=1 φiεt−i + 2c

∑q
i=1 θiηt−i + 2cσtηt + {

∑p
i=1 φiεt−i}

2
+ 2 {

∑p
i=1 φiεt−i} {

∑q
i=1 θiηt−i}

+2σtηt
∑p
i=1 φiεt−i + {

∑q
i=1 θiηt−i}

2
+ 2σtηt

∑q
i=1 θiηt−i + σ2

t η
2
t


= E

[
c2
]

+ E

[
2c

p∑
i=1

φiεt−i

]
+ E

[
2c

q∑
i=1

θiηt−i

]
+ E [2cσtηt] + E

{ p∑
i=1

φiεt−i

}2


+E

[
2

{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}]
+ E

[
2σtηt

p∑
i=1

φiεt−i

]
+ E

{ q∑
i=1

θiηt−i

}2


+E

[
2σtηt

q∑
i=1

θiηt−i

]
+ E

[
σ2
t η

2
t

]
= c2 + 2c

p∑
i=1

(φiE [εt−i]) + 2c

q∑
i=1

(θiE [ηt−i]) + 2cE [σt]E [ηt] + E

{ p∑
i=1

φiεt−i

}2


+2E

[{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}]
+ 2E

[
σtηt

{
p∑
i=1

φiεt−i

}]
+ E

{ q∑
i=1

θiηt−i

}2


+2E [σt]E [ηt]

q∑
i=1

(θiE [ηt−i]) + E
[
σ2
t

]
E
[
η2
t

]
.

As previously mentioned since ηt is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1) ∀ t, it also

independent of σt. It should also be noted that V ar (ηt) = 1 = E
[
η2
t

]
since E [ηt] = 0. Recall that E [εt] = µ̂ ∀ t as

derived in (52). It is also important to note that E
[
{
∑q
i=1 θiηt−i}

2
]
reduces to

∑q
i=1 θ

2
i . For example when q = 3,

E

{ q∑
i=1

θiηt−i

}2
 = E

[
{θ1ηt−1 + θ2ηt−2 + θ3ηt−3}2

]
= E

[
θ2

1η
2
t−1 + θ2

2η
2
t−2 + θ2

3η
2
t−3 + θ1θ2ηt−1ηt−2 + θ1θ3ηt−1ηt−3 + θ2θ3ηt−2ηt−3

]
= E

[
θ2

1η
2
t−1

]
+ E

[
θ2

2η
2
t−2

]
+ E

[
θ2

3η
2
t−3

]
+ E [θ1θ2ηt−1ηt−2]

+E [θ1θ3ηt−1ηt−3] + E [θ2θ3ηt−2ηt−3]

= θ2
1E
[
η2
t−1

]
+ θ2

2E
[
η2
t−2

]
+ θ2

3E
[
η2
t−3

]
+ θ1θ2E [ηt−1]E [ηt−2]

+θ1θ3E [ηt−1]E [ηt−3] + θ2θ3E [ηt−2]E [ηt−3]

=
(
θ2

1 · 1
)

+
(
θ2

2 · 1
)

+
(
θ2

3 · 1
)

+ (θ1θ2 · 0 · 0) + (θ1θ3 · 0 · 0) + (θ2θ3 · 0 · 0)

= θ2
1 + θ2

2 + θ2
3

=

3∑
i=1

θ2
i

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 52

It then follows that

E
[
ε2
t |Ωt−1

]
= c2 + 2c

p∑
i=1

(φiµ) + 2c

q∑
i=1

(θi · 0) + 2cE [σt] · 0 + E

{ p∑
i=1

φiεt−i

}2


+2E

[{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}]
+ 2E

[
σtηt

{
p∑
i=1

φiεt−i

}]
+ E

{ q∑
i=1

θiηt−i

}2


+2E [σt] · 0·
q∑
i=1

(θi · 0) + E
[
σ2
t

]
· 1

c2 + 2cµ

p∑
i=1

φi + E

{ p∑
i=1

φiεt−i

}2
+ 2E

[{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}]

+2E

[
σtηt

{
p∑
i=1

φiεt−i

}]
+ E

{ q∑
i=1

θiηt−i

}2
+ E

[
σ2
t

]

= c2 + 2cµ

p∑
i=1

φi + E

{ p∑
i=1

φiεt−i

}2
+ 2E

[{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}]

+2E

[
σtηt

{
p∑
i=1

φiεt−i

}]
+

q∑
i=1

θ2
i + E

[
σ2
t

]
.

Therefore the conditional variance of the ARMA−GARCH errors is given as follows

V ar [εt|Ωt−1] = h2
t

= E
[
ε2
t |Ωt−1

]
− (E [εt|Ωt−1])

2

= c2 + 2cµ

p∑
i=1

φi + E

{ p∑
i=1

φiεt−i

}2
+ 2E

[{
p∑
i=1

φiεt−i

}{
q∑
i=1

θiηt−i

}]

+2E

[
σtηt

{
p∑
i=1

φiεt−i

}]
+

q∑
i=1

θ2
i + E

[
σ2
t

]
− µ2. (53)

where µ is de�ned as in (52).

It was previously de�ned in Hossain and Ghahramani's [29] article that for a linear regression model with GARCH

errors that β = (β1, β2, . . . , βk)
′
is a (k × 1) vector of unknown regression coe�cients, δ′ = (ω, α1, α2, . . . , αn γ1, γ2, . . . , γm)

is the (1 +m+ n) × 1 vector of unknown variance parameters. Then it was de�ned that ξ = (β′, δ′) was the

(k + 1 +m+ n) × 1 vector of all unknown parameters such that ξ ∈ Ξ and Ξ was de�ned as a compact subset

of the Euclidean space. It was also noted that the GARCH errors could be reduced to ARCH errors provided

that q = 0 for j = 1, 2, . . . , q. Now in the case of a linear regression model with ARMA − GARCH errors,

we also de�ne the vector of unknown regression coe�cients as β = (β1, β2, . . . , βk)
′
as was done by Hossain and

Ghahramani's [29] although the vector of unknown variance parameters di�ers to include the ARMA compo-

nent. Thus we de�ne our (2 + p+ q +m+ n)× 1 vector of unknown variance parameters as δ′ = (δ′1, δ
′
2) such that

δ′1 = (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq) : (1 + p+ q)×1 and δ′2 = (ω, α1, α2, . . . , αn γ1, γ2, . . . , γm) : (1 +m+ n)×1.

Then we may also extend the de�nition of the new vector of all unknown parameters which is ξ = (β′, δ′) of di-

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 53

mensions (k + 2 + p+ q +m+ n) × 1 such that ξ ∈ Ξ and Ξ was de�ned as a compact subset of the Euclidean

space.

Let ξ0 = (β01, β02, . . . , β0k, c0, φ01, φ02, . . . , φ0p θ01, θ02, . . . , θ0q, ω0, α01, α02, . . . , α0n γ01, γ02, . . . , γ0m)
′
be the

vector of all the unknown but true parameter values. Conditioning on initial values

ε2
0, ε

2
1, . . . , ε

2
1−n σ

2
0 , σ

2
1 , . . . , σ

2
1−m, the Gaussian quasi-likelihood is given by

LT (ξ) =
1

T

T∑
t=1

`t (ξ) . (54)

Provided that the probability density function is of the form

f
(
x|µ, σ2

)
=

1√
2πσ2

exp

{
− (x− µ)

2

2σ2

}
.

where x, µ ∈ R and σ2 ∈ Ru such that µ, σ2 are the mean and variance respectively of the random variable X.

Now consider x = εt, µ = E [εt|Ωt−1] as derived previously and σ2 = h2
t = V ar [εt|Ωt−1] also derived previously.

The new probability density function then appears as follows

f
(
εt|µ, h2

t

)
=

1√
2πh2

t

exp

{
− (εt − µ)

2

2h2
t

}
.

The likelihood function of the model is derived as follows

`t (ξ) = f
(
ε1, . . . , εt|µ, h2

t

)
= f (εT |ΩT−1)× f (εT−1|ΩT−2)× . . .× f (εs+1|Ωs)× f

(
ε1, . . . , εs|µ, h2

t

)
T∏

t=s+1

1√
2πσ2

t ,
exp

{
− (εt)

2

2σ2
t ,

}
× f

(
ε1, . . . , εs|µ, h2

t

)
. (55)

where s is the maximum order of the ARMA(p, q)−GARCH (m,n) process (s = max (p, q, m, n)) and provided

that

εt =

 ε0,

Yt −X
′

tβ −
∑p
i=1 φi

(
Yt−i −X

′

t−iβ
)
− ηt −

∑q
i=1 θiηt−i,

t = 0

t = 1, 2, . . . , T.

Then it follows that the log- likelihood function is given by

4 LINEAR REGRESSION WITH ARMA-GARCH ERRORS 54

LT (ξ) = log [`t (ξ)]

= log

(
T∏

t=s+1

1√
2πh2

t

exp

{
− (εt − µ)

2

2h2
t

})

=

T∑
t=s+1

log

[
1√

2πh2
t

exp

{
− (εt − µ)

2

2h2
t

}]

=

T∑
t=s+1

[
log (2π)

− 1
2 + log

(
h2
t

)− 1
2 − 1

2

(εt − µ)
2

h2
t

]

=

T∑
t=s+1

[
−1

2
log (2π)− 1

2
log
(
h2
t

)
− 1

2

(
ε2
t − 2εtµ+ µ2

)
h2
t

]

= −T
2

log (2π)− 1

2

T∑
t=s+1

log
(
h2
t

)
− 1

2

T∑
t=s+1

ε2
t

h2
t

+

T∑
t=s+1

εtµ

h2
t

− 1

2

T∑
t=s+1

µ2

h2
t

. (56)

or the Gaussian quasi-likelihood (i.e. average log-likelihood) function can used which is given by

LT (ξ) =
1

T
log [`t (ξ)]

=
1

T

T∑
t=s+1

[
log (2π)

− 1
2 + log

(
h2
t

)− 1
2 − 1

2

(εt − µ)
2

h2
t

]

= −1

2
log (2π)− 1

T

T∑
t=s+1

1

2
log
(
h2
t

)
− 1

T

T∑
t=s+1

1

2

ε2
t

h2
t

+
1

T

T∑
t=s+1

εtµ

h2
t

− 1

T

T∑
t=s+1

1

2

µ2

h2
t

. (57)

Therefore the quasi-maximum likelihood of ξ is de�ned as any measurable solution of ξ̂T of

ξ̂T = arg max
ξ∈Ξ
LT (ξ)

= arg min
ξ∈Ξ
ĪT (ξ) . (58)

where

ĪT (ξ) =

 Iδδ 0

0 Iββ

 (59)

is the information matrix. The variance-covariance matrix is an inverse of the information matrix. The components

of the information matrix in (59) represent the second order derivatives of the parameters of ξ = (β′, δ′). The

derivations of Iδδ and Iββ can be found in the Appendix A. The o�-diagonal blocks of the information matrix are

Iδβ = Iβδ = 0.

5 Shrinkage Estimation

In this chapter we will introduce the idea of unrestricted, restricted and linear shrinkage estimators for the regression

coe�cients when the error terms follow an ARMA−GARCH model. Shrinkage estimation is a widely studied topic

in statistics and econometrics. In the books by Saleh [47] and Saleh et al. [49] [48], the insights of the preliminary

test and related shrinkage estimation techniques are expanded upon and discussed. The authors provides a clear

and practical introduction to shrinkage estimation in regression modelling.

As a prelude to shrinkage estimation, as in Saleh [47], the preliminary test approach of estimation which was �rst

proposed by Bancroft [4] plays a systematic role in estimation. Preliminary test estimators are typically useful when

one has to perform statistical inference with some uncertain prior information. We will also discuss the theory with

regards to shrinkage estimation with respect to regression modelling and develop the relevant test statistic. We

will then check validity of the model found in the previous chapter by way of application of the theory developed

in this chapter on a real data example; speci�cally on Bitcoin price data, Google Trends [53] data on searches with

regards to the term �bitcoin� and associated terms, and the S&P 500 index data.

5.1 Shrinkage Estimation for Multiple Regression Models

It is well-known that the use of prior information in the estimation of a statistical distribution's parameters leads

to improved results. Estimators that make use of prior information are referred to as restricted (R) estimators.

Conversely, we refer to estimators without prior information as unrestricted (UR) estimators. So generally, restricted

estimators often perform better than their unrestricted counterparts. In the event that the prior information is

uncertain, preliminary test (PT) estimators are used. This method of estimation eliminates problematic parameters

that arise from the prior information (i.e. constraints) incorporated into the model that are uncertain. The

preliminary test will then determine whether the restricted or unrestricted model is then chosen based on the

validity of the uncertain information leading to better results. It is advisable to make use of this prior information

in the estimation procedure, especially when information based on the sample data may be limited. These prior

information may be

1. A fact known from theoretical or experimental considerations,

55

5 SHRINKAGE ESTIMATION 56

2. A hypothesis that may have to be tested or,

3. An arti�cially imposed condition to reduce or eliminate redundancy in the description of the model (Rao and

Debasis [43]).

This means that given these two extremes, a concession has to be made. The model in which no prior information

is integrated into the �nal chosen model refers to the unrestricted model (i.e no restrictions imposed) whereas the

restricted model is the instance where some or all prior information is incorporated from the �nal chosen model.

For example, in a multiple regression model,

Consider the following simple multiple regression model

Yt = X
′

tβ + εt

= β0 + β1Xt1 + β2Xt2 + β3Xt3 + β4Xt4 + β5Xt5 + εt, t = 1, 2, . . . , T. (60)

where Yt is t-th observation of the response (i.e dependent) variable, βj ∀ j are the unknown regression coe�cients

estimated for the corresponding predictor (i.e independent) variables, Xt. Therefore Xtj is then the t-th observation

of the j -th predictor and εt is the error term (i.e noise) or often referred to as the residual with a distribution as

de�ned in De�nition 2.1.3. The model de�ned in (60) is the unrestricted model.

Suppose we wish to test the following set of hypotheses H0 : βj = 0, ∀ j

HA : at least one βj is not zero.

We are testing the hypothesis that all the regressors are insigni�cant versus the alternative that some or all are

signi�cantly di�erent from zero. The restricted model in this case may deem some or all of the predictors insigni�-

cant, therefore the coe�cients are set to zero and excluded from the �nal model. For example, the restricted model

may be de�ned as follows

YtR = Ŷ , ∀ t. (61)

which indicates that all the predictors are insigni�cant. The results of the hypothesis test (i.e preliminary test) will

then determine whether the unrestricted model is chosen as the �nal model.

The comparison of the �t of the unrestricted and restricted model will lead to an inference being made. Considering

the fact that when estimating the regression coe�cients, we aim to minimize the residual sum of squares. So in

turn it is said the unrestricted model will �t at least as well as the restricted model since the unrestricted model is

such that it can always choose a combination of the coe�cients that the restricted model can.

5 SHRINKAGE ESTIMATION 57

Given the multiple regression model in (60), the UR estimator of β under maximum likelihood estimation (MLE)

or least squares estimation (LSE) is de�ned as

β̃ = (X ′X)
−1
X ′Y. (62)

where Y is a (T × 1) vector of the observed response (i.e dependent) variable, β̃UR is a (k × 1) vector of the

unrestricted and unknown regression coe�cients that will be estimated such that they minimize the squared sum

of residuals under LSE and maximize the likelihood function under MLE. X is referred as the design matrix of

predictor (i.e. independent) variables; it has a full column rank k(k < T) with dimensions (T × k). The URE of β

is also distributed as follows

β̃UR ∼ Nk

(
β, σ2 (X ′X)

−1
)
. (63)

with the unrestricted and unbiased estimator of the variance σ2 being given by

s2
ε =

1

T − k

(
Y −Xβ̃

)′ (
Y −Xβ̃

)
. (64)

Consider again the multiple regression model in (60), we then have that the RE, β̂ under maximum likelihood

estimation (MLE) or least squares estimation (LSE) is de�ned as

β̂R = Rβ

= β̃ − (X ′X)
−1
R′
(
R (X ′X)

−1
R′
)−1 (

Rβ̃ − r
)
. (65)

where we assumed that the restriction is

Rβ = r. (66)

where R is a known and de�ned matrix with dimensions (l × k) of rank l (l < k) and r being a pre-speci�ed vector

of dimensions (l × 1). Note that l represents the number of restrictions placed on the model.

As discussed previously, based on the restriction in (66), it will be determined whether the PTE will take on the

unrestricted or restricted regression estimator. Given the multiple regression model in (60), the PTE of β is de�ned

as follows

β̂PT = β̃UR −
(
β̃UR − β̂R

)
IA (G) . (67)

5 SHRINKAGE ESTIMATION 58

where IA (G) is the indicator function of the set A such that

IA (G) =

 1 if G ∈ A.

0 if G /∈ A.

This immediately follows that the PTE indicator function will be de�ned as follows

IUR (F) = I (LT ≤ F (α)) =

 1 if H0 not rejected.

0 otherwise.

(68)

and

IR (F) = I (LT > F (α)) =

 1 if H0 rejected.

0 otherwise.

(69)

with the likelihood ratio test statistic denoted by LT de�ned by

LT =

(
Rβ̃ − r

)(
R (X ′X)

−1
R′
)−1 (

Rβ̃ − r
)

ls2
ε

. (70)

based on the testing H0 against HA where F (α) is the critical values of the F−distribution with degrees of freedom

l and (T − k), and a level of signi�cance of α; described in Saleh [47].

The likelihood ratio test statistic under the alternative hypothesis has a noncentral F−distribution with degrees of

freedom l and (T − k), and a noncentrally parameter ∆2

2 , where

∆2

2
=

(Rβ − r)
(
R (X ′X)

−1
R′
)−1

(Rβ − r)

2σ2
. (71)

Lastly it should be noted that the UR and R estimator distributions are independent of the distribution of

(T − k) s2
ε

σ2
.

5.2 Shrinkage estimation of linear regression with ARMA-GARCH errors

Before we discuss the shrinkage estimation with respect to linear regression models with ARMA−GARCH errors,

we will give an overview of shrinkage estimation. As previously described, preliminary test estimation has some

ridgidity in that the restricted or unrestricted model is the chosen based on the outcome of the preliminary test.

5 SHRINKAGE ESTIMATION 59

Saleh [47] who provides extensive literature on this topic describes the nature of optimal PTE as being heavily

dependent on the level of signi�cance of the test. The optimal PTE only provides two choices for the estimator,

namely the restricted and unrestricted estimator based on the outcome of the preliminary test. Saleh [47] suggests

that in order to deal with these issues surrounding the estimator, shrinkage estimators (SE's) may be the alternative.

The SE's will shrink toward a targeted prior value of the parameter under consideration and provide an estimator

that incorporates both the extremes; restricted and unrestricted estimators. Essentially adjust the unrestricted

estimator (for the full model) by the amount of the di�erence between unrestricted and restricted estimators scaled

by the adjusted test-statistics for the uncertain prior information. The interpolated values depend on the value of

the test statistic and not on the value of the test result.

Suppose p = 2. In our estimation of the optimal parameter of the regression model in (45), the regression coe�cient

vector is given by β̂2

β̂ =

 β̂1

β̂2

 : (2× 1) (72)

where β̂1 and β̂2 represent the sub-parameters corresponding to the two predictor variables in X
′

t = (Xt1, Xt2). The

regression model can then be rewritten as

Yt = X
′

tβ + εt

= β1Xt1 + β2Xt2 + εt, ∀ t. (73)

The restricted model estimator of β̂ can be obtained by maximizing the log-likelihood function where β2 = 0 has

been imposed as the constraint. The preliminary hypotheses are given by H0 : β2 = 0

HA : β2 6= 0

(74)

such that the results of the test will be lead to the PT estimator being

β̂PT =

β̃UR reject H0.

β̂R do not reject H0.

(75)

This indicates that if the restriction placed on the model is true (i.e. the null hypothesis is not rejected). Then the

estimator of β̂ chosen will be

β̂R =

 β̂1

0

 . (76)

5 SHRINKAGE ESTIMATION 60

as it will presumably perform better than

β̃UR =

 β̃1

β̃2

 (77)

Although, ordinarily the restricted model tends to be biased, ine�cient and inconsistent. In order to test the

hypothesis, we consider a test statistic for the null hypothesis given as follows

DT = 2
[
L
(
β̃UR ; Y1, Y2, . . . , YT

)
− L

(
β̂R ; Y1, Y2, . . . , YT

)]
= T β̃>2 I∗β̃2. (78)

where T is the total number of observations, β̃2 is the restriction placed on the model and

I∗ = I22 −
I12 × I21

I11
= I22 − I21I−1

11 I12.

provided by the components of the variance-covariance matrix given by

I
(
β̃UR

)
=

 I11 I12

I21 I22

 (79)

Since we are testing whether the null hypothesis of β̂2 = 0 is true, as T → ∞ the test statistic is asymptotically

chi-square distributed. We will then compare the test statistic in (78) to a chi-square critical value with one degree

of freedom (i.e. χ2
(1;π)) at (100× π) % level of signi�cance.

Alternatively to the preliminary test estimators we will have the linear shrinkage estimator (SE), β̂S , which is a

linear combination of the UR estimator, β̃UR and the R estimator, β̂R. Linear shrinkage estimation does not depend

on a test statistic but is simply a weighted estimate of the RE and URE, as follows β̂R

β̂S (π) = πβ̃UR + (1− π) β̂R (80)

where π determines the extent to which these estimates are amalgamated. The parameter π is referred to as the

degree of con�dence in the null hypothesis such that if π = 0 then there will be shrinkage and the restricted will

subjugate the model, and if π = 1 then there will be no degree of con�dence in the null hypothesis. The criterion

for comparing the performance of the SE, ˆβS (π) is the mean squared error (MSE) de�ned as follows

MSE (π) =
1

T

T∑
i=1

(
β̂S (π)− β0

)> (
β̂S (π)− β0

)
. (81)

where β0 is the true value of β, based on the outcome of the hypothesis test. It should be noted that, the optimal

SE is the one that provides the minimum mean squared error (MSE).

5 SHRINKAGE ESTIMATION 61

5.3 ARMA-GARCH regression modelling application

In this section, we will then apply our shrinkage estimation techniques discussed in the previous chapter on a sample

of Bitcoin data. Preceding the analysis on the real data set, we will run a simulation study. We will document our

results and verify that our predicted model is correct.

5.3.1 Simulation study

In this section, we demonstrate a Monte Carlo simulation study of the theory developed in the previous chapter in

order to assess the relative performance of the proposed estimators with respect to the full model estimator. We

consider the following multiple linear regression model with ARMA−GARCH errors:

Yt = X ′tβ + εt, t = 1, 2, . . . , T. (82)

where Xt = (Xt1, Xt2)
′
and β = (β1, β2)

′
are both 2×1 vectors of the predictors and unknown regression coe�cients

respectively. εt is the error term which follows a ARMA (1, 1)−GARCH (1, 1) process such that

εt = c+ φ1εt−1 + θ1ηt−1 + σtηt, ∀t ∈ Z. (83)

where c could be any constant, φ1 is the AR(1) coe�cient, θ1 is the coe�cient of the corresponding innovations

(i.e. MA(1) process); ηt ∀ t ∈ Z is a sequence of i.i.d. random variables such that ηt ∼ N (0, 1) (i.e. as de�ned in

De�nition 2.1.3.).

There also exists nonnegative constants ,ω > 0, α1 ≥ 0 and γ1 ≥ 0 associated with the GARCH(1, 1) process such

that

σ2
t = ω + α1ε

2
t−1 + γ1σ

2
t−1, ∀t ∈ Z. (84)

We generated the response variable, Yt, with t = 1, 2, . . . , T where T = 200. ηt ∀ t ∈ Z are simulated from

a standard normal distribution while the predictor variables, Xt = (Xt1, Xt2)
′
, are similarly generated from a

multivariate standard normal distribution. In order to test the hypothesis of the signi�cance of β2 as stated in (74),

the true values of the regression coe�cients were chosen to be

β0 = (0.9, 0.01)
′

(85)

5 SHRINKAGE ESTIMATION 62

and the variance parameter values were set as 

c = 1,

φ1 = 0.4,

θ1 = 0.55,

ω = 0.1,

α1 = 0.2,

γ1 = 0.7 .

(86)

In order to compute the response variable, it was pertinent to initialise the εt−1, σt, σ
2
t for t = 0; they were all set

to 1. In Figure 8, we have a weekly time series plot of one simulation run of Yt, given the information above and

corresponding log returns of Yt.

Figure 8: Weekly time plots of simulated Yt and corresponding log returns of Yt.

In Figure 8, Yt and its corresponding log returns, log (Yt) are displayed. There is evidence of volatility clustering

depicted in the �gure above and a lot of volatility can be seen particularly, from October 2016 to April 2017. There

are large positive and negative shocks depicted in the price series that translate into the log returns series. It

should be noted that some log returns of the price series could not be calculated as in De�nition 2.1.1 (i.e. due to

any negative values in the price series) and were hence omitted from the dataset before proceeding forward. This

reduced the number of log return values but not by a signi�cant amount. There are no visible upward or downtrends

5 SHRINKAGE ESTIMATION 63

and the variability is centred around a mean of zero.

The simulated runs are each analysed and we then estimate the UR coe�cients for the model in (82)-(84) by way of

MLE. The MLE procedure uses the Newton-Raphson algorithm as a standard approach of estimation in the maxLik

[27] package in R [14]. After estimating β̃UR from each simulation run (i.e. N = 10000), we computed the linear

shrinkage parameter, β̂S (π) by choosing a range of values for π, provided that the restricted estimator chosen was

β̂R = (1, 0)
′
using prior information. For the values of π, we �rst considered the range π ∈ {0, 0.01, 0.05 (0.05) 0.30}.

This proved to be inadequate and we expanded the grid search such that π ∈ {0, 0.01, 0.05 (0.05) 0.95, 0.99, 1}.

Furthermore, we tabulated the MSE values relative to each π value chosen. The best estimator is selected based

on the π which provides the minimum MSE computed using (81). In the following table are each π value, the

corresponding (1− π) value and the computed MSE.

Table 8: Linear shrinkage estimator, β̂S (π) optimisation results for di�erent values of π and corresponding MSE

for T = 200 provided that the restricted estimator chosen was β̂R = (1, 0)
′
.

π 1− π MSE (π)

0 1 0.0081
0.01 0.99 0.0079
0.05 0.95 0.0075
0.10 0.90 0.0072
0.15 0.85 0.0073
0.20 0.80 0.0078
0.25 0.75 0.0086
0.30 0.70 0.0098
0.35 0.65 0.0114
0.40 0.60 0.0133
0.45 0.55 0.0156
0.50 0.50 0.0183
0.55 0.45 0.0213
0.60 0.40 0.0247
0.65 0.35 0.0285
0.70 0.30 0.0327
0.75 0.25 0.0372
0.80 0.20 0.0420
0.85 0.15 0.0473
0.90 0.10 0.0529
0.95 0.05 0.0589
0.99 0.01 0.0639

1 0 0.0652

Table 8 displays the performance of each π in determining the best linear shrinkage estimator by way of the MSE

provided that the restricted estimator chosen was β̂R = (1, 0)
′
. From the tabulated MSE values, the minimum

MSE (i.e. MSE = 0.007201651) occurs when π = 0.10. The parameter π is referred to as the degree of con�dence

in the null hypothesis. Therefore as previously mentioned, if π → 0 then there will be shrinkage and the restricted

will subjugate the model, and if π → 1 then there will be no degree of con�dence in the restricted estimator, and

the unrestricted model will be chosen over the restricted model. Given the results of our simulation study, we

5 SHRINKAGE ESTIMATION 64

found that the optimal linear shrinkage estimator is when π = 0.10 which is closer to 0 than 1. This indicates that

there is a greater dependency on the restricted model over the unrestricted model due to our prior knowledge and

assumptions. There is some truth to this as the true value of β is β0 = (0.9, 0.01)
′
while the restricted estimator

chosen was β̂R = (1, 0)
′
which are close in value.

