
Effect of mixed infection on TB dynamics∗

Doreen Mbabazi Ssebuliba†

Kabale University, Faculty of Science, P.O Box 317, Kabale, Uganda.

South African Centre for Epidemiological Modelling and Analysis, 19 Jonkershoek, Mostertdrift,

Stellenbosch, 7600, Cape Town, Western Cape, South Africa. ‡

doreenresty@gmail.com§

Rachid Ouifki
Department of Mathematics and Applied Mathematics, University of Pretoria, Private bag X20 

Hatfield, 0028 Pretoria,South Africa. rachid.ouifki@up.ac.za

South African Centre for Epidemiological Modelling and Analysis, 19 Jonkershoek, Mostertdrift,

Stellenbosch, 7600,

Cape Town, Western Cape, South Africa

Abstract. Poor living conditions, overcrowding, and strain diversity are some of the
factors that influence mixed infection in TB at population level. We formulate a mathe-
matical model for mixed infection in TB using non-linear ordinary differential equations
where such factors were represented as probabilities of acquiring mixed infection. A qual-
itative analysis of the model shows that it exhibits multiple endemic equilibria and back-
ward bifurcation for certain parameter values. The reactivation rate and transmission
rate of individuals with mixed infection were of importance as well as the probabilities
for latent individuals to acquire mixed infection. We calculate the prevalence of mixed in-
fection from the model and the effect of mixed infection on TB incidence, TB prevalence
and MTB infection rate. Numerical simulations show that mixed infection may explain
high TB incidences in areas which have a high strain diversity, poor living conditions
and are overcrowded even without HIV.

Keywords: Tuberculosis; Mixed Infection; Mathematical Model.

Mathematical Subject Classification 2010 – 93A30, 93C15

∗Effect of mixed infection on TB dynamics.
†Kabale University, P.O Box 317, Kabale, Uganda.
‡South African Centre for Epidemiological Modelling and Analysis, 19 Jonkershoek, Mostertdrift,

Stellenbosch, 7600, Cape Town, Western Cape, South Africa.
§Corresponding author: Doreen Mbabazi Ssebuliba, Email: doreenresty@gmail.com

1



2

1. Introduction

A disease that flourishes among the ignorant, underprivileged and poor is what

some authors have taken Tuberculosis (TB) to be [17, 30]. Having existed since

prehistoric times [8, 13, 14], TB thrives in areas where there is overcrowding, poor

living and working conditions and poor housing facilities [9, 17, 29, 30]. It is caused

by Mycobacterium tuberculosis (MTB) as discovered in 1882 by Sir Robert Koch

[7, 8, 13, 14]. Being an airborne disease transmitted when an infected individual

coughs, sneezes, laughs, speaks, spits or talks, overcrowding would aggravate TB

transmission. In such conditions, individuals are more likely to be infected many

times which is termed as multiple infection. If there happen to be many strains

circulating, then individuals could be infected with more than one strain which we

define as mixed infection. This is believed to be a rare event [3, 24, 29] due to the

preconceived idea of acquired immunity after initial infection [2, 3, 5, 25, 38].

Nonetheless, some studies have shown that mixed infection could occur in areas

with high TB incidence and where the risk of infection is high [9, 12, 21, 38]. It has

been documented in prisons [9], mines [29], homeless shelters [22] and overcrowded

areas [33, 38]. All these places have things in common such as overcrowding, poor

living and working conditions and bad housing facilities. Hence there is a connection

between such conditions and mixed infection in TB.

Mixed infection is only possible if there are many strains circulating in a popula-

tion. Different strains were first noticed with the discovery of drugs. In 1944, when

streptomycin was developed, treatment with this drug alone led to resistant mu-

tants [8]. Moreover, with mutations, strains have evolved over time and there have

been different strains in different regions. In fact, some strains are named according

to their purported areas of origin: for example Beijing strain which is believed to

have its origins in Beijing, China. With present day globalisation, strains have been

transported all over the world and this has resulted in a great diversity of strains

in some places [4, 19, 28, 35, 36]. In Africa, where there is a lot of urbanisation,

people have moved from villages to towns which has led to formation of slums. It

is thus not surprising that mixed infection has been documented in slums, mines,

prisons and homeless shelters [9, 22, 29, 38].

It was originally thought that active TB was due to one strain infection only

and that infected individuals had acquired immunity against reinfection [2, 3, 5, 35].

This could be one of the reasons as to why there are few mathematical models that

incorporate mixed infection in TB. Castillo-Chavez and Zhilan Feng [6] investigated

a TB model with two strains; i.e sensitive strain and resistant strain. Their model

considered that latent individuals infected with a sensitive strain could also get

infected with the resistant strain and this dual infection with two different strains

formed the mixed infected compartment. However, nothing much was done with

the mixed infection compartment. Their main focus was on whether co-existence

of strains was possible in presence of treatment. Rodrigues et al [27] developed a

two strain model of TB. The strains were drug resistant and drug sensitive. They
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assumed that when an individual was infected with both strains (mixed infection),

only the resistant strain could be activated or transmitted. Thus our model is formu-

lated particularly to study mixed infection which was not the case with the models

of Castillo-Chavez and Zhilan Feng [6] and Rodrigues et al [27]. The paper is or-

ganized as follows. In section 2, the mixed infection model is formulated. Section 3

presents the mathematical analysis where the equilibrium points are discussed. In

section 4 numerical simulations are given and section 5 has the discussion of results.

