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Abstract 

Malaria is one of the deadliest parasitic diseases common in the warm, moist tropics of the 

world. Plasmodium falciparum is the causative agent of malaria in human, and it is transmitted 

to human through the bite of a female Anopheline mosquito especially in Africa. It is estimated 

that approximately 490 000 deaths from malaria were reported in 2015, with over 90% of such 

cases reported in Sub-Saharan Africa. The global elimination of this disease is one of the most 

expensive investments that demands cooperation of various disciplines and entities including 

health, science, technology, political leadership, finance and general country’s administration. 

In recent years, attempts were made to characterize the potential breeding sites of Anopheline 

mosquitoes in order to set baseline for elimination strategies. On the other hand, there is an 

urgent need to refine malaria mapping methods for updated early-warning and target systems. 

Mapping of malaria in relation to various environmental and topographical factors is highly 

advantageous and complements the hospital malaria count and clinical approaches because 

such environmental-based methods take into account changes in malaria transmission as a 

result habitat and seasonal and long-term changes in climate and environment. In addition, in 

very remote areas where there is limited or no access of malaria count data the spatial 

mapping of malaria becomes crucial for understanding malaria distribution in such isolated 

areas. The traditional mapping of potential malaria vector habitats is done through field 

surveys, which are often laborious and time-consuming. The advent of high resolution 

datasets from earth observation satellites, offers opportunities for accurate mapping of malaria 

vector habitats for wide areas. The aim of this study was to map the potential habitats of 

malaria vector (An. arabiensis and An. fenestus) using remote sensing approaches in Vhembe 

District Municipality of South Africa. Both Landsat TM and Sentinel-2 datasets were used in 

the study area. Findings from this study indicate that the distribution of P. falciparum is 

positively correlated to vegetation moisture and greenness. On the other hand, remote sensing 

data such as that of Sentinel-2 has shown high correlation to the distribution of cattle hoofprints 

which are known habitats of malaria vectors. It has also beenbig data shown in this study that 

the remote sensing spectral indices such as those based on broadband reflectances are 

paramount to characterizing the resting places of An. complex. In an effort to contributing to 

the indigenous knowledge system (IKS) for repelling malaria vectors common at the study 

area, this study also showed the feasibility of high spatial resolution Sentinel-2 to map the 

distribution of Lippia javanica used commonly in the Vhembe District. Findings from this study 

will give insight into the potential habitats of malaria-causing mosquitoes and aid in efforts 

aimed at eliminating malaria in the Vhembe District.   
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Kakaretšo 

Bolwetši bja malaria ke bjo bongwe bja malwetši a kotsi kudu ao a bakwago ke kokwanahloko 

dinageng tše go fišago le mo go le mo go nago le dipula gona. Kokwanahloko ya Plasmodium 

falciparum ke yona yeo e bakago malaria, elego bolwetši bjo bo fetelago mothong ge a longwa 

ke monang wa sesadi wa lešika la Anopheles kudu-kudu Afrika. Go begilwe mahu ao e kabago 

batho ba 490 000 ao a bakwago ke malaria ka 2015, mo go ona 90 lekgolong ya mahu ao go 

begwa gore a bile dinageng tša Borwa-bja-Afrika. Maiteko a go fediša leuba la malaria ke le 

lengwe la dipeeletšo tša go bitša kudu lefaseng, gomme go hloka tirišano ya mekgatlo e 

fapanego go akaretša tša maphelo, thutamahlale, thekinolotši, boetapele bja tša dipolotiki, tša 

ditšhelete le tirišo-taolo ya selegae.Mengwageng ya morago bjale, go bile le maeteko a go 

swaya mafelo ao go ona menang ya Anopheles e dulago le go hwetšagalago gona bakeng sa 

go hloma melao bakeng sa phedišo ya malaria. Ka lehlakoreng le lengwe, ke mo go akgofilego 

go kaonefatša mekgwa ya go thala mebapa ya malaria bakeng sa tshepedišo ya temošo ya 

pele. Mokgwa wa kgale wa go thala mebapa ya mafelo ao menang yeo e bakago malaria e 

dulago gona ke ka go dira dinyakišišo ka go sepela ka maoto, e lego mokgwa wo o lapišago 

le gore ja nako. Go ba gona ga disatalaete tše di kaonefaditšwedigo go bula menyetla ya go 

thala mebapa ya menang yeo e bakago menang ka tsela ye nepagetšego kudu. Go thala 

mebapa ya malaria ka tsela yeo e šomišago maemo a tikologo go na le mehola yeo e 

oketšegilego kudu go feta ge go balwa batho bao ban ago le malaria maokelong ka gobane 

tšhomišo ya maemo a tikologo e akaretša le diphetogo tšeo di tswalanago le maemo a 

leratadima a nako e telele. Go oketša moo, mafelong ao go ona go sa tsenegego gabonolo 

goba moo go se nago dipalopalo tša malaria, go thala mebapa ya malaria go šomišwa 

thekinolotši ya lefaufaung go dira gore re be le kwešišo e tseneletšego ka phatlalalo ya malaria 

mafelong ao. Morero wa nyakišišo ye e ebe ele go thabala mebapa ya menang yeo e bitšwago 

Anopheles arabiensis le Anopheles fenestus Seleteng sa Masepala wa Vhembe ya Afrika 

Borwa, go dirišwa mekgwa ya disatalaete. Bobedi Landsat TM le Sentinel-2 di dirišitšwe mo 

nyakišišong ye. Dinyakišišo di bontšha gore go ba gona ga twatši ya P. falciparum go tswalana 

kudu le monola wa mehlare le botala bja yona. Ka go le lengwe, mangatha a dikgomo le o na 

a tswalana le moo menang e tswalago gona. Nyakišišo ye gape e bontšhitše ka lekga la 

mathomo, gore go a kgonega go thala mebapa ya Mošunkwane e lego wo o dirišwago kudu 

bakeng sa go thibela menang ka gae. Go hweditšwe gore phatlalalo ya Mošunkwane e 

tswalana kudu le dithaba, tshekamelo ya thaba, le botala bja dihlare. Se se bopa karolo e 

bohlokwa bakeng sa maiteko a go fediša malaria Seleteng sa Vhembe. 
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CHAPTER 1: 

General Introduction 

 
 
 
 
 
 
 

This chapter provides the background of the study and outlines the aim, objectives 
and structure of this thesis 
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1.1 Introduction 

This chapter provides brief introduction to the study by highlighting the historical perspectives 

on the use of geospatial technology for infectious diseases mapping including malaria. It 

demonstrates how remote sensing data are associated with important environmental 

conditions influencing malaria transmission in subtropical environment. Furthermore, the 

remote sensing methods commonly used for assessing vegetation, water and soil conditions 

in relation to malaria vector habitats are discussed. The major components of malaria vector 

habitats discussed in this study are (i) cattle hoofprints, and the (ii) vegetation characteristics 

(leaf area index, greenness). The chapter also provides the aim, objectives and the outline of 

the study. 

 

1.2 Remote sensing of infectious diseases 

Throughout centuries, health professionals have relied on spatial information in the form of 

maps to derive important baseline information on disease transmission (Guerra et al., 2008) 

and as a basis for resource allocation at various scales (Pigott et al., 2015). Some of the 

earliest infectious diseases mapped include cholera epidemic mapping that took place in 1831 

and spanned over several decades (Gilbert, 1958). The initial objective was to identify the 

hotspots within densely population urban settlements which lacked property sanitation (Musa 

et al., 2013). However, it was only in 1931-33 when Petermann correlated the infectious 

disease incidences with certain environmental conditions affecting disease transmission 

(Gilbert, 1958). In Africa, some efforts have been done to map malaria and other infectious 

diseases by linking environmental factors peculiar to the habitats of disease vectors. For 

example, in 1997 Thomson et al. (1997) successfully demonstrated the contribution of remote 

sensing variables to characterizing malaria vector habitat in The Gambia. In South Africa, the 

use of geospatial technology for malaria mapping was initially realized in 1990 when the GIS 

maps were produced for two districts in the Northern KwaZulu-Natal. This initiative was part 

of the Malaria Research Programme (MRP), which was subsequently followed by the famous 

malaria mapping project called Mapping Malaria Risk in Africa/Atlas du Risque de la Malaria 

en Afrique (MARA/ARMA)(Adeola et al., 2015). When mapping malaria, the environmental 

variables such as proximity to standing water bodies, urbanization, irrigation, vegetation 

greenness, and vegetation moisture have shown correlation with the disease incidence rates 

(Omumbo et al., 2002; Adeola et al., 2015).  
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For efficient malaria mapping, consideration of such factors will, not only contribute to accurate 

quantification of disease hotspots but, also the baseline for targeted disease control and early-

warning system. Disease maps have been used to represent the manifestations of complex 

geographical and epidemiological phenomena in more simplistic manner than count data for 

centuries. They provide key interface between scientists and health professionals regarding 

status of malaria distribution (including outbreaks), environmental conditions at vector 

habitats, population at risk, and  malaria forecasting (Dalrymple et al., 2015). The conventional 

approach to mapping malaria patterns involves ground-based surveys, which are labour-

intensive and expensive. Additionally, the identification of potential habitats of malaria vectors 

is conventionally done manually, which can be cumbersome for wide-area surveillance.  

Fortunately, remote sensing technology offers rapid and efficient alternative approach for 

mapping malaria distribution in the endemic areas. Some of the greatest advantages of remote 

sensing technique to traditional malaria mapping include the wide-area coverage, ability to 

acquire datasets in very rugged and inaccessible areas, high correlation with potential habitats 

of malaria vectors, and varying spatio-temporal characteristics necessary for diseases 

surveillance (Adeola et al., 2015; Malahlela et al., 2018). Today, the open-access big data, 

high-speed processing software and high computational capabilities open new opportunities 

for fine-scale malaria mapping. These capabilities offer improved procedures for mapping 

malaria vector habitats related to soil, water and vegetation biophysical and structural 

characteristics (Dlamini et al., 2015).  

 

Sections 1.3 and 1.4 of this thesis highlight the contribution of remote sensing techniques and 

the statistical methods used for mapping soil, water and vegetation characteristics, which have 

shown high correlation to malaria transmission rates in endemic areas. In section 1.5 there is 

a detailed motivation of the study that is provided to justify the research conducted and 

reported in this thesis. 

 

1.3 Remote sensing for soil, water and vegetation 

 Several remote sensing methods have been applied for mapping the biophysical and 

biochemical characteristics of soil, water and vegetation and such biophysical/chemical 

characteristics directly and indirectly linked to malaria vector habitats and disease 

transmission. For example, Midekisa et al. (2012) have correlated the actual evapo-

transpiration (ETa) from the soil and vegetation to malaria transmission over time. In this study, 

it was found that malaria transmission is positively correlated to the lag in ETa from 1-3 
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months.  Furthermore, Dlamini et al. (2015) alluded that in southern Africa, the small water 

pools which are related to anthropogenic activities tend to be favourable habitats for 

Anopheline mosquito. It is from this basis that Hardy et al. (2017) mapped water bodies in 

Zanzibar by using remote sensing techniques. Mapping of water bodies has been extensively 

done using various remote sensing data acquired at varying spatial and temporal resolutions 

(Acharya et al., 2018; Liu et al., 2017; Malahlela et al., 2016). In addition, mapping of water 

quality through remote sensing is regarded as one the crucial steps for water conservation, 

risk assessment and malaria estimations (Kengluecha et al., 2005). However, although 

mapping the spatial extent of water bodies has proven successful through various remote 

sensing approaches, spatial modelling of micro-habitats of malaria vector such as cattle 

hoofprints is currently not available at any scale. This is despite global knowledge regarding 

the importance of cattle hoofprints and puddles in malaria transmission (Mayagaya et al., 

2015; Munga et al., 2007). The micro-habitats, such as puddles, water pipes, artificial 

containers, cattle hoofprints, neglected wells and artificial ditches have been documented as 

some of the crucial breeding sites for Anopheles arabiensis mosquito (Hamza and El Rayah, 

2016). The occurrence of micro-habitats is very crucial for malaria vector, particularly 

considering that macro-habitats (such as dams, lakes and rivers) comprise of various macro-

invertebrates (e.g. fish, amphibians, dragonflies) that prey on mosquito larvae (Mogi, 2007). 

Therefore, the spatial information pertaining to the distribution of malaria vector micro-habitats 

is crucial for targeted outdoor malaria control and management. 

 

Malaria transmission has shown high correlation with vegetation greenness in many tropical 

areas (Dlamini et al., 2015; Ricotta et al., 2014; Adeola et al., 2016). For example, Ricotta et 

al. (2014) observed that vegetation cover found at close proximity to homestead in East 

Zambia is usually associated with high number of malaria vector that rest in nearby vegetation 

of varying types and densities. Malaria vectors such as Anopheles arabiensis, An.fenestus 

and other species of An. complex prefer to rest and quest under vegetation leaves in order to 

avoid predators and heat stress that could result in desiccation of individual malaria vector 

(Dewald et al., 2016; Paaijmans and Thomas, 2011).  This means that the canopy architecture 

and the plant leaves play a significant role for the Anopheline species, and the understanding 

of this biophysical parameter could enhance the understanding of malaria distribution in 

tropical environments.  The high resolution remote sensing data, such as Sentinel-2 and 

commercially available WorldView-2/3, open new opportunities for accurate characterization 

of plant canopy and leaf area.  Combining these new generation remote sensing datasets with 
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statistical methods enhances our understanding of the environments suitable for malaria 

vector survival and reproduction. 

1.4 Statistical methods for analysis of soil, water and vegetation 

In remote sensing, many various statistical methods that combine information from the 

physical environment and spectral bands are increasingly being utilized over the years. One 

of the commonly used approaches includes  multivariate regression models, which relate the 

biophysical and biochemical parameters of soil, water and vegetation with reflectance or 

absorbance of electromagnetic radiation in linear form (Hudak et al., 2006; de Jong and de 

Bruin, 2012; Xavier and Vettorazzi, 2004; Nyamugama and Kakembo, 2014; Gomez et al., 

2008; Malahlela et al., 2018).  For example, Forkuor et al. (2017) compared the use of multiple 

linear regression model with other statistical models to map soil properties by means of remote 

sensing variables in the South-Western Burkina Faso.  

 

Another form of generalized linear model called logistic regression model has extensively been 

used for mapping soil (Kempen et al., 2009), water (Mueller et al., 2016), and vegetation 

characteristics (Aspinall, 2002)   Most commonly, the logistic regression methods has been 

used in species distribution mapping because of the ability to handle the interactions of various 

environmental variables with the binary nature of species occurrence. On the other hand, the 

maximum entropy model (Maxent) is increasingly receiving more attention as an alternative 

method for species distribution mapping. For example, Dudov (2017) modelled the distribution 

of sixty-three common vascular plant species of the Zeya Reserve using Maxent and remote 

sensing data. It is, however, noticed that both the logistic regression model and Maxent have 

their short-comings, which limit their individual application as species distribution model. In 

order to circumvent these limitations, the use of ensemble model (which combines the 

predictive powers of both models) is recommended and is thus viewed as an alternative to 

single-model approach (Zhang et al., 2015). 

 

1.5 Motivation of the study 

The World Health Organization (WHO) has proposed the interruption of indigenous approach 

to malaria transmission in specific geographical areas as a means to combat ever increasing 

transmission rates in Africa. Similarly, South Africa is one of the countries with planned 

elimination by the year 2020 (WHO, 2018). For effective implementation of malaria elimination 

and control programs in South Africa, it thus becomes crucial to have enhanced understanding 

on the spatial distribution of malaria and environmental conditions associated with high 
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incidence rates (Machault et al., 2012). The cases of countries which successfully achieved 

zero malaria transmission are a compelling reason why geospatial technologies such as 

remote sensing and geographic information system (GIS) are essential for malaria elimination 

within the multi-disciplinary framework (Giraudoux et al., 2008). In South Africa, fortunately, 

the success of the geospatial technology has been documented by several researchers which 

has significantly contributed to achieving the reduced malaria transmission rates in malaria-

prone areas (Moonasar et al., 2016; Adeola et al., 2016; Booman et al., 2003; Martin et al., 

2002). Such success is also attributed to a wide range of geospatial datasets including point, 

raster and non-point datasets that are available at high spatial resolution. 

 

The advent of new generation satellite data opens new avenues for mapping malaria at spatial, 

temporal and spectral resolutions that are suitable for dynamic nature of malaria transmission. 

The launch of earth observation satellites with open-access datasets enables rapid and 

efficient analysis of environmental conditions that are associated with malaria transmission, 

thus playing a critical role as inputs within the malaria information system (MIS). For example, 

Adeola et al. (2016) utilized Landsat-derived land use/land cover for determining the 

population at risk of malaria in the Nkomazi municipality in South Africa. The environmental 

variables such as vegetation greenness and moisture derived from Landsat dataset have been 

linked with areas of higher malaria incidences in the Vhembe District Municipality (Malahlela 

et al., 2018). The provision of these kinds of datasets could provide reliable and accurate 

information necessary for healthcare workers, policy and decision-makers, as well as the 

community members for informed malaria intervention strategies and control.  

 

Deriving environmental variables with high mapping accuracies is fundamental for detailed 

understanding of factors that have influence on the transmission patterns of malaria 

particularly in remote areas. In light with the geospatial requirements (high temporal and 

spatial resolution), this study contributes to the enhanced understanding of the environmental 

variables that promote malaria transmission in subtropical areas of South Africa in order to 

support efforts aimed at malaria elimination and control. It demonstrates methods for mapping 

the habitats of malaria vector using new high resolution remote sensing data, and how such 

datasets contribute to malaria vector control through the ethnobotanical use of plant species 

by the local community  
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1.6 Aim 

The aim of this research was to investigate the potential use of remote sensing-derived 

environmental variables for mapping malaria distribution in the Vhembe District Municipality, 

South Africa. In addition to the aim of the study, some specific objectives were set out in the 

beginning of the study in order to achieve the primary goal of the study, and such objectives 

are listed in section 1.7 of this general introduction. 

1.7 Objectives 

A total of four (4) objectives are stated below: 

(i) Mapping mosquito micro-habitats using remote sensing technology 

(ii) Estimating the vegetation leaf index (LAI) in relation to known malaria distribution  

(iii) Mapping malaria distribution from the satellite-derived environmental variables, 

and  

(iv) Predicting the occurrence of Lippia javanica (lemon bush) commonly used for 

repelling malaria in villages located at the study area. 

1.8 Scope of the study 

This thesis investigates the potential use of optical remote sensing data for mapping the 

distribution of malaria in the study area. The major focus is placed on mapping Anopheline 

larval habitats (cattle hoofprints), adult questing sites (vegetated environments) and the 

remote sensing application for preventative medicine (lemon bush mapping). This approach 

was adopted because of the inter-link between various factors involved in malaria 

transmission, which are mainly environmental-based, and the need to strengthen the 

sustainable ethnobotanical use of extracts (aroma) for malaria control (Mabogo, 1990; Maroyi, 

2017).  

1.8.1 Study area 

The research was conducted in the Vhembe District Municipality of South Africa (VDM), which 

is situated in the northern-most part of the country between 23°40’ S and 30°00’E (Figure 1.1). 

It comprises of varying topography, with diverse floral and faunal biodiversity. The Municipality 

receives annual summer rainfall of 820 mm (Mpandeli, 2014), with Soutpansberg Mountain 

modifying geographical rainfall patterns (Kabanda and Munyati, 2010). The north-western part 

of Vhembe District is characterized by semi-arid conditions, while the south-eastern part 

experiences subtropical conditions. The Vhembe District Municipality has a population of more 

than 1.3 million people (StatSA, 2016), who predominantly reside in rural villages. Data from 

28 villages were used for the study. The area covering these villages has recorded mean 
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malaria incidence of about 328.2 between 1998-1999 and 2004-2005 (Gerritsen et al., 2008). 

In 2000, the municipality experienced floods brought by the tropical cyclone Eline which 

dramatically increased malaria cases in Limpopo province (Reason and Keibel, 2004). Malaria 

in Limpopo is seasonal and it is, therefore, crucial to use seasonal data covering the entire 

study area to map the occurrence of malaria in the VDM. 
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Figure 1.1 The location of the study area in the Limpopo province of South Africa. 
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1.8.2 Thesis outline 

This thesis is comprised of collection of 5 papers published and /or to be submitted for peer 

reviewed in international and local journals. Currently, 3 papers are published in these 

journals: EcoHealth, Ecological Modelling and International Journal of Remote Sensing, while 

2 papers are still in preparation for submission. Each paper is presented separately, as a 

chapter (Figure 1.2), and is prepared as a final manuscript. The thesis follows a paper format, 

with each chapter (section) presented as a stand-alone contribution.  Each chapter has its 

own introduction, methods, results, discussion, conclusions, and its own reference list. 

 

Figure 1.2. Diagrammatical representation of thesis outline adopted in this thesis  
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Chapter 1 

This chapter provides the overview of the research background, aim and objectives and the 

structure of the thesis. 

Chapter 2 

This chapter provides   a comprehensive review of remote sensing applications for malaria 

mapping. It focuses on remote sensing methods, earth observation satellite portfolio, 

limitations and opportunities available in remote sensing for malaria applications.  

Chapter 3 

In this chapter the characterization of cattle hoofprints using remote sensing technology is 

presented. Sentinel-2 dataset is used in this chapter together with geostatistical approaches 

for mapping the distribution of these important malaria vector habitats. 

Chapter 4 

This chapter presents mapping of leaf area index (LAI) using high resolution remote sensing 

dataset at the study area. The LAI is estimated from the spectral indices with high statistical 

correlation to this vegetation biophysical characteristic.  

Chapter 5 

This chapter provides mapping of malaria distribution in the Vhembe District Municipality, 

using environmental variables that are derived from satellite datasets.  

 

Chapter 6 

In this chapter, the distribution of Lippia javanica (lemon bush) species is mapped. This plant 

is commonly used in the study area as an ethnobotanical plant. The mapping of L. javanica 

formed an important part of the current thesis especially that this was the initial mapping of 

this plant species at high spatial and spectral resolution.  

 

Chapter 7 

This chapter provides synthesis of this research and highlights the opportunities for future 

research.  
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Abstract 

Globally, malaria continues to affect around 91 countries with over 216 million cases reported in 2016. 

The malaria disease exerts huge burden on socio-economic infrastructures and investments of the 

countries directly or indirectly affected by the parasite. Many efforts were made towards supporting the 

elimination of malaria – a target set out by the World Health Organization. One such effort involves 

mapping of habitats suitable for malaria vectors such as the Anopheline mosquito complex using 

geospatial techniques. Remote sensing techniques are increasingly being recognized as alternative for 

mapping disease occurrence, forecasting and estimation globally. There is a growing interest in the 

application of high resolution geospatial datasets for mapping malaria so as to contribute to operational 

malaria early-warning systems. The major focus of such mapping revolves around identification of 

potential habitats for Anopheline mosquitoes for targeted malaria control and management. In this 

chapter, we review the applications of remote sensing for malaria mapping. We then highlight various 

remote sensing data available for malaria vector habitats, challenges relating to remote sensing data 

and the methods commonly used for mapping malaria. We conclude by providing potential opportunities 

for further studies as well as the major findings from the literature review.  

 

Keywords: malaria; early-warning system; Anopheline mosquitoes; habitats 

 

2.1 Introduction 

Throughout the centuries, spatial modelling of infectious diseases such as malaria has 

become a fundamental requirement for effective disease control, management and 

elimination. Over the years, malaria mapping continued to receive more attention and such 

efforts were epitomized mainly by two main initiatives: the (i) Global Burden of Diseases, and 

(ii) the Disease Control Priorities (Lopez et al., 2006; Jamison et al., 2006; Hay and Snow, 

2006). The largest effort ever realized for mapping malaria was done for mapping Plasmodium 

falciparum spatial occurrence in Kenya in the 1960s, and has since been cited as an attempt 

to map malaria at a global scale (Hay and Snow, 2006).  This attempt was initiated by Lysenko 

and Semashko (1968), representing a large synthesis of historical datasets including parasite 

rate, entomological inoculation rate and malaria vector distributions. These maps laid a ground 

work with regards to the developments that would soon be realized in the 20th century going 

forward.  

 

In nearly half a century since Lysenko and Semashko (1968) produced the global malaria 

maps, a major initiative encompassing continent-wide mapping of malaria disease at high 

resolution emerged. This initiative was dubbed Mapping Malaria Risk in Africa/Atlas du Risque 
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de la Malaria en Afrique (MARA/ARMA) project. This project was instigated in 1997, nearly 30 

years since the first global malaria map production. The MARA/ARMA project has transformed 

the arts, science, economics and modelling of malaria disease in the modern history. The 

success of MARA/ARMA, led by David LeSeur, spanned from comprehensive collection of 

African malariometric datasets, development of base-maps relating to malaria risk in Africa, 

and to determine the environmental/climatic factors that either promote or demote the 

likelihood of malaria in African continent. In this project, mapping was predominantly done 

using geospatial statistics in geographic information systems (GIS). These contributions were 

highly recognized and cited by many researchers including Dalrymple et al.( 2015), Adeola et 

al.(2016), Snow and Noor (2015) and Thomas et al. (2004). Some of the methods used for 

mapping malaria distribution included (i) regression modelling (Adeola et al., 2016), (ii) 

classification (Mohan and Naumova 2014), (iii) multi-criterion assessments (Alimi et al., 2016), 

and (iv) machine learning (fuzzy) approaches (Weiss et al., 2015). In these methods, efforts 

are made to link the environmental factors with the likelihood of malaria occurrence and 

abundance in a particular area of interest. In this way, mapping of malaria inherently depends 

on the dynamics environmental/climatic variables, input data and the statistical/mathematical 

methods used for modelling malaria.   

 

Many of the environmental factors such as distance to water bodies, elevation, distance to 

nearby settlements, and vegetation greenness were considered important for accurate 

mapping of malaria, due to their direct or indirect link with malaria vectors (Adeola et al., 2016). 

Obtaining information concerning these sets of environmental and topographical variables is 

conventionally done by means of field surveys. The limitations with obtaining data in this 

manner arise due to the physical and socio-economic difficulties associated with malaria 

studies and population at risk. For example, collecting environmental variables related to 

Anopheles breeding sites and resting habitats is laborious and time-consuming and is often 

hampered by the inaccessibility of sampling areas (Malahlela et al., 2018). Collecting data in 

malaria-prone environments also exposes researchers to potential threat of malaria 

transmission especially during peak transmission season.  This makes the use of field-based 

methods limited especially in landscapes where access is hampered by physical barriers such 

as mountain ranges, rivers or in instances where wild animals pose potential threat to both 

livestock and humans. These limitations call for alternative methods that are capable of 

providing wider spatial coverage, up-to-date, rapid and accurate information regarding the 

environmental/climatic and topographical factors associated with malaria mapping.  
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Satellite remote sensing technology provides rapid and efficient alternative for mapping 

malaria.  Studies that utilize remote sensing for mapping malaria typically relate malaria cases 

with environmental factors such as vegetation greenness and water bodies whose presence 

and intensity is subject to seasonal variations (Sarmah et al., 2018; Kaptué et al., 2013). These 

correlations are thus important in malaria prediction in that vegetation greenness usually serve 

as a proxy for mosquito presence, while the water bodies typically show a positive correlation 

with the larval densities in many areas (Valle et al., 2013; Soleimani-Ahmadi et al., 2014; 

Amadi et al., 2018). In addition, there are various remote sensing instruments which are 

configured to acquire data about the surface temperatures at medium spatial resolutions. The 

datasets derived from these instruments are beneficial for mapping malaria since a sufficient 

number of studies have highlighted the correlation between malaria transmission and the 

ambient surface temperatures (Lunde et al., 2013; Ngarakana-Gwarisa et al., 2014; Blandford 

et al., 2013; Wardrop et al., 2013). These environmental variables mainly affect disease 

transmission at local scales, while at a global scale the climatic factors such as rainfall and 

relative humidity control the malaria transmission patterns – thus contributing greatly to spatial 

modelling of malaria at that scale (Tanser et al., 2003; Caminade et al., 2014). Remote sensing 

techniques have widely been used to analyse malaria transmission patterns at various scales, 

and sometimes there has been some contrasting findings on the correlations between 

remotely-derived variables with malaria distribution.  However, it is very crucial to understand 

the relationship between remote sensing data and the malaria breeding sites (water/soil) and 

the questing/resting sites (vegetation/settlements) for accurate malaria mapping, allocation of 

scarce financial resources and to inform decision-making regarding malaria control 

interventions. In addition, the understanding of environmental factors associated with malaria 

transmission will form part of the malaria information management system for enhancing 

efforts aimed at eliminating malaria by 2020 in South Africa. 

