
Detecting Manipulated Smartphone Data on
Android and iOS Devices

Heloise Pieterse1,2, Martin Olivier2, and Renier van Heerden3,4

1 Defence, Peace, Safety and Security,
Council for Scientific and Industrial Research, Pretoria, South Africa,

hpieterse@csir.co.za
2 Department of Computer Science, University of Pretoria, Pretoria, South Africa,

molivier@cs.up.ac.za
3 National Integrated Cyber Infrastructure System, Council for Scientific and

Industrial Research, Pretoria, South Africa
4 School of Information and Communication Technology, Nelson Mandela University

Port Elizabeth, South Africa,
rvheerden@csir.co.za

Abstract. Ever improving technology allows smartphones to become
an integral part of people’s lives. The reliance on and ubiquitous use
of smartphones render these devices rich sources of data. This data be-
comes increasingly important when smartphones are linked to criminal
or corporate investigations. To erase data and mislead digital forensic
investigations, end-users can manipulate the data and change recorded
events. This paper investigates the effects of manipulating smartphone
data on both the Google Android and Apple iOS platforms. The deployed
steps leads to the formulation of a generic process for smartphone data
manipulation. To assist digital forensic professionals with the detection
of such manipulated smartphone data, this paper introduces an evalua-
tion framework for smartphone data. The framework uses key traces left
behind as a result of the manipulation of smartphone data to construct
techniques to detect the changed data. The outcome of this research
study successfully demonstrates the manipulation of smartphone data
and presents preliminary evidence that the suggested framework can as-
sist with the detection of manipulated smartphone data.

Keywords: Digital Forensics, Mobile Forensics, Manipulation, Smart-
phone Data, Smartphones, Android, iOS.

1 Introduction

The 21st century is witnessing the rapid development of smartphone technology.
The current technological advancements equip smartphones with improved ca-
pabilities and functionality that nowadays closely resemble a personal computer.
Existing smartphone models support different connectivity options, various com-
munication channels, the installation of third-party applications, as well as a
complete operating system. The leading smartphone operating systems of 2018

1



are Google Android and Apple iOS. The prominence of both Android (69.87%
market share) and iOS (28.82% market share) platforms directly relates to their
provided capabilities and popularity among users [1]. Although other smart-
phone operating systems do exist, the combined market share of 98.69% guided
this study to only focus on these platforms.

From a mobile forensics’ perspective, which forms a sub-discipline of digi-
tal forensics, the data collected by smartphones, called smartphone data, can
become important sources of digital evidence. Smartphone data includes any
data of probative value that is generated by an application or transferred to
the smartphone by the user [2]. The extensive market share of both Android
and iOS smartphones ensures the diverse usage of the devices, which eventu-
ally leads to rich collections of smartphone data [3]. Smartphone data describe
events (for example sending a text message or browsing a website) that occurred
on the smartphone. Valuable smartphone data, such as contacts, text messages,
call lists, browsing history and e-mails, provides a well-defined snapshot of user
events and support the chronological ordering of these events [4]. The exact
events recorded by a smartphone depend on several internal and external fac-
tors, such as smartphone settings, operation by the user and installed applica-
tions [5]. Regardless of the availability, the produced smartphone data can still
offer insight during digital forensic investigations and provide important digital
evidence.

The value of smartphone data as a form of digital evidence has, however,
raised suspicion among users. Data retrieved from smartphones can offer con-
textual clues about the end-user, who the owner and user of the smartphone
is, as well as activities performed involving the smartphone. Such clues can re-
veal who the user knows and communicated with, locations visisted, highlight
personality traits and pinpoint close associates [6]. The presence of such infor-
mation can be a cause for concern [7], which can drive end-users to apply ma-
nipulative techniques to the data and eliminate or remove any potential value.
The motivation for manipulating smartphone data is two-fold. Firstly, benign
end-users can deploy certain techniques to manipulate smartphone data deemed
private or sensitive and minimise the exposure of such data. Secondly, end-users
can use similar techniques to intentionally make changes to smartphone data
to hide their involvement in criminal activities and erase incriminating events.
These techniques and tools are commonly referred to as anti-forensics and are
primarily used to “compromise the availability or usefulness of evidence to the
forensic process” [8]. Several recent research studies ([4, 9–13]) have investigated
the effect and feasible use of anti-forensics in the smartphone environment. It is,
therefore, possible for end-users to utilise anti-forensics to erase, manipulate or
construct false data, ultimately misleading digital forensic investigations.