2. Mixed Infection model

This model is based on two major ideas of simultaneous infection and reinfection.

Simultaneous infection happens when an individual is infected by more than one

strain at the same time and we consider reinfection to occur when an individual

gets another infection with a different strain years after initial infection already

occurred. Reinfection with the same strain could occur but it is not possible to

quantify it because methods that are available only confirm a reinfection event if it

is with a different strain [34].

The model consists of 3 groups of individuals; susceptibles, S1, latents,E1 and in-

fectives, I1. The latents and infectives are each divided into two subgroups, E11, E12

and I11, I12 respectively. The subgroups’ subscripts take a two digit format where

the first digit is the default definition of the group and the second digit represents

number of strains an individual is infected with though 2 stands for more than one

strain, that is, 2+. Some parameters used in the model also have subscripts in a

two digit format and they also take the same description.

Individuals are recruited into the susceptible group (S1) at a constant rate B.

Infection occurs when susceptibles interact with infectives with one strain infection

(I11) or those with mixed infection (I12). We assume that when susceptibles mix

with infectives in I12, they can get infected with either one of the strains resulting

into a one strain infection or more than one strain resulting into mixed infection.

The forces of infection for the one strain infection and mixed infection are modeled

by standard incidence with transmission rates, k11 and k12 respectively.

After infection, a proportion p of the susceptible population progresses fast to

disease (in the first 5 years after initial infection) joining the infectious subgroups,

I11, I12 and (1 − p) denoted p′ progresses slowly to disease forming the latent

subgroups, E11 and E12. Due to the interaction between susceptibles and infectives

in I12, a proportion p1 of those who progress fast to disease moves to infectious

subgroup I11 while the other proportion goes to I12. Similarly, we assume that a

proportion, p2 of those who move to the latent stage joins latent subgroup E11 and

the other proportion moves to E12.

Latent individuals in E11 enter I11 by reactivation (which occurs at a rate a11)

or by reinfection which results from contact of the latent individuals in E11 with

individuals in I11 and I12. Latent individuals in E11 can get mixed infection by

interacting with infectious individuals.



4

We define η as the probability of E11 individuals getting into contact with an

infectious individual with a one strain infection who has a different strain from

theirs and η1 is the probability of E11 individuals getting into contact with an

infectious individual with mixed infection who has at least a different strain from

theirs. A proportion, r1 of those reinfected progress fast (in the first 5 years following

a reinfection) to I12 and the other, (1− r1) denoted r′1 joins E12. Those in E12 join

I12 by reactivation at a rate, a12.

Susceptibles and latents die naturally at a rate µ1. Infectives die at a rate mij

and they recover at a rate bij where i = 1 and j = 1 or 2. Subscripts are defined

as before. We assume that after recovery, they return to their respective latent

subgroups. Furthermore, we assume that individuals with active TB do not get

reinfected during the time of their sickness (this explains why we did not consider

any transfers from I11 to I12).

The flows between the different groups are shown in Fig. 1 and Table. 1 gives

definitions of all the parameters used in system of equations (2.1)

The differential equations of the model are given as:

dS1

dt
= B − S1(f

1

+ f
2

)− µ1S1,

dE11

dt
= p′S1(f

1

+ p2f
2

)− E11(ηf
1

+ η1f
2

)− (a11 + µ1)E11 + b11I11,

dE12

dt
= p′2p

′S1f
2

+ r′1E11(ηf
1

+ η1f
2

)− (a12 + µ1)E12 + b12I12,

dI11
dt

= pS1(f
1

+ p1f
2

)− (b11 +m11)I11 + a11E11,

dI12
dt

= p′1pS1f
2

+ r1E11(ηf
1

+ η1f
2

)− (b12 +m12)I12 + a12E12, (2.1)

where, f
1

= k11I11/P and f
2

= k12I12/P are the forces of infection for one strain

infection and mixed infection respectively and

P = S1 + E11 + E12 + I11 + I12,

is the total population.

3. Mathematical Analysis of the model

For biological feasibility of system (2.1), it is important that all variables stay

positive at all times and as such we analyse this system in the region

Ω =

{

(S1, E11, E12, I11, I12) ∈ ℜ5
+ : S1 + E11 + E12 + I11 + I12 ≤ B

µ

}

.

Solutions of the system, remain positive for all time t ≥ 0 and are bounded in Ω.

Proposition 3.1. System (2.1) has for each positive initial condition, a unique

solution that is positive. Moreover, the region Ω is positively invariant.
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Fig. 1. Compartmental diagram showing mixed infection in TB. It comprises of susceptibles, S1,
latents, E11, E12 and infectives, I11, I12 and the subscripts, the first one is default definition of
the group and the second subscript represents whether they have one strain infection or mixed
infection. The arrows show the in and out flows between the compartments.

Proof. Let t1 = sup {t > 0 : S1 > 0, E11 > 0, E12 > 0, I11 > 0, I12 > 0 }.
Thus t1 > 0. If t1 < ∞, then necessarily S1 or E11 or E12 or I11 or I12 is equal to

zero at t1. Using the variation of constants formula, we have:

S1(t1) = S1(0)exp[−
∫ t1

0

(µ1 + f
1

+ f
2

)(s)ds] +B

∫ t1

0

exp[−
∫ t1−s

0

(µ1 + f
1

+ f
2

)(τ)dτ ]ds > 0.

