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Turbine blades are subjected to various damage mechanisms with fatigue as the primary contributor. During

operation, damage accumulates in the form of crack initiation and propagation. This may lead to catas-

trophic failure, which is cause for concern in terms of availability and safety of the turbine. To optimize

the maintenance schedule and to provide operational flexibility of the turbine, the state of health of the

blades is monitored. This is usually accomplished through non-destructive testing (NDT) during outages.

Conventional NDT techniques for in-situ inspection of turbine blade and disk assemblies is difficult and

often ineffective, due to limited access to areas of concern, as well as the complex geometries of blade roots.

Off-site inspection can be costly if the blades are still assembled in the turbine disk since the process of

removing and reinstalling these blades is critical and labour-intensive, increasing the turbine downtime and

overall costs.

These problems could potentially be overcome by employing inspection techniques that offer the prospect

of assessing obstructed areas through monitoring the global dynamic characteristics of the structure, which

provide relatively easily interpretable data. With global inspection methods, a degree of measurement

sensitivity is forfeited but the potential to detect more severe damage, without prior knowledge of the

precise damage area location, exists.

In this dissertation, the feasibility of a vibration-based structural damage identification technique that could

be usable in support of conventional NDT to detect cracks in pinned turbine blades during off-line in-situ

inspection, is evaluated. The investigation was limited to considering uninstalled single blades only, and

thus off-site inspection of this component is regarded above the turbine disk assembly. This is clearly a

simplified case and does not address the critical case from a practical perspective of having a large number

of blades mounted onto a disk with pins, which is really the circumstance under which the technique could

become useful. This study must thus be considered as a first step towards addressing the real practical

problem. In this simplified problem, the following questions are answered: Is it possible to detect damage

in an unconstrained and isolated blade using vibration response, and if so, can different damage scenarios

be identified? The proposed vibration-based damage detection method entails a multi-class support vector

machine classification procedure in which the natural frequencies are employed as the discriminatory feature

for damage detection and identification of different single-location damage scenarios.

The natural frequencies were acquired from accurate experimental modal analysis of freely supported indi-

vidual pinned turbine blades through impact testing. To confirm and predict the expected behaviour of the

blades, a healthy numerical model was built and validated whereafter defects and damage were introduced.

This includes geometrical variability at the root, observed in the procured blades, and the anticipated worst-

case single-location damage at the most probable locations near or on the root, obtained from literature

and discussions with experts in the industry. Artificial damage, i.e. a uniform 1mm notch, was introduced

in the root at the upper pinhole on the leading edge pressure side; and just above the root at the aerofoil

base on the trailing- and the leading edge. To establish the discriminative quality of the modal property

natural frequency, it was necessary to determine its sensitivity to geometrical variability and damage. It

was also required to establish the damage-specific behaviour or damage trend in the experimental data of
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these damage scenarios to conclude their distinctiveness. This analysis was extended to outlining the feature

quality by exploring the separability of class clusters for the healthy and damage scenario(s).

The feasibility of the proposed method is assessed using experimental data through simple hypothesis testing

regarding the detection and identification of both geometrical variability in healthy blades, and damage. It

was found that healthy blades are very similar, as geometrical variability cannot be detected. This is because

the distributions of natural frequencies fall within a range about a mean value in an ambiguous cluster. In

contrast to this, the damage scenarios were found to be distinct, and thus discernible from the healthy

blades. These classes formed discrete clusters, each with a similar distribution than the healthy blades. The

conclusion of the feasibility study serves as proof of concept.

Keywords: Modal analysis; Impact testing; Frequency response functions; Natural frequencies; Damage

detection; Damage identification; Support vector machines; Classification; Finite element analysis
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Chapter 1: Introduction

1.1 Background and Problem Statement

Steam turbines need to be highly reliable with high mean times between failures since the cost and down-

time that are consequences of failures can be considerable. Turbine blades are exposed to various damage

mechanisms such as stress corrosion cracking, cyclic fatigue, and creep. During operation of the blades,

damage accumulates and results in crack initiation and propagation. Failures can be catastrophic and may

result in significant unavailability of the turbine. They also hold severe implications for personnel and plant

safety. To ensure safe operation, reliability, and high availability of the turbine in a capacity-constrained

environment, excellent oversight of these deteriorating components is required. To optimize the maintenance

schedule and provide operational flexibility, a failure prevention policy is therefore employed, which requires

periodic in-situ inspection of these components using qualified non-destructive testing (NDT) techniques for

detection and monitoring of damage evolution. The damage in the component is monitored until the end

of the component life or until refurbishment or replacement. Where an active damage mechanism has been

identified, a specifically developed strategy based on in-situ inspections is normally used. Where no known

active damage mechanism has been identified, damage monitoring is done proactively. Therefore, as the

blades’ condition deteriorates, the influence of the damage mechanism on blade dynamic response and life

must be assessed (Dewey and Lam, 2008; Scheepers and Booysen, 2012; Hattingh et al., 2016).

Damage identification methods, which include NDT, can be either local or global, depending on the method’s

ability to cover the volume of the component, relative to the overall dimensions of the structure (Bray and

Stanley, 1997; Mix, 2005; Ooijevaar, 2014). With local methods, the focus is directed to a part of the

structure and since it is generally the more sensitive method, small damage can be detected. However, the

location of the damage must be known. With global methods, a relatively large volume can be analysed at

once, albeit with limited sensitivity and only relatively severe damage cases can usually be identified. This

method employs indirect measurements to assess structural state (Barthorpe, 2011). For effective testing, it

is required that the scanning surface of the component must be visible or accessible, depending on the NDT

method applied (Mix, 2005). NDT can also be used as a health-monitoring tool, and thus NDT can be used

to characterize the damage as well as determine the damage severity (Worden and Dulieu-Barton, 2004).

With in-situ- or off-site inspection, the structure is taken off-line so that inspection of the structure or its

individual components can be conducted, respectively. Off-site inspection can be costly if the blades are

installed in the turbine disk, i.e. the blade root attachments are secured to the disk head since the assembly

process of removing and reinstalling these blades is critical and labour-intensive, increasing the turbine

downtime and overall costs. With in-situ or in-service inspection, the turbine assembly can obstruct the

area of damage, further limiting the accessibility and reliability of local techniques. This is more likely to

happen in cases where the blades are installed and the roots are not accessible with equipment, e.g. probes,

due to limited scanning area on the blade root platform. Additionally, the geometric features of the turbine

blade, i.e. complex blade root and twisting and tapering of the blade aerofoil contribute to this. Under

such circumstances, global techniques might become sensible for damage localization. This suggests the

development and application of global damage identification techniques to overcome these problems since

it has the ability to access the obstructed area in some manner through the global dynamic characteristics

(Bray and Stanley, 1997; Fan and Qiao, 2011; Kong et al., 2017). For example, in-situ inspection of a turbine

blade aerofoil is simple compared to the in-situ inspection of its blade root. This is due to better accessibility

and visibility, for when the blade root is attached to the turbine disk, the desired scanning surface/area is

obstructed (Charlesworth, 2011). In-situ inspection may also hold the potential to increasing inspection

intervals and thus turbine availability.

Structural damage identification is often regarded in a hierarchy of four levels. Level 1 is the qualitative

damage detection (presence of damage) in a structure and does not require prior knowledge of system
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behaviour from damage. Level 2–4 entails damage diagnosis in which the probable structural damage location

is determined, the extent of structural damage is quantified, and the remaining useful life of the structure

is estimated. It is implied that each level requires that details on all lower levels are available (Ngwangwa

et al., 2006; Fan and Qiao, 2011). Farrar and Doebling (1997) express the necessity for research on structural

damage identification to be more dedicated to specific applications in industries that would benefit from this

knowledge, i.e. health monitoring of long design life structures to quantify and extend the life of these

structures through specially developed techniques. They also insist that this research should emphasise the

testing of real structures in their operating environment above laboratory tests of representative structures.

This, however, would require more collaboration between academia, industry, and government organizations

due to the magnitude of such projects.

Physical objects vibrate at a distinct set of natural frequencies and thus have a unique signature defined

by their system dynamics. Changes in the measured response or system dynamics due to damage can be

observed in vibration analysis. Various structural damage identification techniques, based on global vibration

response monitoring or vibration analysis, have been developed to diagnose the health of structures. These

techniques, which mainly identify damage at Levels 1 and 2, monitor variation of modal properties such as

the natural frequencies, damping loss factors, and mode shapes. When a structural model is used, Level 3

may be attained (Ngwangwa et al., 2006; Fan and Qiao, 2011). Worden and Dulieu-Barton (2004) extended

the hierarchical strategy by introducing Level 2.5, which is the classification or description of the structural

damage. Machine learning is employed, and class labels are assigned to a sample of measured data (in this

study, natural frequencies) from a finite set. The specific damage properties or behaviour of each class is

encoded to a model to categorize new data accordingly. This enables effective identification at Level 3 and

4 since understanding the physics of damage, i.e. characterisation, is a prerequisite for these levels.

In solving the problem of structural damage identification using natural frequency-based methods, two

formulations to acquire structural modal parameters are available. The forward problem is used to determine

the change in natural frequency of a given structure based on damage properties (Ngwangwa et al., 2006).

This serves as a theoretical foundation for natural frequency-based methods and employs the information

from Levels 1–3. The inverse problem is used to determine damage properties of a given structure based

on natural frequency measurements (Fan and Qiao, 2011). The inverse approach uses the product of the

forward problem to obtain the information for Levels 1–3. Hence, in developing the technique as a diagnostic

procedure, investigation of the forward problem precedes that of the inverse problem. This is for the reason

that before the possibility of applying the technique on a structure, its natural frequencies due to specific

damage must first be known to allow detection and identification of that damage by natural frequencies.

Level 2.5 is trained on the product of the forward problem to calculate the product of the inverse problem.

During the installation of blades to the turbine disk, modal analysis with hammer impact excitation and

accelerometers are usually employed in which success is confirmed by ensuring that the first five natural

frequencies of the blade fall within a desired range. This requires only prior specialist instruction to teach

the procedure and interpretation of its results. During scheduled maintenance, the bladed disks are removed

from the turbine to a controlled environment, with constant conditions, for off-line NDT inspection (i.e.

generally by ultrasonic testing). Since modal analysis is already a part of the installation procedure, and

hence the skills and equipment are available, it is proposed in this study that modal analysis is also applied

during the scheduled maintenance as part of an off-line in-situ damage identification method. This will only

be promoted if found feasible, which this dissertation starts to prove.

To ensure minimal external influence from additional mass added by accelerometer(s) on the blade dynamics

and to allow more freedom on the measuring locations, a scanning laser vibrometer is used. This also

removes any difficulties regarding multiple accelerometers and cabling, if not wireless. To acquire the natural

frequencies of a structure, only a single measurement point is required. However, in context of the real-world

problem, the predefined single measurement point for each blade can be tracked with the software from

a central position. Thus, the set-up will be more convenient and probably be less labour-intensive. The
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predefined points for measurement and excitation, established from thorough research, can be labelled prior

to testing along with the software configuration. Hence, it will be simple to perform and to interpret the

results since it very closely resembles the installation procedure. It is also financially more sensible to use the

existing practical technique as specialist training and additional equipment would not be required, except

for the laser vibrometer.

In this work, the introduction to a global vibration-based structural damage identification technique, usable

in support of conventional NDT to detect cracks in blades during off-line in-situ inspection of stationary

blades, is presented. This methodology could increase the capability and reliability of crack detection in

turbine blades, especially in their roots. If this approach is successful, it could be further developed for

implementation in prevention of in-service failures with consequential damage and extended outage durations.

This type of analysis may also allow improvement of the maintenance schedule and inspection intervals with

the purpose of deciding whether immediate repair or replacement of the blades is necessary as well as to

schedule repair work and set inspection intervals if the rotor blades can still continue in operation (Hattingh

et al., 2016). However, the feasibility of the proposed method must first be assessed to establish the potential

for further development. Therefore, a simplified problem of a freely supported removed blade is presented

above the real practical problem in which the off-site conditions of the real-world problem, i.e. a controlled

environment with constant conditions, are considered.

1.2 Literature Survey

The definition of damage is established for this study. Next, a brief review on fatigue cracks in turboma-

chinery is presented, which includes the most probable damage mechanisms and locations. Pinned turbine

blades are then introduced with focus on their installation and on cracks observed at pinholes. This is

followed by a brief overview of modal analysis. This includes frequency response functions, motivation for

using non-contact measurements methods, impact vibration testing, and model validation. The structural

damage identification problem is presented in which the use of response-based methods is promoted. Then,

vibration analysis as a damage identification method is discussed, with emphasis on natural frequency-based

methods. This includes the effect of damage on the dynamic behaviour and stiffness of a structure. Finally,

an overview of the principles of machine learning applied to damage identification, specifically supervised

machine learning with support vector machines, is provided. This includes the basics of dimensional re-

duction, feature extraction and -selection. The proposed method in this study comprises support vector

machines using natural frequency-based vibration analysis for damage classification.

1.2.1 Definition of Damage and Relevant Concepts

From a perspective of structural integrity, the definition of damage is very broad. Damage is traditionally

defined as changes in either or both the material or geometric properties of the structure (Dewey and Lam,

2008). This includes failure of structural materials (e.g. cracking, buckling, breaking, or delamination);

loosening of assembled parts (e.g. loose bolts, rivets, or glued joints); loss of any assembled part; and flaws,

voids, cracks, thin spots, etc., caused during manufacturing and operation (Wang et al., 1997). Hence, it

essential that an explicit definition of damage is established to ensure that any confusion regarding what

’damage’ is to be detected and identified by a specific method, can be removed. The following ranked

terminologies are used in this study as defined by Worden and Dulieu-Barton (2004) and Dewey and Lam

(2008):

• A defect is defined as inherent in the material and statistically an unknown quantity exists in all

materials. This does not hinder the structure’s operational capacity as it operates at design conditions.

Thus, it also includes any uncertainty in the material or introduced in the component that does not

affect the functionality. This does not refer to change in the geometry brought on by alleviating or

removing stress concentrations, which also affects the structural integrity, as this will enhance the

remaining useful life of the blade (Dowling, 2012). Thus, any geometrical variability falls within this

category.
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• Damage does not hinder the structure’s operational capacity; however, it is no longer operating in its

ideal condition and may affect the performance slightly. For example, during the operational extent of

a turbine, it experiences various mechanisms (wear, degradation, or fatigue) which grow to a physical

consequence or damage. A fault hinders the structure’s operational capacity since it can no longer

operate sufficiently or safely. In this study, damage and fault will be integrated into the former single

term and are considered as minor and critical or worst-case stages of damage.

• With failure, the structural integrity of the healthy structure is severely compromised by a progressive

damage mechanism and it can and should no longer operate at all. This causes serious concern in terms

of availability and safety of the structure. It is crucial that corrective action is mediated to prevent

the incident from repeating.

These terms are derived from describing the quality of a system as its ability to meet user requirements.

Thus, critical damage is an undesirable decrease in quality due to a change in the system to some degree.

Hence, it can be concluded that failures arise from damage, which arose from some defects caused by various

mechanisms that accumulated over time. The structure still functions satisfactorily in the damage level;

however, the failure level is in total contrast to this. Thus, it is essential that a rigid interpretation for

this margin be established to allow its detection. Therefore, the worst-case damage or damage on the

edge of this margin must be detected and identified since it will lead to failure if uncorrected. This will

contribute to the remedial decision process to ensure safe operation and restore operational capacity. In

this dissertation, defects will always refer to geometrical variability, whereas damage will always refer to the

worst-case scenario.

1.2.1.1 Fatigue Cracks

Fatigue cracks are characterized by three phases (Anderson, 2005; Totten, 2008; Plesiutschnig et al., 2016):

crack initiation, in which cyclic loading leads to a small crack forming at a stress concentration; stable crack

propagation, in which incremental crack growth occurs per cycle; and structural failure or final fracture, in

which rapid crack growth occurs after reaching a critical size. The total number of cycles to failure are the

combined number of cycles required for initiation and propagation, respectively (Lackner, 2005; Dowling,

2012).

The mechanism of crack initiation is slip accumulation during cyclic loading, in which plastic deformation

leads into eventual strain localization and ultimately into crack initiation (Dowling, 2012; Sangid, 2013).

When the number of cycles accumulates, the number of defects increases with the rise in dislocations in the

micro-structure of the material. With the increase of the density of dislocations, the total system energy is

minimized through the formation of unique structures. Forward and reverse loading occurs per cycle, creating

irreversible slip lines from slip moving in distinct paths. This leads to localized strain in the material, which

is a sign of crack initiation, and takes the form of slip bands inside the material crystals. A small crack

can be the result of an increase of the slip band width due to more crystals showing signs of slip bands

from cycle build-up (Sangid, 2013). As soon as a crack initiated in the material, any escalation in size or

length of that crack is considered as propagation (Anderson, 2005; Totten, 2008). The rate and progression

of cracks are primarily controlled by the material structure at the crack and the localized stresses (Budynas

and Nisbett, 2011; Dowling, 2012). With the final fracture stage, crack growth is primarily controlled by

the material’s fracture toughness, which is related to rapid crack growth acceleration and will cause abrupt

failure in tension overload (Budynas and Nisbett, 2011; Dowling, 2012). Thus, the highest stress region will

result in the highest stress-intensity factor, which will lead to crack initiation with an accelerated growth

rate when compared to the other regions. A larger initial crack size also contributes to this (Anderson, 2005;

Dowling, 2012).

1.2.1.2 Fatigue Cracks in Turbomachinery Blades

The blades and attachment grooves in a steam turbine are some of the most-highly stressed components

in a turbine (Rauschenbach et al., 2010; Scheepers and Booysen, 2012). This is due to the high turbine
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speed and the dead weight of the blades, resulting in exposure to massive centrifugal forces and stresses in

the blades during operation, causing both high and low cycle fatigue (Dewey and Lam, 2008). These high

stresses cause fatigue crack propagation.

High cycle fatigue (HCF) is the fatigue of rotating components, brought on mainly by centrifugal and dynamic

forces. This leads to high mean stress levels caused by vibration and resonance of blades at critical speeds

during transient loading conditions, that can occur anywhere along the length of the blade and accumulates

over time (Witek, 2009; Bhagi et al., 2013; Booysen et al., 2015). HCF is also caused by passing of blades by

non-uniform stream of air produced by a blade cascade (Witek, 2009). Low cycle fatigue (LCF) is primarily

a consequence of start-stop cycling and centrifugal force, resulting in centrifugal stresses with a steady

magnitude and stress distribution during full speed, with the maximum steady-state stresses occurring at

stress concentrations, i.e. in the root attachments and transition of the base to the aerofoil (Dewey and Lam,

2008). Crack initiation is more likely to occur with LCF, which is associated with significant amounts of

plastic deformation, whereas HCF is associated with relatively small elastic deformations (Dowling, 2012).

HCF damage is identified as a main source of LP turbine blade failures (Witek, 2009; Mazur et al., 2009;

Bhagi et al., 2013; Booysen et al., 2015). Booysen et al. (2015) state that these dynamic stresses are influenced

by the source and magnitude of the excitation, and the damping in the blade. In the case of a free-standing

turbine blade, the damping is naturally low, thus resulting in high dynamic stresses at resonance conditions.

Shlyannikov et al. (2014) and Citarella et al. (2015) considered a steam turbine blade and found through finite

element analysis (FEA) that the bending stresses represent only 0.15% of the stress caused by the inertia

loading, concluding that the bending moment induced by steam pressure can be ignored. This is supported

by Poursaeidi and Salavatian (2009), who calculated that during steady-state condition the centrifugal stress

acting on a generator fan blade is much greater than the bending stress, using FEA.

Bhagi et al. (2013) conducted a brief review on common failures of turbine blades, including the failure

mechanisms and locations. They found that high stress areas are more likely to occur near the blade

root (i.e. the root and aerofoil base), leading-, and trailing edges. Additionally, areas near the root platform

(aerofoil base) experience the highest centrifugal forces, producing a steady-state stress level that contributes

to fatigue crack propagation. The blade root attachments experience the highest steady state stresses due

to geometric stress concentrations. Stress concentrations have significantly higher localized stress than the

mean stress outside the vicinity of the sharp edge. This can cause cracking in the sharp section changes

of the root (Lackner, 2005; Dowling, 2012; Booysen et al., 2015). The dominant and severe crack locations

are usually found at the root (Lackner, 2005; Mazur et al., 2009). Fatigue cracks are transgranular with

no branching with relatively smooth fracture surfaces (Anderson, 2005; Mazur et al., 2009; Scheepers and

Booysen, 2012). Blade crack locations, specific to these areas, reported by various authors in previous

investigations are illustrated in Figure 1.1, and summarized in Table 1.1.

(a) (b)
Figure 1.1: Turbine blade crack locations near or at the root from previous investigations, a) Blade root (Booysen

et al., 2015); b) Aerofoil base (Mazur et al., 2009)
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Table 1.1: Brief summary of turbine blade crack locations in or near the root as reported by various authors

Crack Location Blade Type Author

Blade root (overall) LP steam turbine blade Plesiutschnig et al. (2016)

Booysen et al. (2015)

Nurbanasari and Abdurrachim (2014)

Bhagi et al. (2013)

Vaishaly and Ramarao (2013)

Oberholster (2010)

Kubiak Sz et al. (2009)

Dewey and Lam (2008)

Rauschenbach et al. (2008)

Xu et al. (2007)

Clossen et al. (2006)

IP steam turbine blade Charlesworth (2011)

Gas turbine blade Bhagi et al. (2013)

Aerofoil base (trailing edge) LP steam turbine blade Plesiutschnig et al. (2016)

Shukla and Harsha (2015)

Kim (2011)

Mazur et al. (2009)

Dewey and Lam (2008)

Aircraft gas turbine blade Bhagi et al. (2013)

Gas engine compressor blade Lackner (2005)

Aerofoil base (leading edge) LP steam turbine blade Citarella et al. (2015)

Shlyannikov et al. (2014)

Mazur et al. (2009)

Dewey and Lam (2008)

Kubiak Sz et al. (2004)

Compressor blade Poursaeidi and Bakhtiari (2014)

Witek (2011)

Lackner (2005)

To ensure that resonance and resultant fatigue cracking does not occur at running speed, the vibration

response of turbine blades are often controlled through lacing wires, arc bands, integral shrouds or friction

damping pins (Bhat et al., 1996; Drozdowski et al., 2015); unless it is not necessary, in which the blades

are referred to as free-standing. Various root attachment designs, used to attach blades to rotors and rotor

discs, are commonly used depending on which design the original equipment manufacturer (OEM) favours.

This is shown in Figure 1.2 and includes axial entry fir tree-, pinned fork-, inverted T-, and straddle root

(Dewey and Lam, 2008; Scheepers and Booysen, 2012). Free-standing pinned fork or pinned turbine blades

are considered in this study.

Figure 1.2: Some examples of root attachment designs commonly used by OEMs (Rowbotham et al., 2015)

1.2.2 Pinned Turbine Blades

The radial entry pinned root is a common attachment configuration for different sizes of steam turbine

rotor blades, such as smaller stages of IP turbines to the largest stages on LP turbines (Rauschenbach et al.,

2010). The key feature of this connection is a series of circumferential slots machined into the disk head, with

corresponding fingers machined into the blade root. This is shown in Figure 1.3a, in which the blade fingers
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are inserted into the disk head slots and then secured into place with tapered axial pins. During installation

or assembly, the individual pinned roots are properly aligned with the disk head to allow individual reaming

of holes for pin insertion as shown in Figure 1.3b, courtesy of MAN Diesel & Turbo South Africa (MDT-

ZA). A close fit or press-fit between the pin and the disk minimizes the bending stress and ensures equally

distributed centrifugal and steam bending loads between multiple pins. In addition, the multiple fingers

guard against catastrophic root failure prior to crack discovery in the attachments (Dewey and Lam, 2008).

The assembly process is therefore critical to successful pinned root designs (Singh and Lucas, 2011). The

pins are either hot or cold riveted through holes in both the disk and blade fingers (Charlesworth, 2011).

During operation, a blade can experience resonance at other higher natural frequencies. These resonant

oscillations are avoided through tuning the structural frequencies away from the excitation frequencies by

changing the blade geometry at specified areas through correctional grinding (material removal). This aims

to adjust the desired frequency of the desired blade with minimal effect on the others and with minimal

impact on the blade aerodynamic performance (Duong et al., 2013).

(a) (b)

Figure 1.3: a) CAD model of pinned root turbine blade installation (Singh and Lucas, 2011), b) Installation
procedure of discarded stage 2 pinned turbine blades in a disk section (courtesy of MDT-ZA)

The removal of blades from the disk presents an associated risk of damage to the disk pinholes, which

may then require repair since the pins must be forcibly removed, and pinhole reaming is required for blade

reinstallation. This enlarges the pinhole diameter and can only be done a limited number of times before

the pinhole size limit is reached on both the blade and the disk, which will then result in an improper fit.

This is reasoned by Hattingh et al. (2016) who presented a case study pertaining to the damage assessment

and refurbishment of steam turbine blade/rotor attachment holes. This was verified by industry (including

MDT-ZA). Additionally, the pins yield or are distorted due to the stresses produced from larger finger root

blades. This adds to the difficulty and cost in removing these blades for inspection (Dewey and Lam, 2008).

During turbine operation, the area around the pinholes experience very high stresses, resulting in cracks

arising at various orientations at the upper pinhole due to compression and tension stress from the axial pins

(Clossen et al., 2006; Rauschenbach et al., 2008). Figure 1.4 shows the crack orientations in the anticipated

defect area along with examples of pinhole cracks. This is explored in a later section of the study. Dewey

and Lam (2008) and Hattingh et al. (2016) found that for a pinned stage 1 LP turbine blade disk, the critical

location is at the 2–3 o’clock and 9–10 o’clock positions on the bottom pinhole on the central prong. This

implies, from reaction forces, that for the blade this is found at the upper pinhole at these locations. Xu

et al. (2007) confirmed this in their failure analysis of a stage 1 LP pinned turbine blade. The crack initiation

and propagation in the blade finger were caused by HCF and a surface defect due to rough machining. This

is shown in Figure 1.5.
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(a) (b) (c)

Figure 1.4: a) Anticipated defect area in a radial-entry pinned turbine blade root (Rauschenbach et al., 2008);
Examples of root pinhole cracks in a last-stage LP turbine rotor blade, b) (Rauschenbach et al., 2008) and c)

(Clossen et al., 2006)

(a) (b)

Figure 1.5: a) Radial stress distribution for the centre prong of a stage 1 LP steam turbine disk showing peak stress
at the bottom pinhole (Hattingh et al., 2016); b) Stage 1 LP steam turbine blade geometry and failure location

reported by Xu et al. (2007)

Charlesworth (2011) noted that, considering a stage 2 intermediate pressure (IP) turbine blade, common

issues present with pinned blade turbine rotor designs include radial cracking from the pinholes in the blade

fingers and in the disk head rims (Hattingh et al., 2016). Figure 1.6 shows an IP blade with a fully cracked

or detached finger that was removed from a customer rotor. This blade root was no longer able to withstand

the forces in full load operation and could have led to catastrophic failure of the rotor if it failed prematurely

to inspection. The challenge for in-situ inspection of pinned blade roots is the volumetric inspection to find

the crack initiation sites, with severely limited access from blade root platforms (Charlesworth, 2011).

