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ABSTRACT Cognitive radio networks have become a popular platform for many systems and applications
of the future, and especially for Smart City applications and the Internet of Things. The wireless transceivers
used for communicating between the different devices in the cognitive radio networks can operate in either
of the two modes, namely overlay and underlay, or a hybrid of these two modes. While operating in the
underlay mode, secondary users are likely to experience varying transmission rates due to the fluctuating
power levels from the primary users. This has the effect of the channel capacity being dynamic, which
forces the secondary user to switch between different transmission rates, or ‘‘service modes’’, during a single
networking session. In our previous work, we developed a discrete time queueing model for analyzing the
performance of secondary users in such networks with multi-modal and hybrid overlay/underlay switching
service levels. In this paper, we extend our previous work to present our novel result for computing the
waiting-time distribution of the secondary users. Such results are essential for investigating the sensitivity
of the secondary user’s performance due to the queueing delays, and especially for real-time applications.

INDEX TERMS Cognitive radio networks, hybrid overlay/underlay modes, discrete-time queues, waiting
time distribution.

I. INTRODUCTION
The usage of wireless communication technologies have
become widespread and continues to facilitate the inter-
connectivity between a broad number of users and devices
worldwide. In a report that had been published by Cisco [1],
it was revealed that there were around 8 billion mobile users
connected to the Internet in 2016. This number was further
estimated to increase to 11.6 billion devices by 2021, which
would exceed the world’s projected population of 7.8 billion
at that time. Wireless sensor networks [2] are among the
plethora of applications that have seen a growing demand for
wireless connectivity. Hence, the need for exploring efficient
spectrum management techniques that are necessary in meet-
ing such high demands.

The advent of the Internet of Things (IoT) is one of the
prominent drivers for the rapid growth in wireless access
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and connectivity [3]. Networks in the foreseeable future will
be expected to efficiently manage a wireless medium that
is capable of supporting the variety of network-accessing
devices. The network connectivity will further be dominated
by objects, or ‘‘things’’, with sensing capabilities that primar-
ily engage in machine-to-machine communication. A vast
amount of research continues to investigate the deploy-
ment of cognitive radio network of sensors for improving
the performance of several and complex applications, such
as those in Smart Cities [4]. For instance, a large num-
ber of wireless sensor nodes with cognitive radio capabili-
ties are expected to be deployed in cities for supporting a
wide range of interconnected services, such as smart traf-
fic monitoring systems and smart parking. Thus, such solu-
tions must be proficient at managing the limited network
resources (or bandwidth) for supporting the abundance of
devices and data, while maintaining the desired performance
demands.
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In many applications, it is common to have a certain part
of the spectrum statically allocated and dedicated to a crowd
of users that are administered by a specific wireless network.
Wireless networks have traditionally been allocated a fixed
part of the spectrum that are dedicated for its own users.
An expansion of the network would have typically required
additional radio spectrum bands to be sought and purchased.
Nowadays, the acquisition of more spectrum for fulfilling
the ongoing and increasing demands have been infeasible for
many network operators due to the scarcity and steep pricing
of the radio spectrum. This had motivated the need to pursue
other alternatives and to explore new ways of efficiently
utilizing the existing spectrum.

One of the important findings given in a report that
was released by The Federal Communications Commission
(FCC) [5] is that most of the radio spectrum that had been
allocated to licensed users are considerably underutilized.
In an effort to address the scarcity of the wireless spec-
trum, the FCC considered the opportunity of the unlicensed
users being allowed access to the wireless channels that are
licensed to others, provided that such access is performed
with no disruptions and minimal interference to the licensed
user’s operations. Cognitive Radio (CR) technologies [6]
were introduced for the main purpose of exploiting the under-
utilized licensed spectrum, or ‘‘spectrum holes’’ [7], and
in the effort of enhancing the overall network performance
without the need to acquire additional spectrum. Networks
that administer devices with CR technologies would be better
equipped at efficiently managing the existing and allocated
spectrum bands.

In CR networks, unlicensed users, also known as secondary
users (SU), are expected to utilize the channels (when needed)
that are licensed to its primary users (PU) in such a manner
that does not disrupt the PU’s performance. Unlike the over-
laymode, an SU that is operating in the underlaymodewill be
required to strictly manage its power levels for transmission.
The SU’s power level would need to be sufficiently low to
avoid any significant interference to the PU, while also being
adequately high enough to provide a satisfactory signal-to-
noise ratio (SNR) for its transmission [8]. In such situations,
the SU’s power levels may fluctuate during its transmission
session and relative to the varying channel conditions that are
mainly imposed by the PUs. Hence, the SU’s transmission
rates can be dynamic and the varying channel conditions
would further impact the SU’s effective transmission rate.
Furthermore, the SU in the underlay mode may be in a
situation where the best power level that is permissible with
the current channel conditions is insufficient and lower than
the required minimum. During such instances, the SU’s trans-
missions are suspended until the channel is released by the
PU, or the conditions change to permit the transmissions to
continue with an adequate SNR.

The results shared in this paper are focused on presenting a
method for analyzing the influence of the dynamic switching
between the overlay and underlay modes, as well as the
switching of the different service rates within the underlay

mode, on the overall performance of CR networks. This
analysis can aid with reconfiguring the network’s resources
and mechanisms for the purpose of improving the overall per-
formance in terms of various metrics that are of importance
to network designers and operators, such as throughput and
latency. Our analyses considers the hybrid overlay/underlay
transmission model, also known as sensing-based spectrum
sharing [9]. We further focus only on flow-level analyses for
evaluating the various traffic statistics and do not consider
packet-level analyses in our work.

