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Summary  

African swine fever (ASF) is a transcontinental, contagious, fatal virus disease of pig with 

devastating socioeconomic impacts. Interaction between infected wild boar and domestic pig 

may spread the virus. The disease is spreading fast from the west of Eurasia towards ASF-free 

China. Consequently, prediction of the distribution of ASF along the Sino-Russian-Korean 

borders is urgent. Our area of interest is Northeast China. The reported ASF-locations in eleven 

contiguous countries from the Baltic to the Russian Federation were extracted from the archive 

of the World Organization for Animal Health from July 19, 2007 to March 27, 2017. The 

locational records of the wild boar were obtained from literature. The environmental predictor 

variables were downloaded from the WorldClim website. Spatial rarefication and pair-wise 

geographic distance comparison were applied to minimize spatial autocorrelation of presence 

points. Principal component analysis (PCA) was used to minimize multi-collinearity among 

predictor variables.  We selected the maximum entropy algorithm for spatial modelling of ASF 

and wild boar separately, combined the wild boar prediction with the domestic pig census in a 

single map of suids and overlaid the ASF with the suids map. The accuracy of the models was 

assessed by the AUC. PCA delivered five components accounting for 95.7% of the variance. 

Spatial autocorrelation was shown to be insignificant for both ASF and wild boar records.  The 
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spatial models showed high mean AUC (0.92 and 0.97) combined with low standard deviations 

(0.003 and 0.006) for ASF and wild boar respectively.  The overlay of the ASF and suids maps 

suggest that a relatively short sector of the Sino-Russian border has been a high probability 

entry point of ASF at current conditions. Two sectors of the Sino-Korean border present an 

elevated risk. 

 Keywords: African swine fever, climate variables, maximum entropy, spatial modeling, wild 

boar 

1. Introduction 

African swine fever (ASF) is a notifiable, highly contagious and fatal viral hemorrhagic fever 

of all species of the Suidae family. The virus is transmitted by direct or indirect contact with  

infected suids (Brown & Bevins, 2018). In addition, soft ticks of the genus Ornithodoros serve 

as reservoirs and vectors (Burrage, 2013; OIE, 2012; Rowlands et al., 2008) and stable flies as  

mechanical transmitters (Mellor, Kitching, & Wilkinson, 1987; Olesen et al., 2018) of ASFV to 

suids. Further, ASFV persists in uncooked pig products, facilitating its spread (Murphy et al., 

1996). Finally, the virus overwinters in frozen carcasses of wild boar and presumably in frozen 

pig products (EFSA, 2014). Neither a safe vaccine nor treatment is available for prevention and 

control (Vergne et al., 2017). ASF has serious socioeconomic impact on international trade in 

pig and pig products (Bellini, Rutili, & Guberti, 2016; Bosch, Iglesias, Munoz, & de la Torre, 

2016).   

ASF was first detected in Kenya (Montgomery, 1921) and  initially restricted to Africa (Frant, 

Woźniakowski, & Pejsak, 2017; Murphy et al., 1996)  where the virus occurs in an ancient 

sylvatic cycle with warthog (Bastos et al., 2003). From Africa, ASF has been introduced into 

other continents (Penrith, 2009). In 1957, the disease spread from Angola to Portugal probably 

through infected pork fed as swill (Murphy et al., 1996) and from there in 1960 to Spain (Mur, 

Iscaro, et al., 2017). In the 1960s and 70s, ASF spread to other European countries, Caribbean 

Islands (Penrith & Vosloob, 2009) and Brazil (Lubisi, Dwarka, Meenowa, & Jaumally, 2009). 
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In 1985, ASF outbreaks occurred in Belgium and the Netherlands (Vinuela, 1987). In some 

west European countries, ASF outbreaks were rapidly controlled, but in others, the virus 

persisted for some time (Bech-Nielsen et al., 1995;  Boinas, Hutchings, Dixon, & Wilkinson, 

2004; Mannelli et al., 1997).  Subsequently, ASFV became widespread in Transcaucasia 

probably  by improper waste disposal from ships at a Black sea port in Georgia in 2007 and 

from there into the European part of the Russian Federation (RF), most likely through infected 

wild boar in the same year (Chapman et al., 2011). In Transcaucasia and the RF, both domestic 

pig and wild boar are affected. In addition to the presence of wild boar, the commonplace 

backyard swine rearing played a significant role in the wide and fast spread of the ASF in 

Transcaucasia (Oganesyan et al., 2013). Beyond a suitable wild boar habitat (De la Torre et al., 

2013),  interaction of infected wild boar with backyard pig farms are considered the main risk 

factor for the spread of the virus in Eastern Europe  (FAO, 2017). Depending on location and 

scale, the spread of ASF has been associated with a range of environmental variables.  These 

include density of free-ranging pigs, movement of pigs and pig products (Brown & Bevins, 