 

In the following section, a comprehensive review on the application of earth observation 

technology (remote sensing) for malaria studies globally is provided. Firstly, the relationship 

between malaria vector breeding sites/habitats and reflectance spectroscopy are outlined and 

discussed. Secondly, a comprehensive description of available satellite sensor portfolio and 

statistical methods used for mapping malaria is provided. Thirdly, challenges relating to current 

approaches to mapping malaria through earth observation technology are outlined. Lastly, this 

chapter seeks to highlight the opportunities presented by earth observation technology for 

accurate and efficient malaria mapping at various scales. 
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2.2 Malaria vector habitats 

All Anopheline species depend on the availability of water or water bodies for growth and 

proliferation. Although water bodies provide suitable habitats for Anopheline larval growth, the 

quantity and the quality of water bodies play a significant role in the malaria transmission rates 

(Sharma, 2014). By convention, greater risk of malaria is predominantly associated with the 

frequency, abundance and duration of water bodies. The households located in close 

proximity to Anopheline larval sites are often at greater risk of disease transmission than those 

located far from the water bodies, especially that the Anopheline mosquitoes have limited 

dispersal range – within 5 km (Kauffman and Briegel, 2004). However, the presence of small 

water bodies such as natural water-logged areas, burrow pits, open drains, river and dam 

fringes, temporary puddles, cattle hoofprints, cultivated swamps has been identified as one of 

the productive breeding sites for An.gambiae, An.fenestus, An. bwambae, An. 

quadriannulatus and other An. species complex (Ndenga et al., 2011; Foley et al., 2003).  An. 

arabiensis and An. fenestus species for example, prefer to breed in water bodies that are sun-

lit. This preferred bathymetric characteristic of water bodies reduces the incubation period of 

Anopheline eggs (Impoinvil et al., 2009) because such small water bodies heat quicker than 

large bodies of water such as the dam (Gibson et al., 2002). Moreover, water quantity is not 

the only main factor controlling the breeding behaviour of Anopheline mosquito. Water quality 

has also been cited as one of the important hydrological parameters having effect on the 

Anopheles breeding. Most of the species in the Anopheles complex breed in clear and 

stationery water bodies (Dejenie et al., 2011). However, some studies have shown that some 

species Anopheline mosquito have high degree of plasticity which can extend to the habitats 

previously considered unfavourable. For example, in a study conducted by Gunathilaka et al. 

(2013) it was found that An.culicifacies is also adapted to breed in polluted waste water. On 

the other hand, Sattler et al. (2005) have found that An. gambiae larvae tend to exist in highly 

organically contaminated habitats. Larval densities of some Anopheles complex (e.g. An. 

culicifacies, An. fluviatilis) were found to be associated with biophysical and biochemical 

parameters such as total hardness, sulphate and chloride, nitrate and calcium in Bahagard 

and Rudan districts of Iran (Soleimani-Ahmadi et al., 2013). 

 

The presence of green vegetation has been suggested as one of the potential indicator of 

malaria vector habitats. Both aquatic and terrestrial vegetation could provide reliable indicator 

for mapping of malaria. A study by Gimnig et al. (2001) has shown that An.arabiensis was 

associated with temporary habitats containing algae but with no aquatic vegetation, while 

An.fenestus was found in habitats comprising of both algae and aquatic vegetation in Asembo 
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Bay, western Kenya. The emergent vegetation was found to be the best predictor of 

An.gambiae larval abundance in puddles, tire tracks, ponds and swamps in villages found in 

three districts of the Kenyan coast (Mwangangi et al., 2007). The presence of green vegetation 

is also associated with malaria transmission due to its potentially high suitability to Anopheline 

mosquito habitation. The early work of vegetation-mosquito relationship was carried by 

Service (1971). In this study, it was found that unfed mosquitoes tend to rest in a shelter of 

dense vegetation, with both male and female species exhibiting distinct preference to 

vegetation as resting sites. In Costa Rica, Burkett-Cadena et al. (2013) have found that 

An.albimanus and other mosquito species were found resting predominantly on understory 

vegetation than any other resting environments. Similarly, Dewald et al. (2016) highlighted 

that Anopheles species require vegetation as a shield against possible desiccation by sunlight 

in tropical environments. This further emphasizes the importance of vegetation in mosquito 

growth, pathogen incubation, malaria transmission, prediction and mapping.  

 

2.3 Reflectance properties of water 

Water is, by far, one of the major regulators of malaria transmission at local, regional and 

global scales by providing medium through which Anopheline mosquito reproduce (Oyewole 

et al., 2009; Keiser et al., 2005). The availability of water bodies affects malaria vector survival, 

which includes the survival of Anopheline larvae. By highlighting the reflectance properties of 

water from remote sensing instruments, the contribution of remote sensing in epidemiological 

studies is thus realized. Pure water exhibits high reflectance in the visible range of the 

electromagnetic spectrum (380-700nm) and is almost entirely absorbed in the near to far-

infrared regions (800 - 2500 nm) (Figure 2.1). However, in instances where water is 

contaminated by suspended material, chemical compounds, coloured dissolved organic 

material (CDOM) or nutrients (such as nitrogen, phosphorus, and potassium), the spectral 

reflectance significantly changes form due to the attenuation of incoming radiation by one or 

a combinations of these materials. For example, Kong et al. (2015) have observed that water 

bodies with high suspended sediment concentrations tend to exhibit rising spectral response 

in the visible-near infrared  spectrum (400-900 nm) than the water bodies lower suspended 

sediment concentrations.  The variability of sediment concentrations is crucial for the 

preference of breeding sites for certain mosquito species. More recently, Anopheles 

culicifacies has shown adaptations for breeding in waste water with dissolved organic matter 

(Gunathilaka et al., 2013; Kelly and Lezaun, 2013). The physio-chemical parameters such as 
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dissolved nitrate and sulphate concentrations are known to affect the development and 

survival of Anopheline larvae (Mutero et al., 2004; Tchigossou et al., 2017).  

 

 

Figure 2.1: The average spectral reflectance of the three environmental features that affect 

malaria transmission (water, soil and green vegetation).  

 

Eutrophication of water bodies increases the potential of malaria transmission by providing 

certain organic nutrients and high likelihood of larval survival. For example, a study by Noori 

et al. (2015) indicated that survival Culex mosquito larvae were strongly correlated to the 

concentrations of PO4 or NO3 in polluted water bodies. In eutrophic to hypertrophic water 

bodies, the spectral reflectance in the visible to near-infrared (380 – 800 nm) mimics that of 

healthy vegetation due to the chlorophyll concentrations of algae and cyanobacteria (Zhenga 

and DiGiacomo, 2017; Vos et al., 2003).  

 

2.4 Reflectance properties of soil 

Soil plays a major role in the malaria-water-vegetation nexus. Firstly, the frequency, depth and 

extent of malaria vector breeding sites depend, to a large extent, on the type of soil substrate 

available in the malaria endemic zones (Machault et al., 2009; Bomblie et al., 2009; Asare et 

al., 2016; Mentosi et al., 2012). Secondly, soil type and soil bulk density affect the soil water 

content (moisture) as a function of soil minerals such as aluminium, magnesium and calcium 

(Gong et al., 2003). Finally, the physical and chemical composition of soil and climate 

determine the vegetation composition of a landscape (Beukes and Ellis, 2003; Eni et al., 
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2012). Understanding the spectral reflectance of soil substrate under different 

environmental/climatic conditions could aid in mapping of malaria especially when the soil 

parameters are included as malaria predictor variables.  

 

Unlike water, the spectral property of soil extends to the shortwave infrared region of the 

electromagnetic spectrum (350-2200 nm), depending on whether the soil spectra collected 

represent moist or dry soil (Figure 2.1). Typically, all soils types have similar spectral curve, 

with lower reflectance in the visible range (400-650 nm) and higher reflectance in the infrared 

region, with specific absorption features at 1400, 1900 and 2200 nm (Curcio et al., 2013; 

Viscarra Rossel et al., 2016). The absorption bands at wavelengths smaller than 1000 nm 

may be due to iron oxides and chromophores, while the subsequent absorption bands at 

longer wavelengths near 1400 and 1900 nm result from hydroxyl bonds and water. 

Additionally, at 2200 nm, the clay minerals sudden dip off the spectral reflectance of the soil. 

Interestingly, the soil organic matter absorbs and reflects at various wavelengths across the 

VIS-NIR spectrum (Viscarra Rossel et al., 2016).  

 

The structural and chemical composition of the soil has a direct effect on the formation of the 

natural malaria breeding sites. Some species of Anopheles (e.g. An. arabiensis, An. fenestus, 

An. gambiae) prefer to breed in small, well-lit water bodies with ambient temperatures, such 

as the puddles (Ndenga et al., 2011; Ye-Ebiyo et al., 2003) and cattle hoofprints (Paul et al., 

2018; Imbahale et al., 2011; Ndenga et al., 2011). The longevity and the structural fabric of 

these breeding sites depends also on the structure of the soil, as puddles and hoof prints will 

sustain longer in clayey soil than in sandy soil. This in turn affects water retention capacity and 

the hydraulic state of the soils on which breeding sites are formed (Romero et al., 2011). In 

clayey soils, cattle hoofprints could take up to 247 days before they disintegrate (Waudby and 

Petit, 2015). From a spectroscopy point of view, there is a clear distinction between sandy soil 

and clay soils, particularly at the spectral regions 500-2100 nm of pre-processed reflectance 

curves (.e.g. through continuum removal) (Wright et al., 2016). The pedological parameters 

including soil type, organic matter and water retention capacity have a strong influence on the 

type and the distribution of vegetation across the landscape. Although the reflectance property 

of soil varies less, various factors can influence the shape of reflectance curve. Factors such 

as texture, surface roughness, soil organic matter, spectral mixture, atmospheric conditions 

and soil moisture variability (Ben-Dor et al., 2003;Wu et al., 2009; Gomez et al., 2008; Nawar 

et al., 2016; Ben-Dor et al., 2009). These factors should usually be taken into consideration 

when modelling the spatial variability of soil in relation to malaria vector breeding sites.  



 
 

 25 
 

 

2.5 Reflectance properties of vegetation 

Vegetation has been cited as one of the major parameters associated with malaria 

transmission patterns in tropical, arid and semi-arid environments (Ricotta et al., 2014; Shiff 

et al., 2013; Rubio-Palis et al., 2013; Rahman et al., 2011). For malaria vector, vegetation 

serves as both attractant and a repellent, thus making the contribution of vegetation to malaria 

transmission complex, particularly at localized scales. Some of the well-known species that 

repel malaria vector include, among others, ethnobotanical plants such as Lantana camara, 

Omicum americanum, Tagetes minuta, Hyptis suaveolens, Lippia javanica, L. uckambensis, 

A. indica, and O. kilimandscharicum (Seyoum et al., 2002; Mabogo, 1990).On the other hand, 

a study by Sant’ana et al. (2014) has shown that certain species of Aedes mosquitoes were 

attracted to infusions of Panicum maximum grass, and areas that comprised of this grass 

species tend to yield higher oviposition by Aedes species than the areas without vegetation. 

De et al. (2017) concluded that the An. arabiensis and An. coluzzi maintained certain levels of 

hierarchical preference of grass volatiles for oviposition (Asmare et al., 2017), and such 

environmental cue could be used to locate suitable breeding sites of each Anopheline species. 

In higher plants, Psidium gujava (guava) was found to contain sugar odours that attracted 

certain species of An. gambiae in Mali (Müller et al., 2010).  

 

Measurements of major light absorbing constituents in fruit, flowers, and leaves indicate the 

significance of these biochemical components as fundamental regulators of vegetation 

reflectance properties at various levels (leaf and canopy) (Adjorlolo et al., 2012). Generally, 

the reflectance of vigorously green vegetation in the VIS-SWIR region (380-2500 nm) is very 

different from that of water and soil in many ways: Firstly, in the visible region (380-700 nm), 

healthy green vegetation has two main absorption bands in the blue (430 nm) and red (650 

nm) regions. The apparent spectral dips occur mainly the absorption of these photons by the 

chlorophylls for photosynthetic activities (Terashima et al., 2009). The green band is usually 

higher in reflectance than both the blue and red because green radiation is less absorbed by 

plants. The reflectance usually peaks in the NIR region, and this is reflectance is due to the 

scattering by the spongy mesophyll and intercellular spaces (Figure 2.1) (Brodersen and 

Vogelmann, 2007). In the short-wave infrared (SWIR) region much of the absorption occurs 

in the water bands (1400, 1900 and 2400 nm), mainly due to vegetation moisture content at 

leaf of canopy levels (Goward, 1985; Wang and Qu, 2007). By observing the behaviour of 

spectral response curve of vegetation it is thus possible to measure vegetation stress (Orych 
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et al., 2013; Sun et al., 2014), vegetation health (Peng et al., 2013), vegetation community 

type (Liu et al., 2016), tree species (Jiménez and Dáz-Delgado, 2015), biomass (Thapa et al., 

2014), and irrigation status of cultivated area (Conrad et al., 2007). 

  

Many factors affect the spectral response of vegetation particularly in the VIS-SWIR spectrum 

(350-2500 nm). The light interception by vegetation canopy depends upon the morphology of 

leaves (leaf area), the leaf angle, and sun-viewing geometry (Jacob et al., 2007; Sellers, 

1985). In addition to the structural morphology of leave, canopy and optical properties of 

vegetation, the soil background often contributes to the spectral reflectance of the target 

especially when using decadal (10 m, 20 m etc.) sensors (Munyati et al., 2013). Huete (1988) 

has alluded that soil background exerts significant effect on the reflectance of vegetation, and 

this could ultimately result in incorrect derivation of vegetation indices in the VIS-NIR region. 

On the other hand, variations of the soil moisture alter the spectral reflectance across the 

water absorption bands of the VIS-SWIR spectrum.  

 

2.6 Mapping malaria: remote sensing perspective 

One of the early works relating to application of remote sensing technology was reported in 

1973 by National Aeronautical and Space Administration where the scientists, in collaboration 

with the team from New Orleans Mosquito Control District, investigated the potential 

application of aerial photography for mapping vegetation communities associated with Aedes 

sollicitans habitat (Hay et al., 1997). Since then there were studies that utilized a 2.5 m spatial 

resolution airborne Multi-Spectral Scanner (MSS) which yielded higher classification 

accuracies than the colour-infrared aerial photography. In addition to its high spatial resolution 

(2.5 m), the initial MSS comprised of many spectral bands in the 300-1300 nm (Hay et al., 

1997) that improved characteristics of Aedes habitats. Such improvements were reported by 

Barnes and Cibula (1979).  Consequently, the improvement in the radiometric, temporal, 

spatial and spectral resolution enabled mapping of, not only vegetation assemblages relating 

to malaria transmission, but also quantification of other environmental factors such as water 

bodies, surface temperatures and soil characteristics associated with breeding sites. Since 

1972, there was an increased number of earth observation (EO) satellites launched, with 

differing spectral and spatio-temporal configuration. Parallel to the launch of many EO 

satellites was the increase in the adoption of EO uptake for epidemiological studies, 

particularly mapping of infectious diseases with high morbidity. In addition, many other EO 

instruments were also applied in agriculture, soil science, disaster management, forestry, 
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spatial planning and many other areas (Table 2.1), which directly or indirectly affected malaria 

transmission.  

 

Both precipitation and daily/diurnal temperatures have shown significant correlations with the 

malaria transmission and such correlations have been reported by many researchers over the 

years. The use of TRMM, which is a meteorological satellite, has shown tremendous success 

in malaria mapping for many years. Research conducted by Alegana et al (2013) has 

successfully utilized monthly precipitation data derived from TRMM to estimate malaria 

incidence in Namibia. From this research, it was found that precipitation (0.02, 0.01-0.03, p = 

0.02), temperature suitability index (7.57, 5.34-9.96, p = 0.001) and the enhanced vegetation 

index (6.55, 4.25-8.87, p = 0.001) were significant predictors of crude malaria incidence rate. 

In Southern Africa, many studies have been conducted to evaluate the usefulness of the 

climate data derived from remote sensing instruments such as TRMM. Komen (2017) and 

Chuang et al. (2017) have recently indicated that TRMM variables were significant predictors 

of during the malaria onset and can thus be used as input for malaria elimination control efforts 

in South African and Swaziland (now called eSwatini) respectively. The complementation of 

very coarse spatial resolution climate dataset with medium to high resolution satellite datasets 

has contributed significantly to the understanding of environmental factors associated with 

local malaria transmission. For example, a recent study by Ferrao et al. (2018) has used 

climate data with vegetation proxy (NDVI) and land use/land cover data derived from Landsat, 

to map the population at risk of malaria in Chimoio, Mozambique. 

 

The advent of very high spatial resolution satellite data such as the SPOT (Satellite Pour 

l’Observation de la Terre) has opened new opportunities for mapping of malaria at much 

higher accuracies than its Landsat predecessor. For example, Machault et al. (2012) have 

mapped the An. gambiae densities in Dakar using environmental variables derived from SPOT 

5 sensor. In this study, it was concluded that SPOT dataset provided the first example of high 

resolution EO products which can be integrated in operational early warning system for 

malaria vector control.  More recently, Minale and Alemu (2018) have tested the use of both 

SPOT and SRTM to map malaria risk in Bahir Dar City, Ethiopia. The findings from this study 

showed that only 2% of the land area under the city administration was risk-free with large 

proportion of city area (65%) under high risk of malaria infection. The potential of IKONOS 

dataset with the spatial resolution of 0.82 cm spatial resolution has been explored for intra-

urban malaria risk mapping in Dar es Salaam. In this study, Kabaria et al. (2016) have found 

that the percentage of dense/riverine vegetation, proximity to water bodies and built-up areas 
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derived from IKONOS data were significant predictors of P. falciparum prevalence rate in 

children of ages between 2 and 10 years old.   
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Table 2.1: Some of the major globally available EO satellites to date. Satellites are arranged in alphabetical order and not according to importance. 

Satellite name Launched Spatial 
resolution 

Spectral 
resolution 

Revisit time Applications (References)  

      
Advanced Land 
Observation 
Satellite (ALOS) 

January 2006 2.5 m  420-890 nm 46 days Crop estimations (Zhang et al., 2009), wetland 
mapping and change analysis (Rebelo et al., 
2009), forest mapping (Thapa et al., 2014) 
 

Advanced Very 
High Resolution  
Radiometer 
(AVHRR) 

October 1978 1.1 km 580-12 500 nm 1 day Soil mapping (Dobos et al., 2001), malaria 
mapping (Rahman et al., 2010), water 
applications (Dietz et al., 2017) 

China-Brazil 
Earth Resource 
Satellite 
(CBERS-3/4) 

December 2014 20 m 420-890 nm 26 days Impact assessment (Yang et al., 2012), water 
quality assessment (Zhang et al., 2010), soil 
mapping (Pereira et al., 2017) 

Earth Observing-
1 Mission (EO-1) 

November 2000 30 m 400-2500 nm 16 days Disease mapping (Hamm et al., 2015), water 
quality/quantity assessment (Gong et al., 2014 
Mohamed, 2015), soil mapping (Bannari et al., 
2016). 

IKONOS September 1999 1 m 450-900 nm 3 days Vegetation mapping (Wang et al., 2011), malaria 
risk mapping (Krefis et al., 2011), water mapping 
(Mishra et al., 2004) 

Landsat 1(MSS), 
5-7 (TM,ETM+) 8 
(OLI) 

July 1972 
(MSS);March 
1984 (TM); April 
1999 (ETM+); 
February 2013 
(OLI) 

30 m 435-12 510 nm 16 days Soil classification (Nikolaos, 1988), land use 
mapping (Hu et al., 2016), malaria mapping 
(Adeola et al., 2017; Malahlela et al., 2018), soil 
mapping (Scudiero et al., 2015). 

Meteosat November 1995 2.5 km 500-12 500 nm 15 minutes Soil moisture mapping (Wagner et al., 2007; 
Verstraeten et al., 2006), malaria risk modelling 
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(Omumbo et al., 2005), vegetation monitoring 
(Ghilain et al., 2014) 

Moderate-
Resolution 
Imaging 
Spectroradimeter 
(MODIS) 

December 1999 250 m 405-14 385 nm 1 day Fire mapping (Giglio et al., 2003), irrigation 
monitoring (Conrad et al., 2007), human 
settlement mapping (Schneider et al., 2010) 

Project for On-
board Autonomy 
(PROBA) 

October 2001 8 m  400-1050 nm < 7 days Crop mapping (Lambert et al., 2016), 
hydrological mapping (Wirion et al., 2017) 

Quickbird October 2001 0.65 m 450-900 nm 1-3.5 days Malaria mapping (Jacob et al., 2007), soil 
mapping (Sidike et al., 2014), disaster mapping 
(Kerle, 2010), weed management (Lopez-
Granados, 2011) 

Rapid Eye August 2008 6.5 m 440-850 nm 5.5 days Soil chemistry modelling (Blasch et al., 2015), 
vegetation mapping (Ramoelo et al., 2015), 
aquatic mapping (Fritz et al., 2017) 

Resource-SAT October 2003 24 m (LISS-
III); 56 m 
(AWiFS) 

0.52-1 700 nm 24 days Disaster management (Bahuguna et al., 2008), 
snow mapping (Kulkarni et al., 2006), 
groundwater prospecting (Vijith, 2007) 

Satellites Pour 
l’Observation de 
la Terre (SPOT) 
1-7 

February 1986 5 m (SPOT 1-
5); 1.5 m 
(SPOT 6,7) 

455-1750 nm 1-2 days Malaria mapping (Kabaria et al., 2016), soil 
mapping (Sumfleth and Duttmann, 2008), 
vegetation estimation (Sha et al., 2016) 

Sentinel-1, 2A/B June 2015 10 m 443-2190 nm 5 days Soil mapping (van der Werff and van der Meer, 
2015), forest mapping (Sothe et al., 2017), water 
body mapping (Du et al., 2016) 

Shuttle Radar 
Topography 
Mission (SRTM) 

February 2000 30 m 7.5-3.5 cm 11 days Disease mapping (Mosomtai et al., 2018), soil 
mapping (Forkuor et al., 2017), vegetation 
characterization (Kellndorfer et al., 2004) 

Tropical Rainfall 
Measuring 
Mission (TRMM) 

November 1997 4.3 km (PR); 
2.2 km 

630-12 000 nm 
(VIRS);0.3-100 μm 
(CERES) 

46 days 
(CERES) 

Vegetation monitoring (Zhang et al., 2005), 
drought monitoring (Du et al., 2013), soil moisture 
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(VIRS); 4.4 
(TMI) 

studies (Bindlish et al., 2003), malaria incidence 
mapping (Alegana et al., 2013) 
 

WorldView-2/3 October 2009 0.46 m 410-1050 nm 1.1 days Vegetation mapping (Yan et al., 2018) 
      
PR = precipitation radar; MSS = multispectral scanner; VIRS = visible and infrared scanner; TMI = TRMM microwave imager; CERES = clouds 
and the earth’s radiant energy system; LISS = linear imaging self-scanning sensor; AWiFS = advanced wide field sensor; TM = thematic 
mapper; ETM+ = enhanced thematic mapper plus; OLI = operational land imager. 
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Although many studies have reported success in mapping malaria with EO datasets, there are 

still challenges that can be grouped into two main categories: (i) data challenges, and (ii) 

challenges relating to mapping methods.  

 

2.7 Malaria mapping: data challenges 

Malaria is transmitted to humans through the bite of the infected female mosquito. There are 

various pathogens that are transmitted by different mosquitoes which belong to the family 

Anophelinae. The well-known deadly malaria pathogen is the Plasmodium falciparum, which 

is the protozoa parasite for humans that is largely distributed in the warm, moist tropics of the 

world (Gething et al., 2011). Malaria season in tropical environments usually coincides with 

the periods of heavy rainfall and high temperature, which eventually reduces the visibility of 

bottom-of-atmosphere through optical remote sensing (350-2500 nm) (Wang et al., 1999). The 

presence of clouds and cloud shadows impedes the application of optical remote sensing. For 

example, cloud cover and cloud shadowing affect the spectral response of potential malaria 

vector habitat, thereby over-estimating or underestimating the distribution of such habitats 

(Zhang et al., 2015). This makes the application of optical sensing limited to mainly pre and 

post analysis of malaria mapping and seldom during malaria season.  

 

Although a number of remote sensing datasets (ranging from multispectral to hyperspectral) 

are available, processing of such datasets requires specialized and computationally efficient 

methods. Unfortunately, malaria is common mostly in environments where there is limited 

expertise in terms of image processing and such areas often have poor infrastructure to handle 

large volumes of spatial datasets. The retrieval of biophysical and biochemical characteristics 

related to malaria breeding and resting sites requires the collection of spectral signatures from 

different images at different temporal and spatial resolutions. The very high resolution datasets 

often cover smaller areas and the extension to wide-area image acquisition often incurs 

exorbitant costs (Fisher et al., 2017). On the other hand, there should be careful selection of 

spectral bands that are sensitive to the objects of interest – failure to which results in 

redundancy of data even for the high resolution imagery.  
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2.8 Methodological challenges 

2.8.1 Classification 

Many researchers have applied the supervised classification techniques on satellite imagery 

to characterize malaria vectors’ suitable habitats. The land use and land cover map, for 

example, is the most commonly remote sensing product that is often used in malaria studies. 

A study by Mohan and Naumova (2014) has shown that an increase in malaria cases was 

proportional to LULC change between 2000 and 2003. Dlamini et al. (2015) derived LULC 

from RapidEye imagery to assess its relationship with the malaria vector breeding sites in 

eSwatini. However, habitat delineation through image classification techniques is faced with 

major challenges associated with satellite data. The major challenge relates to definition of 

adequate hierarchical levels for mapping land cover units discernable by selected remote 

sensing data. In addition, selecting adequate and ‘pure’ representative training sites may also 

be a limiting factor in image classification (Lu and Weng, 2007). Additionally, post-

classification processing of satellite imagery requires expert knowledge particularly 

considering the ‘salt-and-pepper’ effect of per-pixel classification (Lu and Wang, 2004).  

2.8.2 Regression 

Regression is the widely used method for relating the environmental/climatic variables with 

malaria vector habitats. Most studies have used logistic regression model (a form of 

generalized linear model) for linking the habitat distribution of malaria vector with 

environmental and remote sensing indices. A study by Mushinzimana et al. (2006) 

demonstrated the derivation of the link landscape determinants and Anopheline mosquito 

larval habitats in Kenya highlands by means of stepwise logistic regression. In this study, 

various LULC classes have shown correlation with aquatic habitats of Anopheline mosquitoes. 

In logistic regression, the binary outcome (presence or absence) of habitat suitability is 

modelled as a function of the coefficients of predictor variables (in this case remote sensing 

variables) using a logit link function. Although the logistic regression model has been used 

widely in habitat suitability mapping of malaria vectors, there are widely recognised challenges 

associated with this model. One of the challenges is the number of variables, the algorithm 

used (backward selection, forward selection or both) and the order in which variables are 

entered in the model (or removal) can all affect the selected model. This may in turn affect the 

model robustness especially when there is a high degree of multicollinearity amongst predictor 

variables which goes untreated (Grafen and Hails, 2002). Another challenge arises when 

inference is based on the global model, where tests of individual parameters (variable 

importance) are conducted using the null hypothesis testing – a hypothesis testing which has 
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since received much criticism in recent times (Anderson et al., 2000). Generally, a model 

selection can be a tedious exercise particularly when multiple performing analytical pre-

processing of input parameters, which is often not reported in modelling. 

 

2.9 Opportunities 

Mapping malaria is based on the relationship of Anopheles breeding and resting sites with the 

geospatial datasets. The assumption made about the potential mosquito habitats is that areas 

of high habitat suitability have unique spectral characteristics defined by biophysical and 

biochemical composition compared to the unsuitable habitats. Such uniqueness forms the 

basis for discriminating areas suitable for malaria at various spatial resolutions. For example, 

it has been reported that potential habitats of malaria vector can be delineated from satellite 

datasets by using spectral reflectance of vegetation land cover and irrigated croplands (Jacob 

et al., 2007; Baeza et al., 2013). Some of the crucial characteristics of vegetation including 

nutrients (Ramoelo and Cho, 2018), vegetation canopy moisture (Malahlela et al., 2018), plant 

pigments such as chlorophylls and carotenoids (Gitelson et al., 2003), biomass (Prabhakara 

et al., 2015), species diversity and composition (Madonsela et al., 2017), and leaf area index 

(Roosjen et al., 2018) predominantly affect the spectral reflectance vegetated malaria vector 

habitats. This, therefore, makes it challenging to accurately quantify potential habitats of 

malaria vector especially because the spectral mixture of such habitats is not only defined by 

the vegetation biophysical/chemical characteristics, but also the climatic factors and 

background materials within the vicinity of such habitats. This makes mapping of malaria 

challenging, particularly considering the soil-water-vegetation nexus nature of malaria vector 

habitats. 

 

The improvement in radiometric, spectral and spatio-temporal configuration of current and 

future EO satellites offers new opportunities for improved quantification of Anopheles habitats. 

This thus makes it possible to untangle various biophysical and biochemical characteristics of 

mosquito breeding (water) and resting (vegetation) sites that was, otherwise, difficult to 

quantify using traditional remote sensing datasets. For example, the presence of narrow-band 

such as the red edge in WorldView-2, RapidEye, and Sentinel-2 offers opportunities to 

characterize variations in physico-chemical constitution of soil-water-vegetation nexus. For 

example, Kross et al. (2015) found that the vegetation indices computed from the red-edge 

band performed consistently better than the traditional red band indices when estimation 

vegetation leaf area index (LAI). However, traditional classification methods designed for 
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conventional datasets are unable to produce consistent and robust results when mapping 

malaria, due to the high data dimensionality of EO datasets such as the hyperspectral data. 

The improvements in sensor specifications also demand rapid algorithms and infrastructure 

geared towards handling and processing high data volumes.  