The various modes are modeled as different ‘‘Service Lev-
els’’ for the SU. The highest service level with the maximum
transmission rate is achieved while the SU is in the overlay
mode, while lower service levels with the varying and lower
rates are attained in the underlay mode. Note that the switch-
ing between the different service levels is a consequence of
the fluctuations in the channel conditions and is not triggered
by the network users. For each service level, the service time
can follow a particular probability distribution that are not
necessarily similar to all the other different service levels.
We refer to such behaviors as a multi-modal service event and
its analysis is equivalent to examining queues with working
vacations, whereby the mode with the highest rate is the
server at full service and the remaining modes being equiva-
lent to the working vacation services.

In addition to showing how to model this multi-modal
service behavior for SUs, our other main contribution in this
paper is the computation of the waiting-time distribution of
the SUs that are queued for service. This type of perfor-
mance measure is essential for assessing the delays incurred
by the SUs in the system. Such forms of assessment are
especially crucial in real-time applications with temporally-
stringent constraints, or applications where the sensory data
are valid/relevant for very short periods of time. The infor-
mation gained from the distribution functions of the waiting
times can also be used to aid with maximizing the CR node’s
energy efficiency, with constraints on the age of the data for
transmission [10].

In this paper, we propose an extension to the queueing
model presented in our previous work [11] for analyzing the
behavior of the SUs in a CR network that is operating in
the hybrid overlay/underlay mode. The previous work was
focused on the case of the same system but with an infinite
buffer capacity. The performance metrics derived in our pre-
vious work were also limited to the average number of SUs
in the buffer and without the waiting-time analysis. We first
present in Section III a detailed description of the system
that is being modeled, including a summary of the process
that models the switching service levels of the SU being
served. In Section IV, we present the details of our discrete-
time queueing mode for the more practical case of a system
with a finite buffer capacity. In the same section, we further
show how to compute the standard performance metrics that
are commonly used for analyzing the performance of such
systems, such as the average number of SUs in the buffer,
along with the waiting-time distribution. We present the same
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derivations and performance metrics in Section V but for
the case of a system with an infinite buffer capacity, which
could serve as an approximation for the finite buffer case
with very large capacities. Prior to concluding the paper with
a few future research directions, some numerical examples
are given in Section VI that highlights the application of our
proposed model.

II. RELATED WORK
There have been various research work in the past that
were aimed at enhancing the power allocation and spec-
trum sharing mechanisms for SUs in CR networks, such as
those given in [12], [13] and [14]. These results rely on
having a model that best describes the performance of the
CR networks. There have also been many work done at
modeling the performance of SUs in CR networks with over-
lay/underlay spectrum sharing strategies. But all have either
imposed relatively simplistic assumptions for the sake of a
tractable analysis, or have narrowed their scope of analysis.
For instance, the authors in [15] had presented a queueing
model than can be used to investigate the impact of service
interruptions on the SUs due to the PU’s usage behaviors of
the licensed channel. However, their analysis was limited to
only considering the overlay access mechanism for the SU’s
mode of operation.

In [16], the authors had presented an M/G/1 queueing
model that was proposed for analyzing the performance of
a single SU in terms of throughput and latency, within the
network coverage area of a single PU. A similar model was
also proposed by the authors in [17] that had assumed a
system with a finite buffer to yield an M/G/1/K queueing
model. Their analysis had also assumed that the wireless
channels were subjected to Nakagami-m fading and inter-
ference. To expand on the single SU analysis, the authors
in [18] presented an M/M/1 queueing model for evaluating
the performance of CR networks with multiple SUs. Their
model assumed heterogeneous arrival and service rates, but
further assumed exponentially distributed inter-arrival and
service times which are unrealistic. In [19], the authors
proposed a spectrum sharing scheme that permits two SUs
simultaneously utilizing the same channel and modeled the
behavior of the CR network as an M/M/1 queueing system.
However, their analysis was limited to investigating the mean
queue lengths of backlogged SUs and our proposed analysis
considers CR networks where multiple and simultaneous SU
transmissions are not permitted.

The majority of the previous work had collectively
assumed a single service mode within the underlay access
mechanism, while also considering the switching to the over-
lay mode during an SU’s operations. This assumption is
insufficient at accurately accounting for the variations in the
channel conditions due to the behavior of the PUs. Another
assumption that was commonly applied is the memoryless
arrival and service behaviors (such as Poisson) that unrealis-
tically models the data traffic behaviors for many networking
systems. A more practical assumption was imposed by the

FIGURE 1. A system of cognitive radio networks within a primary network.

authors in [20] and proposed the arrivals of the SU requests
as aMarkovian Arrival Process (MAP), with the service times
following a phase-type distribution. Such assumptions would
yield a better accuracy in the results due to the more real-
istic traffic models. However, their results were constrained
to modeling the SU’s performance in the overlay mode.
In [21], the authors developed the Markov Chain model for
the two-mode overlay/underlay switching mechanism. Our
results expand on the two service modes to multiple and
distinct service levels, while also being used for evaluating
various performance measures such as transmission backlog
and latency.