2018), swill-feeding, proximity to slaughter houses and density of rural population (Chenais et 

al., 2017; Fasina, Lazarus, Spencer, Makinde, & Bastos, 2012; Gornung, Cristaldi, & Castiglia, 

2009; Kabuuka et al., 2014; Mur, Atzeni, et al., 2014; Nantima et al., 2015; Penrith & Vosloo, 

2009; Randriamparany et al., 2005).  Further, pig farm density, piggeries with outdoor feedlots, 

and high road density have been correlated with the occurrence of ASF outbreaks (Gulenkin et 

al., 2011; Martínez-lópez, Perez, Feliziani, & Rolesu, 2015). In addition, presence of water 

bodies has been identified as a risk factor for ASF (Gulenkin, Korennoy, Karaulov, & 

Dudnikov, 2011; Korennoy et al., 2014). The use of climatic predictors for our large area is 

justified in the methods section below (2.1), from first principle with reference to the pertinent 

literature. 

 Ukraine and Belarus reported ASF in 2012 and 2013 respectively. Several cases of ASF among 

wild boar and outbreaks among domestic pig were detected during 2015 in the Baltic and 

neighboring Poland (Sánchez-Cordón, Montoya, Reis, & Dixon, 2018; Śmietanka et al., 2016; 
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Woźniakowski et al., 2016).  From 2007 onward, ASF has been spreading in the RF (Sánchez-

Cordón et al., 2018), but not into bordering China. Very recently, an ASF outbreak occurred 

near Irkutsk, in the RF’s Central Asia (Fig 1), posing a risk of ASF introduction into Northern 

China (Ge et al., 2017). Because China contains  almost half of the world’s domestic pig 

population, a major food industry is threatened (Vergne et al., 2017). Consequently, the 

development of a timely detection and control strategy of ASF has become urgent (Vergne, 

Gogin, & Pfeiffer, 2015).  

 
Figure 1. (a). Location Map of the three provinces (I, II and III) in Northeast China (AOI). (b). DEA for 

ASF (right) and wild boar (left). From Mongolia only two presence points of wild boar were available  

 

ASF  has been established and  maintained in Sardinia for nearly four decades (Mur, Iscaro, et 

al., 2017)  through direct contact between domestic pig and wild boar (Ravaomanana et al., 

2011). Due to the presence of non-registered domestic pigs (known as brado), wild boar, and 

low-biosecurity pig farms) in Sardinia, ASFV became established and small outbreaks spread 

mainly by fomites (e.g. cloths; car) between small piggeries (Mur, Sánchez-Vizcaíno, et al., 

2017). The role of the wild boar in ASF epidemiology, and more specifically their capacity to 

https://onlinelibrary.wiley.com/cms/attachment/0daea225-f4ed-467a-bb0d-739074a2acf5/tbed13094-fig-0001-m.jpg
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maintain the disease, is controversial. Wild boar seems unable to maintain the disease  without 

any other source of infection (Laddomada et al., 1994; Mur et al., 2012; Rolesu et al., 2007). 

However, in some east European countries (Belarus, RF and  Ukraine), ASF has crossed 

national borders through infected wild boar (EFSA, 2014) resulting in large epidemics both in 

domestic pig and wild boar (Gallardo et al., 2015). In summary, infected wild boar populations 

present  a constant risk for domestic pig and vice versa (Sánchez-Vizcaíno, Mur, & Martínez-

López, 2012).  

Pig farming in China is carried out in backyards, small, and large farms. However, the 

percentage of pigs that are raised in large intensive pig farms in China is rising quickly 

(McOrist, Khampee, & Guo, 2011). After the agricultural reform in the late 1970s, some 

backyard producers expanded their farm sizes and became specialized small piggeries. At the 

same time, most backyard pig producers gradually abandoned  farming (Chen & Wang, 2013). 

According to industry reports, the number of backyard pig producers has declined consistently 

since the mid-2000s. About 80% of the rural households in China do not raise pigs (Gale, 

Marti, & Hu, 2012; Qiao, Huang, Wang, Liu, & Lohmar, 2016).  Free ranging pigs are 

unknown in our AOI.    

The Eurasian wild boar is expanding its range while growing in numbers (Bosch, Rodríguez, et 

al., 2016; Oliver & Leus, 2008; Russo, Massei, & Genov, 1997; Segura, Acevedo, Rodriguez, 

Naves, & Obeso, 2014). Several policies are conducive, purposely or unintentionally for an 

ongoing spread and higher densities of wild boar in the area of interest (AOI). Since the 1990s, 

marginal mountainous farmlands and settlements are abandoned and spontaneously rewilding 

in Northeast China and the bordering RF. The rewilding process is reducing contacts between 

domestic pig and wild boar (Liu, Wang, Gao, & Deng, 2005; Vergne et al., 2017). Additionally, 

new nature reserves have been established in Northeast China. Further, China has legislated a 

protected status of wild boar (He, 2014;  Li, 2013). These trends brings about health risks 

because wild boar is a potential host for numerous pathogens (Acevedo, Quirós-Fernández, 

Casal, & Vicente, 2014) including ASF (Mur, Martínez-López, et al., 2014).  