Moreover, since all the variables are positive in [0, t1], it can be shown in a similar

way that E11(t1) > 0, E12(t1) > 0, I11(t1) > 0 and I12(t1) > 0. Hence t1 = ∞
which is a contradiction.

For the invariance of Ω, we add the equations of system (2.1) to obtain:

dP (t)

dt
= B − µ1P (t)− (m11 − µ1)I11(t)− (m12 − µ1)I12(t).

Since the initial condition is in Ω, then 0 ≤ I12(t) ≤ P (t) and 0 ≤ I11(t) ≤ P (t).
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Moreover, because m11 > µ1 and m12 > µ1, then

dP (t)

dt
≤ B − µ1P (t).

Therefore, P (t) ≤ P (0)e−µ1t+B/µ1(1−e−µ1t) and if P (0) ≤ B/µ1 then so is P (t).

Moreover, whenever P (t) > B/µ1, P (t)′ < 0. Thus every solution of the model

equations (2.1) with initial conditions in R
5
+ approaches and stays in Ω as t → ∞.

3.1. Equilibrium points

These are time-independent states of a system. In finding them, we set time deriva-

tives of model equations (2.1) to zero. For convenience, we introduce the fraction

notation: s∗1 = S∗

1/P
∗, e∗11 = E∗

11/P
∗, e∗12 = E∗

12/P
∗, i∗11 = I∗11/P

∗, i∗12 = I∗12/P
∗,

B = B/P ∗, where P ∗ = S∗

1 + E∗

11 + E∗

12 + I∗11 + I∗12. We write the forces of infec-

tion as: f
1

= k11i
∗

11 and f
2

= k12i
∗

12. We are unable to find the equilibrium points

explicitly, thus we express them in terms of forces of infection, f
1

and f
2

as shown

in equations (3.2).

s∗1 =
B

θ
,

e∗11 =
B(pb11(f

1

+ f
2

p1) + (b11 +m11)(f
1

+ f
2

p2)p
′)

θβ
,

e∗12 =
B(α(b12 +m12r

′

1) + βf
2

(pb12p
′

1 + σp′p′2))

βθγ
,

i∗11 =
B(βp(f

1

+ f
2

p1) + a11(pb11(f
1

+ f
2

p1) + (b11 +m11)(f
1

+ f
2

p2)p
′))

(b11 +m11)θβ
,

i∗12 =
B((αr′1((a12 + µ1)σ − γ)) + βf

2

((a12 + µ1)(pb12p
′

1 + σp′p′2)− γp′p′2))

b12βθγ
.

(3.1)

where, θ = f
1

+ f
2

+µ1, β = b11µ1 +m11(a11 +µ1)+ (b11 +m11)(ηf
1

+ η1f
2

), α =

(ηf
1

+η1f
2

)(pb11(f
1

+f
2

p1)+(b11+m11)(f
1

+f
2

p2)p
′), γ = m12(a12+µ1)+b12µ1,

σ = b12 +m12.

Substituting f
1

k11

for i∗11 in equation (3.2) and f
2

k12

for i∗12 in equation (3.2), we

end up with a system of coupled equations given by:

(f
1

)3 + a1(f
1

)2 + b1f
2

(f
1

)2 + c1f
2

f
1

+ d1(f
2

)2f
1

+ e1f
1

+

g1f
2

+ h1(f
2

)2 = 0,

(f
2

)3 + a2(f
2

)2 + b2f
1

(f
2

)2 + c2f
1

f
2

+ d2(f
1

)2f
2

+ e2f
2

+

g2f
1

+ h2(f
1

)2 = 0. (3.2)

where,

a1 =
(X1 +Xηµ1)−Bk11pη

Xη
, b1 =

η + η1
η

, c1 =
(X1 +Xη1µ1)−Bk11(ηp1 + η1)p

Xη
,
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d1 =
η1
η
, e1 =

XX1µ1 −Bk11(pX1 + a11X2)

X2η
, g1 =

−Bk11(pp1X1 + a11X3)

X2η
,

h1 =
−Bk11(pp1η1)

Xη
, a2 =

X8 − Bk12((X3(b12 +m12r
′) +XX6)η1X7 −X4η1(Xp′p′2 + r′X3))

b12XX4η1
,

c2 =
X8 − Bk12((XX6η + (X2η1 +X3η)(b12 +m12r

′))X7 −X4(r
′(η1X2 + ηX3) +Xp′p′2η))

b12XX4η1
,

b2 =
η + η1
η1

, e2 =
X9 − Bk12((−a11b11X6 +XX6(a11 + µ1))X7 −X4(a11m11 +Xµ1)p

′p′2)

b12XX4η1
,

d2 =
η

η1
, g2 = 0, h2 =

−Bk12(X2η(X7(b12 +m12r
′)− r′X4))

b12XX4η1
,

with, X = b11+m11, X1 = b11µ1+m11(a11+µ1), X2 = pb11+Xp′, X3 = pb11p1+

Xp2p
′, X4 = b12µ1 +m12(µ1 + a12), X5 = b12 +m12, X6 = pb12p

′

1+X5p
′p′2, X7 =

a12 + µ1, X8 = b12X4(Xµ1(1 + η) + a11m11), X9 = b12X4µ1(Xµ1 + a11m11).

If f
1

= 0, then from equation (3.2), f
2

= 0 or f
2

= −g1/h1 which is not

biologically feasible. Then necessarily f
2

= 0. Similarly, setting f
2

= 0 in equation

(3.2), we obtain f
1

= 0.

