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ABSTRACT There are manymethods present in literature for finding attractive points for different mappings
in various spaces. In this article, we aim to give an approximation method for the common attractive
points (CAP) of further generalized hybrid mappings (FGHM) in CAT(0) spaces.We give the CAP of FGHM
by using Picard-Mann iterative process generalized to the case of two mappings in framework of CAT(0)
spaces. The results presented in this article, extend some known results of literature.

INDEX TERMS CAT(0) space, attractive points, further generalized hybridmappings, Picard-Mann iterative
process.

I. INTRODUCTION
The notion of attractive points was presented by Takahashi
and Takeuchi in [2] to dispose of the speculation of convexity
and closedness as utilized in Baillon’s nonlinear ergodic the-
orem in the setting of Hilbert spaces (H) [3]. They proved the
existence of attractive points in H without using convexity.
Suppose C is a nonempty subset of H . The set of attractive
points and fixed points for T : C → H are defined as follow:
• A(T ) = {u ∈ H : ‖u− Tv‖ ≤ ‖u− v‖,∀v ∈ H};
• F(T ) = {u ∈ H : Tu = u}.

Recall that, a mapping T : C → C is nonexpanisive if ‖u −
Tv‖ ≤ ‖u− v‖ for all u, v ∈ C .
Now we define hybrid mapping.
Definition 1: Let C ⊂ H , then T : C → H is called

hybrid if

3‖Tu− Tv‖2 ≤ ‖u− v‖2 + ‖Tu− v‖2 + ‖Tv− u‖2,

∀u, v ∈ C .

In 2010, Kocourek et al. [4] present another class of non-
linear mapping called generalized hybrid mappings (GHM)
which is bigger class than the class of nonexpansive mapping.
In 2012, Takahashi et al. [5] found more extensive class
of nonlinear mapping called normally generalized hybrid
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mapping (NGHM) which contain the class of generalized
hybrid (GH) and the class of contractive mappings.
The definition of NGHM is given below:
Definition 2: Let C ⊂ H , then T : C → H is nor-

mally generalized hybrid mapping (NGHM) if there exist
α, β, γ, δ ∈ R such that
• α + β + γ + δ ≥ 0;
• α + β > 0 or α + γ > 0 and
• α‖Tu− Tv‖2 + β‖u− Tv‖ + γ ‖Tu− v‖
+ δ‖u− v‖ ≤ 0,∀u, v ∈ C

This mapping T is also called as (α, β, γ, δ)-NGHM.
‘‘Widely more generalized hybrid mappings (WMGHM)’’

is a class of mapping in Hilbert spaces, due to Kawasaki and
Takahashi [6] and has been studied in [7].
Definition 3: LetC ⊂ H , which is closed and convex, then

T : C → C is called FGHM if for any α, β, γ, δ, ε ∈ R,
we have

α‖Tu− Tv‖2 + β‖u− Tv‖2 + γ ‖Tu− v‖2

+ δ‖u− v‖2 + ε‖u− Tu‖2 ≤ 0, ∀u, v ∈ C . (1)

It has been proved that the class of WMGHM contains
the class of NGHM. Later, Khan [1] introduced the concept
of further generalized mappings and CTP. He approximate
CTP of FGHM by utilizing Picard-Mann iterative process
for two mappings in H without closeness condition on C .
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For more detail in the direction of attractive points we
refer [4], [6]–[13].

Researcher are always interested in developing approx-
imation method for fixed points and attractive points, for
example: Pakkaranang et al. [18] presented Proximal point
algorithms involving fixed point iteration for nonexpansive
mappings in CAT(0) spaces. Strong convergence of modified
viscosity implicit approximation methods for asymptotically
nonexpansive mappings in complete CAT(0) spaces has been
proved in [19]. Proximal point algorithms for solving convex
minimization problem and common fixed points problem
of asymptotically quasi-nonexpansive mappings in CAT(0)
spaces has been discussed in [20]. In [21], Kumam et al. gave
convergence analysis of modified Picard-S hybrid iterative
algorithms for total asymptotically nonexpansive mappings
in CAT(0) spaces. In this article, we approximate CAP of
FGHM by using Picard-Mann iterative process for two map-
pings in framework of CAT(0) spaces. The results presented
in this paper are extension of many existing results.