6 

 

Climate may affect wild boar dynamics through spring and summer temperatures affecting food 

supply (Acevedo, Escudero, Muñoz, & Gortázar, 2006), especially fruit, seed and nut bearing 

trees and shrubs (Vetter, Ruf, Bieber, & Arnold, 2015). At the RF side of the Sino-Russian 

border  recent (2000-2016) deforestation has been observed (Hansen et al., 2013), largely due 

to wildfire (Cahoon, Stocks, Levine, Cofer, & Pierson, 1994; Vivchar, 2011). Wildfires and the 

resulting deforestation may drive populations of wild boar to migration (Olival, 2016). The risk 

of introduction of ASF by wild boar into EU countries has been assessed (Bosch, Rodríguez, et 

al., 2016; Bosch, Iglesias, et al., 2016). However, little is known on the geographic distribution 

and suitable environments for ASF and wild boar in Northeast China. For a wild boar 

management framework and an epidemiological control of the ASFV, reliable predictions of 

wild boar and disease distribution are highly desirable.  

We selected the maximum entropy algorithm (MaxEnt) from the large number of predictive 

species distribution models (SDMs).  MaxEnt is an empirical, deterministic, non-parametric, 

pixel-based, machine-learning method for presence-only point data analysis. It calculates 

probabilities of species presence without assumptions about the distribution of either species or 

predictors. In addition, MaxEnt generates response curves of each continuous predictor 

essential in interpreting model performance (Gils, Conti, Ciaschetti, & Westinga, 2012; Gils, 

Westinga, Carafa, Antonucci, & Ciaschetti, 2014).  MaxEnt has become the SDM tool of 

choice for animal distribution studies, including wild boar (Bosch, Mardones, Pérez, Torre, & 

Muñoz, 2014), bear (Gils et al., 2014) and anthrax (Abdrakhmanov et al., 2017).   Furthermore, 

MaxEnt provided a robust response independently of a number of selected variables of 5 or 

lower (Gils et al., 2014; Navarro-Cerrillo, Hernández-Bermejo, & Hernández-Clemente, 2011). 

Early MaxEnt studies did neither consider spatial autocorrelation of presence point data nor 

multi-collinearity of environmental predictor variables. In addition, early users reported that 

MaxEnt modelling was neither sensitive to spatial autocorrelation (Cheng, 2008)  nor 

collinearity issues (Elith et al., 2011). Subsequently, other case studies came to contrarian 

conclusions (Anderson & Gonzalez, 2011; Boria, Olson, Goodman, & Anderson, 2014; Duque-

Lazo, 2013; Kramer-Schadt et al., 2013; Varela, Anderson, García-Valdés, & Fernández-
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González, 2014; Veloz, 2009). In hindsight, disregard of multi-collinearity is difficult to 

understand as climatic variables are known to be highly correlated. Therefore, we may assume 

that the number of predictor variables (n=8-40) used in the early days of spatial modelling 

(Franklin, 2009) contained correlated variables.  

Mullins et al., (2013)  used an algorithm (GARP) less predictive compared to MaxEnt (Elith et 

al., 2006; Padalia, Srivastava, & Kushwaha, 2014; Phillips, Anderson, & Schapire, 2006). 

Further, MaxEnt has a proven record  of transferability between regions (Duque-Lazo, Gils, 

Groen, & Navarro-Cerrillo, 2016; Heikkinen, Marmion, & Luoto, 2012).  In addition, our 

selection and reduction of the number of predictor variables by PCA and response curve SD 

from a large set of options was explicitly geared at achieving the optimal transferability from 

the current distribution area to another geographic area.   

2. Materials and methods  

2.1. Research  area and data 

Our  area of interest (AOI) are the Heilongjiang, Jilin and Liaoning provinces in Northeast 

China located between N 38°43′-53°23′, E 118°37′-135°05′ in the center of Northeastern Asia 

(Fig 1). The three provinces together cover 78.7 ×104 km2, mostly forested mountains and 

nearly 30% farmed intermountain and river plains. The natural forest are classified from north 

to southwest as deciduous coniferous (larch), coniferous and mixed red pine/broad-leaved 

deciduous and deciduous broad-leaved (oak). The three plains consist of fertile  

phaeozem/chernozem (dark/black soil) (IUSS Working Group WRB, 2007, 2014)  and are 

cultivated  for soybean, maize and japonica rice. The AOI climate is characterized by short, 

warm and semi-dry to humid summer seasons alternating with long, frosty and dry winters. The 

annual precipitation increases from 400 mm at the Inner Mongolian side in the northwest to 

1000 mm at the Yellow Sea coast in the south. The number of frost days ranges from about 

100-200. The AOI shares a 4300 km border with the Far East of the RF, mostly following 

rivers (Argun, Amur and Ussuri) and a 1420 km border with North Korea also following  rivers 

(Yalu and Tumen). In addition, the Xingan Mountains run parallel to the border of Heilongjiang 



8 

 

and the RF in the north down to 48° N and the Changbai Mountains parallel to the eastern 

section of the Sino-Korean border. South of 48° N, the Sino-Russian border runs through the 

farmed Sanjiang plain. Farming is evident at both sides of the Northeast China and Korean 

borders and likely to include piggeries and/or backyard pig breeding.  These long borders may 

present a challenge to the prevention of ASFV-infected wild boar entering China. The rivers 

constituting the borders can be crossed by wild boar in the summer by swimming and in the 

winter by walking over the ice.    