 

Many studies have shown that the machine learning algorithms such as support vector 

machine (SVM) and random forest (RF) higher performance for both classification and 

regression analysis of data. For example, Tian et al. (2016) have utilized both SVM and RF 

on multi-sensor datasets for classifying wetlands, which are primarily associated with malaria 

vector breeding sites in tropical regions of the world (Sousa et al., 2009). On the other hand, 

Kapwata and Gebreslasie (2016) have utilized RF for selecting variables for spatially 

modelling malaria transmission in Mpumalanga province of South Africa.  The availability of 

machine learning algorithms and high resolution dataset offers opportunities for in-depth 

malaria studies, for understanding the biophysical and biochemical characteristics of malaria 

habitats and to predict malaria incidence rates in endemic areas.  Additionally, by fusing 

conventional classifiers and datasets, it thus becomes possible to map malaria incidences at 

much higher accuracies. A recent study by Li et al. (2016) has fused conventional image 

classification method with knowledge based model to map malaria hazard at landscape level. 

In this model, various matrices of land use and land cover (LULC) were derived from SPOT 5 

satellite images. 

 

2.10 Further research requirements in remote sensing for malaria mapping 

Although there has been success in quantifying both vegetated and moist habitats of malaria 

vector through remote sensing, there is a lack of high resolution characterization of such 

habitats which takes into account the micro-climate of both breeding and resting sites. 

Mapping of micro-habitats such as cattle hoofprints and puddles has not been done and as 

such this is invariably a research gap that exists in malariometric studies. In the past, one of 

the limitations to the mapping the micro-habitats of malaria vector (cattle hoofprint and 

puddles) was the spectral and spatial resolution of the commonly used EO datasets. The 

newly-launched high resolution satellites such as WorldView-2/3 and Sentinel 2 offer an 

opportunity to map mosquito breeding and resting sites efficiently and accurately. In ecology, 

the control of malaria by targeting the elimination of mosquitoes is not necessary because at 

any time once the vector that incubates P. falciparum has been eliminated, a more potent one 

emerges (Killen et al., 2013). This is particularly exacerbated by climate change which 
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increases the risk of malaria re-emergence in endemic and epidemic areas (Ivanescu et al., 

2016). The re-emergence of malaria has been reported elsewhere (Sharma, 1996) due to 

shortage of the dichlorodiphenyltrichloroethane (DDT) commonly used for malaria vector 

control. Although the DDTs play a crucial role for rapid control against malaria in many 

countries, the potential hazards associated with their continued use were first reported in 1944 

(Davis, 2014). The apparent hazard posed by the use of DDT mainly due to the high levels of 

dosage, is the ability to alter the functioning of nervous system in humans and domestic 

animals. This could result in dizziness, convulsions, tremor and instability as a result of tissue 

poisoning by DDT (Katole et al., 2013). Due to the toxicity and cost associated with the use of 

DDTs, many people in communal areas have adopted the use of ethnobotanical plants for 

malaria control. In South Africa, one of the most common of such species is Lippia javanica 

(Lemon bush) which is widely used for its aromatic effect that serves as a repellent for 

mosquitoes. On the other hand, quantification of plant species used as ethnobotanical plants 

for controlling Anopheline mosquito is necessary for comprehensive approach to malaria 

mapping and control.  

 

2.11 Conclusions 

Mapping the potential habitats for malaria vectors is one of the challenging steps for malaria 

control strategies. Since the realization of the contribution of vegetation, soil and water to 

malaria incidence rates, attempts have been made to relate such habitats with remote sensing 

approaches. However, from this literature it becomes evident that most of the studies that 

utilized remote sensing relied on the indication given by vegetation greenness indices (NDVI, 

for example) while neglected some vegetation parameters which are very closely linked to 

mosquito’s resting/questing behaviour. The high resolution spatial information on the 

distribution of mosquito micro-habitats such as cattle hoofprints and puddles (natural or man-

made), which are important for malaria transmission is still missing, to a greater extent. On 

the other hand, characterizing vegetation parameters that largely dictate the survival of adult 

mosquitoes (e.g. LAI) in relation to malaria has not been adequately done, and as such more 

work is required to assess the potential of high resolution satellite dataset for estimating LAI 

in areas endemic to malaria. The following chapter will discuss remote sensing approaches 

for mapping the cattle hoofprints which also serve as some of the habitats for Anopheles 

mosquitoes in subtropical areas. 
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Abstract 

Globally, malaria is still a persistent health problem affecting more than 200 million people. With about 

90% of malaria cases occurring in Sub-Saharan Africa, it becomes imperative to understand the 

environmental factors contributing to malaria vector proliferation. The cattle hoofprints are known to be 

some of the productive breeding sites for Anopheles (An.) arabiensis and An. fenestus in Southern and 

East African countries.  Therefore, this chapter aimed at testing the potential of integrating field data 

and Sentinel-2 satellite imagery for mapping cattle hoofprint distribution in the Vhembe District, South 

Africa. The purpose was to improve the predictability of mosquito breeding sites in the study area by 

using field point dataset and Sentinel-2 data.  Due to the difficulty of sampling all locations at the study 

area, the spatial interpolation was employed to create continuous surfaces of cattle hoofprints, using 

limited sampled point observations.  The sampled point observations were then correlated with Sentinel-

derived variables for predicting cattle hoofprints at unsampled locations. The ordinary kriging (OK), co-

kriging (CK) and step-wise multiple linear regression (SMLR) were used due to their ability to 

incorporate both field point data and ancillary datasets. The CK was the best performing interpolation 

method, with R2 = 0.69 for validation dataset (n =33), compared to OK (R2=0.57) and SMLR (R2=0.25). 

The resulting co-kriging semivariogram shows that the combination of field data and remote sensing 

dataset improves the prediction accuracy of cattle hoofprint distribution. Findings from this chapter 

demonstrated that the interpolation error for estimating cattle hoofprints/100 m2 can be minimized 

greatly by using CK (RMSE = 0.2; MAD = 0.04) than with both OK (RMSE = 2.39; MAD = 2.11) and 

SMLR (RMSE = 5.20; MAD = 4.55) methods. Furthermore, the results from this chapter indicate that 

there is high number of cattle hoofprints in malaria-prone areas at the study site than in the malaria free 

areas. Studies such as this provide the platform for developing operational platform for long-term 

monitoring of areas susceptible to malaria, risks and control management. 

 

Keywords: Vhembe District Municipality; geostatistics; cattle hoofprints; malaria; S-2 

 

 

3.1. Introduction 

Malaria continues to be one of the major public health concerns globally. Although the infection 

is preventable and treatable, a large population remains without access to malaria prevention 

and treatment, with most cases and deaths going unregistered and unreported (WHO, 2015a). 

By the end of 2015, the malaria incidence rate fell by 37% while mortality rate fell by 

approximately 60% globally (Sewe et al., 2017; WHO, 2015a). The reduction in new infections 

and mortality is largely attributed to the malaria prevention strategies put in place at local, 

regional and global scale (WHO, 2015b). Despite various intervention strategies globally, 
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malaria continues to exert pressure on local and international health systems. In order to avert 

impacts of malaria on millions of people worldwide it is imperative to increase the 

understanding of spatial distribution of vector habitats for targeted disease control. Consistent 

and accurate quantification of the vector breeding habitats could be imperative for rolling back 

malaria in Africa.  

Previous studies have shown that the primary malaria vectors (An.arabiensis and An.gambiae 

for example) readily rest and feed outside and inside houses (Mayagaya et al., 2015; Braack 

et al., 2015). However, elsewhere in East Africa, Highton et al. (1979) and Joshi et al. (1975) 

have showed than An. arabiensis species has a tendency of frequently occurring outdoors 

than indoors more than 2.2 of the times. The presence of livestock (such as cattle) close to 

households affects the risk of Anopheline malaria transmission to humans (Franco et al., 

2006), especially in rural areas. Livestock may impact on the malaria transmission mainly in 

two ways, (i) acting as the zooprophylactic agents (alternative host species for biting 

mosquitoes), and (ii) zoopotentiation (attracting more malaria vectors). There have been 

studies conducted to suggest the potential use of cattle livestock as alternative host for 

Anopheline species, in order to divert malaria transmission from humans (Franco et al., 2014; 

WHO., 1982; Habtewold, 2004). On the latter case, cattle livestock has shown to attract more 

than 90% of the collected An. arabiensis in Moshi, Northern Tanzania (Mahande et al., 2007).  

The abundance of cattle and other domestic animals may result in increased vector densities 

thus increasing malaria transmission (Bouma and Rowland, 1995). This is mainly attributed to 

the heat and odour cues emitted by cattle as well as the physical disturbances created by 

animals such as hoofprints and puddles near households (Mayagaya et al., 2015; Iwashita et 

al., 2014). The presence of cattle in marshy areas results in the creation of hoofprints that 

potentially offer ideal conditions for mosquito breeding (Lobo, 2010). These ideal micro 

breeding habitats should be taken into consideration when planning the outdoor control 

strategies, especially in respect to An. arabiensis and An. fenestus. 

In Southern Africa and particularly South Africa, Zimbabwe and Mozambique, malaria is 

transmitted through the bite of female Anopheles arabiensis (An. arabiensis) and An. fenestus 

mosquitoes (Brooke et al., 2015; Sande et al., 2015). It has been documented that these 

vectors breed in small ambient aquatic habitats within village areas, including the cattle 

hoofprints (Mayagaya et al., 2015; Davies, 2016; Charlwood et al., 2013).  These habitats are 

usually temporary and tend to be concentrated in predominantly disturbed landscapes in rural 

environments (Sinka et al., 2010). Although the An. arabiensis/fenestus habitat preferences 

are known, the information on spatial distribution of cattle hoofprints is very limited or scanty 



 
 

56 
 

both globally and regionally. Providing spatial information on cattle hoof print will essentially 

enhance the outdoor vector control strategies especially for the more exophylic species such 

as An. arabiensis (Mahande et al., 2007). In addition, detailed assessment of the correlation 

between cattle hoofprint distribution and malaria prevalence is poorly understood. Therefore, 

mapping the distribution of cattle hoofprints across landscape is crucial for informing the efforts 

aimed at preventing malaria and for treating outdoor potential An. arabiensis/fenestus habitats 

found at close proximity to rural households. This is particularly important for An. arabiensis 

which is zoophilic and prefers to rest outdoors. Moreover, this will also assist in enhancing the 

understanding of the environments surrounding the An. arabiensis/fenestus potential breeding 

habitats, and thus contributing to reductions in malaria incidence rates. 

A number of environmental conditions have been established as key contributors to the 

occurrence and distribution of malaria breeding habitats in various parts of the world.  For 

example, physiochemical factors such as water, salinity and vegetation greenness have been 

shown to correlate with Anopheline larvae in pools and cattle hoofprints (Pfaehler et al., 2006; 

Gimning et al., 2001; Hurd, 2014). Previous entomological studies have found that the female 

Anopheline mosquito requires temporary surface water for laying eggs, which usually take 2-

3 days before hatching (Zhou et al., 2010). On the other hand, soil plays a significant role in 

the occurrence and distribution of cattle footprint across the landscape. A study by Huang et 

al. (2006) showed that An. gambiae preferred to deposit more eggs on bare, wet soils than 

grass-covered soil. Potential habitats is bare wet soil may be linked to a number of cattle 

hoofprints created as a result of physical disturbance (McLaughlin and Vidrine, 1987). 

Vegetation also correlated with the oviposition of An. species in micro-habitats (cattle 

hoofprints and puddles) and as such exerts a major impact on the site selection for Anopheline 

mosquitoes (Huang et al., 2006). The relationship between cattle density and vegetation type 

is also important in mapping cattle hoofprints by dictating the hoofprint accounting, and such 

a relationship has been documented elsewhere (Moleele and Perkins, 1998).Characterizing 

the soil, vegetation, and water/moisture within the confinement of cattle hoofprint distribution 

is critical for targeted mosquito larval control strategies.  

In order to assess the ecological conditions associated with soil (as in the case of cattle 

hoofprint distribution) scientists have successfully adopted the use of spatial interpolation 

techniques such as Kriging (Shit et al., 2016; Deis et al., 2017; Reza et al., 2017). In this way, 

spatial distribution of certain soil characteristics incorporating detailed information are 

effectively mapped and presented more accurately. Moreover, interpolation methods such as 

kriging are mostly preferred due to their ability to provide estimates of unobserved locations 
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of variables, based on their weighted averages of adjacent observed sites within given study 

site (Setianto and Triandini, 2013). Kriging has also been applied for mapping vegetation 

characteristics and soil-water parameters (Mutanga and Rugege, 2006; Adjorlolo and 

Mutanga, 2013; Kambhammettu et al., 2011). However, as a geostatistical tool kriging mainly 

offers the capability to derive predicted spatial surfaces using observed point locations, and 

does not incorporate ancillary data sources. Considering the dynamics of cattle hoofprints as 

one of the crucial Anopheles breeding habitats, there is a need to integrate to utilize methods 

and data that could improve mapping of such hoofprints in an area. Co-kriging is an extension 

of ordinary kriging and has shown to perform better than ordinary kriging method due to its 

ability to accommodate cross-correlation and spatial dependency of the field and ancillary 

datasets (Adjorlolo and Mutanga, 2013). The use of co-kriging and ancillary data has shown 

to improve the prediction accuracy of parameters in soil-water-vegetation nexus by reducing 

prediction errors associated with spatial interpolation (Carter et al., 2011; Adjorlolo and 

Mutanga, 2013; Mutanga and Rugege, 2006; Song et al., 2014). In order for a co-kriging 

interpolation to successfully predict cattle hoofprints, there is a need to incorporate suitable 

ancillary data when interpolating. 

Remote sensing data are recognized as some of the readily available datasets for effective 

landscape mapping by way of spatial interpolation (Setianto and Triandini, 2013; López-

Granados et al., 2005; Arieira et al., 2010). Remote sensing data cover extensive areas and 

capture spatial and spectral characteristics of landscape features including cattle hoofprints. 

High densities of cattle hoofprints tend to alter the soil physiochemical characteristics (Pietola 

et al., 2005), which impacts on the spectral response of such features by remote sensing 

satellites. The availability of new earth observation satellites at high spatial and spectral 

resolutions offers opportunity to improve on the detection of surface features, and could 

potentially serve as input parameters for co-kriging, thus improving spatial interpolation of 

cattle hoofprints. One such satellite is the Sentinel-2 (S-2) with 13 multispectral data at 10 m 

spatial resolution. The S-2 data is freely available and have high repeat cycle. This dataset 

thus provides capability to estimate malaria vector microhabitats at finer scale while capturing 

habitat conditions at short intervals. These attributes are key to understanding malaria vector 

habitat and would aid in the identification of areas with potentially high likelihood of Anopheline 

larvae occurrence (Sattler et al., 2005). The primary goal of this chapter is to integrate field 

data and remote sensing technology to map the distribution of cattle hoofprints, using the 

Vhembe District of South Africa as a case study, by means of interpolation technique. The 

study has the following objectives: 
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(i) To compare the performance of kriging, co-kriging and linear regression for 

interpolating cattle hoofprint using field observation data only and/or integration of field 

and remote sensing data, and 

(ii)  To produce a spatial distribution map of cattle hoofprints using the best-performed 

interpolation technique. 

Here, for the first time, we show the feasibility of integrated ground-based geostatistical 

methods and remote sensing methods for mapping the distribution of Anopheles micro-

habitats in the form of cattle hoofprints.  This study will eventually assist in efforts aimed at 

eliminating malaria in subtropical regions of Southern Africa, particularly by targeting habitats 

with high potential of harbouring high densities of Anopheline larvae. 

 

3.2. Methods  

3.2.1. Study area and malaria data 

The experimental study was conducted in Vhembe District Municipality (VDM) in Limpopo 

province of South Africa, as defined in Malahlela et al. (2018). In the VDM – a district 

comprised largely of Vhavenda people – most household keep cattle livestock, which is 

perceived by locals as an indication of wealth (Ramudzuli and Horn, 2014). Figure 3.1 outlines 

the workflow adopted for mapping the distribution of cattle hoofprints in the Vhembe District 

Municipality, South Africa. 

3.2.2. Field data acquisition and transformation 

The extensive field data collection was undertaken in April 2017 and again in August 2017. In 

Vhembe District the month of April corresponds to the peak of malaria transmission season 

(Moonasar et al., 2011) while August corresponds to the low transmission period (Gerritsen et 

al., 2008). With respect to vegetation, the month of April to November are characterized as 

dry season months in the southern African savannah biome (Archibald and Scholes, 2007). 

The data was collected at various land cover types, including (i) shrublands, (ii) croplands, (iii) 

grassland, (iv) woodland, and (v) bareland. A 30m×30m plot was randomly selected in largely 

homogenous areas belonging to any of the land cover type. In each plot, three sub-plots of 

10m × 10m (100 m2) were sampled to record the soil type data, the number of cattle hoofprints, 

the vegetation characteristics, soil characteristics and the geographic location. The accounting 

of cattle hoofprints was done per individual plot print, and where two hoofprints greatly 

overlapped, a single print was recorded instead.  
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Figure 3.1: Summary of the methodology adopted for the study 

 

The geographic location was recorded using hand-held Garmin eTrex 20TM, with the maximum 

spatial accuracy of 3m. In all locations the total of 110 sampling points (N =110) was collected 

throughout fieldwork. 

These field data points were transformed to Gaussian distributions to minimize skewness, 

since they comprised of ranges between 0 and 18 (Table 3.1). The hoofprints data was 
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transformed using the logarithmic transformation, which is considered where the coefficient of 

skewness is greater than 1 (Webseter and Oliver, 2001) and such transformation is given in 

equation. 3.1: 

 

𝐿𝑜𝑔𝑦 = log(𝑥𝑖 + 1)                                                           (3.1) 

where Logy is log-transformed value of the hoof print of x at an ith location.  The transformation 

was done in order for data to meet the linearity assumption (Tabachnick and Fidwell, 1996). 

 

 

Table 3.1: 

Descriptive statistics of the measured cattle hoofprints in the study area 

 

 N Minimum Maximum Std. dev Mean 

Cattle hoofprints 110 0 18 4.44 4.46 

 

3.2.3. Remote sensing data acquisition and pre-processing 

S-2 multispectral imagery (MSI) was used for the study. The imagery was acquired for periods 

between 15 August and 19 October 2017. The S-2 data comprises of 13 spectral bands, in 

the visible (0.44 µm) to shortwave infrared region (2.19 µm). For the purpose of this chapter, 

only 10 spectral bands were used for the analysis (Table 3.2). Sen2cor atmospheric correction 

procedure was used to minimize the contribution of atmosphere from the MSI image. Sen2cor 

uses a large database of look-up tables (LUT) derived using an atmospheric radiative transfer 

model based on libRadtran1 (Müller-Wilm, 2016). Because the Sentinel images are acquired 

at ground sampling distances (GSD) of 10m (visible, near infrared), 20m (red edge, shortwave 

infrared) and 60m (aerosol, water vapour, cirrus) a spatial resampling method was applied on 

10 spectral bands used for the study. All the spectral bands used in the study were resampled 

to 10m using the nearest neighbour resampling method in ENVI 4.7 (Exelis, 2017).  
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Table 3.2: 

Multispectral bands of S-2 explored in this chapter 

 

Band Band center (µm) GSD (resampled) 

Blue 0.49 10m (-) 

Green 0.56 10m (-) 

Red 0.66 10m (-) 

Red edge1 0.70 20m (10m) 

Red edge2 0.74 20m (10m) 

Red edge3 0.78 20m (10m) 

Near infrared 0.84 10m (-) 

Red edge4 0.86 20m (10m) 

Shortwave infrared1 1.61 20m (10m) 

Shortwave infrared1 2.19 20m (10m) 

 

Table 3.3: 

Spectral indices derived from S-2 that were tested in the current study 

 

Index Formula Related to Reference 

Normalized Difference 
Vegetation Index 
(NDVI) 

NDVI =
𝜌NIR − 𝜌Red

𝜌NIR + 𝜌Red
 Green biomass Rouse et al. (1974) 

Normalized Difference 
Vegetation Red Edge 
Index1 (NDVIr1) 

NDVIr1 =
𝜌NIR − 𝜌Red Edge1

𝜌NIR + 𝜌Red Edge1
 

Green biomass Gitelson and Merzlyak 
(1994) 

Normalized Difference 
Water Index (NDWI) 

NDWI =
𝜌NIR − 𝜌SWIR1

𝜌NIR + 𝜌SWIR1
 Moisture, 

Surface water  
Gao (1996) 

Simple Ratio Index (SR) SRI =
𝜌NIR

𝜌Red
 Moisture Jackson and Huete 

(1991) 

Ferrous Iron Index (FII) FII =
𝜌Red

𝜌Blue
 Red soil 

exposure, iron 
concentrations 

Clarke (1999) 

 

* These indices are specially derived from new S-2 red edge bands. 

 



 
 

62 
 

From these bands, the spectral indices sensitive to soil, water, and vegetation were tested in 

order to understand the correlation between areas of cattle hoofprints and satellite data. The 

selected spectral indices used in the study are summarized in table 3.3. Because the habitats 

of Anopheles species are largely associated with soil, water and vegetation parameters, a 

total of five (5) remote sensing spectral indices were selected in the confinement of these 

parameters.  These indices are related to soil bareness, moisture, and vegetation greenness. 

They were computed based on the possible relationship between cattle density and the 

vegetation type (Moleele and Perkins, 1998). The use of spectral indices is advantageous in 

that they can serve as means to rapidly extract relevant information rapidly and effectively, 

and their underlying mechanisms are well-understood (Delegido et al., 2013). They also 

reduce the effect of multi-collinearity since vegetation, soil and water are and their respective 

reflectances are spatially correlated both to themselves (auto-correlated) and to another 

(cross-correlated) (Myers et al., 1970; Acharya 1999).  

 

One of the most commonly used spectral indices is the normalized difference vegetation index 

(NDVI) which was calculated as the sum of the difference between near-infrared and the red 

bands of S-2 as shown in table 3.3. The NDVI is a structural vegetation parameter that is 

sensitive to green vegetation density and phenology (Hmimina et al., 2011). Previous studies 

have shown that NDVI suffers from saturation problems, especially when used to estimate 

vegetation biophysical and biochemical characteristics (Malahlela et al., 2014; Mutanga and 

Skidmore, 2004). In order to compensate for the limitation resulting from the use of NDVI, 

Mutanga and Skidmore (2004) have recommended that the red edge band (705 nm) since it 

addresses signal saturation problem common in NDVI. For this reason, the red edge NDVI 

was included in this study in order to understand indicators of cattle hoofprint as a function of 

associated vegetation characteristics. On the other hand, Gao (1996) has used the spectral 

indicator sensitive to changes in water content of the leaves, and has since been used for 

hydrological mapping such as water body mapping (Gao et al., 2016; Malahlela, 2016). 

Additional to these spectral indices, the soil-related ferrous index (FI) (Clarke, 1999) and 

simple ratio index (Jackson and Huete, 1991) were also calculated to relate soil and vegetation 

with distribution of cattle hoofprints respectively.  

3.2.4. Statistical analysis 

Two geostatistical interpolation methods were tested in an attempt to estimate cattle hoofprints 

in the Vhembe District Municipality. These methods were (i) ordinary kriging (OK), and (ii) co-

kriging (CK). In these interpolation methods, the value of variable Z at the unsampled location 
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k0 is estimated based on the data from the surrounding location, Z(ki) (Yao et al., 2013), as in 

equation 3.2. 

𝑍𝑘0 = ∑ 𝑤𝑖𝑍(𝑘𝑖)

𝑛

𝑖=1

                                                              (3.2) 

where wi is the weight assigned to each Z(ki) value and n is the number of the closest 

neighbouring sampled cattle hoofprints in each plot.  

3.2.4.1. Ordinary Kriging 

The OK calculates the values of wi by estimating the spatial structure of the variable’s 

distribution represented by sample variogram as, 

𝛾(ℎ) =
1

2𝑛
∑[𝑍(𝑥𝑖) − 𝑍(𝑥𝑖 + 𝑑)]2                              (3.3)

𝑛

𝑖=1

 

     

                                                 

where xi and xi+d are sampling locations separated by the distance d, n represents the number 

of pairs of observations separated by h, γ(h) is the estimated ‘experimental’ semi-variance 

value for all pairs at a lag distance h, Z(xi) and Z(xi+h) are the observed values of cattle 

hoofprint as the corresponding locations. These geostatistical models were performed on 

randomly selected calibration data points collected in the field. 

 

3.2.4.2. Co-kriging 

Co-kriging (CK) is an extension of ordinary kriging that takes into account the spatial cross-

correlation between two variables, i.e. the primary variable (cattle hoofprints in our case), and 

another ancillary variable (in chapter, remote sensing indices). In the current study, the cattle 

hoofprints (primary variable) have been sampled at few places while remote sensing variables 

cover the entire study area at every location.  The cross-spatial auto-covariance between 

primary and secondary variables is quantified when these variables are found to have cross-

variogram (Isaaks and Srivastava, 1989; Webster and Oliver, 2001). The cross-variogram is 

computed through the equation3.4: 

𝛾𝑢𝑣(ℎ) =
1

2𝑛(ℎ)
∑ [𝑧𝑢(𝑥𝑖) − 𝑧𝑢(𝑥 + ℎ)][𝑧𝑣(𝑥𝑖) − 𝑧𝑣(𝑥 + ℎ)]                      (3.4)

𝑛(ℎ)

𝑖=1

 

where γuv(h) is the cross-semivariance (cross-variogram) between variables u and v, n(h) is 

the number of pairs of data locations separated by lag distance h , zu is the value of variable 
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u at the location xi and (xi + h) and zv is the data value of variable v at the same locations 

(Mutanga and Rugege, 2006).  

Similar to OK, the CK predictions of cattle hoofprint distribution is obtained from the 

equation3.5: 

𝑍(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖)

𝑛

𝑖=1

                                                      (3.5) 

where 𝑍(𝑥0) is the optimal and unbiased estimate of cattle hoofprint, 𝜆𝑖 is the optimum weight 

selected to minimize estimation variance (Burrough and McDonnell, 1998), and 𝑍(𝑥𝑖) are the 

actual values of cattle hoofprints. The remote sensing variables correlated with cattle 

hoofprints were thus used as ancillary datasets. The remote sensing variables in final model 

were correlated to cattle hoofprints using a correlation coefficient (R2). This was done to 

explicitly understand the contribution of remote sensing data for estimating the cattle 

hoofprints at higher spatial resolution (10 m).   

3.2.4.3. Step-wise multiple linear regression  

The step-wise multiple linear regression (SMLR) has been widely used by many researchers 

to estimate biophysical and biochemical characteristics of soil, water and vegetation by making 

use of information provided by spectral features (Kokaly and Clark, 1999). The SMLR is given 

by equation 3.6 as, 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + ⋯ 𝛽𝑛𝑥𝑛 + 𝜀                                 (3.6) 

where y is the predicted cattle hoofprint at ith location, β0 is the intercept, βn is the coefficient 

of xn and 𝜺 is an error term. The calibration model was derived using MASS package 

embedded in R software (R Development Core Team, 2017), where the model with lowest 

Aikaike’s Information Criterion (AIC) was selected through stepwise method as, variables are 

ranked by their P value (Fotheringham et al., 2002). Whereas the SMLR can be used to find 

subsets that best predict responses on dependent variable (Adjorlolo and Mutanga, 2013), 

model over-fitting could significantly impact on the outcome of prediction. In order to avoid this 

statistical challenge it is recommended that the number of predictor variables to enter the 

model should be less than 1/3 the number of observations, and that the number of steps the 

SMLR should be 10-20 times less than training observations (Mutanga and Rugege, 2006; 

Cohen et al., 2003). In this chapter, the input variables were less than 1/3 (n =15) and seven 

steps (P = 7) were achieved before model selection stabilized. 
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3.2.5. Calibration model 

From the standard cattle hoofprint dataset (N = 110), 70% of the data (n = 77) was randomly 

drawn and used for interpolation and model calibration. This was done to train the predictive 

model and to primarily assess the correlation between the interpolated (y1) and measured (y0) 

cattle hoofprints from calibration dataset. Model validation was achieved using independent 

validation dataset. 

 

3.2.6. Validation model 

Approximately one-thirds of the data (n = 33) was used for validating the interpolation methods 

and the final predictive model. The root mean square error (RMSE) and the mean absolute 

deviation (MAD) were calculated using Eqs. 5 and 6 respectively. 

RMSE = √
1

𝑛
∑(𝑝𝑖 − 𝑎𝑖)2

𝑛

𝑖=1

                                                     (3.7) 

MAD =
1

𝑛
∑(𝑝𝑖 − 𝑎𝑖)

𝑛

𝑖=1

                                                            (3.8) 

where n is the number of values in the validation dataset, pi  is the predicted value, ai is the 

actual (measured) value.   

 

3.3. Results 

3.3.1. Relationship between cattle hoofprints and S-2 data 

Table 4 shows the relationship between cattle hoofprints and S-2 data using Pearson 

correlation co-efficient. Generally, the spectral data exhibited weak correlations with cattle 

hoofprints field dataset. Within these weak correlation results, the NDWI showed the highest 

correlation coefficient of 0.23. The lowest correlation was found between cattle hoofprints 

distribution and the S-2 green band, at 0.01. All the remote sensing variables (Table 3.4) were 

used as input candidates in the subsequent stepwise multiple linear regression model. The 

final regression model parameters used for mapping hoofprint through SMLR are shown in 

table 3.5.    
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Table 3.4: 

The relationship between cattle hoofprints and spectral datasets (n =77). 