Therefore, we conclude that f
1

= 0 if and only if f
2

= 0. This means that

for our model, it is not possible to have one strain infected individuals if there are

no mixed infected individuals and the reverse is true. This is because one strain

infected individuals are infected with different strains thus there is a possibility of

them interacting with one another to lead to a mixed infection. For mixed infected

individuals, they can spread one or more strains thus it is possible that their in-

teraction with susceptible individuals would lead to one strain infections. We thus

investigate only two cases; f
1

= f
2

= 0 and f
1 6= 0 and f

2 6= 0.

If f
1

= f
2

= 0, we have the disease free equilibrium (DFE) and if f
1 6= 0 and

f
2 6= 0, there is possibility of multiple endemic equilibria (EEP).

DFE of system of equations (2.1) is given as:

DFE = (B/µ, 0, 0, 0, 0).

Whether it is stable or unstable depends on the basic reproductive number, R0.

Definition 3.2. R0 is the mean number of infected individuals caused by an infected

individual introduced into a wholly susceptible population during the individual’s

infectious period.

This number gives us an insight of how fast the disease is spreading. R0 < 1

means that on average, an infected individual causes less than one new infected

individual over the course of his/her infectious period and R0 > 1 implies that an

infected individual produces more than one new infected individual. Therefore for

many cases, the disease will die out when R0 < 1 and it will invade the population
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with R0 > 1. For simple cases, R0 is given by the product of the infection rate

and the mean duration of infection [32]. However, in complicated cases like ours,

we calculate it by using the next generation matrix method in [32]. It comprises

of two matrices F and V where F is the appearance of new infections and V

is the transfer in and out of the compartments through other means. We find the

derivatives of F (F) and V (V) with respect to the infected classes. The dominant

eigenvalue of FV −1 gives R0. This is carried out as follows in our case:

F =











(1− p)S1(f
1

+ p2f
2

)

(1− p2)(1 − p)S1f
2

pS1(f
1

+ p1f
2

)

p(1− p1)S1f
2











,

and

V =











E11(ηf
1

+ η1f
2

) + (a11 + µ1)E11 − b11I11
(a12 + µ1)E12 − b12I12 − (1− r1)E11(ηf

1

+ η1f
2

)

(b11 +m11)I11 − a11E11

(b12 +m12)I12 − a12E12 − r1E11(ηf
1

+ η1f
2

)











.

We find the derivatives of F and V :

F =









0 0 k11(1− p) (1 − p)p2k12
0 0 0 (1 − p)(1− p2)k12
0 0 pk11 pp1k12
0 0 0 p(1− p1)k12









,

V =









(a11 + µ1) 0 −b11 0

0 (a12 + µ1) 0 −b12
−a11 0 b11 +m11 0

0 −a12 0 b12 +m12









.

RTB
0 is the spectral radius of FV −1. Using mathematica, we obtain RTB

0 = max

{R1, R2} where Ri, i = 1, 2 is the reproduction number for i strain infection given

by

R1 =
k11(a11 + pµ1)

b11µ1 +m11(a11 + µ1)
,

R2 =
k12(pp

′

1(a12 + µ1) + a12p
′p′2)

b12µ1 +m12(a12 + µ1)
.
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3.2. Local stability of the DFE

Theorem 3.3. The DFE is locally asymptotically stable if RTB
0 < 1 and unstable

if RTB
0 > 1

Proof. The Jacobian matrix of the system at DFE is given by

J =













−µ1 0 0 −k11 −k12
0 −(a11 + µ1) 0 b11 + (1− p)k11 p2(1− p)k12
0 0 −(a12 + µ1) 0 b12 + (1− p)(1− p2)k12
0 a11 0 −(b11 +m11) + k11p pp1k12
0 0 a12 0 −(b12 +m12) + p(1− p1)k12













.

Using Mathematica software, we find that the eigenvalues of J are given by the

roots of the following characteristic polynomial:

(λ+ µ1)(λ
2 +B1λ+ C1)(λ

2 +B2λ+ C2),

where,

B1 =
(a11 + b11 +m11 + µ1 − pk11)

2
,

C1 =
((b11µ1 +m11(a11 + µ1))(1−R1))

4
,

B2 =
(a12 + b12 +m12 + µ1 − pk12(1− p1))

2
,

C2 =
((b12µ1 +m12(a12 + µ1))(1−R2))

4
.

Clearly, Ci > 0 if and only if Ri < 1, i = 1, 2. Moreover, when Ci is non-negative

then so is Bi. In fact, if C1 > 0 then R1 < 1. This implies that pk11 < b11 +m11 +
(m11−k11)a11

µ1

. We have two cases; either m11 ≤ k11 or m11 > k11. If m11 ≤ k11, then

pk11 ≤ b11 + m11 which implies that B1 > 0. While if, m11 > k11, then using the

expression of B1 one can see that B1 > 0. One can prove in a similar way that

Bi > 0 when Ci > 0. By Routh-Hurwitz criterion, we conclude that the DFE is

locally asymptotically stable if R1 < 1 and R2 < 1, in other words if RTB
0 < 1.