To counter and thwart the effects of anti-forensics, existing research presents
several solutions. Verma et al. [14] preserve date and timestamps of Android
smartphones by capturing system generated values and storing these values in a
location beyond the smartphone. Govindaraj et al. [15] have designed a solution,
called iSecureRing, which permits a jailbroken iPhone to be secure and ready

2



for a digital forensic investigation by preserving timestamps in a secure location.
Research conducted by Pieterse et al. [16] showcased the successful manipula-
tion of timestamps stored in SQLite database on Android smartphones. The
research also proposed the Authenticity Framework for Android Timestamps,
which provides methods to identify manipulation timestamps. These solutions
are, however, either platform-specific, require additional software to be installed
on a smartphone prior to an investigation or only focus on a specific subset of
smartphone data such as timestamps.

This paper attempts to eliminate the shortcomings of existing research by
establishing an evaluation framework that assists with the identification of ma-
nipulated smartphone data on both Android and iOS platforms. To construct
such a framework, it is necessary to determine what manipulative changes can
be applied to smartphone data. This is possible by conducting exploratory ex-
periments involving the manipulation of data on a Samsung Galaxy S5 Mini
(Android version 6.0.1) and iPhone 7 (iOS version 10.0.1) smartphones. The
steps followed to perform the manipulation form a generic process to generalise
the manipulation techniques. Such manipulation of smartphone data is essen-
tially an attack on the data’s integrity and is best described using an attack
tree. Using the attack tree, key traces left behind due to the manipulation of
smartphone data leads to the formulation of the evaluation framework, which
provides key indicators for digital forensics professionals to identify and pinpoint
manipulated smartphone data. The immediate challenges to address in this pa-
per are thus the following: (a) development of an effective and generic process to
manipulate smartphone data on both Android and iOS platforms and (b) con-
struct an evaluation framework capable of detecting manipulated smartphone
data.

The remainder of this paper is structured as follows. Section 2 presents an
overview of the Android and iOS platforms and discusses the structure of SQLite
databases. The generic process for smartphone data manipulation, constructed
using the results of the exploratory experiments, is discussed in Section 3. Sec-
tion 4 presents an attack tree for smartphone data manipulation and Section
introduces the evaluation framework to detect such manipulated data. Finally,
Section 6 concludes the paper.

2 Background

With the continuous growth in functions and capabilities of smartphones sup-
porting the Android and iOS platforms, valuable sources of smartphone data are
collected on these devices. This section reviews the architecture and file system
structure of the Android and iOS platforms. Attention is given to the storage
location of the smartphone data on these platforms, as well as the accessibility of
the data. Following the review of smartphone platforms is an overview of SQLite
databases, which are a popular choice for persistent storage on smartphones.

3



2.1 Smartphone Platforms

Operating systems form the foundation of advanced capabilities and improved
functionality showcased by smartphones today. They operate seamlessly and act
as the intermediary layer between the user and the underlying hardware re-
sources. High performance smartphone operating systems, which include Google
Android and Apple iOS, are the current pace setters, as reflected by their com-
bined market share of 99.9% in the 4th quarter of 2017.

The Google Android platform is an open source operating system provided
by the Open Handset Alliance [17] and was officially announced in November
2007. The architecture of the platform is divided into six layers: system applica-
tions, Java API framework, native C/C++ libraries, Android runtime, hardware
abstraction layer and Linux kernel [18]. This architecture ensures the effective
operation of applications by allowing fluent communication between these appli-
cations and the lower layers. Until Android version 2.2 (Froyo), Android smart-
phones primarily used Yet Another Flash File System version 2 (YAFFS2) [19].
Android switched from YAFFS2 to Fourth Extended (EXT4) file system with the
release of version 2.3 (Gingerbread) to more efficiently support multi-core chip
sets [19]. The EXT4 file system also divides the disk space into logical storage
units, which supports reduced management overhead and improves throughput
[20]. With regards to digital forensic investigations, the logical storage units
containing valuable smartphone data are the /data and /system partitions [21].
Access to these partitions is not permitted by default and is only accessible
by rooting the Android smartphone. Rooting gives the user access to the root
directory (/) and permits the execution of superuser privileges [17].