In the following �gure we have a histogram plots of the optimal shrinkage estimates given that it was found the a

value of π = 0.10 gave the best results.

(i)

(ii)

Figure 9: Histogram of the optimal linear shrinkage estimates, β̂S (π) with �tted distribution curves: (i) β̂S, 1 (0.1)

and (ii) β̂S, 2 (0.1)

Figure 9 displays the distributions of the optimal linear shrinkage estimates, β̂S (π) from the simulation. Both linear

shrinkage estimates of β̂1 and β̂2 are shown to be asymptotically normally distributed and centred around means

5 SHRINKAGE ESTIMATION 65

of their true values chosen which may suggest normality. The descriptive statistics are given in the table below to

discern normality or non-normality.

Table 9: Basic statistics of the optimal linear shrinkage estimates, β̂S (0.1).

Basic Statistics β̂S, 1 (0.1) β̂S, 2 (0.1)

Minimum 0.861770 −0.117009
Maximum 1.136263 0.137265

1st Quartile (Q1) 0.973748 −0.014970
Median (Q2) 0.989780 0.000980

3rd Quartile (Q3) 1.006288 0.017232
Mean 0.989935 0.000993

Standard Deviation 0.025488 0.025520
Skewness 0.034650 0.046033

(Excess) Kurtosis 1.024060 1.042406

Given in the above table are the descriptive statistics of the optimal linear shrinkage estimates, β̂S (π). Both linear

shrinkage estimates tend to have symmetric distributions with negligible positive skewness as they are quite close

to a skewness value of 0. Their respective means and medians are also very close in value which suggests symmetry.

Although, the excess kurtosis of both estimates given in Table 9, suggests they have heavier tailed distributions

and hence non-normal.

We then looked at di�erent restricted estimators to compute di�erent set linear shrinkage estimators, β̂R (Scenario 2) =

(0.001, 2)
′
and β̂R (Scenario 3) = (0.91, 0.02)

′
The other two scenarios considered are such that the new restricted

estimators are chosen are such that none of the estimators are close to the true value (i.e. unlikely to be true) and

the other being very close to the true estimators (i.e. very likely to be true).

Table 10 below displays the performance of each π in determining the best linear shrinkage estimator by way of

the MSE for the restricted estimators chosen; β̂R (Scenario 2) = (0.001, 2)
′
and β̂R (Scenario 3) = (0.91, 0.02)

′
. From

the tabulated MSE values, the minimum MSE (i.e. MSE = 0.06176855) corresponds to a level of signi�cance of

π = 0.95 in the case of Scenario 2. This implies that the linear shrinkage estimator relies primarily on the estimates

of the unrestricted model over those of the restricted model. This corresponds to our assumption as the restricted

estimator, in this case, was chosen such neither of the estimators were close to the true value. In Scenario 3, we have

that the smallest MSE (i.e. MSE = 0.0003982787) is obtained when the level of signi�cance chosen is π = 0.01.

This indicates that there little to no e�ect of the unrestricted model estimates as compared to the restricted model

estimators. This due to the fact that the restricted estimators chosen, were very close to the true value. Hence the

dependency of the restricted model over the unrestricted.

5 SHRINKAGE ESTIMATION 66

Table 10: Linear shrinkage estimator, β̂S (π) optimisation results for di�erent values of π and corresponding MSE

for T = 200 for the restricted estimators chosen as β̂R (Scenario 2) = (0.001, 2)
′
and β̂R (Scenario 3) = (0.91, 0.02)

′
.

π 1− π MSEβ̂R (Scenario 2)
(π) MSEβ̂R (Scenario 3)

(π)

0 1 1.1903 0.000400
0.01 0.99 1.1666 0.000398
0.05 0.95 1.0743 0.000523
0.10 0.90 0.9646 0.000974
0.15 0.85 0.8612 0.001753
0.20 0.80 0.7641 0.002860
0.25 0.75 0.6733 0.004296
0.30 0.70 0.5888 0.006060
0.35 0.65 0.5105 0.008153
0.40 0.60 0.4386 0.010573
0.45 0.55 0.3729 0.013322
0.50 0.50 0.3135 0.016400
0.55 0.45 0.2604 0.019805
0.60 0.40 0.2136 0.023539
0.65 0.35 0.1730 0.027601
0.70 0.30 0.1388 0.031991
0.75 0.25 0.1108 0.036710
0.80 0.20 0.0891 0.041757
0.85 0.15 0.0737 0.047132
0.90 0.10 0.0646 0.052835
0.95 0.05 0.0618 0.058867
0.99 0.01 0.0640 0.063929

1 0 0.0652 0.065227

Figure 10: Histogram of the optimal linear shrinkage estimates, β̂S (π) with �tted distribution curves: β̂S, 1 (0.01)

and β̂S, 2 (0.01) under the restricted estimators chosen as β̂R (Scenario 2) = (0.001, 2)
′
.

5 SHRINKAGE ESTIMATION 67

Figure 11: Histogram of the optimal linear shrinkage estimates, β̂S (π) with �tted distribution curves: β̂S, 1 (0.95)

and β̂S, 2 (0.01) under the restricted estimators chosen as β̂R (Scenario 3) = (0.91, 0.02)
′
.

Figures 10 and 11 displays the distributions of the optimal linear shrinkage estimates, β̂S (π) from the simulation of

the two scenarios previously indicated. Both linear shrinkage estimates of β̂1 and β̂2 are shown to be asymptotically

normally distributed and centred around means of their true values chosen which may suggest normality. The

descriptive statistics are given in the table below to discern normality or non-normality.

Table 11: Basic statistics of the optimal linear shrinkage estimates,β̂S, (Scenario 2) (0.01) and β̂S, (Scenario 3) (0.01).

Basic Statistics β̂S, 1;(Scenario 2) (0.95) β̂S, 2;(Scenario 2) (0.95) β̂S, 1;(Scenario 3) (0.01) β̂S, 2;(Scenario 3) (0.01)

Minimum −0.363133 −1.011588 0.897077 0.008099
Maximum 2.244545 1.404022 0.924526 0.033527

1st Quartile (Q1) 0.700652 −0.042219 0.908275 0.018303
Median (Q2) 0.852961 0.109313 0.909878 0.019898

3rd Quartile (Q3) 1.009788 0.263705 0.911529 0.021523
Mean 0.854436 0.109433 0.909894 0.019899

Standard Deviation 0.242138 0.242439 0.002549 0.002552
Skewness 0.034650 0.046033 0.034650 0.046033

(Excess) Kurtosis 1.024060 1.042406 1.024060 1.042406

Given in the above table are the descriptive statistics of the optimal linear shrinkage estimates,β̂S;(Scenario 2) (π)

and β̂S;(Scenario 3) (π). In both scenarios the linear shrinkage estimates tend to have symmetric distributions with

negligible positive skewness as they are quite close to a skewness value of 0. Their respective means and medians

are also very close in value which suggests symmetry. Although, the excess kurtosis of all estimates given in Table

11, suggests they have heavier tailed distributions and hence non-normal.

5 SHRINKAGE ESTIMATION 68

Alternatively, to linear shrinkage estimation, we consider preliminary test estimation (PTE), following Saleh

[47]. In the PTE, we require a range of α values to test the hypotheses in (74). We considered the set α ∈

0 {, 0.01, 0.05 (0.05) 0.30}, levels of signi�cance to be tested. However, since the variance of the model plays a sig-

ni�cant role in the computation of the test statistic, we would be able to better capture a trend with a larger

spread of levels of signi�cance. Hence we considered the following α ∈ {0.1, 0.25, 0.50}. Since we have simulated

and estimated β̃1 and β̃2, N = 10000 times, we can use those bootstrapped estimates to compute a 100 (1− α) %

bootstrap con�dence intervals for each level of signi�cance, for each unrestricted estimate, β̃UR(α).

Table 12: The 100 (1− α) % con�dence intervals of the unrestricted estimates, β̃UR for α ∈ {0.1, 0.25, 0.50} levels
of signi�cance.

Level Of Significance 100 (1− α)% Confidence Interval of β̃UR1
(α) 100 (1− α)% Confidence Interval of β̃UR2

(α)

Lower Limit (LL) Upper Limit (UL) Lower Limit (LL) Upper Limit (UL)

α = 0.10 0.8951615 0.9035465 0.005731366 0.01412663

α = 0.25 0.8964220 0.9022860 0.006993331 0.01286467

α = 0.50 0.8976348 0.9010732 0.008207716 0.01165028

We can, therefore, determine whether the restricted or unrestricted model will be chosen for each case. We have

decided to use the bootstrapping con�dence interval method to test our hypothesis due to the complexity in the

computation of the information matrix given in (79) which is further derived in Appendix A. So in turn, if zero is

found within the con�dence interval of β̃2, then we do not reject the null hypothesis (i.e. restricted model estimates

are chosen over the unrestricted model estimates) as shown in (75) for a particular level of signi�cance, α. From the

table above, there is evidence that as the level of signi�cance tends to increase, the con�dence interval lengths tend

to narrow and move away from the hypothesised value, which increases the chance of rejecting the null hypothesis.

Given the hypothesis in (74), the hypothesised value of zero cannot be found within the con�dence interval limits

of β̃2, even at a 10% level of signi�cance. Therefore we reject the null hypothesis that β2 = 0, at all levels of

signi�cance and conclude that β2 is signi�cantly di�erent from zero. This then means that the PTE is chosen to

have the estimates of the unrestricted estimator, β̃UR =
(
β̃1, β̃2

)′
. All the �gures and tables produced have been

computed in R [14] and the relevant code can be found in Appendix C.

5.3.2 Bitcoin price data analysis

The data used to apply the theory developed in the previous sections includes the Bitcoin returns used in Chapter

3, converted from daily data to weekly data; this will be considered the dependent variable of the regression model.

It was previously determined in a recent paper by Sovbetov [51] that attractiveness/interest was a contributing

factor of signi�cance, in�uencing cryptocurrency prices.

Consequently, one of the corresponding predictor (i.e independent) variables considered was a dataset of Google

searches with regards to the term �bitcoin� and associated terms. We obtained 104 weekly observations from the

Google Trends [53] database between the period of March, 31st, 2016 to March, 31st, 2018; the same time period

5 SHRINKAGE ESTIMATION 69

considered for the Bitcoin data. The data values recorded represent search interest of the term �bitcoin� relative

to the highest peak on the chart worldwide within the speci�ed time frame. The values provided are a rating scale

scores ranging from 0 to 100 such that when the term search is at a peak in popularity, a value of 100 is recorded; a

score of 50 means that the term has half the interest; and �nally a rating of 0 indicates that there was probably an

insu�cient amount data for the particular term searched at the time. We considered this information as it could

be believed that provided that we are the Internet age, that Google users' search behaviour of the term �bitcoin�

and associated terms, may be in indicator of interest that may in�uence the price behaviour of Bitcoin. Note that

all the �gures and tables produced have been computed in R [14] and the relevant code can be found in Appendix

D.

The choice of our second predictor variable was sparked by a determination realised in the paper released by

Sovbetov [51]. He stated and hence determined in this paper that the traditional �nancial market has no bearing

in�uence on the cryptocurrency market, hence would have little to no e�ect on the price of Bitcoin. Therefore,

similarly to the study done by Sovbetov [51], we chose the S&P 500 index to test this theory. The S&P 500 index is

deemed the most commonly followed stock market equity index that measures the stock performance of 500 of the

largest companies listed on the stock markets in the United States. The S&P 500 index data used in our analysis,

were collected between the period of March, 31st, 2016 to March, 31st, 2018 from the quantmod [46] package in R

[14], which sources its data from Yahoo Finance. There is a total of 104 observations of weekly price trades for each

of the 3 variables considered. Time series plots of our data are also displayed in the following �gures.

Figure 12: Time plots the USD/BTC weekly rate, weekly Google searches in and around the term �bitcoin� and
S&P 500 index weekly rate.

5 SHRINKAGE ESTIMATION 70

Figure 12 is a time series plot of the variables under consideration for the modelling. The Bitcoin price series of

weekly data show a constant variability from April 2016 to April 2017. We then notice an increasing trend until

about November 2017 which is the period of time in which Bitcoin gained a lot of traction and cryptocurrencies

became a topic of interest even on the news. During the months of December and January, large spikes in the price

can be seen. This volatility remained up until the end of the year, even though the price began to drop quite rapidly.

A similar trend to that of the USD/BTC weekly rate is also depicted in the Google searches of �Bitcoin� time plot.

This suggests that these two variables under consideration, in particular, are likely to correlated in some way. The

interest and then lack thereof in the cryptocurrency may have been a large contributing factor that led to its rapid

rise and fall of the Bitcoin price over that period. The S&P 500 index weekly rate time plot also displayed in Figure

12 shows a gradually increasing trend from the sample period taken. Some volatility and positive spikes can also

be seen towards the end of January 2018, through February until March 2018. Ultimately we would like to test

and therefore determine whether there is a link between the cryptocurrency (i.e. Price of Bitcoin) and traditional

�nancial markets (i.e. S&P 500 index).

As has been mentioned in the data description, the preliminary test will be hypothesised as follows:

H0 : β2 = 0

HA : β2 6= 0
(87)

where β2 is the regression coe�cient of the S&P 500 index and consequently, β1 is the regression coe�cient of the

Google searches. This test will determine whether the traditional �nancial market represented by the S&P 500

index, has any signi�cant impact on the price of Bitcoin.

As previously done in the simulation study, for choosing α (i.e. level of signi�cance) in the preliminary test, we

again consider the set α ∈ {0.01, 0.05 (0.05) 0.50} in order to possibly capture a trend. Bootstrap samples were

taken and the unrestricted regression coe�cients were estimated from each sample. Again, due to the complexity in

the computation of the information matrix given in (79) which is further derived in Appendix A, used to formulate

the test statistic; the bootstrapping con�dence interval method was used to test our hypothesis. It was then

determined that if zero is not found within the con�dence interval of β2, then we do not reject the null hypothesis

(i.e. restricted model estimates are chosen over the unrestricted model estimates) as shown in (75) for a particular

level of signi�cance, α.

The linear shrinkage estimator was also considered in this application. In order to choose the optimal parameter

π (i.e. degree of con�dence in the null) that provides the best linear shrinkage estimator, β̂S (π), we again use

bootstrap sampling. The unrestricted estimates of the regression coe�cients are computed from each bootstrap

sample. The restricted estimator is computed as having the same estimated value for β̂1 as that of the �true�

parameter β01 while the estimated value for the restricted β2 = 0. It should be noted that the �true� estimator,

β0 used in this case was a simple estimation of the entire dataset. Provided that the unrestricted and restricted

estimates have been computed, linear shrinkage estimator, β̂S (π) can also be computed by way of (49) where πi is

the i-th value in a grid range of numbers chosen between 0 and 1. For each linear shrinkage estimate β̂S (πi), we

5 SHRINKAGE ESTIMATION 71

compute the MSE as indicated in (81) over all replications. The optimal linear shrinkage estimator is then selected

provided that it has the smallest MSE for a speci�ed πi in the grid.

In order to obtain the bootstrap samples for the estimation procedures, we took block bootstrap samples of the that

consisted of n1 = 73 (i.e. 70% of the observations) for the training set and n2 = 31 (i.e. 30% of the observations)

for the testing set; test set not used. The bootstrap training samples were taken 10000 times with replacement

from data matrix (yt, xt1, xt2) and used to estimate the regression coe�cients. We examined the point estimates,

standard errors and mean square errors of the estimates and then calculate the estimators, SE, and the perform the

preliminary test for each bootstrap replication. Finally, the estimator will be selected that has minimum MSE over

all replications in the case of linear shrinkage, whilst the unrestricted or restricted estimator will be chosen based

on whether the hypothesised value of β2 is either found or not within the bootstrap con�dence intervals.

Before an ARMA−GARCH process could be modelled to the errors of the regression model in (45), we �rst needed

to estimate the mean process, X
′

tβ of the regression model by way of Ordinary Least Squares (OLS) estimation.

This then allowed us to isolate the errors (i.e. residuals). A plot of the residuals is visualised in the following �gure.

Figure 13: OLS residuals time plot.

We then tested for stationarity using the Augmented Dickey-Fuller (ADF) test on the OLS residuals and it was

found that at 5% signi�cance level, we reject the null hypothesis of a unit-root, therefore we conclude that the data

is stationary. This is con�rmed by the time plot displayed in Figure 13 which depicts that the time series is centered

around a constant negative mean. The basic statistics reveal that the OLS residuals are skewed to the right and

extremely leptokurtic, having a very high excess kurtosis. The basic statistics and ADF test results of the OLS

residuals are reported in the following table.

5 SHRINKAGE ESTIMATION 72

Table 13: Basic statistics and ADF test results of OLS residuals.

Basic Statistics OLS Residuals

Minimum −6486.902
Maximum 6908.974

1st Quartile (Q1) −865.8445
Median (Q2) −655.9811

3rd Quartile (Q3) −2.788821
Mean −88.8285

Standard Deviation 1860.28

Skewness 1.261413

(Excess) Kurtosis 4.284915

ADF results OLS Residuals

Test statistic −3.9528
p-value 0.01417

We further analysed the residuals to determine if they follow a Gaussian or non-Gaussian distribution. This was

done by following the same procedure as was performed in the previous chapter on the Bitcoin log returns, prior to

the model �tting. Firstly, we performed a basic 2-sided t-test as well as tests under the assumption of normality

such as the test for skewness, kurtosis and Jarque-Bera (JB) test.

Table 14: OLS residuals distribution normality tests.

Two sided t-test Skewness Test Kurtosis Test Jarque-Bera Normality Test

Test statistic −0.48696 1.2798 7.4271 113.32

p-value 0.6273 < 2.2× 10−16 < 2.2× 10−16 < 2.2× 10−16

From the table above, we do not reject the null hypothesis that the true mean of the residuals is zero at a 5% level

of signi�cance. Meanwhile the sample estimates of x = −88.8285; this is signi�cantly di�erent from zero. Although,

the 95% con�dence interval is given by (−450.6065, 272.9495). The skewness normality test also fails to reject the

null hypothesis and as a result the kurtosis test had to be performed revealing that our residuals series is indeed

leptokurtic; we reject the null hypothesis with 95% con�dence that the distribution is not normal. This is rea�rmed

by the JB-test that combines the tests for skewness and kurtosis as we reject the null hypothesis of normality even

at a 1% level of signi�cance. The skewness and kurtosis tests are extremely sensitive and the unusual results from

the skewness test may be due to possible outliers, and considering we are working with a small concentrated data

set.

5 SHRINKAGE ESTIMATION 73

Figure 14: Histogram of the OLS residuals with a �tted normal distribution curve.

Figure 15: Q-Q plot of the OLS residuals distribution.

From Figures 14 and 15, the OLS residuals data exhibits attributes that lead us to conclude that it can be modelled

by a non-Gaussian distribution. It can be seen from the histogram that the residuals are slightly skewed to the right

and the data having a skewness of 1.2614 as reported in Table 13. The residuals are also extremely leptokurtic (i.e.

very heavy tails) as is shown in the quantile-quantile (Q-Q) plot and the residuals have a very high excess kurtosis

of 4.2849. From the analysis done above, we suggest modelling the residuals to an ARMA−GARCH process with

a non-normal underlying distribution.

Given the ambiguity of the tests of normality on the OLS residuals, it was noted that the OLS residuals were

extremely spread with a standard deviation of s = 1860.28. Therefore prior to �tting of an ARMA − GARCH

process to the OLS residuals, we saw �t to remove any outliers from the data in order to obtain better parameter

estimates in the �nal model. In order to remove the outliers, we �rstly determined the outlier limits of the residuals

5 SHRINKAGE ESTIMATION 74

using the following formulae:

LLoutlier = Q1 − (1.5 ∗ (Q3 −Q1))

ULoutlier = Q3 + (1.5 ∗ (Q3 −Q1))

where LLoutlier and ULoutlier are the lower and upper outlier limits, respectively, and Q1 and Q3 correspond to the

lower and upper quartiles of the OLS residuals. As a result, any OLS residuals found to be are less than LLoutlier or

greater than ULoutlier were deemed outliers. Consequently, the OLS outliers and their corresponding (yt, xt1, xt2)

were also removed from the data set and the remaining observations were then used in the �nal analysis. This

resulted in a drop in the number of weekly observations from 104 to 85 which then also reduced the sample size

of our bootstrap samples which now consisted of n1 = 60 (i.e. 70% of the observations) for the training set and

n2 = 25 (i.e. 30% of the observations) for the testing set; again test set not used. The OLS residuals new time plot

is given as follows:

Figure 16: New OLS residuals time plot.

Table 15: Basic statistics of the new OLS residuals.

Basic Statistics OLS Residuals

Minimum −1811.266067
Maximum 1140.117849

1st Quartile (Q1) −868.558955
Median (Q2) −740.222232

3rd Quartile (Q3) −355.720401
Mean −546.044621

Standard Deviation 559.679999
Skewness 1.157457

(Excess) Kurtosis 1.284560

5 SHRINKAGE ESTIMATION 75

The table and �gure above of the new OLS residuals show that all basic statistics have seen a reduction due to the

change in the spread of the data, while keeping the original nature of the data. This has also greatly reduced the

excess kurtosis, although the new OLS residuals still remained leptokurtic.

After the extraction and empirical analysis of the OLS model residuals, we then �t several di�erent ARMA (p, q)−

GARCH (m, n) models to the residuals as in (46) and (47). Even though the results of the empirical analysis

suggested that the underlying distribution was non-normal, keeping inline with the theory developed, the di�erent

ARMA − GARCH models �t to the OLS residuals all had underlying standard normal distributions (i.e. i.i.d.

ηt ∼ N (0, 1)). The best �tted model was chosen based on the information criterion results produced by way of the

rugarch [22] in R [14] software.

Table 16: Model �tting results (AIC, BIC, SIC, HQIC) of di�erent ARMA (p, q)−GARCH (m, n) models.

AIC BIC SIC HQIC

ARMA(0, 0)−GARCH(1, 1) 14.796 14.911 14.792 14.542

ARMA(1, 0)−GARCH(1, 1) 14.485 14.628 14.478 16.046

ARMA(0, 1)−GARCH(1, 1) 14.618 14.761 14.611 14.675

ARMA(1, 1)−GARCH(1, 1) 14.393 14.566 14.384 14.463

ARMA(2, 1)−GARCH(1, 1) 14.372 14.573 14.360 14.453

ARMA(1, 2)−GARCH(1, 1) 14.389 14.590 14.377 14.470

ARMA(2, 2)−GARCH(1, 1) 14.254 14.484 14.238 14.346

From the model �tting results in Tables 16, it was found that the best �tted model to the residuals, with the

smallest information criterion values was an ARMA(2, 2) − GARCH(1, 1) under a standard normal distribution.

The model of the residuals is given as follows:

Model. Given the model's parameter estimates, the ARMA(2, 2)−GARCH(1, 1) model with ηt ∼ N (0, 1) (i.e.

the mean and variance are standardised to be µ = 0 and σ2 = 1) as the conditional distribution, is de�ned as follows

ε̂t = −568.62126− 0.02301εt−1 + 0.97133εt−2 + ηt + 0.56286ηt−1 − 0.67524ηt−2

σ̂2
t = 1342.14876 + 0.24635ε2

t−1 + 0.75265σ2
t−1

After obtaining these results we substitute the above model of the residuals into our full model to re-estimate the

regression coe�cients. By way of bootstrap sampling, we obtained 10000 estimates of β̂1 and β̂2. It should be noted

that prior to the removal of the outliers in the data set, we experienced some di�culty in the maximum likelihood

estimation (MLE) of the estimates of β̂1 and β̂2; �NaN� values were produced for the standard error, t−statistic and

p−values with respect to either of the regression coe�cient estimates in some cases. This was due to the di�culties

experienced in the computation of variance-covariance matrix. Consequently, this led to a very large spread of both

regression coe�cient estimates which we deemed unreliable. Therefore to obtain more reliable results, the outliers

were eliminated from the data set which allowed us to proceed.

5 SHRINKAGE ESTIMATION 76

The �nal distributions of the estimates computed from the revised data set are displayed in the following �gures.

Figure 17: Histogram of the unrestricted β̃1 estimates with a �tted normal distribution curve.

Figure 18: Histogram of the unrestricted β̃2 estimates with a �tted normal distribution curve.

From Figures 17 and 18, the regression coe�cient estimates have heavy tailed distributions (i.e. long tails) and

centred around their respective means; this suggests symmetry. The basic statistics of the estimates given below,

lead us to conclude that the distributions of the estimates produced, are also extremely leptokurtic (i.e. very heavy

tails). This is also shown by ill �t of the normal distribution curves �tted in both �gures. A table of the basic

statistics is given below.

5 SHRINKAGE ESTIMATION 77

Table 17: Basic statistics of unrestricted regression coe�cient estimates, β̃1 and β̃2.

Basic Statistics β̃1 β̃2

Minimum −17218.11 −1018.296
Maximum 19465.73 1083.477

1st Quartile (Q1) 121.6041 −1.587014
Median (Q2) 195.5588 1.170979

3rd Quartile (Q3) 251.0921 5.611158
Mean 179.8388 2.955703

Standard Deviation 823.0988 43.90382
Skewness 0.568777 0.862125

(Excess) Kurtosis 158.3622 133.1836

Table 17 displays the summary statistics of β̃1 and β̃2 regression coe�cients estimated when �tting a linear regression

with ARMA − GARCH errors. As can be seen in the table above, the standard deviations for either estimate,

are large due to the large variability in the estimation of the regression coe�cients. The ranges of the unrestricted

regression coe�cient estimates for β̃1 and β̃2 are 36683.85 and 2101.773, respectively. These are large values,

however, they do correspond to the large standard deviations seen in the above table. This a�rms the variability

of the estimates. This does cause some concern as this may suggest that the data was not modelled well.

If we then consider the middle 50% of each of the estimates, it shows a lot less variability as their respective

interquartile ranges (IQR) are 129.4881 for β̃1 and 7.198172 for β̃2. This also indicates that the majority of the

estimates are concentrated within the middle of the distribution; this can also be seen in the Figures 17 and 18.

The estimates produced also depict that both the distribution of β̃1 and β̃2 are slightly skewed to the right. This is

also con�rmed by the fact that the mean of the unrestricted regression coe�cient estimates of β̃2 (i.e. x̄ = 2.955703)

being greater than the median (i.e. q50 = 1.170979) indicating a positive skew. While, oddly the mean of the

unrestricted regression coe�cient estimates of β̃1 (i.e. x̄ = 179.8388) is less than the median (i.e. q50 = 195.5588)

which indicates a negatively skewed distribution. It is known that there is a general relationship between the

mean and median statistics that is somewhat related to the skewness of a unimodal distribution; a distribution is

positively skewed when the mean is greater than the median, a distribution is negatively skewed when the mean is

less than the median, and the when then mean and median are equivalent, we get a symmetric distribution.

Considering that the underlying distribution was assumed to be normal when computing the estimates, we probably

would have attained better estimates if we had considered di�erent non-Gaussian distributions that would've taken

into account the leptokurtic behaviour and skewness in the data. Although we were unable to include that in this

mini-dissertation, this may be considered in future research.

The following table gives the 100 (1− α) % con�dence intervals of each unrestricted regression coe�cient estimates

at di�erent level of signi�cance.

5 SHRINKAGE ESTIMATION 78

Table 18: The 100 (1− α) % con�dence intervals of the unrestricted estimates, β̃UR (α) for α ∈
{0.01, 0.05, (0.05), 0.50} levels of signi�cance.