Variable R2 

Blue 0.05 

Green 0.01 

Red 0.04 

Red edge1 0.14 

Red edge2 0.03 

Red edge3 0.04 * 

NIR 0.10 

Red edge4 0.03 

SWIR1 0.15 

SWIR2 0.17 

NDVI 0.13 

NDVIr1 0.14 

NDWI 0.23 

SR 0.15 ** 

FII 0.02 

Note: Correlation coefficient (R2): * significant level (p < 0.05) 

 

3.3.2.  Spatial interpolation of cattle hoofprints  

The OK and CK were used to spatially map the distribution of cattle hoofprints from the 

calibration dataset (n = 77). The OK yielded the correlation coefficient of 0.57 (n = 33; RMSE 

= 2.39; MAD = 2.11 prints per 100 m2). Table 3.6 shows the results of geostatistical analysis. 

On the other hand, the CK had the highest correlation co-efficient of and the lowest estimation 

errors (R2 = 0.69; RMSE = 0.20; MAD = 0.04 prints per 100 m2). The SMLR model yielded the 

lowest correlation with the cattle hoofprint distribution (R2 = 0.25; RMSE = 5.20; MAD = 4.55 

prints per 100m2). The overall result was that the R2 of all models was greater than 0.5 

indicating that the interpolated data exhibited a good fit with the measured data. The resultant 

maps obtained from the application of three geostatistical methods tested in the current study 

are shown in figure 3.2.  The CK model used for prediction was significant at p < 0.02. The 
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distribution of cattle hoofprints is highly concentrated in the eastern part of the study area 

compared to the sparse distribution in the west 

 

Table 3.5: 

The S-2 variables used in the final SMLR model 

Variable Estimate Standard 
Error 

p-value 

Intercept 1.3256 0.3498 0.0003*** 

Blue - 0.0011 0.0004 0.0076** 

Red edge1   0.0009 0.0003 0.0045** 

Red edge2 - 0.0029 0.0010 0.0042** 

Red edge3   0.0025 0.0009 0.0099** 

SR  - 0.1444 0.0921 0.1214 

FII - 0.3143 0.1312 0.0193* 

Note: significant levels: p < [*, 0.05]; [**, 0.01]; [***, 0.001].   

 

Table 3.6: 

Comparison of interpolation performance among OK, CK and SMLR for predicting cattle 

hoofprints 

 

Method Validation 

R2 RMSE MAD 

OK 0.57 2.39 2.11 

CK 0.69 0.20 0.04 

SMLR 0.25 5.20 4.55 

R2 = coefficient of determination, RMSE = root mean square error, MAD = mean absolute 

deviance, OK = ordinary kriging, CK = co-kriging, SMLR = stepwise multiple linear regression.
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Figure 3.2: Predicted cattle hoofprints values (per 100 m2) using (a) ordinary kriging, (b) step-wise multiple linear regression, and (c) co-kriging. 

The kriging methods were fitted using exponential model. 

 

(a) (b) (c) 
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3.3.3. Mapping of cattle hoofprints 

Figure 3.3 shows the final map produced from CK method used in the study. The trend of 

cattle hoofprints is that their number density is mainly high in the eastern and southern parts 

of the Vhembe District municipality. This map was produced from the variables that had the 

lowest RMSE, MAD and highest coefficient of correlation. 

 

 

Figure 3.3. Predicted cattle hoofprints in the Vhembe District Municipality using co-kriging of 

field data and S-2 spectral data 

 

3.4. Discussion 

Cattle hoofprints have been documented to be one of the most crucial breeding habitats for 

Anopheline mosquito (Dutta et al., 2010). However, although there exists a fair consensus on 

the importance of cattle hoofprints for malaria transmission, there has not been any attempt 

to date for mapping the distribution of such cattle hoofprints. Thus, in this chapter, we mapped 

the distribution of cattle hoofprints, by integrating field data with the S-2 imagery. The 

distribution of cattle in savannah grassland ecosystem has been reported elsewhere (Zengeya 

et al., 2013; Kaszta et al., 2017). However, no studies were done to estimate cattle hoofprint 

distribution by means of satellite derived data which are indicators of probable cattle hoofprint 
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occurrence. The results of this chapter are crucial for establishing possible links between 

malaria transmission and cattle hoofprint distribution, and for demonstrating the potential of 

satellite based mapping in malariometric studies (Adeola et al., 2017). They serve as the basis 

for targeted outdoor malaria control strategies since in VDM the use of indoor malaria control 

strategies is too far from being sufficient (Zhu et al., 2017). The interpolation techniques such 

as OK and CK have been effective in predicting the cattle hoofprints in unsampled areas. This 

was largely so due to the simplicity of method which relies on the neighbouring sample points 

to predict unmeasured ones (Yao et al., 2013). By combining S-2 dataset with field observation 

point data high prediction accuracy was achieved, which is indicate of the potential contribution 

of satellite data for characterizing Anopheles breeding micro-habitats. The findings in this 

chapter have shown that co-kriging interpolation method can be used for mapping micro-

habitats of An. arabiensis and An. fenestus as long as the input data meet certain criteria. For 

example, it has been established that co-kriging can improve estimates of a less densely 

sampled primary variable (Wu et al., 2006). In instances where secondary variables contained 

skewed data, the data transformation is recommended (Saito and Goovaerts, 2000; Wu et al., 

2006), as with the current study. This could have led to the higher hoofprint estimation in the 

current study, since co-kriging has high capability of utilizing cross-correlation factor between 

sparsely sampled primary (hoofprint point data) and densely sampled secondary ancillary 

variables (S-2 data) (Goovaerts, 1999; Adjorlolo and Mutanga, 2013). Additionally, the high 

R2 obtained though co-kriging may be attributed to kriging using more than one ancillary 

dataset. This is supported by findings from Wu et al. (2006) who demonstrated that ancillary 

data such as pH and organic carbon enhanced prediction ability of co-kriging method on plant-

available zinc.  This model characteristic gives the co-kriging an advantage over ordinary 

kriging and linear regression, which fail to account for cross-correlation between primary 

variable and multiple secondary variables.   

 

Narrow bands of S-2 such as the new red edge1, 2 and 3 (694 nm – 908 nm) were significantly 

(p < 0.01) correlated to the distribution of cattle hoofprints. These spectral bands, including 

SR and FII, have increased the co-kriging capability to predict cattle hoofprint distribution. By 

analysing the semivariogram of co-kriging method, one could realize that estimated range of 

spatial autocorrelation of cattle hoofprints was 1480 m (Figure 3.4).  
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Figure 3.4. A semi-variogram for the co-kriging method using exponential model.  

   

Correlations in the blue, red edge region, SRI suggest that the probabilities of finding cattle 

hoofprints increase when vegetation density and greenness decreases. Alternatively, as the 

area becomes more open the likelihood of finding cattle hoofprints increases. This is especially 

true considering that cattle are usually reared in environments that are more conspicuous, 

such as rangelands and open-field pastoral lands. The cattle livestock seldom graze in dense 

forests or thickets due to inaccessibility and the herdsmen’s grazing practices (Zengeya et al., 

2013), although the associated grass is of high nutritive quality especially in dry season (Moyo 

et al., 2013). Forests are mostly cooler than the areas with little to no vegetation, and as such 

are very hostile to Anopheline mosquito life cycle. The most ambient habitat for the productive 

An. arabiensis/An. fenestus larval population is the small puddles that are often surrounded 

by short grass (Ndenga et al., 2011). In this chapter, most of the cattle hoofprints were 

estimated to have high likelihood of distribution in the north eastern, east and south central 

parts of the Vhembe District Municipality (Figure. 3.3). These areas have been documented 

to be areas of moderate to high malaria prevalence (Komen, 2017), although efforts are 

continuously made to decrease malaria transmission rates (Khosa et al., 2013). Figure 3.5 

shows the recently updated spatial distribution of malaria risk of the study area. From this 

map, it is evident that the areas of moderate malaria risk correspond to areas of high cattle 

hoofprint distribution, with an exception of the northern part of the study area. The prevalence 

of moderate malaria risk in the northern part of the study area may be attributed to the imported 

cases of malaria, largely by the patients from Zimbabwe (Raman et al. 2016).The villages 

within high cattle hoofprint zones are often characterized by very high rainfalls and periods of 
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high ambient temperatures (Komen et al., 2014), which generally accelerate the vector life 

cycle and decrease pathogen incubation period of malaria parasite (Kovats and Martens, 

2000).  

 

 

Figure 3.5. The recently updated malaria risk map of at the study area. The malaria risk map 

was adapted from the map found at http://traveldoctor.co.za/health/malaria/.  

 

However, in very dense grasslands it was very difficult to observe any cattle hoofprints, owing 

to the landscape vegetation composition and sampling protocol. Additionally, thick grass 

biomass create a layer on the ground which acts like a sponge when plodded, making it difficult 

for hoofprint to form. This chapter highlights the importance of both the conventional visible-

near infrared band and the red edge indices although their in-depth contribution should further 

be tested. This study did not take into account multi-seasonal variations in vegetation 

phenology, landscape change and other surface prints which should be considered for future 

research. The study highlighted the capability of geostatistical application of remote sensing 

and field data for mapping cattle hoofprints, which are variable in nature depending on cattle 

rearing behaviour of the farmers (Kaszta et al., 2017). Therefore, findings from this chapter 

offer a snapshot in time and their interpretations and implementations should be made with 

some level of caution. The effects of land use and land cover and the pastoral behaviour or 

preference by village herdsmen were not assessed and it is subject for future research. 

 

http://traveldoctor.co.za/health/malaria/
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3.5. Conclusions 

The aim of this chapter was to explore the feasibility of S-2 and field method for mapping the 

distribution of cattle hoofprints in the Vhembe District Municipality. The following conclusions 

were drawn from this study:  

1) High predictive accuracy was achieved through co-kriging of field observation footprint 

dataset and the S-2 data (R2 = 0.69). In addition the co-kriging method resulted in low 

predictive errors, with RMSE = 0.2 prints per 100 m2; MAD = 0.04 prints per 100 m2) 

using independent validation dataset. 

2) S-2 data was correlated to the distribution of cattle hoofprints. The general trend was 

found to be significant correlations between blue, red edge (1-3) and Ferric Iron Index 

derived from S-2. 

3) Most of the cattle hoofprints are found in the north-eastern (Masisi area), eastern 

(Malamulele/Makuleke area) and south central parts (Thohoyandou to Makhado 

areas) of the Vhembe District Municipality (Figure 3.3). These areas are known to 

comprise of high malaria incidence rates in the VDM, most of which are situated in the 

Mutale local municipality (Khosa et al., 2013). Lower predictions were made for areas 

in the northern and western parts of the study area. 

In summary, this chapter provides the baseline for mapping cattle hoofprints and further 

research is recommended in order to ascertain the findings.  In this chapter cattle hoofprints 

(which are potential habitats for malaria vector) have been successfully mapped using a 

combination of remote sensing data and field data. This maping was done to support the aim 

of the study and to address objective 1. Additionally, the architecture, composition of 

vegetation type and vegetation distribution affect the densities of mosquitoes that often quest 

and rest in the nearby trees around the homesteads. The following chapter presents the 

approach for mapping the vegetation leaf area index (LAI) using remote sensing data and the 

malaria dataset of the study area. 
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Abstract 

Leaf area index (LAI) is an important parameter defining ecosystem services, functioning, carbon 

budgets, and micro-habitat temperature regulations for poikilothermic organisms. Spatial mapping of 

LAI variation will essentially contribute to the understanding of how vegetation structural parameters 

affect malaria vector questing, resting and eventual spread of infectious diseases in malaria prone 

environment. In this chapter, we compared the performance of Sentinel-2 derived broad-band 

vegetation indices (BBVI) and the narrow-band vegetation indices (NBVI) for mapping the distribution 

of LAI in a heterogeneous landscape of the Vhembe District Municipality, South Africa. The Sentinel-2 

bands were resampled to 10 m spatial resolution to allow for comparison. The results from this chapter 

indicate that the BBVI called modified chlorophyll absorption ratio index (MCARI2) and the modified 

triangular vegetation index (MTVI2) have shown higher correlation with the LAI distribution (R2 = 0.73; 

RMSE = 0.86 m2 m-2) than the NBVI computed from the red edge region (R2 = 0.61; RMSE = 1.61 m2 

m-2). This chapter emphasizes the importance of the Sentinel-2 broad bands (visible to near-infrared), 

acquired at 10 m spatial resolution which is the important finding in this study. Findings from this chapter 

indicate a robust generalization of LAI estimation, because the parameterization was made from 

landscape with heterogeneous vegetation communities. The high resolution LAI map derived from 

Sentinel-2 could form part of the long-term strategy for environmental monitoring in a heterogeneous 

environment.  

Keywords: Leaf area index; high resolution; Sentinel-2; heterogeneous vegetation 

 

4.1. Introduction 

Owing to the increase in the use of intradomiciliary-based control measures such as indoor 

residual spraying (IRS) and long-lasting insecticide-treated nets (LLINs), there has been 

substantial decline in malaria transmission in Southern Africa (Mayagaya et al., 2015). 

However, malaria transmission still persists in many parts of Southern Africa, owing to 

persistent socio-economic, outdoor environmental factors and climatic change influencing 

malaria vector ecology. In recent years, extensive efforts to control Anopheline mosquitoes 

have focused on development of outdoor strategies targeting vector larvae (Dewald et al., 

2016). Such efforts have targeted malaria vectors such as An. arabiensis whose transmission 

events are predominantly estimated to occur outdoors (Killen et al., 2016). Accurate 

knowledge on the vector biology and the outdoor environment could enhance the efficiency of 

malaria control strategies and thus reducing new cases of malaria transmission.  
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As small poikilothermic organisms, mosquitoes (Afrane et al., 2004) require shaded areas for 

the most of the day in order to avoid severe desiccation and heat stress that may  result from 

direct sunlight in tropical location (Dewald et al., 2016; Paaijmans and Thomas, 2011). 

Previous studies have shown that vegetation provides mosquitoes with resting and refuge 

sites. (Ricotta et al., 2014), thus facilitating malaria risk to nearby settlements.  Whether the 

adult mosquito prefers one vegetation type as a refuge against possible predators (e.g. 

dragonfly) over another will depend on the architecture of particular plant stand. Individual 

plant stands have a dominant role in maintaining malaria transmission by defining gradients 

of light, moisture and temperature (Clark et al., 2005) among other factors. However, these 

ecological functions depend largely on the biophysical characteristics of plant and edaphic 

factors surrounding it (Moro et al., 2015; Clark et al., 2015). 

 

The leaf area index (LAI) is one of the fundamental bio-indicators of plant physiologic 

conditions (Sampson et al., 2003), and plant functioning (Houborg et al., 2015). LAI is 

geometrically defined as the total one-sided leaf area per ground surface area (Breda 2003; 

Darvishzadeh et al., 2008), and is usually expressed in terms of m2 m-2 (Asano et al., 2009). 

Over the years, remote sensing has been recognized as the effective and reliable method for 

estimating vegetation biophysical characteristics such as LAI (Houborg and Boegh, 2008; 

Carmona et al., 2015; Clevers et al., 2017).  However, most of the remote sensing approaches 

for retrieving LAI focused primarily on agricultural crop monitoring and the homogenous 

vegetation communities (Viña et al., 2011; Masemola et al., 2016;). Moreover, the 

parameterization of vegetation LAI is commonly derived for homogeneous agricultural crops 

due to its significance and robustness in precision agriculture (Haboudane et al., 2002; Hunt 

Jr. et al., 2013).However, the robustness of LAI mapping for heterogeneous vegetation 

communities has received less attention, and thus it remains to be seen how robust is the LAI 

calibrated from heterogeneous landscape.  

 

There is a limited number of studies that implemented LAI retrieval methods on heterogeneous 

landscape, especially in savannah environment (Tong and He, 2017; Darvishzadeh et al., 

2008b). It is crucial, however, to assess the application of remote sensing for retrieving LAI at 

heterogeneous savannah landscape in order to understand spatial variations of plant 

physiology and photosynthetic capabilities, and how the vegetation LAI impacts on malaria 

prevalence. This is a fundamental aspect when defining vegetation function and composition 

that may be associated with habitats of infectious diseases vectors such as Anopheles 

arabiensis and Anopheles fenestus mosquitoes. Studies in optical remote sensing have 
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shown that the LAI is correlated with specific regions of the vegetation spectra (Gausman, 

1982) and such correlation may be retrieved through various methods. A number of 

approaches have been used for retrieving the LAI from the remote sensing datasets. Amongst 

these approaches, two methods are common with the current remote sensing developments: 

(i) inversion of canopy radiative transfer models (RTMs), such as PROSAIL model 

(Jadquemoud et al., 2009; Masemola et al., 2016) and (ii) the empirical relationship between 

LAI and the spectral vegetation indices (Glenn et al., 2008; Xavier and Vettorazzi, 2004).  The 

RTMs have the advantage of explicitly accounting for all factors that influence canopy 

reflectance and architecture. However, the RTMs often have ill-posed problem associated with 

similar remote sensing signal due to combination of canopy biophysical and biochemical 

variables that have mutually compensating effect on canopy reflectance (Dorigo et al., 2009). 

On the other hand, parameterization and regularization of RTMs often render them 

complicated and may not account for optimized variability caused by the larger spatial 

coverage of the biophysical variables (Din et al., 2017; Ryu et al.,  2009). The vegetation 

indices (VIs) have been successfully correlated to structural characteristics of plants, thus 

contributing significantly to the  more effective alternative approach for retrieving LAI (Xie et 

al., 2014).The use of VIs is more widespread due to the ease of computation and 

interpretation.  The VIs in remote sensing are the semi-analytical mathematically transformed 

indices from multiple spectral bands (Rn) with the aim of minimizing the variability of external 

factors such as soil background, so as to enhance the vegetation biophysical/chemical 

characteristics (Darvishzadeh et al., 2006). 

 

Various forms of VIs were explored to assess the empirical relationships between spectral 

reflectance data and LAI (Borzuchowski and Schulz, 2010). Perhaps one of the most 

commonly used VIs is the normalized difference vegetation index (NDVI), which is computed 

from the reflectance of the red and near infrared spectral bands. As a broad-band vegetation 

index (BBVI), the NDVI has been used for retrieval of LAI for many years (Breunig et al., 2011; 

Sun et al., 2017). However, the non-linearity of the relationship between NDVI and LAI suffers 

a rapid decrease of sensitivity particularly in vegetation of moderate-to-high densities of 

photosynthetic green biomass (Gitelson et al., 2007). Alternative methods have been 

proposed that yield more linear relationship between the LAI and remote sensing data. A study 

by Haboudane et al. (2004) has demonstrated that the modified chlorophyll absorption ratio 

index (MCARI2) and the modified triangular vegetation index (MTVI2) were the best predictors 

of green LAI levels in croplands. On the other hand, some studies have shown that the 

performance of narrow-band vegetation indices (NBVI) surpasses that of BBVI for estimating 
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vegetation biophysical and biochemical characteristics because, due to the sensitivity of NBVI 

to subtle vegetation physiochemical parameters (Mutanga and Skidmore, 2004). Granted, 

there seems to be disagreements of results from various studies concerning the advantage of 

NBVI over the conventional BBVI, or vice versa, for estimating LAI. For example, more recently 

Clevers et al. (2017) tested the application of Sentinel-2 BBVI and NBVI for mapping leaf 

chlorophyll content, canopy chlorophyll content and the LAI of potato crops, and have 

concluded that the BBVI exhibited high mapping accuracy than the NBVI, thereby avoiding 

the need for narrow-bands that are available at 20 m spatial resolution.  

 

This chapter aimed at comparing the BBVI and NBVI of Sentinel-2 for mapping the green LAI 

in heterogeneous landscape of the Vhembe district in South Africa, which is mostly comprised 

of natural vegetation. Sentinel-2 was a preferred sensor because it comprises of both 

broadband visible-near infrared bands (10 m) and four narrow bands in the red edge region 

(20 m). In addition, Sentinel-2 has a repeat cycle of 5 days, which is one of the key properties 

for monitoring potential Anopheline mosquito resting site, in the form of LAI.  

 

4.2. Methods 

4.2.1. Study area 

The study was conducted in the Vhembe District Municipality (VDM), which is located in the 

Limpopo province of South Africa. The study area covers a land area of approximately 25 596 

km2. Detailed description of the study area is found in Malahlela et al., 2018. (Figure 4.1) While 

in predominantly savannah biome, the VDM comprises of a mixture of seven (7) veld types, 

viz. Mopani veld (largest), Lowveld sour bushveld, Mixed bushveld, arid sweet bushveld, 

North-eastern sour veld, sourish mixed bushveld,  and sour bushveld (smallest) (LSER, 2004). 

The density of vegetation in the study area ranges from very sparse vegetation in the west to 

very dense deciduous vegetation in the east and south central parts of the study area. One of 

the most characteristic vegetation species is the Adansonia digitata (baobab tree) commonly 

found in this area (Rutherford et al., 2006). Both the Acacia (spp) and Dichrostachys cinerea 

were found to be the dominant shrub species in the south-western part of the study area, while 

D. cinerea dominates the eastern part of the study area (researchers’ observation). The study 

area usually receives summer rainfalls, which ranges from 200 mm to over 1000 mm annually 

(LSER, 2004), although there are frequent occurrences of flash floods in the area (Reason 

and Keibel, 2004). 
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Figure 4.1. The location of the study area 

4.2.2. Field data 

The LAI measurements were obtained for each sample plant species in a designed 10 m × 10 

m subplot within the 30 m × 30 m plot. The hand-held plant canopy analyser (LAI-2200C) was 

used to measure LAI of different vegetation classes across the study area. The LAI-2200C 

calculates LAI and other canopy structure attributes from radiation measurements made with 

‘fisheye’ optical sensor (LICOR, 2018; Brusa and Bunker, 2014). A total of 115 (N =115) 

samples were collected randomly in the study area for all possible vegetation types and 

croplands. In addition to LAI, information about the dominant vegetation species within the 

randomly selected plots was collected. Table 4.1 and figure 4.2 give the descriptive statistics 

and the frequency of LAI in each category respectively. 

 

 

Table 4.1: Descriptive statistics of the measured field LAI in the current study 

 N Minimum Maximum Mean Std.dev Variance 

LAI 115 0.3 6.33 2.85 1.32 1.75 
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Figure 4.2. The histogram showing the frequency of LAI distribution per category. In this 

current study, the highest number of field observations had LAI values of between 2 and 4 

m2/m2. 

 

4.3.3. Image data 

Sentinel-2 imagery acquired on between August and September 2017 were used in this 

chapter. The imagery were obtained from https://scihub.copernicus.eu/ , comprising of the 

thirteen (13) total number of spectral bands, at 10 m (visible-near infrared), 20 m (red edge 

bands and shortwave infrared bands) and 60 m (coastal, cirrus and water vapour bands). For 

the purpose of this research, only ten (10) multispectral bands in the visible-near infrared  (490 

– 842 nm), red edge region (705 – 865 nm) and shortwave infrared region (1610 – 2190 nm) 

were used to retrieve LAI I the study. These spectral are known to be highly correlated with 

vegetation biophysical and chemical properties of vegetation such as LAI (Clevers et al., 2017; 

Masemola et al., 2016), chlorophyll (Clevers and Gitelson, 2013; Li et al., 2018), and biomass 

(Sibanda et al., 2015; Castillo et al., 2017) mainly in homogenous environments.   The 

Sentinel-2 (A/B) missions offer improved temporal resolution of 5 days, which is very important 

for high resolution mapping of vegetation phenology and biomass.  

The 10 multispectral bands of Sentinel-2 were pre-processed in Sentinel Application Platform 

(SNAP) toolbox of the European Space Agency (ESA). The atmospheric correction was 

carried out using Sen2Cor algorithm in SNAP, which uses a large database of look-up tables 

(LUT) derived using an atmospheric radiative transfer model based on libRadtran1 (Müller-

Wilm, 2016). All of the atmospherically corrected spectral bands (n = 10) were resampled to 

10 m spatial resolution, and stacked together to form individual 10-band imagery. Image pre-
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processing was concluded when the individual Sentinel-2 images (scenes) were mosaicked 

and clipped to match the extent of the study area in Quantum GIS software (QGIS 

Development Team, 2018).  

 

5.2.1. Statistical analysis 

The statistical relationship between LAI or effective LAI (LAIeffective) and remote sensing data 

was determined by assessing its correlation with vegetation indices (BBVI and NBVI) derived 

from Sentinel-2 data. Five vegetation indices were tested in this chapter based on their 

relationship with LAI (Zheng and Moskal, 2009 ) and other vegetation parameters including 

foliar nitrogen concentration, which is correlated to green vegetation LAI (Klodd et al., 2016; 

Delegido et al., 2011;). Both the MTVI2 and MCARI2 have shown higher correlation to LAI than 

the common NDVI and other NIR-centric indices (Haboudane et al., 2004). On the other hand, 

the WDRVI has shown robust linearity with LAI than the conventional red-NIR indices such as 

NDVI due to the weighting parameter at NIR spectral region (Gitelson, 2004). In comparison, 

the two red-edge centric vegetation indices were computed as narrowband indices because 

of their ability to account for signal saturation at vegetation with LAI > 4 and 5 m2.m-2 (Baret et 

al., 2007; Mutanga and Skidmore, 2004). A limited number of VIs was selected in order to 

avoid model over-fit. The list of vegetation indices is shown in table 4.2. 

 

Table 4.2: The vegetation indices used in the study, utilizing green, red NIR and red edge 

spectral regions 

Index Formula Reference 

 

Modified triangular 

vegetation index (MTVI2)† 

 

MTVI2 =
[1.5(𝑅842 − 𝑅560) − 2.5(𝑅660 − 𝑅560)]

[(2𝑅842 + 1)2 − (𝑅842 − 5𝑅660
0.5) − 0.5]

0.5 

Haboudane 

et al. (2004) 

Modified chlorophyll 

absorption ration index 

(MCARI2)† 

 

MCARI2 =
1.2[2.5(𝑅842 − 𝑅660) − 1.3(𝑅842 − 𝑅560)]

√(2𝑅842 + 1)2 − (6𝑅842 − 5√𝑅660) − 0.5

 

Haboudane 

et al. (2004) 

Wide dynamic range 

vegetation index (WDRVI)† 

 

WDRVI =
[𝛼(𝑅842) − 𝑅660]

[𝛼(𝑅842) + 𝑅660]
 

Gitelson 

(2004) 
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Normalized difference red 

edge1 vegetation index 

(NDVIre1)# 

 

NDVIre1 =
𝑅842 − 𝑅705

𝑅842 + 𝑅705
 

Gitelson and 

Merzlyak 

(1994) 

 

Red edge chlorophyll index 

(CIred edge)# 

 

CIred edge =
𝑅780

𝑅705

− 1 

Gitelson et al. 

(2003) 

 

 

† denotes BBVI, # denotes NBVI in the red edge region, the value of α =0.1 

 

The multiple linear regression model was implemented to correlate derived vegetation indices 

with field LAI measurements, and to predict the LAI from Sentinel-2 imagery. From the 

standard field dataset (N = 115), approximately 60% (n = 69) was used for calibrating and 

training the model, while the remaining 40% (n = 46) of the independent dataset was used for 

model cross-validation in order to test the robustness and reliability of the training model. The 

training model involves the stepwise selection of significant vegetation indices which are highly 

correlated to the measured LAI. The stepwise strategy is crucial for LAI estimation because it 

minimizes the Akaike’s Information Criterion (AIC) value (Hu et al., 2018) while retaining the 

significant candidate variables for model prediction. Additionally, it handles the multi-

collinearity problem that is common with remote sensing variables. The ‘MASS’ package 

(Modern Applied Statistics with S) was used in R software (R Development Core Team, 2018) 

to perform model building and variable selection procedures. The co-efficient of determination 

(R2) and the root-mean square error (RMSE) values were computed for all models as a 

measure of accuracy assessment. The analysis of variance (ANOVA) will be conducted 

between the BBVI and NBVI models, and the combined BBVI-NBVI model to assess predictive 

model variations and the model significance using a chi-square (𝜒2) statistic. 

 

4.3. Results 

4.3.1. Broadband and narrow-band models 

The results in table 4.3 of the initial model indicate the interaction of the VIs with measured 

LAI. From the table, it can be seen that no input variable is significant (p< 0.05), although each 

of the selected variables have very high correlation with LAI (R2 >0.79). The stepwise 

regression model was performed for the BBVI and resulted in the MTVI2 and MCARI2 as the 

significant remote sensing variables, as in equation (4.1): 
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LAI = 30.47 × MTVI2 − 19.74 × MCARI2 − 1.91     (4.1) 

In this model, both MTVI2, MCARI2 variables and y-intercept were significant at p < 0.001, with 

the multiple R2 = 0.76. On the other hand, the NBVI model yielded the relationship depicted in 

equation (4.2): 

 

LAI = −0.68 × CIred edge + 12.20 × NDVIre1 + 0.31     (4.2) 

The narrow-band model was significant at p < 0.00001, with the multiple R2 of 0.72. In this 

model, the model significant variable was NDVIre1 at p < 0.000001. 

 

Table 4.3: The results of the initial combined BBVI and NBVI regression model and the 

variable correlations to measured LAI 

Index Group Coefficient Std. Error t  p R2 

Intercept -    0.144   4.55   0.032 0.98 - 

MTVI2 BBVI  19.215 14.69   1.311 0.19 0.84 

MCARI2 BBVI -12.897 10.96  -1.177 0.24 0.82 

WDRVI BBVI    1.589 4.711   0.337 0.74 0.83 

NDVIre1 NBVI    5.521 3.939   1.402 0.16 0.85 

CIred edge NBVI   -0.986 1.332  -0.740 0.46 0.79 

 

However, comparison between final model and NBVI model has resulted in a 𝜒2 test with p 

value of 0.038, which is statistically significant. On the other hand, the comparison between 

the final model and the BBVI model yielded a 𝜒2 test with value of p > 0.373 and was not 

statistically significant. 