The Apple iOS platform is a proprietary and slimmed down version of the
macOS [22] for Apple’s mobile devices. The architecture of the iOS platform
consists of five layers: applications, Cocoa touch, media, core services and core
OS/kernel [23]. The iOS platform acts as an intermediary layer between the
underlying hardware components and installed applications, causing the appli-
cations to interact with the hardware through a set of well-defined system inter-
faces [24]. A variation of the Hierarchical File System Plus (HFS+), called HFSX,
was selected as the primary file system for iOS [25]. The single-threaded design
and rigid data structures of HFSX struggled to keep pace with ever-improving
technology. In 2016 Apple announced a new file system, called the Apple File
System (APFS), for all Apple’s mobile operating systems, including iOS [25].
Similar to the Android platform, iOS also divides the logical storage space into
partitions. Traditionally, iOS smartphones are configured with two partitions:
system and data [26]. Access to smartphone data stored on these partitions is
not allowed by default and users must jailbreak the iOS smartphone. The term
jailbreak originates from a Unix practice of placing services in a restricted set
of directories called a “jail” and breaking free from these restrictions [27]. By
jailbreaking an iOS smartphone removes restrictions put in place by Apple and
elevates the privileges to root access [28].

4



2.2 SQLite Databases

SQLite is best described as an efficient software library that implements a
lightweight Structured Query Language (SQL) database engine [29]. The main
database file (.db, .db3 or .sqlitedb) contains a complete SQL structure that
includes tables, indices, triggers and views [30]. The first page of the main
database file is a 100-byte database header page. The remaining pages following
the header page are structured as B-trees, where each page contains a B-tree
index and B-tree table that holds the actual data [31].

During transactions, SQLite stores additional information in a secondary file
called either a rollback journal or write-ahead log (WAL) file [32]. The purpose of
this secondary file is to ensure the integrity of the data in the event of transaction
failure. The WAL approach, which was introduced with version 3.7.0, preserves
the original data in the main database file and appends changes to a separate
WAL (.db-wal) file. The WAL file also contains a 32-byte file header and zero or
more WAL frames. When a checkpoint occurs the updated or new records in the
WAL file are written to the main database file. Once completed, the WAL file
remains untouched and can be reused rather than deleted. Traditionally, SQLite
performs an automatic checkpoint when the WAL file reaches a size of 1000
frames (approximately 4MB in file size) [33]. The number of WAL frames are
calculated using the WAL file size (minus the WAL header size) divided by the
combined size of the header and frame.

3 Generic Process for Smartphone Data Manipulation

The manipulation of smartphone data occurs for different reasons by applying
various techniques. The available techniques to manipulation smartphone data
are modification, fabrication or deletion. Modification of the smartphone data
refers to tampering or altering of existing smartphone data. With modification,
the existing data is updated to reflect changed data. Fabrication describes the
creation of new but false smartphone data. The fabricated or counterfeited data
is inserted to represent actual data. Finally, deletion of smartphone data removes
the data.

To establish a generic process for smartphone data manipulation, exploratory
experiments involving both the Android and iOS default messaging applications
are performed. The purpose of these experiments is to obtain access to the per-
sistent data of the applications and attempt the manipulation, which is either
the modification, fabrication or deletion, of the data. While performing the ex-
ploratory experiments, the steps followed to manipulate the smartphone data
are carefully documented. From the observations, similarities are identified and
collected into a generic process.

3.1 Manipulation of Android Smartphone Data

The first exploratory experiment focuses on the Android platform and uses a
Samsung Galaxy S5 Mini, running Android version 6.0.1 (Marshmallow), as

5



the test smartphone. To manipulate the smartphone data of Android’s default
messaging application, access to the file(s) responsible for storing the data is
required. The Android platform stores all application-related smartphone data
in the /data folder and access is only possible on a rooted smartphone, as men-
tioned in Section 2.1. Root access on the Samsung Galaxy S5 Mini is obtained
using the CF Auto Root and Odin tools.

Android’s default messaging application uses an SQLite database for data
storage and is located in the /data/data/com.android.providers.telephony/
database/ folder on the Android smartphone. At this point, manipulation in the
form of deletion is possible by simply removing the SQLite database files (.db
and .db-wal) and rebooting the smartphone. This deletes all of the smartphone
data related to the application. Modification of existing data or adding newly
fabricated data requires direct access to the SQLite database records. Applying
changes directly to the data in the SQLite database files is not feasible due to
the complex structure of the files and the possibility of applied changes being
overwritten. It is, therefore, necessary to open and access the data in these file(s).
Two approaches exist to access the SQLite database files: direct or off-device.