Figure 1.6: Pinned root cracking and failure to stage 2 IP turbine blade reported by Charlesworth (2011)
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1.2.3 Modal Analysis

Classical modal analysis determines the dynamic characteristics of a structure, which include natural frequen-

cies, damping values, and patterns of structural deformation or mode shapes. This procedure is illustrated

in Figure 1.7 and consists of an acquisition phase and an analysis phase. With the first phase, experiments

are performed on a test object by exciting the structure with a known source, e.g. an impact hammer or

electrodynamic shaker, causing it to vibrate. Responses to the input force are then measured in the X-, Y-,

and Z-directions with sensors, i.e. load cells, accelerometers or optical devices. The measured response is

usually in the form of a transfer function or a frequency response function (FRF). The transfer function is

the complex Laplace domain relationship of the response output of a structure to the input force applied

on that structure, and the FRF may be viewed as the transfer function evaluated along the imaginary axis

(Mix, 2005; Heyns, 2008; Song et al., 2014). Thus, the FRF is related to the transfer function through the

Fourier transform. With the final phase, the modal parameters are extracted from the object’s measured

FRFs and considered for processing, depending on the analysis objective. These FRFs are often curve-fitted

to estimate the modal parameters (Heyns, 2008; Song et al., 2014).

Figure 1.7: The acquisition phase of the modal analysis procedure (Siemens, 2016a)

With theoretical modal analysis, the workings behind the scenes within the signal processing software as well

as the FEA software when performing modal analysis can be explained. The dynamic behaviour of some

simpler systems can adequately be described by single-degree-of-freedom (SDOF) models; however, most

systems are more complex and generally require multiple-degree-of-freedom (MDOF) models to describe

their dynamics effectively (Heyns, 2008; Inman, 2014). The dynamics of a discrete MDOF mechanical system

can be used to solve blade vibrations (Xu et al., 2007; Shukla and Harsha, 2016), and can be expressed as

a linear and time invariant second-order differential equation (Ngwangwa et al., 2006; Heyns, 2008; Inman,

2014):
[M ]{ẍ}(t) + [C]{ẋ}(t) + [K]{x}(t) = {f}(t). (1.1)
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With:

[M ] = Mass matrix [N ×N ]

[C] = Damping matrix [N ×N ]

[K] = Stiffness matrix [N ×N ]

{f}(t) = Force vector [N × 1]

{x}(t) = Response vectors [N × 1]

In the case of harmonic oscillations in which no external force is applied ({f}(t) = {0}), the structure may be

assumed to vibrate in free harmonic form, in which {x}(t) = {X}eiωt. To solve the dynamic characteristic,

modal analysis should be carried out for the structure. Without regard to the influence of environment load

and damping, the non-damping ([C] = [0]) free vibration equation of the numerical model can be written as

(Heyns, 2008; Inman, 2014; Shukla and Harsha, 2016):

[M ]{ẍ}(t) + [K]{x}(t) = {0},

−ω2[M ]{X}eiωt + [K]{X}eiωt = {0}.
(1.2)

Solving Equation 1.2 yields the eigenvalue equation:

([K]− ω2[M ]){X} = {0}, (1.3)

in which ω [rad/s] is the eigenvalue or the natural frequency, and {X} is the corresponding eigenvector and

mode shape of the structure. By solving the eigenvalue problem, the natural frequencies and mode shapes

of the object with light damping or no damping can be obtained (Heyns, 2008; Inman, 2014; Shukla and

Harsha, 2016). In the case of an externally applied force, forced vibration of the structure may be assumed

and the same procedure for solving Equation 1.2 applies (Inman, 2014).

If a differential equation of motion is transformed using the Laplace transform, the link between the excitation

and response reduces to a simple algebraic expression. This is a very powerful approach and may be used

for a variety of excitation conditions. By transforming Equation 1.2 to the Laplace domain and assuming

zero initial conditions, it yields (Heyns, 2008):

[D(s)]{X(s)} =
[
[M ]s2 + [C]s+ [K]

]
{X(s)} = {F (s)}, (1.4)

with [D(s)] as the dynamic stiffness matrix. By defining the transfer function matrix [H(s)] = [D(s)]−1,

Equation 1.4 becomes
{X(s)} = [H(s)]{F (s)} → [H(s)] =

{X(s)}
{F (s)}

, (1.5)

which relates the Laplace transform of the system forcing functions {F (s)} to the system response {X(s)}
through the matrix {H(s)}. The Fourier transform relates the transfer function matrix and the complex

FRF by substituting s = iω into the Laplace transform given in Equation 1.5, yielding (Heyns, 2008):

[H(iω)] =
{X(iω)}
{F (iω)}

= [D(iω)]−1 =
[
[K]− ω2[M ] + iω[C]

]−1

, (1.6)

which provides a measure of the steady state response of a system to a unit harmonic excitation force.

Experimental results may be utilised to improve numerical models such as finite element models through

model updating, which allows detailed and accurate mathematical models of structures to be built from the

measured test data. This technique is an extension of FRF measurements (Heyns, 2008; Avitabile, 2014;

Inman, 2014).

1.2.3.1 Frequency Response Function

An FRF expresses the frequency domain relationship between an input force and output response of a

linear, time-invariant system at specified input- and response points. Thus, the FRF relates the system

forcing function (input) to the system response (output) (Mix, 2005; Heyns, 2008; Siemens, 2016a). Three
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common interrelated formulations of the FRF are available. The form of the FRF depends on the response

parameter used and is subjected to the analysis objective, i.e. displacement, velocity or acceleration is used

to generate receptance, mobility or accelerance, respectively. These ranked parameters are derivatives of

each other with respect to time, whereas the ranked FRF forms are derivatives of each other with respect

to frequency (Heyns, 2008).

Three important parameters with any FRF are the magnitude, the phase, and the coherence. FRFs are very

useful for the rapid identification of natural frequencies of structures from either the magnitude or the phase

(Heyns, 2008; Avitabile, 2014; Siemens, 2016a). With modal analysis, the measured time data is transformed

to the frequency domain through a Fast Fourier transform (FFT) algorithm. This transformation leads to

functions with complex valued numbers that can be geometrically represented on the complex plane. The

complex plane is a modified Cartesian plane with a real axis (x-axis) and a perpendicular imaginary axis

(y-axis). Hence, the functions can be described by real (Real) and imaginary (Imag) components or by

magnitude and phase components (Heyns, 2008; Avitabile, 2014; Siemens, 2016a):

Magnitude =

√
Imag2 +Real2, (1.7)

Phase = tan−1(Imag/Real). (1.8)

Figure 1.8, showing a typical FRF of a structure, demonstrates the rapid identification of natural frequencies

of structures from either the magnitude or the phase. It can be seen that magnitude (Amplitude) has peaks

corresponding to natural frequencies of the test object as the FRF is ’normalized’ to the input, and that

Phase has an abrupt shift at natural frequency as the main component of the motion stimulation has changed.

The width of the peaks about their maximum is proportional to the damping of the structure and can be

estimated by using the half-power method at the 3dB down point. It is important, however, to note that

good coherence is essential for the identification of natural frequencies (Heyns, 2008; Avitabile, 2014; Inman,

2014).

Figure 1.8: A typical frequency response function (FRF) and phase plot, Top – Amplitude (magnitude) has peaks
corresponding to natural frequencies of test object; Bottom – Phase has an abrupt shift at natural frequency

The coherence function is a measure of linearity and noise, which identifies how much of the output signal

is related to the measured input signal. This characterises the relationship between the measured system

input and output signals at each frequency. Thus, the coherence function quantifies the quality of the

FRF measurement at each frequency and therefore evaluates the consistency or repeatability of an FRF

measurement (Smith, 2005; Heyns, 2008; Avitabile, 2014; Siemens, 2016a). Figure 1.9 demonstrates the

coherence function of which the value ranges from 0–1. The higher the values at a particular frequency, the
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more repeatable the measurement to measurement. For instance, when the amplitude of the FRF is very

high, e.g. at a natural frequency, this value will be close to 1. However, the opposite is true for a very low

amplitude at a natural frequency or across the entire frequency range, this indicates a possible error with

the measurement. Note that this applies for the reverse case as well. For instance, when the amplitude of

the FRF is very low, e.g. at an anti-resonance, this value will be close to 0. The coherence is expected to

drop here as there is no response to measure since the structure is non-resonant. Thus, the repeatability is

made inconsistent by the instrumentation noise floor due to too low measurement values. This, however, is

normal and thus acceptable (Smith, 2005; Heyns, 2008; Avitabile, 2014; Inman, 2014; Siemens, 2016a).

Input Force Spectrum

Coherence

FRF

Figure 1.9: Optimal coherence from good impact for a high quality frequency response function (FRF) measurement,
Blue - Input force spectrum; Green - Coherence; Red - FRF (Siemens, 2016b)

Hence, assuming that the output signal is without error and thus controlled, good or sufficient impact will

ensure good coherence and thus a good FRF measurement. To excite all the modes of interest, an adequate

input excitation frequency range must be selected. This is shown by the desired input excitation forcing

function in Figure 1.9, which has an evenly distributed amplitude and reasonable roll-off over the frequency

range of interest. This renders the optimal coherence function. Depending on the objective of the tests

and application of the results, the quality of the coherence function, and thus the FRF quality, may differ

(Smith, 2005; Heyns, 2008; Avitabile, 2014; Siemens, 2016a).

1.2.3.2 Non-contact Measurement Methods

In practice, the structure’s natural modal shapes are used to visualize its movement at its respective natu-

ral frequencies. These mode shapes are collectively formed through curve-fitting from FRF measurements

acquired through a series of sensors (e.g. force transducers and accelerometers) applied or mounted at

different geometrical locations (Mix, 2005; Heyns, 2008). Mounting several sensors requires only one mea-

surement when using a shaker. However, a single sensor (measurement point) is sufficient for many practical

applications but requires the use of an impact hammer and several input excitation points to successfully

capture the respective mode shapes at these frequencies (Gillich and Praisach, 2015). Both these approaches

are labour-intensive and the structural and vibrational properties are affected. Using contact measurement

techniques have three common shortcomings (Heyns, 2008; Song et al., 2014):

• Attaching sensors can add to the mass of the structure, altering its modal properties.

• The size of the accelerometer limits the number of sensors deployable, which can reduce the accuracy

of the damage localisation by spatial resolution impediment of the acquired modal shapes.

• Cabling throughout the structure is necessary if the accelerometers are not wireless.

These difficulties can be overcome through non-contact structural motion measurement methods to accu-

rately identify the modal parameters of a structure (Song et al., 2014), such as laser Doppler vibrometry

(LDV) (Castellini et al., 2004; Chen et al., 2015). This is the application of the Doppler Effect to measure

vibrations on an object. A laser beam is directed onto a target, where the reflected light is then shifted in

frequency in accordance with the target’s vibration velocity. The target’s vibration velocity is then obtained

by combining the reflected light with a reference beam, allowing the extraction of the object’s modal infor-

mation (Oberholster, 2010; Chen et al., 2016). Oberholster (2010) investigated the application of Eulerian

laser Doppler vibrometry to the on-line condition monitoring of axial-flow turbomachinery blades, in which

he covers laser vibrometry extensively.
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1.2.3.3 Impact Vibration Testing

With an impact vibration test, a loaded or automated impact hammer is used to hit (impact) the test

object and thus excite a broad range of frequencies. By studying the measured response from the structural

excitation, the modal and dynamic stiffness characteristics can be determined (Mix, 2005; Inman, 2014).

Impact excitation is intended to be impulsive to contain a broad range of frequencies and desirably coincident

with the system’s natural frequencies of interest. The response to this sudden application of a large non-

periodic force over a short duration can be physically understood as the response to an initial velocity with

no initial displacement. The system response to an impact is equivalent to the free response of the system

to certain initial conditions (Inman, 2014). Built into the head of this hammer, is a force transducer (load

cell) that measures the force of the impact. The peak impact force is closely related to the mass of the head

and the impact velocity. Different hammer tips are available, which primarily controls the input excitation

frequency range, depending on the tip hardness. Selecting the correct hammer tip ensures that adequate

input energy is applied, with nearly constant amplitude over the desired frequency range, to the structure

to excite the full frequency range of interest (Lackner, 2005; Avitabile, 2014; Siemens, 2016b).

Impact hammer excitation avoids the mass loading problem and is much faster than using a shaker. It is

also more appropriate and accurate for stationary modal testing than other non-contact excitation methods

due to the ability of direct applied force measurement (Oberholster, 2010; Inman, 2014). Impact testing is

recommended for quality assurance and control processes of testing of individual blades in the Electric Power

Research Institute (EPRI) standards (Dewey and Lam, 2008). These blades can be mounted in a fixture to

represent a cantilever beam or suspended to represent a free-free state. The vibration frequencies for several

modes are obtained from the processed measured signal and are then tabulated to form a distribution about

a mean value for each mode. Outliers or blades, whose dynamic response indicates that it might not behave

as predicted, are identified from a fixed allowable frequency range. This method can also be performed on

blades installed on the disk, either as groups or as individual structures (Dewey and Lam, 2008).

1.2.3.4 Model Validation by Frequency and Vibration Testing of Turbine Blades

Frequency data for turbine blades can be acquired in several forms by different methods for different goals;

however, the key purpose here is to verify the correlation with the FEM. Dewey and Lam (2008) identify

five ways of validating FEM models against experimental data. These are in order of increasing complexity:

1. Impact testing of individual blades.

2. Shaker testing of assembled rows.

3. Spin pit testing of rotating blades.

4. Blade vibration measurement of rotating rows.

5. In-situ testing of rotating blades.

It is implied that as the level of difficulty and expense increase, the cost and accuracy of the method also

increase. However, this depends on the area of interest. For example, if the end goal is to develop an on-

line condition monitoring method, the last three levels are of concern and must be included in the process.

However, if the end goal is an in-situ off-line (stationary) monitoring method, only the first two levels

need to be considered with some flexibility on the procedure (i.e. practicality, financial implications, etc.).

FEA is performed on a constructed model corresponding to the selected level with appropriate boundary

conditions. The numerical frequencies are then calculated for correlation with experimental data during

model validation. A reasonably well-modelled simulation will have a general uncertainty of ±2–3% associated

with any calculated natural frequency. It should be kept in mind that the individual blades do not represent

the row in a fully assembled condition or with any at-speed operating and environmental conditions imposed

on the blades (Dewey and Lam, 2008). These levels are not limited to only FE model validation, but if

applied appropriately it holds the potential to be utilised in a damage detection or identification approach.
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1.2.4 Structural Damage Identification Strategy

The extended structural damage identification problem can be considered as a hierarchical strategy of five

levels (Worden and Dulieu-Barton, 2004; Barthorpe, 2011):

1. Detection – Determining qualitative presence of damage in a structure without prior knowledge of

system behaviour from this damage.

2. Localization – Probable location of the structural damage.

3. Classification – Description of the structural damage through machine learning (Newly added and is

referred to as Level 2.5 in Section 1.1).

4. Assessment – Quantifying the extent of the structural damage, requires structural model.

5. Prediction – Estimating remaining useful life of the structure.

To solve each level, it is required that details on all preceding levels are available. Hence, success of any level

is largely dependent on the success of its lower level.

Structural damage identification approaches are either response- or physics-based. The response-based or

data-based approach is dependent only on experimentally measured response data from structures, without

the support of physics-based numerical models, and typically work on statistical pattern recognition prin-

ciples. Note that experiments on undamaged structures are not necessarily possible, especially for in-situ

cases. The physics-based or model-based approach is dependent on an accurate detailed numerical model of

the structure, and thus the initial FE model requires continuous updating from newly-presented structural

data to identify damage. However, numerical analyses can be computationally expensive, and its reliability

can be questionable in the case of limited availability of experimental data from intact or undamaged struc-

tures. For this reason, the physics-based approach is unfit for real-time structure damage detection. Hybrid

approaches, which are combinations of the response- and physics-based approaches, are also available but

are not often used (Barthorpe, 2011; Fan and Qiao, 2011).

Response-based methods are simple, easy to apply, and not computationally intensive to implement and can

recognize the first two levels of structural damage identification, i.e. qualitative damage detection (Level

1) and probable damage location (Level 2). However, this cannot provide enough detail for quantifying the

extent of the structural damage (Level 4). It is a valuable tool for damage identification in the preliminary

stage (Yan et al., 2007; Fan and Qiao, 2011; Kong et al., 2017). Therefore, an additional level that provides

information about the type of damage is required that not only uses the characteristics of the measured

responses to differentiate the structure state of health as well as enhance the accuracy of vibration-based

damage detection, but also enables effective identification at higher levels where understanding the physics

of damage (i.e. characterisation) is a prerequisite. This level is capable of overcoming the above-mentioned

drawback, or at the least, it clarifies the path toward the answer, and involves classification or description

of the structural damage (Level 3) and employs machine learning. Class labels are assigned to a sample of

features of the measured data from a finite set and each class’ specific damage properties are then encoded

to a model through training, which categorizes new data accordingly (Worden and Dulieu-Barton, 2004).

Changes in modal properties or derived properties can be used as damage indicators, thus the problem of

modal-based damage detection can be solved with pattern recognition (Farrar and Doebling, 1997; Martinez-

Luengo et al., 2016). Kong et al. (2017) address the most recent on the background of vibration-based damage

identification as guide to researchers and engineers to implement step-by-step the structure damage identifi-

cation using vibration measurements. This includes the detection of damage occurrence using response-based

methods, building reasonable structural models, selecting damage parameters, damage characterization, and

objective feature selection.
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1.2.5 Vibration-based Structural Damage Identification

When using vibration for damage identification, the complexity required to analyse the problem determines

the type of signal analysis technique used. On-line application includes condition monitoring of rotating

machinery, and off-line application includes characterising structural components with noise and vibration

signals (Heyns, 2008). It can thus be argued that off-line condition monitoring of stationary machines or

components proves less difficult due to results being independent of the time history and thus only leaves

instantaneous measurement techniques to apply.

Vibration analysis applied to structures is classified as a global non-destructive damage identification method

that can be used to find problems relating to unknown, inaccessible damaged areas in engineering structures.

The fundamental concept behind these methods is that changes in a structure’s modal properties (natural

frequencies, modal damping, and mode shapes) are functions of changes in the structure’s physical properties

(mass, damping, and stiffness) induced by damage (i.e. stiffness reductions due to cracks or weakening of a

connection) (Farrar and Doebling, 1997; Fan and Qiao, 2011; Song et al., 2014). The modal parameters are

extracted through modal analysis of the stationary structure (Bray and Stanley, 1997), compressing the data

for easier interpretation (Farrar and Doebling, 1997). This procedure is simplified through transforming the

time domain data into the frequency domain through a Fast-Fourier transform (FFT). This allows analysis

of the modal domain data by modal analysis techniques (Heyns, 2008). Vibration-based inspection is one

of the most promising techniques for health monitoring, as modal parameter measurements are sensitive to

the initiation and progression of damage in the structure (Kannappan et al., 2007; Lorenzino and Navarro,

2015).

Yan et al. (2007) present a general summary and review of most recent and development of vibration-

based structural damage identification in which various methods, based on structural dynamic characteristic

parameters, are summarised and evaluated. Fan and Qiao (2011) conducted a comprehensive review on

modal parameter-based damage identification methods for beam- or plate-type structures in which they

discuss the merits and drawbacks of these methods. This includes an FEA study evaluating various damage

detection algorithms for beam-type structures, such as single damage detection, multiple damage detection,

and large-area damage detection. Both authors classified the traditional-based damage detection methods

into four major categories, based on the vibration features:

• Natural frequency-based methods

• Mode shape-based methods

• Curvature/strain mode shape-based methods

• Methods using both mode shapes and frequencies

Farrar and Doebling (1997) and Yan et al. (2007) provide an overview of modal-based damage identification

methods, including critical issues for future research in the field of structural damage identification and health

monitoring. These issues include the following. First, the impracticality of application-specific methods,

which is dependent on prior numerical models and test data for the detection and location of damage. Second,

many methods are fundamentally dependent on linear structural models, and is inadequate in describing the

non-linear effects of a damage scenario. Third, the number and location of measurement sensors. Methods

should not be limited to a few measurement locations and these locations must be deducible in advance.

Fourth, the general sensitivity level of modal parameters to small defects in a structure. This will ensure

that damage will be detected to allow remedial action. However, thus far, this has only been established

for specific structures or systems and not proven in a fundamentally. Finally, the discernment of changes

in the modal properties from damage or statistical variations in the measurements. Additionally, a suitably

objective direct comparison of the relative merits of these methods, applied to a common dataset, has not

been conducted. These issues must be addressed to ensure that the identification of damage using vibration

measurements becomes a feasible and practical option that can be generally implemented.
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Yan et al. (2007) discuss modern vibration-based structural damage detection methods based on wavelet

transforms, neural networks, and genetic algorithms. These methods essentially combine the use of modern

signal-processing techniques and artificial intelligence. This includes other methods such as static load re-

distribution, static noisy data, support vector machines, fuzzy optimum system hierarchy analysis selection,

combined parameters, iterative general-order perturbation, probability density, virtual passive controllers,

etc. They found that all methods were feasible in structural damage detection, each with their own special

advantages, and that vibration-based structural damage detection will be an active future long-term research

topic in structural dynamics. They also suggest the development of new multidisciplinary structural damage

detection technologies as future research topic. Kong et al. (2017) address the most recent on the background

of vibration-based damage identification as guide to researchers and engineers to implement step-by-step the

structure damage identification using vibration measurements. This includes the detection of damage occur-

rence using response-based methods, building reasonable structural models, selecting damage parameters,

damage characterization, and objective feature selection.

Vibration-based inspection holds much potential as a method for crack detection due to local flexibility

imparted to the component when a crack is present, which reduces the natural frequency of the free vibration

of the component (Barad et al., 2013). The mode shapes of the component are also affected by the local

damage. Thus, it is possible to detect damage through analysing the changes in vibration properties of

the structure (Farrar and Doebling, 1997; Yan et al., 2007; Kong et al., 2017). Many authors pursued this

assumption in an attempt to develop analytical or numerical structural damage identification models for

different scenarios regarding the crack location and severity. This includes varying crack orientation, the

presence of single or multiple cracks (i.e. single-location and multi-location), and homogeneous or composite

materials. Most methods reported showed promise in their application on simple structures.

1.2.5.1 Natural Frequency-based Methods

Natural frequencies are the frequencies a structure will likely respond to on free vibration or vibrate at

when subjected to certain external forces. These frequencies depend on the mass- and stiffness distribution

within the structure (Heyns, 2008; Inman, 2014). These distributions can change due to introduced damage,

causing change in natural frequencies. To explain this concept, Dimarogonas (1996), Lackner (2005) and

Barad et al. (2013) considered a slender cantilever beam with a local flexibility at the crack and found that

the beam’s structural mode frequencies are related to the square root of the structural stiffness of the beam

due to mass remaining constant. This is shown in Equation 1.9. They also assume that a blade can be

modelled as a slender cantilever beam. Shukla and Harsha (2016) also use this approach to find the natural

frequencies and mode shapes of a lightly damped or undamped last stage steam turbine blade.

fni =
ωni

2π
=

1

2π

√
ki
m
,

k : E, geometry

m : ρ, geometry
. (1.9)

With:

E = Elastic modulus [GPa]

fni
= Natural frequency at mode i [Hz]

ki = Material stiffness at mode i [N ·m/rad]

m = Material mass [kg]

ρ = Material density [kg/m3]

ωni
= Eigenvalue or natural frequency at mode i [rad/s]

Salawu (1997) conducted a broad review on natural frequency-based damage detection methods and found

the approach potentially useful for routine integrity assessment of structures. Through recurrent vibration

testing, the measured frequencies can be used to observe the structural behaviour and assess structural

condition. This is the basic attribute for damage identification. The location of the measurements can also

be customised as the identified frequencies have a global nature. This is an attractive method due to the

ease of measuring the natural frequencies from just a few accessible points on the structure, and its low
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experimental noise contamination levels (Fan and Qiao, 2011). It is also easier to extract information from

natural frequencies on possible damage events, especially for concentrated damages like cracks or notches in

beams, in ideal undamped systems than other dynamical parameters (Fernández-Sáez et al., 2016). Another

advantage of this approach is that the natural frequency modal parameter has the least statistical variation

from random error sources and that the measurement is much easier with higher accuracy than that of

mode shapes or modal damping (Yan et al., 2007; Fernández-Sáez et al., 2016). It can also be deduced

that complex geometry of a structure will complicate its mode shapes, which is already the case with higher

modes, leading to rejection of the mode shape-dependent methods for damage identification. This amplifies

the application of natural frequency-based methods.

With the forward problem of natural frequency-based methods, the known damage location and severity is

used to determine the change in natural frequency of a given structure. With the inverse problem of natural

frequency-based methods, the known natural frequency measurement is used to determine the damage loca-

tion and its sizing of a given structure (Ngwangwa et al., 2006; Fan and Qiao, 2011). According to Yan et al.

(2007), the natural frequency is often not sensitive enough to initial structural damage and can normally

only determine if large damage is present and not the location. This is because structural damage in different

locations may cause the same shift in frequency; however, this may not be the case with all structures as

natural frequencies are a function of geometry (Inman, 2014).

Salawu (1997) notes that a variation of 5–10% in in-situ measured frequency due to ambient vibration and

environmental effects can generally be expected, and that confident damage detection requires a ±5% change

in natural frequency. A pattern recognition-based statistical damage detection model is required to resolve

this effect by separating damage-induced changes from environment-induced changes. However, Lorenzino

and Navarro (2015) were able to detect crack initiation and propagation stages of a crack growing from a

circular notch with change in natural frequency smaller than 1%. They conducted fatigue tests on aluminium

specimens with a centre hole in under load-controlled conditions. Shukla and Harsha (2015) compared the

results from their finite element (FE) model and experimental modal analysis (EMA) of an uncracked and

cracked fir-tree turbine blade root and found less than 5% variation in natural frequencies.

Research on using changes in natural frequency for crack detection revealed promising results and several

limitations. Fan and Qiao (2011) considered these limitations and found that the frequency change-based

damage identification method can be successfully applied to simple slender beam-type structures, with small

artificially induced cracks, in a controlled laboratory condition. This, however, has limited applications

for real complex structures or multiple or severe damage detection because of its underlying disadvantages.

