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Disorders of the central and peripheral nervous systems are diverse 
and heterogeneous. Hundreds of millions of people worldwide are 
affected by neurological disorders. Overall, these are the leading 
cause of disability-adjusted life years (DALYs), making up 10.2% of 
the total disease burden worldwide in 2015. Neurological disorders 
are second only to cardiovascular disease regarding causes of death 
– 16.8% of deaths in 2015 were due to neurological conditions.[1] 
It has previously been reported that the annual cost of managing 
neurological disease in the USA alone is close to USD800 billion.[2] 
Despite this health burden, the treatment landscape is limited, with 
few curative options available and poor drug approval rates for 
potential new medications.[3]

Stem cells have in many respects revolutionised the way in 
which we explore and treat disease. However, with the exception of 
haematopoietic stem cell (HSC) transplantation, the stem cell hype is 
yet to live up to its promise concerning treatment and cure of disease. 
The reasons for this are manifold, but primarily because we have 
still to understand the complete modus operandi of the various stem 
cell preparations and their clinical implications. Recently, Japanese 
authorities cleared a mesenchymal stem cell (MSC) product for 
treating spinal cord injuries. Although concerns over the approval 
have been raised by the global scientific community,[4] this is the 
first and only stem cell therapy approved for treating a neurological 
condition. Nonetheless, there is encouraging evidence to suggest that 
stem cell therapy as a whole holds promise for drug approvals in 
this area in the future. We provide a high-level perspective of where 
progress has been made with respect to the use of stem cells for 
treating neurological disease.

Stem cells
Stem cells provide the building blocks for every organ in the 
body. They have the unique ability to divide asymmetrically, 
and to differentiate into the various cell types of the body while 
simultaneously replicating to maintain a stem cell lineage. Stem 
cells are present in almost every human tissue – in embryos, they 
differentiate into all the tissues and organs of the body, and in fully 
developed humans they provide a renewal capacity in most organs. 
Different forms of stem cells exist, each with a varying ‘potency’ 
(Fig. 1). Potency refers to the ability of a stem cell to replicate and 
differentiate into different cell types. Totipotent and pluripotent 
stem cells have the highest potency, and are obtained from the 
pre-embryonic stages of development. Blastomeres that arise from 
a fertilised ovum (zygote) are totipotent stem cells and have the 
potential to differentiate into all organs of the body, including the 
placenta. A cluster of blastomeres goes on to form a blastocyst, 
which has a hollow cavity and an inner cell mass of embryonic stem 
cells (ESCs). These stem cells are pluripotent in nature and, relative 
to totipotent stem cells, have lost the ability to differentiate into 
the placenta while maintaining their ability to form all organs and 
tissues of the body. A blastocyst develops into a gastrula wherein the 
three germ layers have started to form, followed by the development 
of an embryo.

Pluripotent stem cells differentiate into multipotent stem cells, 
including HSCs, MSCs and neural stem cells (NSCs). These cells 
are committed to further differentiate into cells of a given organ 
or system, e.g. HSCs differentiate into cells of the blood and 
immune systems, and NSCs into cells of the brain and nervous 
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system. Multipotent stem cells differentiate 
into progenitor cells that are oligo- and 
unipotent, which are further committed to a 
limited number of cell types. Until recently, 
stem cell differentiation was considered 
unidirectional; however, by introducing 
a defined number of factors into fully 
differentiated cells (e.g. skin or blood cells) 
in a laboratory setting, one is able to derive 
a cell type which once again has pluripotent 
capacity – these are referred to as induced 
pluripotent stem cells (iPSCs).

Stem cell therapy for 
neurological disorders
In principle, for a stem cell therapy to be 

successful in treating diseases of the brain 
where neurons are damaged or defective, 
the treatment should aim to repair, replace 
or at least prevent future deterioration. The 
goal of stem cell therapy is thus to enable 
localisation of therapeutic cells to impaired/
injured regions of the brain, to stimulate 
tissue repair and maintenance via a paracrine 
effect, and potentially even to generate new 
neurons (although the latter is generally less 
likely to occur). Each of the described stem 
cell types is being applied in the treatment 
of neurological disease, for which a few 
advantages and disadvantages are listed 
in Table 1. By definition, NSCs would be 
the prototype and most logical stem cell 