The direct approach involves the manipulation of the smartphone data by
opening the SQLite database on the Android smartphone. This requires the use
of an appropriate tool, such as the sqlite3 command-line program, to manu-
ally enter and execute SQL statements [34]. This program provides access to the
SQLite database records (using the .open command) and allows for the manipu-
lation of the smartphone data using the appropriate SQL statements (INSERT,
UPDATE or DELETE). Android smartphones do not ship with a pre-installed
sqlite3 command-line program. Absence of or failure to utilise the sqlite3

command-line program necessitates the use of the off-device approach.

The off-device approach requires an established communication channel be-
tween the smartphone and a connected computer. Establishing such a channel
relies on the USB debugging functionality, which is not visible by default. Al-
though not visible, going to Settings, About phone and tapping multiple times
on the build number will enable Developer mode. Selecting Developer options
and touching the check box next to “USB debugging” will enable this feature.
Following the enabling of the “USB debugging” feature, it is possible to cre-
ate a communication channel using the Android Debug Bridge (ADB). ADB is
a versatile command-line utility that communicates with a connected Android
smartphone [35]. The communication channel is established using adb shell,
followed immediately by the su command. Using the established communication
channel, the SQLite database files are first transferred to the /sdcard folder
before downloading the files to the connected computer. The /sdcard folder is
found across all Android smartphones, regardless of make or model, and allows
end-users to store additional files and data. Using an SQLite editor to open the
.db file causes an automatic checkpoint to occur, ensuring all the records in
the .db-wal file are transferred and visible in the editor. It is now possible to
manipulate the smartphone data using the available SQL statements (INSERT,

6



UPDATE or DELETE). After completing the manipulation of the smartphone
data, the SQLite database is closed to ensure the changes are captured correctly.

To complete the manipulation of the smartphone data, the remaining .db file
must be returned to the Android smartphone. Before this file can be returned to
the /data/data/com.android.providers.telephony/databases/ folder, the
original SQLite database (.db and .db-wal files) must be removed using the rm

command. The removal of the original SQLite database files prevents the manip-
ulated data from being overwritten. Thereafter, the .db file can be returned to
the /data/data/com.android.providers.telephony/databases/ folder using
the mv command. The only required file is the .db-wal file, which is generated
following a smartphone reboot. The permission of the .db file must be changed
using the chmod a=rw or chmod 666 command to create a new .db-wal file. The
reboot also ensures the manipulated data is visible on the Android smartphone.

This concludes the exploratory experiment of manipulating Android smart-
phone data. The following section attempts the manipulation of smartphone
data residing on an iPhone 7.

3.2 Manipulation of iOS Smartphone Data

The second exploratory experiment focuses on the iOS platform and uses an Ap-
ple iPhone 7, running iOS version 10.0.1, to perform the experiments. To manip-
ulate the smartphone data that forms part of the default messaging application
on the iPhone 7, access to the file(s) storing the data is required. The iOS plat-
form stores application smartphone data in the /private/var/mobile/Library
folder. Access to this folder is only permitted on a jailbroken smartphone, which
is achieved by using the extra recipe + yaluX jailbreak application and Im-
pactor to transfer the application to the iPhone 7. Upon installing the appli-
cation, the jailbreak executes and immediately reboots. The jailbreak status is
confirmed by verifying the automatic installation of the Cydia application, a
package manager for jailbroken iPhones.

iPhone’s default messaging application uses a SQLite database for storing
data. The SQLite database is found in the /private/var/mobile/Library/SMS/
folder on the iPhone 7. At this point, manipulation in the form of deletion is pos-
sible by removing the SQLite database files (.db and .db-wal) and performing
a smartphone reboot. Again, this removes all of the smartphone data related to
the application. Modification of existing or the creation of counterfeited data ne-
cessitates access to the SQLite database records. Access to the records is possible
via one of the following two approaches: direct or off-device.

The direct approach involves the manipulation of the smartphone data by
opening the SQLite database on the iPhone 7. This approach relies on the pres-
ence and availability of the sqlite3 program on the iPhone 7. In contrast to
Android, iOS comes pre-installed with the sqlite3 program. The program pro-
vides direct access to the SQLite database and permits the modification of ex-
isting data, fabrication of new data, as well as the removal of all or specific
data. Should the sqlite3 program fail to effectively apply the changes to the
smartphone data, it will be necessary to follow the off-device approach.