100 (1− α)% Confidence Interval of β̃UR1 (α) 100 (1− α)% Confidence Interval of β̃UR2 (α)

Level Of Significance Lower Limit (LL) Upper Limit (UL) Lower Limit (LL) Upper Limit (UL)

α = 0.01 158.6372 201.0404 1.824816 4.086590

α = 0.05 163.7064 195.9712 2.095204 3.816202

α = 0.10 166.3000 193.3776 2.233549 3.677857

α = 0.15 167.9900 191.6876 2.323694 3.587712

α = 0.20 169.2904 190.3872 2.393053 3.518353

α = 0.25 170.3703 189.3073 2.450656 3.460750

α = 0.30 171.3079 188.3697 2.500669 3.410737

α = 0.35 172.1462 187.5314 2.545383 3.366023

α = 0.40 172.9114 186.7662 2.586199 3.325207

α = 045 173.6210 186.0566 2.624047 3.287359

α = 0.50 174.2871 185.3905 2.659576 3.251830

The results in Table 18 indicate that as the level of signi�cance increases, the 100 (1− α) % con�dence intervals

tend to shrink and narrow, in either case of the estimates. Although the con�dence intervals computed for β̃UR1
(α)

also tend to shift to the left, while the con�dence intervals computed for β̃UR2
(α) tend to shift to the right as α

becomes larger.

The aim of this real data analysis was to determine the signi�cance of the S&P 500 index on the price of Bitcoin.

Since our hypothesised value for β2 was zero (i.e. indicating the insigni�cance of S&P 500 index on the price of

Bitcoin), it was found that the hypothesised value could not be found within any of con�dence interval limits of

β̃UR2 (α) , as displayed in 18. We, therefore, reject the null hypothesis that β2 = 0, at all levels of signi�cance

and conclude that β2 is signi�cantly di�erent from zero. This means that the PTE chosen, has the estimates of

the unrestricted estimator, β̃UR =
(
β̃1, β̃2

)′
. It is also concluded that traditional �nancial markets do have some

impact on the price of Bitcoin. This contradicts the analysis by Sovbetov [51], who previously determined that the

traditional �nancial market has no in�uence on the cryptocurrency market.

5.3.2.1 An example to choose π

A demonstration of linear shrinkage estimation is provided here. The computation of the linear shrinkage estimates

requires the restriction we want to place and test, while the MSE computation also requires the �true� values of

β1and β2. In order to make this possible, it was necessary to obtain all the components. The key issue faced

was, just the mere adjustment of the seed value for the initialisation of some values, caused the �true� parameters

estimated, to change. This meant that �true� parameters could be chosen randomly, and any results could be found.

Since the �true� values of β1 and β2 are unknown, we obtained estimates of these values by computing the regression

coe�cients from the entire data set without resampling or shu�ing of the data. We obtained unrestricted estimates

which were representative of the �true� values of β1and β2; β01 = 112.613 and β02 = 4.980402. Therefore, the �true�

5 SHRINKAGE ESTIMATION 79

parameter, β0, used in this example are as follows

β0 =

 112.613

4.980402

 (88)

The restricted estimator chosen was, β̂R =
(
β̃1, 0

)′
, given that our prior information assumes that the impact of

the S&P 500 index (i.e. traditional �nancial market) has no e�ect on the price of Bitcoin. After having placed the

restriction, estimated the unrestricted coe�cients and determined the �true� regression coe�cients to be used, we

are then able to compute the linear shrinkage estimator, β̂S (π).

It was a challenge in determining the linear shrinkage estimates as the �true� parameters are required to determine

the optimal estimates by way of the minimum MSE.

Table 19: Linear shrinkage estimator, β̂S (π) optimisation results for di�erent values of π and corresponding MSE

for T = 200 provided that the restricted estimator chosen was β̂R =
(
β̃1, 0

)′
.

π 1− π MSE (π)

0 1 681298.4
0.01 0.99 680638.9
0.05 0.95 678004.9
0.10 0.90 674721.0
0.15 0.85 671446.8
0.20 0.80 668182.3
0.25 0.75 664927.5
0.30 0.70 661682.4
0.35 0.65 658447.0
0.40 0.60 655221.2
0.45 0.55 652005.1
0.50 0.50 648798.7
0.55 0.45 645602.0
0.60 0.40 642414.9
0.65 0.35 639237.6
0.70 0.30 636069.9
0.75 0.25 632911.9
0.80 0.20 629763.6
0.85 0.15 626624.9
0.90 0.10 623496.0
0.95 0.05 620376.7
0.99 0.01 617888.2

1 0 617267.1

As previously done in the simulation study, Table 19 displays the performance of each π in determining the best

linear shrinkage estimator by way of the MSE for the restricted estimators chosen; β̂R =
(
β̃1, 0

)′
. We note that

the MSE values tabulated are very large and that the minimum MSE found was 617267.1. The minimum MSE

found corresponds to a level of signi�cance of π = 1. Since we are working on real data, the true parameter values

are unknown. We, therefore, are unable to discern a conclusion about the signi�cance of the S&P 500 index on

5 SHRINKAGE ESTIMATION 80

the price of Bitcoin using this method of estimation. Hence, a simple example was used to demonstrate the linear

shrinkage estimation technique.

6 Conclusion

In this mini-dissertation, we explored and discussed the properties of the hybrid ARMA − GARCH model. An

introduction of the cryptocurrency market with a focus on Bitcoin is given. This was followed by an in-depth

analysis of a simple application of ARMA − GARCH �tting on a sample of Bitcoin data and documented the

results. It was found that an ARMA−GARCH model, under a GED distribution, �tted the Bitcoin data well and

hence proved to be better than an OLS model. Then we discussed linear regression models with GARCH errors and

developed the theory of linear regression models with ARMA −GARCH errors. Preliminary test estimators and

further discussed the theory of shrinkage estimation concerning regression modelling were looked at. A simulated

time series demonstrated how to conduct linear shrinkage estimation and preliminary test estimation on linear

regression models with ARMA − GARCH errors. We placed and tested the e�ect of di�erent restrictions on

the simulated data and computed di�erent sets of linear shrinkage estimates. It was concluded that if the prior

information is known with some certainty, then the linear shrinkage estimates tended to have a greater dependency

on the restricted model over its unrestricted counterpart. Alternatively, if the prior information was uncertain, then

the restriction placed would have less of an impact on the linear shrinkage estimates. We also found that both linear

shrinkage estimates of β̂1 and β̂2 tended to be asymptotically normally distributed. This indicated that modelling

the regression model with ARMA − GARCH errors performed well. Due to the complexity in the computation

of the PT test statistic, we chose to use bootstrap con�dence intervals to test the hypothesis. There was evidence

to suggest that as the level of signi�cance tends to increase, the con�dence limits tended narrow and move away

from the hypothesised value, which increased the chance of rejecting the null hypothesis. The hypothesis was then

rejected at all levels of signi�cance and in conclusion that the PTE is chosen would take on the estimates of the

unrestricted estimator. Further research is proposed to develop more explicit forms of the derivatives needed to

compute the information matrix and the PT test statistic. The unrestricted estimates obtained from bootstrapping

still gave very large values which increased the spread of the distribution and this could also be addressed in future

studies.

This mini-dissertation was concluded with an application of preliminary test and linear shrinkage estimation on the

Bitcoin data. The aim of this was to determine the e�ect of the traditional �nancial market on the cryptocurrency

market by way of the S&P 500 index. We experienced challenges in determining the linear shrinkage estimates as

the �true� parameters are required to determine the optimal estimates by way of the minimum MSE. The key issue

we faced was, just the mere adjustment of the seed value for the initialisation of some values, caused the �true�

81

6 CONCLUSION 82

parameters estimated, to change. This meant that �true� parameters could be chosen randomly, and any results

could be found. As a result, we were also unable to discern a conclusion about the signi�cance of the S&P 500

index on the price of Bitcoin using this method of estimation. Hence, a simple example was used to demonstrate

the linear shrinkage estimation technique. This may be considered in future research. As previously mentioned, we

used the bootstrap con�dence interval approach to compute the PTE and test our hypothesis. It proved to be a

more reliable way to test our hypothesis than the linear shrinkage method. This was because the �true� parameters

were not required even though the test statistic could not be computed. The results indicated that with some level

of con�dence whether our hypothesis will be rejected or not rejected. Since our hypothesised value of zero cannot

be found within the con�dence interval limits of β̃2, even at a 10% level of signi�cance, we, therefore, reject the null

hypothesis that β2 = 0, at all levels of signi�cance and conclude that β2 is signi�cantly di�erent from zero. This

then means that the PTE is chosen to have the estimates of the unrestricted estimator, β̃UR =
(
β̃1, β̃2

)′
.

Other error distributions are suggested for future research in the linear regression modelling space and shrinkage

estimation applications such as nonparametric and semiparametric ARMA − GARCH error distributions and

possibly an AFRIMA − GARCH error distribution. This could better explain phenomena such as Bitcoin. In

conclusion, as can be seen in this mini-dissertation that Bitcoin exchange rates exhibit numerous and fascinating

statistical characteristics due to its extreme volatility and unpredictability. With further study and research, deeper

analytics may be required to explain its phenomena.

7 Appendix

Appendix A.

All the derivatives that will be de�ned are required to compute the variance-covariance matrix which is the inverse

of the information matrix. The �rst order derivatives (i.e. gradient) and the second order derivatives (i.e. Hessian)

of the log-likelihood given in (57) and (58), will be computed with respect to the vector of unknown parameters,

ξ = (β′, δ′).

1) First order derivatives The �rst order derivatives of the log-likelihood with respect to the vector of unknown

parameters, ξ is also referred to as the gradient or the score. The gradient is computed as follows

G (ξ) =
∂LT (ξ)

∂ξ
(89)

Since ξ = (β′, δ′) is of the dimensions ((k + 2 + p+ q +m+ n)× 1), the gradient can then be further expressed as

G (ξ) =



∂LT (ξ)
∂β1

∂LT (ξ)
∂β2

...

...

∂LT (ξ)
∂γm−1

∂LT (ξ)
∂γm


(90)

Di�erentiating the log-density with respect to the variance parameters. Recall that the vector of unknown vari-

ance parameters are δ′ = (δ′1, δ
′
2) such that δ′1 = (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq) : (1 + p+ q) × 1 and δ′2 =

83

7 APPENDIX 84

(ω, α1, α2, . . . , αn γ1, γ2, . . . , γm) : (1 +m+ n)× 1, is given by

∂LT (ξ)

∂δ
=

∂

(
− 1

2 log (2π)− 1
2 log

(
h2
t

)
− 1

2

(
Yt−X

′
tβ
)2

h2
t

+

(
Yt−X

′
tβ
)
µ

h2
t

− 1
2
µ2

h2
t

)
∂δ

=

[
−1

2

1

2π

∂ (2π)

∂δ

]
−

[
1

2

1

h2
t

∂
(
h2
t

)
∂δ

]
−

[
1

2

(
Yt −X

′

tβ
)2

(−1)
(
h2
t

)−2 ∂
(
h2
t

)
∂δ

]

−

1

2

1

h2
t

(2)
(
Yt −X

′

tβ
) ∂ (Yt −X ′tβ)

∂δ

+

[(
Yt −X

′

tβ
)
µ (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂δ

]

+

 µ
h2
t

∂
(
Yt −X

′

tβ
)

∂δ

+


(
Yt −X

′

tβ
)

h2
t

∂µ

∂δ

− [1

2
(2)µ

1

h2
t

∂µ

∂δ

]
−

[
1

2
µ2 (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂δ

]

= −

[
1

2

1

h2
t

∂
(
h2
t

)
∂δ

]
+

1

2

(
Yt −X

′

tβ
)2

h2
t

1

h2
t

∂
(
h2
t

)
∂δ

−

(
Yt −X

′

tβ
)
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂δ

+


(
Yt −X

′

tβ
)

h2
t

∂µ

∂δ


−
[
µ

h2
t

∂µ

∂δ

]
+

[
1

2

µ2

h2
t

1

h2
t

∂
(
h2
t

)
∂δ

]

=
1

h2
t

∂
(
h2
t

)
∂δ

−1

2
+

1

2

(
Yt −X

′

tβ
)2

h2
t

−

(
Yt −X

′

tβ
)
µ

h2
t

+
1

2

µ2

h2
t

+
∂µ

∂δ


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t


= −1

2

1

h2
t

∂
(
h2
t

)
∂δ

1−

(
Yt −X

′

tβ
)2

h2
t

+ 2

(
Yt −X

′

tβ
)
µ

h2
t

− µ2

h2
t

+
∂µ

∂δ


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t

 . (91)

where

∂
(
h2
t

)
∂δ

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂ (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq, ω, α1, α2, . . . , αn γ1, γ2, . . . , γm)

. (92)

and yt = ηt = 0 for t < 0, xt = 0 for t < 0, φt = 0 for t > p, and θt = 0 for t > q.

Note that for the ARMA − GARCH speci�cation, the computation of
∂h2

t

∂δ requires the computation of
∂h2

0

∂δ . In

order to calculated h2
0, we do so by the averaging the pre-sample square residuals, ε2

t , that do not depend on δ.

Therefore when t < 1

σ2
t = ε2

t

=
1

T

T∑
r=1

ε̂2
r

7 APPENDIX 85

where ε̂2
r are the consistently estimated residuals. Therefore we then get the following

∂
(
h2
t

)
∂δ

=
∂σ2

t

∂δ

=
∂ε2
t

∂δ

=
∂

∂δ

[
1

T

T∑
r=1

ε2
r

]

=
∂

∂δ

[
1

T

T∑
r=1

(
Yr −X

′

rβ
)2
]

= 0.

and when t ≥ 1

∂
(
h2
t

)
∂δ

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂ (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq, ω, α1, α2, . . . , αn γ1, γ2, . . . , γm)

=



∂(h2
t)

∂c

∂(h2
t)

∂φ1

...

...
∂(h2

t)
∂γm−1

∂(h2
t)

∂γm


(93)

where the i-th elements of each group of parameters in (93) is given by

∂
(
h2
t

)
∂c

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂c

= 2c+ 2µ

p∑
i=1

φi − 2µ
∂µ

∂c
.

∂
(
h2
t

)
∂φi

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂φi

= 2cµ+ 2E

[
p∑
i=1

φiεt−i

]
∂
{∑p

i=1 φiεt−i
}

∂φi
+ 2

∂E
[{∑p

i=1 φiεt−i
}{∑q

i=1 θiηt−i
}]

∂φi
+ 2

∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂φi

− 2µ
∂µ

∂φi

= 2cµ+ 2E

[
p∑
i=1

φiεt−i

]
εt−i + 2

∂E
[{∑p

i=1 φiεt−i
}{∑q

i=1 θiηt−i
}]

∂φi
+ 2

∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂φi

− 2µ
∂µ

∂φi
.

εt = c+ φ1εt−1 + φ2εt−2 + . . .+ φpεt−p + θ1ηt−1 + θ2ηt−2 + . . .+ θqηt−q + σtηt.

7 APPENDIX 86

∂
(
h2
t

)
∂θi

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂θi

=
∂
{∑q

i=1 θ
2
i

}
∂θi

+ 2
∂E
[{∑p

i=1 φiεt−i
}{∑q

i=1 θiηt−i
}]

∂θi
+ 2

∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂θi

= 2θi + 2
∂E
[{∑p

i=1 φiεt−i
}{∑q

i=1 θiηt−i
}]

∂θi
+ 2

∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂θi

.

∂
(
h2
t

)
∂ω

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂ω

=
∂E
[
σ2
t

]
∂ω

+ 2
∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂ω

=
∂
(
ω +

∑n
i=1 αiE

[
ε2t−i

]
+
∑m
j=1 γjE

[
σ2
t−j
])

∂ω
+ 2

∂E
[
ηt
{
ω +

∑n
i=1 αiε

2
t−i +

∑m
j=1 γjσ

2
t−j

}{∑p
i=1 φiεt−i

}]
∂ω

= 1 + 2
∂E
[
ηt
{
ω +

∑n
i=1 αiε

2
t−i +

∑m
j=1 γjσ

2
t−j

}{∑p
i=1 φiεt−i

}]
∂ω

.

∂
(
h2
t

)
∂αi

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂αi

=
∂
(
ω +

∑n
i=1 αiE

[
ε2t−i

]
+
∑m
j=1 γjE

[
σ2
t−j
])

∂αi
+ 2

∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂αi

= E
[
ε2t−i

] ∂E [ε2t−i]
∂αi

+

∑m
j=1 γj∂E

[
σ2
t−j
]

∂αi
+ 2

∂E
[
ηt
{
ω +

∑n
i=1 αiε

2
t−i +

∑m
j=1 γjσ

2
t−j

}{∑p
i=1 φiεt−i

}]
∂αi

.

∂
(
h2
t

)
∂γi

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂γi

=
∂
(
ω +

∑n
i=1 αiE

[
ε2t−i

]
+
∑m
j=1 γjE

[
σ2
t−j
])

∂γi
+ 2

∂E
[
σtηt

{∑p
i=1 φiεt−i

}]
∂γi

= E
[
σ2
t−j
] ∂E [σ2

t−j
]

∂γi
+ 2

∂E
[
ηt
{
ω +

∑n
i=1 αiε

2
t−i +

∑m
j=1 γjσ

2
t−j

}{∑p
i=1 φiεt−i

}]
∂γi

.

The following derivative is also necessary for the computation of (91). The �rst order derivative of the conditional

7 APPENDIX 87

mean, µ with respect to the variance parameters in δ, we then get the following

∂µ

∂δ
=

∂
(

c
1−φ1−φ2−...−φp

)
∂ (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq, ω, α1, α2, . . . , αn γ1, γ2, . . . , γm)

=



∂µ
∂c

∂µ
∂φ1

...

...

∂µ
∂γm−1

∂µ
∂γm


(94)

where the i-th elements of each group of parameters in (94) are given as follows

∂µ

∂c
=

∂
(

c
1−φ1−φ2−...−φp

)
∂c

=
1

1− φ1 − φ2 − . . .− φp
.

∂µ

∂φi
=

∂
(

c
1−φ1−φ2−...−φp

)
∂φi

= (1− φ1 − φ2 − . . .− φp)−1 ∂c

∂φi
+ c (−1) (1− φ1 − φ2 − . . .− φp)−2 ∂ (1− φ1 − φ2 − . . .− φp)

∂φi

= 0 + c (−1) (1− φ1 − φ2 − . . .− φp)−2
(−1)

=
c

(1− φ1 − φ2 − . . .− φp)2 .

∂µ

∂θi
=

∂
(

c
1−φ1−φ2−...−φp

)
∂θi

= 0.

∂µ

∂ω
=

∂
(

c
1−φ1−φ2−...−φp

)
∂ω

= 0.

∂µ

∂αi
=

∂
(

c
1−φ1−φ2−...−φp

)
∂αi

= 0.

7 APPENDIX 88

∂µ

∂γi
=

∂
(

c
1−φ1−φ2−...−φp

)
∂γi

= 0.

Now we di�erentiate the log likelihood density function with respect to β = (β1, β2, . . . , βk)
8
regression coe�cients

(i.e. mean parameters):

∂LT (ξ)

∂β
=

∂

(
− 1

2
log (2π)− 1

2
log
(
h2
t

)
− 1

2

(
Yt−X

′
tβ
)2

h2
t

+

(
Yt−X

′
tβ
)
µ

h2
t

− 1
2
µ2

h2
t

)
∂β

=

[
−1

2

1

2π

∂ (2π)

∂β

]
−

[
1

2

1

h2
t

∂
(
h2
t

)
∂β

]
−

[
1

2

(
Yt −X

′
tβ
)2

(−1)
(
h2
t

)−2 ∂
(
h2
t

)
∂β

]

−

1
2

1

h2
t

(2)
(
Yt −X

′
tβ
) ∂ (Yt −X ′tβ)

∂β

+

[(
Yt −X

′
tβ
)
µ (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂β

]

+

 µ
h2
t

∂
(
Yt −X

′
tβ
)

∂β

+


(
Yt −X

′
tβ
)

h2
t

∂µ

∂β

− [1
2
(2)µ

1

h2
t

∂µ

∂β

]
−

[
1

2
µ2 (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂β

]

= −

[
1

2

1

h2
t

∂
(
h2
t

)
∂β

]
+

1
2

(
Yt −X

′
tβ
)2

h2
t

1

h2
t

∂
(
h2
t

)
∂β

−

(
Yt −X

′
tβ
)
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂β



+


(
Yt −X

′
tβ
)

h2
t

∂µ

∂β

− [µ
h2
t

∂µ

∂β

]
+

[
1

2

µ2

h2
t

1

h2
t

∂
(
h2
t

)
∂β

]

= −1

2

1

h2
t

∂
(
h2
t

)
∂β

1−

(
Yt −X

′
tβ
)2

h2
t

+ 2

(
Yt −X

′
tβ
)
µ

h2
t

− µ2

h2
t

+
∂µ

∂β


(
Yt −X

′
tβ
)

h2
t

− µ

h2
t

 . (95)

where

∂
(
h2
t

)
∂β

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂ (β1, β2, . . . , βk)

=



∂(h2
t)

∂β1

∂(h2
t)

∂β2

...

...
∂(h2

t)
∂βk−1

∂(h2
t)

∂βk


(96)

7 APPENDIX 89

provided that the error term of regression model can be rewritten as

εt = Yt −X
′

tβ

= Yt − β1Xt1 − . . .− βkXtk.

then it follows that the i-th element of the vector in (96) is given by

∂
(
h2
t

)
∂βi

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φiεt−i

}2]
+ 2E

[{∑p
i=1 φiεt−i

}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φiεt−i

}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂βi

=

∂

 c2 + 2cµ
∑p
i=1 φi + E

[{∑p
i=1 φi

(
Yt−i −X

′
t−iβ

)}2
]
+ 2E

[{∑p
i=1 φi

(
Yt−i −X

′
t−iβ

)}{∑q
i=1 θiηt−i

}]
+2E

[
σtηt

{∑p
i=1 φi

(
Yt−i −X

′
t−iβ

)}]
+
∑q
i=1 θ

2
i + E

[
σ2
t

]
− µ2


∂βi

= 2E

[
p∑
i=1

φiεt−i

]
∂
{∑p

i=1 φi
(
Yt−i −X

′
t−iβ

)}
∂βi

+ 2
∂E
[{∑p

i=1 φi
(
Yt−i −X

′
t−iβ

)}{∑q
i=1 θiηt−i

}]
∂βi

+2
∂E
[
σtηt

{∑p
i=1 φi

(
Yt−i −X

′
t−iβ

)}]
∂βi

= −2E

[
p∑
i=1

φiεt−i

](
φiX

′
t−i

)
+ 2

∂E
[{∑p

i=1 φi
(
Yt−i −X

′
t−iβ

)}{∑q
i=1 θiηt−i

}]
∂βi

+2
∂E
[
σtηt

{∑p
i=1 φi

(
Yt−i −X

′
t−iβ

)}]
∂βi

.

The following derivative is also necessary for the computation of (95). The �rst order derivative of the conditional

mean, µ with respect to the variance parameters in δ, we then get the following

∂µ

∂β
=

∂
(

c
1−φ1−φ2−...−φp

)
∂ (β1, β2, . . . , βk)

=



∂µ
∂β1

∂µ
∂β2

...

...

∂µ
∂βk−1

∂µ
∂βk


. (97)

where the i-th element of the vector in (97) is given by

∂µ

∂βi
=

∂
(

c
1−φ1−φ2−...−φp

)
∂βi

= 0. ∀ βi

7 APPENDIX 90

2) Second order derivatives The second order derivatives of the log-likelihood with respect to the vector of

parameters, ξ, is also referred to as the Hessian. The Hessian is computed as follows:

H (ξ) =
∂2LT (ξ)

∗

∂ξ∂ξ′
(98)

Since ξ = (β′, δ′) is of the dimensions ((k + 2 + p+ q +m+ n)× 1), the Hessian will be computed in the following

way. Given the �rst element of gradient, 90, the �rst row of the Hessian is derived by computing the derivative

with respect the parameter vector as follows

∂2LT (ξ) /∂β1

∂ξ′
=

[
∂2LT (ξ)/∂β1

∂β1

∂2LT (ξ)/∂β1

∂β2
· · · · · · ∂2LT (ξ)/∂β1

∂γm−1

∂2LT (ξ)/∂β1

∂γm

]
(99)

=
[

∂2LT (ξ)∗

∂β1∂β1

∂2LT (ξ)∗

∂β1∂β2
· · · · · · ∂2LT (ξ)∗

∂β1∂γm−1

∂2LT (ξ)∗

∂β1∂γm

]

Repeating the process in (99) for all the elements of the gradient, (90) gives the Hessian as follows:

H (ξ) =
∂2LT (ξ)

∗

∂ξ∂ξ′

=



∂2LT (ξ)∗

∂β1∂β1

∂2LT (ξ)∗

∂β1∂β2
· · · · · · ∂2LT (ξ)∗

∂β1∂γm−1

∂2LT (ξ)∗

∂β1∂γm
∂2LT (ξ)∗

∂β2∂β1

∂2LT (ξ)∗

∂β2∂β2
· · · · · · ∂2LT (ξ)∗

∂β2∂γm−1

∂2LT (ξ)∗

∂β2∂γm
...

...
. . .

...
...

...
...

. . .
...

...