therapy for treating neurological disorders. 
However, since they are located deep within 
the adult brain, NSCs are not accessible 
for harvesting and hence for autologous 
therapeutic applications. They are therefore 
procured from aborted fetuses (i.e. aborted 
for medical or non-medical reasons) and 
prepared for allogeneic transplantation 
purposes. Given the practical and ethical 
limitations of this scenario, in addition to the 
risks that transplanted cells might be rejected 
by the recipient’s immune system[5] or that 
they may be tumorigenic (owing to their 
heightened proliferative capacity), there has 
been an appreciable increase in the need for 
an alternative source. With recent advances 
in our understanding of stem cell biology, it 
is possible to differentiate pluripotent stem 
cells (both ESCs and iPSCs) into neural 
progenitor or NSC-like cells for therapeutic 
purposes. Protocols for differentiating bone 
marrow-derived MSCs into NSC-like cells 
have also been developed and translated for 
clinical application in patients with multiple 
sclerosis.[6] Both forms of derivation (from 
fetal tissue and differentiated) are being 
investigated in clinical studies to treat several 
neurological conditions. Given their high 
proliferative capacity and risk for tumour 
formation, pluripotent stem cells are not 
used directly for treatment purposes, but 
rather are differentiated into the desired fully 
differentiated cell type. HSCs and MSCs 
are also being explored in clinical studies 
to investigate their potential for treating 
various neurological disorders.

To better understand the treatment 
landscape of stem cell therapies for brain 
disease, we extracted data from the 
Clinicaltrials.gov website to identify and 
investigate which therapies have progressed 
into clinical development stages. A database of 
registered clinical trials was created based on 
data outputs using the following search terms: 
‘embryonic stem cells’, ‘induced pluripotent 
stem cells’, ‘neural stem cells’, ‘mesenchymal 
stem cells’, ‘mesenchymal stromal cells’, 
‘bone marrow stromal cells’, ‘umbilical cord 
mesenchymal stem cells’, ‘adipose stem cells’, 
‘adipose-derived regenerative cells’ and 
‘stromal vascular fraction’. To capture trials 
using HSCs, we based our search on the use 
of ‘haematopoietic stem cells’ and ‘umbilical 
cord blood’ together with disease indications 
listed in one of our previous reports.[7] The 
data were cleaned to harmonise terminology 
across all trials and categorised into 
therapeutic areas. Observational studies were 
excluded and all trials relating to neurological 
disease were selected and taken forward for 
analysis and interpretation. Relevant clinical 
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Fig. 1. Schematic summary of stem cell sources and potency. (A) Totipotent (blastomeres) and pluripotent 
stem cells (embryonic stem cells (ESCs)) are obtained from pre-embryonic tissue. Multipotent neural 
stem cells are harvested from aborted fetuses, while haematopoietic and mesenchymal stem cells 
(including adipose stromal cells) are collected from different sources in adults. (B) Diagram illustrating 
the potency of the different stem cell types. Multipotent stem cells differentiate into oligopotent stem 
cells, such as lineage-specific progenitor cells, which ultimately differentiate into fully committed cells, 
such as blood cells or skin cells. Induced pluripotent stem cells (iPSCs) can be derived from various types 
of fully committed/differentiated cells. (HSCs = haematopoietic stem cells; MSCs = mesenchymal stem 
cells; NSCs = neural stem cells.)
Image of fetus created by Laymik from the Noun Project.
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Table 1. Advantages and disadvantages of the different stem cell types
Stem cells Advantages Disadvantages
NSCs Prototype stem cells for treating neurological disease Limited resource with ethical implications around procurement 

(if from aborted fetal tissue)
NSC-like cells can be derived from other stem cell types 
(pluripotent and multipotent)

Poorly understood stem cell biology and least explored in clinical 
studies
Tumorigenic risks if derived from pluripotent stem cells

HSCs Globally accepted form of treatment for haematological 
conditions

Limited experience for use in neurological disease

Well-established industry for harvesting and preparation 
of clinical grade treatments

Generally limited for use as an autologous therapy (requires 
genetic matching of the donor and recipient if used as an 
allogeneic treatment)
Poorly understood mechanism of action for treating certain 
neurological conditions

MSCs Readily accessible resource and easily procured Exploited by unregulated clinics globally
No need for genetic matching Poorly understood mechanism of action for treating certain 

neurological conditions
Most likely stem cell therapy to evolve into an off-the-
shelf allogenic product