7



The off-device approach requires the transferral of the SQLite database (both
the .db and .db-wal files) to a connected computer. A communication channel is
established using the iFunbox and puTTy applications. Obtaining access to the
iPhone 7 file system is possible using the standard iOS credentials, which is root
(username) and alpine (password). Thereafter, the SQLite database files is first
transferred to the /var/mobile/Media folder before downloading the files unto
the connected computer. The /private/var/mobile/Media folder is similar to
Android’s /sdcard folder and allows users to store additional media and down-
loaded files. Using a SQLite editor, the .db file is opened and immediately causes
an automatic checkpoint (see Section 2.2). It is now possible to manipulate the
smartphone data using the available SQL statements (INSERT, UPDATE or
DELETE). After completing the manipulation, the SQLite database is closed to
ensure the changes are correctly captured.

For the manipulated data to reflect on the iPhone 7, it is necessary to return
the .db file. Before returning the file to the /private/var/mobile/Library/

SMS folder, the existing SQLite database (.db and .db-wal files) must be re-
moved using the rm command. These files, especially the .db-wal file, are re-
moved to ensure the manipulated data is not overwritten. Thereafter, the .db file
can be transferred to the /private/var/mobile/Library/SMS folder using the
mv command. The only required file is the .db-wal file, which is created following
a smartphone reboot. To generate the new and empty .db-wal file, the current
permissions of the .db file must be changed using the chmod a=rw or chmod 666

command. This ensures the .db-wal file is created and the manipulated data is
visible on the iPhone 7.

The successful manipulation of iOS smartphone data concludes the exploratory
experiment. The following section consolidates the findings found across both
exploratory experiments and formulates a generic process for smartphone data
manipulation.

3.3 Generic Process

The exploratory experiments performed in the previous sections confirm that it
is indeed possible to manipulate smartphone data on both the Android and iOS
platforms. Although the focus was on the manipulation of text messages of the
default messaging applications, the same steps can be followed to manipulate any
other smartphone data. From these experiments, it is now possible to pinpoint
various similarities among the steps followed to manipulate smartphone data. Us-
ing the collected similarities, a generic process is formulated that generalises the
manipulation of smartphone data. The generic process consists of four distinct
stages. Each individual stage describes the progression of the generic process to
manipulate the smartphone data along with the requirements that must be met
to successfully complete each stage, as well as the actual manipulation.

– Phase 1: ensures the selected smartphone is accessible by confirming the
smartphone is either rooted (Android) or jailbroken (iOS).

8



– Phase 2: requires the selection of the application and identifying the location
of the file(s), such as a SQLite database, storing the smartphone data. The
data of the selected smartphone application must reside on the smartphone.

– Phase 3: identify the most appropriate approach to access the smartphone
data: Direct or Off-device.

– Phase 3.1: the direct approach performs the manipulation of the smart-
phone data directly on the smartphone and relies on the presence of a pro-
gram or utility to access the file(s).

– Phase 3.2: the off-device approach requires the transferral of the file(s)
to the connected computer. Using the most appropriate program or utility,
the contents of the file(s) is accessed and manipulated accordingly. Once
completed, the file(s) is closed and returned to the smartphone to overwrite
previous smartphone data. The returned file(s) is also assigned the necessary
read/write permissions to ensure the smartphone application can interact
with the manipulated smartphone data.

– Phase 4: requires a manual reboot of the smartphone.

This proposed generic process for smartphone data manipulation captures
the steps to follow to modify, fabricate or delete smartphone data. The following
section further investigates the manipulation of smartphone data by introducing
an attack tree that encapsulates the various manipulation scenarios.

4 Attack Tree for Smartphone Data Manipulation

The established generic process for smartphone data manipulation provides the
steps to affect changes to data. Such changes are essentially an attack on the
integrity, availability and authenticity of smartphone data and is best described
using an attack tree. An attack tree provides a formal and methodical way to
describe various attacks against a system [36]. The attacks are represented using
a conceptual tree structure with the main goal of these attacks listed as the root
node. The nodes following the root describes the different avenues of achieving
the goal, constructed using OR (choice between alternative steps) and AND
(represents different steps to achieve the same goal) nodes.