These include that the basic assumptions of these methods limit the suitable range of vibration modes for

damage detection to the first few modes, change in environmental and operational conditions can suppress

small changes in frequency caused by damage, and that damage at different locations with different severity

can cause the same change or shift in natural frequencies. Hence, in developing any method to quantify

and extend the life of structures, all possible damage events at various locations on the structure must be

considered. The method will be restricted in application to specific structural geometries and the assumed

type of damage model (Farrar and Doebling, 1997; Kong et al., 2017).

A more general term for the natural frequency-based technique, which is a developing NDT procedure, is

known as acoustic resonance testing (ART). Inconsistent parts are identified during its manufacturing stage

by change in natural frequencies of a part. This is achieved through sophisticated sorting algorithms that

rapidly and reliably inspect and sort these parts accordingly. The sorting accuracy of the ART process for

a complex, production level part can potentially be improved by applying FEM-based modal analysis to

reduce the algorithm teaching process (Stultz et al., 2003; Lai et al., 2011). ART has been widely used in

the automotive industry for quality inspection due to its many advantages, such as low inspection cost, high

testing speed, and broad applicability to complex structures (Xu et al., 2015). The authors also stress that,

compared to other current direct visualization-based NDT methods, a more extensive application of ART

faces an ultimate challenge since such technology is unable to quantify the flaw details (location, dimensions,
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and types). They systematically investigated the efficiency of a maximum correlation-based inverse ART

algorithm on a range of common structural flaws (stiffness degradation, voids, and cracks). They found that

the predicted results were able to accurately locate the damages and quantitatively measure the physical

characteristics of the defects. Thus, this approach can effectively help retrieve the actual state of health

of the engineering structures in a computationally efficient way. According to the EPRI standards (Dewey

and Lam, 2008), the natural frequency-based method is applied during quality assurance and control of

individual turbine blades.

1.2.5.2 Effect of Damage on Dynamic Behaviour of Structure

Research based on structural health monitoring for crack detection deals with changes in natural frequencies

and mode shapes of a structure (Ngwangwa et al., 2006; Agarwalla and Parhi, 2013). Lackner (2005) notes

that the natural frequencies of a cracked structure should be lower than an uncracked structure since a crack

reduces structural stiffness, which leads to a decrease in natural frequencies as illustrated in Figure 1.10.

The basic assumption is that damage can be directly related to a decrease of stiffness in the structure. Thus,

stiff structures have higher frequency modes than compliant structures.

Pandey and Biswas (1994) and Ngwangwa et al. (2006) presume that structural damage changes the mass,

stiffness and damping matrices of the system. However, for a structure with surface cracking, where mass

loss due to disintegration is unlikely and changes in the system damping are not considered, damage may

be assumed to affect only the stiffness matrix of the system. The authors also note that the influence of

the crack on the system’s stiffness matrix is localized in the elements where the cracks are located. This

is supported by Garcia-Palencia et al. (2015). The stiffness matrix of the cracked beam is derived from a

flexibility matrix calculated from fracture mechanics (Nguyen, 2014). Pandey and Biswas (1994) use the

change in the flexibility (inverse of stiffness) matrix to accurately detect and locate damage in a structure.

This is a very popular research topic.

Figure 1.10: An example of shift in FRF peaks, i.e. natural frequencies, due to damage in a structure

A crack can be represented as a fracture-hinge with a rotational spring with stiffness k. In the absence of a

static force, which keeps the crack open, the crack will close during the part of the cycle when the stresses

are compressive, behaving as a bilinear spring (Dimarogonas, 1996). This is based on flexural vibration for

uniform beams, for an edge cracked cantilever beam having a rectangular cross-section (Rizos et al., 1990;

Lee and Chung, 2000; Kannappan et al., 2007; Fan and Qiao, 2011; Barad et al., 2013; Agarwalla and Parhi,

2013). This model relates natural frequencies, crack locations, and crack depths through the effect of damage

on the dynamic behaviour, particularly the stiffness, of a structure (Jassim et al., 2013). Knowing the effect

of crack on stiffness of a structure, Euler-Bernoulli or Timoshenko beam theory can be applied to model the

structure. The beam boundary conditions are used along with the crack compatibility relations to derive

the characteristic equation. This relates the natural frequency, the crack depth and location to the other
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beam properties (Fan and Qiao, 2011; Jassim et al., 2013). Many parts and structures cannot be modelled

by axial vibration only; hence, a finite element is required to describe transverse vibration (Inman, 2014).

When the crack is located at the peak or trough positions of the strain mode shapes, the percentage change

in frequency values are higher for corresponding modes, whereas if the crack is located at the nodal points

of the strain mode shapes, the percentage change in frequency values are lower for corresponding modes

(Ngwangwa, 2004). Agarwalla and Parhi (2013) observed a drop in natural frequency of a cantilever beam

when a crack is present. For the same cantilever beam, they observe a rise in natural frequency with

increasing distance of the crack position from the fixed end. They compared the results of experimental

modal analysis (EMA) to FEA and found a discrepancy of 3−5%. This is supported by Gillich and Praisach

(2015). They found that the shift in natural frequency for a certain vibration mode of a beam-like structure

is dependent on the damage location, while the damage depth only amplifies this event. This is due to the

effect of the mode shape vector for a given location.

1.2.5.3 Change in Natural Frequency from Fatigue effecting Stiffness of Structure

McGuire et al. (1995) explores the feasibility of using the change of an effective elastic modulus (equivalent to

the change of natural frequency) to study the crack propagation of a fatigue-loaded tension bar specimen with

a 1.6mm centre-drilled hole. They measured crack length and natural frequency as functions of the number

of fatigue cycles and were able to establish a link between these properties. This is shown in Figure 1.11 in

which the natural frequency, effective elastic modulus, and average crack length are plotted over the number

of cycles of the fatigue test. Calculating the effective elastic modulus of the sample required its fundamental

natural frequency. A clear steadily increase throughout the early fatigue life of the specimens can be seen.

This is due to plastic deformation of the fatigue specimens. A prominent dependence between the elastic

modulus and the crack length, and thus natural frequency, was detected since the elastic modulus reached

a maximum and then started to decline as cracks initiated and propagation occurred. It can also be seen

that the maximum elastic modulus corresponds with the onset of a crack at the specimen surface, thus the

consequent decrease in elastic modulus seems to be dependent on the crack length. Hence, a drop in natural

frequency and elastic modulus occurs as the crack starts to propagate.

Figure 1.11: Natural frequency fs, Effective elastic modulus Eef and Average crack length vs. number of cycles N
for a stainless steel bar specimen (McGuire et al., 1995)

Giannoccaro et al. (2006) used the shift in resonance and anti-resonance modal data to evaluate fatigue dam-

age in notched specimens. They developed a solution to overcome the uncertainty of accurately predicting

the number of cycles to failure for identical specimens subjected to identical fatigue loading, by considering

the systematic decrease of resonances and anti-resonances at about 90% of fatigue life. Their results are
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shown in Figure 1.12 in which the FRFs and their peaks are plotted regarding fatigue life percentage. This

is evident in the fatigue life final stage (≥ 90% of the specimen life) in Figure 1.12b. The authors note that

the variation induced in the first frequency has greater significance since the damage process has a greater

effect on this frequency, which is also easier to detect. This agrees with the experimental failure process,

which begins with the crack initiating at the notch and then propagates in the plane normal to the axial

load.

(a)

(b)

Figure 1.12: Modal data regarding fatigue life percentage (Giannoccaro et al., 2006), a) FRFs throughout fatigue
test; b) Trend in 1st and 3rd natural frequency over fatigue life percentage

Lorenzino and Navarro (2015) were successful in using the variation of natural frequency in fatigue tests

as a tool for in-situ identification of crack initiation and propagation stages, which allow confirmation of
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crack progression from natural frequency variation. This is clearly shown in Figure 1.13 in which it is

observed that crack initiation occurs at the radial hole and then propagates in the plane normal to the

axial load. The natural frequency rises during the initiation stage; however, drops considerably as the crack

starts to propagate. Additionally, by using the variation of natural frequency in fatigue tests, they were

able to determine the total cracked areas during fatigue crack growth in a wide plate with a radial hole.

The experimental results in Figure 1.13a and Figure 1.13b correspond to that of McGuire et al. (1995) and

Giannoccaro et al. (2006), respectively. This confirms the relationship between natural frequency, crack

length, and number of fatigue cycles. This suggests that as the crack starts to propagate, a decrease in the

elastic modulus or stiffness causes a decrease in the natural frequency of the specimen.

(a)

(b)

Figure 1.13: Variation of the resonance frequency as a function of crack progress and number of cycles (Lorenzino
and Navarro, 2015), Test results for the a) 6mm specimen and correlation with the video results; b) 2mm specimen

and correlation with the digital image correlation results

1.2.6 Machine Learning-based Damage Detection

The goal of machine learning, which originated from the scientific discipline of pattern recognition, is the

classification of data into different categories or classes according to the fundamental patterns recognised

within the data. These fundamental patterns hold features or quantities that make the rule to be learned

by the models explicit. The curse of dimensionality, which causes problems in the implementation of these

models due to the large dimensional feature spaces, can be bypassed through feature extraction, -selection,
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and dimensionality reduction techniques. The models are then trained on the low-dimensional discriminant

feature vectors of interest, extracted from the high-dimensional collected data, to allow class predictions of

new data (Worden and Manson, 2007; Theodoridis and Koutroumbas, 2009; Schmidt, 2017).

1.2.6.1 Feature Extraction and -Selection

In real-world structural health monitoring (SHM) applications, the damage-related changes in the features

can be obscured by operational and environmental effects, which can also influence the total features to

the damage-level. Usually, the sensitivity of a feature to damage and the sensitivity to it changing in the

operational and environmental conditions (e.g., temperature and wind speed) are proportional. This can be

overcome through robust feature extraction procedures (Santos et al., 2016).

With feature extraction, dominant (damage-sensitive) characteristics or features of the noisy collected data

are extracted from the original space, and then enhanced by removing redundant noise and information

or estimating missing values and are subsequently transformed and mapped into a new feature space. To

ensure minimizing false judgements in the classification phase, it is essential that these damage-sensitive

features correspond with the damage severity present in monitored structures. With feature selection, the

dimensionality of the feature space is reduced by selecting a subset of features without any transformations

that enhance the separation between the classes. In this process, redundancy is minimized and the relevance

to the target is maximized, resulting in a low-dimensional feature vector. Implementing proper feature

extraction and -selection methods improve the learning performance by lowering computational complexity,

building better generalizable models, and decreasing required storage (Worden and Dulieu-Barton, 2004;

Tang et al., 2014; Santos et al., 2016; Schmidt, 2017). This process is based on confidence in feature

performance when presented with new data. It is preferred that the feature vector consists of several well-

performing neighbouring features rather than features that perform prominently better than their neighbours

(Barthorpe et al., 2017). If selected features are not suitable, the performance of even the most sophisticated

classification algorithm will be poor (Long and Buyukozturk, 2014).

Dimensional reduction techniques can be used to reduce the dimensions further, if necessary; however, it is

essential to first ensure that the discarded information is not strongly related to the damage diagnostics.

Low-dimensionality is essential in pattern recognition problems as the training set size increases dramatically

with the dimension of the problem. The generated feature vector is then used in the pattern recognition

algorithm to assign a class. Feature selection and feature extraction are carried out based on engineering

judgement (Worden and Dulieu-Barton, 2004; Theodoridis and Koutroumbas, 2009; Tang et al., 2014). For

damage detection, the most suitable features are particular to the application and are sourced from the

time, frequency, or modal domains depending on the employed level of data consideration. Damage-sensitive

features in the modal domain have physical significance and are therefore simplest to interpret of these

domains. This includes natural frequencies, assurance criteria of modal shapes and derivatives, modal strain

energy, modal strain, damping, dynamic flexibility matrix, residual force vector, and a combination of some

features (Kong et al., 2017). Application of machine learning for damage classification can be addressed once

features, that allow one to differentiate between damage states with confidence, are identified (Barthorpe

et al., 2017).

1.2.6.2 Machine Learning Methods

Application of machine learning methods in diagnostics generates a model that operates on the extracted

damage-sensitive features. This model is capable of identifying and quantifying the damage state of the

structure based on the given feature vector. The relation between the extracted features and the structure’s

state of health are described by categorizing the data into different groups consistent with the underlying

patterns within the data. This data is divided into separate sets for training and validation. The model

parameters are optimized in the training phase with the labelled training set, while the accuracy of the set

parameters is determined in the validation phase with the labelled testing set. These phases work together
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since the accuracy is dependent on the parameters. In the testing phase, new independent data is used to

verify the generalization of the developed model, i.e. the capacity of correct classification (Theodoridis and

Koutroumbas, 2009; Martinez-Luengo et al., 2016; Barthorpe et al., 2017).

Two broad categories of statistical pattern recognition algorithms or machine learning are available, based

on the desired function and information available to the learning system (Theodoridis and Koutroumbas,

2009; Martinez-Luengo et al., 2016): supervised and unsupervised. With supervised learning of which

either discrete classification or regression analysis (continuous classification) can be used, the available data

from both the healthy (undamaged) and damaged state(s) can be statistically sorted, providing an inherent

confidence component in the damage diagnostics. This is recommended for damage diagnostics from a

discrete set. This is an expensive method since data from all damage states must be obtained and damage

is irreversible. However, it can be employed as an exploratory method for developing a structural damage

identification technique as this is not limited to only damage detection (Level 1) but can diagnose probable

damage location (Level 2) as well as damage type (Level 2.5), and possibly damage severity (Level 3). Hence,

supervised machine learning methods are favoured in damage classification problems (Yin and Hou, 2016).

In combination with Kernel-based machine learning methods primarily based on support vector machines

(SVMs), high sensitivity and accuracy in structural damage detection and identification can be achieved

(Santos et al., 2016). SVMs also exhibit good generalization for a limited number of samples (Gryllias

and Antoniadis, 2012; Martinez-Luengo et al., 2016). With unsupervised learning, clusters of data with

similar behaviour are identified from unlabelled data of all states in which membership of new data to

labelled healthy data is tested with novelty detection. However, this is only applicable to damage detection

(Level 1). The labelling, in both cases, is done by an expert if needed (Worden and Dulieu-Barton, 2004;

Theodoridis and Koutroumbas, 2009).

1.2.6.3 Support Vector Machines

A problem with data-driven approaches is that the acquired datasets are likely to be sparse as the data

collection or generation for training the model is likely to be expensive. This strains the feature selection

activities due to sparse data usually requiring low-dimensional features to ensure that the model generalizes

away from the training set. Thus, regularization of the training data is required in the training stage.

However, support vector machines (SVMs) are implicitly regularized and thus, can better generalize based

on sparse data. Noise can also be added to the training data (Worden and Manson, 2007). This is a popular

classification approach for damage detection and identification. It first finds the class boundary, an optimal

separating hyperplane that maximizes the margin between the nearest points (i.e. support vectors, SVs)

of different classes, as shown in Figure 1.14, and then it classifies new data within the respective regions.

The classifier only requires the essential information held in the SVs and the rest of the feature set can be

discarded, making the classifier computationally efficient (Samanta et al., 2003; Yin and Hou, 2016).

(a) (b)

Figure 1.14: Separating hyperplanes (Worden et al., 2007), a) Arbitrary; b) Optimal (with SVs on margins)
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The kernel method or ’kernel trick’ is utilized to transform non-linearly separable classes in the original

feature space to a higher-dimensional space where the classes can be linearly separated, which is then

projected back with a non-linear boundary of given complexity more suitable to the distribution in the

original space. Non-linearity in the low-dimensional space is therefore represented by the linearity in the

high-dimensional space (Yang and Widodo, 2008; Brereton and Lloyd, 2010; Hasni et al., 2017; Schmidt,

2017). This is illustrated in Figure 1.15. The preferred kernel function or regulator is the non-linear radial

basis function (RBF) kernel since it prevents over-fitting of training data, due to its low parametrization

and its consequent smooth classification bound preference. Its parameters can be determined iteratively and

optimal values derived from the full feature set are selected (Samanta et al., 2003; Barthorpe et al., 2017).

Brereton and Lloyd (2010) presented detailed examples for two-class SVMs and multi-class SVMs, in which

they discuss and illustrate the fundamentals with extensive visualisation. This includes learning machines,

kernels, and penalty functions as well as the consequence of different parameters for the different learning

machines.

(a)

Þ

(b)

Þ

(c)

Figure 1.15: Creation of the boundary for a non-separable case (Brereton and Lloyd, 2010), a) Linearly
non-separable training samples in the original space; b) Non-linearly separable training samples in the

higher-dimensional space (with 3 support vectors indicated); c) Projection back into original space with non-linear
boundary

Several advantages of the SVM method exist. This includes high generalization capabilities due to non-

linear mapping from the original data space into high-dimensional feature space (Pawar and Jung, 2008; Yin

and Hou, 2016; Barthorpe et al., 2017), and over-fitting avoidance due to regularization parameters (Hasni

et al., 2017). It is suitable for a small training set (Gryllias and Antoniadis, 2012), which is sufficient for

maximal recognition of underlying patterns or classification knowledge in the data (Yin and Hou, 2016).

It is capable of direct classification of extracted features, i.e. when data from all conditions exist, and can

remove cumulative operational and environmental effects in extracted features (Fan and Qiao, 2011; Santos

et al., 2016). It is versatile and has a powerful framework for general classification (Martinez-Luengo et al.,

2016) since it supports different types of discriminant functions (i.e. linear, non-linear, polynomial or radial

basis functions) without requiring substantial modification (Barthorpe et al., 2017). It is a unique and global

solution and is less prone to over-fitting (Hasni et al., 2017).

Two-class (binary) SVMs can be extended to a multi-class model that chooses to which group or class a

sample from a multi-class dataset belongs to, and then superimpose the multiple decision functions. The

multi-class problem can be solved by the following most popular and task-specific approaches (Theodoridis

and Koutroumbas, 2009; Brereton and Lloyd, 2010):

• One-versus-All (OvA), which selects the best class from individually modelling a sample as each class

using multiple binary SVM models, where respective samples are considered as part of a class or not.

The number of binary classifiers to be trained are equal to the number of classes. This is illustrated

in Figure 1.16a.

• One-versus-One (OvO), which models a sample pair for all comparisons using a binary SVM model

for each case, where respective sample pairs are assigned the probable class. The number of binary

classifiers to be trained are equal to the number of class pairs. This is illustrated in Figure 1.16b.
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(a) (b)

Figure 1.16: Extension of binary SVMs to a multi-class model (Brereton and Lloyd, 2010), a) One-versus-All
(OvA); b) One-versus-One (OvO)

Different authors present reviews and examples of SVM damage detection in multiple structural health mon-

itoring applications. Yan et al. (2007) discussed modern-type vibration-based structural damage detection

methods, stating the feasibility of these methods, having some special advantages in structural dynamics-

based structural damage detection. Fault diagnosis and process monitoring in various components and

equipment used in complicated industrial processes are discussed by Yang and Widodo (2008) and Yin and

Hou (2016). The former summarized earlier research and development of pure SVM in machine fault diag-

nosis, whereas the latter summarised more recent papers from 2007 to 2015 on techniques, in which SVM

is combined with other pattern recognition algorithms (SVM-based). The advancement in this field is en-

couraged by the numerous proposed SVM-based concepts. They also recommend the necessity of developing

new methods to deal with very complicated industrial systems.

1.3 Scope of Research

The early detection of damage in structures, which may eventually lead to failure of the individual com-

ponent or system, is possible through damage diagnosis. Damage diagnosis can also indicate early deterio-

ration in performance levels. These observations may possibly be used to update remedial decisions. Two

damage identification strategies in structures are available, i.e. structural health monitoring (SHM) and

non-destructive testing (NDT). SHM is a global method and entails the indirect observation of a structure

in real-time (on-line) using various permanently installed sensors. The damage-sensitive features are ex-

tracted from the measured time-history data, and interpretation of these features is accomplished through

e.g. statistical analysis, to determine and objectively quantify the current state of health of the structure.

NDT entails off-line inspection of the structure during scheduled maintenance using portable instruments,

and the measured data usually depends on human expert interpretation. NDT is mostly local methods,

which employ direct measurements to assess the structural health (e.g. ultrasonic testing and eddy current

inspection) but global methods, which employ indirect measurements to assess the structural health (e.g.

vibration analysis), are also available. Issues of inaccessibility can limit inspection using local methods and

can possibly be overcome by using global methods. With NDT, the damage can be characterized, or its

extent can be monitored when its location is available, which allows a time-history of the progressing damage

to be recorded (Worden and Dulieu-Barton, 2004; Mix, 2005; Barthorpe, 2011; Scheepers and Booysen, 2012;

Kong et al., 2017). When applying NDT as a monitoring tool, the time-history data can be treated similarly

to that obtained with SHM and can thus be interpreted through e.g. statistical analysis.

There is a need for a structural damage identification method to be used in support of conventional NDT

techniques for inspection of stationary blades to detect cracks, specifically in the vicinity of the root. This

requires some background on the common blade failure locations. It was shown that the most probable
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damage locations are found at the upper pinhole of the leading edge and on both the leading and trailing

edges at the aerofoil base just above the root. These areas experience the highest stress from massive

centrifugal forces causing fatigue cracking. The basics of fracture mechanics are important since cracks

initiate and propagate due to damage accumulation during turbine operation. Since local NDT methods

are insufficient in detecting cracks in geometrically complex and installed blade roots, development of global

methods is encouraged. The change in stiffness of the blade due to the presence of a crack is expected to

result in a change in natural frequencies. This implies that natural frequency has a damage-sensitive nature.

Therefore, vibration-based damage detection methods applying natural frequencies show promise. Modal

analysis will be performed to extract the modal properties from the structure. These can be used to indicate

if a structure is damaged by comparing it pre- and post-event. Thus, modal-based health monitoring qualifies

as a pattern recognition problem (Farrar and Doebling, 1997; Martinez-Luengo et al., 2016).

A feasibility study is defined as an assessment of the practicality of a proposed plan or method. This study,

is an introduction to using vibration-based structural damage identification to detect and classify the most

probable worst-case damage near or on the root of installed turbine blades. A simplified problem is presented

as illustrated in Figure 1.17, in which only uninstalled individual turbine blades are considered to solve a

part of the real-world problem, and is broken down into the following questions:

• Is it possible to identify defects, i.e. geometrical variability, in an unconstrained and isolated blade

using vibration response?

• Is it possible to detect damage in an unconstrained and isolated blade using vibration response?

• If so, can different damage scenarios be identified?

The answers to these questions will enable further development of the proposed method into a real-world

application to use in support of conventional NDT for in-situ inspection of installed stationary blades. The

approach to assess the feasibility study is illustrated in Figure 1.18 and outlined in the following paragraphs.
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Figure 1.17: Simplified problem extracted from real-world problem, a) Full assembly = Turbine disk; b) Sub-assembly
= Cyclic symmetry section of bladed disk; c) Component = Individual blade; d) Freely supported individual test blade

In this feasibility study, a response-based structural damage identification approach using supervised machine

learning, with support of numerical models is applied. In Step 1, experimentally measured response data is

acquired through modal analysis of a freely supported individual pinned turbine blade. In Step 2, numerical

response data is obtained and used to establish expected behaviour of a specific scenario. This behaviour

relates to the sensitivity of natural frequencies to geometrical variability as well as damage. The experimental

set-up involved an accurate and reliable impact vibration test conducted on a set of discarded healthy blades

and their damaged counterparts. The system was suspended (i.e. freely supported), lightly damped (elastic

bands), with non-contact measurement (laser vibrometer). Modal analysis was performed in the frequency

domain to allow accurate extraction of the modal frequencies from FRF peaks (Step 3). The single excitation-

and measurement location for the system were selected for maximum mode participation and observation,

and operator-convenience. The numerical model was also used to determine the most probable damage
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location in the root during turbine operation (at the maximum stress) and explore the responses of the

damage scenarios through modal- and harmonic response analysis, before implementing into experiments

(Step 1 ←→ Step 2). Thus, the FEM serves only a supportive role since model updating was not part of

the scope, and direct association with the experiment is not possible. It is only possible to compare and

conclude on the blade’s output behaviour due to input parameters, and not the exact values. In this study,

only the healthy and worst-case scenarios were considered. This is mainly due to the limited number of

blades available for proper representative results. Time constraints, the complex geometry of the root, and

the damage initiation location on the root also contributed to this decision. These factors limited the damage

induction procedure, as the root geometry was difficult to access and reliably alter in a controlled fashion at

the specified location in the root.
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Figure 1.18: Approach to test feasibility of damage detection and identification method

Response-based methods are simple, easy to apply, and not computationally intensive to implement and can

recognize the first two levels of structural damage identification, i.e. qualitative damage detection (Level

1) and probable damage location (Level 2). However, this cannot provide enough detail for quantifying the

extent of the structural damage (Level 4). It is a valuable tool for damage identification in the preliminary

stage (Yan et al., 2007; Fan and Qiao, 2011; Kong et al., 2017). Therefore, an additional level that provides

information about the type of damage is required that not only uses the characteristics of the measured

responses to differentiate the structure state of health as well as enhance the accuracy of vibration-based

damage detection, but also enables effective identification at higher levels where understanding the physics

of damage (i.e. characterisation) is a prerequisite. This level is capable of overcoming the above-mentioned

drawback, or at the least, it clarifies the path toward the answer, and involves classification or description

of the structural damage (Level 3), and employs machine learning (Worden and Dulieu-Barton, 2004).

During the feature selection stage (Step 3a), in which the measured noisy raw data is compressed through

some transformation, the size of the original dimension is substantially reduced and only a feature space
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sensitive to change in a specific parameter remains. Features are application specific and can differ depending

on the type of data measured and its inherent properties. During the feature extraction stage (Step 3b), the

quality of the feature space is refined by removing redundant information without transforming the feature

space, resulting in highly sensitive feature space containing a suitable objective feature. In this study, the

frequency domain was selected as the feature space, which was obtained by time to frequency conversion

of the measured response within the signal processing software, and the natural frequencies were extracted

from this feature space as the discriminant feature. This reduced the size of the feature space from 25 600

spectral lines to 14 natural frequencies for each blade.

To investigate the discriminant feature’s objectivity or independence of the output response on input param-

eters, the degree of sensitivity and consistency with the expected structural response must be determined

(Step 4). A sensitivity study is recommended to establish the significance of input parameters to a specific

output feature (Kong et al., 2017). Thus, when considering the geometrical variability at the blade roots,

which were introduced during their installation (tuning or individually reamed holes for pin insertion), or

damage scenarios near or on the root as the input parameters, their effect on the natural frequencies, the

specific output feature, must be determined. This is achieved through using a reasonably well-modelled

numerical blade to replicate simplified versions of the existing geometrical variability and produce simplified

versions of the damage to be introduced in the experimental blades to predict the expected behaviour. This

will allow confirmation of the objectivity of the feature from the specified geometrical modification as well

as evaluation of the consistency of the feature through exploring the experimental damage trends (Step 4b).