NSCs = neural stem cells; HSCs = haematopoietic stem cells; MSCs = mesenchymal stem cells.
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Fig. 2. Registered clinical trials for neurological conditions treated with stem cells. Registered studies (N=201) were exported from Clinicaltrials.gov. In order 
to capture a representative dataset, we expanded our searches to include (i) embryonic and induced pluripotent stem cells as a source for NSC-like cells; (ii) 
umbilical cord blood as a source for HSCs; and (iii) umbilical cord, umbilical cord blood, bone marrow and adipose for MSCs. The captured data were filtered 
to include only interventional studies for neurological diseases, and duplicate, terminated or withdrawn studies were excluded. Indications with less than 
5 registered clinical studies include brain tumours (n=4), multiple system atrophy (n=2), diabetic neuropathy (n=2), cerebral adrenoleukodystrophy (n=1), 
epilepsy (n=1), mental retardation (n=1), progressive supranuclear palsy (n=1) and fibromyalgia (n=1). (BM-MSCs = bone marrow-derived mesenchymal 
stem cells; ESCs = embryonic stem cells; iPSCs = induced pluripotent stem cells.)
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studies and disease indications were also searched online and in 
published literature via Pubmed and Google Scholar.

Fig. 2 provides an overview of globally registered clinical studies 
where stem cells have been applied for treating neurological disorders. 
Overall, we identified 201 clinical studies that were registered over 
the period of 1999 to 2018, of which more than half are indicated 
for the treatment of multiple sclerosis, stroke and spinal cord injury. 
MSCs are/were used in 120 studies, while HSCs and NSCs are/were 
applied in 54 and 27 trials, respectively. Ten stem cell therapies have 
progressed to advanced clinical stages (Phase II/III or III), including 
MSCs for spinal cord injury (n=3), stroke (n=2), cerebral palsy (n=1) 
and diabetic neuropathy (n=1); HSCs for multiple sclerosis (n=2); 
and a single NSC treatment for Parkinson’s disease. A more detailed 
perspective on the use of NSCs, HSCs and MSCs in this context is 
provided below.

Neural stem cells
NSCs are multipotent progenitors which have the ability to produce 
neurotrophic factors and/or differentiate into committed cell lineages 
of the central and peripheral nervous systems, including neurons 
and supporting glial cells (such as astrocytes and oligodendrocytes). 
In the adult brain, NSCs are limited to the hippocampus and play a 
role in supporting plasticity. Those found in the subventricular zone 
(SVZ) of the hippocampus are in contact with the cerebrospinal fluid, 
moving radially and differentiating to young neuroblasts.[8] NSCs in 
the subgranular zone (SGZ) also move radially and differentiate to 
neuroblasts, but are referred to as radial glia-like NSCs. Neuroblasts 
go on to mature and differentiate into neurons.[9,10] NSCs are abundant 
in fetal brains, most notably at very early stages of development. Once 
harvested from the fetal brain, they can be dissociated and grown in 
the laboratory as a monolayer of cells or as floating ‘spheroids’ that 
produce neurotrophic factors that can be differentiated into more 
defined neuronal lineages.[11]

Pluripotent stem cells are increasingly becoming an important 
source for the generation of neural precursor cells. Using a variety 
of in vitro conditions, cells resembling NSCs (NSC-like) can be 
generated from human ESCs. These conditions include co-culturing 
with animal stromal cells (unknown stimuli),[12] exposure to retinoic 
acid,[13] and inhibition of bone morphogenetic protein (BMP) 
signalling.[14] The recent development of iPSCs, which have also been 
shown to generate NSC-resembling cells,[15] mitigates ethical concerns 
linked to the use of embryos and also introduces the possibility of 
autologous transplantation using patient-derived iPSCs.[16]

The rationale for therapeutic application of NSCs and NSC-
like cells is based on their ability to release neurotrophic factors 
and to differentiate into neural and glial cells, thereby promoting 
neurogenesis and replacing diseased or injured areas of the brain. To 
date, no NSC-based therapy has been approved for routine clinical 
use. We identified 27 registered clinical trials, of which two-thirds 
(n=20) used fetal-derived NSCs for the treatment of neurological 
disease (Fig. 2). Most of the clinical studies using NSCs and NSC-like 
cells were for stroke (n=5), while 4 studies each were for multiple 
sclerosis, spinal cord injury, amyotrophic lateral sclerosis, Parkinson’s 
disease and brain tumours. For the latter, gene-modified NSCs are 
being applied (see below). Seven of the 27 studies using NSC-based 
therapies to treat neurological disease make use of NSC-like cells 
differentiated from bone marrow MSCs (n=3), iPSCs (n=2), ESCs 
(n=1) and oocytes (n=1).