The goal of this attack tree is the “manipulation of smartphone data” and
is denoted by G. The intermediate goals are: deletion (I1), modification (I2)
or fabrication (I3). Following the intermediate goals are the sub-goals that de-
scribes the required steps to accomplish each intermediate goal and ultimately
complete the set goal. There are two options for deletion: removal of the files
holding the data which deletes all of the data (S1) or removing specific data
such as individual records (S2). Removal of the file(s) requires physical access
to the smartphone(S5) by either rooting (Android) or jailbreaking (iOS) the
smartphone. Once access is acquired, it is necessary to locate and remove the
file(s) (S6). This is followed by a reboot of the smartphone (S7) and ensures the
deletion of all the smartphone data related to the smartphone application. The
removal of individual records also requires physical access to the smartphone and

9



Fig. 1. Attack tree for smartphone data manipulation

locating the file(s) holding the data. Since this attack focuses on the manipula-
tion of specific data, it is necessary to access and open the file(s) containing the
data (S8). Options to open the file(s) are either directly on the smartphone (S9)
or off-device on a connected computer (S10). To open and view the data requires
the use of an appropriate utility or program to access the data (S11). Should
such utility or program be unavailable or the approach not be feasible, access
to the file(s) holding the data must occur off-device on a computer connected
to the smartphone. Off-device manipulation requires the transferral of the file(s)
(S12), which relies on an established connection between the smartphone and
the connected computer (S14). After performing the manipulating, the file(s)
are returned to the smartphone via the established connection (S13). This is
again followed by a smartphone reboot (S7) to ensure the removed data reflects
on the smartphone.

The remaining manipulation techniques, modification (I2) and fabrication
(I3), follows similar attack paths. To either change existing data (S3) or insert
fabricated data (S4), it is necessary to open and access the data in the file(s).
Therefore, these manipulation techniques follows a path identical to the removal
of individual records. According to the descriptions above, the attack tree is
constructed and presented in Fig. 1. This attack tree forms the basis for deriving
attack scenarios to manipulate smartphone data.

The presented attack tree provides four distinct techniques to manipulate
smartphone data. These four techniques (deletion of all data, deletion of specific
data, modification of data or fabricating data) will have inherent side-effects that

10



leaves various traces on smartphones. Traces specific to each sub-goal are listed
in Table 1.

Table 1. Traces created due to the manipulation of smartphone data

Sub-Goal Trace Created

S1, S2, S3, S4 The presence of a new and clean WAL file
S5 Automatic installation of a root application
S5 Unavailability of over-the-air (OTA) updates
S7 Creation of a new entry in the reboot log
S8 Discrepancy between WAL timestamp and application timestamp
S9, S11 Use of the sqlite3 command-line program
S10, S12 Change in ownership of the .db file
S10, S12 Change in permissions for the .db file
S10, S13 The .db file size larger than .db-wal file
S14 Enabled settings (USB debugging)

Collectively, the traces provides evidence that can assist with the identifi-
cation of manipulated smartphone data. The following section further explores
these traces by extracting key indicators and using the indicators to construct
an evaluation framework for smartphone data.

5 Evaluation Framework for Smartphone Data

The collection of traces deduced from the various manipulation techniques encap-
sulated in the attack tree equips digital forensic professionals with the necessary
information to evaluate smartphone data. There is, however, no structure or or-
der to these traces, which can impact the effective use of the traces to detect
manipulated smartphone data. To assist digital forensic professionals, key indi-
cators are extracted from these traces and captured in an evaluation framework.
Fig. 2 presents the evaluation framework for smartphone data.

From the collected traces 10 distinct indicators are identified, which are listed
in the above evaluation framework. Each indicator is a possible side-effect that
occurs due to the manipulation of the smartphone data. Certain indicators, such
as the root status and OTA updates, are not a direct indication of the intentional
manipulation of smartphone data. However, the manipulation necessitates the
need for rooting/jailbreaking the smartphone, which also impacts the availability
of OTA updates. Therefore, a larger collection of present indicators is a better
reflection of the manipulation of smartphone data.

To pinpoint these indicators, specific measurements are presented to assist
digital forensic professional. Where necessary, explicit measures are specified for
the different smartphone platforms. Each evaluated indicator produces a binary
result that reflects either a positive [true] or negative [false] result. A positive
result indicates the evaluated measurement(s) are met while a negative result
contradicts the indicator. All of the positive (posr) results of all the evaluated

11



Fig. 2. Evaluation framework to identify manipulated smartphone data

indicators (n) are accumulated and using equation (1), a manipulation score
(Ms) is calculated.