3.3. Existence and stability of EEP near R
TB

0
= 1

In this subsection, we apply the center manifold theory used in [7] to determine

the existence and local stability of a branch of endemic equilibria that bifurcates

from the DFE at RTB
0 = 1. To apply the center manifold theory in [7], we change

variables of model equations (2.1) as follows: S1 = x1, E11 = x2, E12 = x3, I11 =

x4, I12 = x5 and P = x1 + x2 + x3 + x4 + x5 and as such X = (x1, x2, x3, x4, x5)
T
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and dX
dt

= F = (f1, f2, f3, f4, f5)
T . Therefore system (2.1) becomes;

dx1

dt
= f1 = B − (x1(k11x4 + k12x5)/P − µ1x1,

dx2

dt
= f2 = (p′x1(k11x4 + p2k12x5) + x2(ηk11x4 + η1k12x5))/P − (a1 + µ)x2 + b1x4,

dx3

dt
= f3 = (p′2p

′x1k12x5 + r′1x2(ηk11x4 + η1k12x5))/P − (a2 + µ)x3 + b2x5,

dx4

dt
= f4 = (px1 ∗ (k11x4 + p1k12x5))/P − (b11 +m11)x4 + a1x2,

dx5

dt
= f5 = (p′1px1k12x5 + r1x2(ηk11x4 + η1k12x5))/P − (b12 +m12)x5 + a12x3.

(3.3)

The Jacobian matrix of system (3.3) at DFE is given by:

J =













−µ1 0 0 −k11 −k12
0 −(a11 + µ1) 0 b11 + (1− p)k11 p2(1− p)k12
0 0 −(a12 + µ1) 0 b12 + (1− p)(1− p2)k12
0 a11 0 −(b11 +m11) + k11p pp1k12
0 0 a12 0 −(b12 +m12) + p(1− p1)k12













.

which is the same as for system (2.1). To determine the occurrence of a bifurcation,

we need to set RTB
0 = 1. In our case, we have two possible RTB

0 ’s, i.e, R1 and R2.

Thus we consider two cases:

3.3.1. Case 1: R1 > R2, R
TB
0 = R1 = 1.

Taking R1 = RTB
0 = 1, we let the transmission rate for one strain infection, k11 to

be the bifurcation parameter. Therefore at RTB
0 = 1,

k11 = k∗11 =
m11(a11 + µ1) + µ1b11

a11 + p1µ1
,

which means that if k11 < k∗11 then RTB
0 < 1 and if k11 > k∗11 then RTB

0 > 1.

The Jacobian of system (3.3) at k11 = k∗11 has the following eigenvalues.

{

0,−µ1, l1, l2, l3
}

,

where, l1 = −(a11(a11 + b11 +m11(1 − p)) + µ1(a11(1 + p) + µ1))/(a11 + pµ1) and

l2, l3 = − 1
2 (h±

√
h2 − h1), with h = a12 + b12 +m12 + µ1 − pk12p

′

1 and

h1 = 4(b12µ1 +m12(µ1 + a12))(1− R2).

We find the right and left eigenvectors associated with the zero eigenvalue. The
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right eigenvector, w = [w1, w2, w3, w4, w5]
T is given as:

w1 = −(
m11(a11 + µ1) + b11µ1

µ1(a11 + µ1p)
),

w2 = −(
−b11 −m11 +m11p

a1 + µ1p1
),

w3 = w5 = 0, w4 = 1.

The left eigenvector, v = [v1, v2, v3, v4, v5]
T is given as:

v1 = 0, v3 =
a12

a12 + µ1
, v5 = 1,

v2 =
a11(1 −R2)(b12µ1 +m12(a12 + µ1))

k12(a12 + µ1)(pp1(a11 + µ1) + a11p2(1− p))
,

v4 =
(a11 + µ1)(1 −R2)(b12µ1 +m12(a12 + µ1))

(a12 + µ1)((1 − p)a11k12p2 + pk12p1(a11 + µ1))
.

We then compute a and b. We look for the non-zero partial derivatives of f at DFE.

Since v1 = 0, then the partial derivatives of f1 will cancel out after substitution.

The non-zero partial derivatives of f2, f3, f4, f5 are:

∂2f2
∂x1∂x4

= −k∗11µ1(1− p)

B
,

∂2f2
∂x2∂x4

= −k∗11µ1(η + (1− p))

B
,

∂2f2
(∂x4)2

=
−2k∗11(1 − p)µ1

B
,

∂2f3
∂x2∂x4

=
k∗11η(1− r1)µ1

B
,

∂2f4
∂x2∂x4

=
−k∗11pµ1

B
,

∂2f4
(∂x4)2

=
−2k∗11pµ1

B
,

∂2f5
∂x2∂x4

=
k∗11ηr1µ1

B
.

Let

n = 4v2w1w4
∂2f2

∂x1∂x4
+ 4v2w2w4

∂2f2
∂x2∂x4

,

n1 = 2v2w
2
4

∂2f2
∂x2

4

+ 4v3w2w4
∂2f3

∂x2∂x4
+ 4v4w2w4

∂2f4
∂x2∂x4

,

n2 = 2v4w
2
4

∂2f4
(∂x4)2

+ 4v5w4w2
∂2f5

∂x4∂x2
.

Therefore a = n+n1 + n2. Since a is a large expression, we simulate it numerically

by changing the values of η and r1 so as to determine its sign. Plot is shown in

Fig. 2. For the computation of b, we look for the non-zero partial derivatives of f

at DFE. We neglect the partial derivatives of f1 since v1 = 0. Thus the non-zero

partial derivatives are given by:

∂2f2
∂x4∂k∗11

= (1 − p),
∂2f4

∂x4∂k∗11
= p.
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Fig. 2. Numerical result for value of a. a > 0 if r1 and η are both ≥ 0.03

.