∂2LT (ξ)∗

∂γm−1∂β1

∂2LT (ξ)∗

∂γm−1∂β2
· · · · · · ∂2LT (ξ)∗

∂γm−1∂γm−1

∂2LT (ξ)∗

∂γm−1∂γm
∂2LT (ξ)∗

∂γm∂β1

∂2LT (ξ)∗

∂γm∂β2
· · · · · · ∂2LT (ξ)∗

∂γm∂γm−1

∂2LT (ξ)∗

∂γm∂γm


(100)

The Hessian matrix in this case will be equivalent to the information matrix which is an inverse of the variance-

covariance matrix. The information matrix is computed by obtaining the second order derivatives with respect to

ξ = (β′, δ′) as follows

IT (ξ) =

 Iδδ Iδβ
Iβδ Iββ

 (101)

Therefore the information matrix with respect to the regression coe�cient parameter, β is found by computing the

second order derivative of the log-likelihood with respect to β = (β1, β2, . . . , βk)
8
which is essentially di�erentiating

7 APPENDIX 91

(95) with respect to β. This is shown as follows

Iββ =
∂2LT (ξ)

∂β∂β′

=
∂2LT (ξ) /∂β

∂β′

=

∂

(
− 1

2
1
h2
t

∂(h2
t)

∂β

{
1−

(
Yt−X

′
tβ
)2

h2
t

+ 2

(
Yt−X

′
tβ
)
µ

h2
t

− µ2

h2
t

}
+ ∂µ

∂β

{(
Yt−X

′
tβ
)

h2
t

− µ

h2
t

})
∂β′

=

(
−1

2

1

h2
t

∂
(
h2
t

)
∂β

) ∂

(
1−

(
Yt−X

′
tβ
)2

h2
t

+ 2

(
Yt−X

′
tβ
)
µ

h2
t

− µ2

h2
t

)
∂β′

+

1−

(
Yt −X

′
tβ
)2

h2
t

+ 2

(
Yt −X

′
tβ
)
µ

h2
t

− µ2

h2
t


∂

(
− 1

2
1
h2
t

∂(h2
t)

∂β

)
∂β′

+
∂µ

∂β

∂

((
Yt−X

′
tβ
)

h2
t

− µ

h2
t

)
∂β′

+


(
Yt −X

′
tβ
)

h2
t

− µ

h2
t

 ∂µ

∂β∂β′
. (102)

where

∂

(
1−

(
Yt−X

′
tβ
)2

h2
t

+ 2

(
Yt−X

′
tβ
)
µ

h2
t

− µ2

h2
t

)
∂β′

= −


[(
Yt −X

′
tβ
)2

(−1)
(
h2
t

)−2 ∂
(
h2
t

)
∂β

]
+

 1

h2
t

(2)
(
Yt −X

′
tβ
) ∂ (Yt −X ′tβ)

∂β


+


[
(2)
(
Yt −X

′
tβ
)
(µ) (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂β

]
+

2µ
h2
t

∂
(
Yt −X

′
tβ
)

∂β


+

2
(
Yt −X

′
tβ
)

h2
t

∂µ

∂β

−{[2 µ
h2
t

∂µ

∂β

]
+

[
µ2 (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂β

]}

=


(
Yt −X

′
tβ
)2

h2
t

1

h2
t

∂
(
h2
t

)
∂β

−
2
(
Yt −X

′
tβ
)

h2
t

∂
(
Yt −X

′
tβ
)

∂β



−

2
(
Yt −X

′
tβ
)

h2
t

µ

h2
t

∂
(
h2
t

)
∂β

+

2µ
h2
t

∂
(
Yt −X

′
tβ
)

∂β


+

2
(
Yt −X

′
tβ
)

h2
t

∂µ

∂β

− [2µ
h2
t

∂µ

∂β

]
+

[
µ2

h2
t

1

h2
t

∂
(
h2
t

)
∂β

]

=
1

h2
t

∂
(
h2
t

)
∂β


(
Yt −X

′
tβ
)2

h2
t

−
2
(
Yt −X

′
tβ
)
µ

h2
t

+
µ2

h2
t


+
∂µ

∂β

2
(
Yt −X

′
tβ
)

h2
t

− 2µ

h2
t

+
2

h2
t

∂
(
Yt −X

′
tβ
)

∂β

{
µ−

(
Yt −X

′
tβ
)}

=
1

h2
t

∂
(
h2
t

)
∂β


(
Yt −X

′
tβ
)2

h2
t

−
2
(
Yt −X

′
tβ
)
µ

h2
t

+
µ2

h2
t


−2X

′
t

h2
t

{
µ−

(
Yt −X

′
tβ
)}

. (103)

7 APPENDIX 92

and

∂

(
− 1

2
1
h2
t

∂(h2
t)

∂β

)
∂β′

=

[
−1

2
(−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

]
+

[
−1

2

1

h2
t

∂
(
h2
t

)
∂β∂β′

]

=
1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

− 1

2

1

h2
t

∂
(
h2
t

)
∂β∂β′

=
1

2

1

h2
t

{
1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

−
∂
(
h2
t

)
∂β∂β′

}
. (104)

and

∂

((
Yt−X

′
tβ
)

h2
t

− µ
h2
t

)
∂β′

=


[(
Yt −X

′

tβ
)

(−1)
(
h2
t

)−2 ∂
(
h2
t

)
∂β

]
+

 1

h2
t

∂
(
Yt −X

′

tβ
)

∂β


−

{[
µ (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂β

]
+

[
1

h2
t

∂µ

∂β

]}

=

−

(
Yt −X

′

tβ
)

h2
t

1

h2
t

∂
(
h2
t

)
∂β

+

 1

h2
t

∂
(
Yt −X

′

tβ
)

∂β

+

{[
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂β

]}

= − 1

h2
t

∂
(
h2
t

)
∂β


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t

− X
′

t

h2
t

. (105)

and

∂µ

∂β∂β′
=

∂µ/∂β

∂β′

=
∂0

∂β′

= 0. (106)

7 APPENDIX 93

It therefore follows that

Iββ =

(
−1

2

1

h2
t

∂
(
h2
t

)
∂β

) 1

h2
t

∂
(
h2
t

)
∂β


(
Yt −X

′

tβ
)2

h2
t

−
2
(
Yt −X

′

tβ
)
µ

h2
t

+
µ2

h2
t

+

(
2

h2
t

)(
−X

′

t

){
µ−

(
Yt −X

′

tβ
)}

+

1−

(
Yt −X

′

tβ
)2

h2
t

+ 2

(
Yt −X

′

tβ
)
µ

h2
t

− µ2

h2
t

(1

2

1

h2
t

{
1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

−
∂
(
h2
t

)
∂β∂β′

})

+

(
∂µ

∂β

)− 1

h2
t

∂
(
h2
t

)
∂β


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t

+
1

h2
t

(
−X

′

t

)+


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t

 (0)

=

(
−1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

)
(
Yt −X

′

tβ
)2

h2
t

−
2
(
Yt −X

′

tβ
)
µ

h2
t

+
µ2

h2
t


+

(
−1

2

1

h2
t

∂
(
h2
t

)
∂β

)(
−2X

′

t

h2
t

)(
−X

′

t

){
µ−

(
Yt −X

′

tβ
)}

+
1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

1−

(
Yt −X

′

tβ
)2

h2
t

+ 2

(
Yt −X

′

tβ
)
µ

h2
t

− µ2

h2
t


−1

2

1

h2
t

∂
(
h2
t

)
∂β∂β′

1−

(
Yt −X

′

tβ
)2

h2
t

+ 2

(
Yt −X

′

tβ
)
µ

h2
t

− µ2

h2
t


= −1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

1

h2
t

{(
Yt −X

′

tβ
)
− µ

}2

− 1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

{(
Yt −X

′

tβ
)
X
′

t −X
′

tµ
}

+
1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

(
1− 1

h2
t

{(
Yt −X

′

tβ
)
− µ

}2
)
− 1

2

1

h2
t

∂
(
h2
t

)
∂β∂β′

(
1− 1

h2
t

{(
Yt −X

′

tβ
)
− µ

}2
)

=
1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

∂
(
h2
t

)
∂β′

(
1− 2

h2
t

{(
Yt −X

′

tβ
)
− µ

}2
)
− 1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

{(
Yt −X

′

tβ
)
X
′

t −X
′

tµ
}

−1

2

1

h2
t

∂
(
h2
t

)
∂β∂β′

(
1− 1

h2
t

{(
Yt −X

′

tβ
)
− µ

}2
)

=
1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂β

[
∂
(
h2
t

)
∂β′

(
1− 1

h2
t

{(
Yt −X

′

tβ
)
− µ

}2
)
−
{(
Yt −X

′

tβ
)
X
′

t −X
′

tµ
}]

−1

2

1

h2
t

∂
(
h2
t

)
∂β∂β′

(
1− 1

h2
t

{(
Yt −X

′

tβ
)
− µ

}2
)
. (107)

It then follows that the information matrix with respect to the variance parameters, δ is found by computing the sec-

ond order derivative of the log-likelihood with respect to δ = (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq , ω, α1, α2, . . . , αn γ1, γ2, . . . , γm)8

7 APPENDIX 94

which is essentially di�erentiating (91) with respect to δ. This is shown as follows

Iδδ =
∂2LT (ξ)

∂δ∂δ′

=
∂2LT (ξ) /∂δ

∂δ′

=

∂

(
− 1

2
1
h2
t

∂(h2
t)

∂δ

{
1−

(
Yt−X

′
tβ
)2

h2
t

+ 2

(
Yt−X

′
tβ
)
µ

h2
t

− µ2

h2
t

}
+ ∂µ

∂δ

{(
Yt−X

′
tβ
)

h2
t

− µ

h2
t

})
∂δ′

=

(
−1

2

1

h2
t

∂
(
h2
t

)
∂δ

) ∂

(
1−

(
Yt−X

′
tβ
)2

h2
t

+ 2

(
Yt−X

′
tβ
)
µ

h2
t

− µ2

h2
t

)
∂δ′

+

1−

(
Yt −X

′
tβ
)2

h2
t

+ 2

(
Yt −X

′
tβ
)
µ

h2
t

− µ2

h2
t


∂

(
− 1

2
1
h2
t

∂(h2
t)

∂δ

)
∂δ′

+
∂µ

∂δ

∂

((
Yt−X

′
tβ
)

h2
t

− µ

h2
t

)
∂δ′

+


(
Yt −X

′
tβ
)

h2
t

− µ

h2
t

 ∂µ

∂δ∂δ′
. (108)

where

∂

(
1−

(
Yt−X

′
tβ
)2

h2
t

+ 2

(
Yt−X

′
tβ
)
µ

h2
t

− µ2

h2
t

)
∂δ′

= 0−

[(
Yt −X

′
tβ
)2

(−1)
(
h2
t

)−2 ∂
(
h2
t

)
∂δ′

]
−

 1

h2
t

(2)
(
Yt −X

′
tβ
) ∂ (Yt −X ′tβ)

∂δ′


+

[
(2)
(
Yt −X

′
tβ
)
µ (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂δ′

]
+

(2) µ
h2
t

∂
(
Yt −X

′
tβ
)

∂δ′


+

(2)
(
Yt −X

′
tβ
)

h2
t

∂µ

∂δ′

− [(2)µ 1

h2
t

∂µ

∂δ′

]
−

[
µ2 (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂δ′

]

= −


(
Yt −X

′
tβ
)2

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

−
2
(
Yt −X

′
tβ
)

h2
t

∂
(
Yt −X

′
tβ
)

∂δ′



−

2
(
Yt −X

′
tβ
)
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

+

2µ
h2
t

∂
(
Yt −X

′
tβ
)

∂δ′


+

2
(
Yt −X

′
tβ
)

h2
t

∂µ

∂δ′

− [2µ
h2
t

∂µ

∂δ′

]
+

[
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

]

= −


(
Yt −X

′
tβ
)2

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

−
2
(
Yt −X

′
tβ
)
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′



+

2
(
Yt −X

′
tβ
)

h2
t

∂µ

∂δ′

− [2µ
h2
t

∂µ

∂δ′

]
+

[
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

]

= − 1

h2
t

∂
(
h2
t

)
∂δ′


(
Yt −X

′
tβ
)2

h2
t

+ 2

(
Yt −X

′
tβ
)
µ

h2
t

− µ2

h2
t


+2

∂µ

∂δ′


(
Yt −X

′
tβ
)

h2
t

− µ

h2
t

 . (109)

7 APPENDIX 95

where the derivatives of
∂(h2

t)
∂δ′ and ∂µ

∂δ′ are similar to those found in (93) and (94) respectively. We then also compute

the derivative of the following

∂

(
− 1

2
1
h2
t

∂(h2
t)

∂δ

)
∂δ′

=

[
−1

2
(−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂δ

∂
(
h2
t

)
∂δ′

]
+

[
−1

2

1

h2
t

∂
(
h2
t

)
∂δ∂δ′

]

=
1

2

1

h2
t

1

h2
t

∂
(
h2
t

)
∂δ

∂
(
h2
t

)
∂δ′

− 1

2

1

h2
t

∂
(
h2
t

)
∂δ∂δ′

=
1

2

1

h2
t

{
1

h2
t

∂
(
h2
t

)
∂δ

∂
(
h2
t

)
∂δ′

−
∂
(
h2
t

)
∂δ∂δ′

}
. (110)

where
∂(h2

t)
∂δ =

∂(h2
t)

∂δ′ , previously derived in (93) and the matrix

∂
(
h2
t

)
∂δ∂δ′

=
∂(h2

t)/∂δ

∂δ′

=



∂2(h2
t)

∂c∂c

∂2(h2
t)

∂c∂φ1
· · · · · · ∂2(h2

t)
∂c∂γm−1

∂2(h2
t)

∂c∂γm

∂2µ
∂φ1∂c

∂2µ
∂φ1∂φ1

· · · · · · ∂2µ
∂φ1∂γm−1

∂2µ
∂φ1∂γm

...
...

. . .
...

...
...

...
. . .

...
...

∂2(h2
t)

∂γm−1∂c

∂2(h2
t)

∂γm−1∂φ1
· · · · · · ∂2(h2

t)
∂γm−1∂γm−1

∂2(h2
t)

∂γm−1∂γm
∂2(h2

t)
∂γm∂c

∂2(h2
t)

∂γm∂φ1
· · · · · · ∂2(h2

t)
∂γm∂γm−1

∂2(h2
t)

∂γm∂γm



The following derivative is also required to compute (108), and is derived as follows

∂

((
Yt−X

′
tβ
)

h2
t

− µ
h2
t

)
∂δ′

=


[(
Yt −X

′

tβ
)

(−1)
(
h2
t

)−2 ∂
(
h2
t

)
∂δ′

]
+

 1

h2
t

∂
(
Yt −X

′

tβ
)

∂δ′


−

{[
µ (−1)

(
h2
t

)−2 ∂
(
h2
t

)
∂δ′

]
+

[
1

h2
t

∂µ

∂δ′

]}

=

−

(
Yt −X

′

tβ
)

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

+

 1

h2
t

∂
(
Yt −X

′

tβ
)

∂δ′

+

{[
µ

h2
t

1

h2
t

∂
(
h2
t

)
∂δ′

]}

= − 1

h2
t

∂
(
h2
t

)
∂δ′


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t

+
1

h2
t

(0)

= − 1

h2
t

∂
(
h2
t

)
∂δ′


(
Yt −X

′

tβ
)

h2
t

− µ

h2
t

 . (111)

Lastly, we compute the last derivative necessary in the computation of (108) given by

∂µ

∂δ∂δ′
=

∂µ/∂δ

∂δ′
(112)

7 APPENDIX 96

where

∂µ

∂δ
=

∂
(

c
1−φ1−φ2−...−φp

)
∂ (c, φ1, φ2, . . . , φp θ1, θ2, . . . , θq, ω, α1, α2, . . . , αn γ1, γ2, . . . , γm)

=



∂µ
∂c

∂µ
∂φ1

...

...

∂µ
∂γm−1

∂µ
∂γm


.

which was derived in (94). This second order derivative in (112) will therefore produce a matrix of the following

form

∂µ/∂δ

∂δ′
=



∂2µ
∂c∂c

∂2µ
∂c∂φ1

· · · · · · ∂2µ
∂c∂γm−1

∂2µ
∂c∂γm

∂2µ
∂φ1∂c

∂2µ
∂φ1∂φ1

· · · · · · ∂2µ
∂φ1∂γm−1

∂2µ
∂φ1∂γm

...
...

. . .
...

...
...

...
. . .

...
...

∂2µ
∂γm−1∂c

∂2µ
∂γm−1∂φ1

· · · · · · ∂2µ
∂γm−1∂γm−1

∂2µ
∂γm−1∂γm

∂2µ
∂γm∂c

∂2µ
∂γm∂φ1

· · · · · · ∂2µ
∂γm∂γm−1

∂2µ
∂γm∂γm


(113)

of the dimensions ((2 + p+ q +m+ n)× (2 + p+ q +m+ n)). An explicit form of (113) would be extensive and

hence will be left in this form at this time.

7 APPENDIX 97

Finally we can substitute (109)e(113) into (108) and this gives

Iδδ =

(
−
1

2

1

h2t

∂
(
h2t
)

∂δ

)− 1

h2t

∂
(
h2t
)

∂δ′


(
Yt −X

′
tβ
)2

h2t
+ 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t




+

(
−
1

2

1

h2t

∂
(
h2t
)

∂δ

)2 ∂µ
∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t




+

1−
(
Yt −X

′
tβ
)2

h2t
+ 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t

[1
2

1

h2t

{
1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′
−
∂
(
h2t
)

∂δ∂δ′

}]

+
∂µ

∂δ

− 1

h2t

∂
(
h2t
)

∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t


+


(
Yt −X

′
tβ
)

h2t
−

µ

h2t

[∂µ

∂δ∂δ′

]

=
1

2

1

h2t

1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′


(
Yt −X

′
tβ
)2

h2t
+ 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t

− 1

h2t

∂
(
h2t
)

∂δ

∂µ

∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t


+
1

2

1

h2t

{
1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′
−
∂
(
h2t
)

∂δ∂δ′

}
−

1

2

1

h2t

(
Yt −X

′
tβ
)2

h2t

{
1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′
−
∂
(
h2t
)

∂δ∂δ′

}

+
1

h2t

(
Yt −X

′
tβ
)
µ

h2t

{
1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′
−
∂
(
h2t
)

∂δ∂δ′

}
−

1

2

1

h2t

µ2

h2t

{
1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′
−
∂
(
h2t
)

∂δ∂δ′

}

−
1

h2t

(
Yt −X

′
tβ
)

h2t

∂µ

∂δ

∂
(
h2t
)

∂δ′
+

1

h2t

µ

h2t

∂µ

∂δ

∂
(
h2t
)

∂δ′
+

(
Yt −X

′
tβ
)

h2t

∂µ

∂δ∂δ′
−

µ

h2t

∂µ

∂δ∂δ′

=
1

2

1

h2t

1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′

1 +

(
Yt −X

′
tβ
)2

h2t
+ 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t
−

(
Yt −X

′
tβ
)2

h2t
+ 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t


−
1

2

1

h2t

∂
(
h2t
)

∂δ∂δ′

1 +

(
Yt −X

′
tβ
)2

h2t
− 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t


−

1

h2t

∂
(
h2t
)

∂δ

∂µ

∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t
+

(
Yt −X

′
tβ
)

h2t
−

µ

h2t

+
∂µ

∂δ∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t


=

1

2

1

h2t

1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′

1 +
4
(
Yt −X

′
tβ
)
µ

h2t
−

2µ2

h2t


−
1

2

1

h2t

∂
(
h2t
)

∂δ∂δ′

1 +

(
Yt −X

′
tβ
)2

h2t
− 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t


−

2

h2t

∂
(
h2t
)

∂δ

∂µ

∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t

+
∂µ

∂δ∂δ′


(
Yt −X

′
tβ
)

h2t
−

µ

h2t


=

1

2

1

h2t

1

h2t

∂
(
h2t
)

∂δ

∂
(
h2t
)

∂δ′

1 +
4
(
Yt −X

′
tβ
)
µ

h2t
−

2µ2

h2t


−
1

2

1

h2t

∂
(
h2t
)

∂δ∂δ′

1 +

(
Yt −X

′
tβ
)2

h2t
− 2

(
Yt −X

′
tβ
)
µ

h2t
−
µ2

h2t


+


(
Yt −X

′
tβ
)

h2t
−

µ

h2t


{

∂µ

∂δ∂δ′
−

2

h2t

∂
(
h2t
)

∂δ

∂µ

∂δ′

}
. (114)

7 APPENDIX 98

Appendix B.

#***#

This is the relevant R code for the analysis of

Bitcoin data in Chapter 3.

#***#

###

code chunk number 1:

###

Set working directory.

setwd("C:/Users/zola/Documents/Zola/Research/Code")

###

code chunk number 2:

###

Install and load relevant packages for our analysis.

install.packages("coinmarketcapr")

install.packages("crypto")

install.packages("tseries")

install.packages("ggplot2")

install.packages("fBasics")

install.packages("normtest")

install.packages("xts")

install.packages("reshape2")

install.packages("quantmod")

install.packages("rugarch")

install.packages("fGarch")

library(coinmarketcapr)

library(crypto)

library(tseries)

library(ggplot2)

library(fBasics)

library(normtest)

library(xts)

7 APPENDIX 99

library(reshape2)

library(quantmod)

library(rugarch)

library(fGarch)

###

code chunk number 3:

###

Extract Bitcoin price data between 31 March 2016 to 31 March 2018.

BTC = crypto_history("bitcoin", start_date = "20160331", end_date = "20180331")

head(BTC)

The descriptive statistics of Bitcoin closing price data.

basicStats(BTC$close, ci = 0.95)

Plot the time series of the Bitcoin closing price data.

Define the time series with dates and then plot the data.

dates = seq(as.Date("2016-03-31"), length = length(BTC$close), by = "days")

BTCts = xts(x = BTC$close, order.by = dates)

plot(BTCts, type = "l", ylab = "Price", xlab = "Date", main = " ")

Plot the model residuals.

par(mfrow = c(1,1))

BTCts_df = data.frame(BTC$close, dates)

#BTCts_df$dates <- as.Date(dates)

require(scales)

ggplot(BTCts_df, aes(x = dates, y = BTC$close)) +

geom_line(color = "#0B0B0B", size = 0.5) + xlab("Date, t") +ylab("Price, US$ "~(P[t]))+

geom_hline(yintercept = 0, linetype = "dashed", color = "red", size = 1)+

scale_x_date(labels = date_format("%b %d %Y"), breaks = date_breaks("2 month"))+

scale_y_continuous(limits = c(0, 20000), breaks = c(0, 2000, 4000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000))+

theme_bw()+

ggsave("time_plot_BTC.png", height = 4, width = 5)

Decomposition of multiplicative time series.

tsBTC = ts(BTC$close, frequency = 365, start = c(2016, 90), end = c(2018, 90))

decomposedRes = decompose(tsBTC, type = "mult")

7 APPENDIX 100

plot(decomposedRes)

Testing for stationarity of the Bitcoin closing price data.

1. Autocorrelation and partial autocorrelation functions.

acf(BTCts)

pacf(BTCts)

2. Augmented Dickey-Fuller Test for non-staionarity.

adf.test(BTCts)

###

code chunk number 4:

###

Defining the log return time series data.

Daily Exchange Rate of Bitcoin to USD from 2016 to 2018

log_BTC = log(BTC$close)

log_rBTC = diff(log(BTC$close), lag = 1)

Time series of Bitcoin log returns.

rBTC = log(BTCts/lag(BTCts, -1))

summary(rBTC)

Converting the price data to log returns may produce NA values.

Removal of the last missing value (i.e. NA values).

rBTC = na.omit(rBTC)

summary(rBTC)

Strip off dates and create a numeric object.

log_returnsBTC = coredata(rBTC)

Descriptive statistics of Bitcoin log returns.

basicStats(rBTC, ci = 0.95)

Plot the log returns price series - indicates an upward trend.

plot.ts(log_rBTC, ylab = expression(log(P[t])), xlab = "Time Index", lwd = 1)

abline(h = 0, lty = 2)

7 APPENDIX 101

Plot the time series log returns data.

plot(rBTC, ylab = expression(Y[t]), xlab = "Time Index", lwd = 1)

abline(h = 0, lty = 2)

Define the time series with dates and then plot the data.

dates1 = seq(as.Date("2016-03-31"), length = length(rBTC), by = "days")

Plot the time series log returns data.

par(mfrow = c(1,1))

rBTCts_df = data.frame(rBTC, dates1)

rBTCts_df$dates1 <- as.Date(dates1)

require(scales)

ggplot(rBTCts_df, aes(x = dates1, y = rBTC)) +

theme_bw()+

geom_line(color = "#0B0B0B", size = 0.5) + xlab("Date, t") +ylab(expression(Y[t]))+

geom_hline(yintercept = 0, linetype = "dashed", color = "red", size = 1)+

scale_x_date(labels = date_format("%b %d %Y"), breaks = date_breaks("4 month"))+

scale_y_continuous(limits = c(-0.3, 0.3), breaks = c(-0.3, -0.2, -0.1, 0, 0.1, 0.2, 0.3))+

ggsave("time_plot_rBTC.png", height = 4, width = 5)

Testing for stationarity of the Bitcoin log returns closing price data.

1. Autocorrelation and partial autocorrelation functions.

acf(rBTC)

pacf(rBTC)

2. Augmented Dickey-Fuller Test for non-staionarity

adf.test(rBTC)

###

code chunk number 5:

###

Testing for the underlying distribution of the log returns,

and testing for normality.

2-sided t-test.

t.test(log_returnsBTC, mu = 0, alt = "two.sided", conf = 0.95)

Skewness test under the hypothesis of normality.

7 APPENDIX 102

skewness.norm.test(log_returnsBTC)

Kurtosis test under the hypothesis of normality.

kurtosis.norm.test(log_returnsBTC)

Jarque-Bera (JB) test under the hypothesis of normality.

jb.norm.test(log_returnsBTC)

Histogram of log returns distribution.

hist(rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

lines(density(rBTC), lwd = 2, col = "red")

Q-Q plot of log returns distribution.

qqnorm(rBTC, pch = 19)

qqline(rBTC, col = "red", lwd = 2)

###

code chunk number 6:

###

Fitting parametric distributions to the log returns,

to determine the underlying distibution of the data.

Install and load relevant packages for our analysis.

install.packages("QRM")

install.packages("ghyp")

library(QRM)

library(ghyp)

###

Fit a normal distribution to the Bitcoin log returns.

normfit = fit.norm(rBTC)

attributes(normfit)

#Define the parameters of the fitted distribution.

nmu = normfit$mu

nsigma = normfit$Sigma

7 APPENDIX 103

normpars = c(nmu, nsigma)

#compute the AIC of the fitted distribution.

AIC_normfit = (-2*normfit$ll.max)+(2*length(normpars))

AIC_normfit

#log_likelihood = 1250.545

#AIC = -2497.09

Plot a histogram of the Bitcoin log returns with the fitted

normal distribution.

xfit = sort(log_rBTC)

yfit = dnorm(xfit, mean = mean(rBTC), sd = sd(rBTC))

xvals = sort(log_rBTC)

yvals = dnorm(xvals, mean = nmu, sd = nsigma)

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,40))

Fitting a distribution curve with the estimated values from the fit.

lines(xvals, yvals, lwd = 2, col = "darkblue")

Fitting a distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Note:

It is found that the true distribution is a much heavier tailed

than the normal.

###

Fit a Student-t distribution to the Bitcoin log returns.

tfit = fit.st(log_rBTC)

Define the parameters of the fitted distribution.

tpars = tfit$par.ests

tnu = tpars[1]

tmu = tpars[2]

tsigma = tpars[3]

7 APPENDIX 104

Compute the AIC of the fitted distribution.

AIC_tfit = (-2*tfit$ll.max)+(2*length(tpars))

AIC_tfit

#log_likelihood = 1350.865

#AIC = -2695.73

Plot a histogram of the Bitcoin log returns with the fitted

Student-t distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted density from the parameter estimates of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dt((xvals - tmu)/tsigma, df = tnu)/tsigma

Superimpose a blue line to show the fitted t density

lines(xvals, yvals, lwd = 2, col = "blue")

###

Fit a GED distribution to the Bitcoin log returns.

gedfit = .gedFit(log_rBTC)

Define the parameters of the fitted distribution.

gedpars = gedfit@fit$'estimate'

gedmu = gedpars[1]

gedsigma = gedpars[2]

gednu = gedpars[3]

Compute the AIC of the fitted distribution.

AIC_gedfit = (-2*gedfit@fit$minimum)+(2*length(gedpars))

AIC_gedfit

7 APPENDIX 105

#log_likelihood = 1377.069

#AIC = -2748.139

Plot a histogram of the Bitcoin log returns with the fitted

GED distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted GED density from the parameter estimates of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dged(xvals, mean = gedmu, sd = gedsigma, nu = gednu)

Superimpose lines to show the fitted GED density.

lines(xvals, yvals, lwd = 2, col = "blue")

###

Fit a symmetric hyperbolic distribution to the Bitcoin log returns.

hypfit = fit.NH(log_rBTC, case = "HYP", symmetric = TRUE)

Define the parameters of the fitted distribution.

hypaltpars = hypfit$alt.pars

hypd = hypaltpars[1]

hypa = hypaltpars[2]

hypb = hypaltpars[3]

hypmu = hypaltpars[4]

hyplambda = 1

hypgamma = 0

theta = c(hyplambda, hypa, hypb, hypd, hypmu)

Compute the AIC of the fitted distribution.

7 APPENDIX 106

AIC_hypfit = (-2*hypfit$ll.max)+(2*length(hyppars))

AIC_hypfit

#log_likelihood = 1273.354

#AIC = -2540.709

Plot a histogram of the Bitcoin log returns with the fitted

symmetric hyperbolic distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted symmetric hyperbolic density from the parameter estimates

of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dghypB(xvals, lambda = hyplambda, delta = hypd, alpha = hypa,

beta = hypb, mu = hypmu)

Superimpose lines to show the fitted symmetric hyperbolic density.

lines(xvals, yvals, lwd = 2, col = "green")

###

Fit a skew hyperbolic distribution to the Bitcoin log returns.

hypfit2 = fit.NH(log_rBTC, case = "HYP", symmetric = FALSE)

Define the parameters of the fitted distribution.

hyppars2 = hypfit2$par.ests

shypchi = hyppars2[1]

shyppsi = hyppars2[2]

shypmu = hyppars2[3]

shypgamma = hyppars2[4]

hypaltpars2 = hypfit2$alt.pars

7 APPENDIX 107

shypd = hypaltpars2[1]

shypa = hypaltpars2[2]

shypb = hypaltpars2[3]

shypmu = hypaltpars2[4]

shyplambda = 1

Compute the AIC of the fitted distribution.