Stroke occurs either as a result of impaired blood flow (ischaemic) 
or rupturing of blood vessels (haemorrhagic) in the brain, resulting 
in diminished oxygen and nutrient supply to neurons. Preclinical 

studies using NSCs to treat stroke have demonstrated that, in 
addition to stimulating neurogenesis, NSCs are capable of releasing 
angiogenic factors to promote local tissue regeneration.[17-19] Four of 
the 5 clinical trials registered for stroke apply fetal-derived NSCs, 
of which 3 used gene-modified NSCs to create a conditionally 
immortalised cell line. Gene modification to express the recombinant 
protein, c-MycERTAM, allows for controlled expansion of a defined 
and homogeneous NSC cell line.[20] In the completed Phase I and II 
studies (NCT01151124, NCT02117635), it was shown that these cells 
are well tolerated and the application is associated with improved 
neurological outcomes.[21] A larger Phase IIb clinical study is ongoing 
(NCT03629275). The fourth study using fetal-derived NSCs is also 
still ongoing (NCT03296618), and notably, this same product (NSI-
566) is being tested in clinical studies for amyotrophic lateral sclerosis 
and spinal cord injury. In the most recently registered clinical study to 
be initiated in 2019, iPSC-derived NSC-like cells will be used to treat 
patients with haemorrhagic stroke (NCT03725865).

Multiple sclerosis is a neurodegenerative disorder characterised by 
inflammatory demyelination of neurons. Of the 4 registered clinical 
trials using NSCs to treat multiple sclerosis, 2 make use of fetal-
derived NSCs, while the other 2 apply bone marrow MSC-derived 
NSC-like cells. The fetal-derived NSC studies are still ongoing 
and no data have been reported. Recently reported findings from 
a Phase I clinical study (NCT01933802) showed that intrathecal 
administration of MSC-derived neural progenitor cells for patients 
with multiple sclerosis was safe and well tolerated.[6] Although only 
modest improvements were observed, the initial findings warrant 
further clinical development and initiation of a Phase II study 
(NCT03355365).

Of the 4 registered clinical studies using NSCs for spinal cord 
injury, 3 make use of fetal-derived NSCs, while the fourth uses NSC-
like cells differentiated from bone marrow MSCs. Data from one 
of these clinical studies have been reported which demonstratesthe 
safety of fetal-derived NSC transplantation (NSI-566), but with 
no significant improvement with respect to quality-of-life score.[22] 
Improved secondary outcomes and encouraging preclinical data 
warrant testing in a larger dose escalation study. Although no trial of 
iPSC-derived NSC-like cells for spinal cord injury is registered yet, 
a recent report describes preparation of clinical grade cells for this 
purpose.[23]

In Parkinson’s disease, a neurodegenerative disorder resulting from 
progressive loss of dopaminergic neurons, application of NSCs with 
an acquired specification for a dopaminergic neuronal identity has 
demonstrated promising results. Dopaminergic neural progenitor 
cells can either be isolated from the fetal ventral midbrain[24] 
or generated in vitro from human ESCs or iPSCs.[25] Preclinical 
data show that transplantation of dopaminergic progenitors in rat 
and monkey Parkinson’s disease models induced behavioural 
recovery.[14,16,26] However, the initial proof-of-principle clinical studies 
using NSCs harvested from fetal ventral midbrains showed mixed 
results, ranging from no clinical benefit (even with demonstrated 
long-term engraftment) to excessive and uncontrolled dopamine 
production and major dyskinesia.[27] In this context, we identified 4 
ongoing registered clinical trials for Parkinson’s disease, each using 
NSCs derived from different sources, namely fetal, ESCs, iPSCs and 
oocytes. The studies using fetal and ESC-derived NSCs were both 
initiated in 2017 (NCT03128450, NCT03119636), for which no data 
have yet been reported, while the study using iPSC-derived NSCs is 
planned for initiation in 2019 (NCT03815071). In addition to the 
latter, and not listed in clinicaltrials.gov, a clinical study using NSCs 
derived from iPSCs was initiated in 2018 in Japan.[16] In the single 
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study using oocytes as a source (NCT02452723), NSC-like cells were 
differentiated from human parthenogenetic stem cells obtained from 
chemically activated unfertilised oocytes.[28] These cells are being 
used to treat patients with Parkinson’s disease, with preliminary data 
showing safety with indications of efficacy over an ongoing 5-year 
period of follow-up.[29]