It follows from the above expressions that;

b = v2w4
∂2f2

∂x4∂k∗11
+ v4w4

∂2f4
∂x4∂k∗11

,

v2w4
∂2f2

∂x4∂k∗11
=

a11(1− p)(1−R2)(b12µ1 +m12(a12 + µ1))

k12(a12 + µ1)(pp1(a11 + µ1) + a11p2(1− p))
,

v4w4
∂2f4

∂x4∂k∗11
=

p(a11 + µ1)(1 −R2)(b12µ1 +m12(a12 + µ1))

(a12 + µ1)((1 − p)a11k12p2 + pk12p1(a11 + µ1))
.

Since R2 < 1, we have b > 0.

From the center manifold theorem in [7], if a > 0 and b > 0, we have a subcritical

(backward) bifurcation at RTB
0 = 1 and if a < 0 and b > 0, we have a supercritical

(forward) bifurcation at RTB
0 = 1. We also establish the following result.

Proposition 3.4. If R2 < 1, an endemic equilibrium guaranteed by center manifold

theorem in [7] is locally asymptotically stable for R1 > 1 but close to 1.

3.3.2. Case 2: R2 > R1, R
TB
0 = R2 = 1.

We take R2 = RTB
0 = 1 and the transmission rate for a mixed infection, k12 to be

the bifurcation parameter. At RTB
0 = 1, we have

k12 = k∗12 =
m12(a12 + µ1) + µ1b12

p(1− p1)(a12 + µ1) + a12(1− p)(1 − p2)
,

which implies that RTB
0 < 1 with k12 < k∗12 and RTB

0 > 1 with k12 > k∗12.

The Jacobian of system (3.3) at k12 = k∗12 has the following eigenvalues,

{

0,−µ1, ((l4 + l5 + l6)/l7), l8, l9
}

,
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where,

l4 = a212(1− pp1 − p2(1 − p)) + pµ2
1(1 − p1),

l5 = a12 (b12(1− pp1 − p2(1 − p)) +m12(1− p− p2(1− p))) ,

l6 = a12µ1(1 + p(1− 2p1)− p2(1− p)),

l7 = a12(pp1 − 1 + p2(1 − p))− pµ1(1 − p),

l8, l9 = −1

2
(h2 ±

√

h2
2 − h3),

with,

h2 = a11 + b11 +m11 + µ1 − pk11,

h3 = 4(b11µ1 +m11(a11 + µ1))(1−R1)

We find the right and left eigenvectors associated with the zero eigenvalue. The

right eigenvector, w = [w1, w2, w3, w4, w5]
T is given as:

w1 =
−z

µ1z1
+

k11z2
µ1z3

, w4 = −z2
z3

, w5 = 1,

w2 =
−pp1z

a11z1
+

(−(b11 +m11) + pk11)z2
a11z3

,

w3 =
(b11 +m12)

a12
− p(1− p1)z

a12z1
,

where,

z = b12µ1 +m12(a12 + µ1),

z1 = (1 − p)a12(1− p2) + p(1− p1)(a12 + µ1),

z2 =
z((1− p)a11p2 + pp1(a11 + µ1))

z1
,

z3 = −(b11µ1 +m11(a11 + µ1))(1−R1).

The Left eigenvector, v = [v1, v2, v3, v4, v5]
T is given as:

v1 = v2 = v4 = 0, v5 = 1,

v3 =
a12

a12 + µ1
.

We then compute a and b. We look for the non-zero partial derivatives of f at

DFE. Since v1 = 0, then the partial derivatives of f1 will cancel out after substitu-

tion. The non-zero partial derivatives of f3, f5 are:

∂2f3
∂x2∂x4

=
(1− r1)ηk11µ1

B
,

∂2f3
∂x2∂x5

=
k∗12µ1((1 − r1)η1 − (1− p2)(1 − p))

B
,
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Fig. 3. As r1, η, η1 vary simultaneously, the sign of value of a changes from negative to positive.
a > 0 when the values of r1, η, η1 are all ≥ 0.025.

∂2f3
∂x3∂x5

= −k∗12µ1(1 − p2)(1− p)

B
,

∂2f3
∂x4∂x5

= − (1− p2)(1− p)k∗12µ1

B
,

∂2f3
(∂x5)2

= −2k∗12µ1(1− p2)(1− p)

B
,

∂2f5
∂x2∂x4

=
r1ηk11µ1

B
,

∂2f5
∂x2∂x5

=
k∗12µ1(r1η1 − (1− p1)p)

B
,

∂2f5
∂x3∂x5

= −k∗12(1 − p1)pµ1

B
,

∂2f5
∂x4∂x5

= −k∗12(1− p1)pµ1

B
,

∂2f5
(∂x5)2

= −2k∗12(1− p1)pµ1

B
.

Let

n3 = 4v3w2w4
∂2f3

∂x2∂x4
+ 4v3w2w5

∂2f3
∂x2∂x5

+ 4v3w3w5
∂2f3

∂x3∂x5
,

n4 = 4v3w4w5
∂2f3

∂x4∂x5
+ 2v3w

2
5

∂2f3
(∂x5)2

+ 4v5w2w4
∂2f5

∂x2∂x4
+ 4v5w2w5

∂2f5
∂x2∂x5

,

n5 = 4v5w3w5
∂2f5

∂x3∂x5
+ 4v5w4w5

∂2f5
∂x4∂x5

+ 2v5w
2
5

∂2f5
(∂x5)2

.