Northeast China has the highest endowment of cropland per capita (USDA, 2014) and 10% of 

the pigs in China (46.106) (http://kids.fao.org/glipha; http://www.stats.gov.cn), (Figure S1C).  

The pig farming/ production depends on  an abundant supply of feed: maize and soybeans 

(Chen & Wang, 2013). The data extraction area (DEA) for ASF records from the World 

organization for animal health (OIE) (www.oie.int) consists of the eleven  contiguous countries 

from the Baltic to the Far East of the RF (Table 1) containing geographic coordinates as 

available from July 19, 2007 to March 27, 2017 (Fig 1B).  The OIE records in the DEA include 

both infected wild boar and infected domestic pigs (n=4462) (Table 1). Two wild boar 

subspecies Sus scrofa sibiricus Staffe, 1922 and  Sus scrofa ussuricus Heude, 1888 are common 

in Northeast China (Gao, Zhang, & Hu, 1995), bordering  Far East of the RF and Mongolia 

(Oliver & Leus, 2008; www.planet-mammiferes.org). The DEA for the two wild boar 

subspecies contains the Eastern portion of the ASF DEA (Fig 1B). We extracted most wild boar 

presence points from published literature (n=135) (Gao et al., 1995; Jiang et al., 2006; Li et al., 

2010; Li et al., 2010; Ma & Liu, 2012; Meng et al., 2013; Ramayo et al., 2010; Wang et al., 

2008; Wang, Ma, Li & Wang, 2005; Xu, Cai, Ju & Zhao, 2011; Yu, Wu & Fan, 2009; Zhang, 

Liu & Liu, 2015; Zhou et al., 2010; Zhu et al., 2011). In addition, we extracted a few records 

(n=4) from the Global Biodiversity Information Facility. (GBIF.org, 2016) . 
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Table 1. Disease (ASF) and host (wild boar), species presence records and prediction areas of two wild 

boar subspecies: Sus scrofa sibiricus Staffe, 1922 and Sus scrofa ussuricus Heude, 1888. 

 ASF  Wild boar 

Presence points 2005-2017 1984-2015 

Admin area Baltic†; Poland; Belarus; Ukraine; Romania; 

Transcausia‡; RF;  

RF Trans-Ural; NE China; 

Mongolia †† 

DEA Around presence points  Around presence points 

No of records 4462 139 

Selected records 1184 84 

Source www.oie.int www.gbif.org 

†Estonia, Latvia and Lithuania; ‡Georgia, Armenia and Azerbaijan;  

†† Mongolia =2 presence points  

 

We extracted climatic predictor variables from the WorldClim version 1.4 (2016) with data 

from 1950 – 2000 at 30 arc-second resolution (www.worldclim.org). This fine spatial 

resolution is necessary to capture environmental variability that may be lost at coarser 

resolutions, particularly in the mountainous areas (Hijmans, Cameron, Parra, Jones, & Jarvis, 

2005). We extracted the following climate variables: monthly precipitation (n=12), monthly 

mean, minimum and maximum temperature (n=36), derived bioclimatic variables (n=19) and 

elevation (Table S3). Different environmental variables (and time scales) may operate at each 

hierarchical level (Wiens, 1989). At the highest hierarchical level, that is large areas, climate is 

the dominant environmental variable in SDM (Pearson, Dawson, & Liu, 2004). Further, the 

pertinent literature contains abundantly cited articles using exclusively climatic predictors for 

species distributions over large areas with the MaxEnt algorithm (Elith et al., 2011; Franklin, 

2009; Giles et al., 2014; Rödder et al., 2009; Sobek-Swant, Kluza, Cuddington, & Lyons, 2012; 

Veloz, 2009), presumably fully aware of the hierarchy theory and that over smaller areas 

additional predictors would be required (Allen & Starr, 1982). In addition, our exclusive use of 

climatic predictors follows from ecosystem theory. At the scales of our research, climate is not 
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only a direct but also an indirect predictor of species distribution acting, among others through 

vegetation cover, forest type, human population density and animal food resources (Guisan & 

Zimmermann, 2000).   To minimize potential spatial autocorrelation of presence points, and 

multi-collinearity of variables, we preprocessed the presence points and the environmental 

predictor variables. We used spatial rarefication, also known as (aka) filtering to minimize 

spatial autocorrelation (aka pseudo-replication) and Principle Component Analysis (PCA) to 

reduce the number of correlated variables (aka dimensionality). The latter because PCA does 

not  compromise the original relationship between the variables and resulted in PCs that 

constitute orthogonal projections of the transformed variables (Robertson, Caithness, & Villet, 

2001).   