For treatment of brain tumours, 3 registered clinical studies use 
fetal-derived NSCs which have been gene modified to express cytosine 
deaminase, an enzyme involved in the activation of chemotherapeutic 
agents such as 5-fluorouracil and irinotecan, which serves to localise 
drug activity to the site of transplantation. Data from one of these 
studies have been reported, wherein 15 patients were recruited 
and proof-of-principle for this approach demonstrated.[30] A fourth 
ongoing study applies fetal-derived NSCs loaded with an oncolytic 
virus to enhance tumour eradication in patients with glioblastoma 
(NCT03072134). Promising preclinical evidence using this approach 
suggests efficacy without toxicity.[29, 31]

Haematopoietic stem cells
Haematopoietic stem cells are multipotent stem cells traditionally 
used for the treatment of malignant and non-malignant diseases 
of the blood and immune systems. They can be harvested directly 
from bone marrow, peripheral blood (following pre-treatment to 
mobilise HSCs from the bone marrow) or umbilical cord blood. 
Depending on the condition being treated, HSCs are either collected 
from the patient or from a healthy donor to be used for autologous or 
allogeneic transplantation, respectively. Allogeneic transplantation, 
however, comes with the constraint of having to genetically match 
the donor and recipient in order to avoid graft rejection or, more 
concerningly, the risk of graft v. host disease and its associated 
mortality. Patients are also subjected to lifelong immunosuppressive 
therapy.

HSC transplantation is performed in over 80 countries and, of 
the more than 60 000 HSC transplants that are done globally per 
annum, the vast majority (~90%) are for treating haematological 
malignancies, including leukaemia, lymphoma and myeloma.[32,33] 
Secondary to these indications is the treatment of solid tumours, 
while non-malignant conditions include bone marrow failure, 
haemoglobinopathies and primary immune disorders. In all of these 
cases, the underlying principle of HSC transplantation is to replenish 
the bone marrow with stem cells which engraft and reconstitute the 
immune system with a functional lineage of haematopoietic cells.

In addition to the above traditional indications, there has over the 
last decade been a distinct increase in the use of HSCs for regenerative 
purposes, particularly umbilical cord blood (UCB) as a source of 
HSCs for treating neurological conditions.[7] In fact, our findings 
show that of the 54 clinical studies registered to treat neurological 
disease with HSCs, 40 use UCB as a source. Once harvested, an 
UCB unit is processed to separate mononuclear cells (via removal 
of the red blood cells and plasma), which ultimately comprises a 
high proportion of HSCs, and to a lesser extent MSCs, endothelial 
progenitor cells and immunosuppressive cells such as regulatory T 
cells and monocyte-derived suppressor cells. Altogether and once 
transplanted, these cells have been shown to provide a paracrine 
effect that (i) promotes cell survival; (ii) stimulates proliferation and 
migration of NSCs; (iii) induces regeneration of damaged brain cells; 
(iv) reduces inflammation; and (v) promotes angiogenesis.[34]

Cerebral palsy and hypoxic ischaemic encephalopathy (HIE) 
are the neurological indications most treated with UCB on an 
experimental basis, with 17 and 10 registered clinical studies (out of 
40), respectively. HIE is a significant risk factor for developing cerebral 

palsy and occurs during birth as a result of reduced blood flow to the 
brain. Up to 20% of these cases result in death of the newborn, and 
nearly 30% develop permanent neurological abnormalities. To our 
knowledge, only 1 of the 10 registered experimental clinical studies 
using UCB for HIE (NCT00593242) has reported data.[35] In this 
pilot study with 23 participants, the authors demonstrate that the 
collection, preparation and infusion of fresh (non-cryopreserved) 
UCB cells into newborns with HIE is a feasible and safe approach, 
but requires a well-orchestrated multidisciplinary collaboration at 
the treating centre. Promising indicators of benefit at a 12-month 
follow-up were also reported. Subsequently, a larger randomised 
clinical study was registered in 2017, which aims to recruit 160 study 
participants (NCT02612155).