AIC_shypfit = (-2*hypfit2$ll.max)+(2*length(hyppars))

AIC_shypfit

AIC_shypfit2 = (-2*hypfit2$ll.max)+(2*length(hypaltpars2))

AIC_shypfit2

#log_likelihood = 1272.241

#AIC = -2538.481

#AIC2 = -2536.481

Plot a histogram of the Bitcoin log returns with the fitted

skew hyperbolic distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted symmetric hyperbolic density from the parameter estimates

of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dghypB(xvals, lambda = shyplambda, delta = shypd, alpha = shypa,

beta = shypb, mu = shypmu)

Superimpose lines to show the fitted skew hyperbolic density.

lines(xvals, yvals, lwd = 2, col = "green")

###

7 APPENDIX 108

Fit a symmetric normal inverse gaussian (nig) distribution to the Bitcoin

log returns.

nigfit = fit.NH(log_rBTC, case = "NIG", symmetric = TRUE)

attributes(nigfit)

Define the parameters of the fitted distribution.

nigpars = nigfit$par.ests

nigchi = nigpars[1]

nigpsi = nigpars[2]

nigmu = nigpars[3]

nigaltpars = nigfit$alt.pars

nigd = nigaltpars[1]

niga = nigaltpars[2]

nigb = nigaltpars[3]

nigmu = nigaltpars[4]

niglambda = -1/2

niggamma = sqrt((niga^2)-(nigb^2))

Compute the AIC of the fitted distribution.

AIC_nigfit = (-2*nigfit$ll.max)+(2*length(nigpars))

AIC_nigfit

AIC_nigfit2 = (-2*nigfit$ll.max)+(2*length(nigaltpars))

AIC_nigfit2

#log_likelihood = 1363.009

#AIC = -2720.018

#AIC2 = -2718.018

Plot a histogram of the Bitcoin log returns with the fitted

symmetric NIG distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

7 APPENDIX 109

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted NIG density from the parameter estimates of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dghyp(xvals, lambda = niglambda, chi = nigchi, psi = nigpsi,

mu = nigmu, gamma = niggamma)

yvals2 = dghypB(xvals, lambda = niglambda, delta = nigd, alpha = niga,

beta = nigb, mu = nigmu)

Superimpose lines to show the fitted NIG density.

lines(xvals, yvals, lwd = 2, col = "blue")

lines(xvals, yvals2, lwd = 2, col = "green")

###

Fit a skew normal inverse gaussian (NIG) distribution to the Bitcoin log

returns.

nigfit2 = fit.NH(log_rBTC, case = "NIG", symmetric = FALSE)

attributes(nigfit2)

Define the parameters of the fitted distribution.

nigpars2 = nigfit2$par.ests

snigchi = nigpars2[1]

snigpsi = nigpars2[2]

snigmu = nigpars2[3]

sniggamma = nigpars2[4]

nigaltpars2 = nigfit2$alt.pars

snigd = nigaltpars2[1]

sniga = nigaltpars2[2]

snigb = nigaltpars2[3]

snigmu = nigaltpars2[4]

sniglambda = -1/2

Compute the AIC of the fitted distribution.

AIC_snigfit = (-2*nigfit2$ll.max)+(2*length(nigpars2))

AIC_snigfit

7 APPENDIX 110

AIC_snigfit2 = (-2*nigfit2$ll.max)+(2*length(nigaltpars2))

AIC_snigfit2

#log_likelihood = 1363.116

#AIC = -2718.231

#AIC2 = -2718.231

Plot a histogram of the Bitcoin log returns with the fitted

skewed NIG distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,20))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted symmetric hyperbolic density from the parameter estimates of

the log_rBTC.

xvals = sort(log_rBTC)

yvals = dghyp(xvals, lambda = sniglambda, chi = snigchi, psi = snigpsi,

mu = snigmu, gamma = sniggamma)

yvals2 = dghypB(xvals, lambda = sniglambda, delta = snigd, alpha = sniga,

beta = snigb, mu = snigmu)

Superimpose lines to show the fitted symmetric hyperbolic density.

lines(xvals, yvals, lwd = 2, col = "blue")

lines(xvals, yvals2, lwd = 2, col = "green")

###

Fit a symmetric generalized hyperbolic (GHYP) distribution to the Bitcoin

log returns.

ghypfit = fit.ghypuv(log_rBTC, symmetric = TRUE)

Define the parameters of the fitted distribution.

ghyppars = ghypfit@fitted.params

ghypchi = ghypfit@chi

7 APPENDIX 111

ghyppsi = ghypfit@psi

ghypmu = ghypfit@mu

ghypsigma = ghypfit@sigma

ghypa_bar = ghypfit@alpha.bar

ghyplambda = ghypfit@lambda

ghypgamma = ghypfit@gamma

Compute the log-likelihood and AIC of the fitted distribution.

Loglik_ghypfit = ghypfit@llh

Loglik_ghypfit

AIC_ghypfit = ghypfit@aic

AIC_ghypfit

#log_likelihood = 1380.43

#AIC = -2752.86

Plot a histogram of the Bitcoin log returns with the fitted

symmetric GHYP distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,25))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted symmetric generalized hyperbolic density from the parameter

estimates of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dghyp(xvals, object = ghyp(lambda = ghyplambda, alpha.bar = ghypa_bar,

mu = ghypmu, sigma = ghypsigma, gamma = ghypgamma))

Superimpose lines to show the fitted symmetric generalized hyperbolic density.

lines(xvals, yvals, lwd = 2, col = "blue")

7 APPENDIX 112

###

Fit a skewed generalized hyperbolic (GHYP) distribution to the Bitcoin log returns.

ghypfit2 = fit.ghypuv(log_rBTC, symmetric = FALSE)

Define the parameters of the fitted distribution.

sghyppars = ghypfit2@fitted.params

sghypchi = ghypfit2@chi

sghyppsi = ghypfit2@psi

sghypmu = ghypfit2@mu

sghypsigma = ghypfit2@sigma

sghypa_bar = ghypfit2@alpha.bar

sghyplambda = ghypfit2@lambda

sghypgamma = ghypfit2@gamma

Compute the log-likelihood and AIC of the fitted distribution.

Loglik_sghypfit = ghypfit2@llh

Loglik_sghypfit

AIC_sghypfit = ghypfit2@aic

AIC_sghypfit

#log_likelihood = 1380.531

#AIC = -2751.062

Plot a histogram of the Bitcoin log returns fitted

skewed GHYP distribution and normal distribution.

xfit = seq(min(log_rBTC), max(log_rBTC), length = length(log_rBTC))

yfit = dnorm(xfit, mean = mean(log_rBTC), sd = sd(log_rBTC))

hist(log_rBTC, nclass = 20, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,30))

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit, yfit, lwd = 2, col = "red")

Compute the fitted skewed generalized hyperbolic density from the parameter estimates

of the log_rBTC.

7 APPENDIX 113

xvals = sort(log_rBTC)

yvals = dghyp(xvals, object = ghyp(lambda = sghyplambda, alpha.bar = sghypa_bar,

mu = sghypmu, sigma = sghypsigma, gamma = sghypgamma))

Superimpose lines to show the fitted symmetric generalized hyperbolic density.

lines(xvals, yvals, lwd = 2, col = "blue")

#--#

Histogram and best model fitted densities.

#--#

Plot a histogram of the Bitcoin log returns.

hist(log_rBTC, nclass = 100, probability = TRUE, xlab = expression('Log returns'),

ylim = c(0,25), main = " ")

Compute the fitted symmetric GHYP density and GED density,

from the parameter estimates of the log_rBTC.

xvals = sort(log_rBTC)

yvals = dghyp(xvals, object = ghyp(lambda = ghyplambda, alpha.bar = ghypa_bar,

mu = ghypmu, sigma = ghypsigma, gamma = ghypgamma))

yvals2 = dged(xvals, mean = gedmu, sd = gedsigma, nu = gednu)

Superimpose lines to show the fitted symmetric GHYP density.

lines(xvals, yvals, lwd = 2, col = "darkblue")

Superimpose lines to show the fitted GED density.

lines(xvals, yvals2, lwd = 1, col = "red")

###

code chunk number 7:

###

Now we will fit an ARMA-GARCH process to the Bitcoin log returns data,

with different conditional distributions.

These models consider the normal distribution as the conditional distribution.

Our 1st model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

btc11 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

7 APPENDIX 114

mean.model = list(armaOrder = c(0,0)), distribution.model = "norm")

model1.11 = ugarchfit(spec = btc11, data = rBTC)

model1.11

model1.11_fit_res2 = model1.11@fit$residuals

model1.11_fit_var = model1.11@fit$var

plot(model1.11_fit_res2, type = 'l')

lines(model1.11_fit_var, col = "red")

#--#

Our 2nd model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc21 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model = "norm")

model1.21 = ugarchfit(spec = btc21, data = rBTC)

model1.21

model1.21_fit_res2 = model1.21@fit$residuals

model1.21_fit_var = model1.21@fit$var

plot(model1.21_fit_res2, type = 'l')

lines(model1.21_fit_var, col = "red")

#--#

Our 3rd model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc31= ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "norm")

model1.31 = ugarchfit(spec = btc31, data = rBTC)

model1.31

model1.31_fit_res2 = model1.31@fit$residuals

model1.31_fit_var = model1.31@fit$var

plot(model1.31_fit_res2, type = 'l')

lines(model1.31_fit_var, col = "red")

7 APPENDIX 115

#--#

Our 4th model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc41 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "norm")

model1.41 = ugarchfit(spec = btc41, data = rBTC)

model1.41

model1.41_fit_res2 = model1.41@fit$residuals

model1.41_fit_var = model1.41@fit$var

plot(model1.41_fit_res2, type = 'l')

lines(model1.41_fit_var, col = "red")

#--#

Our 5th model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc51 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "norm")

model1.51 = ugarchfit(spec = btc51, data = rBTC)

model1.51

model1.51_fit_res2 = model1.51@fit$residuals

model1.51_fit_var = model1.51@fit$var

plot(model1.51_fit_res2, type = 'l')

lines(model1.51_fit_var, col = "red")

#--#

Our 6th model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc61 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2)), distribution.model = "norm")

model1.61 = ugarchfit(spec = btc61, data = rBTC)

model1.61

7 APPENDIX 116

model1.61_fit_res2 = model1.61@fit$residuals

model1.61_fit_var = model1.61@fit$var

plot(model1.61_fit_res2, type = 'l')

lines(model1.61_fit_var, col = "red")

#--#

Our 7th model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc71 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2)), distribution.model = "norm")

model1.71 = ugarchfit(spec = btc71, data = rBTC)

model1.71

model1.71_fit_res2 = model1.71@fit$residuals

model1.71_fit_var = model1.71@fit$var

plot(model1.71_fit_res2, type = 'l')

lines(model1.71_fit_var, col = "red")

###

These models consider a Student-t distribution as the conditional distribution.

Our 8th model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

btc12 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0)), distribution.model = "std")

model1.12 = ugarchfit(spec = btc12, data = rBTC)

model1.12

#--#

Our 9th model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc22 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model = "std")

model1.22 = ugarchfit(spec = btc22, data = rBTC)

model1.22

7 APPENDIX 117

#--#

Our 10th model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc32 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "std")

model1.32 = ugarchfit(spec = btc32, data = rBTC)

model1.32

#--#

Our 11th model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc42 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "std")

model1.42 = ugarchfit(spec = btc42, data = rBTC)

model1.42

#--#

Our 12th model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc52 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "std")

model1.52 = ugarchfit(spec = btc52, data = rBTC)

model1.52

#--#

Our 13th model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc62 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2)), distribution.model = "std")

model1.62 = ugarchfit(spec = btc62, data = rBTC)

model1.62

#--#

Our 14th model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc72 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

7 APPENDIX 118

mean.model = list(armaOrder = c(2,2)), distribution.model = "std")

model1.72 = ugarchfit(spec = btc72, data = rBTC)

model1.72

##

These models consider the generalized error distribution (GED) as the conditional

distribution.

Our 15th model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

btc13 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0)), distribution.model = "ged")

model1.13 = ugarchfit(spec = btc13, data = rBTC)

model1.13

#--#

Our 16th model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc23 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model = "ged")

model1.23 = ugarchfit(spec = btc23, data = rBTC)

model1.23

#--#

Our 17th model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc33 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "ged")

model1.33 = ugarchfit(spec = btc33, data = rBTC)

model1.33

#--#

Our 18th model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc43 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "ged")

model1.43 = ugarchfit(spec = btc43, data = rBTC)

7 APPENDIX 119

model1.43

#--#

Our 19th model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc53 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "ged")

model1.53 = ugarchfit(spec = btc53, data = rBTC)

model1.53

#--#

Our 20th model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc63 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2)), distribution.model = "ged")

model1.63 = ugarchfit(spec = btc63, data = rBTC)

model1.63

#--#

Our 21st model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc73 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2)), distribution.model = "ged")

model1.73 = ugarchfit(spec = btc73, data = rBTC)

model1.73

###

These models consider the skew-generalized error distribution as the conditional

ditribution.

Our 22nd model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

btc14 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0)), distribution.model = "sged")

model1.14 = ugarchfit(spec = btc14, data = rBTC)

model1.14

7 APPENDIX 120

#--#

Our 23rd model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc24 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model = "sged")

model1.24 = ugarchfit(spec = btc24, data = rBTC)

model1.24

#--#

Our 24th model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc34 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "sged")

model1.34 = ugarchfit(spec = btc34, data = rBTC)

model1.34

#--#

Our 25th model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc44 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "sged")

model1.44 = ugarchfit(spec = btc44, data = rBTC)

model1.44

#--#

Our 26th model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc54 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "sged")

model1.54 = ugarchfit(spec = btc54, data = rBTC)

model1.54

#--#

Our 27th model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc64 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

7 APPENDIX 121

mean.model = list(armaOrder = c(1,2)), distribution.model = "sged")

model1.64 = ugarchfit(spec = btc64, data = rBTC)

model1.64

#--#

Our 28th model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc74 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2)), distribution.model = "sged")

model1.74 = ugarchfit(spec = btc74, data = rBTC)

model1.74

##

These models consider the generalized hyperbolic distribution as the conditional

distribution.

Our 29th model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

btc15 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0)), distribution.model = "ghyp")

model1.15 = ugarchfit(spec = btc15, data = rBTC)

model1.15

#--#

Our 30th model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc25 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model = "ghyp")

model1.25 = ugarchfit(spec = btc25, data = rBTC)

model1.25

#--#

Our 31st model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc35 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "ghyp")

model1.35 = ugarchfit(spec = btc35, data = rBTC)

model1.35

7 APPENDIX 122

#--#

Our 32nd model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc45 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "ghyp")

model1.45 = ugarchfit(spec = btc45, data = rBTC)

model1.45

#--#

Our 33rd model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc55 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "ghyp")

model1.55 = ugarchfit(spec = btc55, data = rBTC)

model1.55

#--#

Our 34th model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc65 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2)), distribution.model = "ghyp")

model1.65 = ugarchfit(spec = btc65, data = rBTC)

model1.65

#--#

Our 35th model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc75 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2)), distribution.model = "ghyp")

model1.75 = ugarchfit(spec = btc75, data = rBTC)

model1.75

#--#

##

These models consider the normal inverse gaussian (NIG) distribution the conditional

distribution.

Our 36th model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

7 APPENDIX 123

btc16 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0)), distribution.model = "nig")

model1.16 = ugarchfit(spec = btc16, data = rBTC)

model1.16

#--#

Our 37th model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc26 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model = "nig")

model1.26 = ugarchfit(spec = btc26, data = rBTC)

model1.26

#--#

Our 38th model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc36 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "nig")

model1.36 = ugarchfit(spec = btc36, data = rBTC)

model1.36

#--#

Our 39th model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc46 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "nig")

model1.46 = ugarchfit(spec = btc46, data = rBTC)

model1.46

#--#

Our 40th model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc56 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "nig")

model1.56 = ugarchfit(spec = btc56, data = rBTC)

model1.56

#--#

7 APPENDIX 124

Our 41st model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc66 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2)), distribution.model = "nig")

model1.66 = ugarchfit(spec = btc66, data = rBTC)

model1.66

#--#

Our 42nd model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc76 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2)), distribution.model = "nig")

model1.76 = ugarchfit(spec = btc76, data = rBTC)

model1.76

##

##

These models consider a Johnson's SU distribution model.

Our 43rd model fitted will have ARMA(0,0)-GARCH(1,1) parameters.

btc17 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0)), distribution.model = "jsu")

model1.17 = ugarchfit(spec = btc17, data = rBTC)

model1.17

#--#

Our 44th model fitted will have ARMA(1,0)-GARCH(1,1) parameters.

btc27 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0)), distribution.model ="jsu")

model1.27 = ugarchfit(spec = btc27, data = rBTC)

model1.27

#--#

Our 45th model fitted will have ARMA(0,1)-GARCH(1,1) parameters.

btc37 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1)), distribution.model = "jsu")

7 APPENDIX 125

model1.37 = ugarchfit(spec = btc37, data = rBTC)

model1.37

#--#

Our 46th model fitted will have ARMA(1,1)-GARCH(1,1) parameters.

btc47 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1)), distribution.model = "jsu")

model1.47 = ugarchfit(spec = btc47, data = rBTC)

model1.47

#--#

Our 47th model fitted will have ARMA(2,1)-GARCH(1,1) parameters.

btc57 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1)), distribution.model = "jsu")

model1.57 = ugarchfit(spec = btc57, data = rBTC)

model1.57

#--#

Our 48th model fitted will have ARMA(1,2)-GARCH(1,1) parameters.

btc67 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2)), distribution.model = "jsu")

model1.67 = ugarchfit(spec = btc67, data = rBTC)

model1.67

#--#

Our 49th model fitted will have ARMA(2,2)-GARCH(1,1) parameters.

btc77 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2)), distribution.model = "jsu")

model1.77 = ugarchfit(spec = btc77, data = rBTC)

model1.77

###

7 APPENDIX 126

code chunk number 8:

###

Model forecating of the best fitted model.

Plot forecasts for competing models.

Model forecasting - using the ARMA(0,0)-GARCH(1,1) under "GED" parameter estimates.

model1.13_for = ugarchforecast(model1.13 , data = NULL, n.ahead = 10, n.roll = 0, out.sample = 0)

View different plots of the forecast

#par(mfrow = c(1, 2))

plot(model1.13, which = "all")

We are particularly interested in the sigma (volatility) forecasts

model1.13_forecast = model1.13_for@forecast$sigmaFor

plot(model1.13_forecast)

#Note:

We can tell that we are forecasting an increase in volatility over a 10 day period.

#--#

Model forecasting - using the ARMA(2,2)-GARCH(1,1) under "GED" parameter estimates.

model1.73_for = ugarchforecast(model1.73 , data = NULL, n.ahead = 10, n.roll = 0, out.sample = 0)

model1.73_for

View different plots of the forecast

#par(mfrow = c(1, 2))

plot(model1.73, which = "all")

We are particularly interested in the sigma (volatility) forecasts

model1.73_forecast = model1.73_for@forecast$sigmaFor

plot(model1.73_forecast)

#Note:

We can tell that we are forecasting an increase in volatility over a 10 day period.

#--#

7 APPENDIX 127

Plot forecasts for competing models.

Model forecasting - using the ARMA(0,0)-GARCH(1,1) under "GED" parameter estimates.

model1.13_frct = ugarchforecast(model1.13 , data = NULL, n.ahead = 10, n.roll = 10, out.sample = 0)

Model forecasting - using the ARMA(2,2)-GARCH(1,1) under "GED" parameter estimates.

model1.73_frct = ugarchforecast(model1.73 ,data = NULL, n.ahead = 10, n.roll = 10, out.sample = 0)

#--#

Extract volatility forecasts.

model1.13_frct.sigma = as.data.frame(model1.13_frct@'forecast'$sigmaFor)

model1.73_frct.sigma = as.data.frame(model1.73_frct@'forecast'$sigmaFor)

ymax = max(model1.13_frct.sigma, model1.73_frct.sigma)

ymin = min(model1.13_frct.sigma, model1.73_frct.sigma)

par(mfrow = c(1, 1))

plot.ts(model1.13_frct.sigma, main =" ", ylim=c(ymin,ymax),

col = "black", lwd=2, ylab="sigma(t+h|t)", xlab="h")

lines(model1.13_frct.sigma, col = "black", lwd = 2)

lines(model1.73_frct.sigma, col = "blue", lwd = 2)

legend(x = "topleft", legend = c("ARMA(0,0)-GARCH(1,1)~GED(0, 1, 0.941)", "ARMA(2,2)-GARCH(1,1)~GED(0, 1, 0.869)"),

col = c("black", "blue"), lwd = 2, lty = "solid")

#--#

Plot of forecasted time series.

par(mfrow = c(1, 2))

plot(model1.13_frct, which = 1)

plot(model1.73_frct, which = 1)

#--#

Plot of forecasted volatility.

par(mfrow = c(1, 2))

plot(model1.13_frct, which = 4)

plot(model1.73_frct, which = 4)

#--#

7 APPENDIX 128

Evaluate rolling forecasts.

Re-fit models leaving 10 out-of-sample observations for forecast evaluation statistics.

model1.13_fit = ugarchfit(spec = btc13, data = rBTC, out.sample = 10)

model1.73_fit = ugarchfit(spec = btc73, data = rBTC, out.sample = 10)

#--#

Compute 10 10-step ahead rolling forecasts.

model1.13_fcst = ugarchforecast(model1.13_fit, n.ahead = 10, n.roll = 10)

model1.73_fcst = ugarchforecast(model1.73_fit, n.ahead = 10, n.roll = 10)

#--#

Compare persistence and unconditional variance.

c.mat = matrix(0, 2, 2)

colnames(c.mat) = c("Persistence", "E[sig(t)]")

rownames(c.mat) = c("ARMA(0,0)-GARCH(1,1)", "ARMA(2,2)-GARCH(1,1)")

c.mat[1,1] = persistence(model1.13_fit)

c.mat[1,2] = persistence(model1.73_fit)

c.mat[2,1] = sqrt(uncvariance(model1.13_fit))

c.mat[2,2] = sqrt(uncvariance(model1.73_fit))

c.mat

c.mat = matrix(0, 2, 2)

colnames(c.mat) = c("Persistence", "E[sig(t)]")

rownames(c.mat) = c("ARMA(0,0)-GARCH(1,1)", "ARMA(2,2)-GARCH(1,1)")

c.mat[1,1] = persistence(model1.13)

c.mat[1,2] = persistence(model1.73)

c.mat[2,1] = sqrt(uncvariance(model1.13))

c.mat[2,2] = sqrt(uncvariance(model1.73))

c.mat

#--#

Plot the 10 10-step ahead rolling forecasts of competing models.

Rolling forecast plots.

par(mfrow = c(1, 1))

7 APPENDIX 129

plot(model1.13_fcst, which = 2)

plot(model1.73_fcst, which = 2)

Rolling sigma forecasts of competing models.

plot(model1.13_fcst, which = 4)

plot(model1.73_fcst, which = 4)

###

code chunk number 9:

###

We want to look at the distribution of the residuals.

If they are nonnormal then we have to look for other tests,

for the regression analysis.

Extract the residuals from the fitted model - ARMA(0,0)-GARCH(1,1)~GED.

model1.13_res = residuals(model1.13)

Plot the residuals

plot(model1.13_res, ylab = "Residuals", xlab = "Time", lwd = 1)

abline(h = 0, lty = 2, lwd = 2, col = "red")

#summary of residuals of fitted model

summary(model1.13_res)

Note:

From the residual plot we can see that the mean of the residuals is almost zero,

but slightly negative. However the variance is not constant throughout, with

particularly larger variation around the end of 2017.

Testing for stationarity.

Autocorrelation and partial autocorrelation functions.

acf(model1.13_res)

or

plot(model1.13, which = 10)

7 APPENDIX 130

Note:

The values of the ACF almost fall inside the dashed lines with slight deviations,

at lag = 19, 20.

It is expected that 5% of lags fall outside the two dashed lines under the null,

hypothesis

The figures show no significant evidence that the residuals are autocorrelated.

For furher analysis, we plot the absolute value of the residuals.

model1.13_res_abs = abs(model1.13_res)

acf(model1.13_res_abs)

Note:

We find that they are obviously autocorrelated, we therefore reject the null,

hypothesis of independence.

#--#

Testing for the underlying distribution of the residuals, and testing for

normality.

2-sided t-test

t.test(model1.13_res)

Skewness test under the hypothesis of normality.

skewness.norm.test(model1.13_res)

Kurtosis test under the hypothesis of normality.

kurtosis.norm.test(model1.13_res)

Jarque-Bera (JB) test under the hypothesis of normality.

jb.norm.test(model1.13_res)

The histogram of the residuals will indicate the distribution.

hist(model1.13_res, nclass = 100, probability = TRUE, xlab = expression('Log returns'), ylim = c(0,30))

Alternative plot

plot(model1.13, which = 8)

7 APPENDIX 131

Note:

We see that they are approximately normal from the plot but there is still

evidence of heavy tails.

Q-Q plot of residuals of the fitted model

qqnorm(model1.13_res, pch = 19)

qqline(model1.13_res, col = "red", lwd = 2)

Note:

Shows that the distribution of the residuals have extremely heavy tails,

so not normal.

###

###

Extract the residuals from the fitted model - ARMA(2,2)-GARCH(1,1)~GED.

model1.73_res = residuals(model1.73)

Plot the residuals

plot(model1.73_res, ylab = "Residuals", xlab = "Time", lwd = 1)

abline(h = 0, lty = 2, col = "red")

#summary of residuals of fitted model

summary(model1.73_res)

Note:

From the residual plot we can see that the mean of the residuals is almost zero,

but slightly negative. However the variance is not constant throughout, with

particularly larger variation around the end of 2017.

Testing for stationarity.

Autocorrelation and partial autocorrelation functions.

acf(model1.73_res)

or

plot(model1.73, which = 10)

7 APPENDIX 132

Note:

The values of the ACF almost fall inside the dashed lines with slight deviations,

at lag = 1, 19, 20.

It is expected that 5% of lags fall outside the two dashed lines under the null,

hypothesis.

The figures show no significant evidence that the residuals are autocorrelated.

This is in line with what is expected of the error term. Although the assumption,

of the squared errors is serial autocorrelation. By analysisng the sample ACF and

sample PACF functions of the squared errors, the assumption that the squared errors

are correlated is confirmed.

For furher analysis, we plot the absolute value of the residuals.

model1.73_res_abs = abs(model1.73_res)

acf(model1.73_res_abs)

Note:

We find that they are obviously autocorrelated, we therefore reject the null,

hypothesis of independence.

#--#

Testing for the underlying distribution of the residuals, and testing for

normality.

2-sided t-test

t.test(model1.73_res)

Skewness test under the hypothesis of normality.

skewness.norm.test(model1.73_res)

Kurtosis test under the hypothesis of normality.

kurtosis.norm.test(model1.73_res)

Jarque-Bera (JB) test under the hypothesis of normality.

jb.norm.test(model1.73_res)

7 APPENDIX 133

The histogram of the residuals will indicate the distribution.

hist(model1.73_res, nclass = 100, probability = TRUE, xlab = expression('Log returns'), ylim = c(0,30))

Alternative plot

plot(model1.73, which = 8)

Note:

We see that they are approximately normal from the plot but there is still

evidence of heavy tails.

Q-Q plot of residuals of the fitted model.

qqnorm(model1.73_res, pch = 19)

qqline(model1.73_res, col = "red", lwd = 2)

Note:

Shows that the distribution of the residuals have extremely heavy tails,

so not normal.

#***#

#---------------------- End ----------------------#

#***#

Appendix C.

#***#

This is the relevant R code for the simulation

study of our model in Chapter 5.