Inmany of the relatedwork, such as [22] and [23], the delay
characteristics of the system were inferred from analyzing
the queue lengths and their first moments (or mean queue
lengths and waiting times). Some of these related work, such
as [24], were limited to only evaluating the average waiting
times. While these results may provide a good estimate of the
system’s overall performance, they do not necessarily yield
accurate results in terms of the SU’s waiting-time behaviors.
They further do not disclose the details of the variations in the
waiting times that are substantially important for examining
the SU’s delay tolerances with real-time applications. In [25],
the authors had shown how to compute the distribution func-
tions for the waiting times of the CR nodes. However, their
analysis was formulated as an M/G/1 system and does not
consider the multi-modal service behavior of the SUs.

III. SYSTEM DESCRIPTION
In a typical scenario, there will be a set of CR networks
that operate within the coverage area of a primary network,
as shown in Fig. 1. The primary network serves the PUs using
a dedicated set of frequency channels from the licensed spec-
trum, whereas the users in the CR network can either operate
using the unlicensed spectrum or attempt to utilize a licensed
channel from the primary network whenever it is permissible.
A user from the CR network is seen as an SU from a primary
network’s perspective, especially when attempting to utilize
a licensed channel that is dedicated to the PUs.

Our analysis consists of modeling the collective behavior
of multiple SUs within a CR network that comprises of a
single central node (or base station). All SU transmissions
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are assumed to be managed by the central node and utilizing
a single radio channel that is licensed to a PU. This central
node can be equivalent to a cluster head inwhich all the sensor
nodes within its network coverage can directly communicate
with it. The system can be modeled as a single server queue
with a capacity K , where the queueing occurs at the central
node for buffering the arrivals of the transmission requests by
the SUs, and the single server represents the channel access.
We further propose tomodel the system as a discrete time pro-
cess where the event changes occur at discrete time epochs.

The arrivals of the transmission requests from the multiple
SUs in the network are served in the order of the arrivals, i.e.
on a first-come-first-serve (or FIFO) basis. The central node
is assumed tomanage the priority access of the single licensed
channel, with the highest priority given to the PU and fol-
lowed by the SU that is at the head of the queue. Even though
cognitive sensor nodes are potentially capable of operating
with the use of multiple frequency channels (both licensed
and unlicensed), we restrict our analysis to the nodes that
communicate using only one of the frequency channels from
the spectrum band that is licensed to the primary network.

In the following subsections, we present a summary of the
formulations for the arrival process, the multi-modal service
operation, and the switching service process utilized in the
proposed queueing model. The full details of these processes
can be reviewed in [11].

A. THE ARRIVAL PROCESS
The inter-arrival times of the SUs and their transmission
requests are assumed to be modeled by the discrete Marko-
vian Arrival Process (MAP) with the sub-stochastic matrices
D0 and D1 of dimensions n × n, where D = D0 + D1 is a
stochastic matrix. Let (A)ij be elements of any matrix A, then
(Dk )ij, k = 0, 1, captures the probability of transition from
a state i to state j, with k arrivals. This type of process can be
used to model a general distribution and is suitable for further
modeling the correlation between the inter-arrival times. The
arrival rate λ of SUs into the system can be calculated as
follows,

λ = πD11, (1)

with π being the stationary vector of theMarkov Chain repre-
sented by the stochastic matrix D that satisfies the equations
πD = π and π1 = 1. Note that the term 1 is defined as a
column vector of ones with the appropriate dimensions.

B. THE MULTI-MODAL SERVICE OPERATION
The overlay and underlay access mechanisms in CR networks
govern the transmission rates that an SU can utilize for com-
municating its data. The SUs adjust for these rates by vary-
ing its transmission power levels and based on the channel
conditions. In the overlay mode, the SU can transmit its data
using themaximumpower level without the risk of interfering
with the PU, thereby achieving the highest transmission rate.
However, these transmission rates are reduced while the SU
is operating in the underlay mode due to it being forced to

lower its power levels for avoiding any service disruptions to
the PU.

Many of the models proposed by other researchers assume
a homogeneous service behavior while the SU is transmitting
in the underlay mode. This neglects the possibility of the SU
having to vary its transmission power (and effectively also
its transmission rate) to accommodate the changing power
levels of the PU during transmission. Such variations are
considered in our proposedmodel and is incorporated into our
formulation of the multi-modal switching service process.

Let m be defined as the service mode number such that the
set of different modes are m = 0, 1, 2, · · · ,M , with M + 1
being the total number of service modes. An SU is assumed
to initiate its service under any of the firstM different modes
(i.e. 0 ≤ m ≤ M − 1), with a specific probability. The mode
m = M corresponds to the situation where the SU suspends
its service due the channel being occupied by the PU and no
adequate power level is possible to transmit in the underlay
mode. We assume that the SU is transmitting with the highest
rate at modem = 0, which corresponds to the SU operating in
the overlay mode. The SU is operating in the underlay mode
when its service modes are within the range 1 ≤ m ≤ M − 1,
where a higher transmission rate is achievable in mode m = i
relative to mode m = i+ 1.
LetHm be defined as a discrete random variable (with finite

supports) that model the service completion time while the
SU is operating with the service mode m. We assume the
random variable Hm can be modeled by a discrete phase-
type (PH) distribution with the representation (δm,Vm) of
order `m, with vm = 1 − Vm1, and for m = 0, 1, 2, · · · ,M ,
such that,

Pr {Hm = t} = δmV t−1
m vm t = 1, 2, · · · (2)

We assume the service completion time Hm includes both
the packet processing time at the node for transmission,
along with the transmission time across the wireless medium
(including any transmission retrials due to errors and
collisions).