Several studies have been reported for the use of UCB to treat 
cerebral palsy. In the first, in which 140 children with cerebral 
palsy were treated with autologous UCB, safety and feasibility was 
demonstrated, but no efficacy data were reported, primarily owing 
to substantial differences in the quality of the harvested UCB units.[36] 
The same group initiated a placebo-controlled randomised trial 
(NCT01147653) and reported a significant improvement in motor 
function and brain connectivity, but only in study participants who 
received higher cell doses (>20 million cells/kg), reiterating the need 
to ensure that UCB is harvested and processed appropriately.[37] 
These findings confirm those from a previously reported randomised 
trial from another group, in which the UCB cell dose was positively 
correlated with improved motor outcomes.[38] In another randomised 
study, this time using allogeneic UCB together with recombinant 
human erythropoietin, a significant improvement in cognitive and 
motor function was reported relative to the control group.[39] Finally, 
Novak et al.[40] performed a meta-analysis of all cell therapies used 
to treat cerebral palsy (olfactory ensheathing cells, NSCs and neural 
progenitor cells, and allogeneic UCB), from which it was shown that 
UCB seemed to be most effective means of treatment. One study 
was initiated in 2009 using peripheral blood mobilised HSCs to 
treat cerebral palsy (NCT01019733), with findings indicating that 
intrathecal injection of autologous HSCs was safe, but with limited 
improvement in neurological function after 6 months of follow-up.[41]

Autism spectrum disorder is another condition for which UCB 
is being explored. As the pathophysiology of the disorder includes 
aspects of neural inflammation and connectivity, the rationale for 
using UCB to provide paracrine benefits has been justified.[42] Five 
clinical trials have been registered in this context, and study results 
have been reported for 2 (NCT01638819, NCT02176317). Both 
were Phase I/II clinical studies, which met the primary endpoints 
of safety and tolerability. In the first to be reported, 25 children 
were treated with autologous UCB infusions.[43] Over a follow-up 
period of 6 months, significant improvements in behaviour were 
reported, including those with parent-reported measures and clinical 
assessments.[42,43] A larger randomised trial has been registered 
(NCT02847182) to recruit 165 study participants. The second 
reported study was a placebo-controlled, randomised, cross-over 
design, wherein 30 young children were recruited. The authors 
reported an overall trend towards improvement, but with no 
statistically significant differences for any of the endpoints.[44]

Ten clinical studies using bone marrow-derived HSCs have been 
registered for the treatment of multiple sclerosis. Multiple sclerosis is 
to a large extent defined by the presence of autoreactive lymphocytes 
causing neural inflammation and degeneration. The goal of HSC 
transplantation is thus to reconstitute the immune system with 
a population of non-inflammatory cells. Recently, a preliminary 
communication reported data from a randomised clinical trial 
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(NCT00273364) wherein 103 study participants received either HSC 
transplantation (non-myeloablative with low-dose chemotherapy) or 
disease-modifying therapy (typical treatment of multiple sclerosis). 
With a median follow-up of 2 years, disease progression occurred 
in 3 study participants who received HSC transplantation, while 
34 receiving disease-modifying therapy progressed.[45] A larger 
randomised Phase III study aiming to recruit 200 study participants 
has subsequently been registered by the same group and is ongoing 
(NCT03342638). All participants in this study will receive HSC 
transplantation and be randomised to study arms with differing 
conditioning regimens to maximise engraftment and patient 
outcomes.

Mesenchymal stromal/stem cells
Mesenchymal stem cells, also referred to as mesenchymal stromal 
cells or medicinal signalling cells,[46] have the ability to self-renew and 
differentiate into cells of the mesoderm, including bone, adipose and 
cartilage. MSCs are believed to have high treatment potential based 
on several unique characteristics, including (i) their ability to home 
to a site of injury; (ii) their immunomodulatory and paracrine effects; 
(iii) the fact that they are immune-privileged (i.e. do not required 
genetic matching); and (iv) that they can be procured from many 
sources, such as bone marrow, adipose tissue and umbilical cord 
Wharton’s jelly. MSCs from each of these sources are, however, more 
prone to differentiate into cells of their origin, and are hence more 
committed to these lineages.