To ensure that the discriminant feature is of quality, the exclusivity of the output response due to input

parameters must be determined. This is done in Step 5. The distribution of each class is explored in one-

dimensional and two-dimensional space to determine its separability from the rest. The further apart the

classes, the more exclusive the damage-sensitive feature. Hence, the separability is regarded as a character-

istic of the feature. By projecting the results to a higher dimensional space, the size of the feature vectors is

reduced further, and clusters are formed, allowing better judgement on the class separability. Thus, changes

in natural frequencies for the different classes represent the distance between these classes, and therefore the

separability of each class distribution from the rest.

The proposed method incorporates natural frequency as the discriminant feature, a quantity contained in

the underlying patterns of the data, and supervised machine learning to detect if damage is present as well

as identify different damage scenarios (Step 6). Thus, this method has a foundation of inverse formulation of

traditional vibration-based damage identification methods, which determines damage properties of a given

structure based on natural frequency measurements, and a supervised machine learning core. Changes in

modal properties or derived properties can be used as damage indicators, thus the problem of vibration-based

damage detection can be solved with pattern recognition (Farrar and Doebling, 1997; Martinez-Luengo et al.,

2016). A class is assigned to the measured modal data by a pattern recognition algorithm, i.e. classification

using support vector machines (SVMs), which relates the change in the measured data through an explicitly

learned rule as classification boundaries. These boundaries are used to decide on the state of health of the

system (Worden and Dulieu-Barton, 2004; Yin and Hou, 2016). Classification can be done in any higher

dimensional space in which sufficient clusters are formed as this is required to create the decision boundaries

that differentiate between different classes. In this study, SVMs are practically applied without modification

for optimization purposes.

This approach is first applied on the healthy data to establish if geometrical variability can be identified and

then on the damage scenario data to establish its detection and identification, allowing a final verdict on

the feasibility of this damage classification approach (Step 7). The sensitivity of the features to geometrical

modifications (i.e. geometrical variability and damage scenarios) will greatly contribute to these outcomes.

The proposed global method can then be verified by conventional NDT to ascertain the obscured damage,

if any.
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1.4 Document Overview

In Chapter 2, the numerical model design and experimental procedure are discussed. The baseline or

benchmark for the investigation is established in which experimental modal analysis is utilised to extract the

natural frequencies from the undamaged or healthy test blades. The experimental set-up, protocol, and its

repeatability are presented, as well as the validation of the numerical model, allowing a supportive behaviour

predictor to be established.

Chapter 3 presents a sensitivity study on the natural frequencies. The variance in the healthy blade vibration

responses due to slight geometrical modifications (or defects) is explored. Additionally, the effect of the most

likely damage locations near the root for stage 2 pinned turbine blades on the healthy response is examined.

The investigation was designed through utilising FEA models, literature, and experiments, and considered

the geometrical variability observed in the root of healthy blades as well as the most likely damage scenarios

near the root. The raw experimental results are also given here, as well as the extracted FRF peaks and their

variance, which are explored to establish natural frequency fn as the candidate feature for discrimination

by studying its sensitivity to change in input parameters. The damage trend from the change in natural

frequency for each damage class is further studied to ensure that the manually selected feature is suitable

to distinguish healthy and damaged data. Numerical crack propagation is also briefly explored in which

discrete crack lengths are manually modelled to describe the damage trend more effectively.

Chapter 4 focuses on damage detection and identification by relating the natural frequencies fn of healthy

cases and different damaged cases (i.e. damage classes). This discriminant feature is characterized for each

mode by establishing the level of separability between different classes. This is achieved through exploring

the data distributions in a one-dimensional space. This is further enhanced by exploring the tendency

of classes to form distinct clusters in a two-dimensional space, reinforcing the damage-specific behaviour.

This allows quantification of the confidence in the suitability (i.e. quality) of the modal property, natural

frequency, to be used as discriminant feature. The feasibility of the proposed method is determined through

a series of hypothesis tests, which are formulated from the research questions that considers the detection

and identification of geometrical variability in the healthy blades and damage scenarios. The validity of each

hypothesis is tested using a classification procedure applied on the experimental data in a two-dimensional

space. Lastly, a low-cost classification model is briefly investigated in which FEM is used as training data

to establish its possibility as a supplementary or substitution dataset. This allows for a final verdict on the

feasibility of this damage classification approach. The conclusion and recommendations are presented in

Chapter 5.
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Chapter 2: Design of Experimental Procedure

and Finite Element Model
In this chapter, the experimental procedure is designed along with building the healthy numerical model to

establish a baseline or benchmark for this investigation. A brief summary of the layout and the required

equipment for this procedure, as well as the FEA model validation are provided. Throughout this chapter,

ANSYS Workbench R19.0 was employed to perform all the simulations, and MATLAB R2015b was used to

process the data. The CAD model was generated using SolidWorks 2015.

2.1 Basic Information on Test Blades

The experiments made use of a set of 36 (discarded) stage 2 LP pinned turbine blades. These blades have

different service lives and are not necessarily from the same installation. MAN Diesel & Turbo (MDT-

ZA) declared the blades healthy after magnetic-particle inspection (MPI). Various surface indications were

detected; however, none were identified as critical surface defects, particularly in the root and on the aerofoil.

While the blades do show slight deterioration due to operational usage, they are not damaged and are referred

to as healthy in this study. The blades contain visible geometrical differences from manufacturing, detuning

or individually reamed holes for pin insertion during installation (Dewey and Lam, 2008; Rama Rao and

Dutta, 2012). These include variability in the root pinhole diameters, correctional grinding on the root,

varying aerofoil-edge thickness, and combinations. Since the varying aerofoil-edge thickness is difficult to

quantify, it was not considered in this study. The location of the stage 2 blade in a LP turbine section

is shown in Figure 2.1. The typical blade material properties are provided in Table 2.1 , and a typical

geometry of a stage 2 pinned turbine blade, which was procured along with the discarded blades, is shown in

Figure 2.2. For additional information, the reader may wish to consult (Booysen et al., 2015; Plesiutschnig

et al., 2016).

Stage 2Stage 2

Figure 2.1: Typical construction of dual-flow LP steam turbine rotor and location of stage 2 blade (Shukla and
Harsha, 2015)

Table 2.1: Material properties of X20Cr13 (AISI 420 – Martensitic Stainless Steel)

Property Symbol Value Unit
Temperature* T 20 ◦C

Elastic Modulus*+ E 190− 215 GPa

Density* ρ 7700 kg/m3

Poisson’s Ratio*+ ν 0.27− 0.3 −
Yield Strength* σy 760 MPa

Tensile Strength*+ σts 770− 930 MPa

* (Vaishaly and Ramarao, 2013)
+ (Search Steel, 2013; Plesiutschnig et al., 2016; SIJ Metal Ravne d.o.o, 2016)
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Figure 2.2: Labelled CAD geometry of a typical stage 2 pinned turbine blade

2.2 Experimental Modal Analysis - Design and Set-up

The accurate acquisition of frequency response functions (FRFs) for these individual blades is essential for

obtaining reliable modal information. This was ensured by a repeatable and reliable experimental design

and set-up for free vibration analysis. The blade was isolated from the environment by using a non-contact

and free-free configuration set-up with implied light or negligible damping from suspension by elastic bands.

The elastic bands have implied minimal stiffness and little damping. To ensure a controlled and more stable

set-up, the blades were rested on top of the elastic bands. Since this is a feasibility study, the decision on

the experimental design is based on the first level for model validation by frequency and vibration testing

of turbine blades found in the EPRI standards (Dewey and Lam, 2008). This entails impact testing of

individual blades with appropriate boundary conditions (i.e. in a free-free state of suspension), removed from

the bladed disk. According to Zhou et al. (2016), in using a free-free configuration during testing above other

boundary conditions (e.g. cantilever or simply supported), the influence induced by boundary conditions

and environmental uncertainties can be negated, making it the preferred option. This configuration is also

utilised during the quality assurance and control operation of individual blades through impact vibration

tests (Dewey and Lam, 2008).

The literature survey revealed that the natural frequencies are superior to the other modal parameters and

will thus be considered in this study. Since natural frequencies have a global nature, their acquisition is not

dependent on multiple points and thus a single-input-single-output (SISO) system was used. This utilised

a laser Doppler vibrometer (Polytec PSV400) for measuring the vibration velocity at a specific point, and

a modally tuned steel-tip impact hammer (PCB Piezoelectric, 086 C 03, SN 8131) for mode excitation at

a specific point. These points were established by a trial-and-error approach to guarantee sufficient energy

transfer for maximum mode participation and observation. This maximum number of modes was determined

from numerical modal analysis on a preliminary basic FE model of the blade. A reasonable large bandwidth

was considered as the frequency range was not predefined. During the trial-and-error approach, the number

of modes identified within the selected bandwidth was desired in the experimental results. The configuration

settings of the experimental set-up are provided in Appendix A. The schematic of the experimental design

is provided in Figure 2.3, and the experimental set-up is shown in Figure 2.4.
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2.2.1 Experimental Protocol

Modal analysis is a function of input excitation and output response measurement of the impact test object.

Thus, it essential that the input and output variables as well as the object set-up variables are properly

described in terms of setting up the non-contact impact test. The output measurement variables depend on

the laser vibrometer. The laser head was adjusted in parallel with the XY-plane to a meaningful stand-off

distance of 915mm from the measurement plane. Within the software, a scanning grid was added over the

blade surface to ensure a consistent scanning region, with only the single measurement point enabled. The

laser was then centred to ensure that its beam is perpendicular to the measurement plane. The optimal

signal was ensured by autofocusing the camera on the scanning region as well as the laser on the reflective

dot. This dot was placed on the slight curvature of the blade, i.e. at a slight angle from the measurement

plane, to capture in-plane and out-of-plane motion. This ensured maximal observation of modes.

After the laser vibrometer preparation is completed, the blade set-up variables must first be attended to

before the input excitation variables. This entails the alignment procedure of the blade within the testing

frame. In the set-up, elastic bands suspend the blade at the bottom pinholes of the root and the aerofoil

tip. At the first location, an elastic band was inserted through the bottom pinholes to ensure that the

orientation of the bottom flat surface of the root (suction side) can be aligned with the XY-plane (the floor).

This alignment was done through using a level tool and adjusting the length of the elastic band accordingly.

The level tool was placed so that its mass distribution has minimal effect on the orientation. At the second

location, the length and curvature of the band was designated by first resting the aerofoil tip on top of it. The

predefined measurement location (reflective dot) was used as a pivot point during the alignment procedure

through ensuring that the laser point stays pointed in the centre of the reflective dot . Then this band was

fixed to the testing frame by a wire in that set position. This ensured that when the blade was added to

the set-up, the interference from the tension in the band was minimal. The elastic bands were configured

so that the blade is only kept in place, thus it is assumed that the blade has free but controlled movement.

Hence, the boundary conditions complied with the freely suspended state. The predefined excitation point

was also marked on the blade (black spot).

After the blade set-up preparation is completed, the testing can commence. The input excitation variables

depend on the impact from the modal hammer, which is dependent on the operator. Consistent excitation

required meticulous care by the operator to ensure nearly identical and controlled impact attempts. This

includes consistent body position (standing), hammer orientation (tip parallel to XY-plane), hand support

(hand/middle fingernail sliding against frame support) and launching and landing distances from the exci-

tation point (before and after impact). The combined success of all these factors was evident in the input

excitation spectra (force diagrams), i.e. the time pulse and the forcing function. From this observation,

these two variables were selected to be used as the indicator for successive impacts by attempting to repli-

cate them during each test. Since the input excitation is operator dependent, it is assumed that this is the

only fluctuating variable for this experiment. This successive impact indicator along with a similar output

response (i.e. magnitude, peak locations, and noise) was used to evaluate the success of each test for an

individual blade. This is explained in the repeatability of the experiment, discussed in the following section.

An overview of the experimental set-up in a controlled environment is given in Figure 2.4a, showing the test

blades, the testing frame, and the laser vibrometer with the data acquisition equipment. A more detailed

view of the testing frame is given in Figure 2.4b and Figure 2.4c, showing the freely supported set-up, the

excitation- and measurement point, modal hammer, the level tool, and the isolated test blade.
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Figure 2.3: Schematic of experimental design for freely supported modal analysis with coordinate system

Laser Vibrometer

Testing Frame

Data Acquisition

System

Test Blades

(a)

Level Tool

(b)

Measurement Point

Excitation Point

Elastic BandsElastic Bands

Steel-tip Modal Hammer
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Figure 2.4: Experimental set-up in controlled environment , a) Overview; b) Detailed view of testing frame with
suspension set-up; c) Isolated test blade with excitation- and measurement-point and steel-tip modal hammer
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When performing impact vibration tests, there are many main aspects to consider, however, three of these

are most critical. First, the selection of the hammer tip, which controls the input excitation frequency range.

The hardness of the tip determines the modes to be excited by the impact force over the considered frequency

range. Second, the use of an exponential weighting function or window for the response transducer. This

window forces the measured data to better satisfy the periodicity requirements of the Fourier transform

process and thus minimizes the distortion effects of leakage. Third, the selection of a narrower frequency

bandwidth of interest, depending on the number of modes of concern, and an increase in the number of

spectral lines of resolution. Both these signal-processing parameters have the effect to increase the required

amount of time to acquire a measurement as well as reduce the effects of leakage, and possibly the use of an

exponential window (Heyns, 2008; Avitabile, 2014; Inman, 2014).

The raw data, obtained from sensors (i.e. laser vibrometer and modal hammer), is signal processed to

extract features. This entails data cleansing and de-noising through filtering and preliminary dimensional

reduction of data vectors by domain conversion. With domain conversion, the domain of the measured data

is transformed from time to frequency using Fourier transform and/or from frequency to modal using modal

property extraction methods. The modal domain is independent of time (Worden and Dulieu-Barton, 2004).

With time- to frequency domain conversion, the loss of information is negated through averaging of the

effects of random noise (Kong et al., 2017). This conversion is applied within the analyser software (i.e.

Polytec PSV400) along with further signal processing for both the input and output signal. This includes

anti-aliasing filters, exponential windowing, computation of FFT, averaging of samples, and computation of

averaged power spectra. The product is a low-noise FRF as the direct output.

A detailed FRF with a large bandwidth is central to this investigation and was achieved by using a steel-

tip modal hammer, ensuring adequate levels of energy and excitation, and a fine frequency resolution of

390.625mHz over a bandwidth of 0− 10kHz (25 600 spectral lines of resolution) to accurately capture the

peak locations of the measured FRFs, i.e. natural frequencies. From the preliminary basic modal analysis

of the FEM blade, which considered the same bandwidth, 14 non-zero modes or natural frequencies were

calculated, and thus the experimental set-up was configured to effectively capture the same number of modes.

Hence, 14 modes will be considered in this study, and will ensure that a comprehensive number of modes

are available for analysis.

2.2.2 Repeatability of Test

An experimental protocol or methodology was developed to evaluate the repeatability of the test, following

the guidelines set out by Avitabile (2014) for conducting proper impact testing. The test was repeated

on a single test blade until the best-suited procedure was established for repeatable results. This was

then implemented on the complete test set. The methodology ensured that if there were uncertainties or

systematic errors, they were present for every test. This enhanced the consistency regarding the procedure

and measured responses.

During the development of the methodology, it was necessary to determine how to control the variables

present in the experimental procedure. The output response measurement variables were identified from

the laser vibrometer and were controlled by its arrangement. The orientation of the blade during the set-

up was identified as an important set-up parameter and was controlled by an alignment procedure. The

input variables were identified from the input excitation (i.e. time pulse and forcing function). These were

controlled by a meticulous operator-dependent approach in which it was attempted to replicate the impact

signal. To evaluate the success or repeatability of a test, the impact signal was used as the successive impact

indicator along with a similar output response for each test (i.e. magnitude, peak locations, and noise).

The configuration of the instrumentation was also fine-tuned during this process. It was observed that the

repeatability of the results, and the test itself, are dependent on the following:

• The output response measurement (laser vibrometer), which includes the measurement location.
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• The set-up itself, which includes the test object orientation that has an effect on impact and measure-

ment angles.

• The input excitation (modal hammer), which includes the force velocity, location and angle as well as

the tip contact stiffness.

These observations concur with observations by Avitabile (2014). Now, considering the experimental vari-

ables, it is assumed that only the impact excitation fluctuates as it relies on the operator. This is because the

orientation of the blade and laser vibrometer can be controlled by an alignment procedure. The measurement

angle is also dependent on the laser vibrometer. Even though the input excitation location is also specified,

consistent excitation here is still dependent on the operator. This was identified as the main influence on

the output response shape and noise level. This is because the energy distribution determines the level of

excitation and coherence. The coherence function is a measure of the linearity and noise – characterising the

relationship between the measured system input and output signals at each frequency, thus quantifying the

quality of the FRF measurement at each frequency. In assuming that the output variables are controlled and

thus constants, good or sufficient impact will ensure good coherence and thus a good FRF measurement. The

desired input excitation forcing function for a ‘good’ impact is provided in Figure 2.5. This has an evenly

distributed amplitude and reasonable roll-off over the frequency range of interest. This renders the optimal

coherence function. The correct hammer tip ensures that adequate input force is applied to the structure to

excite the full frequency range of interest. Preferred impact excitation practice and the operator influence

on the impact are discussed in more detail by Avitabile (2014); Siemens (2016b) and were considered in the

design of the experiment.

Input Force Spectrum

Coherence

FRF

Figure 2.5: Preferred input spectra for a high quality frequency response function (FRF) measurement, Blue: Input
force spectrum; Green: Coherence; Red: FRF (Siemens, 2016b)

Tests were conducted on a single blade to develop and evaluate the testing procedure regarding its repeata-

bility, considering the factors mentioned above, as well as reliability. To obtain an accurate FRF and an

acceptable test result, the test was repeated for each blade until at least three similar outputs were obtained,

after which their average was taken. This demanded many tests as unsatisfactory results were discarded.

The approach in establishing the protocol is based on best practices (Avitabile, 2014; Siemens, 2016b) and

was developed by comparing the following:

1. Repetitive testing (test repeat)

• A single blade is set up on which tests are conducted.

• Impact is the only variable (single set-up).

• The aim is to define behaviour of impact variable.

2. Subsequent testing (test reset)

• A set-up-restart per blade on which tests are conducted.

• Impact and orientation are the variables (set-up restart).

• The aim is to define behaviour of orientation variable.

This comparison was required to prove that the result of resetting the test correlates with the result of

repeating the test. This would then allow different blades to be compared by using the same experimental

set-up and testing procedure. The same blade was used in both methods, so that the only variability present

would be from the set-up and the input. It is important to note that no reference signal was available to

which the results could be compared. Therefore, by using similar results per blade per test, a reference or
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confidence rate was established. The repeatability results for a single healthy blade are provided Figure 2.6

below for a single healthy blade in which four sets comprising three tests each are shown. The measured

FRFs are plotted with the measured input forcing functions for each set. The dark lines show the average of

each set, whereas the faint lines show the individual tests per set. Note that inter-test variability is present

within the results due to geometrical variability in the blades. Additionally, not all the tests were conducted

on the same day and the test temperatures (room temperature) were not controlled.

FRF

Forcing Function

Figure 2.6: Repeatability results from developed methodology showing FRFs with input excitation forcing function
for a single healthy blade

It is evident in Figure 2.6 that the blade substitution (test reset) correlates well with the test repeat and

stable results for both cases were obtained. It is also very effective to conduct tests until at least three similar

results are obtained, especially since no reference is available. It confirms that the orientation variable can

be controlled and considered as a constant, leaving only the input variable to which attention must be

directed. It is observed that the input excitation forcing function compares well to the preferred shape of a

’good’ impact in Figure 2.5, which delivers good coherence and thus good FRF measurements. Thus, this

demonstrates that by attempting to replicate the input excitation per test, the success rate of each test can

be evaluated when comparing between tests per blade for each set. The selected steel-tip is also adequate

in exciting all the modes in the considered frequency range of interest and delivers a good measurement

that shows 14 easily identifiable peaks. It is also clear that at the higher frequencies, some variance in the

measurements exist when compared to the lower frequencies. The FRFs are noisier beyond 6000Hz due

to the plunging energy input amplitude. This is because the stiffness of the hammer tip is incapable in

providing constant amplitude beyond this point. However, this does not significantly influence the peak

positions and thus all 14 peaks can be regarded.

After concluding that the test is repeatable, all the blades were tested consecutively using the developed

methodology. The superimposed FRFs along with the input excitation forcing function for all healthy cases

are shown in Figure 2.7. A large frequency spectrum with a fine frequency resolution is shown with 14 easily

identifiable frequency modes. Note that even with a fine frequency resolution to ensure definitive peaks,

noise is introduced and slight inconsistencies are present in the results regarding the shape, magnitude, and

possibly the peak-positions. This is due to operator-dependent input excitation. To compensate for this, the

average for all the tests for each blade is considered, and the troughs are smoothed. This reduces the noise

present in the signal and amplifies the participating modes, which simplifies the peak extraction procedure.

From Figure 2.7, it is evident that the experimental protocol delivers repeatable and reliable results for

the complete set of test blades. The input excitation forcing function is well represented by its mean,

which demonstrates the reliability of the testing procedure. This curve shows consistency in the required

energy distribution for maximal mode participation and observation throughout the tests. It is also worth

mentioning that the energy level decreases beyond 6000Hz, causing noisier results above 6000Hz. However,

the peaks are prominent and thus this influence is deemed minimal. Important to note is that inter-test

variability is present within all the results for the different blades. This is due to operator-dependency and

that the tests were conducted over a span of a few days, which resulted in slightly differing magnitudes from

minor inconsistent impact applied during the experiment. This, however, does not affect the peak-positions.
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FRF

Forcing Function

Figure 2.7: Repeatability results showing FRFs with input excitation forcing function for the complete test set

2.2.3 Definition of Benchmark Result

Three of the healthy blades were selected - blades #16, #22, and #31 - to establish a benchmark result to

use in the FE model validation. During visual inspection, it was observed that these blades have undergone

the least geometric modification and are thus considered the ’healthiest’ or the benchmark cases. The

experimental benchmark is the average of the results of these cases. Figure 2.8 shows the experimental

benchmark FRF along with the benchmark cases. From Figure 2.8, it is clear that the FRFs of the selected

three blades are very similar in shape, magnitude, and have comparable peak positions. Hence, these cases

are well represented by the experimental benchmark. The benchmark frequencies, calculated from the mean

of the extracted peaks (fn), are listed in Table 2.2.

Figure 2.8: FRFs from the 3 healthiest blades used to calculate the experimental benchmark FRF
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Table 2.2: Natural frequencies of the 3 healthiest blades used to calculate the experimental benchmark frequencies

Mode Natural Frequencies [Hz]

# Blade #16 Blade #22 Blade #31 Benchmark

1 864.8 865.6 860.9 863.8

2 1694.5 1699.2 1685.9 1693.2

3 1819.1 1825.4 1818.4 1821.0

4 2322.3 2334.8 2323.0 2326.7

5 2759.8 2788.7 2792.6 2780.3

6 3709.0 3736.7 3716.0 3720.6

7 3840.2 3878.9 3873.8 3864.3

8 4318.0 4346.5 4327.7 4330.7

9 5074.2 5110.9 5101.2 5095.4

10 5777.0 5807.4 5772.7 5785.7

11 6537.1 6573.0 6537.9 6549.3

12 7371.9 7425.0 7401.2 7399.3

13 7497.3 7545.3 7522.3 7521.6

14 8309.4 8341.8 8294.5 8315.2

2.3 Numerical Modal Analysis - Development and Validation

In this section, a finite element model of the blade is described that is based on the chosen experimental

set-up. The blade model is validated by comparing the predicted modal response with experimental results.

This model will be used in Chapter 3 to study the sensitivity of the blade modal response to geometric

variability and damage. The procedure and modal analysis results of the FEA are discussed and compared

to the benchmark (most geometrical unaltered) experimental result. Note that the FEA model represents a

healthy new blade in perfect condition without any defects.

2.3.1 FE Model Set-up

The experimental set-up of a freely supported (suspended) blade was modelled in finite element software,

ANSYS R19.0, as shown in Figure 2.9. The CAD geometry (Figure 2.2) was acquired along with the

procurement of the test blades. To obtain reliable results from the 3D FEA model, which will be compared

with the experimental case, the simulation model and its parameters must represent the experimental set-

up. The boundary conditions are essential. Since the blade is freely suspended, the blade is considered

unconstrained (i.e. free boundary conditions). The model will thus experience rigid-body-motion (RBM)

for the first six modes. Their natural frequencies approximate zero and will be ignored after confirmation.

In the numerical modal- and harmonic response analysis of the healthy cases, the system is assumed to be

linear. No contact definition is required other than the contact-based connection (bonded) between the root

and aerofoil; however, this is linear.

After performing a parametric study on the material properties with a preliminary adequate mesh using

modal analysis, Table 2.3 was compiled. The material properties of X20Cr13 (Table 2.1) were adjusted until

agreeable values were obtained that delivers an accurate model validation. These properties are assumed to

have linear elastic behaviour. It was observed that the natural frequencies are very sensitive to the change

in geometry and material properties since stiffness k is a function of both these properties of the model,

considering that fn =
√
k(E, geom)/m(ρ, geom), with E (elastic modulus) having the greatest effect.

Table 2.3: Selected material properties used in FEA modelling

Property Symbol Value Unit
Elastic Modulus E 210 GPa

Density ρ 7700 kg/m3

Poisson’s Ratio ν 0.29 −

Take note that a minor difference in geometry at the aerofoil tip of the test blade and the FEA model exists.

A thin lip protrudes from the blade profile edge in the length of the blade on the suction side. However,

only the aerodynamics of the blade is affected, which is not relevant to this study. This difference in mass,

if any, can be disregarded as it will have minimal effect on the natural frequencies.
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The meshing is essential for producing accurate results and must be optimized. The blade was decomposed

into a root-section and an aerofoil-section, which were then meshed separately according to priority of the

geometric profile to reduce the number of nodes for a reduced solving time. Since the blade was decomposed,

bonded contact was applied between the two sections. To account for the complex geometry, such as variation

of twist, taper, width and thickness along its length, and ensure adequate quality and appropriate piece-wise

linear or quadratic meshing for each section, the smoothness of the mesh regarding shape and geometry

was considered (Bhat et al., 1996). Using the built-in tools in ANSYS, the meshing was done as follows:

Quadratic tetrahedral elements (TET10) with kept mid-side nodes were used on both sections. The patch

independent method with coarse proximity and curvature sizing functions and high smoothing with slow

transitions were also applied on both sections. To further enhance the mesh quality, sizing functions and

virtual topology were applied to the different sections where necessary. Mesh convergence was achieved,

which ensured equilibrium between solving time and accuracy. The root section consisted of 23 879 nodes

and 15 210 elements, and the aerofoil section of 69 800 nodes and 42 836 elements.