II. PRELIMINARIES
Consider a metric space (M , d) and x1, x2 are two fixed
elements of M with d(x1, x2) = l. An isometry α from
[0, l] ⊂ R to M is the geodesic path from from x1 to x2 such
that α1(0) = x1, α(l) = x2, and d(α(a), α(b)) = |a − b| for
all a, b ∈ [0, l]. The geodesic segment is the image c of α,
which is also refereed as a joining x1 and x2. TheM is called
geodesic metric space if any two points of M are joined by
geodesic segment. The M is called D-geodesic space, if any
two points of M with distance lesser than D are joined by a
geodesic, where D is any positive constant. If this condition
is satisfied in a convex set, then that convex set is called
D-convex. Consider Mk be the simple connected, complete,
2 dimensional space of curvature k ,( k is a constant). The
diameter Dk of the space Mk for (k ≥ 0) can be defined
as Dk = π

√
k
; k > 0 and Dk = ∞; k = 0. A triangle

4(x1, x2, x3) in a geodesic metric is combination of three
points x1, x2, and x3 in M and a geodesic segment between
each pair of vertices. For4(x1, x2, x3) in a geodesic spaceM
satisfying

d(x1, x2)+ d(x2, x3)+ d(x3, x1) < Dk ,

we have points x1, x2, x3 ∈ Mk with d(x1, x2) = dk (x1, x2),
d(x2, x3) = dk (x2, x3) and d(x3, x1) = dk (x3, x1) where
dk is the metric defined on Mk . The triangle having ver-
tices x1, x2, x3 ∈ Mk is known as a comparison triangle
4(x1, x2, x3) in X with d(x1, x2)+d(x2, x3)+d(x3, x1) < Dk
satisfies CAT(k) inequality if, for any u, v ∈ 4(x1, x2, x3)
and for their comparison points u, v ∈ 4(x1, x2, x3), we have
d(u, v) ≤ d(u, v).
Definition 4: The M is called CAT(k) space if

• for non positive k , M is a geodesic metric space, with
the property that its geodesic triangles fulfill the CAT(k)
inequality;

• for positive k , M is Dk -geodesic and any geodesic tri-
angle 4(x1, x2, x3) in M with d(x1, x2) + d(x2, x3) +
d(x3, x1) < 2Dk satisfy the CAT(k) inequality.

Remark 1: In a CAT(0) space M if x1, x2, x3 ∈ M, then
the CAT(0) inequality implies

d2
(
x1,

x2 ⊕ x3
2

)
≤
1
2
d2(x1, x2)+

1
2
d2(x1, x3)−

1
4
d2(x2, x3),

(2)

which is known as the (CN) inequality given by Bruhat and
Tits [14].
Remark 2: The (CN) inequality was extended by Dhom-

pongsa and Panyanak [15], as;

d2 (x3, αx1 ⊕ (1− α)x2) ≤ αd2(x3, x1)

+ (1− α)d2(x3, x2)− α(1− α)d2(x1, x2),

(3)

which is known as (CN∗)inequality and α ∈ (0, 1).
For a geodesic space M , the following statements are
equivalent:
• M is a CAT(0) space;
• M satisfy the (CN) inequality;
• M satisfy the (CN∗) inequality.
Example 1: Example of CAT(0) spaces The following are

examples of CAT(0) spaces;
1) Euclidean space Rn;
2) Hilbert spaces;
3) Simply connected Riemannianmanifolds of nonpositive

sectional curvature;
4) Hyperbolic spaces;
5) Trees;
6) Hilbert ball.
Remark 3: Complete CAT(0) spaces are also known as

Hadamard spaces (see [16]).
Berg et al. [17] proposed the idea of quasilinearization as

follow: Each pair (u, v) ∈ M ×M , denoted by −→uv and call it
a vector. Then, quasilinearization is a map

〈., .〉 : (M ×M )× (M ×M ) −→ R

defined as

〈
−→uv,−→wt 〉=

1
2
(d2(u, t)+d2(v,w)−d2(u,w)−d2(v, t)). (4)