During an SU’s transmission session, its service mode can
switch from one mode to another, and the switching can
occur a multiple number of times throughout the session. This
implies that the stochastic behavior of the service times can
differ within an SUs sessions as its service mode alternates
and due to the dynamic channel conditions. We next show
how to model the service time behavior for an SU with
switching service modes.

C. THE SWITCHING SERVICE PROCESS
The service is performed by a single server with the comple-
tion time S being modeled by a probability distribution given
by si = Pr{S = i}, for i = 1, 2, 3, · · · , τ . This service time
S corresponds to the total time for an SU to complete its data
transmission for a given session. Thus, the service time can
vary between 1 unit to τ units of time.

In queueing system models, it is typical to assume that
each unit of work that an arriving item brings into the system
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will receive the same mode of service throughout the lifetime
of the session, i.e. a stationary service behavior is assumed
for each unit. However, such common assumptions cannot
be applied in our analysis due to the changes in the channel
conditions that influence the changes to the SU’s service
mode. An SU that is engaged in a data transmission may
undergo the switching of its service mode with different rates.

We assume the switching between the different m service
modes to occur at random and define θi,j as the probability
of the service mode switching from mode i to j, such that∑M

j=0 θi,j = 1. The service mode switching probabilities θi,j
represent the stochastic variations of the channel conditions,
as perceived by the SU under service. The authors in [21]
have presented one method for evaluating these probabilities,
but is limited to the case of only 3 modes, namely {busy, idle,
underlay}. In this work, we assume that each SU in the CR
network will experience the same variations in the channel
conditions, stochastically. Different SUs may experience dis-
similar variations in the channel conditions and thus should
be modeled using a different set of probabilities θi,j. For
simplicity, the same set of probabilities θi,j were assumed for
all SUs in the system, with the assumption being applicable
to the case of the SUs being stationed within close proximity
of each other.

To capture the changes in the service behavior, we adopt
the remaining time approach (see [26] for further details)
and show how to formulate the switching service process that
models the remaining time for completing the SU’s work-
load. Let W be define as the discrete random variable that
describes the workload brought by an arriving SU at the head
of the queue. This workload is equivalent to the remaining
service time needed by the SU to complete its transmission.
The random variable W is assumed to be modeled by a PH
distribution with the representation (α,T ) of order nw with
t = 1−T1. While the SU is in service mode m, the elapsed
service time is given by Hm. This service mode can change
in the middle of serving any one of the SU’s remaining data
units with different service behaviors.

Let φm be defined as the probability that the SU at the head
of the queue initiates its service inmodem. Thus, the total ser-
vice completion time S can be modeled by a PH distribution
with representation (ψ,G) of order nM = nw

∑M
m=0 `m, such

that

ψ = α⊗ δ
G = (T ⊗ v⊗ δ)+ I ⊗ U0

g = 1− G1 = t⊗ v, (3)

where I is an identity matrix of appropriate dimensions and
⊗ is the Kronecker product operator. The elements for ψ
and G are formulated using the PH distributions (α,T ) and
(δm,Vm), along with the following,

δ = [φ0δ0, φ1δ1, φ2δ2, · · · , φMδM ]

v = [vT0 , v
T
1 , · · · , v

T
M ]T (4)

U0 =


V0θ0,0 V0,1θ0,1 · · · V0,Mθ0,M
V1,0θ1,0 V1θ1,1 · · · V1,Mθ1,M

...
... · · ·

...

VM ,0θM ,0 VM ,1θM ,1 · · · VMθM ,M

 , (5)

with Vi,j = (Vi1)⊗ δj.
The distribution of the total service time S that an SU at the

head of the queue will require to complete to its transmission
can be evaluated as follows.

Pr {S = t} = ψGt−1g t = 1, 2, · · · (6)

The average service time is given as µS = ψ (I − G)−1 1.
During the transitions between the service modes,

the transceiver will require a finite amount of time to switch
between the different modes. While we do not specifically
account for these switching times in the process, we assume
them to be factored within the various service modes of the
proposed switching service process.

IV. THE MODEL DESCRIPTION WITH K < ∞

In this section, we present the model for the practical case of
a system with a finite buffer of size K < ∞. The system
was assumed to have a capacity of holding up to K − 1
SUs in a buffer that are awaiting service, with a single SU
being in service and at the head of the queue at any given
time epoch. Let Xt be defined as the number of SUs awaiting
service in the system, including the one that is undergoing
service, at times t = 0, 1, 2, · · · , and such that Xt ≤ K .
Furthermore, let Yt be defined as the arrival phase and Zt the
service phase. The behavior of the SUs in a CR network can
be analyzed in discrete time and modeled as a single server
queueing system with a finite buffer capacity K . The arrivals
of the SUs into the system are assumed to be governed by the
MAPwith matricesD0 andD1. The state of this discrete-time
Markov Chain (DTMC) can be represented as (Xt ,Yt ,Zt )
with the transition probability matrix P given as follows.

P =


B C
E A1 A0

A2 A1 A0
. . .

. . .
. . .