2.2.  Preprocessing of spatial modelling data   

To minimize spatial autocorrelation (Mark & Fortin, 2002), we filtered the presence point 

records using the SDM Toolbox v1.1c (Brown, 2014)  integrated into ArcGIS 10.3. We entered 

ASF and wild boar records using the default setting that is natural break with a maximum 

distance of 25 km and a minimum of 5 km for the first step of the analysis. For the second step, 

spatial rarefying, we set a minimum distance of 10 km between each pair of presence point 

records (Anderson & Raza, 2010; Radosavljevic & Anderson, 2014). For computation of all 

pair-wise distances between each ASF and wild boar records, we used the geographic distance 

matrix generator v1.2.3, a platform-independent Java application that implements the same 

suite of spherical functions as the perpendicular distance calculator (Ersts, 2017).  

To minimize multi-collinearity of environmental predictor variables, a PCA was carried out 

(Cruz-Cárdenas, López-Mata, Villaseñor, & Ortiz, 2014; Moriguchi, Onuma, & Goka, 2016) 

using  SPSS  22.0.  We used  eigenvalues larger than 1.0 and  the scree plot criterion or ‘broken 

stick’ stopping rule for PCA in item level factoring (Bernstein, Garbin, & Teng, 1988). 

Suppression of unnecessary loading and rotation of factor pattern of climatic variables (Landau 

& Everitt, 2004) were used to retain climatic predictor variables for subsequent analysis in 

MaxEnt.  
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2.3. Spatial models of ASF and wild boar  

For ASF and wild boar, we developed spatial models separately and transferred these to the 

AOI. MaxEnt version 3.4.1 (Phillips, Anderson, Dudík, Schapire, & Blair, 2017) was used to 

build and calibrate the spatial models based  on 10   fold cross-validated using  a regularization 

multiplier (β=2) (Elith, Kearney, & Phillips, 2010; Radosavljevic & Anderson, 2014) and linear 

and quadratic features only  because the two  features consistently perform better  and produce 

smooth models (Anderson & Gonzalez, 2011; Elith et al., 2010). Mateo-Tomás, Olea, Sánchez-

Barbudo, & Mateo (2012) calculated Pearson’s pair-wise correlations of the predictions of the 

models (i.e. habitat suitability values) obtained from the 10 fold cross-validated models. 

Instead, we have used an equivalent cross-validation method (Khanum, Mumtaz, & Kumar, 

2013).  Models built using the default regularization (β=1) may produce predictions 

concentrated in a much narrower geographic area.   However, variable selection may have a 

larger effect than changing the regularization parameter (Warren, Wright, Seifert, & Shaffer, 

2014). Reduction of the number of predictor variables (Tuanmu et al., 2011) is likely to 

improve model performance (Feilhauer, Somers, & van der Linden, 2017; Skowronek et al., 

2018)  and increase model transferability (Duque-Lazo, 2013).  We divided the selected 

presence records into 75% training and 25% testing portions. For the remaining parameters, we 

kept the MaxEnt default settings.  The area under the receiver operating characteristic (ROC) 

curve (AUC) as embedded in the MaxEnt was used to assess the goodness-of-fit of the model. 

In addition, the Jackknife test and the variable response curves were selected to identify  the 

relative contribution of predictor variables to the model (Elith et al., 2011; Korennoy et al., 

2014). All predictor variables with factor loading > 0.9 during PCA were added to the model 

(Tables S1, S2). Next, the least contributing predictors of the non-collinear variables were 

eliminated stepwise until each variables contribute more than 10% to the model in MaxEnt 

(Elith & Leathwick, 2009; Gils et al., 2014). Finally,  we eliminated predictor variables with a 

high standard deviation (SD)  (Duque-Lazo, Navarro-Cerrillo, Gils, & Groen, 2018) based on 

visual observation of  the response curves. Lastly, both prediction maps  and the domestic pig 

distribution map were smoothed by taking the average probability value for each three-by-three 
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pixel neighborhood (Gils et al., 2014). The domestic pig distribution map was resampled to 

harmonize the resolution and cell value range with the wild boar prediction map and 

reclassified using the SDM toolbox.  Then we combined the smoothed wild boar prediction 

map and the actual domestic pig distribution map using the ArcGIS Spatial Analyst/Fuzzy 

overlay tool (OR option).  Subsequently, the AND option was used to overlay the  smoothed 

ASF prediction map  with the output of the two maps  that returns the least common 

denominator with a probability ≥0.5 to be suitable for ASF and the combined wild boar and pig 

distribution areas.  