 

The final model selected through the stepwise strategy is given by equation (4.1). In other 

words, the selected BBVI model was also the final model to be used for predictive mapping. 

In this model, the MTVI2 was positively correlated to the LAI distribution (p <0.004) while the 

MCARI2 was negatively correlated to the LAI distribution (p<0.0001) at the study area. Table 

5.4 shows the estimates of the final model employed in this chapter and the significance of 

each input variable. 

Table 4.4: The results of the significant BBVI model used for mapping LAI (n = 66) 

Variable Coefficient Std. Error t  p R2 

Intercept -1.910 0.510 -3.743 0.0004 - 

MTVI2  30.473 7.281 4.185 0.0001 0.84 
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MCARI2 -19.737 6.552 -3.012 0.004 0.82 

 

5.3.1. Accuracy assessment 

The independent dataset (n=49) was used to cross-validate the predictive accuracy of the 

regression models. Figure 4.3 shows the correlations between measured and predicted LAI 

as shown by (a) BBVI model only, (b) final model, and (c) NBVI model. The highest correlation 

and lowest RMSE were obtained from the final model (R2 = 0.73; RMSE = 0.86 m2 m-2), while 

the model with narrow band indices yielded the lowest R2 (0.61) with high RMSE (1.61 m2 m-

2).The final model was then used for mapping the spatial distribution of LAI using Sentinel-2 

dataset. Figure 4.4 shows the spatial distribution of the retrieved LAI across the Vhembe 

District Municipality.  

 

 

Figure 4.3: Predicted vs. measured LAI using three linear models (a) BBVI model, (b) NBVI model and 

(c) final model.  

 

4.4. Discussion 

The aim of the study was to compare the performance of the broadband vegetation indices 

with the narrow-band vegetation indices derived from Sentinel-2 instrument to retrieve LAI of 
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the heterogeneous landscape for malaria predictability. It is in the objective of the study to 

parameterize field LAI measured from different vegetation types including the compound (e.g. 

Dichrostachys cinerea) and simple leaf vegetation (e.g. Musa acuminata). The results of the 

study showed that both the broadband vegetation indices (BBVI) and the narrow-band (NBVI) 

have the ability to retrieve the LAI from heterogeneous landscape (p< 0.05). However, the 

current study has showed that the regression model computed from BBVI is more robust than 

the one computed from NBVI for LAI retrieval. These findings are in agreements with findings 

by Clevers et al. (2017) who concluded that the broadband vegetation indices at 10m spatial 

resolution can retrieve LAI with higher accuracy than the narrowband indices, which are 

usually available at 20 m spatial resolution. The use of either BBVI or the NBVI has shown to 

be dependent on the distribution of LAI across the heterogeneous landscape. Findings in this 

chapter show that the BBVI which included MCARI2, MTVI2 and WDRVI yielded higher 

classification accuracies than the NBVI mainly in the LAI categories of 0-2, 2-4 but under-

estimated the higher LAI (>5). On the other hand, the NBVI model has shown high sensitivity 

to LAI greater than 4 (Figures 4.3 and 4.4). The prediction of LAI by final selected stepwise 

regression model (MCARI2 and MTVI2) has shown that these broadband indices are less 

affected by the soil background, but suffer signal saturation at moderately higher LAI. This is 

because MTVI2 and MTVI2 have a soil adjustment factor that is otherwise not available in the 

narrow-band indices used for this chapter (Jin et al., 2015). Some studies have found that 

MCARI2 tends to yield higher prediction of vegetation biophysical characteristics such as the 

LAI due to the combination of reflectance in the NIR, red and blue wavelengths than other 

single or two-band indices (Stagakis et al., 2010; Gu et al., 2015) In contrast, the narrow band 

indices are have shown ability to account for signal saturation that is common at moderately 

higher LAI values (Mutanga and Skidmore, 2004). The performance of BBVI is an encouraging 

factor especially for retrieval of LAI with satellite datasets that have limited spectral resolution 

such as IKONOS, CBERS-3/4, and SPOT. It further vindicates the use of Sentinel-2 satellite 

instruments (S2-A and B) for very high spatial resolution LAI retrieval for multiple applications. 
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Figure 4.4: The results of LAI retrieval from narrow-band vegetation indices (a) vs. the final broadband 

vegetation indices (b) at the study area. The scatterplots show the respective correlation between 

measured and predicted LAI for the NBVI (c) and the final BBVI model (d) respectively.  

 

Previous studies have considered validation of the contribution of red edge bands for 

estimation of LAI in different areas (Frampton et al., 2013; Verrelst et al., 2013). A study by 

Hermann et al. (2011) concluded that, from the simulated Sentinel-2 dataset, the red edge 

band exhibited higher sensitivity to LAI variations in homogeneous environment than the broad 

VNIR spectral bands, and has since suggested further testing with real Sentinel-2 data. In the 

current study, it was found that the contribution of the red edge indices showed rather inferior 

performance for retrieving LAI when the calibration of such vegetation biophysical parameter 

is calibrated from vegetation communities of various canopy architectural designs. These 

findings may have been attributed to aggregation of LAI from different plant species with 

contrasting canopy structure (foreground), background reflectance (e.g. soil) and phonological 

conditions in sampling plots.   
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5.4.1 Spatial mapping and considerations  

Overall, the pattern of predicted LAI from Sentinel-2 increases from west (lower LAI values – 

0.0 m2 m-2) to east (higher LAI values – 6.08 m2 m-2), and increases also from north to south 

of the study area (Figure 4.4). On the whole, the eastern half of the study area exhibit high 

levels of LAI than the western part. This is because the western part of the study area is largely 

comprised of sparse shrubland mostly with bush-encroaching species such as D. cinerea, 

Acacia tortilis and A. mellifera, which are characteristic of savannah biome (Munyati et al., 

2013). These bush-encroaching species are found in warm semi-arid climatic zones, with 

different leaf architecture and leaf area, than vegetation in the humid sub-tropical climate 

within the African savannah (Roques et al., 2001; Oldeland et al., 2010). Although the LAI was 

successfully mapped in this chapter, it is albeit crucial to consider the limitations that arise 

when retrieving LAI from Sentinel-2 dataset: Firstly, the regression model could not extrapolate 

LAI values beyond the range of the training dataset, thereby not sufficiently giving indication 

of ‘true’ LAI distribution especially in irrigated agricultural croplands. Secondly, due to limited 

number of samples in collected for LAI greater than 5, the LAI distribution maps may be biased 

towards lower LAI values/categories hence the underestimation of high LAI resulting from the 

MCARI2-LAI and MTVI2-LAI model. Finally, it should be noted that the retrieval of LAI in the 

current chapter was done for imagery obtained in a single time period, which considerably 

affects the results of the study. It is thus recommended to test the performance of indices 

across multi-seasonal imagery to capture the dynamics of vegetation phenology and other 

biophysical characteristics impacting vegetation leaf area.  

 

4.5. Conclusions 

In summary, this chapter has demonstrated the ability of Sentinel-2 dataset for retrieving LAI 

calibrated from heterogeneous vegetation. The study has shown that the broad-band 

vegetation indices of Sentinel-2 yielded higher mapping accuracy (R2 = 0.73; RMSE = 0.86 

m2 m-2; p < 0.05) than the narrow-band vegetation indices (R2 = 0.61; RMSE = 1.61 m2 m-2; p 

< 0.05), with the statistically significant difference between the two models (p < 0.038). The 

model derived from three-band MCARI2 and MTVI2 with soil-adjustment factor was eventually 

used for spatial modelling of the LAI in the Vhembe District, demonstrating that superior LAI 

estimation can already be achieved at 10 m spatial resolution (Verrelst et al., 2013). It is 

therefore recommended that these results be interpreted with caution because of the number 

of sample and the structure of the data used to derive the LAI. These results can further be 

validated by considering the multi-seasonal approach to LAI mapping which was not 
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considered in the current study.   The results from this study indicate that the broadband 

vegetation indices are better predictors of the leaf area, which is one of the most important 

components involved in the biology of vector pathogen transmissivity. Remote sensing 

techniques thus enable us to effectively quantify this crucial vegetation biophysical 

characteristic, which is an important factor in the study of malaria distribution. The distribution 

maps derived from remote sensing show that the areas with low LAI derived from S-2 BBVI 

correspond to areas of low malaria risk, while the opposite is the case with the areas of high 

predicted LAI values.  

 

Communities in the rural areas of the Vhembe District Municipality depend on various 

ethnobotanical plants as crucial sources for primary healthcare against malaria (Phaswane 

and Masevhe, 2018). One of the most commonly used species is the Lippia javanica (lemon 

bush) – a shrub species belonging to the Verbenaceae family and grows up to 2 m in height 

(Xaba and McVay, 2010). The L. javanica is used, among other functions, as an alternative 

for western medicine that repels mosquitoes, thereby controlling malaria infections in the 

areas. The following chapter will be presenting remote sensing methods for mapping the 

distribution of L. javanica at the study area. 

 

In summary, this chapter presented the novel approach to retrieving the LAI of vegetation 

within the study area. It was found that the LAI derived from the common visible-near infrared 

bands of Sentinel-2 is more accurate than the one derived at narrow-band. This chapter 

addresses objective 2 of the study. 
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Abstract 

Malaria in South Africa is still a problem despite existing efforts to eradicate the disease. In the Vhembe 

District Municipality (VDM) malaria prevalence is still high, with mean incidence rate of 328.2 per 100 

0000 persons/year. This chapter aimed at evaluating environmental covariates, such as vegetation 

moisture and vegetation greenness, associated with malaria vector distribution for rapid and efficient 

disease management and control. The 2005 epidemiological data combined with Landsat 5 ETM were 

used in this chapter. A total of 9 remotely-sensed covariates were derived while pseudo-absences in 

the ratio of 1:2 (presence/absence) were generated at buffer distances of 0.5-20 km from known 

presence locations. A stepwise logistic regression model was applied to analyse spatial distribution of 

malaria. A buffer distance of 10 km yielded the highest classification accuracy of 82% at a threshold of 

0.9. This model was significant (ρ < 0.05) and yielded a deviance (D2) of 36%. The significantly positive 

relationship (ρ < 0.05) between SAVI and malaria distribution at all buffer distances suggests that 

malaria vector (Anopheles arabiensis) prefer productive and greener vegetation. The significant 

negative relationship between water/moisture index (a1 index) and malaria distribution in buffer 

distances of 0.5 km, 10 km and 20 km suggest that malaria distribution increases with a decrease in 

shortwave reflectance signal. The study has shown that suitable habitats of malaria vectors are 

generally found within a radius of 10km in semi-arid environments and this insight can be useful to aid 

efforts aimed at eradicating malaria by 2020 in South Africa. The study has also demonstrated the utility 

of Landsat data and the ability to extract environmental conditions which favour the distribution of 

malaria vector (An. arabiensis) such as the canopy moisture content in vegetation, which serves as a 

surrogate for rainfall. 

Keywords: Vhembe District Municipality; malaria; SAVI; Landsat 5 

 

5.1. Introduction 

The global malaria infection rates are a public health concern, with over 210 million cases 

reported across the world in 2015. It is reported approximately 90% of all malaria deaths occur 

in Africa in the year 2015 (WHO, 2016). In Africa, malaria is commonly transmitted through 

the bite of female Anopheline mosquitoes on humans. Malaria cases are due to Plasmodium 

falciparum pathogen, which utilizes humans as a natural intermediate host. In South Africa, 

malaria is endemic to low-altitude areas of the northern and eastern parts of KwaZulu-Natal, 

Mpumalanga and Limpopo provinces. The high malaria transmission is invariably seasonal 

and is often limited to warm and rainy summer months (Craig et al., 1999). In Vhembe District 

Municipality, Limpopo province, high malaria cases are reported, with over 2-3 incidences per 

1000 population at district level (Raman et al., 2016). South Africa is one of the countries that 

pledged to eradicate malaria by 2020, and efforts are currently made to realize this intervention 

for zero-malaria country.  These efforts include the implementation of various measures to 
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achieve a primary milestone that is characterized by four phases. These phases are: (i) 

controlling malaria to less than 5 positive cases per 1000 persons, (ii) pre-elimination stage 

(less than 1 case per 1000 persons at risk per year), (iii) complete elimination (no 

transmission) and (iv) prevention of re-introduction of malaria diseases (NDoH, 2010; Maharaj 

et al., 2012). The ultimate goal is to achieve zero malaria transmission in a year in malaria 

prone countries such as South Africa. In order to achieve this, it is crucial to collect the relevant 

data regarding the occurrence of P. falciparum species in endemic areas. This will in turn, 

assist in efforts aimed at detecting, controlling, managing and eradicating malaria.  

 

Mapping the distribution of P. falciparum involves the knowledge of potential habitats of 

Anopheles species and records confirming malaria presence/absence in a particular area or 

region. This exercise often employs field surveys where health-care workers record areas of 

malaria presence, which can range from a single household to a regional scale. Nonetheless, 

this method of data collection takes into account the locations and the frequencies of malaria 

presence and seldom includes environments where malaria is absent. This poses inherent 

technical challenges when attempting to model the spatial distribution of malaria, since the 

data collected may be statistically ‘incomplete’. However, a number of species distribution 

models incorporating the presence-data only or presence-absence data exist as explained in 

the literature (Phillips et al., 2006) and have been used over the years. Moreover, the 

availability of presence-absence data is important for modelling the distribution of P. 

falciparum, depending of the statistical method applied for mapping. 

 

Several species distribution models (SDM’s) have been widely used in ecology and in 

epidemiological studies alike. The premise of these models is two-fold: those that use 

presence-only data, and those that require both presence and absence data (Barbet-Massin 

et al., 2012). Perhaps one of the few presence-only SDM’s is rectilinear envelope including 

BIOCLIM (Busby, 1991).  Some models, although categorised as presence-only model such 

as the maximum (Maxent), require background pseudo-absence data to be fully functional 

(Phillips et al., 2006). In addition to Maxent, the Genetic Algorithm for Rule-Set Prediction 

(GARP) also requires the insertion of pseudo-absence, i.e. 0, to depict areas where the 

species in unlikely to occur (Stockwell and Peters, 1999).  On the other hand, most methods 

for predicting malaria rely on the availability of both presence-absence records of malaria 

pathogen. The common example of such methods is logistic regression model, either 

univariate or multivariate, and boosted regression tree (Clennon et al., 2010; Kleinschmidt  et 

al., 2000; Sinka et al., 2010). To ensure accurate mapping of potential malaria distribution in 
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instances where absence-data is missing, deriving pseudo-absences for use in regression 

and mapping can be an effective alternative. One of the advantages of employing 

presence/absence models for predicting malaria is that they make it possible to assess the 

precision of map and significance of covariates, while allowing for quantification of errors of 

estimations (Kazembe et al., 2006).   

 

In cases where the absence data is not readily available, generating pseudo-absences for 

mapping of malaria has been considered as an alternative by many researchers (Sinka et al., 

2010; Nmor et al., 2013; Alimi et al., 2015). Most of these studies that utilize pseudo-absences 

for malaria mapping are focused on regional scales, with minimal emphasis placed on 

interactions at local scales (Tonnang et al., 2010). It has been established that pseudo-

absences generated very close to presence cases may fall on true unidentified presences, 

while those generated randomly very far from presences may result in a model defining 

coarser geographical differences rather than fine-scale variables (Chefaoui and Lobo, 2007). 

The coarse scale analysis is usually as a result of objective to focus on efforts to control 

malaria epidemic on larger areas, thereby obscuring interactions of local environmental 

covariates. For example, Sinka et al. (2010) studied the distribution of malaria in the Americas 

at buffer range of 100 km-1500 km from known presence locations.  The findings showed 

rather a general depiction of malaria distribution on a coarser scale, and not necessarily the 

local malaria distribution pattern.  In contrast, Nmor et al. (2013) had effectively predicted 

malaria vector breeding habitats using the pseudo-absences generated at the spatial distance 

of greater than 50 m from the presence locations. Generating the pseudo-absences for a 

particular study of interest partly depends on the scale of available data and the overall study 

objective. A large body of literature exists, in which the generation of pseudo-absences was 

performed along environmental and topographic gradients such as rainfall, roads, slopes and 

distance from rivers (Ahmed, 2014; Machault et al., 2011; Zhou et al., 2012). However, can 

the derivation of pseudo-absences along satellite data gradient shed light in describing the 

extent of malaria distribution? If so, how far should pseudo-absences be generated from 

known presence locations, especially in semi-arid rural villages which are located very close 

to each other (<20 km radius)? 

 

Satellite data have been extensively used for predicting malaria vector distribution globally 

(Adeola et al., 2016; Tonnang et al., 2010; Alimi et al., 2015; Omumbo et al., 2002). The 

efficiency of mapping is achievable considering the fact that satellite/remote sensing data are 

available at various spatial (0.5 m-1000 km), temporal (daily - yearly) and spectral scales 
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(multispectral - hyperspectral). In Africa, however, a few attempts were made to predict 

malaria vector breeding sites based on remote sensing, environmental and topographic 

datasets. For example, Clennon et al. (2010) employed Landsat 5 and general linear models 

to characterize mosquito breeding habitats in Zambia. In South Africa the use of satellite data 

for malaria mapping is extremely limited, contributing to ≤ 2% of total malaria research (Adeola 

et al., 2015). Because of this limitation, many local aspects of malaria-environment interactions 

in South Africa are not well-understood or not adequately quantified. These environmental 

aspects include vegetation cover and moisture parameters which play a role in malaria 

transmission. In addition, there is very limited application of satellite technology in mapping 

malaria especially in malaria-endemic areas of South Africa (Mpumalanga, KwaZulu-Natal 

and Limpopo provinces). To the best of authors’ knowledge, no study was found in literature 

that sought to assesses impact of pseudo-absences generated for medium scale malaria 

prediction by use of remote sensing covariates. In the Limpopo province of South Africa, 

malaria prevalence continues to exert pressures of health care services and financial 

investments associated with disease control and monitoring, particularly in the Vhembe 

District Municipality. This is because the area experiences high malaria prevalence, with mean 

incidence rate of approximately 328.2 per 100 000 persons/year (Gerritsen et al., 2008).  

Therefore, this chapter aimed at evaluating effects of Landsat-derived environmental 

covariates for predicting malaria distribution in semi-arid rural villages of Vhembe District, 

South Africa, at buffer distances of 0.5 km to 20 km. This study was the first of its kind, in 

support of initiatives aimed at eradicating malaria by 2020. Landsat satellites have been in 

operation since 1972 and provide a desirable temporal, spatial and spectral coverage that are 

necessary to study the seasonality patterns of a malaria epidemic.   

 

5.2. Methods 

5.2.1. Study area 

The rural villages of Vhembe District Municipality in Limpopo Province of South Africa are the 

ideal candidates to test the study objective. The study area is located at the center geographic 

coordinates of 23°40’ S and 30°00’ E (Figure 5.1). It comprises of varying topography, with 

diverse floral and faunal biodiversity. It receives annual summer rainfall of 820 mm (Mpandeli, 

2014), with Soutpansberg Mountain modifying geographical rainfall patterns (Kabanda and 

Munyati, 2010). The north-western part of Vhembe District is characterized by semi-arid 

conditions, while the south-eastern part experiences subtropical conditions. The Vhembe 

District Municipality has a population of more than 1.3million people (StatsSA, 2016), who 
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predominantly reside in rural villages. Data from 28 villages were used for the study. The area 

covering these villages has recorded mean malaria incidence of about 328.2 between 1998-

1999 and 2004-2005 (Gerritsen et al., 2008). In 2000, the municipality has experienced floods 

brought by the tropical cyclone Eline which have dramatically increased malaria cases in 

Limpopo province (Reason and Keibel, 2004). Malaria in Limpopo is seasonal and it is, 

therefore, crucial to use seasonal data covering the entire study area to map the occurrence 

of malaria in the VDM. 

 

 

Figure 5.1. The study area in the northern part of Limpopo. Each coloured polygon represents 

individual villages under consideration (n = 28).  

 

 

5.2.2. Epidemiological data 

This chapter used secondary data acquired from the malaria information systems (MIS) of the 

South African National Department of Health that were developed and maintained by the 

malaria control programme (MCP). Ethical approval for this chapter was obtained from the 

faculty of Natural and Agricultural Science Ethical Committee at the University of Pretoria (No. 

180000076).  The epidemiological data used for the study was obtained from the South African 

National Department of Health’s Malaria Information Systems (MIS). The dataset comprises 

of the presence cases of malaria agent (P. falciparum) in rural villages in Vhembe District, 
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from 1998-2006. It was obtained passively from patients who tested positive for P. falciparum 

in health centres around the selected villages. A total of 28 presence locations at village level 

was recorded for the year 2005. In the current study the absence data was originally 

unavailable since the surveys conducted were designed to report on positive malaria cases 

by health-care workers. The absence (pseudo-absence) points were generated and were two 

times (2x) the number of presence points which formed part of a standard dataset to be used 

for modelling. 

 

Generally the MIS dataset comprises of additional records such as the locality, facility names 

where malaria tests were conducted and the source of infection. Because the Vhembe District 

Municipality forms the border between South Africa and Zimbabwe/Botswana, some of the 

cases reported in this area are imported from Mozambique, Zimbabwe and Botswana. For the 

purpose of this study, all the imported cases outside of the VDM were filtered so that an 

understanding of local environmental factors can be derived from conditions existing within 

the municipality.  

 

5.2.3. Remote sensing data  

The Landsat 5 Thematic Mapper (TM) imagery acquired in spring of 2005 were used for the 

study. Three multispectral images were acquired from United States Geological Surveys 

website (http://earthexplorer.usgs.gov/). Landsat 5 comprises of 7 multispectral bands, in the 

visible to thermal infrared region (0.45-12.5 µm) at 30 meters spatial resolution. Images were 

acquired on path and rows 169/76, 170/75 and 170/76 (12 September 2005), and for 

paths/rows 170/75 and 170/76 (19 September 2005). This period corresponds to the rising 

malaria incidences in the study area (Gerritsen et al., 2008). The multi-spectral bands of 

Landsat TM are commonly used for vegetation, bathymetric, and soil moisture mapping. 

Vegetation is one of the environmental factors, depending on climatic evolutions, that 

influences malaria vector behaviour directly or indirectly (Gomez-Elipe et al., 2007). Therefore 

computing vegetation indices that are sensitive to changes in vegetation greenness could 

enhance the understanding of malaria patterns. Various environmental covariates were 

generated from Landsat TM which relate to vegetation biogeophysical/chemical properties 

and moisture. Perhaps one of the most commonly used satellite-derived indices is the 

normalized difference vegetation index (NDVI) which is primarily used as an indicator of 

vegetation greenness and biomass (Jackson et al., 1983). In addition to Landsat data, a 30 m 

http://earthexplorer.usgs.gov/
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digital elevation model (DEM) data from Shuttle Radar Topography Mission (SRTM) was used 

to derive the aspect of individual presence-absence points.  

5.2.4. Data pre-processing 

Figure 5.2 shows the workflow adopted in this chapter. The processing of epidemiological data 

was done in Microsoft Excel spreadsheet. Firstly, the presence dataset was prepared 

according to the number of villages with records of P. falciparum presence. A total of 28 

villages have been extracted from the MIS dataset, which contain recorded malaria cases. 

The original MIS dataset contained the name of the village, local municipality, health centres, 

locality, death status, age and sex of the infected which were not employed for the study.   

The pre-processing of Landsat TM involved four (4) stages: (i) band merging, (ii) atmospheric 

correction, (iii) image mosaicking, and (iv) study area subsetting. Firstly, six Landsat TM 

spectral bands were merged to derive a 6-band multi-temporal image composite, excluding 

thermal bands. This process was applied on individual scenes with similar metadata file 

definition (.mtl). The subsequent merging of spectral bands was carried out in Quantum 

Geographic Information System (QGIS) software (QGIS Development Team, 2016). 

Secondly, in order to minimize the influence of atmosphere on data analysis, all of the merged 

multi-spectral images were subjected to atmospheric correction in ENVI version 4.7 through 

the Quick Atmospheric Correction (QUAC) module (Exelis Visual Information Solutions, 2016). 

The QUAC approach is based on the empirical finding that the mean spectrum of a collection 

of diverse material spectra, such as the end-member spectra in a scene, is essentially 

invariant from scene to scene (Bernstein et al., 2012). Thirdly, the atmospherically corrected 

images were mosaicked in ENVI 4.7 to derive a single large image that covers the entire study 

area. In total three (3) images were stacked to form part of a larger multi-spectral image. And 

finally, the final image of the Vhembe District Municipality (VDM) was extracted from the image 

mosaic by use of corresponding municipal shapefile (.shp). The spatial mask was created for 

the high altitude terrain along the Soutpansberg Mountain, which comprises of forest 

vegetation that does inhibit malaria transmission through complete shading effect (Kamau et 

al., 2006). 
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Figure 5.2. Overview of epidemiological and remote sensing datasets and methods used for 

the study 
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5.2.5. Data processing and analysis  

The pseudo-absences were generated for five buffer distances from the known presence 

locations. To test for the utility of Landsat 5 data for malaria mapping, the buffer distances 

were set at 0.5 km, 1 km, 5 km, 10 km, and 20 km (Figure 5.3). The choice of buffer distances 

was dictated by the proximity of one village to the neighbouring villages other so as to avoid 

possible duplication of occurrence points.  The generated pseudo-absences formed part of 

the standard dataset used for modelling. In total, 56 pseudo-absences (n = 56) were derived, 

making presence-absence ratio of 1:2. The standard P. falciparum points were equal to 84 (N 

= 84). The dataset was geo-referenced using World Geodetic System (WGS-84) and exported 

in GIS software in order to allocate individual location ID in the dataset.  

 

Figure 5.3.  Representation of different buffer distances across 28 villages in Vhembe District 

Municipality. Buffer distances were ranging from 0.5km to 20 km. 

 

5.2.6. Remote sensing data analysis 

A number of remotely-sensed indices were computed in order to assess their usefulness for 

mapping malaria distribution in the study area. These indices were computed based on the 

environmental factors that are known to influence breeding patterns and survival of malaria 
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vectors. Environmental factors such as vegetation moisture content, the greenness and daily 

temperatures of an area are known to have an impact on malaria spread, vector reproductive 

rates, and pathogen incubation period (Wayant et al., 2010; Baeza et al., 2011). It was upon 

this premise that the normalized difference vegetation index (NDVI), modified normalized 

difference water indices (MNDWI1 and MNDWI2), green index (GI), and soil adjusted 

vegetation index (SAVI) were computed from Landsat 5 data and tested for the study. The 

common NDVI is highly susceptible to errors over canopy and soil background in VDM, 

especially in September month where large parts of the land have low vegetation cover.  

Additional to these indices, a quasi-yellowness index (p-YI) was derived due to its possible 

relationship with the habitats of An. arabiensis in the study area (Adams et al., 1999). The 

yellowness index was first introduced to estimate chlorosis, although its application may not 

be limited to plant health and stress analysis (Malahlela et al., 2014).  Its inverse correlation 

to NDVI could potentially shed light on patterns of malaria occurrence in semi-arid environment 

such as the VDM, considering that high malaria prevalence is usually observed during high 

NDVI season, often characterized by high daily temperatures, rainfall, humidity and high 

chlorophyll composition in plants (Komen et al., 2018). Both NDVI and yellowness index are 

related to chlorophyll concentration and thus p-YI was incorporated in the study of malaria. 

Other remotely sensed indices were designed for the study based on the relationship between 

spectral bands and moisture. These indices are named moisture indices (a1 and a2) as shown 

in table 5.2. These indices were computed by considering reflectances in shortwave infrared 

spectral region (1.55-2.35 μm) to malaria mapping, which may have potential confounding 

effect to MNDWI1. The shortwave infrared (SWIR) reflectance generally decreases as water 

content in the leaves increases at 1-3µm (Gao, 1996; Hunt and Rock 1989) and in this chapter 

average reflectance and the spectral difference between NIR and SWIR were explored. The 

shortwave infrared bands are sensitive to soil moisture, changes in vegetation moisture and 

water bodies which are potential habitats and breeding sites for An. arabiensis species. 

(Bowman, 1989; Tucker, 1980).   