It can be observed easily that 〈−→uv,−→wt 〉 = 〈
−→wt ,−→uv〉,

〈
−→uv,−→wt 〉 = −〈−→vu,−→wt 〉 and 〈

−→
uk ,−→wt 〉 + 〈

−→
ku,−→wt 〉 = 〈−→uv,−→wt 〉

for all u, v,w, t ∈ M . The M satisfies Cauchy-Schwarz
inequality if

〈
−→uv,−→wt 〉 ≤ d(u, v)d(u,w)

for all u, v,w, t ∈ X .
The CAT(0) is the geodesically connected metric space

which satisfy Cauchy-Schwarz inequality.
From now to onward in this paper, consider H be a com-

plete CAT(0) space, C be a non-empty closed convex subset
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of a complete CAT(0) spaceM and T : C → C be amapping.
The metric projection PC : M → C is defined as

u = PC (x)⇐⇒ inf{d(y, x) : y ∈ C}, ∀x ∈ M

The idea of CAP for two mapping T1 and T2 is defined as:

CAP(T1,T2) = {w ∈ X : max(d(T1x,w), d(T2x,w))

≤ d(x,w), for x ∈ X}

Remark 4: For every point w ∈ CAP(T1,T2), then w ∈
A(T1) as well as w ∈ T2.
Lemma 1: If A(T ) 6= 0, then F(T ) = ∅.
Lemma 2: A(T ) is a closed and convex subset of M .
Lemma 3: For a quasi-nonexpensive mapping T , we have

A(T ) ∩ C = F(T ).
Recall that for every C ⊂ H , there exists a metric projec-

tion PC : H → C . That is, for each point x ∈ H , there is a
unique element PCx ∈ C such that d(x,PCx) ≤ d(x, y) for
all y ∈ C .
Lemma 4: Let PC : C → H be a metric projection. Let
{xn} be a sequence in H . If d(xn+1, y) ≤ d(xn, y),∀y ∈ C ,
then {PCxn} converges strongly to some y0 ∈ Y
Mann iterative process for two mappings as in CAT(0) is

as follows:

{
x1 = x ∈ C,
yn = (1− αn)xn ⊕ αnTxn, αn ∈ (0, 1)

(5)

and Picard-Mann iterative hybrid process for two mappings
as in CAT(0) is as follows:


x1 = x ∈ C,
xn+1 = Tyn,
yn = (1− αn)xn ⊕ αnTxn, αn ∈ (0, 1)

(6)

III. MAIN RESULTS
In this section, we present our main results.
Lemma 5: Let T1,T2 : C → C be any two mappings.

If CAP(T1,T2) 6= ∅, then F(T1) ∩ F(T2) 6= ∅. In particular,
if w ∈ CAP(T1,T2), then PCw ∈ F(T1) ∩ F(T2).

Proof: Suppose w ∈ CAP(T1,T2), then w ∈ A(T1) and
w ∈ A(T2). Thus by definition there exists a unique element
PCw ∈ C such that d(PCw,w) ≤ d(y,w) for all y ∈ C . Now
PCw ∈ C implies that d(PCw,w) ≤ d(T2PCw,w). On the
other hand, w ∈ A(T2), therefore d(T2y,w) ≤ d(y,w) for
all y ∈ C and, in particular, d(T2PCw,w) ≤ d(PCw,w) ≤
d(T2PCw,w) and PC ∈ F(T2). Similarly, PCw ∈ F(T1) and
so F(T1) ∩ F(T2) 6= ∅ and PCw ∈ F(T1) ∩ F(T2). �
Lemma 6: Let T1,T2 : C → C be two map-

pings. Then CAP(T1,T2) is a closed and convex subset
of X .
Lemma 7: Let T1,T2 : C → X be two quasi-nonexpensive

mapping. Then

CAP(T1,T2) = F(T1) ∩ F(T2).

Proof: Let w ∈ CAP(T1,T2) ∩ C , then by definition,
max(d(T1x,w), d(T2x,w)) for all x ∈ C . In particular, choos-
ing x = w ∈ C , we obtain

max(d(T1x,w), d(T2x,w)) ≤ 0.