#***#

###

code chunk number 1:

###

Set working directory.

setwd("C:/Users/zola/Documents/Zola/Research/Code")

###

code chunk number 2:

7 APPENDIX 134

###

Install and load relevant packages for our simulations.

install.packages("MASS")

install.packages("fBasics")

install.packages("normtest")

install.packages("tseries")

install.packages("xts")

install.packages("maxLik")

install.packages("caret")

install.packages("quantmod")

install.packages("rugarch")

install.packages("fGarch")

Load the packages.

library(MASS)

library(fBasics)

library(normtest)

library(tseries)

library(xts)

library(maxLik)

library(caret)

library(quantmod)

library(rugarch)

library(fGarch)

###

code chunk number 3:

###

Consider a regression model with errors modelled by a ARMA(1,1)-GARCH(1,1)

process.

We will give the results of on simulation run.

Sample size.

n = 200

Setting the seed value so as to produce pseudorandom results

(i.e. replicatable results).

7 APPENDIX 135

seed_val = 455

set.seed(seed_val)

print(seed_val)

#---------------------------------#

Set mean parameters:

#---------------------------------#

The regression coeffiecients.

beta_1 = 0.9

beta_2 = 0.01

Create a vector mu.

mu is vector of means for two variables.

mu_x = c(0,0)

Create a matrix sigma_x that is a variance-covariance matrix of two variables.

This matrix is a positive definite symmetric matrix.

sigma_x = matrix(c(1,0.5,0.5,1), 2,2) #2x2 matrix.

Produces n observations of 2 normally distributed variables with mu and sigma,

as the normal distribution parameters.

X_matrix = mvrnorm(n, mu_x, sigma_x)

Create vectors to store all the iterations of Y_t, epsilon_t

y_t_vec = matrix(data=NA, nrow=n, ncol=1)

epsilon_t_vec = matrix(data=NA, nrow=n, ncol=1)

sigma_t_2_vec = matrix(data=NA, nrow=n, ncol=1)

#---------------------------------#

Set variance parameters:

#---------------------------------#

The underlying distribution of the model.

eta_t is i.i.d. standard normally distributed (i.e. eta_t ~ N(0,1) for all t).

mean_eta_t = 0

var_eta_t = 1

7 APPENDIX 136

The ARMA(1,1) parameters of the error model.

c = 1

phi_1 = 0.4

theta_1 = 0.55

The GARCH parameters of the error model.

omega = 0.1

alpha_1 = 0.2

gamma_1 = 0.7

sigma_t1_2 = 1

Setting the initial values neccessary for the process.

eta_t_1 = rnorm(1 ,mean_eta_t, var_eta_t)

Note:

Since s = max(p,q,m,n) = max(1,1,1,1) = 1, which means that there only a

need for s=1 intial values.

Therefore epsilon_t_1_squared = sigma_t1_2 = unconditional_variance.

epsilon_t_1 = 1

sigma_t1_2 = 1

sigma_t_2 = 1

#---------------------------------#

One simulation run:

#---------------------------------#

Just one simulation of data.

A times series of n observations was generated from a ARMA(1,1)-GARCH(1,1).

Setting the seed value so as to produce pseudorandom results

(i.e. replicatable results).

seed_val = 455

set.seed(seed_val)

print(seed_val)

Create an empty matrices.

matrix_data = matrix(,nrow = n,)

7 APPENDIX 137

estimate_beta1 = matrix(data = NA, nrow = 1, ncol = 1)

estimate_beta2 = matrix(data = NA, nrow = 1, ncol = 1)

for (t in 1:n){

sigma_t = sqrt(sigma_t_2)

eta_t = rnorm(1, mean_eta_t, var_eta_t)

epsilon_t = c + ((phi_1)*(epsilon_t_1)) + ((theta_1)*(eta_t_1)) + ((sigma_t)*(eta_t))

sigma_t_2 = omega + ((alpha_1)*(epsilon_t_1**2)) + ((gamma_1)*(sigma_t1_2))

if (t > 0){

x_1 = X_matrix[t,1]

x_2 = X_matrix[t,2]

y_t = ((beta_1)*(x_1)) + ((beta_2)*(x_2)) + epsilon_t

epsilon_t_1 = epsilon_t

eta_t_1 = eta_t

sigma_t1_2 = sigma_t_2

#sigma_t = sqrt(sigma_t_2)

}

y_t_vec[[t]] = y_t

epsilon_t_vec[[t]] = epsilon_t

sigma_t_2_vec[[t]] = sigma_t_2

print(paste("t:", t, "Y_T", y_t, "epsilon is :", epsilon_t, "Var_epsilont is :", sigma_t_2))

}

matrix_data = matrix(data =cbind(y_t_vec,X_matrix[,1],X_matrix[,2],epsilon_t_vec, sigma_t_2_vec),

nrow = n, ncol = 5)

print(head(matrix_data))

Create weekly indicators from 03 April 2016.

week = seq(as.Date("2016-04-03"), length = length(y_t_vec), by = "weeks")

Create a data frame with all the weekly data

all_data = data.frame(matrix_data)

The assignment of the weekly index date to the new data frame and stored in the DataFrame.

7 APPENDIX 138

simulation_results = xts(all_data, week)

Print the data to view

head(simulation_results)

Descriptive statistics of the new data frame

basicStats(simulation_results, ci = 0.95)

Plot Y_t, epsilon_t, sigma_t_2.

par(mfrow = c(3,1))

plot(simulation_results[,1], type = "l", ylab = "Y_t", xlab = "Date", main = " ")

plot(simulation_results[,4], type = "l", ylab = "epsilon_t", xlab = "Date", main = " ")

plot(simulation_results[,5], type = "l", ylab = "sigma_t_2", xlab = "Date", main = " ")

Likelihood function.

logLikFun = function(param){

T = length(simulation_results[,1])

beta_1 = param[1]

beta_2 = param[2]

mu = mean(simulation_results[,4])

epsilon_tt = simulation_results[,1] - (((beta_1)*(simulation_results[,2])) +

((beta_2)*(simulation_results[,3])))

sigma_t_22 = simulation_results[,5]

ll = (-0.5*T*log(2*pi)) - ((0.5)*sum(log(sigma_t_2))) -

((0.5)*(sum(((epsilon_tt-mu)**2)/(sigma_t_22))))

}

Maximum log-likelihood estimation (MLE).

mle_trail = maxLik(logLik = logLikFun, start = c(beta_1 = 0, beta_2 = 0))

summary(mle_trail)

Storing the estimated values.

estimate_beta1 = coef(mle_trail)[1]

estimate_beta2 = coef(mle_trail)[2]

matrix_data_beta = matrix(data = cbind(estimate_beta1, estimate_beta2))

7 APPENDIX 139

print(head(matrix_data_beta))

#---------------------------------#

One simulation run log returns:

#---------------------------------#

Defining the log return time series data.

Time series of simulated log retunrns.

rY_t = log(simulation_results[,1]/lag(simulation_results[,1], -1))

summary(rY_t)

Removal of the last missing value.

rY_t = na.omit(rY_t)

summary(rY_t)

Strip off dates and create a numeric object.

log_returns_Y_t = coredata(rY_t)

Descriptive statistics of simulated log returns.

basicStats(rY_t, ci = 0.95)

Plot y_t, rY_t.

par(mfrow = c(2,1))

plot(simulation_results[,1], type = "l", ylab = "Y_t", xlab = "Date", main = " ")

title(main = Y[t]~" time series", xlab = "Date", ylab = expression(Y[t]))

plot(rY_t, type = "l", ylab = "rY_t", xlab = "Date", main = " ")

title(main = "Log returns of "~Y[t]~" time series", xlab = "Date", ylab = expression(log(Y[t])))

#--#

Testing the GARCH effect on the residuals:

#--#

Fitting a linear model to the simulated series. No intercept.

model_ols = lm(formula = X1 ~ X2 + X3 - 1, data = simulation_results)

summary(model_ols)

Extract the residuals of the OLS model.

model_residuals = model_ols$residuals

7 APPENDIX 140

Descriptive statistics of the OLS residuals.

basicStats(model_residuals, ci = 0.95)

Plot residuals.

par(mfrow = c(1,1))

plot(model_residuals, col = 1, xlab = "Week", ylab = "Residuals", main = "OLS Residuals Plot")

abline(h = 0,lty = 2, col = 2)

Plot the model residuals.

plot.ts(model_residuals, ylab = expression(epsilon[t]), xlab = "Time Index", col = 1,

lwd = 1, main = "BTC_price ~ BTC_interest + SP500 linear model residuals")

abline(h = 0,lty = 2, col = 2)

Testing for stationarity.

Autocorrelation and partial autocorrelation functions.

par(mfrow = c(2,1))

acf(model_residuals)

pacf(model_residuals)

Augmented Dickey-Fuller Test for non-staionarity of the OLS residuals.

adf.test(model_residuals)

#---#

Testing for the underlying distribution of the OLS residuals, and testing for

normality.

2-sided t-test

t.test(model_residuals)

Skewness test under the hypothesis of normality of the OLS residuals.

skewness.norm.test(model_residuals)

Kurtosis test under the hypothesis of normality of the OLS residuals.

kurtosis.norm.test(model_residuals)

7 APPENDIX 141

Jarque-Bera (JB) test under the hypothesis of normality of the OLS residuals.

jb.norm.test(model_residuals)

#---#

#Q-Q plot of the OLS residuals.

par(mfrow = c(1,1))

qqnorm(model_residuals, pch = 19)

qqline(model_residuals, col = "red", lwd = 2)

#---#

Plot a histogram of the OLS residuals.

par(mfrow = c(1,1))

xfit1 = seq(min(model_residuals), max(model_residuals), length = length(model_residuals))

yfit1 = dnorm(xfit1, mean = mean(model_residuals), sd = sd(model_residuals))

Histogram of OLS residuals.

hist(model_residuals, nclass = 20, probability = TRUE, xlab = "Residuals",

main = "Histogram of residuals")

#lines(density(model_residuals), lwd = 2, col = "red")

#fitting a normal distribution curve with the actual true values of the data.

lines(xfit1, yfit1, lwd = 2, col = "blue")

#---#

#Modelling the residuals with an intercept ARMA(0,0)-GARCH(1,1) errors.

model_spec1 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted1 = ugarchfit(spec = model_spec1 , data = model_residuals)

model_fitted1

#####

#Modelling the residuals with an intercept ARMA(1,0)-GARCH(1,1) errors.

model_spec2 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

7 APPENDIX 142

mean.model = list(armaOrder = c(1,0), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted2 = ugarchfit(spec = model_spec2 , data = model_residuals)

model_fitted2

#####

#Modelling the residuals with an intercept ARMA(0,1)-GARCH(1,1) errors.

model_spec3 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted3 = ugarchfit(spec = model_spec3 , data = model_residuals)

model_fitted3

#####

#Modelling the residuals with an intercept ARMA(1,1)-GARCH(1,1) errors.

model_spec4 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted4 = ugarchfit(spec = model_spec4, data = model_residuals)

model_fitted4

#####

#Modelling the residuals with an intercept ARMA(2,1)-GARCH(1,1) errors.

model_spec5 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted5 = ugarchfit(spec = model_spec5, data = model_residuals)

model_fitted5

#####

7 APPENDIX 143

#Modelling the residuals with an intercept ARMA(1,2)-GARCH(1,1) errors.

model_spec6 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted6 = ugarchfit(spec = model_spec6, data = model_residuals)

model_fitted6

#####

#Modelling the residuals with an intercept ARMA(2,2)-GARCH(1,1) errors.

model_spec7 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,2), include.mean = TRUE), distribution.model = "norm")

#The model fitting

model_fitted7 = ugarchfit(spec = model_spec7, data = model_residuals)

model_fitted7

#--#

Squared residuals analysis:

#--#

model_residuals_vec = matrix(data = cbind(model_residuals), ncol = 1)

model_residuals_vec_sq = model_residuals_vec**2

Testing for stationarity.

Autocorrelation and partial autocorrelation functions.

par(mfrow = c(2,1))

acf(model_residuals_vec_sq)

pacf(model_residuals_vec_sq)

###

code chunk number 4:

###

Consider a regression model with errors modelled by a ARMA(1,1)-GARCH(1,1) process.

We will perform N simulations and determine the best parameter estimates of the

regression coefficients by way of linear shrinkage.

The results will be given below.

7 APPENDIX 144

Number of simulations.

N_sim = 10000

Sample size.

n = 200

Setting the seed value so as to produce pseudorandom results (i.e. replicatable results).

seed_val = 456

set.seed(seed_val)

print(seed_val)

#---------------------------------#

Set mean parameters:

#---------------------------------#

The regression coeffiecients.

beta_1 = 0.9

beta_2 = 0.01

Create vectors to store all the iterations of Y_t, epsilon_t

y_t_vec = matrix(data=NA, nrow=n, ncol=1)

epsilon_t_vec = matrix(data=NA, nrow=n, ncol=1)

sigma_t_2_vec = matrix(data=NA, nrow=n, ncol=1)

#---------------------------------#

Set variance parameters:

#---------------------------------#

The underlying distribution of the model.

eta_t is i.i.d. standard normally distributed (i.e. eta_t ~ N(0,1) for all t).

mean_eta_t = 0

var_eta_t = 1

The ARMA(1,1) parameters of the error model.

c = 1

phi_1 = 0.4

theta_1 = 0.55

7 APPENDIX 145

The GARCH parameters of the error model.

omega = 0.1

alpha_1 = 0.2

gamma_1 = 0.7

sigma_t1_2 = 1

Setting the initial values neccessary for the process.

eta_t_1 = rnorm(1 ,mean_eta_t, var_eta_t)

Note:

Since s = max(p,q,m,n) = max(1,1,1,1) = 1, which means that there only a need for s=1,

intial values.

Therefore epsilon_t_1_squared = sigma_t1_2 = unconditional_variance.

epsilon_t_1 = 1

sigma_t1_2 = 1

sigma_t_2 = 1

#---------------------------------#

N simulation run:

#---------------------------------#

We will simulate N time series.

Each times series has n observations was generated from a ARMA(1,1)-GARCH(1,1).

Intitialize vectors that will store the beta estimates.

We have the true beta estimates.

vec_data_beta1_true = matrix(data = beta_1, nrow = N_sim, ncol = 1)

vec_data_beta2_true = matrix(data = beta_2, nrow = N_sim, ncol = 1)

We have the unrestricted beta estimates.

vec_data_beta1_ur = matrix(data = NA, nrow = 2, ncol = 1)

vec_data_beta2_ur = matrix(data = NA, nrow = 2, ncol = 1)

We have the restricted beta estimates - Option 1.

vec_data_beta1_r_option1 = matrix(data = 1, nrow = N_sim, ncol = 1)

vec_data_beta2_r_option1 = matrix(data = 0, nrow = N_sim, ncol = 1)

7 APPENDIX 146

We have the restricted beta estimates - Option 2.

vec_data_beta1_r_option2 = matrix(data = 0.001, nrow = N_sim, ncol = 1)

vec_data_beta2_r_option2 = matrix(data = 2, nrow = N_sim, ncol = 1)

We have the restricted beta estimates - Option 3.

vec_data_beta1_r_option3 = matrix(data = 0.91, nrow = N_sim, ncol = 1)

vec_data_beta2_r_option3 = matrix(data = 0.02, nrow = N_sim, ncol = 1)

The simulations.

for (i in 1:N_sim){

Set the seed value

seed_val = 455 + i

set.seed(seed_val)

print(seed_val)

Create a vector mu.

mu is vector of means for two variables.

mu_x = c(0,0)

Create a matrix sigma_x that is a variance-covariance matrix of two variables.

This matrix is a positive definite symmetric matrix.

sigma_x = matrix(c(1,0.5,0.5,1), 2,2) #2x2 matrix.

Produces n observations of 2 normally distributed variables with mu and sigma,

as the normal distribution parameters.

X_matrix = mvrnorm(n, mu_x, sigma_x)

Create an empty matrix.

matrix_data = matrix(,nrow = n, ncol = 5)

for (t in 1:n){

sigma_t = sqrt(sigma_t_2)

eta_t = rnorm(1, mean_eta_t , var_eta_t)

epsilon_t = c + ((phi_1)*(epsilon_t_1)) + ((theta_1)*(eta_t_1)) + ((sigma_t)*(eta_t))

sigma_t_2 = omega + ((alpha_1)*(epsilon_t_1**2)) + ((gamma_1)*(sigma_t1_2))

7 APPENDIX 147

if (t > 0){

x_1 = X_matrix[t,1]

x_2 = X_matrix[t,2]

y_t = ((beta_1)*(x_1)) + ((beta_2)*(x_2)) + epsilon_t

epsilon_t_1 = epsilon_t

eta_t_1 = eta_t

sigma_t1_2 = sigma_t_2

#sigma_t = sqrt(sigma_t_2)

}

y_t_vec[[t]] = y_t

epsilon_t_vec[[t]] = epsilon_t

sigma_t_2_vec[[t]] = sigma_t_2

print(paste("t:", t, "Y_T", y_t, "epsilon is :", epsilon_t, "Var_epsilont is :", sigma_t_2))

}

matrix_data = matrix(data =c(y_t_vec,X_matrix[,1],X_matrix[,2],epsilon_t_vec, sigma_t_2_vec),

nrow = n, ncol = 5)

print(head(matrix_data))

#--#

Store the matrix information in a DataFrame:

#--#

Create weekly indicators from 03 April 2016

week = seq(as.Date("2016-04-03"), length = length(y_t_vec), by = "weeks")

Create a data frame with all the weekly data.

all_data = data.frame(matrix_data)

The assignment of the weekly index date to the new data frame and stored in the DataFrame.

simulation_results = xts(all_data, week)

Print the data to view.

head(simulation_results)

Plot y_t

par(mfrow = c(2,1))

plot(simulation_results[,1], type = "l", col = 1, autogrid = FALSE, ylab = "Price",

7 APPENDIX 148

xlab = "Date", main = "Y_t Simulation")

Descriptive statistics of the new data frame.

basicStats(simulation_results, ci = 0.95)

Log-likelihood function.

logLikFun = function(param) {

T = length(simulation_results[,1])

beta_1 = param[1]

beta_2 = param[2]

mu = mean(simulation_results[,4])

epsilon_tt = simulation_results[,1] - (((beta_1)*(simulation_results[,2])) + ((beta_2)*(simulation_results[,3])))

sigma_t_22 = simulation_results[,5]

ll = (-0.5*T*log(2*pi)) - ((0.5)*sum(log(sigma_t_2))) - ((0.5)*(sum(((epsilon_tt-mu)**2)/(sigma_t_22))))

}

Maximum log-likelihood estimation (MLE).

mle_trail = maxLik(logLik = logLikFun, start = c(beta_1 = 0, beta_2 = 0))

summary(mle_trail)

#coef(mle_trail)

vec_data_beta1_ur[[i]] = coef(mle_trail)[1]

vec_data_beta2_ur[[i]] = coef(mle_trail)[2]

}

Matrix of unrestricted beta estimates.

matrix_data_beta_ur = matrix(data = cbind(vec_data_beta1_ur, vec_data_beta2_ur),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_ur))

Matrix of true beta estimates.

matrix_data_beta_true0 = matrix(data = cbind(vec_data_beta1_true, vec_data_beta2_true),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_true0))

7 APPENDIX 149

Option 1 - matrix of restricted estimators to be tested.

matrix_data_beta_r_option1 = matrix(data = cbind(vec_data_beta1_r_option1, vec_data_beta2_r_option1),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_r_option1))

Option 2 - matrix of restricted estimators to be tested.

matrix_data_beta_r_option2 = matrix(data = cbind(vec_data_beta1_r_option2, vec_data_beta2_r_option2),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_r_option2))

Option 3 - matrix of restricted estimators to be tested.

matrix_data_beta_r_option3 = matrix(data = cbind(vec_data_beta1_r_option3, vec_data_beta2_r_option3),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_r_option3))

#--#

Computing the shrinkage estimates - Option 1:

#--#

pi values grid.

pi_values = c(0, 0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 1)

(1-pi) values grid.

one_minus_pi_values = 1-pi_values

Create an empty matrix for the beta shrinkage estimates.

matrix_data_beta_shrinkage1 = matrix(data = NA, nrow = N_sim, ncol = 2)

Create an empty matrix for the beta shrinkage estimate MSE values.

MSE_pi_values_option1 = matrix(data = NA , nrow = length(pi_values), ncol = 3)

Compute the MSE values.

for (i in 1:length(pi_values)){

matrix_data_beta_shrinkage1[,1] = (pi_values[[i]]*matrix_data_beta_ur[,1])+

(one_minus_pi_values[[i]]*matrix_data_beta_r_option1[,1])

matrix_data_beta_shrinkage1[,2] = (pi_values[[i]]*matrix_data_beta_ur[,2])+

(one_minus_pi_values[[i]]*matrix_data_beta_r_option1[,2])

MSE_pi_values_option1[i,1] = pi_values[[i]]

7 APPENDIX 150

MSE_pi_values_option1[i,2] = one_minus_pi_values[[i]]

MSE_pi_values_option1[i,3] = (1/N_sim)*

(sum((t(matrix_data_beta_shrinkage1-matrix_data_beta_true0))%*%

(matrix_data_beta_shrinkage1-matrix_data_beta_true0)))

}

Print the MSE values for each pi value chosen.

print(MSE_pi_values_option1)

#--#

Computing the shrinkage estimates - Option 2:

#--#

pi values grid.

pi_values = c(0, 0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 1)

(1-pi) values grid.

one_minus_pi_values = 1-pi_values

Create an empty matrix for the beta shrinkage estimates.

matrix_data_beta_shrinkage2 = matrix(data = NA, nrow = N_sim, ncol = 2)

Create an empty matrix for the beta shrinkage estimate MSE values.

MSE_pi_values_option2 = matrix(data = NA , nrow = length(pi_values), ncol = 3)

Compute the MSE values.

for (i in 1:length(pi_values)){

matrix_data_beta_shrinkage2[,1] = (pi_values[[i]]*matrix_data_beta_ur[,1])+

(one_minus_pi_values[[i]]*matrix_data_beta_r_option2[,1])

matrix_data_beta_shrinkage2[,2] = (pi_values[[i]]*matrix_data_beta_ur[,2])+

(one_minus_pi_values[[i]]*matrix_data_beta_r_option2[,2])

MSE_pi_values_option2[i,1] = pi_values[[i]]

MSE_pi_values_option2[i,2] = one_minus_pi_values[[i]]

MSE_pi_values_option2[i,3] = (1/N_sim)*

(sum((t(matrix_data_beta_shrinkage2-matrix_data_beta_true0))%*%

(matrix_data_beta_shrinkage2-matrix_data_beta_true0)))

}

7 APPENDIX 151

Print the MSE values for each pi value chosen.

print(MSE_pi_values_option2)

#--#

Computing the shrinkage estimates - Option 3:

#--#

pi values grid.

pi_values = c(0, 0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 1)

(1-pi) values grid.

one_minus_pi_values = 1-pi_values

Create an empty matrix for the beta shrinkage estimates.

matrix_data_beta_shrinkage3 = matrix(data = NA, nrow = N_sim, ncol = 2)

Create an empty matrix for the beta shrinkage estimate MSE values.

MSE_pi_values_option3 = matrix(data = NA , nrow = length(pi_values), ncol = 3)

Compute the MSE values.

for (i in 1:length(pi_values)){

matrix_data_beta_shrinkage3[,1] = (pi_values[[i]]*matrix_data_beta_ur[,1])+

(one_minus_pi_values[[i]]*matrix_data_beta_r_option3[,1])

matrix_data_beta_shrinkage3[,2] = (pi_values[[i]]*matrix_data_beta_ur[,2])+

(one_minus_pi_values[[i]]*matrix_data_beta_r_option3[,2])

MSE_pi_values_option3[i,1] = pi_values[[i]]

MSE_pi_values_option3[i,2] = one_minus_pi_values[[i]]

MSE_pi_values_option3[i,3] = (1/N_sim)*

(sum((t(matrix_data_beta_shrinkage3-matrix_data_beta_true0))%*%

(matrix_data_beta_shrinkage3-matrix_data_beta_true0)))

}

Print the MSE values for each pi value chosen.

print(MSE_pi_values_option3)

#---#

The optimal linear shrinkage estimates - Option 1:

#---#

7 APPENDIX 152

Create an empty matrix for the optimal beta shrinkage estimates.

matrix_data_beta_shrinkage_optimal1 = matrix(data=NA, nrow = N_sim, ncol = 2)

The optimal pi value.

pi_optimal1 = 0.10

The optimal (1-pi) value.

one_minus_pi_optimal1 = 1-pi_optimal1

Store the optimal beta shrinkage estimates.

matrix_data_beta_shrinkage_optimal1[,1] = (pi_optimal1*matrix_data_beta_ur[,1])+

(one_minus_pi_optimal1*matrix_data_beta_r_option1[,1])

matrix_data_beta_shrinkage_optimal1[,2] = (pi_optimal1*matrix_data_beta_ur[,2])+

(one_minus_pi_optimal1*matrix_data_beta_r_option1[,2])

print(head(matrix_data_beta_shrinkage_optimal1))

Descriptive statistics of the optimal beta shrinkage estimates.

basicStats(matrix_data_beta_shrinkage_optimal1, ci = 0.95)

Plot histograms of each of the optimal beta shrinkage estimate's distribution.

Histogram of Beta_1 distribution.

par(mfrow = c(1,1))

hist(matrix_data_beta_shrinkage_optimal1[,1], nclass = 20, probability = TRUE,

xlab = expression(beta[1]), xlim = c(0.8,1.2), ylim = c(0,20), main = '')

lines(density(matrix_data_beta_shrinkage_optimal1[,1]), lwd = 2, col = "red")

Histogram of Beta_2 distribution.

hist(matrix_data_beta_shrinkage_optimal1[,2], nclass = 20, probability = TRUE,

xlab = expression(beta[2]), xlim = c(-0.2,0.2), ylim = c(0,20), main = '')

lines(density(matrix_data_beta_shrinkage_optimal1[,2]), lwd = 2, col = "blue")

Test for normality

Jarque-Bera (JB) test under the hypothesis of normality.

jb.norm.test(matrix_data_beta_shrinkage_optimal1)

Q-Q plot of log returns distribution.

qqnorm(matrix_data_beta_shrinkage_optimal1, pch = 19)

qqline(matrix_data_beta_shrinkage_optimal1, col = "red", lwd = 2)

7 APPENDIX 153

#---#

The optimal linear shrinkage estimates - Option 2:

#---#

Create an empty matrix for the optimal beta shrinkage estimates.

matrix_data_beta_shrinkage_optimal2 = matrix(data=NA, nrow = N_sim, ncol = 2)

The optimal pi value.

pi_optimal2 = 0.95

The optimal (1-pi) value.

one_minus_pi_optimal2 = 1-pi_optimal2

Store the optimal beta shrinkage estimates.

matrix_data_beta_shrinkage_optimal2[,1] = (pi_optimal2*matrix_data_beta_ur[,1])+

(one_minus_pi_optimal2*matrix_data_beta_r_option2[,1])

matrix_data_beta_shrinkage_optimal2[,2] = (pi_optimal2*matrix_data_beta_ur[,2])+

(one_minus_pi_optimal2*matrix_data_beta_r_option2[,2])

print(head(matrix_data_beta_shrinkage_optimal2))

Descriptive statistics of the optimal beta shrinkage estimates.

basicStats(matrix_data_beta_shrinkage_optimal2, ci = 0.95)

Plot histograms of each of the optimal beta shrinkage estimate's distribution.