To date, 3 MSC products have obtained regulatory approval for 
patient treatment. These include remestemcel-L (allogeneic bone 
marrow-derived MSCs) in Canada, New Zealand and Japan for 
acute graft-versus-host disease; darvadstrocel (allogeneic adipose-
derived MSCs) in Europe for fistulae in Crohn’s disease; and stemirac 
(autologous bone marrow-derived MSCs) in Japan for treating spinal 
cord injury. None of these therapies has been approved for use in 
the USA, nor are they being used routinely in Europe as yet. With 
respect to the clinical trial landscape, MSCs are being applied to treat 
an extraordinary number of diseases – based on our investigations, as 
many as 150 different indications can be identified from registered 
clinical trials. Amongst these are a range of neurological conditions, 
diabetes, stroke, osteoarthritis, emphysema, bone fractures, wounds, 
macular degeneration and incontinence. Taken together, it is fair to 
say that MSCs are central to the stem cell hype as well as criticism of 
today, the latter being driven in part by the establishment of hundreds 
of unregulated clinics worldwide charging patients for a range of 
unproven treatments.[47,48]

Of the 120 registered clinical trials applying MSCs to treat 
neurological disease, nearly two-thirds are/were indicated for stroke 
(n=27), spinal cord injury (n=26) and multiple sclerosis (n=23). 
In terms of tissue source, more than half of the registered trials 
use MSCs derived from bone marrow (n=67), followed by adipose 
tissue (n=26), umbilical cord (n=23) and umbilical cord blood 
(n=4). In each of these cases, the MSCs are expanded in cell culture 
to a therapeutic dose. With respect to the use of adipose tissue as a 
source, the treatment can either be in the form of stromal vascular 
fraction (SVF) or with culture-expanded MSCs, also referred to as 
adipose-derived stromal cells (ASCs). SVF is a concentrated extract 
of enzyme-digested adipose tissue which contains a mixture of 
ASCs, endothelial and endothelial precursor cells, lymphocytes, 
macrophages, smooth-muscle cells, pericytes and per-adipocytes.[49] 
Similar to UCB, it is argued that this mixture of heterogeneous cells 
in SVF provides a broader therapeutic benefit. It is, however, limited 
for use as an autologous treatment (as it also contains white blood 

cells from the donor), but provides the advantage of being prepared 
and ready for infusion/transplantation within hours of the adipose 
tissue being harvested.

With 27 registered clinical studies, stroke is the most treated 
indication using MSCs. Sixteen use bone marrow as their source of 
MSCs, while 6 use adipose tissue (3 each apply SVF and expanded 
ASCs), 4 umbilical cord and 1 umbilical cord blood. Zheng et al.[50] 
recently reviewed the literature regarding clinical reports relating 
to the use of MSCs for ischaemic stroke. They found 8 reported 
clinical studies, all of which were early-stage clinical trials, with only 
3 being placebo-controlled. They conclude that there is a need for 
well-designed Phase II multicentre studies to definitively report the 
safety and preliminary efficacy of MSC treatment in patients with 
ischaemic stroke. In a more recent report of a 2-year follow-up of 
16 patients receiving bone marrow-derived MSCs, it was shown that 
the treatment remained safe and was accompanied by encouraging 
improvements in clinical outcomes, particularly motor impairment 
scales.[51] A larger placebo-controlled study has been initiated by the 
same group and is ongoing (NCT02448641).

Of the 26 clinical studies registered for spinal cord injury, 16 use 
MSCs expanded from bone marrow, 6 from adipose tissue and 4 
from umbilical cord. In an excellent review published recently,[52] 
it was indicated that 11 clinical studies have been reported to 
date where patients with spinal cord injuries were treated with 
either bone marrow- (n=6) or umbilical cord-derived MSCs (n=5). 
Cells were given either intrathecally and/or intravenously infused 
following expansion to various therapeutic doses. Taken together, 
these findings demonstrate that MSC administration in patients with 
spinal cord injury is safe and well tolerated (mild and temporary side-
effects in some cases). However, relative to rehabilitation therapy, 
no significant improvements in motor function were reported, 
although there were apparent and subtle improvements in sensory 
(light touch and pin prick) and bladder functions. Considering 
the dearth of treatment options and the morbidity associated with 
surgical intervention, one could argue that a stem cell-based therapy 
could be considered a less invasive alternative to alleviate the burden 
of this disease. However, large multicentre and randomised studies 
are required before this should be considered a viable option.[53] As 
previously noted, 1 such treatment was recently granted approval by 
Japanese authorities,[4] based on the treatment of 13 patients showing 
positive outcomes in a Phase I/II clinical trial. Notably, Japanese 
authorities do not require double-blinded randomised studies to 
grant approval for such therapies, which is a matter of ongoing 
debate, given that these studies are not placebo controlled and recruit 
only small numbers of patients.