A2 Â1

 . (7)

The block matrices in P are given as follows,

B = D0, C = D1 ⊗ψ,

E = D0 ⊗ g, A2 = D0 ⊗ gψ,

A0 = D1 ⊗ G, A1 = D1 ⊗ (gψ)+ D0 ⊗ G, (8)

with Â1 = A0 + A1.
With discrete-time analysis, it is possible to observe mul-

tiple events occurring within a single time epoch, i.e. both
an arrival and a departure event in the system and within the
same time interval. In our analysis, we assume the case of
‘‘late arrivals’’, i.e. an arrival event is assumed to occur after
a service completion event within a discrete time epoch.
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A. STEADY-STATE ANALYSIS
Letx be defined as the invariant probability vector of the sys-
tem described by the transition probability matrix P, such that
x =

[
x0,1,1, . . . xi,j,k , . . . xK ,n,nM

]
, with the probabilities

xi,j,k given as

xi,j,k = Pr{Xt = i,Yt = j,Zt = k}|t→∞. (9)

The invariant probability matrixx can be futher re-written as
x = [x0, x1, · · · ,xK ], where xi = Pr{Xt = i}|t→∞,
such that xi =

[
xi,1,1, . . . xi,j,k , . . . xi,n,nM

]
for all

0 ≤ i ≤ K .
The solution forx can be obtained using any of the several

algorithms for finite homogeneous Quasi-Birth-Death (QBD)
systems [27] and can be calculated as the solution to the
following equations.

x = xP, and x1 = 1. (10)

The invariant probability matrix is used to compute the com-
mon and relevant performance metrics of the system.

B. PERFORMANCE MEASURES
Using the invariant probability matrix x of the system,
the standard and relevant metrics can be derived and used to
evaluate the system’s performance under varying conditions.
Some of the common metrics include the number in the
system, the queue length, waiting times in the queue and in the
system, among several other measures. The results from these
metrics can also provide a quantitative measure of the sys-
tem’s workload, on average, along with how well it is capable
of meeting the SUs’ service demands. The same metrics can
also be applied for determining the optimal system operation
parameters under certain constraints, e.g. the capacity K .

1) NUMBER IN THE SYSTEM AND IN THE QUEUE
Consider the distribution of the number in the system (i.e.
including the SU in service) irrespective of the phases of
arrivals and services. Let X̂ be that number, and we define
x̂i = Pr{X̂ = i}, such that

x̂i = xi1, for 0 ≤ i ≤ K , (11)

with 1 being defined as an appropriately-dimensioned col-
umn vector of ones.

Similarly, let X̆ be defined as the number in the queue (i.e.
excluding the one in service), with x̆i = Pr{X̆ = i}. Thus,
we can calculate x̆i as follows,

x̆i=xi+11, for 0≤ i<K , with x̆0=x01+x11. (12)

Using the steady-state probabilities x̂i and x̆i, the metrics
for the average number of SUs in the systemNL and the queue
NQ can be evaluated as follows.

NL =

K∑
i=1

ix̂i =
K∑
i=1

ixi1. (13)

NQ =

K−1∑
i=1

ix̆i =
K∑
i=2

(i− 1)xi1. (14)

Another metric of interest is the loss probability, p`, that
describes the likelihood of an SU being denied any service
by the system due to it having reached its maximum capacity
(or buffer is full). This metric can be calculated as follows.

p` = λ−1xK (D1 ⊗ G)1. (15)

Note that in calculating p`, an SU is deemed lost from the sys-
tem if its arrival occurs during the time epoch when the buffer
is full and no other SUs have had their services completed.

Finally, the system’s throughput, µd can be computed as
follows.

µd =

K∑
i=1

xi(1⊗ I )g. (16)

2) WAITING-TIME DISTRIBUTION
In this section, we show how to derive the waiting-time distri-
bution of the SU in the queue. We focus mainly on studying
the waiting time in the queue from which the waiting time
in the system can be easily obtained as a convolution sum of
the waiting time in the queue and the service time. In order to
analyze for the waiting time, we first need to determine the
distribution of the number seen in the system by an arriving
SU that is admitted into the system.

Let the vector z be the one corresponding to such a distri-
bution, i.e. zi,j,k is the probability that an arriving SU finds i
SUs in the system, with the phase of arrival given as j and k
as the phase of ongoing service. Note that x and z are of the
same dimension. Using the results in [27], we can evaluate
the sub-vectors zi in z as follows

z0 = ρ−1[x0 D1 +x1(D1 ⊗ g)], (17)

and for 1 ≤ i ≤ K − 1

zi = ρ−1[xi(D1 ⊗ G)+xi+1(D1 ⊗ gψ)], (18)

where

ρ = x0 D11+x1(D1 ⊗ g)1+
K−1∑
i=1

xi(D1 ⊗ G)1

+

K∑
i=2

xi(D1 ⊗ gψ)1. (19)

Note that ρ = µd , i.e. is equivalent to the system’s throughput
that can also be computed using equation (16).

Next we define a matrix B(k)v with elements (B(k)v )i,j as the
probability that the service time of k SUs lasts v units of time
along with a transition from phase i to phase j, (see [27] for
details), such that

B(k)v = GB(k)v−1 + (gψ)B(k−1)v−1 , k ≥ j ≥ 1, (20)

where

B(k)k = (gψ)k , k ≥ 1, B(1)v = Gv−1(gψ).
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Finally, let W (q) be the waiting time in the queue with
a finite capacity of K − 1 for an SU. We further define
w(q)
i = Pr{W (q)

= i}, such that

w(q)
0 = z01, (21)

w(q)
i =

i∗∑
k=1

zk (1⊗ I )B
(k)
i 1, i ≥ 1, (22)

where i∗ = min (i,K − 1).
In addition to finding the averagewaiting time in the queue,

the solutions w(q)
i can further be used to evaluate the tail

behavior of the system delay due to queueing, i.e.