2.3.2 Modal Analysis and Harmonic Response Analysis

Modal- and harmonic response analysis were performed on an ideal FEM blade to obtain the natural fre-

quencies and its FRF, respectively. The modal analysis result was used as input for the harmonic response

analysis. The numerical natural frequencies and the corresponding mode shapes of an undamped system are

computed through applying the theory of elastic dynamics and solving the eigenvalue problem (Equation 1.2

and Equation 1.3).

The suspended blade in the FEM environment is shown in Figure 2.9 along with the excitation- and mea-

surement point. The locations of these points were replicated from the test blades used in the experimental

set-up and are shown in detail in Figure 2.9b. In the FEM, a remote (unit) force of −1N was applied in the

+ x-direction at the excitation point, allocated by a global coordinate system. The frequency response of the

directional velocity in the x-direction was measured at the measurement point, represented by a mesh node

found at the midpoint of the reflective dot used in the experiment. A broad frequency range of 0− 8750Hz

was used, in which 14 modes were considered for the validation. The PCB Lanczos modal solution method

was applied for both modal- and harmonic response analysis. Global damping was not considered in the

model since it is implied that the experimental set-up is very lightly damped.

Excitation Point

Measurement Node

(a) (b)

Figure 2.9: Meshed geometry and set-up in FEM environment prepared for harmonic analysis, a) Overview; b)
Detailed excitation- and measurement location obtained from experiment (black and white dots, respectively)
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2.3.3 FE Model Validation

For validation of the numerical blades, the FEM results were compared to the benchmark experimental

result as defined in Section 2.2.3. The FEM and the benchmark FRFs are plotted in Figure 2.10. Note that

the FEM FRF only consists of 500 points compared to the experimental FRF of 25 600 points or spectral

lines over the full frequency bandwidth. Additionally, only the first 14 natural frequencies were considered

within the large bandwidth. Thus, the FEM FRF is interrupted at 8750Hz. The FEM FRF is measured in

velocity (m/s); however, decibel (dB) is generally used in the measurement of vibration and was originally

defined in terms of the base 10 logarithm of the power ratio of two electrical signals. This corresponds to

the ratio of the square of the amplitudes of the measured signal (A) and the reference signal (A0) (Heyns,

2008; Inman, 2014). In this case, A0 = 1 and A = Ameasured in m/s:

dB = 10 log10

( A
A0

)2
= 20 log10

( A
A0

)
= 20 log10

(Ameasured
1

)
. (2.1)

In Figure 2.10, each magnitude has peaks corresponding to the natural frequencies of the respective cases.

This is because the response is ’normalized’ to the input and the peaks are not a consequence of this but is

a physical property. Since the benchmark FRF was computed from the benchmark cases, multiple peaks are

observed. However, the benchmark frequencies are the mean of these values, and thus these peaks should

not be explicitly considered. When comparing the shapes of the FRFs, it is evident that the FEM shape

captures the general shape of the benchmark and is thus equivalent. Within the FEM model, damping was

not considered. Thus, when comparing the FRF peak widths, the claim of very light or negligible damping

in the experimental system is supported. This is because the damping can be estimated by considering the

width of the peaks about their maximum value at the 3dB down point (Heyns, 2008; Inman, 2014). Since

interest lies only at the peak values and not at the FRF shape, the differences in amplitude, which is relative

to the system, as well as the shape can be ignored.

Figure 2.10: Superimposed FRFs for FEA model validation: FEM vs. Experimental benchmark

The benchmark frequencies fn are compared with the numerically obtained natural frequencies, with the

error ei defined as:

ei =
(FEMi −Benchmarki)

(Benchmarki)
× 100. (2.2)
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And the total error eµ(abs) is defined as:

eµ(abs) =

n∑
i=1

|ei|
n
, (2.3)

The frequencies and associated errors are shown in Table 2.4 and plotted in Figure 2.11.

Table 2.4: FE model validation - Comparison of computed natural frequencies with experimental benchmark

Mode Natural Frequency [Hz] Error, ei
# EXP FEM [%]

1 863.8 888.3 2.8

2 1693.2 1719.6 1.5

3 1821.0 1830.7 0.5

4 2326.7 2366.2 1.7

5 2780.3 2747.3 -1.2

6 3720.6 3664.4 -1.5

7 3864.3 3796.1 -1.8

8 4330.7 4414.2 1.9

9 5095.4 5089.5 -0.1

10 5785.7 5741.8 -0.8

11 6549.3 6680.4 2.0

12 7399.3 7415.9 0.2

13 7521.6 7559.8 0.5

14 8315.2 8238.2 -0.9

eµ(abs) 1.2

Figure 2.11: Validation error between the computed natural frequencies and experimental benchmark

From Table 2.4 and Figure 2.11, it is evident that good correlation in the model exists as the FEM natural

frequencies fall within the frequency range of the experimental results. This is supported by −2.0% < ei <

3.0% and eµ(abs) = 1.2%. Thus, the system was modelled reasonably well with good representation of all

modes from acceptable assumptions made for the numerical model. The highest error of 2.8% was found

for Mode 1, while six frequency values are smaller than 1%. These results correlate well with the required

frequency ratio of ±3 − 5% in the installed (healthy) blades, deemed acceptable within EPRI standards.

This translates to a small margin, generally considered to imply a well-tuned mode of vibration, where the
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statistical chance of resonance is likely to be remote (Dewey and Lam, 2008). This standard also references

the general uncertainty with any computed natural frequency to be ±2–3% (Dewey and Lam, 2008). Shukla

and Harsha (2015) conducted modal analysis on a fir-tree root with unknown health and their FEM, which

was compared to the experimental case, contained errors of 1.77%, 2.34%, and −4.15% for the first three

fundamental frequencies.

Elastic bands that impose minimal damping in the system supported the blade. However, the elastic band

configuration could have possibly introduced slight movement restrictions for the blade during excitation,

especially in the first bending mode (normal to the XY-plane). From the results above, this effect can be

assumed negligible on all modes. The larger influence on the overall error value can be ascribed to possible

reasons such as material properties varying throughout the blade (Scheepers and Booysen, 2012), and that

the FEA model does not consider any indications, flaws or material loss due to altered geometry of the blade.

The numerical model serves only a supportive role since model updating was not part of the scope, and

direct association is thus not possible. Hence, only the output behaviour due to the input parameters of the

experiment and FEM are compared. Therefore, the errors found in comparing the FEM and the experiment

are acceptable as evidence of a reasonably well-modelled numerical blade. This reinforces the idea that the

FEM can be compared to the real case to establish expected behaviour from geometrical variability and

damage scenarios. This will be discussed in Chapter 3.

2.3.4 Conclusion

The modal analysis results from the 3D FEA ideal blade and the experimental benchmark showed good

agreement for Modes 1− 14. The error between the peaks of the experimental and FEM results is small and

a tendency of correlation is observed. It can thus be concluded that the FEA model is valid and can be used

forward in the study. These errors may be ascribed to reasons such as light damping from the elastic bands

used in the experimental set-up, which was assumed negligible; the material properties that vary throughout

the specimens; and ignoring indications, flaws or material loss (altered geometry) in the model. Therefore,

the experimental and the numerical cases can be indirectly compared, i.e. only the output behaviour due

to the input parameters can be compared, and direct association is not possible since model updating was

not part of the scope. Hence, numerical model serves only a supportive role. The peaks of the FRFs are

essential to this study. However, to realise the complete effect of the input parameters on the output to

establish unique behaviour, the FRFs are used as preliminary visual representation and judgement. The

sensitivity of using natural frequencies as a damage indicator, especially on the severity and location in a

structure, requires further investigation since the structural damage in different locations may cause the

same shift in frequency. The error equation in Equation 2.2 will be modified to calculate the variance in

natural frequencies in the work to follow.
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Chapter 3: Feature Sensitivity Study
To investigate the feasibility of vibration-based damage detection for pinned turbine blades, an approach to

establish the input parameter significance and its trend on the natural frequencies (fn) was implemented.

This approach is demonstrated in Figure 3.1 below. A sensitivity study was conducted (Step 1) using both

numerical and experimental results. The sensitivity of FRFs, including their natural frequencies, to slight

changes in the blade geometry (i.e. geometrical variabilities) as well as damage (i.e. different damage

scenarios) was investigated. The study specifically assessed the potential of using only natural frequencies

as a distinctive health status indicator by exploring the damage trend in the blades. In the first part of

the Step 1, the geometrical differences present in the healthy test blades were explored so that a reference

or benchmark could be established. The second part of Step 1 explored how three single-location damage

scenarios compare to the healthy experimental benchmark. These damage cases are at the most likely

locations near the root that will lead to failure at some stage in the near future. The study of damage-specific

responses enables better description of response behaviour regarding the effect of defects or damage present

in a blade. By comparing the experiment and FEM to correlate the significance of the input parameters on

the output vibration response, motivation for further investigation can be provided. The mode shapes were

also briefly visually explored to attempt to understand their damage-induced behaviour. The objectivity or

independence of the natural frequencies was examined (Step 2) by considering the distinctiveness of each

damage scenario result. The fn-trend produced by the geometrical variability in the blades as well as the

introduced damage was assessed to ensure that an explicit shift in natural frequencies occurs for each damage

scenario. This allowed assessing the potential of using the natural frequencies as a distinctive health status

indicator.

Sensitivity Study

(Input parameter significance on fn)

?

?
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?

Part I:
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Geometrical

Variabilities
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3D FEA
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Figure 3.1: Approach to establish input parameter, 1) Significance on fn; 2) Trend on fn

The natural frequencies were extracted from the total amount of FRFs using an automated version of

the peak-amplitude or peak-picking method using the MATLAB findpeaks.m function. Slight errors were

introduced by this since the accuracy of peaks is a function of frequency resolution; however, this was

minimized through using a fine frequency resolution.
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3.1 Sensitivity to Small Geometrical Variability in Healthy Blades

From the literature (Bhat et al., 1996; Rauschenbach et al., 2008; Drozdowski et al., 2015), discussions with

experts in the industry, and observations of the procured blades, it was noted that defects (slight geometric

differences) arise in the blades due to the manufacturing process. This variability includes individually

reamed holes for pin insertion during the installation stage, and manual tuning through correctional grinding.

Quantifications of this variability is provided in Figure 3.2. The variation in the overall blade mass is shown,

which is caused by the variation in the pinhole diameters as well as the presence of grinding at the blade

root. These quantifications are simplified in Figure 3.3, which gives a summary of the number of blades

having minimum and maximum major pinhole diameters as well as those that have undergone manual

tuning. More detail on the allocation of specific blades for these categories is provided in Appendix B.

Even though the geometrical variability is not considered as damage, its effect on the state of health of the

blades must be explored. This is achieved through a FEM-based study on the sensitivity of these small

geometric differences on the vibration response. The different visible defects, observed in the test blades, to

be modelled are varying correctional grinding depth on the blade root and varying diameters of pinholes.

This is shown in Figure 3.4. The properties of the small geometrical variability in the healthy blades are

provided in Table 3.1.

(a)

(b)

Figure 3.2: Variation in observed, a) Overall mass of the blades; b) Major tapered pinhole diameters
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Table 3.1: Properties of Small Geometrical Variability in Healthy Blades

Statistical Property Mass, m [g]
Major Pinhole Diameter [mm]

Top Bottom Overall
Minimum 1442.2 11.0 11.0 11.0

Maximum 1480.0 12.2 12.35 12.35

Median 1466.0 11.2 11.2 11.2

Mean, µ 1464.36 11.4 11.39 11.4

Standard Deviation, σ 9.55 0.35 0.4 0.37

From Figure 3.2a, it is evident that a variation in the mass of the blades exists with a minimum of 1442.2g, a

maximum of 1480.0g, and a mean of 1464.36g. As only 36 data points are available, it is difficult to capture

the actual distribution of the mass; however, a normal probability distribution ranging from minimum to

maximum was assumed. These inconsistencies in the mass may be due to the manufacturing process, the

installation procedure or caused during operation of the turbine blades. Considering the manufacturing

process, the blades are machined from an extruded piece of material and then polished by hand. These

manufacturing tolerances already introduce discrepancies in the mass. Additionally, the material properties

may vary throughout the piece of material and the surface finish may be more meticulous in some cases.

Considering the installation procedure, the tapered pinholes are individually reamed, and specific blades

are manually tuned by correctional grinding at the root. An individual blade may contain a combination

of these geometric differences. The variation in mass due to different pinhole diameters is further explored

in Figure 3.2b, which shows the variation in the major tapered pinhole diameters. For the top diameters,

a minimum of 11.0mm, a maximum of 12.2mm, and a mean of 11.4mm are observed. For the bottom

diameters, a minimum of 11.0mm, a maximum of 12.35mm, and a mean of 11.39mm are observed. Thus,

the overall mean major pinhole diameter is 11.4mm. It is also clear that more than 50% of the blades have

overall pinhole diameters (top and bottom) close to the median of 11.2mm, and that an increase of 10–12%

in diameter occurs.

Figure 3.3a shows the number of blades having minimum and maximum major pinhole diameters. The

largest major diameter for each blade was assigned into a minimum and maximum group, according to

the value falling below or above the median value of 11.2mm, and then totalled. The outcome was 21

blades in the minimum group and 15 blades in the maximum group. This is fairly distributed. Figure 3.3b

shows the blades that have undergone manual tuning. The blades were assigned according to the presence

of correctional grinding at the root and then totalled. Because the correctional grinding was difficult to

quantify as it involves material removal according to a vibration range of the blade, only its occurrence in

the blade root was noted. The observed outcome was that 20 blades did not undergo manual tuning at the

root whereas 16 blades did. This is also fairly distributed.

(a) (b)

Figure 3.3: Assignment of healthy blades into condition groups from observed, a) Major pinhole diameter according
to the largest on blade root; b) Grinding at the blade root according to presence of feature

45



3.1 Sensitivity to Small Geometrical Variability in Healthy Blades
Chapter 3: Feature Sensitivity Study

3.1.1 3D FEA Modelling of Small Geometrical Variability

A FEM parametric study regarding these defects was done in which the effect of geometrical modifications

on natural frequencies was explored. A reference for realistic variations in the defects was established from

the test blades, considering the least altered to the most altered. The modelled defects range from 0− 3mm

for the varying grinding depth and 11.2mm ± 12% for the varying pinhole diameters. The original mesh

settings are sufficient for a quality mesh. However, a sizing function was applied at the defect areas to

ensure that the slight geometric changes are captured. The aerofoil section consisted of 69 800 nodes and

42 836 elements for both cases. For the varying correctional grinding depth, the root section consisted of

ca. 163 000 nodes and ca. 111 000 elements. An edge sizing function was added to this feature to ensure

proper capture of the geometric changes. For the varying pinhole diameters, the root section consisted of

ca. 40 000 nodes and ca. 26 000 elements. Mesh convergence for all FEA models was achieved. The mesh

at the pinhole diameters was sufficient and a sizing function was not required.

Hole diameter featureHole diameter feature

(a)

Hole diameter featureHole diameter feature

(b)

Correctional grinding feature

(c)

Correctional grinding feature

(d)

Figure 3.4: Modelled geometrical differences present in test blades, a)-b) Varying pinhole diameters; c)-d) Varying
correctional grinding depth

3.1.2 Comparison of Results: Experiment vs. FEM

Figure 3.5a shows the good quality experimental FRFs obtained for the 36 healthy test blades, and Fig-

ure 3.5b shows the numerical FRFs obtained from FEM for 10 discrete cases. In the experimental FRFs,

peaks are not obscured and are easily identifiable. It is also observed that the peak variation at higher modes

increases. With the FEM FRFs, the magnitude at some peaks is lower; however, the peaks can still be easily

identified. Little variation in the peak locations are observed, even at higher modes. Thus, the geometrical

variability is not fully accountable for the variation. This is further explored in the section to follow.
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(a)

(b)

Figure 3.5: Frequency response functions for healthy blades obtained from, a) Experiments of 36 test blades; b) FEM
of 10 discrete cases

The experimental FRFs and FEM FRFs agree in both shape and having a small variance in peak loca-

tions (i.e. natural frequencies, fn). This small variance increases slightly with higher modes; however, no

prominent outliers are present. It is evident that the experimental protocol was successful in delivering high

quality comparable results. This was ensured by a consistent (attempted replication) input excitation for

each test. It is also clear that a narrow magnitude band displaying the inter-test variability is present. This

also supports the protocol outcome.
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To better understand the healthy response behaviour, the variations in the peak locations is now considered.

This variance is quantified by the natural frequency fn and change or variance in natural frequencies ∆fn[%].

This is shown in Figure 3.6 in which the healthy blades are compared to the experimental benchmark. The

blades are sorted according to their geometric variability, i.e. a combination of sizing of the major pinhole

diameter and presence of correctional grinding. From Section 3.1 and Appendix B, the blades are allocated

a No Grind or Grind condition and a Min D or Max D condition, resulting in groups of 11, 10, 9, and 6.

Figure 3.6: Variance in natural frequencies from geometrical variability in healthy test blades (relative to benchmark)

The geometric variability in the blades results in a maximum 3% variation in the peak frequencies. It is

expected that the largest variation occurs within the group where most material is removed (Grind/Max

D); however, it occurs for the Grind/Min D case. This supports the claim that the explored geometrical

variability is not the only contributor to the variation. Since the healthy test blades contain manufacturing

and operational defects, it makes sense that a small statistical distribution or variability is present within

the natural frequencies of the healthy blades. This is better described in the variance of −1% ≤ ∆fn < 3%

with the benchmark as reference. From Section 2.3.3, a maximum FE model validation error of 3% was

found. This discrepancy demonstrates that the FEM blade will suitably represent the behaviour of the test

blades due to the input parameters.

In Figure 3.7, the variances present in the experimental results as well as the FEM results are compared,

relative to their healthy reference. The modelled geometrical features range from 0 − 3mm for the varying

grinding depth and 11.2mm ± 12% for the varying pinhole diameters. It is apparent that the FEM cases

fall within the same variance than the test blades, however, its variance-band is much tighter with −1% <

∆fn < 0.5%. This confirms the low sensitivity to slight geometrical differences in the healthy response.

Hence, the geometrical variability in the root only partially accounts for the variance in the healthy blades.

When considering the maximum experimental variance of 3% as the entire section that needs to be described,

the maximum FEM variance of 1% only accounts for a small portion. Thus, other sources of variance must

be responsible for the remaining 2%. This includes varying material properties, mainly because these were

kept constant during the FEM study. This also clarifies on the magnitude of the FEM validation errors.
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Figure 3.7: Variance in natural frequencies from geometrical variability in healthy blades (Experiment vs. FEM)

Since the material properties in the FEM cases are constant but the geometrical variability varies, it can be

assumed that the material properties play a significant role in the larger variance band of the experimental

cases. By considering that fn =
√
k/m with stiffness k, the geometric differences cause slight reduction

in mass m with no structural compromise that can significantly affect k. Thus, it can be assumed that

k u 1. Hence, the geometrical variability does not lead to noticeable ∆fn and are inconsequential. During

the selection of material properties for the FE model, it was determined that ∆k is more significant from

varying material properties. The primary influence on this change was identified as Young’s modulus of

elasticity E, which may vary throughout the material. This introduces a slight variance in the experimental

results. Thus, the relationship of ∆k ∝ ∆fn
2 is established since ∆m from geometrical variability has

minimal effect on ∆fn. This observation is also supported in literature (McGuire et al., 1995; Giannoccaro

et al., 2006; Lorenzino and Navarro, 2015). Hence, it can be assumed that ∆fn is more sensitive to change

in material properties or other unknowns than the geometrical variability as defined in this study. Since

the blades are made from the same material, which has minor variability in its properties, it is implicitly

consistent. Since no historical data of the test blades are available, especially of its material properties, it is

difficult to capture this fully. Thus, it can be concluded that the healthy test blades are similar. The narrow

variance band in Figure 3.7 supports this assumption.

3.1.3 Conclusions

From the 3% variance in natural frequencies caused by geometrical variability in the healthy test blades, it

can be concluded that the effect of this input parameter on the vibration response is insignificant. This was

explored by considering only the experimental case and attempting to visually recognize a pattern in the

variance. This was done according to the assigned groups comprising a No Grind or Grind condition and

a Min D or Max D condition. No clear pattern was observed, and it was established that the geometrical

variability was not the only participating factor causing the variation in the natural frequencies. This was

confirmed in the FEM in which the only variable was the geometrical variability. It was found that this

factor only partially accounts for the variance as it had a maximum variance of 1% inside the range of the

experimental results. The FEM was thus unable to capture this variance completely. Hence, other factors

49



3.2 Sensitivity to Damage in Blades
Chapter 3: Feature Sensitivity Study

such as material properties must play a role. The pattern recognition problem is addressed thoroughly in

Chapter 4.

3.2 Sensitivity to Damage in Blades

In this section, large damage was introduced into the blades to quantify the sensitivity of the frequency

response. If the frequency response is sensitive to damage, this damage can possibly be detected. The most

probable failure locations in or near the blade root were obtained from literature, summarised in Table 1.1

in Section 1.2.1. A static structural analysis of a cyclic symmetry section of the bladed disk was performed

to identify critical stress locations in the blade root during operation. The designated damage scenarios are

discussed in Section 3.2.2 and were all corroborated through knowledge and insight acquired from industry,

based on observations during routine off-site inspections. While these damages may only lead to failure at

some stage in the future, and immediate failure or rupture of these cracks may not be expected for some

time, they must be corrected as soon as possible.

Difficulties in modelling the damage may arise, and the damage itself may make the structure dynamically

non-linear, i.e. a breathing fatigue crack, which also presents a challenging problem (Worden and Dulieu-

Barton, 2004). This includes contact in the model between the crack faces, which is non-linear. Therefore,

simplified versions of the hypothetical worst-case scenarios at the most probable damage locations were

modelled to explore the effect of damage on the healthy response. In the numerical modal- and harmonic

response analysis of the damaged cases, the system is assumed to be linear. This reasons that the distance

between the crack faces is large enough that no contact occurs between these faces. However, the bonded

contact-based connection between the root and the aerofoil is linear. For the static structural analysis of

the healthy installed blade, the system was assumed as non-linear and required definition of suitable contact

between components.

3.2.1 3D FEA Modelling to Identify Most Probable Damage Location in the

Blade Root during Turbine Operation

Static structural analysis was conducted on a cyclic symmetry section of a stage 2 LP pinned turbine disk

to establish the most probable failure location on the root of the blade during operation. The operating

and boundary conditions, including the contact, were adjusted from Hattingh et al. (2016) and is shown in

Figure 3.8a. They conducted a case study on a stage 1 LP turbine disk in a 200MW unit to determine

the acceptability of stress-corrosion cracks detected in-situ in the central prong of three. A hypothetical

worst-case scenario was assumed in which the rotating velocity for an over-speed incident of 3600RPM at

room temperature was applied. Standard gravity was also applied since the mass of these blades result in

large centrifugal forces during operation, which are primarily responsible for failure of these blades. Vaishaly

and Ramarao (2013) conducted a finite element stress analysis on a typical LP steam turbine, with similar

operating conditions, to understand the dynamic behaviour of a last stage T-root blade. Their generalised

FEA strategy was considered in this study.

For cyclic symmetry, frictionless supports were applied to the sides of the disk (in the circumferential direc-

tion) and a fixed support was applied at the disk inner diameter (disk-to-shaft connection). The installation

of pinned turbine blades is critical. During this process, tapered pins are inserted securely through the

rim and the individually reamed holes in the root, which were made during the alignment of the individual

blades with the pre-reamed disk. The assembly is then permanently fixed, and the process is completed by

sinking the pins and finishing the surface on the protruding sides. The parts are tight-fitting; however, no

penetration occurs. Therefore, the presumed contact between all parts are frictional with a static friction

coefficient µs = 0.3, except for the pin and the disk on the outlet (trailing edge) side, which is bonded

contact. The model was assembled from the different components, each meshed separately. The previous

mesh settings used for the blade, were adapted for the disk section and pins and is shown in Figure 3.8b.

An adaptive sizing function was used with the patch independent method applied on the disk section and
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sizing functions applied on the edge holes and faces. Mesh convergence was achieved. The cyclic symmetry

section consisted of 120 4247 nodes and 852 684 elements.

(a)

(b)

Figure 3.8: Static structural analysis of turbine disk section, a) Boundary conditions; b) Meshed 3D FEA model of
cyclic section

In Figure 3.9, maximum equivalent stresses are observed in the areas of the pinholes. The initiation location

of the most probable fatigue damage is found at the high stress region at the upper pinhole on the leading

edge pressure side of the blade during an operating speed of 3600RPM . Fatigue will occur at this region as it

experiences the highest stress in tension. This leads to crack initiation from cumulative surface dislocations

during cyclic loading, causing the blade to oscillate, leading to crack propagation that originates at the

edge at a similar rate in both the radial and circumferential direction during breathing of the crack. The

crack trajectory will follow the path of the highest stress intensity, considering the material thickness and

geometry, in the direction normal to the applied stress. An unsymmetrical stress field results due to the

twisted geometry of the aerofoil. Since this is a linear problem, similar results will be obtained in analyses

considering different operating speeds.

51



3.2 Sensitivity to Damage in Blades
Chapter 3: Feature Sensitivity Study

Trailing Edge

Leading Edge

Pressure Side

Suction Side

Aerofoil Base

Root

Rotation Direction

(a)

Crack Initiation Origin

(b)

Figure 3.9: Crack initiation site on root for turbine disk section due to centrifugal force only - FEM static structural
analysis results showing Von-Mises stress at 3600RPM , a) Overview; b) Detailed view of the hotspot at the upper

pinhole on leading edge pressure side

At some stage after the crack has propagated through on the pressure side (9 o’clock position), the crack

will continue to propagate on the other side. This second stage propagation starts at the opposite initiation

location in the direction toward the suction side (3 o’clock position). At this area, the stress is first in

compression; however, it changes into tension during the second stage as the crack hinge changes direction,

and the crack starts to breathe. This will eventually lead to a complete separation of the blade finger from

the blade root. Hence, this crack will have a propagation stage on the pressure side as well as the suction

side. In this study, the first stage is considered as the worst-case scenario as anything past this point will be

closer to failure than progressing damage. This will be discussed further in Section 3.3.3.

Note that the analysis only served as a critical location or hotspot indicator, thus the Von-Mises stress

magnitudes can be ignored. This is the first worst-case damage scenario. More detail on the loads experienced

by a LP steam turbine blade are presented by Plesiutschnig et al. (2016). The author identifies that the

blade natural frequencies cause crack initiation at the root and the unsteady centrifugal and steam forces
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(during starts and stops) cause crack propagation. This observation is supported by Booysen et al. (2015).