Ms =
posr
n

(1)

Using the probability scale shown in Fig. 3, the calculated manipulation
score can be plotted to reflect whether the evaluated smartphone data is either
original or manipulation. Also, the probability scale allows the digital forensic
professional to measure the certainty of the findings.

Fig. 3. Probability scale to measure manipulation

To confirm the effectiveness of the framework to identify manipulated smart-
phone data, the following manipulation technique is applied to smartphone data
at a theoretical level: I1, S2, S5, S6, S8, S9, S11, S7. Application of this particular

12



manipulation technique will cause the following indicators to present on a smart-
phone: WAL File, Root Application, OTA Updates, Application Usage, SQLite
program and Reboot. All of these indicators meet the provided measurements
and using equation (1), the calculated manipulation score is 0.6. Plotted on the
probability scale shown in Fig. 3, the manipulation score confirms with a higher
certainty the manipulation of the smartphone data. The result confirm that the
evaluation framework for smartphone data can assist with the identification of
manipulated data.

6 Conclusion

Smartphone data found on both Android and iOS devices can form an important
component of digital forensic investigations. Available smartphone data provides
a well-defined snapshot of user events. To protect their privacy or hide incrim-
inating events, users can deploy anti-forensics to manipulate smartphone data.
The challenges addressed in this paper were to show (a) that smartphone data
can be manipulated and (b) construct an evaluation framework to detect such
manipulated data. Challenge (a) was addressed by formulating the generic pro-
cess to manipulate smartphone data on both the Android and iOS platforms.
Challenge (b) was concluded by introducing the evaluation framework for smart-
phone data and confirming the framework can assist with the identification of
manipulated data. Future work can build on this research by establishing other
approaches to identify manipulated smartphone data.

References

1. NetMarketShare, Operating System Market Share, https:
//netmarketshare.com/operating-system-market-share.aspx], last accessed
2018/06/04.

2. Pieterse, H., Olivier, M., van Heerden, R.: Evaluating the Authenticity of Smart-
phone Evidence. In: Peterson, G., Shenoi, S. (eds.) Advances in Digital Forensics
XIII, vol. 511, pp. 41-61. Springer, Heidelberg (2017).

3. Ayers, R., Brothers, S., Jansen, W.: Guidelines on mobile device forensics (draft).
In: NIST Special Publication 800 (2013).

4. Albano, P., Castiglione, A., Cattaneo, G., De Maio, G., De Santis, A.: On the
construction of a false alibi on the Android OS. In: Third International Conference
on Intelligent Networking and Collaborative Systems (INCoS), pp. 685-690. IEEE
(2011).

5. Pieterse, H., Olivier, M., van Heerden, R.: Smartphones as Distributed Witnesses for
Digital Forensics. In: Peterson, G., Shenoi, S. (eds.) Advances in Digital Forensics
X, 433, pp. 237-251. Springer, Heidelberg (2014).

6. Kala, M., Thilagaraj, R.: A framework for digital forensics in i-devices: Jailed and
jail broken devices. Journal of Advances in Library and Information Science, 2(2),
82-93 (2013).

7. Tsavli, M., Efraimidis, P.S., Katos, V.: Reengineering the user: privacy concerns
about personal data on smartphones. Information & Computer Security, 23(4), 394-
405 (2015).

13



8. Harris, R.: Arriving at an anti-forensics consensus: Examining how to define and
control the anti-forensics problem. Digital Investigation, 3, 44-49 (2006).

9. Albano, P., Castiglione, A., Cattaneo, G., De Santis, A.: A novel anti-forensics tech-
nique for the Android OS. In: International Conference on Broadband and Wire-
less Computing, Communication and Applications (BWCCA), pp. 380-385. IEEE
(2011).

10. Azedegan, S., Yu, W., Liu, H., Sistani, M., Acharya, S.: Novel anti-forensics ap-
proaches for smart phones. In: 45th Hawaii International Conference on System
Sciences (HICSS), pp. 5424-5431. IEEE (2012).

11. D’Orazio, C., Ariffin, A., Choo, K.: iOS anti-forensics: How can we securely conceal,
delete and insert data?. In: 47th Hawaii International Conference o System Sciences
(HICSS), pp. 4838-4847. IEEE (2014).