Pr{W (q) > k} =
∞∑

i=k+1

w(q)
i . (23)

Let w(s)
i = Pr{W (s)

= i}, be defined as the waiting time in
the system which includes both the waiting time in the queue
and the service time. The probability w(s)

i can be evaluated as
follows,

w(s)
i =

i−1∑
k=0

(
w(q)
k × si−k

)
, i ≥ 1, (24)

where si = ψGi−1g1. Note that each user transmission is
assumed to require at minimum 1 unit of time.

V. THE MODEL DESCRIPTION WITH K = ∞

For systems with very large buffer sizes, the analysis given in
the previous section can yield a DTMCwith a very large state
space that would subsequently require working with a transi-
tion probability matrix with large dimensions. Alternatively,
we can simplify the analysis in such situations by assuming an
infinite buffer size, i.e. K = ∞, provided that the likelihood
of the loss of SUs in the system (due to a full buffer) is very
small and negligible. The same definitions for (Xt ,Yt ,Zt )
given in Section IV applies for the case of the system with
K = ∞, and with the exception that Xt is unbounded. The
transition probability matrix P̃ for this queueing system with
infinite capacity is given as follows, as derived previously
in [11].

P̃ =


B C
E A1 A0

A2 A1 A0
. . .

. . .
. . .

 . (25)

The definition of the block matrices are the same as those
given in equations (8), with the absence of the boundary block
matrix Â1.

A. STEADY-STATE ANALYSIS
Let x̃ be defined as the invariant probability vector of
the system with the transition probability matrix P̃, where
x̃ =

[
x̃0,0,0, . . . x̃i,j,k , . . .

]
, and can be calculated as the

solution to the following equations.

x̃ = x̃P̃, and x̃1 = 1. (26)

The solution x̃ exists for the case where the system is stable
such that following condition is satisfied,

πA01 < πA21, (27)

withπ = πA,π1 = 1, and A = A0+A1+A2. Note that this
condition implies that the rate of departures from the system
should always exceed the rate of arrivals, if the system is to
remain stable.

The invariant probability matrix can also be re-written as
x̃ = [x̃0, x̃1, x̃2, · · · ], where x̃i = Pr{Xt = i}|t→∞,
such that

x̃i+1 = x̃iR, i = 1, 2, · · · , (28)

where R is the minimum solution to the matrix quadratic
equation

R = A0 + RA1 + R2A2. (29)

Refer to [27] for the various efficient methods available to
obtain the solutions for the R matrix and steady-state proba-
bilities x̃i. These results are required for evaluating the rele-
vant performance metrics given in the subsequent sections.

B. PERFORMANCE MEASURES
Similar to the previous section, we next show how to evaluate
some of the standard and commonmetrics used to analyze the
performance of the queueing system, such as the number in
the system, the queue length, and waiting times in the queue.
The results obtained from these metrics could also serve as an
approximation to those obtained from themodel of the system
with a finite buffer capacity K (see Section IV), where K is
very large and the loss probability p` ≈ 0.

1) NUMBER IN THE SYSTEM AND IN THE QUEUE
The steady-state probabilities x̃i can be used to calculate the
mean number of SUs in the system ÑL and the queue ÑQ,
as follows.

ÑL =

∞∑
i=1

ix̃i1 = x̃1 (I − R)−2 1. (30)

ÑQ =

∞∑
i=2

(i− 1)x̃i1 = x̃1 R (I − R)−2 1. (31)

Note that the results for ÑL and ÑQ would always be less
than∞ for a stable system that satisfies the conditions given
in equation (27), despite the system being of infinite capacity.

2) WAITING-TIME DISTRIBUTION
For computing the waiting-time distribution of the SUs in the
system with the infinite buffer capacity, we apply the same
steps followed in the previous section for this derivation. Let
the vector z̃i correspond to the probability that an arriving SU
finds i SUs ahead of it in the system. Using again the results
in [27], we evaluate the vectors z̃i as follows.

z̃0 = λ−1[x̃0 D1 + x̃1(D1 ⊗ g)], (32)
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and

z̃i=λ−1[x̃i(D1 ⊗ G)+x̃i+1(D1 ⊗ gψ)], for i ≥ 1. (33)

We can also define the following

z̃i = x̃1Ri−1F, for i ≥ 1, (34)

where

F = λ−1[(D1 ⊗ G)+ R(D1 ⊗ gψ)], (35)

and the result for λ can be computed using equation (1).
Let W̃ (q) be the waiting time in the queue for an SU in the

sytem with infinite buffer capacity, and w̃(q)
i = Pr{W̃ (q)

= i},
such that

w̃(q)
0 = z̃01, (36)

w̃(q)
i =

i∑
k=1

z̃k (1⊗ I )B
(k)
i 1, for i ≥ 1, (37)

where the matrices B(k)v can be computed using equation (20).
Let w̃(s)

i = Pr{W̃ (s)
= i}, be defined as the waiting time in

the system which includes both the waiting time in the queue
and the service time. The probability w̃(s)

i can be evaluated as
follows,

w̃(s)
i =

i−1∑
k=0

(
w̃(q)
k × si−k

)
, i ≥ 1. (38)

VI. NUMERICAL EXAMPLES
To demonstrate the application of the queueing models devel-
oped in the previous sections, various numerical examples
are given in this section to illustrate how the performance of
such a CR networking system would behave while varying
certain system conditions.We consider both the cases of finite
and infinite buffers in the examples to follow. A discrete-
event simulation of the same system was also developed in
Matlab for the purpose of verifying the analytical results
obtained from the proposed model. The analytical results
given in this section are shown alongside the numerical results
obtained from the simulation of the system with the same
parameters. Overall, the simulation results have successfully
verified the analytical results.