Two other most likely damage scenarios or types, occurring near the root, were obtained from literature

(Table 1.1) and confidential industry reports. They are edge cracks on the trailing- and leading edge at the

aerofoil base, just above the root.

3.2.2 Introduction of Damage

The designated three worst-case damage scenarios are given in Figure 3.10, showing the experimental and

FEM cases. The dimensions of the simplified induced damage were determined from the worst-case scenarios

to ensure that a unique damage-specific response can be achieved. Damage was induced in the blade by

machining a through-thickness uniform notch at the upper pinhole on the leading edge pressure side of the

blade (1mm × 6.7mm), the base on the trailing edge of the blade (1mm × 20mm), and the base on the

leading edge of the blade (1mm × 20mm). These damage scenarios will be referred to as Damage Classes

1-3. The original mesh settings are sufficient for a quality mesh; however, an edge sizing function was added

at the damage locations. The mesh of the aerofoil section for all cases consisted of 69 800 nodes and 42 836

elements, whereas the root sections differed slightly. The total mesh of the blade for the damaged cases

consisted of 10 2713 nodes and 63 782 elements for the root radial notch, 122 681 nodes and 77 400 elements

for the base trailing edge notch, and 121 293 nodes and 76 486 elements for the base leading edge notch.

Mesh convergence was achieved for all cases. The damage classes consist of blades with similar geometrical

variability per group (see Appendix B) to ensure that a similar healthy variance is transferred to each class.

(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Test- and FEM blades with through-thickness uniform notch at most likely locations near the root,
a)-b) Damage Class 1 = Root radial (1mm× 6.7mm× 18mm); c)-d) Damage Class 2 = Base trailing edge

(1mm× 20mm); e)-f) Damage Class 3 = Base leading edge (1mm× 20mm)
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The crack orientation for all cases was set normal to the length of the aerofoil. A natural crack will be non-

uniform with a sharp crack tip (Dowling, 2012) and its orientation will be much more complex (Rau et al.,

2016). The thickness of a natural crack would obviously be much smaller than 1mm; however, a parametric

study on all three cases revealed that 1mm is sufficient since negligible maximum errors (smaller than 0.25%,

0.5%, and 0.45%) exist when compared to a 0.3mm notch thickness. This is the minimum thickness available

for the fine-tooth slitting saw disc that was utilised for cutting the notches. To ensure accurate and uniform

damage, a reliable milling machine spindle was used as well as a suitable disc thickness. This was advised

and executed by the workshop. The results of the parametric study are shown in Figure 3.11 in which the

crack thickness was varied from 1.0mm down to at least 0.2mm in increments of 0.1mm. This was the

minimum allowable thickness the configured mesh settings allowed.

Figure 3.11: Results from FEM parametric study of crack/notch thickness for damaged blades: ∆fn vs. ∆t

Figure 3.11 confirms that the effect of material removal from varying crack thickness on the natural fre-

quencies is insignificant. This is because the errors observed are even smaller than the variances observed in

the FEM healthy cases as shown in Figure 3.7 with values ∆fn < 1.0%. This means that the stiffness k is

the only remaining variable that plays a role in the change in natural frequency. Considering the location

of the notch on the different damage classes, the stiffness of the blade is differently affected and thus the

mode shapes for each case will also vary. This is explored in more detail in Section 3.2.3. Additionally, it is

observed that the crack thickness contributes to the stiffness of the blade.

3.2.3 Results

The FRFs for the different damage classes obtained from the FEM simulations are given in Figure 3.12a.

It is evident that four distinct damage-specific responses with clearly different shapes and varying peak

locations (fn) are observed. This means that the expected behaviour, established in the previous section, of

the experimental case should show similar results. A decrease in natural frequencies is also expected as can

be seen by the negative shift in FRF peaks. These findings are confirmed by the good quality FRFs of the

different damage classes shown in Figure 3.12b that were obtained in the experiments. A small variance,

increasing as the modes do, is observed at the peaks. Besides the healthy FRFs, three additional prominent

FRF groups are identified, each with different damage-sensitivity at the different peaks.
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(a)

(b)

Figure 3.12: FRFs for damaged blades obtained from, a) FEM; b) Experiments of 12 test blades per damage scenario

The resultant variances from all peaks for all damage classes are shown in Figure 3.13. The FEM damage

classes are compared to the healthy FEM case, and the experimental damage classes are compared to the

experimental benchmark. Figure 3.13 clearly shows the prominent and significant effect of damage on the

healthy response with −30% < ∆fn < 0%, using their respective individual healthy cases as references.

This is a significant difference. This is clearly more significant than the effect of geometrical variability on

the responses. A reduction in natural frequency fn occurred because of the introduced damage, implying a

reduction in the stiffness k of the blade since a crack can be modelled as a fracture-hinge with a rotational
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spring with varying k as the crack breathes (Rizos et al., 1990; Barad et al., 2013). The FEM cases are

also shown to fall within the experimental result range, confirming that distinctive behaviour is present per

case as well as verifying reasonably well-modelled damage classes. Since damage was introduced into the

healthy test blades, similar fn-variability is present within the blades in each damage class. This is explored

in Section 3.3.4.

Figure 3.13: Variance in natural frequencies of damaged blades (Experiment vs. FEM)

It is evident that distinctive damage classes can be identified from the exclusive shift in fn as well as from

the large variances present per mode between different damage scenarios. It is clear that the variance in

natural frequency at Mode 6 is the best distributed for the damage scenarios with values of 30%, 12.5%, and

5%, respectively. It can be seen that the variance at Mode 12 is nearly equal for the damage scenarios or

classes with values around 11%. Consequently, it is obvious that the sensitivity to damage is significant at

all modes where the variance is greater than 3%. This is the maximum variance found in the healthy blades,

so any value around this is difficult to assess. Mode 12 displays a high sensitivity to damage, but the damage

classes are challenging or not possible to distinguish. However, Mode 6 delivers the best representation of

how distinct the sensitivity to damage can be.

The notch thickness parametric study confirmed that mass loss, in this case, can be disregarded in its effect

on ∆fn, and the assumption that m = 1 is accepted. This correlates with the statement above of k ∝ fn
2,

substantiating the sensitivity of fn to k and thus, to the worst-case damage scenarios near the root. In

the previous argument k was considered a function of material properties, however, in this case it can be

concluded that k is also a function of a simplified crack with negligible loss in mass. It was also determined

that the effect of geometrical variability was insignificant, thus the material properties are no longer a factor

and only the effect of damage must be considered in ∆k for ∆fn.

It is observed that the variation differs per mode, implying dependence on the vibration pattern and crack

orientation since different crack behaviour is expected from different mode shapes. This is explored in

Figure 3.14 and Figure 3.15. The behaviour of each feature differs to a degree, which can be attributed to

natural frequencies fn being affected differently regarding the mode shape, considering the different damage

cases. Note that the mode shapes are relative values associated with free vibration. This is due to the
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damage location that influences the stiffness k of the blade through allowing or restraining the crack to open

or close in a specific direction, and thus changing the mode shape for a specific mode. Agarwalla and Parhi

(2013) and Gillich and Praisach (2015), who found that the shift in natural frequency for a certain vibration

mode of a beam-like structure is dependent on the damage location, while the damage depth only amplifies

this event, supports this statement. This is due to the effect of the mode shape vector for a given location.

Research on damage detection by mode shape-based vibration analysis is available (Fan and Qiao, 2011),

confirming this argument. Based on these observations, it is possible to identify sets of values that uniquely

characterize the behaviour of the blade with a given damage. The following FEM mode shapes illustrate

this in which an arbitrary scale factor was applied for visualisation purposes:

• Mode 6, shown in Figure 3.14. This is the best example for damage distinction (implying damage

detection and identification). This is supported by the fully distinguishable variance of each class.

This suggests that the mode shapes are exclusive to each damage class. This mode will be used as

the representing example in Chapter 4 regarding the classification for healthy cases and its distinction

from damage classes. This will allow better understanding of the results.

(a) (b)

(c) (d)

Figure 3.14: FEM mode shape study to understand variances - Mode 6, a) Healthy; b) Damage Class 1 (root, upper
pinhole at leading pressure side); c) Damage Class 2 (base, trailing edge); d) Damage Class 3 (base, leading edge)

It is observed that the overall mode shape for each class is different with some similarities. The deformation

for Damage Class 1 varies the most from the healthy case, and is significant around the location of damage,

compared to the other classes. It is clear that this mode is more complex and more dynamic, which clarifies

why the variance is so high for this mode. The deformation for Damage Class 2 is also complex, but much

closer to that of the healthy blade. Large deformation is also present at the aerofoil tips. This explains why

the variance is second highest for this mode. When comparing the deformation of Damage Class 3 to the

healthy case, it can be seen that the shapes of these two classes are more similar when compared to the rest,

especially at the aerofoil tips and body. Thus, this variance is the lowest of the damage classes. The basic

pattern of deformation, observed in Figure 3.14, is described in Table 3.2.

Table 3.2: Basic pattern of deformation for Mode shape 6

Damage Scenario

Healthy Case Damage Class 1 Damage Class 2 Damage Class 3

Part Location
Edge (Side of Occurrence)

Trailing Leading Trailing Leading Trailing Leading Trailing Leading

Blade Root

Bottom Section x x x x x

Body (Finger) x x x x x x

Upper Section x x x

Aerofoil

Bottom Section x x

Body x x x x x x

Upper Section x

Tip x x x x x x x
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• Mode 12, shown in Figure 3.15. This is the best example for damage detection. This is supported

by the large variance of all damage, compared to the healthy case. This suggests that the damaged

mode shapes are exclusive from the healthy case. This mode will be used as the representing exam-

ple in Chapter 4 regarding the differentiation of healthy and damaged cases. This will allow better

understanding of the results.

(a) (b)

(c) (d)

Figure 3.15: FEM mode shape study to understand variances - Mode 12, a) Healthy; b) Damage Class 1 (root, upper
pinhole at leading pressure side); c) Damage Class 2 (base, trailing edge); d) Damage Class 3 (base, leading edge)

It is observed that the overall mode shapes of the damage cases are very similar, but that that they all differ

from the healthy case. This is especially so with Damage Classes 1 and 3, where Damage Class 2 is to some

extent more dynamic. When considering the aerofoil tips and the aerofoil, this likeness is apparent. This

explains why the variance for the damaged cases is so similar. However, it is clear that the mode shape for

Damage Class 2 is the intermediate between the damaged cases and the healthy case. The deformation is

largest in the healthy case, and is more dynamic than the damaged cases, sharing little resemblance. The

basic pattern of deformation, observed in Figure 3.15, is described in Table 3.3.

Table 3.3: Basic pattern of deformation for Mode shape 12

Damage Scenario

Healthy Case Damage Class 1 Damage Class 2 Damage Class 3

Part Location
Edge (Side of Occurrence)

Trailing Leading Trailing Leading Trailing Leading Trailing Leading

Blade Root

Bottom Section x x x x x

Body (Finger) x x x x

Upper Section x x x x

Aerofoil

Bottom Section x x x

Body x x x x x x x x

Upper Section x x x x x x

Tip x x x x x x

It can be concluded from the argument above that, the damage-sensitivity per mode differs, and that all fn

are prominent concerning damage-sensitivity. This is due to the location of the damage that plays a key

role as the extent of change in stiffness or crack breathing depends on the vibration pattern. The degree of

prominence for each mode can probably be determined to see which has the highest quality. This was not

explored in the study. The FEM mode shapes are merely representations of the expected experimental mode

shapes of which the acquisition was not included in the scope of work, owing to the reasonably well-modelled

scenarios. Formal methods of matching mode shapes are available (e.g. Modal Assurance Criteria) but

this is out of scope. The mode shapes were visually explored only to attempt to understand the observed

variances in the blades.
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From this, the different damage classes, compared to their healthy references, are assumed distinct. However,

a constant effect of geometrical variability and material properties per class is also assumed since this was

transferred to the damage classes. Hence, it can be anticipated that fn are more sensitive to damage than

geometrical variability or other sources responsible for the variation in the healthy blade response, and

thus its sensitivity to fn is high enough that the distinction of the damage classes can established. This

shows promise for the success in detection and identification of damage in using the natural frequencies as

a distinctive health status indicator. This, however, requires further investigation for a clear verdict.

3.3 Damage Trend in Blades

In this section, the trend in the change in natural frequency fn in the blade as a result of a specific damage

class or scenario is explored. This enables the evaluation of the validity and quality of the selected natural

frequencies and its sensitivity to damage.

3.3.1 Effect of Geometrical Variability on Damage Classes

The effect of geometrical variability on the damage classes is investigated in Figure 3.16 to prove the appro-

priate representation of the variance found in the healthy blades (Figure 3.16a).

(a) (b)

(c) (d)

Figure 3.16: Variance in FEM natural frequencies from geometrical variability found in healthy blades from, a)
Healthy Cases; b) Damage Class 1; c) Damage Class 2; d) Damage Class 3

It can be seen that the effect of the correctional grinding on the natural frequencies is minimal and very

similar, considering the absolute values. This is quantified for the damage classes on the trailing- and leading

edge just above the root (Damage Class 2 and 3) with −0.5% < ∆fn < 0.1%, and for the upper pinhole
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damage in the root (Damage Class 1) with −0.1% < ∆fn < 1%, compared to the healthy variance of

−1% < ∆fn < 0%. This is because this variability is not located at a critical area and does not noticeably

influence the mode.

The effect of the varying pinhole diameters on the natural frequencies is greater since it is located at a

more critical area. In Figure 3.16b, variances from the varying pinhole diameters are much larger with

−3% < ∆fn < 4% compared to the other damage classes with −0.5% < ∆fn < 0.5%. The latter is

equivalent to the healthy case with −1% < ∆fn < 0.5%. The former is due to the presence of the introduced

damage (in the upper pinhole of the root) and this variability is located in a critical area. This amplifies

the effect on the natural frequencies with more prominent influence on specific modes. Hence, the effect of

geometrical variability is reasonably constant and minimal with varying pinhole diameter having a larger

influence on the change in natural frequencies due to its location.

The total and steady effect of the geometrical variability as well as the damage scenarios on the healthy

case is shown in Figure 3.17, in which the experimental and FEM variances are compared. It can be seen

that the geometrical variability forms a narrow band around the damage variance as expected since it was

transferred from the healthy blades to the damage classes and is thus appropriately represented. Noticeable

variances, dependent on the vibration pattern and crack orientation, are evident for Damage Class 2 and

3 with −15% < ∆fn < 0% and Damage Class 1 with −30% < ∆fn < 0%. The amplification effect of the

varying diameter is clearly visible in the variance in Damage Class 1, which is best represented by the FEM.

(a) (b)

(c) (d)

Figure 3.17: Variance in natural frequencies from geometrical variability in healthy blades (Experiment vs. FEM),
a) Healthy Cases; b6) Damage Class 1; c) Damage Class 2; d) Damage Class 3
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3.3.2 Shift in Frequency due to Damage

The shift or change in the 14 natural frequencies for each damage scenario is shown in Figure 3.18, starting

at the first mode in a rising order. The magnitudes may not be constant for each type due to the geometrical

and inter-test variability; however, it is evident that a negative shift is observed for all modes in the damage

scenarios. Considering the superimposed shifts, it can be seen that a particular arrangement per natural

frequency is present within the damage classes. In this study, only the healthy and worst-case scenarios were

considered. This is mainly due to the limited number of blades available for proper representative results.

However, the following factors also contributed to this decision: Time constraints, the complex geometry

of the root, and the damage initiation location. These factors limited the damage induction procedure, as

the root geometry was difficult to access as well as reliably alter in a controlled fashion at the specified

location in the root. As crack propagation was not part of the scope of this research, the area between

the points in Figure 3.18 is unknown and a linear relationship cannot be assumed. This requires further

investigation. Unfortunately, no experimental results could be obtained for this unknown area. However,

this can be numerically explored with the reasonably well-modelled cases with some margin of error. This

is discussed in the next section.

Figure 3.18: Shift in fn (∆fn) for damage classes starting at the first mode in rising order

3.3.3 Numerical Damage Propagation

In this section, interest lies in what happens between the crack initiation stage and the worst-case scenarios,

i.e. the trend between a = 0 and amax. This was explored numerically through a parametric study in

which the notch length for each damage case was discretely varied. Only pure damage without geometrical

variabilities was considered. Due to the damage propagation and the complex geometry of the blade, the

parametric study could not consider all increments between a = 0 and amax. For Damage Class 1, the

crack was propagated from 0.2mm to 6.6mm in increments of 0.4mm. For Damage Class 2, the crack was

propagated from 3.1mm to 20.0mm in increments of 1.0mm. For Damage Class 3, the crack was propagated

from 1.6mm to 20.0mm in increments of 1.0mm. The original mesh settings were used for Damage Classes

2 and 3 but were adapted for Damage Class 1. An edge sizing function was added to the crack point to

properly capture the notch geometry. The initial crack length used in the FEM discrete crack propagation

parametric study for all damage cases are shown in Figure 3.19. The results for the worst-case scenarios

were discussed in Section 3.2.3 and were added to the damage propagation results as amax.
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(a) (b) (c)

Figure 3.19: The initial crack length used in FEM discrete crack propagation parametric study for, a) Damage Class
1 (a = 0.2mm); b) Damage Class 2 (a = 3.1mm); c) Damage Class 3 (a = 1.6mm)

Figure 3.20 shows the variance in natural frequencies from FEM crack propagation for discrete cases up to

the critical crack length amax of the worst-case scenarios. The FEM damage classes are compared to the

healthy FEM case. It is observed that the effect of damage on the healthy response intensifies as the crack

propagates. The larger the crack length, the more prominent and significant its effect on the variance. For

Damage Classes 2 and 3, it is evident that the variance in natural frequencies increases steadily as the crack

grows. However, this is not the case for Damage Class 1 as its variance-band is much narrower up until the

crack length approaches amax, where a sudden increase or spike is then observed for some of the modes. For

example, the maximum variance jumps from −11% to −30% for Mode 6. This is because of the location

of the damage, and as the crack has not fully propagated, the structural integrity of the blade finger has

not been fully compromised. However, when the full-crack stage is reached, a significant reduction in the

stiffness k of the blade finger occurs, and the crack can fully open and close. A gradual decrease in the blade

aerofoil stiffness k occurs with the crack growth for Damage Classes 2 and 3.

Figure 3.20: Variance in natural frequencies from FEM discrete crack propagation: ∆fn vs. ∆a for damaged blades

In Figure 3.20, it can be seen that the effect of Damage Class 1 on the variance is much smaller until the

crack is fully propagated, when compared to the Damage Classes 2 and 3. So in view of damage detection,

Damage Class 1 is more difficult to detect since the critical crack length amax is a 1/3 of amax of the other

two classes, i.e. 6.7mm compared to 20.0mm. This means that the size of the propagation increments is

also much smaller and thus, the detection is much more sensitive. Moreover, since amax is not considered as

failure but as the worst-case scenario preceding the failure, this sudden increase in the variance can possibly

be used as an alarm threshold. With critical crack length reached for Damage Class 1, the crack can fully
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open and close. This will result in the initiation and propagation of an additional crack on the opposite side.

Now the question is: What happens after this spike in variance as the crack continues to grow but on the

opposite side? This is explored below and demonstrated in Figure 3.21 and Figure 3.22.

From the statement above, it is argued that Damage Class 1 involves two stages, i.e. the initial cracking

case and the additional cracking case. In the first stage, the crack initiates and propagates at the 9 o’clock

position on the upper pinhole. In the second stage, the crack initiates and propagates at the 3 o’clock

position shortly after the first stage. Note that the first stage is considered as the worst-case scenario as

anything past this point will be closer to failure than progressing damage. Thus, the second stage is regarded

as failure since it will eventually lead to a complete separation of the blade finger from the blade root. This

is discussed in Section 3.2.1 in which static structural analysis was conducted on a cyclic symmetry section

of a stage 2 LP pinned turbine disk. This FEA was done to establish the most probable failure initiation

location on the blade root during operation. To avoid confusion, the first stage of Damage Class 1 will be

referred to as Damage Class 1, and the second stage will be referred to as Damage Class 1(2).

Figure 3.21 shows examples of additional FEM cases for discrete crack propagation of the root radial notch

at the upper pinhole. When only considering Damage Class 1 in Figure 3.21a, the critical crack length is

amax = a1 = 6.7mm. When considering Damage Class 1(2) in Figure 3.21b to Figure 3.21d, the critical

crack length is amax = a1 + a2 = 16.7mm, where a2 = 10.0mm. For Damage Class 2 and 3, the critical

crack length is amax = 20.0mm. The original mesh settings are sufficient for a quality mesh for these two

cases. Damage Class 1(2) was numerically explored through a parametric study in which the notch length at

the 3 o’clock position was varied. Due to the damage propagation and the complex geometry of the blade,

the parametric study could not consider all increments between a = 0 and amax. For Damage Class 1(2),

the crack was propagated from 0.3mm (6.73mm) to 10.0mm (16.73mm) in increments of 0.4mm. The mesh

settings from the propagation of Damage Class 1 were used, but the edge sizing function was now added

to the crack point at the 3 o’clock position to properly capture the notch geometry. In some places, the

mesh may not properly capture the geometry. However, since only the FEM trend will be explored and the

results will not be compared to their experimental counterparts, this error due to an insufficient mesh can

be disregarded.

(a) (b)

(c) (d)

Figure 3.21: Examples of discrete FEM crack propagation cases of the second stage of Damage Class 1 or Damage
Class 1(2), which includes full crack at 9 o’clock on upper pinhole (a1 = 6.7mm), a) a2 = 0.0mm (a/amax = 0.4);

b) a2 = 0.3mm (initiated, a/amax = 0.42); c) a2 = 5.5mm (propagated post midway, a/amax = 0.73); d)
a2 = 9.9mm (propagated almost fully, a/amax = 0.99)
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Figure 3.22 demonstrates the variance in FEM fn caused by discrete crack propagation. This is the same

results plotted in Figure 3.20, but for each mode and with different axes. The variance (y-axis) was trans-

formed into a log-scale (semi-log plot) and is plotted over the ratio of crack length and critical crack length,

a/amax (x-axis). The ratio a/amax normalises the crack length to allow comparison of all damage classes,

which have different critical crack lengths and propagation increments. The additional damage case, Damage

Class 1(2), is also shown.

From Figure 3.22, it is observed that the variance in natural frequencies increases as the discrete crack length

increases. This implies the stiffness k of the blade decreases as the crack propagates, and thus the natural

frequencies decrease as well. This decrease in k is a complex function and occurs differently for each damage

scenario. This means that the natural frequencies are also affected differently for each mode. For example,

in some instances, an exponential growth tendency is observed as in Mode 1 for Damage Class 1. In other

instances, a logarithmic growth tendency is observed as in Mode 1 for Damage Classes 2 and 3. Near-linear

behaviour is also observed as in Mode 3 for Damage Class 3, as well as a near constant gradient as in Mode

14 for Damage Class 1(2). Combinations of these behaviours are also apparent as in Mode 4 for Damage

Class 1(2), where exponential growth precedes logarithmic growth. Thus, it was correct to not make any

assumptions regarding the behaviour of the gradient between a = 0 and amax. Concerning the relationship

between Damage Class 1 and Damage Class 1(2), it is evident that the first growth stage of Damage Class

1(2) is equivalent to Damage Class 1 but on an altered x-scale as its amax differs. Thus, the earlier statement

made that Damage Class 1(2) comprises two stages, i.e. the initial cracking case and the additional cracking

case, is demonstrated by the observed trend. These two stages are easily identified for each mode where the

behaviour of the trend suddenly changes. This sudden change occurs where the crack from Damage Class

1 is fully propagated. This instant could only be detected in Figure 3.20; however, considering the trends

in Figure 3.22, it is confirmed that this spike can be used as a failure warning. At the failure point, where

amax = 1, complete separation of the blade finger occurs and a sudden drop in variance is observed. This is

due to a rise in natural frequencies because the system’s physical properties changed and thus its dynamic

behaviour will be different.
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3.3.4 Spatial Relation of Natural Frequencies for Damage Classes

The shift in fn per damage class for all modes is further examined in Figure 3.23. The distinct damaged data

is superimposed on the healthy data, allowing the change in natural frequency to be observed for a particular

blade as a consequence of damage. It is apparent that since the healthy data is consistent, a straight-line can

be fitted through the data points per mode. This would not be the case when considering all the damage

data, implying that the three separate ∆fn-cases should be considered. This is confirmed when individually

observing the different damage classes, finding that a straight-line can be fitted to each class per mode.

From this, it may be concluded that the consistency from the healthy data was transferred successfully

to the damage classes, suggesting that a difference between classes exists. Hence, the sensitivity of the

geometrical variability, considering the minimal mass loss, is very low in comparison with the sensitivity

of the unknown and possibly varying material properties, considering the stiffness, on the variance of the

healthy response. Therefore, very small differences in the healthy blades exist. The generated data for

the geometrical variability from the parametric study in Section 3.1.2 corresponds with this. Henceforth,

the experimental data and the unmodified explicit numerical cases with constant material properties are

considered in this study, as the variability of the experimental data, and thus its behaviour, could not be

properly captured with FEM.