 

In addition, the aspect (direction to which the slope faces) was derived from Advanced 

Spaceborne Thermal Emission Reflection Radiometer (ASTER)’s digital elevation model 

(DEM), that has similar spatial resolution as Landsat TM of the study area.  
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Table 5.1: Selected remote sensing indices that were employed for the study. All indices are 

derived from Landsat TM 

 

 

5.2.7. Statistical analysis 

Statistical analysis was performed on a full standard dataset comprising of presence and 

pseudo-absence locations together with the environmental covariates derived from Landsat 

TM data acquired in spring 2005. To calibrate the statistical model, 60% (n = 50) of the data 

was used for training, while independent 40% (n = 34) was used for validating the predictive 

model. The stepwise logistic regression (SLR) model has been applied to training dataset 

derived at five (5) buffer distances in R software (R Development Core Team, Vienna), using 

a glm2 package. Both backward and forward SLR were used in order to select covariates with 

Index Formulation Reference  

 

Normalized Difference 

Vegetation Index (NDVI) 

 

NDVI =
(𝜌𝑁𝐼𝑅 − 𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅 + 𝜌𝑅𝑒𝑑)
 

 

 

Jackson et al. (1983) 

Modified Normalized 

Difference Water Index 

(MNDWI1) 

MNDWI1

=
(𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅)

(𝜌𝑁𝐼𝑅 + 𝜌𝑆𝑊𝐼𝑅)
 

 

Ceccato et al. (2001) 

Modified Normalized 

Difference Water Index 

(MNDWI2) 

MNDWI2

=
(𝜌𝐺𝑟𝑒𝑒𝑛 − 𝜌𝑀𝐼𝑅)

(𝜌𝐺𝑟𝑒𝑒𝑛 + 𝜌𝑀𝐼𝑅)
 

 

Xu (2006) 

Moisture index (a1) 𝑎1 = (
𝜌𝑆𝑊𝐼𝑅 + 𝜌𝑀𝐼𝑅

2
) 

In this chapter 

Moisture index (a2) 𝑎2 = 𝜌𝑁𝐼𝑅 − 𝜌𝑆𝑊𝐼𝑅 

 

In this chapter 

Soil adjusted vegetation 

index 

SAVI =
(𝜌𝑁𝐼𝑅−𝜌𝑅𝑒𝑑)

(𝜌𝑁𝐼𝑅+𝜌𝑅𝑒𝑑+𝐿)
(1 + 𝐿) Huete (1988) 

Green index 𝐺𝐼 =
𝜌𝑁𝐼𝑅

𝜌𝐺𝑟𝑒𝑒𝑛
 Gitelson  (2003) 

 

Quasi-Yellowness Index 

p-𝑌𝐼 =
𝜌𝑌𝑒𝑙𝑙𝑜𝑤−(2∗𝜌𝐺𝑟𝑒𝑒𝑛)+𝜌𝑅𝑒𝑑

𝜌𝐵𝑙𝑢𝑒
2  Adams et al. (1999) 
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high relative importance using relaimpo package, so as to avoid multi-collinearity issues and 

model over-fit (Collet, 1991). The automated SLR is one of the common statistical methods 

for public health, by relating the remotely sensed data with the disease distribution such as 

malaria (Adimi et al., 2010; de Oliveira et al., 2013). The automated procedure for variable 

selection has advantages in that it reduces computation time and tedious manual modelling, 

especially in large, complex candidate models (Ripley, 2003; Calcagno and de Mazancourt, 

2010).  The choice of the stepwise logistic regression model was dictated by the binary nature 

of the response variable (presence/absence), its simplicity for embedding in GIS environment 

(Yang et al., 2006) and its popularity amongst all other predictive models. The logistic 

regression is given by the equation (5.1): 

𝑦𝑖 =
1

1+exp[−(𝛽0+∑ 𝛽𝑖𝑥𝑖𝑗

𝑘

𝑗=1
)]

     (5.1) 

 

where yi is the probability of malaria distribution (1 or 0), xi is the environmental covariate at 

the jth location, βi is the coefficient of xn, β0 is an intercept, and exp is the exponential function 

of the regression. The malaria distribution maps were derived from final selected models, with 

lowest Aikaike’s Information Criterion (AIC) as these represented best fit. In addition, 

probability maps with threshold values of greater than 0.7 were produced, since model 

performance at his threshold is deemed a good model (Baldwin, 2009). The bootstrap 

resampling was performed on the independent validation dataset to assess the robustness of 

the regression. The validation dataset was bootstrapped with the replacement for n = 10 000 

time using the boot package in R.  The coefficient of variation (CV) was used as a measure of 

variability of the pseudo-absences of validation dataset.  

 

The model deviance (D2), which is an analogy of R2, was used to determine the percentage 

of variability explained by the remote sensing covariates. The D2 is given by the equation (5.2): 

 

D2 = 1 − (
ρσ1

τρw
)       (5.2) 

where ρσ1 is the residual deviance, and τρw is the null deviance. A good model is the one with 

low AIC and high D2. In addition, the F-test was performed to measure the variances between 

measured and predicted presence/absence locations of P. falciparum. In order to assess the 

validity of the model, the overall classification accuracy was determined from the independent 

validation dataset.  The overall accuracy (OA) is the number of correctly classified cases 

(presence/absences) to the total number of cases in the dataset. Classification accuracy was 
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done on probability threshold values of 0.5-1.0. The reason for leaving out lower probability 

threshold values was that a model with probability values of < 0.5 is considered a failed model 

(Baldwin, 2009).  

 

5.3. Results 

The results of the study are presented in table 5.2. The table showed that SAVI was the most 

significant remotely-derived covariate in predicting the distribution of malaria in VDM, 

Limpopo.  

 

Table 5.2: Results of the logistic regression along 5 buffer distances from the known P. 

falciparum locations. 

 

Buffer distance 
(km) 

Covariates Estimates  ρ value (> | z | ) Significance 
level 

     

0.5 

β0  -36.370 0.008 ** 
NDVI 108.100 0.043 * 
SAVI 124.340 0.027 * 
a1 -46.220 0.012 * 
a2 63.250 0.017 * 

     

1.0 

β0 0.629 0.755  
SAVI 14.882 0.041 * 
NDWI1 45.984 0.078  
a2 87.529 0.094  
p-YI -7.241 0.013 * 

     

5.0 

β0 5.341 0.001 *** 

SAVI 13.659 0.012 * 
Aspect 0.007 0.061  

     

10.0 

β0 -43.551 0.053  
NDVI 131.350 0.021 * 
SAVI 159.840 0.013 * 
a1 -58.851 0.057  
a2 181.070 0.096  
NDWI1 89.790 0.049 * 
NDWI2 -36.030 0.016 * 

     

20.0 

β0 14.904 0.006 ** 
NDVI 84. 780 0.009 ** 
SAVI 90.310 0.008 ** 
a1 -20.683 0.017 * 

     
Significance codes: *** (0.001), ** (0.01), * (0.05) 
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In all the derived models, the SAVI showed a significant positive correlation with the 

distribution of P. falciparum (malaria) (ρ <0.05).  The results also show that NDVI is 

significantly correlated with the distribution of P. falciparum at buffer distances of 0.5km, 10km, 

and 20km from the presence locations. The introduced indices which are sensitive to moisture 

changes (a1 index and a2 index) have shown to be negatively correlated with the distribution 

of malaria pathogen, although they are mostly significant at buffer distances of 0.5 km and 20 

km. Predicting the distribution of P. falciparum at 10 km distance yielded the highest 

classification accuracy of 82% at a threshold of 0.9 (Figure 5.4), while at 5 km low classification 

accuracy (54%) was found at the threshold value of ρ = 1.0.  

Figure 5.4. Logistic regression performance across threshold values of 0.5-1.0 as applied on 

buffer distances selected for the study area using validation dataset (n =34). 

 

 

In the current study the highest variation explained by the predictive model was found to be 

36% (D2 = 0.36; AIC = 57.07) 10 km away from the known presence locations, while the lowest 

explained variation (27%) was found at buffer distance of 20 km away from the known 
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presence location (D2 = 0.27; AIC = 54.73). Figure 4.5 shows the results of stepwise logistic 

regression as applied on distances 0.5 km-20 km from the known P. falciparum presence 

location.  The validation dataset was bootstrapped and yielded the CV of 0.11, indicating the 

small variation of the pseudo-absences from the calibration dataset.  

 

 

Figure 5.5. The D2 and AIC of logistic regression applied on buffer distances in VDM. 

 

The F-test performed between the measured and predicted presence/absence data yielded a 

statistical ρ value of 0.081, which is greater than the ρ = 0.05. This result indicates that there 

was no significant difference between the observed and predicted malaria occurrence in the 

rural villages of VDM.  The SLR model shows that the NDVI, SAVI, NDWI1 and NDWI2 were 

statistical significant variables and thus improved the prediction of malaria occurrence when 

compared to a 20 km p/a model.  Ideally, a model that explains greater than 50% (D2/R2 > 0.5) 

of the variations in the p/a occurrence of species is considered a relatively good model 

(Lopatin et al., 2017). Although all the models tested for the current study yielded a D2 of less 

than 40%, the ultimate model used to create predictive maps was significant at ρ=0.033. The 

variable residual plots (Figure 5.5) show the residuals, with NDVI, SAVI, and NDWI1 exhibiting 

lower residual deviance. However, randomly collecting the pseudo-absences at various spatial 
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scales and at highly heterogeneous village areas such as in VDM is very challenging for 

adequately selecting environmental variables that best explain the distribution of An. 

arabiensis species. Ecological systems are complex, therefore multi-temporal data about the 

interactions between environmental covariates and malaria distribution are required to 

untangle such complexities.   

 

 

Figure 5.6. Residual plots of environmental covariates used for mapping malaria distribution 

in VDM. 
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5.3.1. Predictive maps 

The results of the predicted probability maps are shown in figures 5.7 (a-e) below. From these 

results it becomes apparent that the predicted malaria distribution exhibits spatial 

heterogeneity across 5 buffer distances, which may be attributed to landscape configuration 

and environmental factors used for malaria modelling.  The model calibrated from pseudo-

absence dataset within 0.5 km radius produced a much narrower trend in malaria distribution 

(Figure 5.7 a). In areas at the foot of Soutpansberg Mountain the model has predicted a high 

probability of malaria distribution due to apparently high ground cover, comprising of moist, 

riparian vegetation. Conversely, the wide distribution of malaria pathogen is recognized when 

pseudo-absences within 10 km are used (Figure 5.7 d). This pattern, which is mapped at high 

classification accuracy, indicates that cases of malaria could potentially be detected in areas 

that were previously considered unsuitable for the survival of P. falciparum pathogen and its 

vector.  

  

Additional to malaria probability maps that range from 0 (less likely) to 1(more likely), spatial 

heterogeneity of malaria distribution was examined at threshold greater than 0.7. Figure 5.8 

(a-e) shows the results of this threshold applied onto the predictive maps. In general, high 

probability of malaria is noticeable in three areas of concern: (i) at the settlements at the foot 

of Soutpansberg Mountain, (ii) along the riverine areas and (iii) closer to low-lying irrigated 

fields. 

  

5.4. Discussions 

The aim of this chapter was to assess the feasibility of Landsat-derived environmental 

covariates for predicting malaria distribution in rural landscape of Vhembe District Municipality 

in South Africa, across different buffer distances. Malaria pseudo-absences with ratio of 1:2 

(presence-absence) were randomly generated and constrained within buffer distances of 0.5 

km, 1 km, 5 km, 10 km, and 20 km. In epidemiological studies, the vast majority of species 

occurrence datasets are subject to spatial bias, such as sampling near roads which often leads 

to some areas surveyed more frequently than others. The selection of different buffer 

distances and randomly generated pseudo-absences ensures that spatial environmental bias 

is minimized and improves the model performance and robustness (Moyes et al., 2016; 

Phillips et al., 2006). In this chapter the results have shown that intermediate buffer distance 

(10 km) yielded the highest classification accuracy (82%) at threshold of 0.9.  
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Figure 5.7 Predicted potential geographic distribution of malaria produced through logistic 

regression and Landsat-derived environmental covariates. Maps produced at buffer distances 

of 0.5 km (a), 1km (b), 5 km (c), 10 km (d) and 20 km (e).   

This may be an indication that the generated pseudo-absences at this distance represented 

areas of low suitability for An. arabiensis species occurrence, which is the dominant P. 
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falciparum vector in VDM area. Additionally, higher classification accuracy at 10 km buffer 

distance may show the similarity between pseudo-absences and ‘true absences’ where P. 

falciparum vector is likely to occur (CV = 0.11, ρ = 0.3). These findings demonstrate the 

potential of medium resolution satellite data to predict malaria distribution at local levels (high 

spatial resolution), as most studies focused on regional and global patterns. Consequently, 

areas with the highest likelihood of malaria occurrence are located around the green vegetated 

environments which serve as refuges for malaria vector (Ricotta et al., 2014).  The lowest 

classification results attained at 5 km from the presence location may indicate the probability 

of pseudo-absences to have fallen on the unidentified presence location, particularly 

consideration the random nature of their derivation (Chefaoui and Lobo, 2007).  Whether this 

effect is peculiar to a medium spatial resolution dataset (30m), such as Landsat TM/ASTER 

or high spatial resolution datasets (e.g. SPOT), is a matter that requires further research.  

 

5.4.1. Remote sensing environmental covariates 

In all models, SAVI exhibited a statistically significant pattern as a remote sensing-derived 

covariate at ρ < 0.05.  The findings from the current study differ from those obtained by Jacob 

et al. (2007) who concluded that NDVI, SAVI and atmospherically-resistant vegetation index 

(ARVI) were not related to ecological conditions necessary for An. arabiensis habitat 

suitability. This difference could be attributed to methodology used in this chapter, where the 

pseudo-absences were utilized while Jacob et al. (2007) opted to use no pseudo-absences 

generated at 30 m spatial resolution. The fact that Jacobs et al. (2007) did not subject the 

image (Quickbird) to atmospheric correction process which reduces the influence of 

atmospheric noise, might have contributed to the subsequent correlations between vegetation 

indices and Anopheline mosquitoes habitats. In addition, there was no apparent description of 

threshold values defining vegetation range for indices used (e.g. NDVI), except for the binary 

land cover classification of paddy vegetation which might have affected variable contribution 

in modeling.  In contrast, the current study is one of the first studies in South African semi-arid 

environment that assessed correlation of remote sensing covariates to P. falciparum 

distribution at spatial resolution higher than 50 meters. Some authors have found NDVI to be 

the strongly correlated covariate than many other indices in malaria studies elsewhere in Africa 

(Machault et al., 2010). In contrast, the current chapter has shown that the NDVI correlation 

is environment depedent and therefore in semi-arid environments SAVI, which takes into 

account effect of soil background, performs higher than NDVI.  Moreover, NDVI is highly 

susceptible to errors over canopy and soil background in VDM, especially in September month 
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where large parts of land have low vegetation cover. In addition, it has been documented that 

NDVI may suffer from signal saturation especially when used in dense vegetation (Malahlela 

et al., 2014). The significant positive correlation of SAVI with malaria distribution at 0.5-20 km 

buffer distances shed light on environmental conditions suitable for survival of malaria vector 

(An. arabiensis).  It is generally known that SAVI values increase with an increase in the 

vegetation greenness and biomass (Huete, 1988; Araujo et al., 2000).  The abundance of 

healthy vegetation provides mosquitoes with resting sites and refuges (Ricotta et al., 2014), 

thereby intensifying foci for malaria transmission.  

 

One of the notable correlations is between malaria occurrence and spectral indices from 

shortwave-infrared bands (a1 index and a2 index). Both the indices were firstly tested based 

on the assumption that shortwave infrared band (SWIR) is inversely correlated to vegetation 

water content, and therefore, with a probability of malaria distribution. Although each plant has 

its own relationship with chlorophyll content and vegetation water content, the first moisture 

index (a1) has explained the general relationship of vegetation water content and a probability 

of malaria occurrence in the study area (Ceccato et al., 2002). The second moisture index (a2) 

was a measure of vegetation water content that showed a positive correlation with malaria 

pathogen, although the statistical significance was only found at buffer distance of 0.5 km (ρ 

< 0.05; AIC = 55.33). However, the sensitivity of this index in other environments is subject for 

further research. This chapter has shown that in instances where NDVI shows no significant 

association with malaria distribution or risk, other indices such as SAVI and a2 can be used 

instead. On the other hand the MNDW1 has shown to be significantly positively correlated to 

the malaria distribution at buffer radii of 0.5 km (ρ < 0.05; AIC =55.33) and 10 km (ρ < 0.05; 

AIC = 57.07).  

 

The correlations of MNDWI1 at 0.5 km and 10 km buffer distances show that availability of 

water bodies is crucial for survival adaptations of An. arabiensis mosquitoes at the study area.  

The correlation found in this study between MNDWI1 and malaria distribution has also been 

established elsewhere in Africa by Dambach et al. (2012). Water bodies serve as breeding 

sites for mosquitoes, although the preferences in terms of the size, compactness, depth, 

temperature and quality differ from one Anopheline species to another (Zhou et al., 2012). The 

correlation between P. falciparum pathogen with NDVI, SAVI, moisture indices (a1 and a2) and 

MNDWI1, may serve as an indication that malaria distribution is correlated to response of 

vegetation to rainfall and temperatures. This is particularly true in that vegetation index NDVI 

is known to be a surrogate for rainfall (Mabaso et al., 2006). Although not statistically 
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significant the p-YI has exhibited negative correlation with the distribution of malaria in the 

study area using 5 km model. This is an indication that indeed green vegetation intensifies 

malaria transmission in that p-YI is negatively correlated to vegetation greenness, and 

therefore malaria distribution. The use of these indices can form part of the malaria early 

warning systems in support of eradication efforts. The improved spectral and radiometric 

resolution of Landsat satellite (currently Landsat 8) could be used to detect the breeding and 

questing sites for An. arabiensis mosquitoes at village level at higher accuracies, thus reducing 

costs associated with manual surveying of environments surrounding them. 

 

The findings also show that the orientation of slope (aspect) towards the north results in an 

increased probability of malaria occurrence, particularly at buffer distance of 5 km from the 

known presence locations. This is especially true, in that malaria vectors prefer warm, moist 

habitats and therefore, the inclination of the slope towards the north create optimal conditions 

for An. arabiensis habitation. Most of the villages are situated on the north-eastern slopes 

whose surrounding vegetation provide resting and refuges for mosquitoes. It is generally 

known that in the southern hemisphere north-facing slopes are warmer than south-facing 

slopes (Adams, 2010), and therefore integration of remote sensing data and 

temperature/rainfall data could enhance insight into malaria control and eradication. The 

information can be used by the policy-makers and the health-care professional to distribute 

the limited financial resources to the areas that are highly affected by malaria. In addition, 

further financial investments have to be allocated to the areas that were previously known to 

be malaria, such as the western and the north-western part of the VDM. This study shows that 

climate change may alter the traditional habitable environments for malaria by extending the 

plasticity of An. arabiensis across the semi-arid environments.  

5.4.2. Predictive maps 

The pattern of malaria distribution is highlighted by the probability maps in figure 5.7. These 

figures show varying degrees of the probability of malaria occurrence across the VDM. In 

comparison, the map produced from pseudo-absences that were derived from 0.5 km (Figure 

4.7 a) shows a rather narrow spatial pattern than both the 1 km and 10 km map. This map is 

produced from low accuracy model, in which probability of malaria occurrence stretches up to 

the traditionally malaria-free southern part of the VDM.  In figure 5.7 (b) high probability of 

malaria occurrence stretches from east (Mutale and Thulamela local municipalities) to the 

western part of the VDM, with high occurrences predicted at the low-lying areas of the 

Thulamela local municipality. In contrast to the 0.5 km and 1 km predictive maps, the 5 km 
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buffer distance predictive map relates the high probability of malaria occurrence to the aspect 

or slope orientation. In this map, the villages located at north-facing slopes (0.0-67.5°) and the 

east-facing slopes (67.5-112.5°) exhibit high likelihood of malaria transmission than both the 

south and west-facing villages.  

 

Slope orientation plays a major role in the distribution of floral composition over a long period 

(Bennie et al., 2006). The map derived from 10 km pseudo-absences radius showed high 

probability of malaria occurrence in the eastern part of the VDM, where Mutale and Thulamela 

municipalities are located, which are areas known for high malaria transmission in the Limpopo 

province of South Africa (Khosa et al., 2013; NICD-NHLS, 2017). In all the predictive maps, it 

appears that very low probabilities of malaria occurrence are found within the Makhado local 

municipality in the south western part of Soutpansberg Mountain.   
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Figure 5.8 Predicted spatial distribution of malaria in VDM at a probability threshold of ≥ 0.7. 

Red colour depicts areas of predicted P. falciparum presence, while white represents 

predicted P. falciparum absence and Soutpansberg Mountain mask. 
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5.4.3. Limitations and recommendations 

Although this chapter has successfully utilized remotely sensed data for mapping malaria 

distribution, it had its own limitations. One of the limitations emanates from the routine data 

collection from the national malaria control centre. The data collection system was mainly 

passive, with more room left for possible under-diagnosis or under-reporting. This could be 

averted by continuous sampling and the improvement of the methods used for sampling, which 

often requires considerable monetary investments. There are more than 28 villages in VDM, 

which could otherwise be included in the analysis, but were excluded due to lack of data. The 

inclusion of cases from other villages, although they may be few in number, could have 

potentially increased the number of presence locations, and therefore accuracy as a large 

number of cases (presence-absence) and iterations have a positive impact on statistical ρ 

value (Berkson, 1938). Another limitation of the study is the manner in which the random 

pseudo-absences were generated. It is recommended that the same geographical bias 

adopted for presence points be used even for pseudo-absences (Phillips et al., 2009). The 

pseudo-absences’ geographic location could have been the unidentified presence locations 

for P. falciparum due to the sampling protocol adopted in this chapter. Malaria transmission at 

the study area is largely influenced by environmental factors including temperatures and 

rainfall (Komen et al., 2015; Komen, 2017). In addition, Ikeda et al. (2017) have concluded 

that incidences of malaria in Limpopo province are positively correlated to the lag in local and 

climatic systems (e.g. rainfall) that occur in neighbouring countries. The use of temperature 

and rainfall data could essentially assist in the improvement of model prediction thus 

enhancing the overall classification D2. Thus, assessing the impact of climate change on 

malaria transmission requires consideration of not only annual mean temperature changes, 

but more importantly, the extent of temperature and rainfall interannual variability (Zhou et al., 

2004).  Unfortunately, the use of optical Landsat data is largely dependent on cloud-free 

atmosphere which may serve as a limitation to time-series analysis. The integration of active 

remote sensing data with optical could increase the temporal and spatial coverage of malaria 

endemic areas thus aid in mapping the disease occurrence during the periods of high rainfalls.  

 

5.5. Conclusions  

 From the results, it can be concluded that remotely sensed data can be used for mapping 

malaria in a semi-arid environment. The study has also shown that deriving the pseudo-

absences at the intermediate distances (approximately 10 km) from the known presence 

location yields high classification accuracies than drawing pseudo-absences at very far or very 
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near distances. The remotely sensed variables such as the SAVI and NDVI serve as good 

indicators for the environmental conditions that encourage An. arabiensis reproduction, 

questing and malaria transmission rates. If South Africa is to eradicate malaria by the year 

2020, there should be intensified efforts towards early detection of the environmental/local 

conditions commonly associated with malaria spread, especially in rural Vhembe District, 

which has high malaria rates. The use of the latest Landsat data coupled with ancillary 

epidemiological and climatic data should form the integral part of the malaria early-warning 

system due to the frequency of data satellite data acquisition (16 days cycle) and the 

biological/ecological nature of the P. falciparum vector. The findings from this chapter serve 

as baseline information for developing methodology necessary to detect and model malaria 

pathogen, vector, and habitat preference through the use of earth observation techniques.  

 

In summary, this chapter successfully demonstrates how Landsat data helps in mapping the 

distribution of P. falciparum in the malaria endemic environment. In this study, it was found 

that malaria occurrence is highly correlated to villages with the surrounding green vegetation. 

The results of this chapter highlight the significant of earth observation technology to 

quantifying areas at risk of malaria transmission in line with objective 3 of this study. The 

following chapter seeks to address how remote sensing can aid in mapping the distribution of 

tree species Lippia javanica (lemon bush) used as an alternative to western medicine for 

repelling mosquitoes in the VDM. 
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Abstract 

Lippia javanica (L. javanica) is one of the commonly used ethnobotanical plant species for controlling 

malaria globally. Accurate mapping of L. javanica species is important for malaria control interventions 

that require geospatial information for the assessment of malaria distribution and monitoring especially 

in communities that have limited access to western malaria medicine. Currently, high spatial resolution 

information pertaining to the distribution and habitat suitability of L. javanica species is very rare. The 

high resolution mapping could assist in identifying potential niche areas of ethnobotanically important 

species and to facilitate community health and wellness against malaria. In this chapter, we tested the 

ability of high spatial resolution Sentinel-2 (S2) derived variables and Shuttle Radar Topography Mission 

(SRTM)-derived topographic variables to predict the distribution of L. javanica in the Vhembe District 

Municipality (South Africa). The relationship between remote sensing variables and the occurrence data 

of L. javanica was assessed using coefficient of determination (R2). We compared three commonly 

used species distribution models (logistic regression, Maxent and ensemble models) to derive the best 

possible subsets of environmental predictors, and to produce the species distribution map that could 

aid in identifying areas were L. javanica occurs for use against malaria vectors.  The probability 

threshold of > 0.6 on the predicted data and the area under curve of the receiver operating curve (ROC) 

were used as additional validation methods, using independent validation dataset. The results showed 

a superior performance of weighted ensemble model, which yielded higher overall accuracy (86.7%, 

AUC = 0.89) than both logistic regression (77.7%, AUC = 0.79) and Maxent (80.0%, AUC = 0.83). The 

indices derived from the Sentinel’s red edge bands were the most contributory variables in both logistic 

regression and Maxent. The normalized difference averaged red edge vegetation index (NDARVI) and 

the normalized difference red edge1 vegetation index (NDVIre) contributed 39.25% (p = 0.0002) and 

32.50% in LR and Maxent models respectively. Slope was the most significant SRTM-derived variable 

correlated to L. javanica occurrence in all models. The results of this chapter show that high resolution 

S2 data can be used to map hardy shrub species at higher accuracies using ensemble model. The 

derived occurrence map of L. javanica could assist in updating the currently coarse resolution 

distribution map of species required for its aromatic ecological service against malaria vectors.  

Keywords: Lippia javanica, malaria; Sentinel-2; SRTM; Vhembe District Municipality 

 

6.1 Introduction 

In 2015, the World Health organization has developed a global technical strategy for malaria 

2016–2030 (GTS) (5), endorsed by the World Health Assembly. This strategy promulgated 

malaria elimination efforts targeted for 2030, with milestone for measuring progress in both 

2020 and 2025 (WHO, 2018). Globally, it was recommended that all countries, particularly in 

Africa, set their own national or subnational targets for accelerating efforts aimed at eliminating 

malaria transmission and preventing re-infections. Many countries, especially in Africa have 
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developed their own malaria control plans and subsequent implementations resulted in the 

decrease in the number of malaria transmissions (Pierre-Louis et al., 2018). For example, 

many of these countries have adopted the use of insecticide treated nets (ITNs) and indoor 

residual sprays (IRS), which have become cornerstones for malaria control programme 

(WHO, 2008; Lengelar, 2004). In most African communities, the use of repellents of plant 

origin has been one of the most effective methods for controlling malaria for many years 

(Kweka et al., 2008), because of their cheaper costs of treatment where such plant species 

are commonly found, and have shown to contain low toxicity to humans and animals (Ansari 

et al., 2000). Many plant species have been effective alternative for repelling malaria vectors, 

and these plant species include Lantana camara, Omicum americanum, Azadirachta indica, 

and Lippia javanica (Seyoum et al., 2002; Mabogo, 1990).  

In other parts of Africa and Indian Subcontinent, Lippia javanica (Burm. f) Spreng is still one 

of the commonly used medicinal plants for controlling malaria and for ethnoveterinary 

purposes (Maroyi, 2017; Lukwa, 1994; Samie et al., 2005; Kumar and Dash, 2012).  In 

Southern Africa, L. javanica is one of the four indigenous Lippia species (Verbenaceae) that 

occur as erect woody shrubs of approximately 2 meters in height (Viljoen et al., 2005). This 

species is one of the widely used ethnobotanical plants for control of malaria in Zimbabwe and 

South Africa. For example, in the Vhembe District Municipality of South Africa, the Venda 

people use L. javanica leaf infusions as prophylactic against malaria (Mabogo, 1990; Maroyi, 

2017). Today, L. javanica is still widely used in many communities in Africa as a means to 

keep both nuisance and malaria transmitting mosquitoes at bay (Mavundza et al., 2011). 

Because of L. javanica significance as an antimalarial species in Southern Africa, accurate 

knowledge of species occurrence and habitat delineation is fundamental for continued fight 

against malaria infections in rural communities. This knowledge will further enhance our 

understanding of suitable habitats for L. javanica species amidst changes in climatic 

conditions, which radically alters species distribution and functions (DeHayes et al., 2000). 

Delineating habitats of plant species conventionally relies on ground-based surveys which are 

the most common means for species detection (Legendre et al., 2002; Gogol-Prokurat, 2010). 

Through ground-based surveys, efforts are made to locate plant species of interest along pre-

defined transects, mostly biased towards readily accessible sampling areas (Malahlela et al., 

2015; Edwards et al., 2007). The challenge with ground-based surveys rests in the difficulty 

to account for plant species that occur in inaccessible areas, due to hostile terrain and 

logistical constraints associated with ground-based surveys. Moreover, although mapping of 

species distribution in this manner is mostly accurate, the ground-based surveys, whether of 
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plant or animal communities, are often time-consuming and costly (Rocchini et al., 2010). In 

order to overcome the limitations associated with these surveys, highly efficient and robust 

methods are mostly recommended for species distribution studies. 