That is w ∈ F(T1) ∩ F(T2). Conversely, since w ∈ F(T1) ∩
F(T2) and T1,T2 : C → H are quai-nonexpensive mappings,
we have d(T1x,w) ≤ d(x.w), d(T2x,w) ≤ d(x,w) for
all x ∈ C . This implies that max(d(T1x,w), d(T2x,w)) ≤
d(x,w) for all x ∈ C . Clearly, w ∈ C . Hence CAP(T1,T2) =
F(T1) ∩ F(T2). �
Theorem 1: Let T1,T2 : C → C be any two FGHMwhich

satisfy α + β + γ ≥ 0 and ε ≥ 0 and either α + β > 0 or
α+γ > 0. Then CAP(T1,T2) 6= ∅ iff there exists w ∈ C such
that both {T n1w, n = 0, 1, . . . .} and {T n2w, n = 0, 1, . . . .} are
bounded.

Proof: Suppose that CAP(T1,T2) 6= ∅ and
w ∈ CAP(T1,T2). Then, by definition max(d(T1x,w),
d(T2x,w)) ≤ d(x,w) for all x ∈ C .This mean that

max(d(T n+11 x,w) ≤ d(T n1 x,w)),

and max(d(T n+12 x,w) ≤ d(T n2 x,w)) for all x ∈ C . That is,
both {T n1w, n = 0, 1, . . . .} and {T n2w, n = 0, 1, . . . .} are
bounded.

On the other hand, suppose that for all w ∈ C such that,
both {T n1w, n = 0, 1, . . . .} and {T n2w, n = 0, 1, . . . .} are
bounded. Suppose that

max(d(T1x,w), d(T2x,w)) ≤ d(T2x,w).

From long computation one can find that there exists p ∈
H such that d2(T2x, p) ≤ d2(x, p). This mean that p ∈
A(T2). However, by our supposition on maximum, we get
d2(T1x, p) ≤ d2(x, p). Thus CAP(T1,T2) 6= ∅.
In case, max(d(T1x,w), d(T2x,w)) ≤ d(x,w), we can get

the result by interchanging the role of T1 and T2. �
Theorem 2: Let T1,T2 : C → X be two FGHM defined as

αd2(T2x,T2y)+ βd2(x,T2y)+ γ d2(T2x, y)

+ δd2(x, y)+ εd2(x,T2x) ≤ 0, ∀x, y ∈ C (7)

satisfying α + β + γ + δ ≥ 0, ε ≥ 0 and, either α + β > 0
or α + γ > 0. Let CAP(T1,T2) 6= ∅. If {xn} is defined by

x1 = x ∈ C,
xn+1 = T1yn,
yn = (1− αn)xn ⊕ αnT2xn, αn ∈ (0, 1)

(8)

where {αn} is a sequence in (0, 1) with αn(1 − αn) > 0
then, {xn} converges weakly to a point q ∈ CAP(T1,T2).
Furthermore, q = lim

n→∞
Pxn, where, P is a projection of H

onto CAP(T1,T2)
Proof: Consider w ∈ CAP(T1,T2). Then, by using (8)

d2(yn,w) = d((1− αn)xn ⊕ αnT2xn,w)
≤ (1− αn)d2(xn,w)+ αnd2(T2xn,w)
≤ (1− αn)d2(xn,w)+ αnd2(xn,w)

= d2(xn,w)
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and

d2(xn+1,w) = d2(T1yn,w)

≤ d2(yn,w)

≤ d2(xn,w)

Therefore, we can have

d2(xn+1,w) ≤ d2(xn,w). (9)

Thus lim
n→∞

d2(xn,w) exists and so {xn} must be bounded.
Since H is complete CAT(0) space, so

d2(xn+1,w) = d2(T1yn,w)

≤ d2(yn,w)

≤ d2((1− αn)xn ⊕ αnT2xn,w)

= (1− αn)d2(xn,w)+ αnd2(T2xn,w)

−αn(1− αn)d2(T2xn, xn)

= (1− αn)d2(xn,w)+ αnd2(xn,w)

−αn(1− αn)d2(T2xn, xn)

= d2(xn,w)− αn(1− αn)d2(T2xn, xn).