Directing attention to the uniformity of the change in natural frequencies, i.e. fixed spatial relation of test

blades regarding frequency magnitudes, Figure 3.24 is considered. Herein, the shift in fn (∆fn) is viewed

from the zero-line, allowing a more detailed view and additional analysis of the magnitudes. Considering the

different modes, tracing the ∆fn-size and -location for a specific test blade, it is found that the spatial relation

is constant. For example, the minimum and maximum will remain as such after damage is introduced (see

Mode 11) and/or outliers will remain outliers. The normal distribution and mean values (µ, dashed lines)

for each class are also shown. An approximate straight-line fit is observed for each class, whereas this is not

the case when considering the full dataset. This implies that differentiation is possible between the damage

classes but not between the data points within each class. The distributions might be misrepresented due to

the limited size of the data set; however, the assumption is made that the normal distribution is regarded

above the data points to solve for this. The distance between the mean values allows separability of the data

to be established. This will be discussed in the next section.
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3.4 Conclusion

A feasibility study for vibration-based damage detection was conducted through a FEM study and was

subsequently investigated through experiments. First, the sensitivity of small geometrical variability present

in the healthy blades was experimentally explored to establish the variability in the healthy response so

that it can be used as a reference. Very similar results with a small variance were found. Then this

was investigated through FEM, confirming low sensitivity of change in natural frequencies to geometrical

differences. Additionally, the geometrical variability was identified as the secondary source of variability,

whereas material properties were identified as the primary source of variability since it leads to higher

sensitivity in the change in natural frequencies. According to Barthorpe et al. (2017), identifying and

allowing for sources of variability at an early stage will result in good generalisation of the classification

mode at a later stage. Next, the sensitivities of different damage scenarios at the most likely locations in the

blade were explored to establish the damage-specific response and prove that structural damage in different

locations does not cause the same shift in frequency. It was found that each scenario had a distinctive

response in which the variability from the healthy blades are appropriately represented in the damage

datasets with the varying pinhole diameter having a larger influence on the change in natural frequencies

than the varying correctional grinding depth. Since the generated data for the geometrical variability from

the parametric study was unable to properly represent the experimental trend, the experimental data and

only the unmodified explicit numerical cases are considered from this point forward. Lastly, the spatial

relation of shift in natural frequencies ∆fn and the test blades was explored to confirm the stability of

the feature sensitivity to individual damage scenarios. This result identified and confirmed the natural

frequencies as a suitable candidate discriminant feature for damage classification in the next chapter.
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Chapter 4: Damage Detection and Identifica-

tion
In this section, the means of damage detection and identification is explored according to Figure 4.1. Based

on the observations in Chapter 3, the set of natural frequencies (fn) was selected as the discrimination

feature, with the potential to distinguish between healthy and damaged blades. This feature is sensitive to

damage and is a low-dimensional noiseless feature. This feature was characterized (Step 1) by establishing

the distinctiveness of the effect of the input parameter on the natural frequencies to determine the feature

quality. This was done through defining the separability of data groups or classes. The data was visualised

in a one-dimensional space wherein the class distributions were studied. Hereafter, the data was visualised

in a two-dimensional space wherein the variation and clustering of the classes were investigated. In assessing

the feature quality, the decision of employing the natural frequencies as the discrimination feature for feature

classification can be made. In Step 2 of this approach, pattern recognition using supervised machine learning

with support vector machines (SVMs) is applied to recognize different class behaviour in a dataset. This

includes geometrical variability identification in healthy data, and damage detection and identification in

healthy and damaged data. In using this manually selected feature instead of the FRFs, the curse of

dimensionality is mitigated as the size of feature space was significantly reduced through transformation

from frequency domain to modal domain (FRF to fn), in which 14 peaks were extracted from 25 600

spectral lines per blade. This also reduced the noise in the signal. Thus, the effectiveness of the pattern

recognition method is increased.

Feature Characteristics

(Input parameter

exclusivity on fn)

Class Separability

Distribution

(1D Projection)

Variance & Clustering

(2D Projection)

Feature Quality

Geometrical

Variability

Identification

Damage

Detection &

Identification

Classification Procedure

Pattern Recognition (SML & SVM)

Classifier

Performance

Distinctiveness of Classes

Low-cost Model

(FEM training

data)

P?g

?

1 2

Figure 4.1: Approach to recognizing different class behaviour in datasets through classification using SML and SVMs

To assist in determining the outcome of the feasibility study, hypothesis tests are conducted. This approach

is borrowed from (Barthorpe et al., 2017). The following hypotheses were formulated by considering the

research questions in Section 1.3, the conclusions of Chapter 3, and integrating the approach in Figure 4.1.

This scheme was followed to establish an approach in separating damage from healthy data and identifying

different damage scenarios. In testing each hypothesis, a binary support vector machine (SVM) or its

extension for multiple classes was utilised for classification of the relevant data, where observations of each

class are available for training:

1. Geometrical variability can be effectively identified in normal healthy data, i.e. separate all

distinct healthy data groups from each other.
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2. Damage can be effectively detected in healthy- and damaged data, i.e. separate all data groups

different from the normal healthy data group.

3. Damage can be effectively identified in healthy- and damaged data, i.e. separate all distinct

data groups from each other.

The quality of the feature is explored in the first part of this chapter, which focuses on characterizing the

feature vectors to ensure that it meets the classification prerequisites (Step 1). The complete classification

procedure and results are discussed in the second part of this chapter (Step 2), where the hypotheses are

tested to deliver a verdict on the feasibility of vibration-based damage detection and identification for freely

supported pinned turbine blades.

Recall that inter-test variability is present within the results since all the tests were not conducted on the

same day and the healthy cases and that the damage classes were tested months apart, not to forget the

geometrical variability discussed in the previous section. This adds to the generalisation capacity of the

classifiers. Note that features of each class are available for training, damage refers to all damage classes,

and damage classes refer to single-location damage at different locations.

4.1 Data Characterization of Healthy and Damaged Cases

The experimental datasets or feature matrices ([fn]), used to develop the classifiers and test the hypotheses,

are sampled from 36 test blades or observations. Within each observation, 14 natural frequencies ({fn}) are

available, either in a healthy or damaged state, depending on the hypothesis. Natural frequency qualifies as

a discrimination feature because its sensitivity to damage is apparent. However, by comparing the feature

vectors or modes, a prominent damage-sensitive fn may be identified. In this section, the compatibility

and quality of these selected features, pertaining to each hypothesis, are evaluated through describing the

datasets.

The discriminant feature vectors are presented in a one-dimensional space to further explore the variability

in their spread and the separability between classes. Considering each feature vector {fn}, a generalised

description of the variance or behaviour of each class is provided. A normal probability distribution ranging

from minimum to maximum was assumed for each dataset due to the limited sample size that made it

difficult to capture the actual distribution. It was also assumed that no outliers are present. The data

is characterized to effectively describe the behaviour of the specific datasets by exploring the distributions

and separability between classes through data visualization methods. By doing this, the sensitivity study

results from Chapter 3 will be enhanced. This will also ensure appropriate conditions of the sets for the

hypothesis tests and classification regarding the separability of classes. To reduce the dimensions of the

feature vectors for a clearer verdict on separability between classes, the natural frequencies are projected to

a two-dimensional space to form distinct clusters, if obtainable. This means that the entries of the feature

vector will be plotted against each other as illustrated in Figure 4.2, which shows the new perspective of the

plotted feature vectors at a given entry.

Figure 4.2: Projection of feature dataset distributions into two-dimensional space at a given entry (Barthorpe, 2011)
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From Section 3.2.3 and Figure 3.13, it was apparent that the variance in natural frequency at Mode 6 was

the best distributed for the three damage scenarios with values of 30%, 12.5%, and 5%, respectively. It

was also evident that the variance was nearly equal at Mode 12 for the three damage scenarios with values

around 11%. From this, it is obvious that Mode 6 will deliver the best clustering results and Mode 12 the

worst. These two modes are used throughout this chapter, where relevant, to illustrate the discussions to

follow. Therefore, for all two-dimensional visualisation plots to follow, Mode 6 will be fixed and thus be the

independent variable, and the other modes will vary and thus be the dependent variables.

4.1.1 Healthy Blades

The first dataset consists of only healthy data distributed into four groups of 11, 10, 9, and 6 blades that

contain combinations of the geometrical variability, i.e. the presence of grinding and size of the tapered

major pinhole diameter (minimum or maximum). These groups are assigned a No Grind or Grind condition

and a Min D or Max D condition (see Section 3.1 and Appendix B). The first hypothesis, i.e. identification

of geometrical variabilities in healthy blades, will be tested with this dataset. From the observations in

Chapter 3, a small variance in the natural frequencies is present within the healthy blades due to geometrical

variability. This would suggest similarity of these results. To verify this assumption, the distribution of the

natural frequencies for each class is explored as well as the possible separability of these distributions in

Figure 4.3 in which the possible separation of these distributions is considered.

It is evident in Figure 4.3 that the data points are spread at random and that distances between the mean

µ (dotted line) of each class are small, resulting in almost total overlap of the distributions for all features.

This makes it extremely difficult to visually separate the classes, and it is anticipated that this would

be the case even when projecting to a higher dimension to allow a different perspective of the datasets.

This uncertainty or ambiguity is due to the limited size of the datasets and the feature’s low sensitivity to

geometrical variability in the blades. This confirms the similarity of healthy blades, as the results are closely

matching. This is corroborated by the healthy FEM falling either within or on the tail of the distribution,

depending on the model validation error, relating the experiments and the FEM. The mean of the healthiest

cases also falls around the centre of the total distribution, confirming that the selected cases are adequate

in representing the healthy reference or benchmark.
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To reduce the dimensions of the feature vectors for a clearer verdict on class discrimination, the natural

frequencies are projected to a higher-dimensional space to form distinct clusters, if obtainable. With a

numerical model, a single blade can be modelled and replicated, resulting in multiple blades identical in

geometry, material composition, and all points of contact. However, in reality this is not the case as each

of these three parameters are inherently affected by a small variation, resulting in the experimental natural

frequencies to fall within a range about a mean value in an ambiguous cluster (Dewey and Lam, 2008). This

is illustrated in Figure 4.4.

Figure 4.4: An example of the expected variance in the first and second natural frequencies of healthy blades (Dewey
and Lam, 2008)

It is expected that similar state of health cases will closely follow the example above, in which it is evident

that where the distribution of the two classes overlap, it will be very difficult to separate the scattered data.

Moreover, that distinct state of health cases will render separable clusters of the former, each with natural

frequencies falling in their respective ranges about its mean. Hence, the clusters from the healthy cases as

well as the damage classes should behave as described above when considered individually.

The argument based on Figure 4.4, is indeed the case for the healthy data, as illustrated in Figure 4.5, The

expected variance in natural frequencies for healthy blades, obtained from experiments and FEM, are shown

in a two-dimensional space. Two separate clusters are observed, the FEM and the experimental frequencies.

The distance between the experimental and FEM clusters are equivalent to the model validation error. This

agrees with the two neighbouring clusters observed in Figure 4.4. Thus, when considering the scale of the

feature space and this distance, the FEM is insufficient in describing the experimental geometrical variability

and supports that the primary source of variability requires further investigation (see Section 3.1). However,

it is sufficient in describing the general behaviour of the experimental datasets from the same state of health.

This presents further evidence of the selected feature’s low sensitivity to geometrical variability and increases

the chance of its higher sensitivity to damage, and thus enhancing its discriminative capability.
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4.1.2 Damaged Blades

The second dataset consists of healthy and damaged data and comprises three equally sized groups that

represent the designated damaged scenarios so that the particular blades can be compared, i.e. the damaged

blade to its healthy counterpart. To ensure that these groups have a similar healthy variance in natural

frequencies, the healthy blades were divided according to consistency of geometrical variability (see Section

3.2 and Appendix B). The three damage scenarios are assigned labels Damage Classes 1–3 and are a 1mm

uniform notch on the root at 1) the upper pinhole on the leading pressure side, and just above the root on

2) the trailing- and 3) the leading edge. The second and third hypotheses, i.e. detection and identification

of damage blades, will be tested with this dataset. From the observations in Chapter 3, distinct variances in

the natural frequencies of the damaged blades exist regarding the introduced damage scenarios. This would

suggest distinction of these results. To verify this assumption, the distribution of the natural frequencies for

each class is explored in Figure 4.6 in which the possible separability of these distributions is considered.

It is evident in Figure 4.6 that the data points are grouped in an arbitrary pattern and that distances between

the mean µ (dotted line) of each class, in most cases, are large. This results in slight or larger overlapping

of the distributions for some features. This makes it very possible to visually separate the classes, and it is

anticipated that this would be the case especially when projecting the vectors to a higher dimension to allow

a different perspective of the datasets. Even though the datasets have a limited size, it can be concluded

that a difference or distinction between healthy and damaged blades exist, as well as between the damage

classes. The FEM damage classes fall either within, on the tail of, or close to the distribution, depending on

the model validation error. This supports the indirect comparison between experiments and FEM for the

damage classes. Note that even though some FEM results are outliers since they do not fall close to their

respective classes (e.g. Mode 7) and cannot be successfully separated, the possibility of separation and thus

definitive clustering with its experimental counterpart in a higher dimension still exists.
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Figure 4.7 illustrates an example of projecting vectors to higher-dimensional space in which it is observed

that the scattered data form three clusters. The dataset contains three classes. In some case, the three

clusters are well separated, while in other cases, overlapping of some clusters occurs (Pawar and Jung, 2008).

It is also seen that a small variation is present in each cluster, and that the data points fall within a range

about a mean value.

Figure 4.7: An example of clustering of three damage classes in two-dimensional space (Pawar and Jung, 2008)

It is expected that if different state of health cases is separable, the behaviour of the data will follow the

clustering as in the example above. It is clear in Figure 4.7 that, where the distribution of two classes

overlap, it will be very difficult to separate the scattered data. However, separation of distinct clusters will

be less problematic.

The explicit clustering of the natural frequencies in a two-dimensional space is shown in Figure 4.8 in which

four separate clusters are observed. This confirms the suitability of the feature and presents further evidence

of the selected feature’s high sensitivity to damage, thus enhancing its discriminative capability. Considering

the scale of the feature space and the excellent separability of classes, direct comparison of the experiment

also seems likely as the FEM falls close to the experimental clusters (the distance is equivalent to the model

validation error). It is observed that the FEM falls within or close to the cluster bounds for all classes at

most modes except for Mode 7, where Damage Classes 2 and 3 is out of bounds. Considering Damage Class

1, it is evident that the behaviour of the test data is properly represented by the FEM, particularly at Modes

4, 6, 9, and 11–14. This is best demonstrated at Mode 11. The scatter of the remaining FEM classes is

insufficient in capturing the behaviour of their test counterparts. This suggests that numerical data could

be used to supplement the experimental data or even substitute it for training data to predict the expected

behaviour and classification of a damage scenario, which is reliant on the scatter of the datasets. However,

this requires further investigation through an extensive numerical study. This includes parametric studies

for geometrical variability and material properties to properly capture the spread and behaviour of the data.

This is required since discrepancies in the model can hinder the outcome of the proposed method if not

thoroughly understood, making this a risky suggestion. If this is pursued, it will allow fewer experiments

for fewer damage scenarios to be required and thus possibly overcome a drawback of supervised machine

learning. This will be discussed in Section 4.3.3. This extensive investigation is not part of the present scope

of work. Hence, only experimental data will be used in the classification procedure to follow.
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According to (Barthorpe, 2011), the discriminative ability between healthy and damaged cases, as well as

between damage classes, of the selected feature influences the success of the classifier. He assessed the

strength of his selected feature by considering four criteria specific to his work. Thus, they are not worth

mentioning. However, by considering these criteria, and the observed behaviour of the datasets in Figure 4.6

and Figure 4.8, the following remarks were noted in reference to this study. These remarks justify and

increase the suitability of natural frequency as the discrimination feature:

1. The feature is sensitive to the introduced damage. From the separability of the datasets, it is clear

that distinctive clusters for each damage class exist.

2. The feature vectors for a specific class contain consistent values between tests per blade, i.e. inter-

test variability, where the feature vectors between classes or blade sets contain opposing values. The

consistent feature vectors in each class increase the robustness of the feature. Both these observations

increase the distinct clustering of classes.

3. The visual separation of classes is increased by projecting the feature vectors into a higher dimension

to explore their distributions. This also decreases the possibility of outliers. Note that this should be

analysed thoroughly by considering all feature vectors, i.e. the different modes. This is demonstrated

by examining the increase in separability of classes in Mode 7 from Figure 4.6 to Figure 4.8.

Now that confidence in the suitability of natural frequency as selected discriminant feature has been estab-

lished, damage classification (i.e. detection and identification) through employing this feature in statistical

pattern recognition can be pursued. It is observed that the natural frequencies qualify as a quality selected

feature as they have the capacity to adequately discriminate between damage states. Features with these

attributes are central to statistical classification using SVMs (Barthorpe et al., 2017). Note that the highest

quality feature vector can probably be determined by considering the degree of prominence for each feature

vector. However, this was not explored in the study.

4.2 Classification Procedure

A multi-class support vector machine (SVM) is considered for the feasibility study and discussed in this

section. A similar approach and method was employed by other authors such as Yang and Widodo (2008)

as well as Yin and Hou (2016), who discussed recent advances on SVM-based fault diagnosis and process

monitoring in components and equipment used in complex industrial processes. These authors describe the

general application of the approach. Barthorpe et al. (2017) focused on detecting multi-location damage

with an effective and well-developed classifier, requiring only single-location damage training data to classify

multi-location damage. In this study, only the application of a default SVM classifier without modification

is of concern, and not its detailed development for optimization. Thus, neither classifier optimization nor

a hyperparameter study was conducted. The regularization values were obtained by trial-and-error and are

kept constant during the validation phase, leaving the training set as the only variable in the accuracy of

the classifier. Values that rendered an acceptable probability of correct classification were selected. The

classification procedure is illustrated in Figure 4.9.

To investigate the hypotheses introduced at the start of this chapter, two identical classifiers, discussed in the

following section, are built and tested for each hypothesis. The first is trained on the healthy dataset, which

consists of different observations of defect combinations or geometrical variability. The second is trained on

the healthy dataset in comparison with the different damage class datasets, consisting of healthy and different

damage class observations. The classifier parameter values are prescribed by the training set, whereas the

success of the developed classifier is verified, for an independent set of observations, by the validation set. All

feature vectors {fn} comprising 14 entries each, are used during the training and validation phases. Thus,

for adequate classification results, the limited size of the dataset will not be a problem if each class holds

strong support vectors that are capable of describing the respective class behaviour.
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Figure 4.9: Classification Procedure

The cross-validation method was applied to examine the accuracy of the resulting fitted model. It was

selected to ensure minimal loss in modelling or testing capability since insufficient data is available for

partitioning into separate training, validation, and testing sets. This is also the most popular method to

ensure optimal regularization parameters (Santos et al., 2016). The procedure entails a random holdout

sample proportion specified as the validation set (comprising 30% of the original set), whereas the rest is the

training set (comprising the remaining 70% of the original set). During the validation phase, the classifier

performance is calculated as the correct prediction rate of the classifier for a sequence of iterations, each

with a new independent training set of previously unseen observations (Santos et al., 2016; Barthorpe et al.,

2017). Depending on the size of the dataset, repeating sets may occur.

Since the original datasets are small and the mapped classification plot serves only as a visual representation

of the classifier performance, the best model obtained in cross-validation per class for each classification were

selected to obtain the highest quality depiction. This has no influence on the classifier performance. The

mapped classifier plot is also easier to interpret than the performance plot. In the case of a larger dataset,

a non-overlapping testing set can also be allocated. Note that the classification was executed for all 14

feature vectors except for where the projected feature vectors are equal (i.e. where Mode n = Mode n). For

the classification results to follow, the first feature vector is constant (Mode 6, on x-axes) and the second

varies (Modes 1− 14, on y-axes). This is because of the perfect separability of the class clusters in Mode 6

(see Figure 4.8) that ensures a strong foundation for excellent classification results. The computed classifier

accuracy for each mode will also be in reference to this combination.

4.2.1 Classifier Structure

This study employs non-linear multi-class support vector machines (SVMs), comprising a combination of

One-versus-All (OvA) binary SVMs, for damage detection and identification. The classifiers were built us-

ing the MATLAB Statistics and Machine Learning Toolbox and Bioinformatics Toolbox pertaining to SVM

classification. The classifier structure is based on the binary SVM extended to the multi-class problem. In

the classifier, the predictor data is standardized and the radial basis function (RBF) kernel is used. The reg-

ularization or hyperparameters, used to help prevent over-fitting to the training data, for the employed RBF

kernel are: radial basis kernel width (’KernelScale’), α = auto; and the misclassification tolerance parameter

(’BoxConstraint’), C = 15. These values were obtained by a trial-and-error approach for best performance
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to ensure an appropriate balance between the calculation complexity and the separation error (Gryllias and

Antoniadis, 2012). This application of the SVM supports low-dimensional or moderate-dimensional datasets.

Both classifiers consist of four binary SVM classifiers and have the objective of detecting and identifying

discriminant classes from their input feature vectors. The classification occurs in two-dimensional space, in

which the optimal separating hyperplanes or decision boundaries between classes are displayed. The correct

classification rate, a property of the classifier performance object, of each classifier per iteration is plotted

to obtain the feature set’s discriminatory performance.

4.2.2 Approach to Address Degree of Over-fitting and Uncertain Regions

The background of classified regions was shaded through classifying a fine grid’s coordinates, which were

used as new observations from the training data’s distribution. Note that the more dispersed the class

from its training samples, the broader the surface, and thus certain background regions are assigned a

class. To obtain an unambiguous answer, every region of the plot must be assigned to a specific class, even

if no training samples are present at a specific location. Hence, the employed multi-class SVMs attempt

to assign samples into one of the respective designated classes with some degree of over-fitting. This is

illustrated in Figure 4.10a. This degree of over-fitting is dependent on the distances between the number of

discrete populated areas or clusters on the classification map. The optimal separating hyperplane or decision

boundary, which maximises the margin between the nearest points (i.e. support vectors, SVs) of different

classes, between classes is determined from these distances.

To compensate for the degree of over-fitting, a perimeter that is based on an elliptical distribution, which

generalizes the multivariate or joint normal distribution, was constructed around each class to place emphasis

on these specific regions. This is illustrated in Figure 4.10b, in which the transitions between classes, which

are uncertain classification regions, are also indicated. The centre of the perimeter is calculated as the

means of the training data (µA,µB), and the radii of the perimeter is calculated as 3 standard deviations

of the training data (RA,B = 3σA,B). This ensures that 99.73%, i.e. µ ± 3σ, of the data is represented by

the perimeter. This adds a confidence level to the captured concentrated area, solving the problem of the

uncertain classification regions, limited data, and limited classes. This implies that all data points inside

these perimeters should be considered as true observations above the outside areas without any observations

that are bound by the borderlines. This simplifies the interpretation of results when adhering to these

perimeters. This implemented idea is derived from one-class support vector domain description (SVDD),

which attempts to find an enclosing circle in the original space (or hypersphere in kernel space) of a class

rather than finding class separation lines in the original space (or hyperplanes in kernel space) (Brereton

and Lloyd, 2010). This method is illustrated in Figure 4.10c, using σ = 2 of each class SVs.

(a) (b) (c)

Figure 4.10: Example of decision boundaries for, a) Multi-class SVM showing some degree of over-fitting (Schmidt
and Heyns, 2019); b) Regions of concern based on true observations, showing uncertain classification regions
indicated by question marks (?) (Schmidt and Heyns, 2019); c) One-class support vector domain description

(SVDD) with σ = 2 of each class SVs indicated by symbols with crosses (+) (Brereton and Lloyd, 2010)
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Both classifiers were presented with a hypothesis-specific dataset, i.e. a dataset relevant to the scope of the

hypothesis test, comprising a validation and training set, with both containing the same class labels. Each

classifier was validated using the same procedure to establish its generalization or accuracy, which is used to

support the outcome of each hypothesis test along with its actual classification.

4.3 Classification Results

4.3.1 Hypothesis Test I - Geometrical Variability Identification

The first hypothesis stated that geometrical variability could be effectively identified in normal healthy data,

i.e. separate all distinct healthy data groups from each other. This hypothesis is tested using Classifier

1, and the healthy geometrical variability dataset. The healthy observations with geometrical variability

comprise four classes of 11, 10, 9, and 6 observations labelled as 1) No Grind, Min D; 2) Grind, Min D; 3) No

Grind, Max D; and 4) Grind, Max D. These labels come from combinations of the presence of correctional

grinding on the root, and the sizing of the major pinhole diameter (minimum or maximum). Classifier 1 is

trained using (Dataset 1)train, i.e. respective class observations of 8, 7, 6, and 4; and tested using (Dataset

1)test, i.e. respective class observations of 3, 3, 3, and 2. Note that the combination of the number of classes

and the limited number of observations already restricts the classifier even before its execution, imposing

a questionable performance that will result in an ambiguous mapping of the predictor data and low and

inconsistent classification accuracy. The classification is mapped in a two-dimensional space in Figure 4.11,

and its accuracy for all iterations is shown in Figure 4.12.

From Figure 4.11, it is evident that the classification of the geometrical variability in healthy blades failed.

In all modes, the disorder and worthless decision boundaries, which have no predictive power, indicate this

failed attempt in identifying defects in healthy blades. This is caused by the bad separability of the different

classes (see Section 4.1.1) and the inadequate support vectors available for each class. This is due to the

limited number of observations for each class that are incapable of describing the behaviour of the respective

class. It is observed that many ambiguous islands (kernel decision boundaries), without a recognisable

pattern, exist. This is due to excessive over-fitting of the classes, which delivers an inconclusive answer.

Regarding the perimeters, which were constructed to address the over-fitting issue, it is clear that they were

unsuccessful in concentrating the classification regions to consider. In most cases, these perimeters capture

a large portion of the whole classification map. The wide scatter of each class causes this.

In Figure 4.12, it is observed that the overall discriminatory performance of Classifier 1, in most cases, for all

classes is between 50% and 80% with an all-class average of about 70%. The explicit class accuracy can be

derived from the classification mapping in Figure 4.11, in which inconclusive identification is observed. From

both these outcomes, it can be understood that the accuracy in differentiating between explicit classes are

very low. With the One-versus-All (OvA) approach, the overall accuracy of the classifier is calculated and

not the classification accuracy of explicit classes. The overall classifier accuracy depends on the quality of the

training dataset. This is because the classifier predicts the class of all test data and then compares it to an

explicit class. This high misclassification rate for all feature vectors can be ascribed to their low sensitivity

to geometrical variability, and the damage-sensitive nature of natural frequencies, noted in Chapter 3.

The performance of the constructed SVM, used to evaluate the first hypothesis, demonstrates that it can-

not detect and identify defects, i.e. geometrical variability. Thus, the first hypothesis is rejected. This

implies that the healthy classes are very similar and cannot be distinguished. This agrees with the am-

biguous classification results. Considering this conclusion, it is anticipated that similar classes will behave

correspondingly.
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4.3.2 Hypothesis Tests II and III - Damage Detection and Identification

The second and third hypotheses are evaluated simultaneously using Classifier 2, and the healthy and

damaged dataset. The second hypothesis stated that damage could be effectively detected in healthy- and

damaged data, i.e. separate all data groups different from the normal healthy data group (essentially a

two-class SVM). The third hypothesis stated that damage could be effectively identified in healthy- and

damaged data, i.e. separate all distinct data groups from each other. These hypotheses can be assessed in

conjunction because the second hypothesis will automatically be accepted if the third hypothesis is accepted.

This is because success in damage identification implies success in damage detection, which is a prerequisite

to damage identification. However, this is not the case vice versa because if damage can be detected, it does

not necessarily mean that the damage can be identified. Thus, the outcome of testing the third hypothesis

will deliver the verdict on the acceptance of both hypotheses.

The healthy observations, which are now the overall geometrical variability data, comprise one class of 36

observations, and are labelled as Healthy Cases. The damaged observations comprise three equal-sized classes

of 12 observations each and are labelled as Damage Classes 1-3. Classifier 2 is trained using (Dataset 2)train,

i.e. 24 healthy observations with 8 damaged observations damage per class, and tested using (Dataset 2)test,

i.e. 12 healthy observations with 4 damaged observations per damage class. The classifier is substantially

less restricted compared to Classifier 1. This is due to Dataset 2 being double the size than the dataset on

which Classifier 1 was trained, and that the separability of its classes is much more significant (see Section

4.1.2). This imposes a noteworthy performance that will result in a highly encouraging mapping of the

predictor data and classification accuracy. In addition, due to the relative high degree of separability of the

data, the quality of the classification will not be affected by the kernel options and regularization parameters

(Barthorpe et al., 2017). The classification is mapped in a two-dimensional space in Figure 4.13, and its

accuracy for all iterations is shown in Figure 4.14.