Throughout this section, the numerical analysis is con-
ducted for the case of the CR system with 4 different modes
of service, i.e. M = 3. Furthermore, the following values
were assigned to the parameters that model the arrival and
service behaviors in each of the different modes. These values
are fictitious, but they have been chosen to approximately
resemble the expected behaviors of such networks and to help
demonstrate the differences in performance.

D0 =

[
0.3 (0.45−γ )
0.25 0.4

]
, D1=

[
(0.15+γ ) 0.1

0.2 0.15

]
,

α = [0.2 0.8], T =
[
0 0.2
1 0

]
,

δ0 = δ1 = δ2 = δ3 = [1 0], V0 =
[

0 0.15
0.1 0

]
,

V1 =
[
0 0.2
0.1 0

]
, V2=

[
0 0.25
0.1 0

]
, V3 =

[
0 1
1 0

]
,

{θi,j} =


0.1 0.5 0.3 0.1
0.6 0.1 0.1 0.2
0.3 0.4 0.1 0.2
0.2 0.2 0.5 0.1

 ,

[φ0, φ1, φ2, φ3]

= [(0.45− β), 0.35, (0.15+ β), 0.05] .

Among the 4 different modes of service, an SU operating
in modem = 0 will experience the highest service rate due to
it also being in the overlay mode of access. In mode m = 3,
the SU’s service is suspended due to the unavailability of a
channel and the unsuitable channel conditions. The SUwould
be operating in the underlay mode of access when it is either
in mode m = 1 or m = 2, with the the average service rate
being higher in mode m = 1 due to a more favorable channel
condition.

The analysis in the following set of examples were con-
ducted by either varying the arrivals of SUs into the sys-
tem, or varying the service mode initiation probabilities φm.
In the cases where the arrivals are varied, we examine the
performance of the CR system by varying the parameter γ in
the sub-stochastic matrices D0 and D1 of the MAP, and for
0 ≤ γ ≤ 0.4. This is equivalent to varying the arrival rates
into the systemwithin the range of 0.305 ≤ λ ≤ 0.575. As for
the cases of varying φm, we analyze the system’s performance
by varying the parameter β within the range of 0 ≤ β ≤ 0.35.
The analysis of the system’s behavior with variations in β
help to examine the changes in the SU’s performance as the
likelihood of a transmission being initiated with either the
lowest or highest rate is varied. With β = 0, the average
service time µS = 3.05 units, whereas µS = 3.18 with
β = 0.35. Hence, analyzing the system with 0 ≤ β ≤ 0.35 is
equivalent to examining its performancewith varying average
service times of 3.05 ≤ µS ≤ 3.18.

A. THE FINITE BUFFER CASE OF K < ∞

For the finite buffer case, we assume a maximum of 9 SUs
can be queued and awaiting their service to be initiated,
hence, K = 10. In the first set of numerical examples,
we examine the performance of the systemwhile only varying
0 ≤ β ≤ 0.35 for the service mode initiation probabilities,
and with γ = 0. Figs. 2 and 3 show the variations of the
average number in the system and the queue with increasing
probabilities of an SU initiating its service in mode 2 com-
pared to mode 0. The expected rise in the number of SUs
awaiting service in the system is due to the lower transmission
rate of the service mode 2 compared to the rate in mode 0.
The increase in the number of SUs in the system will also
increase the tendency of the buffer reaching its capacity, thus
explaining the rise in the loss probabilities shown in Fig. 3.
The results in Figs. 4 and 5 show the waiting-time distribution
as well as the complementary cumulative distribution (or tail
distribution) of the waiting times, respectively, and for the
cases when β = 0.05 and β = 0.35. The results for the
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FIGURE 2. Average number of SUs in the system and queue, with varying
β and K = 10.

FIGURE 3. The loss probability p` in the system, with varying β and
K = 10.

FIGURE 4. Waiting time distribution Pr {W (q) = t}, with K = 10.

waiting times exhibit similar trends to those for the number
in the system and the queue with increasing β. The waiting-
time distribution for β = 0.35 has a heavier tail implying that
SUs are more likely to wait in the queue for longer periods
of time prior to receiving service. This is due to the SUs
having a higher service time, on average, with β = 0.35.
The results of the average waiting times would also have
illustrated the same trends, but the distributions in Figs. 4
and 5 further show the disparity in the variations at different
time instances. Such details can be quite crucial for systems
with delay sensitive applications. Fig. 4 further shows that

FIGURE 5. Tail behavior of the waiting time distribution Pr {W (q) > t} with
K = 10.

FIGURE 6. Average number of SUs in the system and queue, with varying
γ and K = 10.