Histogram of Beta_1 distribution.

par(mfrow = c(1,2))

hist(matrix_data_beta_shrinkage_optimal2[,1], nclass = 50, probability = TRUE,

xlab = expression(beta[1]), xlim = c(-0.4,2.4), ylim = c(0,2), main = '')

lines(density(matrix_data_beta_shrinkage_optimal2[,1]), lwd = 2, col = "red")

Histogram of Beta_2 distribution.

hist(matrix_data_beta_shrinkage_optimal2[,2], nclass = 50, probability = TRUE,

xlab = expression(beta[2]), xlim = c(-1.2,1.5), ylim = c(0,2), main = '')

lines(density(matrix_data_beta_shrinkage_optimal2[,2]), lwd = 2, col = "blue")

Test for normality

Jarque-Bera (JB) test under the hypothesis of normality.

jb.norm.test(matrix_data_beta_shrinkage_optimal2)

7 APPENDIX 154

Q-Q plot of log returns distribution.

qqnorm(matrix_data_beta_shrinkage_optimal2, pch = 19)

qqline(matrix_data_beta_shrinkage_optimal2, col = "red", lwd = 2)

#---#

The optimal linear shrinkage estimates - Option 3:

#---#

Create an empty matrix for the optimal beta shrinkage estimates.

matrix_data_beta_shrinkage_optimal3 = matrix(data=NA, nrow = N_sim, ncol = 2)

The optimal pi value.

pi_optimal3 = 0.01

The optimal (1-pi) value.

one_minus_pi_optimal3 = 1-pi_optimal3

Store the optimal beta shrinkage estimates.

matrix_data_beta_shrinkage_optimal3[,1] = (pi_optimal3*matrix_data_beta_ur[,1])+

(one_minus_pi_optimal3*matrix_data_beta_r_option3[,1])

matrix_data_beta_shrinkage_optimal3[,2] = (pi_optimal3*matrix_data_beta_ur[,2])+

(one_minus_pi_optimal3*matrix_data_beta_r_option3[,2])

print(head(matrix_data_beta_shrinkage_optimal3))

Descriptive statistics of the optimal beta shrinkage estimates.

basicStats(matrix_data_beta_shrinkage_optimal3, ci = 0.95)

Plot histograms of each of the optimal beta shrinkage estimate's distribution.

Histogram of Beta_1 distribution.

par(mfrow = c(1,2))

hist(matrix_data_beta_shrinkage_optimal3[,1], nclass = 50, probability = TRUE,

xlab = expression(beta[1]), xlim = c(0.89,0.93), ylim = c(0,200), main = '')

lines(density(matrix_data_beta_shrinkage_optimal3[,1]), lwd = 2, col = "red")

Histogram of Beta_2 distribution.

hist(matrix_data_beta_shrinkage_optimal3[,2], nclass = 50, probability = TRUE,

xlab = expression(beta[2]), xlim = c(0, 0.04), ylim = c(0,200), main = '')

lines(density(matrix_data_beta_shrinkage_optimal3[,2]), lwd = 2, col = "blue")

7 APPENDIX 155

Test for normality

Jarque-Bera (JB) test under the hypothesis of normality.

jb.norm.test(matrix_data_beta_shrinkage_optimal3)

Q-Q plot of log returns distribution.

qqnorm(matrix_data_beta_shrinkage_optimal3, pch = 19)

qqline(matrix_data_beta_shrinkage_optimal3, col = "red", lwd = 2)

###

code chunk number 5:

###

The preliminary test.

Consider the N simulations that were run and the regression coefficients were estimated for

the unrestricted model.

We will then determine the 100(1-alpha)% confidence interval of each regression coefficient

estimate for different levels of significance and then determine whether the restricted or

unrestricted model will be chosen for each case.

If zero is found within the confidence interval of Beta_2, then we do not reject the null

hypothesis (i.e. restricted model chosen over the unrestricted model).

pi values grid.

Confidence intervals of for different alpha values (i.e. level of significance).

alpha values grid values.

alpha_values = c(0.01, 0.025, 0.1, 0.25, 0.5)

(1-alpha_values) values grid.

one_minus_alpha_values = 1-alpha_values

#---#

The optimal linear shrinkage estimates:

#---#

Create an empty matrix for the confidence interval limits of the unrestricted beta

estimate values.

CI_ll_ul_limits_beta_1_ur = matrix(data = NA , nrow = length(alpha_values), ncol = 3)

CI_ll_ul_limits_beta_2_ur = matrix(data = NA , nrow = length(alpha_values), ncol = 3)

7 APPENDIX 156

Compute the confidence intervals.

for (i in 1:length(alpha_values)){

The mean values of the unrestricted parameter estimates.

mean_beta_1_ur = basicStats(matrix_data_beta_ur, ci = one_minus_alpha_values[[i]])[7,1]

mean_beta_2_ur = basicStats(matrix_data_beta_ur, ci = one_minus_alpha_values[[i]])[7,2]

print(mean_beta_2_ur)

The standard deviation values of the unrestricted parameter estimates.

sd_beta_1_ur = basicStats(matrix_data_beta_ur, ci = one_minus_alpha_values[[i]])[14,1]

sd_beta_2_ur = basicStats(matrix_data_beta_ur, ci = one_minus_alpha_values[[i]])[14,2]

print(sd_beta_2_ur)

The 100(1-alpha/2)quantile values of the unrestricted parameter estimates.

quantile_value = 1 - (alpha_values[[i]]/2)

z_alpha_div_by_2 = qnorm(quantile_value)

The margins of error values of the unrestricted parameter estimates.

moe_beta_1_ur = z_alpha_div_by_2*(sd_beta_1_ur/(sqrt(N_sim)))

moe_beta_2_ur = z_alpha_div_by_2*(sd_beta_2_ur/(sqrt(N_sim)))

print(moe_beta_2_ur)

Lower and upper confidence limits for Beta_1

CI_ll_ul_limits_beta_1_ur[i,1] = one_minus_alpha_values[[i]]*100

CI_ll_ul_limits_beta_1_ur[i,2] = mean_beta_1_ur - moe_beta_1_ur

CI_ll_ul_limits_beta_1_ur[i,3] = mean_beta_1_ur + moe_beta_1_ur

Lower and upper confidence limits for Beta_2

CI_ll_ul_limits_beta_2_ur[i,1] = one_minus_alpha_values[[i]]*100

CI_ll_ul_limits_beta_2_ur[i,2] = mean_beta_2_ur - moe_beta_2_ur

CI_ll_ul_limits_beta_2_ur[i,3] = mean_beta_2_ur + moe_beta_2_ur

}

Print the confidence interval limits of the unrestricted beta estimate values.

print(CI_ll_ul_limits_beta_1_ur)

print(CI_ll_ul_limits_beta_2_ur)

#***#

#---------------------- End ----------------------#

7 APPENDIX 157

#***#

Appendix D.

#***#

This is the relevant R code for the real data

application study of our model in Chapter 5.

#***#

###

code chunk number 1:

###

Set working directory.

setwd("C:/Users/zola/Documents/Zola/Research/Code")

###

code chunk number 2:

###

Install and load relevant packages for our simulations.

install.packages("coinmarketcapr")

install.packages("crypto")

install.packages("MASS")

install.packages("tseries")

install.packages("ggplot2")

install.packages("fBasics")

install.packages("normtest")

install.packages("xts")

install.packages("reshape2")

install.packages("maxLik")

install.packages("caret")

install.packages("quantmod")

install.packages("rugarch")

install.packages("fGarch")

install.packages("stats4")

7 APPENDIX 158

Load the packages.

library(coinmarketcapr)

library(crypto)

library(MASS)

library(tseries)

library(ggplot2)

library(fBasics)

library(normtest)

library(xts)

library(reshape2)

library(maxLik)

library(caret)

library(quantmod)

library(rugarch)

library(fGarch)

library(stats4)

###

code chunk number 3:

###

We want to test whether the prior information of Google searches of Bitcoin

and the S&P 500 index have any impact on the price of Bitcoin provided that

the error model is ARMA-GARCH.

################################

Reading all the relevant data:

################################

#---------------------------------#

Bitcoin price data:

#---------------------------------#

Read the data into R session obatined from Investing.com.

Weekly price data of Bitcoin - BTC/USD.

BTCweek = read.csv("bitcoinweek.csv", header = T)

#---------------------------------#

Google searches data:

7 APPENDIX 159

#---------------------------------#

Weekly Google searches of bitcoin - on a 0-100 scale.

Sourced from Google Trends.

BTCsearches = read.csv("bitcointrend.csv", header = T)

#---------------------------------#

S&P 500 index data:

#---------------------------------#

Weekly price data of the S&P 500 index in USD.

Obtained using "quantmod" package to get daily data and then converted to weekly data.

This data was sourced from Yahoo finance.

Loading the "quantmod" package which is required to obtain the the S&P 500 data

sourced from Yahoo Finance.

require("quantmod")

SP500daily = new.env()

getSymbols("^GSPC", env = SP500daily, src = "yahoo", from = as.Date("2016-03-31"),

to = as.Date("2018-03-25"), auto.assign = TRUE)

GSPC = SP500daily$GSPC

head(GSPC)

#---------------------------------#

All the data:

#---------------------------------#

Dates start from the the next Monday after 31/03/2016 up until 25/03/2018.

nextmon = function(x) 7 * ceiling(as.numeric(x - 5 + 4)/7) + as.Date(7 - 4)

SP500week = xts(aggregate(GSPC, nextmon, tail, 1))

Print the data to view.

head(BTCweek)

head(BTCsearches)

head(SP500week)

Print summary of all data sets.

summary(BTCweek)

summary(BTCsearches)

7 APPENDIX 160

summary(SP500week)

Basic statistics of all variables.

basicStats(BTCweek$Price, ci = 0.95)

basicStats(BTCsearches$Searches, ci = 0.95)

basicStats(Cl(SP500week), ci = 0.95)

Assignment of weekly index date to all data.

Define the weekly index dates.

week = seq(as.Date("2016-04-03"), length = length(BTCweek$Price), by = "weeks")

Create a data frame with all the weekly data.

all_data_data = data.frame(BTC_price = BTCweek$Price, BTC_interest = BTCsearches$Searches, SP500_Price = Cl(SP500week))

The assignment of the weekly index date to the new data frame.

BTC_SP_week = xts(all_data_data, week)

Print the data to view.

head(BTC_SP_week)

Descriptive statistics of the new data frame.

basicStats(BTC_SP_week, ci = 0.95)

plot all_data.

par(mfrow = c(3,1))

plot(BTC_SP_week[,1], type = "l", col = 1, autogrid = FALSE, ylab = "Price", xlab = "Date",

main = "Bitcoin")

plot(BTC_SP_week[,2], type = "l", col = 2, autogrid = FALSE, ylab = "Price", xlab = "Date",

main = "Google Searches of Bitcoin")

plot(BTC_SP_week[,3], type = "l", col = 3, autogrid = FALSE, xy.labels = c("Date", "Price, $"),

main = "S&P 500 Index")

###

code chunk number 4:

###

In order to estimate the appropriate model for the errors, the residuals need to

be isolated. This is done be estimating the mean model using Ordinary Least Squares

(i.e. OLS).

7 APPENDIX 161

We can then easily obtain the residuals of the OLS model and fit an ARMA-GARCH

process to the residuals (i.e. determine the error model).

We fit a linear regression model to the real data. No intercept.

The Bitcoin price being the dependent variable and the 2 independent variables being

the Google searches of Bitcoin and the S&P 500 index.

model_ols = lm(formula = BTC_price ~ BTC_interest + GSPC.Close - 1, data = BTC_SP_week)

summary(model_ols)

Extract the residuals of the OLS model.

model_residuals = model_ols$residuals

Descriptive statistics of the OLS residuals.

basicStats(model_residuals, ci = 0.95)

Plot the model residuals.

par(mfrow = c(1,1))

model_residuals_df = data.frame(model_residuals, week)

model_residuals_df$week <- as.Date(week)

require(scales)

ggplot(model_residuals_df, aes(x = week, y = model_residuals)) +

geom_line(color = "#0B0B0B", size = 2) + xlab("Week, t") +ylab("Residuals, "~epsilon[t])+

geom_hline(yintercept = 0, linetype = "dashed", color = "red", size = 1)+

scale_x_date(labels = date_format("%b %d %Y"), breaks = date_breaks("2 month"))+

scale_y_continuous(limits = c(-7000, 7000), breaks = c(-6000, -4000, -2000, 0, 2000, 4000, 6000))+

ggsave("time_plot.png", height = 4, width = 5)

Plot the model residuals.

plot(model_residuals, xlab = "Week", ylab = expression(epsilon[t]), col = 1, lwd = 1,

main = "OLS Residuals Plot")

abline(h = 0,lty = 2, col = 2)

Testing for stationarity.

Autocorrelation and partial autocorrelation functions.

par(mfrow = c(2,1))

acf(model_residuals)

pacf(model_residuals)

7 APPENDIX 162

Augmented Dickey-Fuller Test for non-staionarity of the intercept model.

adf.test(model_residuals)

#---#

Testing for the underlying distribution of the OLS residuals, and testing for

normality.

2-sided t-test

t.test(model_residuals)

Skewness test under the hypothesis of normality of the OLS residuals.

skewness.norm.test(model_residuals)

Kurtosis test under the hypothesis of normality of the OLS residuals.

kurtosis.norm.test(model_residuals)

Jarque-Bera (JB) test under the hypothesis of normality of the OLS residuals.

jb.norm.test(model_residuals)

#---#

Plot a histogram of the OLS residuals.

par(mfrow = c(1,1))

xfit1 = seq(min(model_residuals), max(model_residuals), length = length(model_residuals))

yfit1 = dnorm(xfit1, mean = mean(model_residuals), sd = sd(model_residuals))

Histogram of OLS residuals.

hist(model_residuals, nclass = 20, probability = TRUE, xlab = "Residuals",

main = "Histogram of residuals")

#lines(density(model_residuals), lwd = 2, col = "red")

#fitting a normal distribution curve with the actual true values of the data.

lines(xfit1, yfit1, lwd = 2, col = "blue")

#---#

#Q-Q plot of the OLS residuals.

7 APPENDIX 163

qqnorm(model_residuals, pch = 19)

qqline(model_residuals, col = "red", lwd = 2)

#--#

Removal of outliers:

#--#

Create a matrix that will store the lower and upper bounds for the outliers.

model_residuals = matrix(data = c(model_residuals), ncol = 1)

model_residuals_outliers_ll = matrix(data = NA, ncol = 1, nrow = 1)

model_residuals_outliers_ul = matrix(data = NA, ncol = 1, nrow = 1)

Determine the outliers based on the formula.

for (i in 1:ncol(model_residuals)){

lower and upper quartiles.

q1 = basicStats(model_residuals, ci = 0.95)[5,i]

q3 = basicStats(model_residuals, ci = 0.95)[6,i]

Interquartile range.

iqr_range = q3-q1

lower outlier limit

model_residuals_outliers_ll[i,1] = q1 - (1.5*(iqr_range))

upper outlier limit

model_residuals_outliers_ul[i,1] = q3 + (1.5*(iqr_range))

}

print(model_residuals_outliers_ll)

print(model_residuals_outliers_ul)

outlier_analysis_matrix = matrix(data = NA, ncol = 1, nrow = nrow(model_residuals))

If any of the elements are greater than their respective outlier upper bounds then

the element is given a value of 1 otherwise is given a zero.

for (i in 1:nrow(model_residuals)){

if ((model_residuals[i] > model_residuals_outliers_ll[1])&&

(model_residuals[i] < model_residuals_outliers_ul[1])){

outlier_analysis_matrix[i,1] = 0

7 APPENDIX 164

} else {

outlier_analysis_matrix[i,1] = 1

}

}

print(outlier_analysis_matrix)

We then determine the index values of the rows that have at least one outlier in

the response or independent variable.

outlier_index_list = matrix(data = NA, ncol = 1)

for (i in 1:nrow(outlier_analysis_matrix)){

if (outlier_analysis_matrix[i] > 0){

outlier_index_list[i] = i

}

}

outlier_index_list2 = na.omit(outlier_index_list)

print(outlier_index_list2)

outlier_index_vec = matrix(data = outlier_index_list2, ncol = 1)

print(outlier_index_vec)

New OLS residuals data frame.

model_residuals_df = data.frame(model_residuals)

model_residuals_new_df = matrix(data = cbind(model_residuals_df[-c(outlier_index_vec),]), ncol = 1)

model_residuals_new_df

Descriptive statistics of the OLS residuals.

basicStats(model_residuals_new_df, ci = 0.95)

Assignment of weekly index date to all data.

Define the weekly index dates.

week2 = seq(as.Date("2016-04-03"), length = length(model_residuals_new_df), by = "weeks")

Plot new residuals.

par(mfrow = c(1,1))

model_residuals_new_df1 = data.frame(model_residuals_new_df, week2)

model_residuals_new_df1$week2 <- as.Date(week2)

require(scales)

7 APPENDIX 165

ggplot(model_residuals_new_df1, aes(x = week2, y = model_residuals_new_df)) +

geom_line(color = "#0B0B0B", size = 2) + xlab("Week, t") +ylab("Residuals, "~epsilon[t])+

geom_hline(yintercept = basicStats(model_residuals_new_df, ci = 0.95)[7,1], linetype = "dashed",

color = "red", size = 1)+

scale_x_date(labels = date_format("%b %d %Y"), breaks = date_breaks("2 month"))+

scale_y_continuous(limits = c(-2000, 2000), breaks = c(-2000, -1000, 0, 1000, 2000))+

ggsave("time_plot_new.png", height = 3, width = 5)

###

code chunk number 5:

###

We then fit different ARMA(p,q)-GARCH(m,n) models to the residuals obtained from the

the OLS fit.

Modelling the residuals with an ARMA(0,0)-GARCH(1,1) errors.

model_spec1 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,0), include.mean = TRUE), distribution.model = "norm")

#The model fitting.

model_fitted1 = ugarchfit(spec = model_spec1 , data = model_residuals_new_df)

model_fitted1

#---#

Modelling the residuals with an ARMA(1,0)-GARCH(1,1) errors.

model_spec2 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,0), include.mean = TRUE), distribution.model = "norm")

The model fitting.

model_fitted2 = ugarchfit(spec = model_spec2 , data = model_residuals_new_df)

model_fitted2

#---#

Modelling the residuals with an ARMA(0,1)-GARCH(1,1) errors.

model_spec3 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(0,1), include.mean = TRUE), distribution.model = "norm")

7 APPENDIX 166

The model fitting.

model_fitted3 = ugarchfit(spec = model_spec3 , data = model_residuals_new_df)

model_fitted3

#---#

Modelling the residuals with an ARMA(1,1)-GARCH(1,1) errors.

model_spec4 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,1), include.mean = TRUE), distribution.model = "norm")

The model fitting.

model_fitted4 = ugarchfit(spec = model_spec4, data = model_residuals_new_df)

model_fitted4

#---#

#Modelling the residuals with an ARMA(2,1)-GARCH(1,1) errors.

model_spec5 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(2,1), include.mean = TRUE), distribution.model = "norm")

#The model fitting.

model_fitted5 = ugarchfit(spec = model_spec5, data = model_residuals_new_df)

model_fitted5

#---#

Modelling the residuals with an ARMA(1,2)-GARCH(1,1) errors.

model_spec6 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

mean.model = list(armaOrder = c(1,2), include.mean = TRUE), distribution.model = "norm")

The model fitting.

model_fitted6 = ugarchfit(spec = model_spec6, data = model_residuals_new_df)

model_fitted6

#---#

Modelling the residuals with an ARMA(2,2)-GARCH(1,1) errors.

model_spec7 = ugarchspec(variance.model = list(model = "sGARCH", garchOrder = c(1,1)),

7 APPENDIX 167

mean.model = list(armaOrder = c(2,2), include.mean = TRUE), distribution.model = "norm")

The model fitting.

model_fitted7 = ugarchfit(spec = model_spec7, data = model_residuals_new_df)

model_fitted7

#---#

It is determined that from the information criterion, that the best fitted model

for the OLS model residuals is ARMA(2,2)-GARCH(1,1).

Modelling the residuals with ARMA(2,2)-GARCH(1,1) errors

#===#

chosen_residuals_model = model_fitted7

#===#

###

code chunk number 6:

###

Consider a regression model with errors modelled by a ARMA(2,2)-GARCH(1,1) process.

We will give the results of on simulation run.

Setting the seed value so as to produce pseudorandom results (i.e. replicatable results).

seed_val = 3216

set.seed(seed_val)

print(seed_val)

#--#

Intializing vectors for the storage of the beta estimates:

#--#

Intitialize vectors that will store the beta estimates.

vec_data_beta1_ur = matrix(data = NA, nrow = 1, ncol = 1)

vec_data_beta2_ur = matrix(data = NA, nrow = 1, ncol = 1)

Vector of OLS model residuals.

#model_residual_vec = matrix(data = c(model_residuals), ncol = 1)

model_residual_vec = model_residuals_new_df

7 APPENDIX 168

Create a matrix storing all the relevant variables being tested.

The Bitcoin price being the dependent variable and the 2 independent variables being

the Google searches of Bitcoin and the S&P 500 index.

all_data_data_matrix = matrix(data = cbind(BTC_SP_week[,1], BTC_SP_week[,2], BTC_SP_week[,3]), ncol = 3)

We then remove the rows that correpond to the outlier_index_list and use the remaining

data for our analysis.

all_data_data_matrix_df = data.frame(all_data_data_matrix)

all_data_data_matrix_new_df = all_data_data_matrix_df[-c(outlier_index_vec),]

all_data_data_matrix_new_df

#--#

No splitting and no shuffling:

#--#

Sample size

n = nrow(all_data_data_matrix_new_df)

#---------------------------------#

Set mean parameters:

#---------------------------------#

Matrix of the 2 predictor variable observations

X_matrix = matrix(data =cbind(all_data_data_matrix_new_df[,2], all_data_data_matrix_new_df[,3]),

nrow = n, ncol = 2)

Response variable information

Y_T_data = matrix(data =cbind(all_data_data_matrix_new_df[,1]), nrow = n, ncol = 1)

Create vectors to store all the iteration of Y_t, epsilon_t

y_t_vec = matrix(data=NA, nrow=n, ncol=1)

epsilon_t_vec = matrix(data = NA, nrow=n, ncol=1)

sigma_t_2_vec = matrix(data = NA, nrow=n, ncol=1)

#---------------------------------#

Set variance parameters:

7 APPENDIX 169

#---------------------------------#

chosen_residuals_model = model_fitted7

residual_model_coefficients = chosen_residuals_model@fit$coef

residual_model_sigma_2 = chosen_residuals_model@fit$var

residual_model_sigma = chosen_residuals_model@fit$sigma

eta_t is i.i.d. standard normally distributed (i.e. eta_t ~ N(0,1) for all t).

mean_eta_t = 0

var_eta_t = 1

eta_t_1 = rnorm(1 ,mean_eta_t, var_eta_t)

eta_t_2 = rnorm(1 ,mean_eta_t, var_eta_t)

c = residual_model_coefficients[1]

phi_1 = residual_model_coefficients[2]

phi_2 = residual_model_coefficients[3]

theta_1 = residual_model_coefficients[4]

theta_2 = residual_model_coefficients[5]

omega = residual_model_coefficients[6]

alpha_1 = residual_model_coefficients[7]

gamma_1 = residual_model_coefficients[8]

Note:

Since s = max(p,q,m,n) = max(2,2,1,1) = 2, which means that there only a need for s=2,

intial values.

Therefore epsilon_t_1_squared = epsilon_t_2_squared = sigma_t1_2 = sigma_t2_2 = unconditional_variance.

#model_residuals = matrix(data = model_residuals, ncol = 1)

epsilon_t_1_and_2 = tail(model_residual_vec, n = 2)

epsilon_t_1 = epsilon_t_1_and_2[2]

epsilon_t_2 = epsilon_t_1_and_2[1]

unconditional_variance = sum(epsilon_t_1_and_2**2)

sigma_t1_2 = unconditional_variance

#sigma_t2_2 = unconditional_variance

7 APPENDIX 170

sigma_t_2 = unconditional_variance

Create an empty matrix

matrix_data = matrix(,nrow = n, ncol = 5)

for (t in 1:n){

sigma_t = sqrt(sigma_t_2)

eta_t = rnorm(1, mean_eta_t, var_eta_t)

epsilon_t = c + ((phi_1)*(epsilon_t_1)) +((phi_2)*(epsilon_t_2)) + ((theta_1)*(eta_t_1)) +

((theta_2)*(eta_t_2)) + ((sigma_t)*(eta_t))

sigma_t_2 = omega + ((alpha_1)*(epsilon_t_1**2)) + ((gamma_1)*(sigma_t1_2))

if (t > 0){

y_t = Y_T_data[t,1]

x_1 = X_matrix[t,1]

x_2 = X_matrix[t,2]

epsilon_t_2 = epsilon_t_1

epsilon_t_1 = epsilon_t

eta_t_2 = eta_t_1

eta_t_1 = eta_t

sigma_t1_2 = sigma_t_2

}

y_t_vec[[t]] = y_t

epsilon_t_vec[[t]] = epsilon_t

sigma_t_2_vec[[t]] = sigma_t_2

print(paste("t:", t, "Y_T", y_t, "epsilon is :", epsilon_t, "Var_epsilont is :", sigma_t_2))

}

matrix_data = matrix(data = cbind(y_t_vec,X_matrix[,1],X_matrix[,2],epsilon_t_vec, sigma_t_2_vec),

nrow = n, ncol = 5)

print(head(matrix_data))

Create weekly indicators from 03 April 2016.

week = seq(as.Date("2016-04-03"), length = length(y_t_vec), by = "weeks")

7 APPENDIX 171

Create a data frame with all the weekly data.

all_data = data.frame(matrix_data)

The assignment of the weekly index date to the new data frame and stored in the DataFrame.

new_fitted_results = xts(all_data, week)

Print the data to view.

head(new_fitted_results)

Descriptive statistics of the new data frame.

basicStats(new_fitted_results, ci = 0.95)

Plot y_t, epsilon_t, sigma_t_2

par(mfrow = c(3,1))

plot(new_fitted_results[,1], type = "l", ylab = "Y_t", xlab = "Date", main = " ")

plot(new_fitted_results[,4], type = "l", ylab = "epsilon_t", xlab = "Date", main = " ")

plot(new_fitted_results[,5], type = "l", ylab = "sigma_t_2", xlab = "Date", main = " ")

new_fitted_results_matrix = matrix(data = new_fitted_results, ncol = 5)

Log-likelihood function.

logLikFun = function(beta_1, beta_2) {

T = length(new_fitted_results_matrix[,1])

#beta_1 = param[1]

#beta_2 = param[2]

mu = mean(new_fitted_results_matrix[,4])

epsilon_tt = new_fitted_results_matrix[,1] - (((beta_1)*(new_fitted_results_matrix[,2])) + ((beta_2)*(new_fitted_results_matrix[,3])))

sigma_t_22 = new_fitted_results_matrix[,5]

ll = -((-0.5*T*log(2*pi)) - ((0.5)*sum(log(sigma_t_2))) - ((0.5)*(sum(((epsilon_tt-mu)**2)/(sigma_t_22)))))

}

Maximum log-likelihood estimation.

#mle_trail = maxLik(logLik = logLikFun, start = c(beta_1 = -500, beta_2 = -500))

mle_trail = mle(minuslogl = logLikFun, start = list(beta_1 = 0, beta_2 = 0), method = "BFGS")

print(summary(mle_trail))

7 APPENDIX 172

Unrestricted regression coefficients estimated from the model.

estimate_beta1 = coef(mle_trail)[1]

estimate_beta2 = coef(mle_trail)[2]

vec_data_beta1_ur = estimate_beta1

vec_data_beta2_ur = estimate_beta2

matrix_data_beta_ur_sim_one = matrix(data =c(vec_data_beta1_ur, vec_data_beta2_ur), ncol = 2)

print(matrix_data_beta_ur_sim_one)

#***#

The estimates produced will be our true estimates.

true_parameter_estimates = matrix_data_beta_ur_sim_one

print(true_parameter_estimates)

#**#

###

code chunk number 7:

###

In the iterative process we will estimate each of the regression coefficients,

N times.