Thus a = n3 + n4 + n5. a is a large expression and to determine its value and sign,

we simulate the expression with different values of r1, η and η1 numerically. Plot

is shown in the Fig. 3. Fig. 3 shows that a > 0 when the values of r1, η, η1 are all

≥ 0.025. For the computation of b, we also need to look for the non-zero partial

derivatives of f at DFE. We neglect the partial derivatives of f1 since v1 = 0. Thus

the non-zero partial derivatives are given by;

∂2f3
∂x5∂k∗12

= (1− p2)(1− p),
∂2f5

∂x5∂k∗12
= (1− p1)p.

It follows from the above expressions that;

b = v3w5
∂2f3

∂x5∂k∗12
+ v5w5

∂2f5
∂x5∂k∗12

=
a12(1− p2)(1− p) + (a12 + µ1)(1− p1)p

a12 + µ1
.
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Clearly, b > 0

By the center manifold theorem in [7], if a > 0 and b > 0, we have a subcritical

(backward) bifurcation at RTB
0 = 1 and if a < 0 and b > 0, we have a supercritical

(forward) bifurcation at RTB
0 = 1. We also establish the following result.

Proposition 3.5. If R1 < 1, an endemic equilibrium guaranteed by center manifold

theory in [7] is locally asymptotically stable for R2 > 1 but close to 1.

3.4. Numerical simulations for equilibrium points

Using a hypothetical population of 100, 000 individuals, we run our model until

equilibrium with different initial conditions and values of parameters in Table. 1

so as to determine and show equilibrium points. We obtain phase portraits using

Matlab 5.0 and the Runge-Kutta method. Results are shown in Fig. 4 and Fig. 5.

Results in this subsection show that it is possible to have backward bifurcation

for certain parameter values of r1, η, η1. These parameters are associated with

acquiring and developing active TB due to mixed infection. The phenomenon of

backward bifurcation is important because it implies that even if RTB
0 < 1, the

disease may persist in the population.

Phase portrait diagrams in Fig. 4 show that we can have both an endemic

equilibrium and DFE when RTB
0 is less than unity for certain values of r1, η and η1

which demonstrates backward bifurcation. Phase portrait diagrams in Fig. 5 show

local asymptotic stability of the DFE and EEPs.
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Fig. 4. Using different initial conditions, we have the DFE in FIG. 4(a) for R1 < 1, R2 < 1 thus
RTB

0
< 1 with r1 = η = η1 = 0.02. For r1 = η = η1 = 0.15, we have an EEP even with RTB

0
< 1

as shown in FIG. 4(b). This shows the phenomenon of backward bifurcation.
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Fig. 5. Using different initial conditions, we have the DFE for R1 < 1, R2 < 1 thus RTB

0
< 1 in

Fig. 5(a) and EEPs for R2 < 1 < R1 and R1 < 1 < R2 in Figs. 5(b) and 5(c) and for R1 > 1,
R2 > 1 in Fig. 5(d) respectively. In these cases for the EEPs, RTB

0
> 1. These phase portraits

show local asymptotic stability of the DFE and EEPs.

4. Numerical Simulations - Effect of mixed infection on TB

dynamics

We use the model to find the effect of mixed infection on TB prevalence, MTB

infection rate and TB incidence rate. We examine what happens to the TB dynamics

when we increase parameter values associated with mixed infection. We calculate

TB prevalence, MTB infection rate and TB incidence rate using formulas given in

Table. 2. We run our model until equilibrium. The numerical results are shown in

Figs. 6, 7, 8 and 9.
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Table 1. Definitions and values of parameters in mixed infection TB model

Parameter Definition Value Reference

B, µ1 birth rate, natural death rate 1820, 0.0182 [1, 31]

a11, a12 reactivation rate to active TB for E11

and E12 respectively

0.0006, 0.003 [1, 18, 37]

k11, k12 transmission rate for one strain infec-

tion and for mixed infection respec-

tively

9, 18 [1, 16, 23]

p proportion of infected individuals who

progress fast to active TB

0.09 [1, 11, 37]

p′ proportion of infected individuals who

join latent group

0.91 [1, 11, 37]

p1, p′1 proportion of fast progressors who go to

I11 and I12 respectively

0.9, 0.1 estimate

p2, p′2 proportion of slow progressors who join

E11 and E12 respectively

0.9, 0.1 estimate

r1, r′1 proportion of reinfections who join I12
and E12 respectively

0.56p, (1− 0.56p) [1, 11, 37]

η probability of contact between E11 and

I11 resulting in mixed infection

0.06 estimate

η1 probability of contact between E11 and

I12 resulting in mixed infection

0.04 estimate

m11, m12 death rate for I11 and I12 respectively 0.2, 0.25 [1, 10]

b11, b12 recovery rate for I11 and I12 respec-

tively

0.45, 0.4 [18, 23]

γ Percentage of active TB individuals

who are tested for mixed infection

variable: 0− 100%
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Table 2. Correspondence between some medical vocabulary and the model

Medical vocabulary Model expression

Total population P = S1 + E11 + E12 + I11 + I12
TB incidence (one strain) pS1(k11I11 + p1k12I12)/P + a11E11