FIGURE 7. The loss probability p` in the system, with varying γ and
K = 10.

SUs in a system with lower β are more likely to have their
transmissions delayed by t = 12 units of time or less, when
compared with SUs operating in a system with high β. This
is due to the higher likelihood of SUs initiating their service
transmissions in mode 0. Conversely, SUs in systems with
higher β are more likely to exhibit a delay of t > 12 units
of time when compared with SUs operating in systems with
lower β.
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FIGURE 8. Waiting time distribution Pr {W (q) = t}, with K = 10 and
varying arrival rates.

FIGURE 9. Tail behavior of the waiting time distribution Pr {W (q) > t} with
K = 10 and varying arrival rates.

In the next set of examples, the same system is analyzed
instead with increasing arrival rates. This analysis is
accomplished by varying the parameter γ in the sub-
stochastic matrices for theMAP, while maintaining a constant
service mode initiation probabilities with β = 0 (hence, con-
stant average service rates). Figs. 6 to 9 show the behaviors
of the various performance measures with increasing arrival
rates of 0 ≤ γ ≤ 0.4 (which is equivalent to varying 0.305 ≤
λ ≤ 0.575). The results in Fig. 6 illustrate the expected
behavior of observing an increase in the average number of
SUs in the system with higher arrival rates, which impacts
the loss probabilities in the system as shown in Fig. 7. The
waiting-time distribution and its tail distribution are shown
in Figs. 8 and 9, respectively, for γ = 0.1 and γ = 0.3.
These figures show how the SUs are much more likely to
wait for longer periods of time in the queue when the arrival
rates into the system is high, as given by the heavier tail in
the distribution for γ = 0.3. Notice how the difference in the
tail distributions is quite significant in Fig. 9, and how these
differences change with varying time instances. These results
further illustrate that an SU will almost certainly have to wait
for at least 10 units of time before its data transmission can
be initiated in a system with γ = 0.3. The same is not true for
the system with the lower arrival rate of γ = 0.1. This level
of detail cannot be observed using the average waiting times
alone and without their distributions.

FIGURE 10. Average number of SUs in the system and Queue, with
varying β.

FIGURE 11. Waiting time distribution Pr {W (q) = t}.

B. THE INFINITE BUFFER CASE OF K = ∞

Using the same traffic parameters given at the start of this
section, we show the results from analyzing the system with
varying β, and for the case where the buffer capacity is
infinite. In Fig. 10, the results show the expected rise in the
average number of SUs in the system and queue (i.e. NL
and NQ, respectively) as the likelihood of the SU’s service
initiation with the lowest transmission rate is increased. This
is due to the longer time needed for the SU to complete its
transmission, on average, when initiated in mode m = 2. The
longer service times would further result in an increase in
the number of backlogged SUs in the system, as illustrated
in the figure with increasing β. Conversely, a lower β tends
to reduce the number of backlogged SUs in the system. This
is due to the lower average service completion times that
resulted from the higher likelihood of the SU’s service being
initiated in mode m = 0 with the largest transmission rate.
Figs. 11 and 12 show the waiting time distribution of

the SUs in the systems and along with its tail distribution,
respectively, for the cases when β = 0.1 and β = 0.3. It is
evident from these results that SUs are more likely to have
lower waiting times before their service is initiated for the
case when β = 0.1, as expected. This is due to the higher
likelihood of the SU’s service being initiated at mode m = 0
with the highest transmission rate. The steeper decline in the
tail probabilities for the case of β = 0.1 further emphasizes
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FIGURE 12. Tail behavior of the waiting time distribution Pr {W (q) > t}.

the improved performance as compared to the case
of β = 0.3.

VII. SUMMARY & FUTURE WORK
The performance of a CR network with multi-modal service
switching wasmodeled as a discrete time single server queue-
ing system and presented in this paper. The model captures
the collective behavior of SUs in the presence of a single
PU. Unlike the previous work accomplished by others, our
proposed model extends beyond the traditional three access
modes (i.e. overlay, underlay, and busy) and includes the
formulation of a multi-modal switching service behavior that
considers the dynamic changes in the channel conditions.
In our work, the channel access in the system is assumed
to be administered by a centralized node, such as a base
station or cluster head. The arrival and service processes
were modeled using general distributions that allow for a
more accurate analysis. The proposed model considers both
the cases of the buffer with a finite and infinite capacity.
We further presented a method for computing the waiting-
time distribution of the secondary users which is essential for
understanding the sensitivity of the secondary user’s perfor-
mance due to the queueing delays, especially for real-time
applications.

The dynamic channel conditions for each of the different
SUs were assumed to be homogeneous. In other words, each
of the SUswere assumed to be under the influence of the same
service mode switching probabilities θi,j. This assumption
was necessary for simplifying the formulation of the model
and may serve as a valid approximation for a cluster of SUs
within close proximity. We intend to extend the model in
our future work to consider assigning a distinct θi,j for a
diverse set, or ‘‘classes’’, of SUs. We further intend on devel-
oping a method for formulating the service time distributions
along with the service mode switching probabilities θi,j that
considers the dynamics of the channel characteristics in the
cognitive radio networking systems. The model presented in
this paper considers the SU’s behavior from the perspective
of a single licensed channel, even though the nodes in the CR
networks can have access to a set of these licensed channels.
The analysis of the node’s behavior with access to multiple

licensed channels, along with the channel selection process,
will also be considered in our future work.
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