This implies that

αn(1− αn)d2(xn+1,w) ≤ d2(xn,w)− d2(xn+1,w)

Now, by using lim infαn(1 − αn) > 0 and the above proved
reality that lim

n→∞
d2(xn,w) exists, we get

lim
n→∞

d2(T2xn, xn) = 0.

The boundedness of the sequence {xn} has also been proved
in above lines, so we have subsequences {xnj} with

xnj ⇀ q ∈ C .

Since T2 : C → C is a FGM, therefore for every y ∈ C ,
we have

αd2(T2xnj ,T2y)+ βd
2(xnj ,T2y)+ γ d

2(T2xnj , y)

+ δd2(xnj , y)+ εd
2(xnj ,T2xnj ) ≤ 0,

and

α
(
d2(T2xnj , xnj )+ d

2(xnj ,T2y)
)
+ 2〈
−−−−→
T2xnjxnj ,

−−−→
xnjT2y〉

+βd2(xnj ,T2y)+ γ d
2(T2xnj , y)

+ δd2(xnj , y)+ εd
2(xnj ,T2xnj ) ≤ 0.

Making use of Bananch limits µ, we get

(α + β)µnd2(T2xnj ,T2y)+ (γ + δ)µnd2(xnj , y) ≤ 0.

This yield that

(α + β)µn
[
d2(T2xnj ,T2y)+ d

2(y,T2y)+ 2〈−→xnjy,
−−→
yT2y〉

]
+ (γ + δ)µnd2(xnj ,T2y) ≤ 0.

Thus

(α + β + γ + δ)µnd2(xnj , y)

+ (α + β)d2(y,T2y)+ 2(α + β)〈−→xnjy,
−−→
yT2y〉 ≤ 0.

But α + β + γ + δ ≥ 0, so,

(α + β)µnd2(y,T2y)+ 2(α + β)〈−→xnjy,
−−→
yT2y〉 ≤ 0.

Since xnj ⇀ p, therefore

(α + β)µnd2(y,T2y)+ 2(α + β)〈−→py,
−−→
yT2y〉 ≤ 0.

In CAT (0) we have quasi-linearization

〈
−→
ab,
−→
cd 〉 =

1
2
(d2(a, d)+ d2(b, c)− d2(a, c)− d2(b, d))

(10)

We get

(α+β)d2(y,T2y)

+ (α+β)
[
d2(p,T2y)+d2(y, y)−d2(p, y)−d2(y,T2y)

]
≤0.

This implies that (α+β)
[
d2(p,T2y)− d(p, y)

]
≤ 0.As (α+

β) > 0 and

d2(p,T2y)− d(p, y) ≤ 0.

In the same way, we have d2(p,T1y) − d2(p, y) ≤ 0 and we
get p ∈ CAP(T1,T2). Next, we will prove that {xn} ⇀ p by
proving that any two subsequences of {xn} converges weakly
to a same limit p. Let {xnj} ⇀ p1 and {xnk } ⇀ p2. By what
we have just proved, p1, p2 ∈ CAP(T1,T2), and from the first
step of prove, we deduce that

lim
n→∞

(
d2(xn, p1)− d2(xn, p2)

)
exists, call it l. Now using (10)again,

2〈
−→
xn0,
−−→p1p2〉=d2(xn, p1)+d2(p2, 0)−d2(xn, p2)−d2(p1, 0).

This gives

d2(xn, p1)−d2(xn, p2)=2〈
−→
xn0,
−−→p2p1〉−d2(p2, 0)+d2(p1, 0).

Thus

d2(xnj , p1)−d
2(xnj , p2)=2〈

−→
xnj0,
−−→p2p1〉−d2(p2, 0)+d2(p1, 0).

and

d2(xnk , p1)− d
2(xnk , p2)

= 2〈
−−→
xnk0,

−−→p2p1〉 − d2(p2, 0)+ d2(p1, 0).