TB incidence (mixed) (pp′1S1k12I12)/P + r1E11(ηk11I11 + η1k12I12)/P + a12E12

TB prevalence (I11 + I12)/P

MTB infection rate (k11I11 + k12I12)/P

TB prevalence I12/P



19

4.1. MTB infection rate

This is the rate at which individuals acquire an MTB infection during a specified

period. It is closely linked to the annual risk of infection (ARI) which represents

the probability of becoming infected in a one year period. If MTB infection rate is

high, then it implies that many new MTB infections are occuring. We are interested

in knowing how many MTB infections occur in presence of mixed infection. We use

the formulation in Table. 2 to calculate them. Fig. 6 gives the numerical result. In

0 50 100 150 200 250 300 350 400
Time (years)

0

1

2

3

4

5

6

M
T
B

 i
n
fe

c
ti

o
n
 r

a
te

 (
%

)

eta=0.06, eta1=0.04, k12=18, a12=0.003

Total
one strain infection
mixed infection

(a)

0 50 100 150 200 250 300 350 400
Time (years)

0

2

4

6

8

10

12

M
T
B

 i
n
fe

c
ti

o
n
 r

a
te

 (
%

)

eta=0.12, eta1=0.1, k12=22, a12=0.006

Total
one strain infection
mixed infection

(b)

Fig. 6. MTB infection rate increases with increasing values of a12 and k12.

Fig. 6, MTB infection rate increases with increasing values of parameters related

with mixed infection. At equilibrium, total MTB infection rate is 2.0% with mixed

infection imparting 21.8% in Fig. 6(a). In Fig. 6(b), total MTB infection rate is

10.1% with mixed infection imparting 76.9%. With increasing values of reactivation

rate and transmission rate for individuals with mixed infection, there is increase

in the MTB infection rate. This is because mixed infected individuals are more

infectious than one strain infection individuals because of their potential to spread

either one strain or all the strains at the same time.

4.2. TB incidence rate

TB incidence rate is defined as the number of new cases of TB during a specified

period of time. The total TB incidence rate is the summation of the TB incidence

rate for the one strain infection and that for mixed infection. We consider it as per

100, 000 people. We are also interested in the number of new cases caused by mixed

infection and how much it adds to TB incidence. Fig. 7 shows how the total TB

incidence rate changes with time as some parameter values change.

Total TB incidence rate rises with rising parameter values closely linked to mixed

infection. In Fig. 7(a), it is 131/100, 000 to which mixed infection contributes 12.2%
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Fig. 7. Increasing values of parameters of mixed infected individuals leads to a rise in the number
of new active TB cases thus causing an a shoot up in Total TB incidence rate.

when model is run until equilibrium. In Fig. 7(b), it is 397/100, 000 with mixed

infection imparting 57.7%. Thus mixed infection evokes rises in TB incidence rates.

4.3. TB prevalence

TB prevalence represents the number of people sick with TB at a given point in

time. It gives the number of those that are infectious. At steady state, Total TB
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Fig. 8. TB prevalence rises with rising values of parameters linked to mixed infection. Parameters
are in Table. 8.

prevalence is 0.2% with contribution of 12.2% by mixed infection as shown in Fig.

8(a). In Fig. 8(b), it is 0.61% to which mixed infection gives 57.7%. Hence the
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prevalence of mixed infection in active TB individuals is 12.2% and 57.7% in Fig.

8(a) and Fig. 8(b) respectively. In studies done, it ranged from 2.3% to 75% [25, 34].

4.4. Prevalence of mixed infection in population

This is determined from the model. It is calculated using formulation in TABLE.

2. Numerical results are given in Fig. 9. Fig. 9(a) gives the prevalence of mixed
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Fig. 9. Prevalence of mixed infection is 0.025% in Fig. 9(a) and 0.35% in Fig. 9(b).

infection in the population as 0.025% at equilibrium and from Fig. 9(b), it is 0.35%

with the parameter values that have been used.

A clear study of numerical results of this section shows that increasing the

parameters related with mixed infection by two times leads to an increase in the

MTB infection rate, TB incidence rate and TB prevalence by more than twice their

initial value, with mixed infection contributing more than 50% to that value. This

highlights the consequences of mixed infection in a population.

5. Discussion

In this paper, we have studied the mathematical dynamics of mixed infection in

TB. The analysis of the model showed the existence of multiple endemic equilibria

and backward bifurcation for certain parameter values. This means that even when

RTB
0 < 1, the disease may persist in the population.

Parameters such as transmission rate, reactivation rate for mixed infected indi-

viduals as well as probabilities of latent individuals acquiring mixed infection are

important in establishing mixed infection. The values of these parameters would be

high in areas with poor living conditions, overcrowding and high strain diversity.

Mixed infection leads to an increase in TB incidence, TB prevalence and MTB in-

fection rate even with no HIV and may be an explanation of what has been observed
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in certain areas in Western Cape, South Africa. In one of the areas studied in [4, 20],

the ARI was as high as 3.7% in 1998-1999 survey and 4.1% in 2005 survey with an

HIV prevalence of less than 10% [15, 20, 26]. TB notifications had been increasing

i.e from 673/100, 000 to 834/100, 000 between 1998 and 2002 yet the detection and

treatment services had improved over the years. However, it was noted that the

living conditions in this area were poor, there was overcrowding and high strain

diversity. All these contribute greatly to mixed infection.

In conclusion, backward bifurcation occurs for certain parameter values meaning

that even when RTB
0 < 1, the disease may persist in the population. Parameters

such as transmission rate, reactivation rate for mixed infected individuals as well as

probabilities of latent individuals acquiring mixed infection are important in estab-

lishing mixed infection and these have high values in areas of overcrowding, high

strain diversity and where living conditions are poor.
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