From Figure 4.13, it is apparent that the classification of damage was very successful. The well-separated

clusters and decision boundaries, with adequate predictive power, indicate the successful attempt in damage

detection as well as damage identification. Even though (Dataset 2)train is only slightly larger than the

training set used for Classifier 1, four distinct islands (kernel decision boundaries) are observed. This is due

to the excellent separability of different classes as strong support vectors for each class are available, which

can successfully describe the behaviour of the respective class. A conclusive answer is found even though

some degree of over-fitting is present. It is observed that the perimeters, which were constructed to address

the over-fitting issue, effectively capture the population of each class, and thus the uncertain regions can

be disregarded, and emphasis can be placed on these concentrated regions. Considering the scale of the

mapping, it is clear that the narrow scatter of each class and the distances between the classes, contribute

to the classifier performance.

In Figure 4.14, it is observed that the overall discriminatory performance of the classifier, in most cases, for

all classes was 100% with an all-class average of almost 100%. A slight discrepancy is present in Mode 11,

with values between 95% and 100%. This agrees with the slight overlapping of all classes seen in Figure 4.6.

The explicit class accuracy can be derived from the classification mapping in Figure 4.13, in which definitive

identification is observed. Hence, the classifier performed exceptionally well in differentiating between explicit

classes, with zero misclassification for all feature vectors. This can be ascribed to the damage-sensitive nature

of the natural frequencies, noted in Chapter 3.

The performance of the constructed SVM, used to evaluate the third hypothesis, demonstrates that it can

most certainly identify different damage classes. Thus, the third hypothesis is accepted. The classifier

performance also implicitly shows that damaged data can be distinguished from healthy data. Thus, it was

correct to assume that if the third hypothesis is accepted, the second hypothesis must also be accepted. This

implies that if damage can be identified, it must first be detected. This validates the feasibility of damage

detection and identification using natural frequency as the discriminant feature in SVMs.
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4.3.3 Damage Classification using FEM as Training Data (Low-cost Model)

The structure and objective of this classifier is identical to that of Classifier 2. The training data in this case

consist of only FEM data (i.e. 260 observations), while the test data is all experimental data or Dataset 2 (i.e.

72 observations). This is an important test of the potential to use lower-cost training data. Both datasets

contain a healthy class and three damage classes, which are labelled accordingly. The FEM data comprises

four equal-sized classes of 65 observations with one class healthy and three classes damaged, whereas the

experimental data comprises one class of 36 healthy observations and three equal-sized classes of 12 damaged

observations.

Considering the scale of the mapping and the separability of classes, an encouraging classifier performance is

expected that will result in successful mapping of the predictor data. This, however, depends on the distance

between the experimental and FEM clusters (FEM validation error) for if the unseen test data and FEM

support vectors are too far apart, the decision boundaries will be insufficient. This is because the FEM

support vectors are inadequate in describing the behaviour of the experimental classes. Thus, the more

accurate the representation of the experimental results by the FEM, the more likely the success of damage

detection and identification using FEM as training data, especially at the damage classes. The classification

is mapped in a two-dimensional space in Figure 4.15. It is expected that where the FEM validation error is

the smallest per mode, the classification will be very successful, indicated by the well-separated clusters and

decision boundaries with adequate predictive power. Note that a FEM model validation was only conducted

on the healthy blade, and that the resultant validation errors were assumed to be transferred to the FEM

damaged blades without any change.

The discriminatory performance of the classifier, in most cases, for all classes was very high (e.g. Modes 8

and 12). However, in some cases the discrimination was very poor with respect to an absolute failure (e.g.

Modes 5 and 7). The misclassification of feature vectors is due to FEM results that are unable to describe

the experimental data. This restricts the classifier. It is also observed that the constructed perimeters are

dependent on the distribution of each FEM class. This is evident in Figure 4.15 when considering Damage

Class 1 for Modes 4-5 and Modes 8-13, where Modes 11 and 13 deliver the best result. With all the other

modes and FEM classes, the insufficient representation of the real data limits the distributions. Thus, as

mentioned previously, this is a risky suggestion since not all modes deliver the desired results. However,

when considering the overall modes and not only explicit modes, the classification is effective, and thus FEM

data can be used for training. Problems may arise if the classification mapping is further populated with

other damage scenarios as overlapping of classes may occur and classification regions become smaller.

It is recommended that FE model updating, using experimental values as parameters, be incorporated to

better the current outcome so that a closer representation of the real-world can be achieved. However, since

only the healthy results will be easily available, it is proposed to first update the healthy blade and then

transfer the properties to the damage models before updating all models. A level of uncertainty will remain

since only the healthy blade will be a close representation of the real-world. If the accuracy is adequate,

experiments on only the healthy case will be required. Obtaining training data that contains information

higher than Level 1 (qualitative damage detection) of the structural damage identification hierarchy is

perhaps the biggest obstacle in applying pattern recognition for damage identification (Worden and Manson,

2007). This can overcome a drawback of supervised machine learning and can possibly save on time and

costs on acquiring the experimental data.
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4.4 Conclusion

A multi-class SVM was proposed to assess the feasibility of damage classification using natural frequency as

the discriminant feature. To confirm the validity of this proposal, it was first necessary to confirm the low

sensitivity of the feature to geometrical variability to justify the consistency of the healthy blades. This was

followed by confirming the high sensitivity of the feature to specific single-location damage to establish the

signature behaviours. However, the location of the damage plays an important role since the extent of the

change in stiffness (crack breathing) is dependent on the vibrational pattern (illustrated by the mode shapes).

This was done by characterizing the datasets by exploring the distributions of the healthy classes as well as the

damage classes. Additionally, the clustering of the feature vectors in two-dimensional space for the healthy

cases and damage classes was also done to further explore the separation between classes so that a clearer

verdict on the suitability of natural frequency as discrimination feature could be delivered. Confidence in the

suitability of natural frequency as discrimination feature was found from the class separability and the small

variation in each case. It was observed that the experimental frequencies fall within a range about a mean

value in an ambiguous cluster for a specific class, and that distinctive cluster(s) form when the healthy- and

damaged data were compared. However, a more powerful differentiation in a higher dimension was required

to reinforce the outcome of the evaluation and quality of the selected feature. This was necessary to verify

the resultant damage-specific behaviour and separability of dataset distributions.

The investigation was coupled to testing of hypotheses that were evaluated through classification given an

appropriate discriminatory feature set to enable a clear approach in obtaining an answer. The first hypothesis

stated that geometrical variability could be effectively identified in normal healthy data, i.e. separate all

distinct healthy data groups from each other. This was rejected as the healthy blades were found to be

similar due to the low sensitivity to geometrical variability of natural frequencies. The first classification

failed with only 50−80% of the healthy classes being correctly classified. From the mapping, it was also clear

that the answer was ambiguous. The second hypothesis stated that damage could be effectively detected

in healthy- and damaged data, i.e. separate all data groups different from the normal healthy data group

(essentially a two-class SVM). The third hypothesis stated that damage could be effectively identified in

healthy- and damaged data, i.e. separate all distinct data groups from each other. The third hypothesis was

accepted as the damaged blades were found to be distinct from the healthy blades, implying that the second

hypothesis must also be accepted since detection of damage is a prerequisite to damage identification. The

second classification was very successful as 100% of all three damage classes, including the healthy cases, were

correctly classified. This was confirmed through the unambiguous mapping. The results are very similar for

all feature vectors even though Mode 6 was used to illustrate the outcomes (see Appendix D).

The SVM approach has the capacity to attain explicit classification results by directly recognizing underlying

patterns within a small training set. This is because the support vectors hold the essential information,

which describes the behaviour of a respective class, required by the classifier. Thus, it is computationally

efficient as the rest of the dataset can be discarded. From this, the outcome of the hypothesis tests was

only positive in the cases where the discriminant feature was strong enough, i.e. sensitive to damage. Thus,

the low-sensitivity of natural frequency to geometrical variability resulted in a rejected hypothesis; whereas

exceptionally high classification correction rates were obtained for the high-sensitivity of natural frequency

to different types of single-location damage, resulting in the acceptance of the other two hypotheses. It

was also observed that the geometrical variability in the blades enhanced the generalization capability of the

second classifier to emphasise its discriminative ability to classify distinct damage scenarios according to their

damage-specific behaviour. This is because the damage population comes out of the healthy population.

The problems regarding the limited sizes of the datasets, the limited number of classes, and over-fitting

were addressed by adding perimeters around the mean of each of the training sets to include 99.73%, i.e.

µ±3σ, of the data points. A concentrated region or cluster was created per class to regard above the limited

data points for an unambiguous answer and to better interpret the classification results. Additionally, a
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low-cost model that uses only FEM data as training data and test data as unseen observations was explored

in an effort to prove that numerical modelling and model updating can contribute to the proposed approach

by overcoming the drawback of limited datasets and expensive testing. This concludes the success of the

feasibility study on vibration-based damage detection for removed freely supported individual turbine blades

and establishes proof of concept.
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5.1 Conclusion

In this dissertation, the feasibility of a vibration-based structural damage identification method for un-

mounted individual pinned turbine blades was assessed, utilising natural frequencies fn as a damage indi-

cator and incorporating into multi-class support vector machine classification as discriminant feature. This

was done to investigate the potential of using such an approach in support of conventional NDT for off-site

inspection of installed turbine blades. It is necessary to be able to perform damage detection on installed

blades as removal and reinstallation of blades is too expensive. However, this real practical problem is too

complex at this stage, holding too many unanswered questions, and thus a simplified problem is presented

to establish basic principles. In the simplified problem, only uninstalled individual turbine blades are con-

sidered to solve a part of the real-world problem. Experimental data and numerical modelling were adopted

as confirmatory and predictive means to enable statistical modelling for damage classification using damage-

sensitive features. This serves as a prologue to the development of the methodology for application to the

real-world problem.

The necessity of increasing the capability of decision-making of current NDT regarding structural integrity

of blades, specifically the roots, was outlined in the literature review. The fundamentals behind global

vibration-based methods were explored including their application value from employing damage-sensitive

properties, which is ascribed to changes in stiffness from a breathing crack. The means of extracting the

modal properties was also discussed of which natural frequencies are easiest and more accurate to acquire

from the measured signal. In addition, since variation in the modal properties is brought on by changes in

the physical properties, it can be used as a damage indicator by comparing the frequencies before and after

damage, concluding that pattern recognition can be employed as a means for damage detection.

In the experiment, a highly reliable freely supported free vibration modal analysis procedure was devised

to ensure accurate, repeatable, and comparable results. This was first implemented on individual healthy

discarded blades to obtain experimental data and establish a reasonably well-modelled blade. Since only FE

model validation was done and not FE model updating, direct association between the experimental and

numerical cases is not possible, but the relation of behavioural tendencies of the vibration responses can be

established. Finally, the experimental set-up was implemented on the different damage scenarios, near or on

the root, introduced in these blades to obtain experimental data for a pattern recognition problem.

A sensitivity study was conducted to establish the input parameter significance on the natural frequencies

(fn). The study concluded that geometrical variability in the root retains low sensitivity and material

properties retain a higher sensitivity. It was found that the introduced artificial damage, near or on the

root, retain the greatest sensitivity with a distinctive nature. This also established the natural frequencies

fn as discriminant feature in the pattern recognition problem. These damage scenarios were modelled

separately to confirm and predict the expected behaviour of the vibration response, including the variance

in fn concluded by geometrical variability. The three worst-case single-location damage scenarios at the

most probable locations were obtained from literature and discussions with industry experts, and were a

machined through-thickness 1mm uniform notch on the root at 1) the upper pinhole on the leading pressure

side (verified by static structural analysis), and just above the root on 2) the trailing- and 3) the leading edge.

The feature objectivity or independence was confirmed from the damage trend on the natural frequencies

caused by the input parameters, in which only the test blades were considered to examine the consistency in

the shift in natural frequency (∆fn) for each damage scenario. Due to time constraints, the limited number

of blades, the complex geometry of the root, and the damage initiation location on the root, discrete crack

propagation could only be explored using FEM. It was found that the variance in fn grows exponentially or

logarithmically as the crack propagates, depending on the mode and damage scenario considered.
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To ensure that the selected discriminant feature, i.e. natural frequencies fn, is of quality, its exclusivity

due to the input parameters must be determined. The results were visualised for easier and convenient

interpretation for more efficient decision-making. This involved characterizing the diverse datasets by first

exploring the distribution of the features in a one-dimensional space for the healthy case as well as the

damage classes. By visualising the natural frequencies in a two-dimensional space, in which it is observed

that ambiguous or distinct clusters form, a conclusion on their separability was possible. For the healthy

classes, an ambiguous cluster with values ranging about a mean was found, implying that their results are

very similar. For the damage classes, distinct clusters were found, each behaving like the healthy case. This

implies that a similar statistical distribution is present within each class, and the distance between clusters

determines the degree of their dissimilarity.

To detect and identify single-location damage, a non-linear multi-class SVM, in which an array of One-versus-

All (OvA) binary SVMs were coupled, was proposed. Three hypotheses were introduced to test the feasibility

of the proposed method, and thus answer the research questions in Section 1.3, namely: Is it possible to

identify geometrical variability in healthy blades; is it possible to detect damage in blades, and if so; can

damage be identified. The first hypothesis was rejected as inconclusive results with ambiguous classification

regions were found. This means that the proposed method cannot distinguish between geometrical variability

in healthy blades, implying that healthy blades are statistically similar due to low sensitivity of natural

frequencies to geometrical variability. The second and third hypotheses were jointly accepted, as the test for

damage identification was very successful, and thus damage detection must also be possible. The definite

mapping and classification of damage classes implies that natural frequencies are highly sensitive to damage.

However, it was observed that the location of the damage plays an important role in the change in natural

frequencies since the extent of the change in stiffness (crack breathing) is dependent on the vibrational

pattern. With SVM classification, decision boundaries are produced based on the optimal separating distance

between the cluster bounds, which hold the description of each cluster and depend on the quality of the feature

training set. Thus, the less overlap between clusters, the better the chance on effective classification. This

is because the SVM approach has the capacity to attain explicit classification results by directly recognizing

underlying patterns within a small training set. As the OvA multi-class extension on the binary SVM

classifier is applied, over-fitting of the decision boundaries for each class occurs, resulting in uncertain

classification regions where no observations are found. A limited number of classes also add to this issue. In

this study, this was addressed by adding elliptical perimeters around the mean of each training set to include

99.73%, i.e. µ ± 3σ, of the data points, resulting in a concentrated region or cluster per class to consider

instead. This allows an unambiguous answer to be obtained and better interpretation of the classification

results.

Additionally, the potential to use lower-cost training data obtained from FEM and experimental test data as

unseen observations was assessed. It was found that numerical modelling could contribute to the proposed

approach by overcoming the drawback of limited datasets and expensive testing. This outcome can be

enhanced by applying model updating to this low-cost model.

To summarize on introducing the use of vibration-based structural damage identification to solving a part

of the real-world problem:

• Is it possible to identify defects, i.e. geometrical variability, in an unconstrained and isolated blade

using vibration response?

No, this is not possible as natural frequencies are not sensitive enough to geometrical variability, and even a

pattern recognition algorithm struggles to detect the difference in the varying healthy data. This is because

healthy blades are statistically too similar to differentiate.

• Is it possible to detect damage in an unconstrained and isolated blade using vibration response?

Yes, this is possible as natural frequencies are sensitive enough to damage, and a pattern recognition algo-

rithm can detect the difference between healthy and damaged data. This is because changes in a structure’s
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natural frequencies are functions of changes in the structure’s physical properties (mass, damping, and

stiffness) induced by damage (i.e. stiffness reductions due to cracks or weakening of a connection).

• If so, can different damage scenarios be identified?

Yes, this is possible as natural frequencies are highly sensitive to different damage scenarios, and a pat-

tern recognition algorithm can successfully distinguish between the different damaged classes, including the

healthy class. This is because the location of the damage plays an important role in the change in natural

frequencies since the extent of the change in stiffness is dependent on the vibrational pattern.

This concludes on the success of the feasibility of vibration-based damage detection for removed freely sup-

ported individual turbine blades and establishes proof of concept. From the outcome of this study, the

potential of future development of the proposed method into a real-world application to use in support of

conventional NDT for in-situ inspection of installed stationary blades is established.

5.2 Recommendations

By developing the proposed methodology toward solving more succeeding partials of the real-world problem

so that it can be used in support of conventional NDT, potential increase in the capability and reliability

of crack detection in stationary installed turbine blades are likely, especially in the root. The build-up

of the success in solutions will provide confidence in continuing the development of the methodology for

real-world application to enable possible prevention of in-service failures with consequential damage and

extended outage durations. This type of analysis may also allow development of the maintenance schedule

and inspection intervals with the purpose of establishing remedial action to increase turbine availability. The

following recommendations are made for future work succeeding the current study. Investigate:

1. Freely supported modal analysis on a single installed blade. This will also be a simpler problem than

the real-world case, but more complex than the current work. This will allow study of the effect of

the influence of the installation boundary conditions on the system dynamics (i.e. contact between the

blade, pins, and disk section) as well as on the damage (crack), especially in the pinhole.

2. Freely supported modal analysis on multiple installed blades.

3. Modal analysis of cantilever set-ups of the installed blade configurations, from 1 and 2, to simulate

in-situ inspection. This will approach the real-world boundary conditions much closer.

The current study still has room for improvement as well as unanswered questions and this must be considered

before or when moving to the next partial problem. Hence, the following recommendations are made for

future work on the current study. Investigate:

• multi-location damage scenarios to establish new coordinates on the classification map to expand the

current findings and examine the possibility of using single-location damage to detect multi-location

damage (Barthorpe et al., 2017) on pinned turbine blades.

• the trend on the classification map of advancing single-location damage to expand and populate the

current classification map.

• other more likely single-location damage scenarios to expand and populate the current classification

map.

• natural cracks to approach real-world conditions.

• support vector domain description (SVDD) as alternative to current method to ensure that only the

populated areas of the classification map are described to enhance the class-exclusivity.

• the robustness of this method by employing other discriminant features selected from other character-

istics, which can be extracted from the highly reliable FRF measurements.

• unsupervised machine learning techniques, in which all the possible damage scenarios are not required,

that can be developed for industrial application.
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• the option of using an extensive numerical model, with parametric studies on geometrical variability

and material properties, to generate data to supplement or substitute experimental features as training

data to predict expected behaviour or mapping. This will make the proposed method more attractive

since all damage scenarios can be modelled instead of acquired from expensive experiments, which

requires different real damaged cases. FE model updating will also add to the accuracy of the FEM.

• the use of changes in internal data variability measured by a test statistic χ2
0, which values has been

found to provide better sensitivity to structural damage than the shift in natural frequency method

(Ngwangwa et al., 2006).
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Appendix A: Notes on EMA Design and Set-

up

A.1 Modal Analysis Equipment Configuration
PSV400AnalyzerInfo.txt

Name: C:\Documents and Settings\Administrator\My
Documents\12020282 L Brits\MEng -
Blades\Tests\Analyzer.pvd

User: Administrator
Created: Thursday, January 25, 2018

1:09:21 PM
File version: 8.80
Application version:8.8.0.0
---------------------------------------------------------------------
Comment

---------------------------------------------------------------------
Measurement Information

Assign focus values succeeded.

---------------------------------------------------------------------
Hardware

Sensor head: OFV-505
Junction Box: PSV-E-401-M2-20
Acquisition Board:Spectrum MI3025
---------------------------------------------------------------------
General

Acquisition Mode:FFT
Averaging: Complex
Averaging count:7
PCA MIMO: Not active
---------------------------------------------------------------------
Frequency

Bandwidth: 10 kHz
Bandwidth from:390.625 mHz
Bandwidth to: 10 kHz
---------------------------------------------------------------------
Sampling

FFT Lines: 25600
Sample frequency:25.6 kHz
Sample time: 2.56 s
Resolution: 390.625 mHz
---------------------------------------------------------------------
Trigger

Source: Reference 1
Edge: Positive slope
Level: 0 %
Pretrigger: 5 %
Phase from reference:Off
---------------------------------------------------------------------
Channel Vibrometer connected to Vibrometer 1

Direction: +Z
Range: 10 V
Coupling: DC
Impedance: 1 MOhm
Quantity: Velocity
Calibration factor:100e-3 m/s/V
Signal Delay: 12.6e-6 s
Filter Type: No Filter
Int/Diff Quantity:Velocity
Window: Exponential
Signal Enhancement:Active

Channel Reference 1 SN 8131, steel-tip

Reference point index:0
Direction: +Z
Range: 500 mV
Coupling: DC
Impedance: 50 Ohm
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Quantity: Force
Calibration factor:438.5 N/V
Signal Delay: 0 s
Filter Type: No Filter
Int/Diff Quantity:Force
Window: Force
Signal Enhancement:Not active
---------------------------------------------------------------------
Signal Enhancement

Speckle Tracking:Active
Mode: Standard
---------------------------------------------------------------------
Vibrometer 1

Controller: OFV-5000
Firmware version:2.11
Sensor head: OFV-505
Firmware version:1.20
Tracking filter:Fast

Velocity output

Range: VD-09 100 mm/s/V LP
Low pass filter:Off
High pass filter:Off

Displacement output

Range: DD-300 Aux 50 nm/V
---------------------------------------------------------------------

A.2 Design and Set-up

The following guidelines were implemented for setting up the non-contact impact test:

1. Blades suspended by elastic band at root and aerofoil tip:

• Elastic band inserted through bottom holes in root to ensure constant orientation.

• Elastic band curvature at tip kept constant by line, tensioned when blade is removed, and free

when blade is added.

• Alignment in XY-plane where level tool is placed on bottom flat surface with its mass distributed

so that it has minimal effect on orientation.

• Initial length (tension) in elastic cord, adjustable to ensure constant blade orientation.

• Reflective dot/black mark added to specific locations on all blades to ensure constant measuring

point/excitation point (allocated after trial-and-error approach to ensure optimal mode partici-

pation).

• Set-up designed to study change in response due to geometrical differences and/or induced dam-

age.

• Laser point at centre of reflective dot to ensure constant pivot point during alignment.

2. Laser scanning vibrometer, measures vibrational velocity:

• Head adjusted to meaningful stand-off distance from measuring plane, aligned with XY-plane @

915mm.

• Laser centred to ensure beam perpendicular to XY-plane.

• Scanning grid added for constant scanning region with only measurement point enabled (SISO).

• Optimal laser signal ensured by reflective dot/autofocus.

• Reflective dot on slight curvature to capture in-plane/out-of-plane motion to ensure maximal

observation of modes.

• Averages taken per test/small frequency resolution to ensure cleaner signal.

• With extraction of natural frequencies, a smoothing-filter (Savitsky-Golay) was applied on noisy

areas (troughs).
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3. Modal hammer, excites blades:

• Excitation point specified on blade (SISO); however, still a variable due to operator-dependence.

• Steel-tip, ensures maximum energy distribution allowing higher mode excitation/cleaner FRFs.

• Time pulse/forcing function (input excitation spectra) used as indicator for successive impacts.

A.3 EMA Protocol/Methodology

After configuring laser scanning head configuration, apply the following steps:

1. Insert band through root bottom hole and secure.

2. Place aerofoil onto cord with laser in centre of measuring point.

3. Align blade root to XY-plane using bottom surface (cross-alignment + level tool).

4. Focus camera and laser beam.

5. Excite blade at designated location.

• Use same launching approach, with constant

- body position (standing), convenient for next points.

- hammer orientation (parallel to XY-plane).

- impact support, hand/middle fingernail sliding against frame support.

- equidistant from excitation point, before and during impact

• Use force diagrams (time-pulse/forcing function) as successive impact indication.

• Repeat after sample time passed, repeat test (x3), reset test per blade.

6. Export averaged input excitation spectra (time-pulse/forcing function).

7. Export FRF results (magnitude [dB] + phase [◦]).

8. Process data.

Figure A.1: Additional view of experimental set-up
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Appendix B: Geometrical Variability in Test

Blades and Class Allocations
The geometrical variability that was observed in the healthy blades is summarised in Table B.1. The

assignment of blades into specific groups, tabulated in Table B.2 and Table B.3, are discussed in Chapter 3.

Table B.1: Geometrical variability observed in healthy blades

Geometrical Variability

Grinding

Depth

Hole

Diameter

Blade

#

Yes = 1,

No = 0

Max = 1,

Min = 0

1 1 0

2 1 1

3 0 1

4 0 0

5 1 1

8 0 1

9 0 1

10 0 1

11 1 0

12 1 1

13 0 1

14 1 0

15 0 0

16 0 0

17 1 0

18 0 1

19 1 1

20 1 0

21 0 0

22 0 0

23 1 1

24 0 1

25 1 0

27 0 0

28 1 0

29 1 1

30 0 0

31 0 0

32 0 1

33 0 0

35 1 0

36 1 0

37 1 0

38 0 0

39 1 0

40 0 0

Table B.2: Allocation of healthy blades for healthy classes

Healthy Classes Blade #

1. No Grind, Min D 4 15 16 21 22 27 30 31 33 38 40

2. Grind, Min D 1 11 14 17 20 25 28 35 37 39

3. No Grind, Max D 3 8 9 10 13 18 24 32 36

4. Grind, Max D 2 5 12 19 23 29

Table B.3: Allocation of healthy blades for damage classes

Damage Classes Blade #

1. Root Radial Notch 1 3 5 13 14 15 16 18 21 23 32 40

2. Base Trailing Edge Notch 2 4 8 9 11 17 27 29 30 31 33 36

3. Base Leading Edge Notch 10 12 19 20 22 24 25 28 35 37 38 39

B-1
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Appendix C: Drawings of Damage Scenarios
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Appendix C: Drawings of Damage Scenarios

C.1 Damage Class 1: Blade Root Upper Pinhole Radial Notch
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C.2 Damage Class 2: Aerofoil Base Trailing Edge Notch
Appendix C: Drawings of Damage Scenarios

C.2 Damage Class 2: Aerofoil Base Trailing Edge Notch
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C.3 Damage Class 3: Aerofoil Base Leading Edge Notch
Appendix C: Drawings of Damage Scenarios

C.3 Damage Class 3: Aerofoil Base Leading Edge Notch
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Appendix D: Experimental Data and Addition-

al Results and Details
The experimental data and additional results can be made available on request by contacting Prof. P.S.

Heyns, the director of the Centre for Asset Integrity Management (C-AIM) research group at the University

of Pretoria, at Stephan.Heyns@up.ac.za.

For more information on the group, visit https://www.up.ac.za/centre-for-asset-integrity-management.
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