Now, taking weak limit on the above two equations and
making use {xnj}⇀ p1 and {xnk }⇀ p2, we get

l = 2〈
−→
p10,
−−→p2p1〉 − d2(p2, 0)+ d2(p1, 0).

l = 2〈
−→
p20,
−−→p2p1〉 − d2(p2, 0)+ d2(p1, 0).

subtracting, we get 〈−−→p2p1,
−−→p1p2〉 = 0 and hence p1 = p2.

In turn xn ⇀ p ∈ CAP(T1,T2). Finally, we show that p =
lim
n→∞

Pxn, where P is the projection of X onto CAP(T1,T2).
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Now from (2.1) it follows that d(xn+1,w) = d(xn,w) for all
w ∈ CAP(T1,T2). Since CAP(T1,T2) is closed and convex
by Lemma 6, applying Lemma 4, lim

n→∞
Pxn = p for some

p ∈ CAP(T1,T2). For projections, we know that 〈
−→
xn0,
−−→p1p2〉

for all w ∈ CAP(T1,T2). Therefore, 〈
−−−→
xnPxn,

−−→
Pxnw〉 for all

w ∈ CAP(T1,T2) and, in particular, 〈−→qp,−→pq〉. Hence, q =
p = lim

n→∞
Pxn. �

The following corollaries can be obtained immediately form
the above theorem and are new interesting results in CAT(0)
spaces As mentioned earlier that the process (6) is faster and
independent from many existing approximation processes,
so our following results has their our value.
Corollary 1: Suppose that M ,C,T2 and α, β, γ, δ be the

same as in the Theorem 2. Consider A(T2) 6= ∅. If {xn}
is be a sequence of iterates defined in 5, where {αn} is a
monotonically increasing sequence in the interval (0, 1) such
that lim infαn(1−αn) > 0, then the sequence {xn} converges
weakly to p ∈ A(T2). Furthermore, p = lim

n→∞
Pxn, where P is

the projection of H onto A(T2).
Corollary 2: Suppose that M ,C,T2 and α, β, γ, δ be the

same as in the Theorem 2. Consider A(T2) 6= ∅. If {xn}
is be a sequence of iterates defined in 6, where {αn} is a
monotonically increasing sequence in the interval (0, 1) such
that lim infαn(1−αn) > 0, then the sequence {xn} converges
weakly to p ∈ A(T2). Furthermore, p = lim

n→∞
Pxn, where P is

the projection of H onto A(T2).
If we takeC closed in Theorem 2, thenwe get the following

Theorem:
Theorem 3: Let T1,T2 are two FGHM defined as (2.10)

which satisfy α+β+γ +δ ≥ 0, ε ≥ 0 and either α+β > 0
or α + γ > 0. Let CAP(T1,T2) 6= ∅. If {xn} is defined by

x1 = x ∈ C,
xn+1 = T1yn,
yn = (1− αn)xn + αnT2xn, αn ∈ (0, 1)

(11)

where {α1n} is a sequence in (0, 1) with α
1
n(1− α

1
n) > 0 then,

{xn} converges weakly to a point PCq ∈ F(T1)∩F(T2), where,
q ∈ H and PC : X → C is metric projection.
Now, we give a numerical example to support our results.
Example 2: Let X = R be a usual metric space with the

metric d, which is also anHadamard space, andC = (−1, 1).
We see that C is a convex subset of X. Define a mapping T :
C → C by

T1(x) =


1− x
2

, x ∈ (−1, 0];
1+ x
2

, (0, 1).

and

T2(x) =


1− x
3

, x ∈ (−1, 0];
1+ x
3

, (0, 1).

TABLE 1. Iterates of new iterative scheme for initial guess -0.5.

for all x ∈ C. It is easy to see that both T1 and T2 are further
generalized hybrid mapping with a = 2, β = γ = −1, δ =
ε = 0 and A(T ) = [1,∞). Let αn = 4n

5n+7 for all n ∈ N.
IV. CONCLUSION
In this paper, we introduced a new approximation method of
CAP for the class of FGHM in CAT(0) spaces. We proved
convergence of our proposed method and gave an example
to validate our method. Our results are more generalized and
interesting from many results existing in literature [22].
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