We will use the fitted ARMA(1,1)-GARCH(1,1) estimates of the residuals in

order to estimate the regression coefficients.

#---------------------------------#

N simulation run:

#---------------------------------#

Number of simulations.

N_sim = 10000

#--#

Intializing vectors for the storage of the beta estimates:

#--#

Intitialize vectors that will store the beta estimates.

We have the true beta estimates.

7 APPENDIX 173

true_beta_1 = true_parameter_estimates[,1]

true_beta_2 = true_parameter_estimates[,2]

vec_data_beta1_true = matrix(data = true_beta_1, nrow = N_sim, ncol = 1)

vec_data_beta2_true = matrix(data = true_beta_2, nrow = N_sim, ncol = 1)

vec_data_beta1_ur = matrix(data = NA, nrow = N_sim, ncol = 1)

vec_data_beta2_ur = matrix(data = NA, nrow = N_sim, ncol = 1)

for (i in 1:N_sim){

Set the seed value which changes with each iteration.

seed_val = 455 + i

set.seed(seed_val)

print(seed_val)

Vector of OLS model residuals.

model_residual_vec = model_residuals_new_df

Create a matrix storing all the relevant variables being tested.

The Bitcoin price being the dependent variable and the 2 independent variables being

the Google searches of Bitcoin and the S&P 500 index.

all_data_data_matrix = matrix(data = cbind(all_data_data_matrix_new_df[,1],

all_data_data_matrix_new_df[,2],

all_data_data_matrix_new_df[,3]), ncol = 3)

#--#

Splitting data into training and test sets:

#--#

Split data into one 70/30 split - 70% Training and 30% Testing.

First we reshuffled the information.

shuffled_rows = sample(nrow(all_data_data_matrix), replace = TRUE)

shuffled_BTC_SP_week = all_data_data_matrix[shuffled_rows,]

shuffled_model_residuals = model_residual_vec[shuffled_rows,]

Now we can do the splitting.

split = round(nrow(shuffled_BTC_SP_week)*0.70)

train_shuffled_BTC_SP_week = shuffled_BTC_SP_week[1:split,]

7 APPENDIX 174

test_shuffled_BTC_SP_week = shuffled_BTC_SP_week[(split+1):nrow(shuffled_BTC_SP_week),]

shuffled_model_residuals = matrix(data = shuffled_model_residuals, ncol = 1)

split1 = round(nrow(shuffled_model_residuals)*0.70)

train_shuffled_model_residuals = matrix(data = shuffled_model_residuals[1:split1,], ncol = 1)

test_shuffled_model_residuals = matrix(data =

shuffled_model_residuals[(split1+1):nrow(shuffled_model_residuals),], ncol = 1)

Sample size

#n = nrow(all_data_data[,1])

n = nrow(train_shuffled_BTC_SP_week)

#---------------------------------#

Set mean parameters:

#---------------------------------#

Matrix of the 2 predictor variable observations

X_matrix = matrix(data =cbind(train_shuffled_BTC_SP_week[,2], train_shuffled_BTC_SP_week[,3]),

nrow = n, ncol = 2)

Response variable information

Y_T_data = matrix(data =c(train_shuffled_BTC_SP_week[,1]), nrow = n, ncol = 1)

Create vectors to store all the iteration of Y_t, epsilon_t

y_t_vec = matrix(data=NA, nrow=n, ncol=1)

epsilon_t_vec = matrix(data=NA, nrow=n, ncol=1)

sigma_t_2_vec = matrix(data=NA, nrow=n, ncol=1)

#---------------------------------#

Set variance parameters:

#---------------------------------#

chosen_residuals_model = model_fitted7

residual_model_coefficients = chosen_residuals_model@fit$coef

residual_model_sigma_2 = chosen_residuals_model@fit$var

residual_model_sigma = chosen_residuals_model@fit$sigma

eta_t is i.i.d. standard normally distributed (i.e. eta_t ~ N(0,1) for all t).

7 APPENDIX 175

mean_eta_t = 0

var_eta_t = 1

eta_t_1 = rnorm(1 ,mean_eta_t, var_eta_t)

eta_t_2 = rnorm(1 ,mean_eta_t, var_eta_t)

c = residual_model_coefficients[1]

phi_1 = residual_model_coefficients[2]

phi_2 = residual_model_coefficients[3]

theta_1 = residual_model_coefficients[4]

theta_2 = residual_model_coefficients[5]

omega = residual_model_coefficients[6]

alpha_1 = residual_model_coefficients[7]

gamma_1 = residual_model_coefficients[8]

Note:

Since s = max(p,q,m,n) = max(1,1,1,1) = 1, which means that there only a need for s=1,

intial values.

Therefore epsilon_t_1_squared = sigma_t1_2 = unconditional_variance.

epsilon_t_1_and_2 = tail(train_shuffled_model_residuals, n = 2)

epsilon_t_1 = epsilon_t_1_and_2[2]

epsilon_t_2 = epsilon_t_1_and_2[1]

unconditional_variance = sum(epsilon_t_1_and_2**2)

sigma_t1_2 = unconditional_variance

#sigma_t2_2 = unconditional_variance

sigma_t_2 = unconditional_variance

Create an empty matrix

matrix_data = matrix(,nrow = n, ncol = 5)

for (t in 1:n){

sigma_t = sqrt(sigma_t_2)

eta_t = rnorm(1, mean_eta_t, var_eta_t)

7 APPENDIX 176

epsilon_t = c + ((phi_1)*(epsilon_t_1)) +((phi_2)*(epsilon_t_2)) + ((theta_1)*(eta_t_1)) +

((theta_2)*(eta_t_2)) + ((sigma_t)*(eta_t))

sigma_t_2 = omega + ((alpha_1)*(epsilon_t_1**2)) + ((gamma_1)*(sigma_t1_2))

if (t > 0){

y_t = Y_T_data[t,1]

x_1 = X_matrix[t,1]

x_2 = X_matrix[t,2]

epsilon_t_2 = epsilon_t_1

epsilon_t_1 = epsilon_t

eta_t_2 = eta_t_1

eta_t_1 = eta_t

sigma_t1_2 = sigma_t_2

}

y_t_vec[[t]] = y_t

epsilon_t_vec[[t]] = epsilon_t

sigma_t_2_vec[[t]] = sigma_t_2

print(paste("t:", t, "Y_T", y_t, "epsilon is :", epsilon_t, "Var_epsilont is :", sigma_t_2))

}

matrix_data = matrix(data =cbind(y_t_vec,X_matrix[,1],X_matrix[,2],epsilon_t_vec, sigma_t_2_vec),

nrow = n, ncol = 5)

print(head(matrix_data))

Create weekly indicators from 03 April 2016.

week = seq(as.Date("2016-04-03"), length = length(y_t_vec), by = "weeks")

Create a data frame with all the weekly data

all_data = data.frame(matrix_data)

The assignment of the weekly index date to the new data frame and stored in the DataFrame.

new_fitted_results = xts(all_data, week)

Print the data to view it.

7 APPENDIX 177

head(new_fitted_results)

Descriptive statistics of the new data frame.

basicStats(new_fitted_results, ci = 0.95)

Plot y_t, epsilon_t, sigma_t_2.

par(mfrow = c(3,1))

plot(new_fitted_results[,1], type = "l", ylab = "Y_t", xlab = "Date", main = " ")

plot(new_fitted_results[,4], type = "l", ylab = "epsilon_t", xlab = "Date", main = " ")

plot(new_fitted_results[,5], type = "l", ylab = "sigma_t_2", xlab = "Date", main = " ")

new_fitted_results_matrix = matrix(data = new_fitted_results, ncol = 5)

Log-likelihood function.

logLikFun = function(beta_1, beta_2){

T = length(new_fitted_results_matrix[,1])

#beta_1 = param[1]

#beta_2 = param[2]

mu = mean(new_fitted_results_matrix[,4])

epsilon_tt = new_fitted_results_matrix[,1] - (((beta_1)*(new_fitted_results_matrix[,2]))+

((beta_2)*(new_fitted_results_matrix[,3])))

sigma_t_22 = new_fitted_results_matrix[,5]

ll = -((-0.5*T*log(2*pi))-((0.5)*sum(log(sigma_t_2))) - ((0.5)*(sum(((epsilon_tt-mu)**2)/(sigma_t_22)))))

}

Maximum log-likelihood estimation (MLE).

#mle_trail = maxLik(logLik = logLikFun, start = c(beta_1 = 0, beta_2 = 0))

mle_trail = mle(minuslogl = logLikFun, start = list(beta_1 = 0, beta_2 = 0), method = "BFGS")

print(summary(mle_trail))

Unrestricted regression coefficients estimated from the model.

estimate_beta1 = coef(mle_trail)[1]

estimate_beta2 = coef(mle_trail)[2]

vec_data_beta1_ur[[i]] = estimate_beta1

vec_data_beta2_ur[[i]] = estimate_beta2

7 APPENDIX 178

matrix_data_beta = matrix(data =cbind(estimate_beta1, estimate_beta2), ncol = 2)

print(head(matrix_data_beta))

}

All the estimates after N_sim iterations.

matrix_data_beta_ur_model = matrix(data =cbind(vec_data_beta1_ur, vec_data_beta2_ur),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_ur_model))

Descriptive statistics of the beta estimates.

basicStats(matrix_data_beta_ur_model, ci = 0.95)

Check for any error warnings.

warnings()

#--#

Range of the unrestricted regression coefficient estimates.

Range of Beta_1 unrestricted estimates.

beta1_ur_range = basicStats(matrix_data_beta_ur_model, ci = 0.95)[4,1] -

basicStats(matrix_data_beta_ur_model, ci = 0.95)[3,1]

beta1_ur_range

Range of Beta_2 unrestricted estimates.

beta2_ur_range = basicStats(matrix_data_beta_ur_model, ci = 0.95)[4,2] -

basicStats(matrix_data_beta_ur_model, ci = 0.95)[3,2]

beta2_ur_range

#--#

Interquartile range (IQR) is a measure of variability.

IQR = Q3-Q1

IQR of Beta_1 unrestricted estimates.

beta1_ur_IQR = basicStats(matrix_data_beta_ur_model, ci = 0.95)[6,1] -

basicStats(matrix_data_beta_ur_model, ci = 0.95)[5,1]

beta1_ur_IQR

7 APPENDIX 179

IQR of Beta_2 unrestricted estimates.

beta2_ur_IQR = basicStats(matrix_data_beta_ur_model, ci = 0.95)[6,2] -

basicStats(matrix_data_beta_ur_model, ci = 0.95)[5,2]

beta2_ur_IQR

#--#

Plot histograms of each of the beta estimate's distribution.

Histogram of Beta_1 distribution.

par(mfrow = c(1,1))

xfit1 = seq(min(matrix_data_beta_ur_model[,1]), max(matrix_data_beta_ur_model[,1]),

length = length(matrix_data_beta_ur_model[,1]))

yfit1 = dnorm(xfit1, mean = mean(matrix_data_beta_ur_model[,1]),

sd = sd(matrix_data_beta_ur_model[,1]))

Histogram of the unrestricted Beta_1 estimates distribution.

hist(matrix_data_beta_ur_model[,1], nclass = 100, probability = TRUE, xlab = expression(beta[1]),

main = "")

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit1, yfit1, lwd = 2, col = "red")

#--#

Histogram of Beta_2 distribution.

par(mfrow = c(1,1))

xfit2 = seq(min(matrix_data_beta_ur_model[,2]), max(matrix_data_beta_ur_model[,2]),

length = length(matrix_data_beta_ur_model[,2]))

yfit2 = dnorm(xfit2, mean = mean(matrix_data_beta_ur_model[,2]),

sd = sd(matrix_data_beta_ur_model[,2]))

Histogram of the unrestricted Beta_2 estimates distribution.

hist(matrix_data_beta_ur_model[,2], nclass = 100, probability = TRUE, xlab = expression(beta[2]),

main = "")

Fitting a normal distribution curve with the actual true values of the data.

lines(xfit2, yfit2, lwd = 2, col = "purple")

7 APPENDIX 180

###

code chunk number 8:

###

The preliminary test.

Consider the N bootstrapped samples that were used to estimate the regression coefficients

for the unrestricted model.

We will then determine the 100(1-alpha)% confidence interval of each regression coefficient

estimate for different levels of significance and then determine whether the restricted or

unrestricted model will be chosen for each case.

If zero is found within the confidence interval of Beta_2, then we do not reject the null

hypothesis (i.e. restricted model chosen over the unrestricted model).

pi values grid.

Confidence intervals of for different alpha values (i.e. level of significance).

alpha values grid values.

alpha_values = c(0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5)

(1-alpha_values) values grid.

one_minus_alpha_values = 1-alpha_values

Create an empty matrix for the confidence interval limits of the unrestricted beta estimate values.

CI_ll_ul_limits_beta_1_ur = matrix(data = NA , nrow = length(alpha_values), ncol = 3)

CI_ll_ul_limits_beta_2_ur = matrix(data = NA , nrow = length(alpha_values), ncol = 3)

Compute the confidence intervals.

for (i in 1:length(alpha_values)){

The mean values of the unrestricted parameter estimates.

mean_beta_1_ur = basicStats(matrix_data_beta_ur_model, ci = one_minus_alpha_values[[i]])[7,1]

mean_beta_2_ur = basicStats(matrix_data_beta_ur_model, ci = one_minus_alpha_values[[i]])[7,2]

print(mean_beta_2_ur)

The standard deviation values of the unrestricted parameter estimates.

sd_beta_1_ur = basicStats(matrix_data_beta_ur_model, ci = one_minus_alpha_values[[i]])[14,1]

sd_beta_2_ur = basicStats(matrix_data_beta_ur_model, ci = one_minus_alpha_values[[i]])[14,2]

print(sd_beta_2_ur)

The 100(1-alpha/2)quantile values of the unrestricted parameter estimates.

quantile_value = 1 - (alpha_values[[i]]/2)

7 APPENDIX 181

z_alpha_div_by_2 = qnorm(quantile_value)

The margins of error values of the unrestricted parameter estimates.

moe_beta_1_ur = z_alpha_div_by_2*(sd_beta_1_ur/(sqrt(N_sim)))

moe_beta_2_ur = z_alpha_div_by_2*(sd_beta_2_ur/(sqrt(N_sim)))

print(moe_beta_2_ur)

Lower and upper confidence limits for Beta_1

CI_ll_ul_limits_beta_1_ur[i,1] = one_minus_alpha_values[[i]]*100

CI_ll_ul_limits_beta_1_ur[i,2] = mean_beta_1_ur - moe_beta_1_ur

CI_ll_ul_limits_beta_1_ur[i,3] = mean_beta_1_ur + moe_beta_1_ur

Lower and upper confidence limits for Beta_2

CI_ll_ul_limits_beta_2_ur[i,1] = one_minus_alpha_values[[i]]*100

CI_ll_ul_limits_beta_2_ur[i,2] = mean_beta_2_ur - moe_beta_2_ur

CI_ll_ul_limits_beta_2_ur[i,3] = mean_beta_2_ur + moe_beta_2_ur

}

Print the confidence interval limits of the unrestricted beta estimate values.

print(CI_ll_ul_limits_beta_1_ur)

print(CI_ll_ul_limits_beta_2_ur)

###

code chunk number 9:

###

#--#

Matrices used to compute the MSEs:

#--#

We demonstrate linear shrinakage estimation on the real data.

Matrix of true beta estimates.

We have the true beta estimates.

true_beta_1 = matrix_data_beta_ur_sim_one[,1]

true_beta_2 = matrix_data_beta_ur_sim_one[,2]

vec_data_beta1_true = matrix(data = true_beta_1, nrow = N_sim, ncol = 1)

vec_data_beta2_true = matrix(data = true_beta_2, nrow = N_sim, ncol = 1)

matrix_data_beta_true0 = matrix(data = cbind(vec_data_beta1_true, vec_data_beta2_true),

7 APPENDIX 182

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_true0))

Matrix of unrestricted beta estimates.

matrix_data_beta_ur = matrix(data = cbind(vec_data_beta1_ur, vec_data_beta2_ur),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_ur))

We have the restricted beta estimates.

vec_data_beta1_r = matrix(data = cbind(vec_data_beta1_ur), nrow = N_sim, ncol = 1)

vec_data_beta2_r = matrix(data = 0, nrow = N_sim, ncol = 1)

Matrix of restricted estimators to be tested.

matrix_data_beta_r = matrix(data = cbind(vec_data_beta1_r, vec_data_beta2_r),

nrow = N_sim, ncol = 2)

print(head(matrix_data_beta_r))

#--#

Computing the shrinkage estimates:

#--#

pi values grid.

pi_values = c(0, 0.01, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,

0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 1)

(1-pi) values grid.

one_minus_pi_values = 1-pi_values

Create an empty matrix for the beta shrinkage estimates.

matrix_data_beta_shrinkage = matrix(data = NA, nrow = N_sim, ncol = 2)

Create an empty matrix for the beta shrinkage estimate MSE values.

MSE_pi_values= matrix(data = NA , nrow = length(pi_values), ncol = 3)

Compute the MSE values.

for (i in 1:length(pi_values)){

matrix_data_beta_shrinkage[,1] = ((pi_values[[i]]*matrix_data_beta_ur[,1])+

(one_minus_pi_values[[i]]*matrix_data_beta_r[,1]))

matrix_data_beta_shrinkage[,2] = ((pi_values[[i]]*matrix_data_beta_ur[,2])+

7 APPENDIX 183

(one_minus_pi_values[[i]]*matrix_data_beta_r[,2]))

MSE_pi_values[i,1] = pi_values[[i]]

MSE_pi_values[i,2] = one_minus_pi_values[[i]]

MSE_pi_values[i,3] = (1/N_sim)*

(sum((t(matrix_data_beta_shrinkage-matrix_data_beta_true0))%*%

(matrix_data_beta_shrinkage-matrix_data_beta_true0)))

}

Print the MSE values for each pi value chosen.

print(MSE_pi_values)

#***#

#---------------------- End ----------------------#

#***#

Bibliography

[1] K. Aas and I. H. Ha�. The generalized hyperbolic skew Student-t distribution. Journal of Financial Econo-

metrics, 4(2):275�309, 2006.

[2] A. Aknouche and A. Bibi. Quasi-maximum likelihood estimation of periodic GARCH and periodic ARMA-

GARCH processes. Journal of Time Series Analysis, 30(1):19�46, 2009.

[3] L. Bachelier. Theory of speculation (1900). The Random Character of Stock Market Prices, 4(1):91�193, 1964.

[4] T. A. Bancroft. On biases in estimation due to the use of preliminary tests of signi�cance. The Annals of

Mathematical Statistics, 15(2):190�204, 1944.

[5] O. Barndor�-Nielsen. Exponentially decreasing distributions for the logarithm of particle size. Proceedings of

the Royal Society of London A, 353(1674):401�419, 1977.

[6] O. E. Barndor�-Nielsen and P. Blæsild. Hyperbolic distributions and rami�cations: contributions to theory

and application. In C. Taillie, P. Patil, and B. A. Baldessari, editors, Statistical distributions in scienti�c work,

volume 4, pages 19�44. Springer, 1981.

[7] A. K. Bera and M. L. Higgins. ARCH models: properties, estimation and testing. Journal of Economic

Surveys, 7(4):305�366, 1993.

[8] T. Bollerslev. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3):307�

327, 1986.

[9] T. Bollerslev. A conditionally heteroskedastic time series model for speculative prices and rates of return. The

Review of Economics and Statistics, 69(3):542�547, 1987.

[10] J. Bouoiyour, R. Selmi, A. K. Tiwari, O. R. Olayeni, et al. What drives Bitcoin price? Economics Bulletin,

36(2):843�850, 2016.

[11] G. E. P. Box and G. M. Jenkins. Time series analysis, volume 1. John Wiley & Sons, 1970.

[12] J. Chu, S. Chan, S. Nadarajah, and J. Osterrieder. GARCH modelling of cryptocurrencies. Journal of Risk

and Financial Management, 10(17):1�15, 2017.

184

BIBLIOGRAPHY 185

[13] J. Chu, S. Nadarajah, and S. Chan. Statistical analysis of the exchange rate of Bitcoin. PLoS ONE,

10(7):e0133678, 2015.

[14] R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Com-

puting, Vienna, Austria, 2018.

[15] A. de Moivre. The doctrine of chances. In Annotated Readings in the History of Statistics, pages 32�36.

Springer, 2001.

[16] R. Engle, D. M. Lilien, and R. P. Robins. Estimating time-varying risk premia in the term structure the

ARCH-M model. Econometrica: Journal of the Econometric Society, 55(2):391�407, 1987.

[17] R. F. Engle. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom

in�ation. Econometrica: Journal of the Econometric Society, pages 987�1007, 1982.

[18] C. Fernández and M. F. J. Steel. On Bayesian modeling of fat tails and skewness. Journal of the American

Statistical Association, 93(441):359�371, 1998.

[19] C. Francq and J. M. Zakoian. Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes.

Bernoulli, 10(4):605�637, 2004.

[20] C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientium, volume 7. Perthes

et Besser, 1809.

[21] I. Gavrilov and R. Pusev. normtest: Tests for Normality, 2014. R package version 1.1.

[22] A. Ghalanos. rugarch: Univariate GARCH models., 2018. R package version 1.4-0.

[23] L. R. Glosten, R. Jagannathan, and D. E. Runkle. On the relation between the expected value and the volatility

of the nominal excess return on stocks. The Journal of Finance, 48(5):1779�1801, 1993.

[24] W. S. Gösset. The probable error of a mean. Biometrika, 6:1�25, 1908.

[25] C. W. J. Granger and R. Joyeux. An introduction to long-memory time series models and fractional di�erencing.

Journal of Time Series Analysis, 1(1):15�29, 1980.

[26] J. D. Hamilton. Time Series Analysis, volume 2. Princeton University Press, USA, 1994.

[27] A. Henningsen and O. Toomet. maxLik: A package for maximum likelihood estimation in R. Computational

Statistics, 26(3):443�458, 2011.

[28] J. R. M. Hosking. Fractional di�erencing. Biometrika, 68(1):165�176, 1981.

[29] S. Hossain and M. Ghahramani. Shrinkage estimation of linear regression models with GARCH errors. Journal

of Statistical Theory and Applications, 15(4):405�423, 2016.

[30] N. L. Johnson. Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2):149�176,

1949.

BIBLIOGRAPHY 186

[31] P. Katsiampa. Volatility estimation for Bitcoin: a comparison of GARCH models. Economics Letters, 158:3�6,

2017.

[32] B. Klein. The demand for quality-adjusted cash balances: price uncertainty in the US demand for money fun.

Journal of Political Economy, 85:691�715, 1977.

[33] S.-W. Lee and B. E. Hansen. Asymptotic theory for the GARCH (1, 1) quasi-maximum likelihood estimator.

Econometric Theory, 10(1):29�52, 1994.

[34] D. Luethi and W. Breymann. ghyp: A package on Generalized Hyperbolic Distribution and its special cases,

2016. R package version 1.5.7.

[35] R. L. Lumsdaine. Asymptotic properties of quasi-maximum likelihood estimator in GARCH (1, 1) and IGARCH

(II) models. Unpublished Manuscript, Princeton University and National Bureau of Economic Research, 1991.

[36] B. B. Mandelbrot. The variation of certain speculative prices. The Journal of Business, 36:394�394, 1963.

[37] S. B. Messaoud and C. Aloui. Measuring risk of portfolio: GARCH-copula model. Journal of Economic

Integration, 30(1):172�205, March 2015.

[38] D. B. Nelson. Conditional heteroskedasticity in asset returns: a new approach. Econometrica: Journal of the

Econometric Society, pages 347�370, 1991.

[39] B. Pfa� and A. McNeil. QRM: Provides R�language code to examine quantitative risk management concepts,

2016. R package version 0.4-13.

[40] M. Polasik, A. I. Piotrowska, T. P. Wisniewski, R. Kotkowski, and G. Lightfoot. Price �uctuations and the

use of Bitcoin: an empirical inquiry. International Journal of Electronic Commerce, 20(1):9�49, 2015.

[41] K. Prause. The Generalized Hyperbolic model: estimation, �nancial derivatives and risk measures. PhD thesis,

Verlag nicht ermittelbar, 1999.

[42] R. Rabemananjara and J. M. Zakoian. Threshold ARCH models and asymmetries in volatility. Journal of

Applied Econometrics, 8(1):31�49, 1993.

[43] J. S. Rao and S. Debasis. Linear models: an integrated approach, volume 6. World Scienti�c, 2003.

[44] R. Reider. Volatility forecasting I: GARCH models. New York, 2009.

[45] R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape. Journal of

the Royal Statistical Society: Series C (Applied Statistics), 54(3):507�554, 2005.

[46] J. A. Ryan and J. M. Ulrich. quantmod: Quantitative Financial Modelling Framework, 2019. R package version

0.4-15.

[47] A. K. Md. E. Saleh. Theory of preliminary test and Stein-type estimation with applications, volume 517. John

Wiley & Sons, 2006.

BIBLIOGRAPHY 187

[48] A. K. Md. E. Saleh, M. Arashi, and B. M. Golam Kibria. Theory of ridge regression estimation with applications,

volume 285. John Wiley & Sons, USA, 2019.

[49] A. K. Md. E. Saleh, M. Arashi, and S. M. M. Tabatabaey. Statistical inference for models with multivariate

t-distributed errors. John Wiley & Sons, Inc, New Jersey, 2014.

[50] D. J. Scott, D. Würtz, C. Dong, and T. T. Tran. Moments of the generalized hyperbolic distribution. Compu-

tational Statistics, 26(3):459�476, 2011.

[51] Y. Sovbetov. Factors in�uencing cryptocurrency prices: evidence from Bitcoin, Ethereum, Dash, Litcoin, and

Monero. Journal of Economics and Financial Analysis, 2(2):1�27, 2018.

[52] M. T. Subbotin. On the law of frequency of error. Mathematics Collection, 31(2):296�301, 1923.

[53] trends.google.com. Google Trends, 2019. Online; accessed 19-July-2019.

[54] R. S. Tsay. Analysis of Financial Time Series, volume 543. John Wiley & Sons, 2010.

[55] F. Van den Bossche, G. Wets, and T. Brijs. A regression model with ARIMA errors to investigate the frequency

and severity of road tra�c accidents. Steunpunt Verkeersveiligheid, 2004.

[56] J. Vent. crypto: Cryptocurrency market data, 2018. R package version 1.0.2.

[57] N. Y. Vo and G. Xu. The volatility of Bitcoin returns and its correlation to �nancial markets. In 2017

International Conference on Behavioral, Economic, Socio-cultural Computing (BESC), pages 1�6. IEEE, 2017.

[58] G. Walker. On periodicity in series of related terms. Proceedings of the Royal Society of London, 131(818):518�

532, 1931.

[59] A. A. Weiss. Asymptotic theory for ARCH models: estimation and testing. Econometric Theory, 2(1):107�131,

1986.

[60] P. Whittle. Hypothesis testing in time series analysis. PhD thesis, Uppsala University, 1951. Almquist and

Wiksell, Uppsala.

[61] H. Wold. Causality and econometrics. Econometrica: Journal of the Econometric Society, pages 162�177,

1954.

[62] D. Wuertz, T. Setz, Y. Chalabi, C. Boudt, P. Chausse, and M. Miklovac. fGarch: Rmetrics - Autoregressive

Conditional Heteroskedastic Modelling, 2017. R package version 3042.83.

[63] D. Yermack. Is Bitcoin a real currency? An economic appraisal. In Handbook of digital currency, pages 31�43.

Elsevier, 2015.

[64] G. U. Yule. On a method of investigating periodicities in disturbed series, with special reference to Wolfer's

sunspot numbers. Philosophical Transactions of the Royal Society of London Series A, 226:267�298, 1927.

[65] J. M. Zakoian. Threshold heteroskedastic models. Journal of Economic Dynamics and Control, 18(5):931�955,

1994.