Remote sensing offers fast and efficient alternative approach for mapping the potential 

distribution of plant species. This is because remote sensing data is acquired for much larger 

areas at various spatio-temporal and spectral resolutions (Kempeneers et al., 2011). The 

spatio-temporal resolution allows for the detection of plant functioning at species (Cho et al., 

2015; Kganyago et al., 2018), community (Madonsela et al., 2018), or regional levels (Gould, 

2000) over time. On the other hand, the spectral configuration of remote sensing instruments 

allows for discrimination amongst various plant species and to characterize topographical and 

environmental features that are associated with habitat of species of interest (Peng et al., 

2018; Álvarez-Martínez et al., 2017). For example, Wakie et al. (2014) used the time-series 

250 m moderate resolution imaging spectroradiometer (MODIS) data to map the current and 

potential distribution of shrubby Prosopis juliflora in the Afar Region of Ethiopia.  However, the 

challenge with coarse resolution habitat mapping lies in the inability to resolve finer details (< 

20 m) relating to characteristics of species of interest’s suitable habitat. In order to circumvent 

this problem, some authors have advocated for the use of high spatial resolution remote 

sensing dataset. For example, Fuller (2005) successfully mapped the distribution of invasive 

Melaleuca quinquenervia species in South Florida using the 4 meter spatial resolution 

IKONOS imagery. The use of high spatial resolution imagery such as IKONOS has its own 

inherent limitations. One such limitations is the lack of narrow-band spectral configuration that 

has shown high sensitivity to subtle variations in vegetation and habitat characteristics 

(Mutanga and Skidmore, 2004; Malahlela et al., 2015). Elsewhere it was documented that the 

narrow-band hyperspectral data show greater potential for mapping trees species distribution 

(He et al., 2011).  Therefore, the remote sensing data which offers the advantage of high 

spatial resolution multispectral and narrow-band hyperspectral band configuration is 

necessary for mapping the distribution of L. javanica species. 

The launch of Sentinel-2 (S2) satellite in June 2015 by the European Space Agency (ESA) 

has opened opportunities for high resolution vegetation habitat characterization. The 

vegetation indices (VIs) derived from S2 broadband wavelengths (visible-near infrared region) 

have been used to retrieve vegetation biophysical/chemical parameters (Clevers et al., 2017). 

In contrast, some studies have shown that the narrow-band VIs outperform their broadband 

counterparts (de Oliveira et al., 2017; Ramoelo and Cho, 2018; Korhonen et al., 2017), due to 

ability to compensate for signal saturation problem (Frampton et al., 2013). Although the 
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broadband vegetation indices such as the normalized difference vegetation index (NDVI) have 

been used for species mapping (West et al., 2016a; Pau et al., 2012), the use of narrow-band 

indices such as those derived from red edge region have rarely been used for species 

distribution mapping.  Additionally, the topographical variables such as digital elevation model 

(DEM), aspect and slope have been widely used to describe topography associated with the 

species’ suitable habitat in species distribution mapping (Guisan and Zimmermann, 2000; 

Zeng et al., 2017). However, the successful mapping of L. javanica requires the model with 

high sensitivity to the potential habitat of the species under consideration. 

Most of the currently available species distribution models (SDMs) offer a versatile approach 

to empirically relate the satellite-derived environmental variables with distribution of plant 

species (He et al., 2015; Dudov, 2017).  Some of the most commonly used SDMs include the 

logistic regression (Padalia et al., 2010; Lemke and Brown, 2012) and the maximum entropy 

model (Maxent) (Chahouki and Sahragard, 2016; Dudov, 2017; Ullerud et al., 2016). By 

comparison, the performance of Maxent model is comparable or superior to other SDMs such 

as the logistic regression model (Elith et al., 2011). Although these models are popular and 

effective for predicting areas of suitable habitat in unsampled locations, they have their 

limitations. For example, despite its success in species distribution modelling, Maxent cannot 

be used to model a species fundamental niche, which concerns a full range of environmental 

conditions a species might occupy, not just environmental conditions where species is most 

likely to be found (Drake, 2014; Pulliam, 2000). On the other hand, the inability of logistic 

regression model to account for imperfect detection which often leads to biased estimation of 

habitat relationships is well-documented (Martin et al., 2005). These limitations associated 

with each SDM can be circumvented by ensemble SDM, that combines the strength of both 

logistic regression and Maxent thus minimizing errors associated with each model (Araujo and 

New, 2007). Ensemble model is a combination of individual SDM with differing structure, 

explanatory variables, and the data sources for the purpose of describing species’ relationship 

with the environment. 

The aim of the current chapter was to map the potential distribution of L. javanica (lemon bush) 

shrub species in a malaria-endemic area, using high resolution satellite remote sensing. The 

objectives of this chapter were to (i) assess the contribution of broad-band, narrow-band 

vegetation indices and topographical variables in logistic regression and Maxent model, (ii) 

compare the performance accuracies of logistic regression, Maxent and ensemble model for 

predicting L. javanica distribution, and (iii) spatially map the distribution of L. javanica by using 

a more robust approach.  
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6.2 Materials and methods 

6.2.1 Study area 

The study was conducted at the Vhembe District Municipality (VDM), which is the 

northernmost district of South Africa (Figure 6.1). The study area is located at the geographic 

coordinates of 23°40’S and 30°00’E (Malahlela et al., 2018). The VDM comprises of four local 

municipalities, (i.e. Thulamela LM, Musina LM, Makhado LM and Collins Chabane LM). The 

total human population in the VDM is currently over 1.3 million (Stats SA, 2012; Malahlela et 

al., 2018), with predominantly Venda people occupying the western, and north and north-

eastern part of the VDM. The study area forms administrative border between South Africa 

and Zimbabwe, with the Limpopo River being the most notable natural boundary between 

these two countries. It comprises of varying topography, with diverse floral and faunal 

biodiversity, with Adansonia digitata (baobab tree) as the well-known tree species occurring 

in this region.  The VDM is situated in the tropical savannah biome, which comprise of mixture 

of C4 grasses and closed-canopy trees (Lehmann et al., 2011; Asner et al., 2004). The 

vegetation density decreases from east to west, with high vegetation density found in the 

eastern part of the study area, mainly in response to rainfall patterns in South Africa (Bond et 

al., 2002). The study area receives annual rainfall of 820 mm (Mpandeli, 2014), and varied 

localized rainfall frequencies and quantities occurring closer to Soutpansberg Mountain 

(Kabanda and Munyati, 2010). It is for this reason that Matiwa in the VDM had recorded the 

average rainfall of 2004 mm (over 60 year calculation), which is the highest ever recorded 

rainfall in South Africa (SAWS, 2018).  
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Figure 6.1. Limits of the study area (Vhembe District Municipality) and the sample locations 

used for modelling (shown by red dots).  

 

Due to semi-aridity and tropical conditions prevailing in different parts of the study area, 

malaria transmission exhibit seasonal variation, with high malaria incidences usually occurring 

between September and April (Adeola et al., 2017). Most communities in the study area use 

L. javanica species for controlling mosquito bites (Phaswane and Masevhe, 2018), thus 

preventing potentially large scale malaria transmissions.  

6.2.2 Field data 

Field data collection was undertaken in August 2017 for 21 days, covering most parts of the 

VDM. The field data was collected purposively across four vegetation cover classes, (i) 

shrubland, (ii) grassland, (iii) cropland and (iv) woodland.  Data collection was done within a 

10 m × 10 m sub-plot in a larger 30 m × 30 m plot, where species sightings were recorded as 

either present of absent. The L. javanica was spotted mostly under semi-open canopy tree 

species such as young Acacia tortilis, and usually occurred as single stand of shrub. The geo-

locations of each plot and species sightings were recorded using a handheld Garmin eTrex 

20TM global positioning system (GPS) with the maximum positional accuracy of 3m. A total 

number of 151 (n =151) samples were collected for analysis.  
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6.2.3 Remote sensing/topographical data 

S2 data was used for the study. The imagery used were acquired between August 2017 and 

September 2017, and were downloaded free of charge from Corpenicus Science hub 

(https://scihub.copernicus.eu/dhus/#/home ). The S2 was first launched in June 2015 by the 

European Space Agency. It has spectral bands ranging from coastal aerosol (443 nm) to the 

shortwave infrared (2190 nm). The blue (490 nm), green (560 nm), red (660 nm) and near 

infrared (842 nm) are available at 10 m spatial resolution; the red edge1 (705 nm), red edge2 

(740 nm), red edge3 (783 nm), red edge4 (865 nm), shortwave1 (1610 nm), and shortwave2 

(2190 nm) are available at 20 m spatial resolution, while the coastal (443 nm), water vapour 

(945 nm) and cirrus band (1375 nm) are available at 60 m spatial resolution. The elevation 

data, slope and aspect were derived from the Shuttle Radar Topography Mission (SRTM) with 

30 m spatial resolution.  

6.2.4 Data pre-processing 

Data pre-processing was done in three sets, (i) the S2 data pre-processing, (ii) the SRTM data 

pre-processing, and (iii) the field data pre-processing.   

6.2.4.1 Sentinel-2 data 

Pre-processing of S2 data involved spatial resampling of wavelengths to address the 

objectives of the study. Firstly, a total of ten spectral bands (n = 10) were selected based on 

their relationship with L. javanica distribution. These bands are centered at 490 nm (absorbed 

by chlorophyll), 560 nm (sensitive to plant health such as greenness), 660 nm (absorbed by 

chlorophyll), 705 nm – 865 nm (sensitive to subtle variations of vegetation chlorophyll), 842 

nm (sensitive to leaf mass and chlorophyll content), 1610 nm (sensitive to vegetation moisture 

content) and 2190 (sensitive to vegetation moisture and soil minerals) (Malahlela et al., 2014; 

Ustin et al., 2009). Secondly, the 10-band S2 data was subjected to atmospheric correction 

using Sen2Cor code in order to minimize atmospheric effect on the target spectra. Sen2cor 

uses a large database of look-up tables (LUT) derived using an atmospheric radiative transfer 

model based on libRadtran1 (Müller-Wilm, 2016). Thirdly, the atmospherically corrected bands 

were stacked in Quantum GIS (QGIS Development Team, 2018) software, resulting in six 

single multispectral imagery with 10 bands each and 20 m spatial resolution. The subsequent 

processing involved spatial resampling of images to 10 m spatial resolution, and this was 

accomplished in Sentinels Applications Platform software (SNAP), using nearest neighbour 

resampling method. Lastly, the 10 m imagery were mosaicked and clipped to cover the entire 

study area.  

https://scihub.copernicus.eu/dhus/#/home
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The broad-band VIs representing photosynthetic pigments (NDVI), senescent vegetation and 

soil (soil-adjusted vegetation index, optimized soil-adjusted vegetation index), vegetation and 

landscape water content (normalized difference water index) and herbaceous biomass 

(difference vegetation index, simple ratios) were computed (Hill, 2013).  These indices were 

selected on the basis of their individual sensitivity to vegetation characteristics and their ability 

to minimize the soil brightness. For example, the DVI, NDVI and GRVI have shown to be 

sensitive to vegetation green-up, biomass and biophysical characteristics such as diversity 

(Lecain et al., 2000; Madonsela et al., 2018). However due to the vegetation composition 

nature of our study area (very dense to very sparse vegetation with exposed soil background), 

both SAVI and OSAVI were selected to compensate for the effect of high bare soil-to-

vegetation cover ratio. The intention was to derive minimum number of indices which takes 

into account the landscape dynamics in terms of vegetation biochemical and biophysical 

properties of L. javanica habitats at the study area. Moreover, two narrow-band red edge 

indices (normalized difference normalized red edge vegetation index, Normalized difference 

averaged red edge vegetation index) were computed and tested for the study because of their 

ability to detect subtle variations in vegetation characteristics (Table 6.1).  

 

Table 6.1:  

Broad-band and narrow-band spectral indices used in modelling the distribution of L. javanica 

at the study area. 

No. Spectral index Equation References 

1 Difference vegetation index 

(DVI) 

DVI = 𝑅842 − 𝑅660 Tucker (1979) 

2 Normalized difference 

vegetation index (NDVI)  
NDVI =

(𝑅842 − 𝑅660)

(𝑅842 + 𝑅660)
 

Rouse et al. (1974) 

3 Normalized difference red 

edge1 vegetation index 

(NDVIre) 

NDVIr1 =
(𝑅842 − 𝑅705)

(𝑅842 + 𝑅705)
 

Gitelson and 

Merzlyak (1994) 

4 Normalized difference 

averaged red edge vegetation 

index (NDARVI) 

NDARVI =
(𝑅842 − 𝑎)

(𝑅842 + 𝑎)
 

In this chapter 

5 Soil-adjusted vegetation index 

(SAVI) 
SAVI = (

𝑅842 − 𝑅660

𝑅842 + 𝑅660 + 𝐿
) . (1 + 𝐿) 

Huete (1988) 
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6 Optimized soil-adjusted 

vegetation index (OSAVI) 
OSAVI = (

𝑅842 − 𝑅660

𝑅842 + 𝑅660 + 0.16
) 

Rondeaux et al. 

(1996) 

7 Green ratio vegetation index 

(GRVI) 

GRVI = 𝑅560 − 𝑅660 Gamon and Surfus 

(1999) 

8 Normalized difference water 

index (NDWI) 
NDWI =

(𝑅842 − 𝑅1610)

(𝑅842 + 𝑅1610)
 

Gao (1996) 

9 Simple ratio1 (SR1) 
SR1 =

𝑅842

𝑅490
 

Gitelson and 

Merzlyak (1997) 

10 Simple ratio2 (SR2) 
SR2 =

𝑅842

𝑅660
 

Gitelson and 

Merzlyak (1997) 

L is soil-line coefficient of 0.5; 𝑎  is the mean reflectance of four red edge wavelengths. 

 

6.2.4.2 SRTM data 

The SRTM digital elevation (DEM) data was downloaded from the United States Geological 

Surveys’ Earth Explorer (https://earthexplorer.usgs.gov/). The DEM was clipped to the VDM 

boundary extent. The DEM was resampled to a 10 m spatial resolution in QGIS, for use in 

Maxent and logistic regression models. This was done by assigning the same number of 

spatial dimensions for both longitude (X) and latitude (Y) so as to match those of a 10 m S2 

multispectral image.   It was from the same DEM where additional environmental datasets 

such as slope and aspect were derived.  

6.2.4.3 Lippia javanica field data 

The preparation of field point data was conducted in Microsoft Spreadsheet where species 

locations, occurrence, and corresponding environmental data were appended. A total of 151 

presence-absence sampling points (n = 151) was collected during field survey. The field data 

was later imported into ArcMap vers.10 (ESRI Inc, Redlands) as a shapefile for visualizing 

preliminary spatial distribution of species occurrence. All other environmental/remote sensing 

data were appended on the field data which formed part of the standard dataset to be used 

for L. javanica species mapping.  

6.2.5 Modelling strategy 

The correlation between satellite derived variables and the presence/absence of L. javanica 

was assessed through the use of Pearson correlation coefficient (r). For predicting the 

distribution of L. javanica species, the logistic regression (Hosmer et al., 2013) and Maxent 

(using Maxent version 3.3.3; Phillips et al., 2006) were tested in the current study. A standard 

https://earthexplorer.usgs.gov/
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field data was with presence-absence data was used in logistic regression while only the 

presence records and background values were used for model fitting in Maxent. It was 

randomly split into 70% (n =106) and 30% (n = 45) for model calibration and independent 

model validation respectively. Logistic regression was used to link the occurrence of L. 

javanica with the set of environmental variables relating to vegetation greenness, chlorophyll, 

canopy moisture, vegetation biomass, aspect, elevation and slope. Logistic regression is a 

form of generalized linear models (GLM) which relates the binary response outcome 

(presence-absence) to a linear combination of numerical and categorical variables (Hosmer 

and Lemeshow, 2000). It is given by equation (6.1) as: 

𝑦𝑖 =
1

1+exp[−(𝛽0+∑ 𝛽𝑛𝑥𝑛𝑗

𝑘

𝑗=1
)]

      (6.1) 

 

where yi is the probability of L. javanica occurrence (1 or 0), xi is the environmental variable at 

the jth location, βn is the coefficient of xn, β0 is an intercept, and exp is the exponential function 

of the regression. An automated procedure for selecting variables and final model was 

adopted because it reduces computation time and tedious modelling (Malahlela et al., 2018). 

A stepwise logistic regression approach was adopted through glm2 and MASS packages in R 

software to minimize multi-collinearity and model over-fitting (Collet 1991). The final model 

was selected on the basis of lowest Aikaike’s Information Criterion (AIC) and variable 

significance. The significant model was ultimately used for spatial mapping of L. javanica 

species at the study area. On the other hand, the Maxent algorithm (Phillips et al., 2006) was 

also tested for predicting the probability of occurrence of L. javanica species. The modelling 

was done within the constraints of the listed environmental and the S2 datasets. Maxent 

automatically includes variables interactions and can consider continuous and categorical 

predictor variables (West et al., 2016b). The samples with data (SWD) file format was used (a 

comma delimited) as input for presence localities of L. javanica species. The same number of 

presence points used in the logistic regression model was used in Maxent, with the exception 

that the absence points were replaced with the background values equivalent to the removed 

absence points. Maxent algorithm was implemented with the default regularization so as to 

avoid too complex a model. For the ensemble model both Maxent and logistic regression 

models were combined to form one new model, based on simple weighted averaging (mean).  

The weighted mean of the resultant combined model is derived from equation (6.2) as: 

(𝑦)𝑒𝑛𝑠 =
∑ (𝑥𝑖𝑤𝑖)𝑛

𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

       (6.2) 
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 where (y)ens is the ensemble model, w is the allocated weights of values of x in models (1 and 

2).  The average weights of 0.55 and 0.45 were assigned to individually high and low 

performance models respectively, such that the ensemble model is biased towards model that 

performs better.  

6.2.6 Model evaluation 

The independent field dataset (n = 45) was used to assess the accuracy of each predictive 

model. Although the area under curve (AUC) provide a useful measure of a model to 

discriminate between species presence and absence, additional metrics such as threshold 

selection can be used based on the study objectives (West et al., 2016b). In the current study 

the predicted probability of L. javanica occurrence (y) through each model ranged from 0 to 1, 

with increasing likelihood of species occurrence towards a value of 1. Therefore, in the current 

study the threshold of 0.6 was used as an optimum cut-off value, since a value of 0.5 usually 

represents prediction by random chance (Baldwin, 2009). A 2 × 2 contingency tables (with 

rows indicating predicted cases and columns indicating measured cases) were drawn for the 

threshold value of > 0.6 for each model. The overall accuracy, which is the proportion of the 

correctly classified cases over the total number of cases in the validation dataset, was also 

used as a means to validate each model (Malahlela et al., 2015). The receiver operating 

curves (ROC) were also used to assess the robustness of a binary classifier.  

 

6.3 Results 

The preliminary results of descriptive statistics table (Table 6.2) show that L. javanica tends to 

be present in areas of higher elevation (altitude), mainly in the south facing slopes, and at 

locations where vegetation exhibited increasing vigour and biomass. Regarding vegetation 

indices, the DVI showed high within class dispersion from the means of both L. javanica 

presence and absence sites (16.2; 19.2), indicating how this variable may impact of species 

prediction in SDM’s. The correlation analysis has shown that S2’s NDARVI and the slope 

derived from SRTM were positively and significantly correlated to L. javanica occurrence (r = 

0.48, p =0.01; r = 0.47, p = 0.01 respectively) (Table 6.3). On the other hand, the NDVIre and 

elevation were the second most significant variables correlated to the species distribution (r = 

0.29, p = 0.05; r = 0.27, p = 0.01 respectively). In all the selected predictor variables, the GRVI 

was found to be the least and insignificant correlated variables to the L. javanica 

presence/absence (r = -0.04, p = 0.1). The NDWI exhibited the significant and negative 

correlation to the species distribution (r = -0.26, p = 0.01). 
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Table 6.2: 

Descriptive statistics of S2 and SRTM-derived variables at presence and absence sites for 

Lippia javanica species. 

 

Variables 

measured 

Lippia javanica presence sites  Lippia javanica absence sites 

Mean Std. dev Range Mean Std.dev Range 

Elevation (m) 810.8 182.1 545.0 – 1063.0  694.6 186.9 333.0 – 964.0 

Slope (rad.)   71.2   28.9     27.0 – 114.7    38.6   26.4     6.4 – 117.4 

Aspect (°) 184.8   87.9     14.0 – 328.0  165.2 100.9     0.0 – 350.5 

NDVI   0.53   0.20       0.22 – 0.88    0.48   0.25     0.16 – 0.93 

NDVIre   0.44   0.09       0.06 – 0.23    0.33   0.19     0.11 – 0.74 

DVI   26.7   16.2         9.8 – 58.6    22.5   19.2       2.9 – 77.2 

SAVI   0.26   0.10       0.11 – 0.43    0.24   0.13     0.08 – 0.46 

OSAVI   0.53   0.20       0.22 – 0.86    0.48   0.25     0.16 – 0.93 

GRVI - 0.04   0.38     - 0.50 – 0.51  - 0.01   0.24   - 0.50 – 0.46 

NDARVI   0.15   0.06       0.06 – 0.23    0.09   0.03     0.02 – 0.17  

NDWI - 0.14   0.35     - 0.54 – 0.24    0.05   0.27   - 0.64 – 0.58 

SR1   30.4   13.9       15.4 – 58.9    26.8   18.0     5.32 – 81.8 

SR2   26.1   10.7       15.6 – 52.8    22.5   14.1     5.13 – 55.1 

 

Table 6.3: 

Correlations between satellite data and the L. javanica presence/absence data (n =151) 

 Variable Correlation Significance 

S
R

T
M

 

d
a
ta

 

Slope 0.47 ** 

Elevation 0.27 ** 

Aspect 0.10 NS 

 
   

S
e

n
ti
n

e
l-
2
 

d
a
ta

 

NDARVI 0.48 ** 

NDVIre 0.29 * 

SR2 0.12 NS 

DVI 0.10 NS 

NDVI 0.10 * 

SR1 0.09 NS 

SAVI 0.09 * 
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OSAVI 0.09 NS 

GRVI -0.04 NS 

NDWI -0.26 ** 

Significance (p) codes: (*) = 0.05; (**) = 0.01; NS = 

not significant  

 

The results of a stepwise logistic regression are shown in table 6.4.  A total of six (6) variable 

(mostly significant) formed part of the final logistic regression model. The NDARVI, Slope, and 

Elevation were significantly and positively correlated to L. javanica occurrence (p < 0.001). On 

the other hand, the DVI and Aspect were also positively correlated to L. javanica occurrence, 

while NDVI exhibited negative but significant correlation (p < 0.05). Figure 6.2 shows summary 

of variable contribution into final model, with NDARVI being the highest contributory variable 

(39.25%). Furthermore, using the independent validation dataset, the logistic regression 

yielded overall classification accuracy of 77.7% at a pre-defined threshold of > 0.6. On the 

other hand, Maxent model has resulted in overall classification accuracy of 80.0%. In Maxent, 

the highest contributory variables were the NDVIre (32.50%), Slope (28.6%) and Elevation 

(24.10%) respectively (Figure 6.2).  The combined (‘ensemble’) model yielded the overall 

classification accuracy of 86.7%, which is approximately 9% improvement to the prediction 

made using logistic regression (77.7%), while Maxent was the second best predictive model 

in the current study.  A 2 × 2 error matrix table for all three models is shown in table 6.5. The 

ROC curves of all models are shown in figure 6.3. Generally, all models were fairly able to 

predict the occurrence of L. javanica species, with the area under ROC curve > 0.7 (Figure 

6.3).    

 

Table 6.4: 

The final predictive model selected using stepwise binary logistic regression  

Variable Estimate Std. error P-value 

(Intercept) - 19.599   4.531 0.0001*** 

NDARVI   49.909 13.492 0.0002*** 

Slope     0.046   0.014 0.0008*** 

Elevation     0.014   0.041 0.0003*** 

DVI     0.136   0.055 0.0131* 

NDVI   - 9.399   4.497 0.0366* 

Aspect     0.001   0.004 0.7296 
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Significance (p) codes: (*) = 0.05; (**) = 0.01; (***) = 0.001. AIC = 62.77 

 

6.3.1 Predictive maps 

The predicted maps of the study area through Maxent, logistic regression and ensemble had 

similar spatial pattern (Figure 6.4) especially for presence probabilities of L. javanica. High 

likelihood of L. javanica occurrence is predicted in the south-central part of the study area by 

all 3 models. The minimum predicted value (absence) was 0.0 while 0.95 was the maximum 

predicted occurrence value in each model. In Maxent, the predicted presence distribution of 

L. javanica exhibited a narrow range, than in logistic regression.  

 

 

Figure 6.2: Analysis of variable importance for both logistic regression (a) and Maxent (b) 

predictive models (n = 106). 
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Figure 6.3. ROC curves of different models used in this chapter (a) logistic regression, (b) 

Maxent and (c) ensemble model. The dotted line depicts a line of no-discrimination (random 

guess) while the red line indicates sensitivity and specificity at various threshold levels.  

 

(a) (b) 

(c) 
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Figure 6.4. Comparison of predictions for L. javanica using (a) logistic regression model, (b) Maxent and (c) the weighted ensemble modelling. 

The green colour indicates areas of low probability of occurrence while the red colour corresponds to areas of high species occurrence probability. 
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Table 6.5: 

Predicted occurrence vs. observed occurrence of L. javanica (n = 45) using three SDM’s at 

probability threshold > 0.6. 

     

  presence absence total 

 presence 1 2 3 

Logistic absence 8 34 42 

     

  presence absence  

Maxent presence 1 0 1 

 absence 9 35 44 

     

Ensemble  presence absence  

 presence 3 0 3 

 absence 6 36 42 

 

6.1 Discussion 

In this chapter, the environmental distribution of L. javanica was mapped through the use of 

Sentinel-2 data. In ecology, the control of malaria by targeting the elimination of mosquitoes 

is not necessary because at any time once the vector that incubates P. falciparum has been 

eliminated, a more potent one emerges (Killen et al., 2013). This is particularly exacerbated 

by climate change which increases the risk of malaria re-emergence in endemic and epidemic 

areas (Ivanescu et al., 2016). The re-emergence of malaria has been reported elsewhere 

(Sharma, 1996) due to shortage of the dichlorodiphenyltrichloroethane (DDT) commonly used 

for malaria vector control. Although the DDTs play a crucial role for rapid control against 

malaria in many countries, the potential hazards associated with their continued use were first 

reported in 1944 (Davis, 2014). The apparent hazard posed by the use of DDT mainly due to 

the high levels of dosage, is the ability to alter the functioning of nervous system in humans 

and domestic animals. This could result in dizziness, convulsions, tremor and instability as a 

result of tissue poisoning by DDT (Katole et al., 2013). Due to the toxicity and cost associated 

with the use of DDTs, many people in communal areas have adopted the use of 

ethnobotanical plants for malaria control. In South Africa, one of the most common of such 

species is Lippia javanica (Lemon bush) which is widely used for its aromatic effect that serves 

as a repellent for mosquitoes. On the other hand, quantification of plant species used as 

ethnobotanical plants for controlling Anopheline mosquito is necessary for comprehensive 

approach to malaria mapping and control. This thus provides meaningful contribution to 

malaria control strategies in the Vhembe District of South Africa. Such contribution is 
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highlighted in three important ways: 1) the improvement of spatial/spectral resolution for 

species mapping; 2) adding another layer of spatial data onto the already existing 

topographical layer for defining species habitat and potential ethnobotanical plant use; and 3) 

ensemble species mapping for a more robust species distribution and habitat preference.  In 

this chapter, we have demonstrated that remote sensing data can aid in predicting the 

occurrence of L. javanica species at 10m spatial resolution. The 10 m spatial resolution allows 

for more detailed and appropriate species mapping (Valderrama-Landeros et al., 2017), thus 

contributing to detailed L. javanica species inventory and conservation especially when such 

species is used as an ethnobotanical plant for malaria control (Mabogo, 1990; Maroyi, 2017). 

Thus the higher spatial resolution L. javanica map derived from S2 data is an addition to very 

coarse species maps that are already available in South Africa at a resolution lower than 

quarter degree (Foden and Potter, 2005). Both the S2 data and the SRTM data can be easily 

used to mask environment that is clearly unsuitable for the species of interest (Cord et al., 

2013) at high spatial resolutions.  

 

The NDARVI (computed as the target mean reflectance of four red edge bands) and the red 

edge1 (R705) NDVI (also called NDVIre in this chapter) were the most significant S2 variables. 

The significant and positive correlations between these indices and L. javanica distribution 

suggest that the likelihood of finding this plant species increases with the increase in 

vegetation vigour. The broad-band vegetation indices such as the NDVI, NDWI and the DVI 

were among the significant S2 variables where the DVI contributing the most in Maxent, while 

NDWI was the most contributing broadband vegetation index in logistic regression. This 

indicates that although the narrow-band indices were mostly significant (p < 0.001), the 

broadband indices are also important contributors for explaining variability of species 

occurrence.  The low NDVI and DVI contribution to predictive model shows the inability of the 

broadband indices to capture subtle vegetation characteristics that define potential micro-

habitat of L. javanica species. Given the vegetation composition in the study area (dense to 

sparse vegetation types), the broad-band vegetation indices based on red-NIR reflectance 

(NDVI, DVI) have suffered from signal saturation (Mutanga and Skidmore, 2004), and this 

might explain low performance of these indices in individual SDMs.   Meanwhile, the narrow-

band vegetation indices are known to circumvent saturation problem that results when using 

broad-band vegetation indices (Baret et al., 1992; Mutanga and Skidmore, 2004; Malahlela et 

al., 2015). In this chapter, it was clear that the narrow-band red edge vegetation indices were 

superior to the broad-band indices for characterizing habitat where L. javanica occurrence was 

very likely. However, the correlations between remote sensing variables and the probability of 
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occurrence of L. javanica were fairly low, although significant (R2 < 0.5; p < 0.05). The selected 

remote sensing indices and topographical variables exhibited low correlations with the 

probable distribution of L. javanica species perhaps due to the temporal variation between 

occurrence data collection (August) and S2 environmental data (August-September). In the 

VDM, August marks the end of the winter season, the period during which most vegetated 

landscape enter green-up growth period. On the other hand, September month marks the 

onset of spring season where savannah vegetation has reached end of peak or maximum 

growth (Cho et al., 2017). The topographic variables (slope and elevation) derived from SRTM 

data have shown significant correlation with the distribution of L. javanica, thus contributing 

significantly to predictive accuracies of logistic regression and Maxent Models. Our study 

showed that slope and Elevation play a major role in determining the species’ potential 

distribution, and this finding is supported by observation made elsewhere by Madzimure et al. 