3. Results 

3.1. Presence record filtering and predictor variables selection 

The filtering process resulted in the selection of 1184 ASF and 82 wild boar records (Table 1).  

The pair wise distances between records was larger than 9.8 km. The PCA delivered five PCs 

together accounting for 95.7% of the total variance (Table 2; Fig 2). After exclusion of 

unnecessary factor loading, four PCs and thirty-three predictor variables were retained. 

Subsequently, the PCs were labeled as long cold winter, short hot summer, low winter 

precipitation and high summer precipitation respectively (Table S1). The four PCs were 

uncorrelated |r|< 0.7 and selected to run the SDM. After stepwise removal, only the minimum 

temperature of March and the maximum temperature of May for ASF as well as the minimum 

temperature of August and maximum temperature of May for wild boar were included to run 

the final SDM (Table 3; Table S2). 

Table 2: PCA of climatic predictors 

CP 

Initial Eigenvalues 

Total Variance %  Cumulative % 

1 34.4 50.7 50.7 

2 18. 9 27.8 78.5 

3 5.8 8.5 87.0 

4 4.3 6.4 93.4 

5 1.6 2.3 95.7 
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Figure 2: Scree plot of predictor variable factor loading in descending order.  

 

Table 3: Estimates of relative contributions of the environmental predictor variables to the final models. 

T=temperature; Min=minimum; Max=maximum 

 

3.2. Spatial models for ASF and wild boar 

The average output result of the 10 fold cross-validation of the ASF SDM shows high training 

and test AUC values combined with low standard deviations (0.92; 0.003). The bell-shaped 

response curves, both normal/Gaussian distributions indicated that the probability of ASF 

ASF Wild boar 

Variable Contribution 

% 

Permutation 

importance 

Variable Contribution 

% 

Permutation 

importance 

Min T Mar 87.4 83.7  Max T May 64.9  62.1 

Max T May 12.6 16.3  Min T Aug 23.8 37.9 
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occurrence is highest around -10 to zero C minimum temperature of March  (light late winder 

frost) and + 5 and 15C maximum temperature of May  (early spring temperature) (Fig 3A).  

The predicted climatic suitability for ASF covers a major portion of the Liaoning province in 

the south of the AOI and decreases from the Jilin to the Heilongjiang province towards the 

north (Figure S1A).  

 

Figure 3: Response curves for ASF (A) and wild boar (B). The curves show the mean response (red) and 

the mean standard deviation (blue). 

 

 The average output result of the 10 fold cross-validation training and test AUC values for the 

wild boar SDM are high with low standard deviations (0.97; 0.006). The bell-shaped response 

curves assert that the probability of presence of wild boar was high with a maximum 

temperature of May around the freezing point and declining rapidly above and below this point.  

The probability of wild boar presence is zero until 7℃ minimum temperature in August and 

increases sharply from zero between 7 and 10℃ until remains high thereafter (Fig 4B).  Finally, 
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the ASF and wild boar model share the maximum May temperature as predictor variable, 

although with different values. The ASF with an optimum around 10C and wild boar around 

freezing point.  

 A contiguous low probability for both virus and host is predicted in the Xingan Mountains to 

the north of about 48 N and in the Liao river plain in the extreme west of the AOI. A high 

probability is predicted in two disjunctive larger patches and a small one in between, all three 

south of 48 N. The largest patch (34 %) is located in the southwest, bordering Korea; the 

smaller (1.8%) in the east bordering the RF and the smallest (1%) in the middle also along the 

Korean border. The large patch consists of the Changbai Mountains along the Korean border, 

the Liao river plain and the Songnen intermountain plain in the center of the AOI. The eastern 

patch is situated in the Sanjiang plain along the river Ussuri and through the Khanka Lake (Fig 

3). About a third of the southeastern border between China and Korea (420 km), mainly in the 

Liaoning province along the river Yalu and Tumen is situated in the high probability zone for 

virus and host. In the central section of the Sino-Korean border in the Changbai Mountains, a 

small stretch (154 km) in the Jilin province is also crossing a high probability area.   Further, a 

small southern section of the Sino-Russian border in Heilongjiang province along the river 

Ussuri (327 out of 937 km) is also highly suitable for both disease and host (Fig 4).  
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Figure 3: Probability of occurrence of ASF and the host with the high-risk sectors of the international 

borders.  

 

4. Discussion  

The filtering of presence records to minimize their spatial autocorrelation, retains a substantial 

number of ASF records (>1000) and a relatively low, but optimal  number of wild boar records 

for the MaxEnt algorithm (Gils et al., 2014; Hernández, Graham, Master, & Albert, 2006; Wisz 

et al., 2008). The filtering of the environmental predictor variables to minimize multi-

collinearity, delivers three classical meteorological rather than bioclimatic variables.  This 

finding suggest that the standard practice of using exclusively one type of climatic variables, 

may fail to identify effective climatic predictors. The selected variables represent monthly 

minimum or maximum temperatures during spring or summer rather than annual, seasonal, 
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average, precipitation or winter values. The emergence of the maximum spring temperature 

from a set of climatic variables as the best predictor in a spatial model was also reported by Li 

et al. (2017). These findings suggest, to include monthly minimum and maximum spring 

temperatures as predictor variables in SDMs.    