12. Karlsson, K., Glisson, W.: Android anti-forensics: Modifying cyanogenMod. In:
47th Hawaii International Conference of System Sciences (HICSS), pp. 4828-4837.
IEEE (2014).

13. Zheng, J., Tan, Y., Zhang, X., Liang, C., Zhang, C., Zheng, J.: An anti-forensics
method against memory acquiring for Android devices. In: International Conference
on Computational Science and Engineering (CSE) and Embedded and Ubiquitous
Computing (EUC), pp. 214-218. IEEE (2017).

14. Verma, R., Govendaraj, J., Gupta, G.: Preserving dates and timestamps for inci-
dent handling in Android smartphones. In: Peterson, G., Shenoi, S. (eds.) Advances
in Digital Forensics X, 433, pp. 209-225. Springer, Heidelberg (2014).

15. Govindaraj, J., Verma, R., Mata, R., Gupta, G.: iSecureRing: Forensic ready secure
iOS apps for jailbroken iPhones. In: 35th IEEE Symposium on Security and Privacy
(2014).

16. Pieterse, H., Olivier, M., van Heerden, R.: Playing hide-and-seek: Detecting the
manipulation of Android Timestamps. In: Information Security for South Africa,
pp. 1-8. IEEE (2015).

17. Lessard, J., Kessler, G.: Android forensics: Simplifying cell phone examinations.
Small Scale Digital Device Forensics Journal, 4(1), 1-12 (2010).

18. Android, Platform architecture, http://developer.android.com/guide/platform/,
last accessed 2017/10/04.

19. Zimmermann, C., Spreitzenbarth, M., Schmitt, S., Freiling F.C.: Forensic analysis
of YAFFS2. In: Sicherheit, pp. 59-69 (2012).

20. Kim, H.-J., Kim, J.-S.: Tuning the EXT4 filesystem performance for Android-based
smartphones. In: Frontiers in Computer Education, pp. 745-752. Springer (2013).

21. Tamma, R., Tindall, D.: Learning Android Forensics. Packt Publishing Ltd, Birm-
ingham, UK and Mumbai, India (2015).

22. Tracy, K.: Mobile application development experiences on Apple’s iOS and Android
OS. IEEE Potentials, 31(4), 30-34 (2012).

23. Apple, iOS technology overview, http://developer.apple.com/library/ con-
tent/documentation/Miscellaneous/Conceptual/iPhoneOSTechOverview Introduc-
tion/Introduction.html, last accessed 2017/10/05.

24. Kanoi, M., Jdiet, Y.: Internal structure of iOS and building tools for iOS apps.
International Journal of Computer Science and Applications, 6(2), 220-225 (2013).

25. Tamura, E., Giampaolo, D.: Introducing Apple file system. Technical Report. Ap-
ple, Inc. (2016).

26. Epifani, M., Stirparo, P.: Learning iOS Forensics. Packt Publishing Ltd, Birming-
ham, UK and Mumbai, India (2016).

27. Zdziarski, J.: iPhone forensics: Recovering evidence, personal data and corporate
assets. 1st ed. O’Reilly Media, Inc., Sebastopol, California (2008).

14



28. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: PiOS: Detecting privacy leaks in iOS
applications. In: NDSS, pp. 177-183 (2011).

29. Jeon, S., Bang, J., Byun, K., Lee, S.: A recovery method of deleted record for
SQLite database. Personal and Ubiquitous Computing, 16(6), 707-715 (2012).

30. SQLite, About SQLite, https://www.sqlite.org/about.html, last accessed
2018/04/24.

31. Patodi, P.: Database recovery mechanism for Android devices. Ph.D. Thesis. Indian
Institute of Technology, Bombay (2012).

32. SQLite, Database file format, https://www.sqlite.org/fileformat.html, last accessed
2018/04/24.

33. SQLite, Write-ahead logging, https://www.sqlite.org/wal.html, last accessed
2018/04/24.

34. SQLite, Command line shell for SQLite, https://www.sqlite.org/cli.html, last ac-
cessed 2018/04/25.

35. Android Studio, Android debug bridge (adb),
http://developer.android.com/studio/command-line/adb.html, last accessed
2018/01/03.

36. Schneier, B.: Attack trees. Dr. Dobb’s Journal, 24(12), 21-29 (1999).

15