(2011), who concluded that L. javanica was commonly found in grasslands on hillsides in 

Zimbabwe. In South Africa, a study conducted by Morgenthal et al. (2006) found that L. 

javanica sub-community occurred predominantly in habitat located at higher altitudes. On the 

other hand, the L. javanica also occurs in open grassland, in the bush as well as on forest 

margins (Ng’weno et al., 2009). Although it is thought to be widely distributed on a national 

scale, in this chapter, the species micro-scale distribution (ecological niche) is rather much 

narrower. The species distribution in the VDM is more related to elevation, aspect, slope and 

vegetation greenness which are positively correlated to occurrence of L. javanica. 

 

In this chapter, the ensemble SDM has shown to outperform the individual predictive models 

(logistic and Maxent). This is due to the fact that ensemble modelling combines models that 

differ in structure, explanatory variables, and data sources, thus allowing inferences that are 

robust to uncertainties associated with any individual model (Latif et al., 2013; Araujo and 

New, 2006). The ensemble method was thus used to produce the final species distribution 

map at 10m spatial resolution. We have demonstrated that the ensemble model for mapping 

L. javanica species which usually occurs as a few stands in various environments (e.g. 

roadsides, grassland, riverine areas, and bushes). This finding is similar to the one by Marmion 

et al. (2009) who found that the weighted average ensemble model and mean ensemble model 

provided significantly more robust predictions than all the single-models and the other 

consensus methods.  From the results, it becomes apparent that Maxent outperformed the 

logistic regression model, although the difference is not profound (± 2.3%).  
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Figure 6.5. Ecological niche modelling. Map of the predicted distribution showing the 

percentage of relative habitat suitability for L. javanica species. 

 

By utilizing the weighted average ensemble method, a 10% improvement in the model overall 

accuracy was achieved over what was achieved through the use of binary logistic regression.  

However, it should be noted that ensemble methods do not always improve the prediction as 

their accuracies are largely dependent on the individual models. This means that if the ‘input’ 

models have low accuracies and perhaps statistically insignificant predictor variables, the 

performance of a resultant ensemble model will often be negatively impacted. Additionally, 

although ensemble approach usually yields better results for species prediction, multiple 

candidate models for ensemble modelling still require careful development and selection (Latif 

et al., 2013). Assigning higher weight to Maxent model (0.55 Maxent vs. 0.45 Logistic 

regression) has resulted in the improvement of prediction capability of SDM, and thus this 

study advocates for the use of ensemble modelling for species distribution.  

 

The pattern of the predicted species presence at the study area is very important to 

understanding the environmental factors associated with species recruitment, proliferation and 

densities. However, the species absence, although largely ignored in SDM’s, also provides 

more complex information about the species and the associated environment, rather than a 

mere lack of suitability (Lobo 2010). For example, L. javanica is largely absent in the western 
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part of the study area, which is characterized by drier conditions than the areas of predicted 

species presence. On the other hand, due to dispersal limitations (e.g. ecological barrier such 

at Soutpansberg Mountain) it is possible that L. javanica does not occupy all suitable areas 

and, as such, caution should be exercised when interpreting the presence results of the 

predictive maps.  

 

The conservation of L. javanica in its natural environment is very essential because of the 

species relative accessible and cost-effectiveness to the local communities in areas prone to 

malaria. Moreover, the distribution of L. javanica is mostly valuable in areas where western 

medicine is inaccessibility as a result of high cost associated with purchasing such medicine 

or where such medicine is unavailable (Light et al., 2005; Mavundaza et al., 2011). Due to its 

medicinal popularity as a mosquito repellent among the communities living in malaria-prone 

areas, L. javanica occurrence and abundance warrant consistent monitoring since such 

species forms part of the bigger ‘One-Health’ approach. Because the analysis in the current 

study was done from a single S2 image set, the time-series analysis could aid in validating the 

accuracy of the ensemble modelling results found in this chapter, by providing a multi-temporal 

variation in vegetation phenology. Moreover, collection of more presence points could aid in 

more accurate generalization of the predictive models and this could, in turn, improve the 

performance of the SDM’s used in the study. Collecting additional data to increase the sample 

size is very crucial because the performance of SDM is optimal when the sample size is fairly 

large, and when species of interest has a narrow niche than a generalist species (Hernandez 

et al., 2006). The list spectral indices used in the current study is not comprehensive and other 

Sentinel-derived indices such as those sensitive to chlorophyll may be correlated to the 

species presence/absence data (Lu et al., 2015; Sonobe and Wang, 2017) and thus shedding 

light on species detection, monitoring and conservation. Additionally, combining satellite data 

with environmental data such as soil type, distance to the roads, distance from the rivers or 

water bodies, shrub patch characteristics, and soil nutrients data could improve the modelling 

of L. javanica species.  

 

6.2 Conclusions 

In this chapter, the Sentinel-2 vegetation indices have exhibited significant correlation with the 

distribution of Lippia javanica in the Vhembe District. The NDARVI (a normalized index based 

on average reflectance four red edge bands) was the most significant variable when predicting 

species distribution using logistic regression, while red edge1 NDVI (NDVIre) was the highest 
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contributing predictor variable in Maxent model. On the other hand, the NDVI, DVI and NDWI 

have shown correlation with the distribution of L. javanica species, at least at micro-scale 

habitat. The variables derived from SRTM such as elevation, slope and aspect were amongst 

the most highly contributing variables in all models. The Maxent model performed better than 

logistic regression (80% and 77.7% respectively), while the combined weighted ensemble 

model yielded more than 10% improvement to the logistic regression model (86.7% and 77.7% 

respectively). This study advocates the use of ensemble modelling for mapping suitable 

habitats for L. javanica by taking advantage of high spatial and spectral resolution such as S2 

data additional to topographic variables. Mapping the distribution of L. javanica in areas prone 

to malaria is crucial for malaria control particularly in communities that do not have access to 

western medicine and treatments due to their unavailability or high cost. The new 

understanding obtained in this chapter also contributes to the update of L. javanica distribution 

map, which has been derived using high spatial resolution dataset. The information will assist 

the locals in identifying areas suitable for L. javanica occurrence, thus enabling ethnobotanical 

efforts to malaria control. 

 

In summary, this chapter provided a remote sensing approach to delineating areas where L. 

javanica is likely found, based on ground species occurrence data. It has been established in 

this study, however, that L. javanica is more accurately mapped using the combination of 

SDMs than with the single model. This was done in order in line with objective 4 set out in 

chapter 1 of this thesis. The use of unequal weighting method is thus encouraged when 

applying ensemble modelling in ecology and public health.  
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CHAPTER 7: 

Remote sensing of environmental variables for mapping 
malaria distribution: the case of Vhembe District 

Municipality, South Africa 
 

Summary and conclusions 
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7.1 Introduction  

Previous research findings have indicated that mapping malaria at local and regional scales 

is crucial for effective disease management and control (Dalrymple et al., 2015; Okami and 

Kohtake, 2017; Gwitira et al., 2018). Similarly, findings from this research also support the 

need to map malaria occurrence and factors that contribute significantly to malaria 

transmission in malaria endemic areas. The main contribution of malaria mapping study is 

mainly to inform the targeted malaria intervention by health professionals and to contribute to 

the baseline data for early-warning systems. The potential habitats of malaria vectors have 

long been associated with vegetation greenness and water bodies. However, there is a need 

to accurately quantify the potential habitats of malaria vectors for informed decision-making 

with regard to control of malaria incidences in the subtropical regions of the world. By so doing, 

costs associated with disease control and elimination can be minimized while improving the 

inventory of the resources required for controlling outdoor malaria incidence rates.  Remote 

sensing has offered avenues for cost-effective and rapid characterization the biophysical and 

biochemical parameters of outdoor habitats for Anopheline mosquitoes, particularly in rural 

areas with rugged terrain (Malahlela et al., 2018).  

 

Although the capabilities of remote sensing for mapping infectious diseases have previously 

been demonstrated (Adeola et al., 2016), there are still some challenges that are related to 

spatial and spectral configuration of most conventional optical sensors. The spatial resolution 

of the conventional satellites commonly used in public health studies is often too coarse to 

capture the biophysical and biochemical parameters of malaria vector habitats at a local scale. 

The ability of EO satellites to capture the local scale environmental conditions is very crucial 

in vector biology and diseases transmission (Richards et al., 2010; Minakwa et al., 2002), 

because local environmental conditions associated with micro-climate also contribution to 

survival of malaria pathogens (Paaijmans and Thomas, 2011). Additionally, the limited ability 

to discriminate amongst biophysical and biochemical properties related to malaria vector 

habitats through conventional satellite spectral bands can be a handicap to the use of 

traditional satellite datasets for malaria mapping. In order to circumvent this challenge, the use 

of hyperspectral bands was recommended by many researchers due to their ability to capture 

subtle variations in habitat biophysical and biochemical characteristics (Mutanga and 

Skidmore, 2004). Although the hyperspectral remote sensing has been successfully used for 

soil (Peon et al., 2017), water (Garcia et al., 2018), and vegetation (Hirano et al., 2003) studies, 

it is often marred with high data dimensionality problem that introduces multicollinearity and 

demands high computational power (Adjorlolo et al., 2013; Rajan et al., 2008). Apart from 

these apparent disadvantages, previous research has shown that both hyperspectral and 
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multispectral sensors have unique advantages that, when well-utilized, complement each 

other. One of the fundamental questions asked in this thesis was whether it is possible to 

characterize malaria vector habitats from optical remote sensing dataset that has the 

advantage of both the multispectral and hyperspectral sensors and at high spatial resolution? 

The aim of this research was to charactertize the remote sensing variables necessary to map 

the spatial distribution of malaria in the Vhembe District MunicipalityThe objectives were 

mainly focused on (i) characterizing Anopheline mosquito habitats, (ii) mapping the spatial 

distribution of malaria pathogen in Vhembe, and (iii) delineating the occurrence of L. javanica 

for the localized malaria control strategy. 

 

The challenges and opportunities related to the use of remote sensing for infectious diseases 

mapping are reviewed, with specific reference to malaria.  

 

7.1.1 Challenges and opportunities of remote sensing for malaria mapping 

 

Mapping the potential habitats for malaria vectors is one of the challenging steps for malaria 

control strategies. Since the realization of the contribution of vegetation, soil and water to 

malaria incidence rates, attempts have been made to relate such habitats with remote sensing 

approaches. However, from the literature review it becomes evident that most of the studies 

that utilized remote sensing relied on the indication given by vegetation greenness indices 

(NDVI, for example) while neglected some vegetation parameters which are very closely 

linked to mosquito’s resting/questing behaviour. The high resolution spatial information on the 

distribution of mosquito micro-habitats such as cattle footprints and puddles (natural or man-

made), which are important for malaria transmission is still missing, to a greater extent. On 

the other hand, characterizing vegetation parameters that largely dictate the survival of adult 

mosquitoes (e.g. LAI) in relation to malaria has not been adequately done, and as such more 

work is required to assess the potential use of high resolution satellite dataset for estimating 

LAI in areas endemic to malaria. 

 

The improvement in radiometric, spectral and spatio-temporal configuration of current and 

future EO satellites offers new opportunities for improved quantification of Anopheles habitats. 

This thus makes it possible to untangle various biophysical and biochemical characteristics of 

mosquito breeding (water) and resting (vegetation) sites that was, otherwise, difficult to 

quantify using traditional remote sensing datasets. For example, the presence of narrow-band 
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such as the red edge in WorldView-2, RapidEye, and Sentinel-2 offers opportunities to 

characterize variations in physico-chemical constitution of soil-water-vegetation nexus. For 

example, Kross et al. (2015) found that the vegetation indices computed from the red-edge 

band performed consistently better than the traditional red band indices when estimation 

vegetation leaf area index (LAI). However, traditional classification methods designed for 

conventional datasets are unable to produce consistent and robust results when mapping 

malaria, due to the high data dimensionality of EO datasets such as the hyperspectral data. 

The improvements in sensor specifications also demand rapid algorithms geared towards 

handling and processing high data volumes. In summary the following conclusions were made 

during the literature review (Chapter 2): 

 The distribution and abundance of malaria vectors in tropical regions are highly 

correlated to the occurrence of micro-habitats such as cattle hoofprints, puddles and 

warm, moist vegetated areas. 

 The survival of adult Anopheline mosquito is dependent upon conducive environmental 

conditions that include the architecture of vegetation canopy, with varying incoming 

radiation attenuation characteristics. 

 The use of reflectance properties of water, soil and vegetation could enhance mapping 

of malaria at high resolution in malaria endemic areas.  

 

7.1.2 Estimating the distribution of cattle hoofprints 

Cattle hoofprints are some of the most crucial habitats for An.arabiensis and An.fenestus in 

Southern Africa and their distribution was modelled using remote sensing data and field data 

with the geostatistical methods. Figure 7.1 shows the results of the cattle hoofprint modelling 

from Sentinel-2 dataset. The results show that the co-kriging method that takes into account 

narrow-band remote sensing variables is better correlated with the distribution of cattle 

hoofprints than both the ordinary kriging and the regression methods (Table 7.2). The 

implication of these results testifies that narrow-band remote sensing bands such as the red 

edge present in Sentinel-2 offers improved capability of mapping malaria vector habitats which  
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Figure 7.1. Map that shows the distribution of cattle hoofprints per 100 m2 in the Vhembe 

District Municipality 

 

 

Table 7.1: 

Comparison of interpolation performance among OK, CK and SMLR for predicting cattle 

hoofprints 

 

Method Validation 

R2 RMSE MAD 

OK 0.57 2.39 2.11 

CK 0.69 0.20 0.04 

SMLR 0.25 5.20 4.55 

R2 = coefficient of determination, RMSE = root mean square error, MAD = mean absolute 

deviance, OK = ordinary kriging, CK = co-kriging, SMLR = stepwise multiple linear regression. 
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In summary, the following conclusive remarks were drawn from the findings presented in 

Chapter 3: 

 The high resolution Sentinel-2 data was correlated to the distribution of cattle 

hoofprints. The general trend was found to be significant correlations between blue, 

red edge and Ferric Iron Index derived from Sentinel-2 imagery. 

 High predictive accuracy was achieved through co-kriging of field observation footprint 

dataset and the Sentinel-2 data (R2 = 0.69). In addition the co-kriging method resulted 

in low predictive errors, with RMSE = 0.2 prints per 100 m2; MAD = 0.04 prints per 100 

m2) using independent validation dataset. 

 Most of the cattle hoofprints are found in the north-eastern (Masisi area), eastern 

(Malamulele/Makuleke area) and south central parts (Thohoyandou to Makhado 

areas) of the Vhembe District Municipality (Figure 7.1). These areas are known to 

comprise of high malaria incidence rates in the VDM, most of which are situated in the 

Mutale local municipality (Khosa et al., 2013). Lower predictions were made for areas 

in the northern and western parts of the study area. 

 The high resolution satellite data with both multispectral and hyperspectral 

configuration offers new opportunities for malaria vector habitat mapping. 

 

7.1.3 Characterizing mosquito resting and questing habitats (LAI) 

This section (Chapter 4) tested the performance of broadband vegetation indices (BBVI) and 

the narrowband vegetation (NBVI) indices for retrieval of leaf area index (LAI) calibrated from 

heterogeneous landscape in the malaria prone environments. The results from this chapter 

indicate that the BBVI called modified chlorophyll absorption ratio index (MCARI2) and the 

modified triangular vegetation index (MTVI2) have shown higher correlation with the LAI 

distribution (R2 = 0.73; RMSE = 0.86 m2 m-2) than the NBVI computed from the red edge region 

(R2 = 0.61; RMSE = 1.61 m2 m-2). This chapter emphasizes the importance of the Sentinel-2 

broad bands (visible to near-infrared), acquired at 10 m spatial resolution which is the 

important finding in this chapter. Findings from this chapter indicate a robust generalization of 

LAI estimation, because the parameterization was made from landscape with heterogeneous 

vegetation communities. Figure 7.2 shows the results of the models used for mapping LAI at 

the study area. 
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Figure 7.2: The results of LAI retrieval from narrow-band vegetation indices (a) vs. the final 

broadband vegetation indices (b) at the study area. The scatterplots show the respective 

correlation between measured and predicted LAI for the NBVI (c) and the final BBVI model (d) 

respectively.  

  

From the current chapter the following conclusions were made: 

 The broadband vegetation indices have shown superior performance for retrieving LAI 

in the study area than the narrowband indices computed from the red edge band of 

Sentinel-2. 

 In general, the retrieval accuracy of both the BBVI and NBVI yielded the correlation of 

above 60% with the validation dataset (n = 46). 

 Sentinel-2 offers the potential to retrieve the biophysical and biochemical 

characteristics of vegetation (i.e. LAI) which is an indicator of where mosquitoes tend 

to rest during the day in high malaria transmission season. 
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7.1.4 Mapping the distribution of malaria in the study area 

The prediction of malaria is central to understanding the burden of disease and the 

implementation of intervention measures on disease hot spots. This study (Chapter 5) has 

shown that remote sensing indices that are sensitive to vegetation moisture and vegetation 

greenness are better predictors of malaria distribution when using presence and (pseudo) 

absence Plasmodium falciparum generated at various distances from the presence location. 

The pseudo-absences generated at 10 km from the known have yielded higher accuracies 

than those generated at 0.5 km, 1 km, 5 km, and 20 km. 

 
Figure 7.3. The accuracy of malaria mapping when pseudo-absences are drawn from 0.5, 1, 

5, 10 and 20 km from the known presence locations. 

 

Due to the highest mapping accuracy obtained when the pseudo-absences were drawn at 10 

km from the known presence locations, the following conclusions were drawn:  

 The study has shown that suitable habitats of malaria vectors are generally found 

within a radius of 10km in semi-arid environments and this insight can be useful to aid 

efforts aimed at putting in place evidence based preventative measures  against 

malaria infections.   

 Furthermore, this result is important in understanding malaria dynamics under the 

current climate and environmental changes.  

 The study has also demonstrated the use of conventional spectral such as those of 

Landsat Thematic Mapper and the ability to extract environmental conditions which 
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favour the distribution of malaria vector (An. arabiensis) such as the canopy moisture 

content in vegetation, which serves as a surrogate for rainfall. 

7.1.5 Mapping the spatial distribution of L. javanica for malaria control 

What is the significance of mapping malaria disease distribution and factors affecting vector 

habitats but not providing spatial information on the existing mechanisms for disease control? 

Many countries, especially in Africa have developed their own malaria control plans and 

subsequent implementations resulted in the decrease in the number of malaria transmissions 

(Pierre-Louis et al., 2018). For example, many of these countries have adopted the use of 

insecticide treated nets (ITNs) and indoor residual sprays (IRS), which have become 

cornerstones for malaria control programme (WHO, 2008; Lengelar, 2004). In most African 

communities, the use of repellents of plant origin has been one of the most effective methods 

for controlling malaria for many years (Kweka et al., 2008), because of their cheaper costs of 

treatment where such plant species are commonly found, and have shown to contain low 

toxicity to humans and animals (Ansari et al., 2000). Many plant species have been effective 

alternative for repelling malaria vectors, and these plant species include Lantana camara, 

Omicum americanum, Azadirachta indica, and Lippia javanica (Seyoum et al., 2002; Mabogo, 

1990). 

 

Remote sensing offers fast and efficient alternative approach for mapping the potential 

distribution of plant species. This is because remote sensing data is acquired for much larger 

areas at various spatio-temporal and spectral resolutions (Kempeneers et al., 2011). On the 

other hand, the spectral configuration of remote sensing instruments allows for discrimination 

amongst various plant species and to characterize topographical and environmental features 

that are associated with habitat of species of interest (Peng et al., 2018; Álvarez-Martínez et 

al., 2017). In this study (Chapter 6), Sentinel-2 data with 10 multispectral bands (and 10m 

spatial resolution) was tested for mapping the distribution of L. javanica species commonly 

used for controlling malaria vectors at the study area.  

 

The study utilized the ensemble species modelling approach that included Maxent and 

stepwise logistic regression models for predicting species distribution. Table 7.2 shows the 

performance of three models for mapping species distribution. 
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Table 7.2: 

Predicted occurrence vs. observed occurrence of L. javanica (n = 45) using three SDM’s at 
probability threshold > 0.6. 
 

     

  presence absence total 

 presence 1 2 3 

Logistic absence 8 34 42 

     

  presence absence  

Maxent presence 1 0 1 

 absence 9 35 44 

     

Ensemble  presence absence  

 presence 3 0 3 

 absence 6 36 42 

 

In summary: 

 The NDARVI (a normalized index based on average reflectance four red edge bands) 

was the most significant variable when predicting species distribution using logistic 

regression, while red edge1 NDVI (NDVIre) was the highest contributing predictor 

variable in Maxent model. 

 The variables derived from SRTM such as elevation, slope and aspect were amongst 

the most highly contributing variables in all models. 

 The Maxent model performed better than logistic regression (80% and 77.7% 

respectively), while the combined weighted ensemble model yielded more than 10% 

improvement to the logistic regression model (86.7% and 77.7% respectively). 

 The new understanding obtained in this study also contributes to the update of L. 

javanica distribution map, which has been derived using high spatial resolution 

dataset. The information will assist the locals in identifying areas suitable for L. javanica 

occurrence, thus enabling ethnobotanical efforts to malaria control. 

 The mapping of L. javanica enhances the indigenous knowledge system (IKS) of the 

local community in the Vhembe District (mostly the Vha-Venda people) concerning the 

locations of plant species that is usually used for repelling mosquitoes. The space and 

space-related technologies such as the one adopted for this study thus offer high 

resolution species mapping which can be communicated to local communities who 

continue to practice malaria preventative medicine based on IKS. 
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7.2 Overall conclusions and future work 

This study contributed significantly to the application of remote sensing for epidemiological 

research and public health. Findings from this thesis show that remote sensing indices 

designed for detecting changes in vegetation greenness, moisture content, and soil bareness 

can be used to derive information for mapping the potential breeding and resting sites of 

Anopheles arabiensis and An.fenestus in the subtropical environment. The success of 

mapping these parameters relies strongly on the establishment of spectral relationships 

between disease distribution, malaria vector habitat’s biophysical and biochemical 

characteristics and remote sensing datasets. The major finding from this study lies in the need 

to characterize habitats of Anopheline mosquito complex in Southern African tropical zones 

by employing remote sensing techniques. It was thus demonstrated that the high resolution 

satellite data has the potential to characterize: (i) the potential breeding sites for the malaria 

vectors in southern Africa, which are usually formed from cattle hoofprints, (ii) the outdoor 

resting and questing sites (refuge) for the malaria vectors, which tend to take refuge under the 

plant leaves to avoid predators and desiccation, (iii) favourable environmental conditions 

associated with vegetation biophysical and biochemical parameters necessary for the 

distribution of malaria pathogen (P. falciparum), and (iv) the suitable niche areas where the 

ethnobotanical plant species (L. javanica) used for its aromatic function is more likely to be 

found.   

 

Mapping the potential breeding sites for malaria vector in this study will contribute to the 

increased understanding of outdoor vector habitat distribution and will inform the health 

professionals about where to look for identifying possible Anopheles breeding sites and to 

concentrate the limited malaria vector control measures. This finding is very crucial particularly 

that South Africa is also one of the sub-Saharan African countries with the malaria elimination 

target set to the year 2020. This study has also shown that malaria distribution is highly 

associated with healthy vegetation with high canopy moisture content. This finding is in 

agreement with findings from previous studies elsewhere, which highlighted the importance of 

vegetation and moisture to malaria transmission (Imponvill et al., 2004; Nygren et al., 2014). 

On the other hand, the distribution of malaria control species commonly used by the local 

community in rural villages has shown association with slope, elevation, and vegetation 

greenness. This essentially implies that the likelihood of finding L. javanica increase with 

increase in the above-mentioned variables, essentially implying that this species co-exists with 

other species in its natural habitat (by virtue of positive correlations between species 

distribution and vegetation greenness).  
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However, mapping of malaria using remote sensing is not without challenges. In previous 

sections (Chapter 2) it was mentioned that challenges in remote sensing for malaria mapping 

may be associated with data and methods. In this study, the medium resolution Landsat 5 with 

30 m spatial resolution and high resolution (10 m) Sentinel-2 were used to map the distribution 

of malaria and the malaria vector habitats. The Landsat 5 data might not have adequately 

captured the biophysical and biochemical characteristics of malaria vector habitats due to the 

fact that 30 m pixel may comprise of many plant species including herbaceous and grass 

species that can inhibit Anopheles oviposition. However, the present study did not focus on 

the habitat characterization at species level, instead it focused on spectral characteristics at 

pixel level. Moreover, because of the Landsat spatial resolution it is possible that the pseudo-

absences for malaria pathogen may have been drawn from areas where the malaria pathogen 

was present but not yet identified as such. On the hand, the spectral resampling of Sentinel-2 

may have introduced errors that might have affected the predictions, and such classification 

errors were quantified for cattle hoofprint estimation (RMSE = 0.2 prints/ 100m2), LAI retrieval 

(RMSE = 0.86 m2 m-2), and L. javanica mapping (AUC = 0.89).  

 

Despite these challenges, the current study has demonstrated the application of remote 

sensing for malaria mapping using the optical satellite data. It employed the use of vegetation 

and other spectral indices with known correlations to malaria vector habitats. In this thesis, it 

is recommended that future work should focus on the characterization potential malaria 

vectors habitats using a multi-seasonal approach and very high spatial resolution datasets. In 

addition, such studies should also look into relating the collected densities of An. arabiensis 

and An. fenestus in the malaria affected areas and to relate such information with the LAI 

measured through ground-based surveys. The availability of current and future very high 

resolution commercial satellites such as WorldView-2/3, Pleiades provides opportunities for 

fine resolution malaria vector characterization at household level.  
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7.3  Abridged Summary 

 

Chapter 1: 

 

Provides the aim, objectives and study design for characterizing environmental variables for 

mapping malaria distribution in the Vhembe District Municipality by means of remote sensing 

techniques. 

 

Chapter 2: 

In this chapter, a comprehensive review of the applications of remote sensing and GIS for 

mapping the environmental variables affecting malaria distribution has been done. It was 

found that cattle hoofprints, puddles, river edges, low-lying irrigated field, vegetation around 

homesteads serve as the breeding habitats and questing sites for An.arabiensis and An. 

fenestus. This, however, calls for targeted mapping of these environmental conditions as a 

way to fight malaria transmission in the study area. 

 

Chapter 3: 

In summary, this chapter provides remote sensing methods for mapping of cattle hoofprints in 

the Vhembe District Municipality. The mapping approach was done through geo-statistics 

(kriging, co-kriging) and the stepwise multiple linear regression model. It was found that the 

remote sensing data derived from Sentinel-2 narrow bands are the best predictors of cattle 

hoof prints, because of their ability to resolve for objects that are associated with cattle 

hoofprints, e.g. bare soil and wet environments with surrounding vegetation. 

 

Chapter 4: 

In this chapter, the biophysical characteristic of vegetation (including those surrounding 

villages) in the form of leaf area index (LAI) was retrieved. The retrieval of LAI allows for 

inference of how much of vegetation leaf surface area contributes to the questing and resting 

habitats of mosquitoes common in the study area. The results from this study suggest that the 

broad band vegetation indices that are sensitive to changes in effective LAI were better 

predictors of remotely-sensed LAI than the narrow band ones. This is an important finding 

especially considering that the broad bands of Sentinel-2 satellite are configured at a high 

special resolution of 10 m. Knowing the distribution of LAI at the study area gives the indication 

of relationship between malaria transmission rates and the outdoor questing/resting areas of 

mosquitoes. 
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Chapter 5: 

The aim of this chapter was to map the distribution of malaria pathogen P. falciparum in the 

Vhembe District using the Landsat-derived environmental variables. In this chapter, it was 

observed that the spectral indices such as the soil-adjusted vegetation index (SAVI), and the 

canopy moisture indices were significantly correlated to the P. falciparum occurrence 

particularly in areas where the pseudo-absences of malaria pathogen were generated at 10 

km distance from the known presence locations. 

 

Chapter 6: 

In this chapter, we have attempted to map the distribution of ethnobotanically significant plant 

species (L. javanica) across the study area. The occurrence and utilization of this species by 

local communities contributes to low malaria transmission rates and thus assist in the 

realization of malaria eradication plans by the World Health Organization (WHO). From the 

analysis, it was found that the ensemble species distribution model with unequal weighting of 

remotely-sensed data was more efficient in mapping L. javanica than both maxent and logistic 

regression models. 

 

Chapter 7: 

This chapter summarizes findings made in all chapters. From the previous chapters, it was 

found that both Landsat and Sentinel datasets provide meaning contribution to characterizing 

the environmental variables that are correlated to malaria transmission. For example, the 

mapping of cattle hoofprints distribution, LAI retrieval, distribution of P. falciparum and 

mapping of L. javanica plant species provide us with insight of how earth observation 

technology can be applied in epidemiology and to support initiatives meant to curb infectious 

diseases. This chapter also shows that a lot needs to be done in order to win the battle against 

malaria in southern Africa, through integration of various technological methods and datasets. 
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