Our ASF and wild boar models, each with two predictors show a high AUC value. This 

corroborates that predictor variables appropriately filtered from a large set of variables may 

produce good predictions (Duque-Lazo et al., 2018; Gils et al., 2012; Varela et al., 2014). We 

pioneered combining non-spatial (PCA), spatial (backwards stepwise elimination and SD of the 

response curve) filtering methods of environmental variables with success, suggesting that both 

may be used to complement each other. The response curves for the ASF and wild boar models 

are  smoothly bell-shaped with low SD suggesting a good  transferability of the model  (Duque-

Lazo, 2013). Our setting of the MaxEnt algorithm for linear and quadratic features only, instead 

of the default of five, may have contributed to the smooth curves (Elith et al., 2010), but 

smooth curves may be also achieved at the default setting (Duque-Lazo et al., 2018). 

The highest probability of occurrence of ASF is at a minimum monthly temperature in early 

spring below zero C. The frosty spring may allow the persistence of ASFV infectivity. This is 

corroborated  by the findings that infectious ASFV in excrement and meat shows a higher 

survival (Beltrán-Alcrudo, Arias, Gallardo, Kramer, & Penrith, 2017; EFSA, 2014). The 

response of the second predictor of ASF, a late spring maximum temperature  between +5 and 

15C may imply that the infectivity of ASFV in winter-frozen materials of wild boar  origin, 

including feces and putrefied blood may persist at least until May (EFSA, 2014). In parts of 

Eastern Europe, where temperatures also remain below 0°C for much of the winter, a new, 

previously unseen epidemiological pattern is unfolding with most cases detected in the summer 

months and the presence of the infective virus in carcasses in fields or forests until the spring 

(Beltrán-Alcrudo et al., 2017). During the hot summers the infectivity of the ASFV will be 

destroyed (Murphy et al., 1996). 
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The probability of presence of wild boar was high at early spring temperatures around freezing 

point.   Our finding is in agreement  with  the observation  that temperatures below - 15°C  are 

limiting for piglets, even although they spend several days in the nest (Baskin & Danell, 2003). 

In addition, the probability of wild boar presence is zero until the 7℃ for the minimum 

temperature during summer. The probability increases sharply from zero upwards and remains 

high above values 10℃. The 7℃ is the physiological threshold for plant growth and obviously, 

wild boar requires a plant growing season for food.  Among ungulates,  wild boar exhibits 

strong responses to food pulses  and prefers high energy food, including  maize and  nuts as 

well as cover for protection against predators (Bisi et al., 2018; Massei & Genov, 2004). Our 

findings suggest that if ASFV would spread into North Korea, a very high priority for customs, 

veterinary inspections and facilities as well as wild boar management for the western sector of 

the Sino-Korean border would be required (Fig 3). This very high priortiy border runs along the 

river Yalu, Tumen and its tributaries with farmland and forested mountains at both sides.  The 

high priority section of the Sino-Russian border centered on the Khanka Lake consists of 

farmland interrupted by patches of forested mountains at both sides of the border.  Both high-

risk border sections are located in water bodies, river or lake.  The presence of wild boar along 

the rivers contributed to ASF introduction into the European part of the RF from Transcaucasia 

(Gogin, Gerasimov, Malogolovkin, & Kolbasov, 2013).  

 An additional risk is presented by the relative proximity of international sea ports, 

Vladivostok’s (Russia) and Dalian (China), each  about  250 km to the nearest high risk border 

section. The ASFV outbreaks elsewhere (Portugal; Georgia) have been associated with infected 

cargo and waste of ships (Chapman et al., 2011; Murphy et al., 1996). Further, the area both 

sides of the high risk sections of the borders is farmed and likely to include piggeries and/or 

backyard pig breeding.  

Mating contact of free-ranging wild boar and breeding wild boar in ranches may lead to disease 

transmission.  Subsequently, personnel of wild boar ranches may transmit ASF to low 

biosecurity piggeries in the farmed plains. If valid, that could set the stage for follow-up studies 
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and targeted control measures, for example, wild boar proof fencing and disinfecting 

procedures at ranch entry and exit points.  

We suggest a detailed follow-up study along the identified priority section of the Sino-Russian 

and Sino-Korean borders. The study should include wild boar distribution and movement, 

farmland abandonment, wildfire hazards, road transport network, location of piggeries and 

backyard pig breeding. When the need arise, an integrated spatial information system will 

facilitate locating quarantine and other veterinary facilities, wild boar proof fences, wild boar 

population control, prohibition and development zones for piggeries, routing alternatives for 

meat products, waste and life animals. 