For multiple sclerosis, the rationale for using MSCs is based on 
their immunomodulatory and neuroprotective properties. Based 
on our analysis of the 23 registered clinical trials for the disease, 
15 employ MSCs derived from bone marrow, 4 umbilical cord and 
4 adipose tissue (2 using SVF and 2 expanded MSCs). Although 
no pivotal clinical studies have been reported as yet, we identified 
numerous early-stage (Phase I/II) clinical reports employing bone 
marrow-derived MSCs. In a study reported in 2010, no adverse 
events and signs of clinical but not radiological efficacy were reported 
in 10 study participants following intravenous infusion.[54] In a 
second study, 15 participants received intrathecal administration of 
autologous bone marrow-derived MSCs via lumbar puncture. The 
procedure was reported to be feasible and to have an acceptable 
safety profile, while it also showed signs of clinical stabilisation 
or improvement in some patients.[55] Third, 10 study participants 
were treated with autologous bone marrow-derived MSCs in a 
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Phase IIb study,[56] where it was shown that MSCs provided benefits 
suggestive of neuroprotection based on their immunomodulatory 
and anti-inflammatory properties. The most recent report using bone 
marrow-derived MSCs for multiple sclerosis also included follow-up 
administrations of MSC-conditioned medium.[57] MSC-conditioned 
medium, i.e. the same cell culture medium used to expand MSCs, 
contains a range of cytokines, chemokines and growth factors which 
are postulated to further promote neuronal regeneration. In this 
clinical study with 10 participants, the procedure was shown to be 
well tolerated with relative efficacy in stabilising the disease and 
reversing symptoms. Finally, we found 2 clinical reports of studies 
using ASCs for multiple sclerosis. In the first, 16 patients were 
treated by autologous, intrathecal administration of ASCs in a Phase 
I/II safety study. After 18 months of follow-up, ASCs were shown 
to be safe, but with no significant benefits having been reported.[58] 
Notably, there was no disease progression, and the authors noted 
that although this was an attractive strategy, the treatment should 
be reserved for patients with aggressive disease progression. In the 
second study, a blinded randomised trial, 26 patients were treated 
with either low-dose/high-dose ASCs or placebo. No treatment-
related adverse events were reported, along with an inconclusive 
trend regarding efficacy.[59]

Summary and concluding remarks
Neurological disorders are diverse and often poorly understood, 
for which there is generally a dearth of treatment options. Stem 
cell therapy holds great promise and may be a solution to alleviate 
the burden of these disorders. However, stem cells come in various 
‘shapes and sizes’, and our lack of understanding of the basic biology 
and clinical benefits of transplanted stem cells currently prevents 
us from realising their true therapeutic potential. With over 200 
registered clinical studies, progress is indeed being made. The vast 
majority of these are early-stage clinical trials designed primarily to 
assess safety and feasibility. Of the studies that have been reported, 
the general consensus is that stem cell therapy appears to be safe and 
well tolerated. Pivotal, well-designed randomised clinical trials are 
essential for measuring the true clinical benefits of these therapies.

The future of stem cell therapy for neurological disease is 
promising. We expect that more clinical studies using NSC-like 
treatments will be registered in the future, particularly those using 
iPSCs as a source of differentiated cells. It is apparent that UCB 
is becoming increasingly accepted as a feasible option for treating 
cerebral palsy and HIE. Data from a recent report for the use of 
non-myeloablative HSC transplantation in patients with multiple 
sclerosis are also encouraging. MSC-based treatments will remain 
attractive, given that they are a readily accessible resource and can 
be prepared with relative ease. However, therapeutic application of 
these cells should be based on rational premises. Early-stage clinical 
studies with promising indications of efficacy will progress into 
later-stage studies, and only those that show unequivocal efficacy in 
well-designed, randomised clinical trials will finally reach the market. 
As a cautionary note, complex disease requires complex therapies 
and, although public perception is that stem cell therapy could be a 
magic bullet for the cure of numerous ailments, it is unlikely to be 
administered as a monotherapy, but rather will form part of a more 
holistic approach that aims to significantly improve the quality of life 
of affected patients.
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