Just 30 days after the submission of our manuscript to this Journal at 02-07-2018, the first ASF 

infection in China was reported by the OIE at 01-08-2018 within the high probability area in 

Northwest China (Fig 3). 
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Supplementary Material 

 

Figure S1: Probability of presence of ASF (A), wild boar (B), Domestic pig distribution (C) 

overlay of wild boar with actual Domestic pig distribution (D). †Source (C): 

http://www.fao.org/geonetwork/srv/en/, (FAO, 2007)  

http://www.fao.org/geonetwork/srv/en/
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Figure S2:  Predictor variables and factor loading as selected by the PCA  
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Table S1:  Predictor variables and factor loading as selected by the PCA  

Predictor variable Component Label 

1 2 3 4 

Min T  Feb .93     

Mean T  Jan .94     

Mean T  Feb .94     

Mean T of Coldest Quarter .94     

Min T of Coldest Month .93     

Min  T f Jan .93     

Min T Nov .93    Long cold winters  

Mean T  Dec .92     

Max  T Jan .92     

Min  T of Dec .91     

Mean T of Nov .91     

Min  T  March .91     

Max   T Dec  .90     

Mean T of Jul  .99    

Mean T of Warmest Quarter  .98    

Max T of Warmest Month  .97    

Max T of Jul  .97    

Mean T  Aug  .97    

Max  T June  .96    

Max  T  Aug  .96   Short hot summers  

Min  T  Jul  .96    

Mean T of Jun  .96    

Max T May  .94    

Min T Aug  .93    

Min T Jun  .90    
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Mean T  May  .90    

P Jan   .92   

P of Coldest Quarter   .91  Low winter  precipitation 

P December   .91   

P of Warmest Quarter    .95  

P of Wettest Month    .94 High summer precipitation 

P of Wettest Quarter    .94  

P Aug    .93  

Elevation    .92 Elevation 

 

Table S2:   Descriptive statistics of the predictor variables used to run the final model 

Predictors ℃ Min Max Mean SD 

Min T Aug 0 19.5 12.8 2.6 

Min T Mar -29.1 5.0 -5.8 3.5 

Max T May 0 25.5 18.6 2.9 
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Table S3:   List of raster data downloaded from the WorldClim database  

 Predictor variables Unit 

1 Annual mean temperature ℃ 

2 Mean diurnal range (Mean of monthly (max temp - min temp))  

3 Isothermality (Mean diurnal range/T annual range) (*100)  

4 Temperature seasonality (standard deviation*100)  

5 Max temperature of warmest  month  

6 Min temperature of coldest month  

7 Temperature annual range (Max TWM-Min TCM)  

8 Mean temperature of wettest quarter  

9 Mean temperature of driest quarter  

10 Mean temperature of warmest quarter  

11 Mean temperature of coldest quarter  

12 Annual precipitation  

13 Precipitation of wettest month  

14 Precipitation of driest month  

15 Precipitation seasonality (Coefficient of Variation)  

16 Precipitation of wettest quarter  

17 Precipitation of driest quarter  

18 Precipitation of warmest quarter  

19 Precipitation of coldest quarter  

20 Maximum  temperature of January  

21 Maximum  Temperature of February  

22 Maximum  Temperature of March  

23 Maximum  Temperature of April  

24 Maximum  Temperature of May  

25 Maximum  Temperature of June  
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 Predictor variables Unit 

26 Maximum  Temperature of July  

27 Maximum  Temperature of August  

28 Maximum  Temperature of September  

29 Maximum  Temperature of October  

30 Maximum  Temperature of November  

31 Maximum  Temperature of December  

32 Mean Temperature of January  

33 Mean Temperature of February  

34 Mean Temperature of March  

35 Mean Temperature of April  

36 Mean Temperature of May  

37 Mean Temperature of June  

38 Mean Temperature of July  

39 Mean Temperature of August  

40 Mean Temperature of September  

41 Mean Temperature of October  

42 Mean Temperature of November  

43 Mean Temperature of December  

44 Minimum  Temperature of January  

45 Minimum  Temperature of February  

46 Minimum  Temperature of March  

47 Minimum  Temperature of April  

48 Minimum  Temperature of May  

49 Minimum  Temperature of June  

50 Minimum  Temperature of July  

51 Minimum  Temperature of August  

52 Minimum  Temperature of September  
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 Predictor variables Unit 

53 Minimum  Temperature of October  

54 Minimum  Temperature of November  

55 Minimum  Temperature of December  

56 Precipitation  of January mm 

57 Precipitation  of February  

58 Precipitation  of March  

59 Precipitation  of April  

60 Precipitation  of May  

61 Precipitation  of June  

62 Precipitation  of July  

63 Precipitation  of August  

64 Precipitation  of September  

65 Precipitation  of October  

66 Precipitation  of November  

67 Precipitation  of December  

68 Elevation m.a.s.l 
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